
M
eijer,

H
ochstein
 &

 M
oser

Bas Meijer,
Lorin Hochstein

& René Moser

 Ansible Ansible
 Up & Running Up & Running
Automating Configuration Management
and Deployment the Easy Way

Third
Edition

CONFIGUR ATION MANAGEMENT

“Bas Meijer has taken
the work Lorin Hochstein
and René Moser began
and modernized the
content for this third
edition, adding to what
was already a very
good book. Whether
you are a beginner, an
intermediate, or an

 advanced Ansible user,
this is a book you’ll want
to read.”

—Jan-Piet Mens
Consultant

Ansible: Up and Running

US $59.99	 CAN $74.99
ISBN: 978-1-098-10915-8

Twitter: @oreillymedia
linkedin.com/company/oreilly-media
youtube.com/oreillymedia

Among the many configuration management tools available,
Ansible has some distinct advantages: It’s minimal in nature.
You don’t need to install agents on your nodes. And there’s
an easy learning curve. With this updated third edition, you’ll
quickly learn how to be productive with Ansible whether
you’re a developer deploying code or a system administrator
looking for a better automation solution.

Authors Bas Meijer, Lorin Hochstein, and René Moser
show you how to write playbooks (Ansible’s configuration
management scripts), manage remote servers, and explore
the tool’s real power: built-in declarative modules. You’ll
learn how Ansible has all the functionality you need—and the
simplicity you desire.

•	 Explore Ansible configuration management and deployment

•	 Manage Linux, Windows, and network devices

•	 Learn how to apply Ansible best practices

•	 Understand how to use the new collections format

•	 Create custom modules and plug-ins

•	 Generate reusable Ansible content for open source
middleware

•	 Build container images, images for cloud instances, and
cloud infrastructure

•	 Automate CI/CD development environments

•	 Learn how to use Ansible Automation Platform for DevOps

Bas Meijer is a freelance software
engineer and DevOps coach. He has
been pioneering open source since the
early 1990s.

Lorin Hochstein is a senior software
engineer on the chaos team at Netflix
and a coauthor of the OpenStack
Operations Guide (O’Reilly).

René Moser is a Swiss system engineer,
an ASF CloudStack committer, and the
author of the CloudStack integration in
Ansible.

Bas Meijer, Lorin Hochstein, and René Moser

Ansible: Up and Running
Automating Configuration Management

and Deployment the Easy Way

THIRD EDITION

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-098-10915-8

[LSI]

Ansible: Up and Running
by Bas Meijer, Lorin Hochstein, and René Moser

Copyright © 2022 Bas Meijer. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: John Devins
Development Editor: Sarah Grey
Production Editor: Kate Galloway
Copyeditor: Charles Roumeliotis
Proofreader: Piper Editorial Consulting, LLC

Indexer: Ellen Troutman-Zaig
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Kate Dullea

December 2014: First Edition
August 2017: Second Edition
July 2022: Third Edition

Revision History for the Third Edition
2022-07-12: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781098109158 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Ansible: Up and Running, the cover
image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the authors, and do not represent the publisher’s views.
While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use
of or reliance on this work. Use of the information and instructions contained in this work is at your
own risk. If any code samples or other technology this work contains or describes is subject to open
source licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781098109158

Table of Contents

Preface to the Third Edition. xvii

1. Introduction. 1
A Note About Versions 2
Ansible: What Is It Good For? 2
How Ansible Works 4
What’s So Great About Ansible? 5

Simple 5
Powerful 8
Secure 11

Is Ansible Too Simple? 13
What Do I Need to Know? 13
What Isn’t Covered 14
Moving Forward 14

2. Installation and Setup. 15
Installing Ansible 15

Loose Dependencies 16
Running Ansible in Containers 16
Ansible Development 17

Setting Up a Server for Testing 17
Using Vagrant to Set Up a Test Server 17
Telling Ansible About Your Servers 20
Simplifying with the ansible.cfg File 22
Kill Your Darlings 25

Convenient Vagrant Configuration Options 25
Port Forwarding and Private IP Addresses 25

iii

Enabling Agent Forwarding 27
The Docker Provisioner 28
The Ansible Local Provisioner 28
When the Provisioner Runs 29
Vagrant Plug-ins 29

Hostmanager 29
VBGuest 30

VirtualBox Customization 30
Vagrantfile Is Ruby 30
Production Setup 33
Conclusion 34

3. Playbooks: A Beginning. 35
Preliminaries 35
A Very Simple Playbook 36

Specifying an NGINX Config File 37
Creating a Web Page 38
Creating a Group 38

Running the Playbook 39
Playbooks Are YAML 41

Start of Document 41
End of File 41
Comments 41
Indentation and Whitespace 41
Strings 42
Booleans 42
Lists 43
Dictionaries 44
Multiline Strings 44
Pure YAML Instead of String Arguments 45

Anatomy of a Playbook 45
Plays 46

Tasks 47
Modules 48
Viewing Ansible Module Documentation 49
Putting It All Together 49

Did Anything Change? Tracking Host State 49
Getting Fancier: TLS Support 50

Generating a TLS Certificate 51
Variables 51
Quoting in Ansible Strings 52

iv | Table of Contents

Generating the NGINX Configuration Template 53
Loop 54
Handlers 55
A Few Things to Keep in Mind About Handlers 55
Testing 56
Validation 56
The Playbook 57
Running the Playbook 58

Conclusion 60

4. Inventory: Describing Your Servers. 61
Inventory/Hosts Files 62

Preliminaries: Multiple Vagrant Machines 62
Behavioral Inventory Parameters 65

Changing Behavioral Parameter Defaults 66
Groups and Groups and Groups 67

Example: Deploying a Django App 68
Aliases and Ports 71
Groups of Groups 71
Numbered Hosts (Pets Versus Cattle) 72

Hosts and Group Variables: Inside the Inventory 72
Host and Group Variables: In Their Own Files 74
Dynamic Inventory 76

Inventory Plug-ins 77
Amazon EC2 77
Azure Resource Manager 77
The Interface for a Dynamic Inventory Script 77
Writing a Dynamic Inventory Script 79

Breaking the Inventory into Multiple Files 82
Adding Entries at Runtime with add_host and group_by 83

add_host 83
group_by 85

Conclusion 86

5. Variables and Facts. 87
Defining Variables in Playbooks 87

Defining Variables in Separate Files 87
Directory Layout 88

Viewing the Values of Variables 88
Variable Interpolation 88

Registering Variables 89

Table of Contents | v

Facts 93
Viewing All Facts Associated with a Server 94
Viewing a Subset of Facts 95
Any Module Can Return Facts or Info 95
Local Facts 96
Using set_fact to Define a New Variable 97

Built-In Variables 98
hostvars 98
inventory_hostname 99
groups 99

Extra Variables on the Command Line 100
Precedence 102
Conclusion 103

6. Introducing Mezzanine: Our Test Application. 105
Why Is Deploying to Production Complicated? 105
Postgres: The Database 108
Gunicorn: The Application Server 108
NGINX: The Web Server 109
Supervisor: The Process Manager 110
Conclusion 110

7. Deploying Mezzanine with Ansible. 111
Listing Tasks in a Playbook 111
Organization of Deployed Files 112
Variables and Secret Variables 113
Installing Multiple Packages 114
Adding the Become Clause to a Task 115
Updating the apt Cache 115
Checking Out the Project Using Git 117
Installing Mezzanine and Other Packages into a Virtual Environment 118
Complex Arguments in Tasks: A Brief Digression 121
Configuring the Database 123
Generating the local_settings.py File from a Template 124
Running django-manage Commands 127
Running Custom Python Scripts in the Context of the Application 128

Setting Service Configuration Files 130
Enabling the NGINX Configuration 133
Installing TLS Certificates 134
Installing Twitter Cron Job 135
The Full Playbook 136

vi | Table of Contents

Running the Playbook Against a Vagrant Machine 140
Troubleshooting 141

Cannot Check Out Git Repository 141
Cannot Reach 192.168.33.10.nip.io 142
Bad Request (400) 142

Conclusion 142

8. Debugging Ansible Playbooks. 143
Humane Error Messages 143
Debugging SSH Issues 144
Common SSH Challenges 147

PasswordAuthentication no 147
SSH as a Different User 148
Host Key Verification Failed 148
Private Networks 149

The debug Module 149
Playbook Debugger 150
The assert Module 152
Checking Your Playbook Before Execution 153

Syntax Check 154
List Hosts 154
List Tasks 154
Check Mode 155
Diff (Show File Changes) 155
Tags 156
Limits 156

Conclusion 157

9. Roles: Scaling Up Your Playbooks. 159
Basic Structure of a Role 159
Example: Deploying Mezzanine with Roles 161

Using Roles in Your Playbooks 161
Pre-Tasks and Post-Tasks 162
A database Role for Deploying the Database 163
A mezzanine Role for Deploying Mezzanine 166

Creating Role Files and Directories with ansible-galaxy 171
Dependent Roles 172
Ansible Galaxy 173

Web Interface 173
Command-Line Interface 173
Role Requirements in Practice 174

Table of Contents | vii

Contributing Your Own Role 175
Conclusion 175

10. Complex Playbooks. 177
Dealing with Badly Behaved Commands 177
Filters 181

The default Filter 181
Filters for Registered Variables 181
Filters That Apply to Filepaths 182
Writing Your Own Filter 183

Lookups 184
file 186
pipe 187
env 187
password 187
template 187
csvfile 188
dig 189
redis 190
Writing Your Own Lookup Plug-in 191

More Complicated Loops 191
With Lookup Plug-in 192
with_lines 193
with_fileglob 193
with_dict 194
Looping Constructs as Lookup Plug-ins 195

Loop Controls 195
Setting the Variable Name 195
Labeling the Output 196

Imports and Includes 198
Dynamic Includes 199
Role Includes 200
Role Flow Control 200

Blocks 201
Error Handling with Blocks 201
Encrypting Sensitive Data with ansible-vault 205

Multiple Vaults with Different Passwords 207
Conclusion 207

11. Customizing Hosts, Runs, and Handlers. 209
Patterns for Specifying Hosts 209

viii | Table of Contents

Limiting Which Hosts Run 210
Running a Task on the Control Machine 210
Manually Gathering Facts 211
Retrieving an IP Address from the Host 211
Running on One Host at a Time 213
Running on a Batch of Hosts at a Time 215
Running Only Once 216
Limiting Which Tasks Run 216

step 216
start-at-task 216
Running Tags 216
Skipping Tags 218

Running Strategies 218
Linear 218
Free 219

Advanced Handlers 221
Handlers in Pre- and Post-Tasks 221
Flush Handlers 223
Meta Commands 223
Handlers Notifying Handlers 224
Handlers Listen 224
The SSL Case for the listen Feature 225

Conclusion 231

12. Managing Windows Hosts. 233
Connection to Windows 233
PowerShell 234
Windows Modules 237
Our Java Development Machine 237
Adding a Local User 239
Windows Features 239
Installing Software with Chocolatey 240
Configuration of Java 241
Updating Windows 241
Conclusion 242

13. Ansible and Containers. 243
Kubernetes 244
Docker Application Life Cycle 245
Registries 245
Ansible and Docker 246

Table of Contents | ix

Connecting to the Docker Daemon 246
Example Application: Ghost 246
Running a Docker Container on Our Local Machine 247
Building an Image from a Dockerfile 247
Pushing Our Image to the Docker Registry 249
Orchestrating Multiple Containers on Our Local Machine 250
Querying Local Images 252
Deploying the Dockerized Application 253

Provisioning MySQL 253
Deploying the Ghost Database 254
Frontend 255
Frontend: Ghost 256
Frontend: NGINX 257
Cleaning Out Containers 257

Conclusion 258

14. Quality Assurance with Molecule. 259
Installation and Setup 259
Configuring Molecule Drivers 260
Creating an Ansible Role 261
Scenarios 262

Desired State 262
Configuring Scenarios in Molecule 262
Managing Virtual Machines 263
Managing Containers 264

Molecule Commands 266
Linting 266

YAMLlint 267
ansible-lint 267
ansible-later 268

Verifiers 269
Ansible 269
Goss 269
TestInfra 271

Conclusion 272

15. Collections. 273
Installing Collections 274
Listing Collections 275
Using Collections in a Playbook 275
Developing a Collection 276

x | Table of Contents

Conclusion 278

16. Creating Images. 279
Creating Images with Packer 279

Vagrant VirtualBox VM 279
Combining Packer and Vagrant 282
Cloud Images 283
Google Cloud Platform 283
Azure 285
Amazon EC2 287
The Playbook 288

Docker Image: GCC 11 288
Conclusion 291

17. Cloud Infrastructure. 293
Terminology 297

Instance 297
Amazon Machine Image 297
Tags 297

Specifying Credentials 298
Environment Variables 298
Configuration Files 299

Prerequisite: Boto3 Python Library 300
Dynamic Inventory 301

Inventory Caching 302
Other Configuration Options 303

Defining Dynamic Groups with Tags 303
Applying Tags to Existing Resources 303
Nicer Group Names 304

Virtual Private Clouds 305
Configuring ansible.cfg for Use with ec2 305
Launching New Instances 306
EC2 Key Pairs 307

Creating a New Key 308
Uploading Your Public Key 308

Security Groups 308
Permitted IP Addresses 309
Security Group Ports 310

Getting the Latest AMI 310
Create a New Instance and Add It to a Group 312
Waiting for the Server to Come Up 313

Table of Contents | xi

Putting It All Together 314
Specifying a Virtual Private Cloud 316

Dynamic Inventory and VPC 319
Conclusion 319

18. Callback Plug-ins. 321
Stdout Plug-ins 321

ARA 322
debug 323
default 323
dense 323
json 324
minimal 324
null 324
oneline 324

Notification and Aggregate Plug-ins 324
Python Requirements 325
foreman 325
jabber 326
junit 326
log_plays 327
logentries 327
logstash 327
mail 328
profile_roles 328
profile_tasks 328
say 329
slack 329
splunk 329
timer 330

Conclusion 330

19. Custom Modules. 331
Example: Checking That You Can Reach a Remote Server 332

Using the Script Module Instead of Writing Your Own 332
can_reach as a Module 333

Should You Develop a Module? 334
Where to Put Your Custom Modules 334
How Ansible Invokes Modules 334

Generate a Standalone Python Script with the Arguments (Python Only) 334
Copy the Module to the Host 335

xii | Table of Contents

Create an Arguments File on the Host (Non-Python Only) 335
Invoke the Module 335

Expected Outputs 336
Output Variables That Ansible Expects 336

Implementing Modules in Python 337
Parsing Arguments 339
Accessing Parameters 339
Importing the AnsibleModule Helper Class 340
Argument Options 340
AnsibleModule Initializer Parameters 343
Returning Success or Failure 346
Invoking External Commands 347
Check Mode (Dry Run) 348

Documenting Your Module 349
Debugging Your Module 350
Implementing the Module in Bash 352
Specifying an Alternative Location for Bash 353
Conclusion 354

20. Making Ansible Go Even Faster. 355
SSH Multiplexing and ControlPersist 355

Manually Enabling SSH Multiplexing 356
SSH Multiplexing Options in Ansible 358

More SSH Tuning 359
Algorithm Recommendations 359

Pipelining 361
Enabling Pipelining 361
Configuring Hosts for Pipelining 361

Mitogen for Ansible 363
Fact Caching 364

JSON File Fact-Caching Backend 366
Redis Fact-Caching Backend 366
Memcached Fact-Caching Backend 367

Parallelism 368
Concurrent Tasks with Async 368
Conclusion 370

21. Networking and Security. 371
Network Management 371

Supported Vendors 372
Ansible Connection for Network Automation 372

Table of Contents | xiii

Privileged Mode 373
Network Inventory 374
Network Automation Use Cases 374

Security 375
Comply with Compliance? 375
Secured, but Not Secure 376
Shadow IT 379
Sunshine IT 380
Zero Trust 380

Conclusion 381

22. CI/CD and Ansible. 383
Continuous Integration 383

Elements in a CI System 384
Jenkins and Ansible 389
Running CI for Ansible Roles 392

Staging 394
Ansible Plug-in 395
Ansible Tower Plug-in 397
Conclusion 398

23. Ansible Automation Platform. 399
Subscription Models 402

Ansible Automation Platform Trial 403
What Ansible Automation Platform Solves 404

Access Control 404
Projects 405
Inventory Management 406
Run Jobs by Job Templates 408

RESTful API 410
AWX.AWX 412

Installation 412
Create an Organization 413
Create an Inventory 413
Running a Playbook with a Job Template 414

Using Containers to Run Ansible 416
Creating Execution Environments 416

Conclusion 417

24. Best Practices. 419
Simplicity, Modularity, and Composability 419

xiv | Table of Contents

Organize Content 420
Decouple Inventories from Projects 420
Decouple Roles and Collections 420
Playbooks 421
Code Style 421
Tag and Test All the Things 421
Desired State 421
Deliver Continuously 422
Security 422
Deployment 422
Performance Indicators 422
Benchmark Evidence 423
Final Words 424

Bibliography. 425

Index. 427

Table of Contents | xv

Preface to the Third Edition

Since the second edition of this book was published in 2017, there have been tremen‐
dous changes in the world of Ansible and Python, including several major releases.
Substantial changes happened outside the project as well: for example, Red Hat, the
company that backs the Ansible project, was bought by IBM. That hasn’t slowed
the Ansible project at all, of course: it’s still in active development and gaining
users. The development of cloud infrastructure and containers has also changed the
landscape immensely.

We’ve made multiple changes in this edition, most significantly adding six new
chapters that cover containers, Molecule, Ansible collections, creating images, cloud
infrastructure, and CI/CD. We’ve also added much more detail to other chapters, with
a focus on using software engineering best practices and test frameworks to validate
code and eradicate guesswork. We’ve updated all the example code for compatibility
with the latest Ansible, as well as everything that addresses Python dependencies.
Our material was written to reflect the significant changes between 2017 and 2022.
We could go on, but we hope you’ll dive into the text, try the code, and discover for
yourself just how much Ansible continues to advance.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program
elements such as variable or function names, databases, data types, environment
variables, statements, and keywords.

xvii

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a general note.

This element indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/ansiblebook.

If you have a technical question or a problem using the code examples, please send
email to bookquestions@oreilly.com.

This book is here to help you get your job done. In general, if example code is
offered with this book, you may use it in your programs and documentation. You
do not need to contact us for permission unless you’re reproducing a significant
portion of the code. For example, writing a program that uses several chunks of code
from this book does not require permission. Selling or distributing examples from
O’Reilly books does require permission. Answering a question by citing this book
and quoting example code does not require permission. Incorporating a significant
amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but generally do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: “Ansible: Up and Running
by Bas Meijer, Lorin Hochstein, and René Moser (O’Reilly). Copyright 2022 Bas
Meijer, 978-1-098-10915-8.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

xviii | Preface to the Third Edition

https://github.com/ansiblebook
mailto:bookquestions@oreilly.com
mailto:permissions@oreilly.com

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technol‐
ogy and business training, knowledge, and insight to help
companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, visit https://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/ansible-3e.

Email bookquestions@oreilly.com to comment or ask technical questions about this
book.

For news and information about our books and courses, visit https://oreilly.com.

Find us on LinkedIn: https://linkedin.com/company/oreilly-media.

Follow us on Twitter: https://twitter.com/oreillymedia.

Watch us on YouTube: https://youtube.com/oreillymedia.

Acknowledgments
From Lorin
Thanks to Jan-Piet Mens, Matt Jaynes, and John Jarvis for reviewing drafts of the
book and providing feedback. Thanks to Isaac Saldana and Mike Rowan at SendGrid
for being so supportive of this endeavor. Thanks to Michael DeHaan for creating

Preface to the Third Edition | xix

https://oreilly.com
https://oreilly.com
https://oreil.ly/ansible-3e
mailto:bookquestions@oreilly.com
https://oreilly.com
https://linkedin.com/company/oreilly-media
https://twitter.com/oreillymedia
https://youtube.com/oreillymedia

Ansible and shepherding the community that sprang up around it, as well as for
providing feedback on the book, including an explanation of why he chose to use
the name Ansible. Thanks to my editor, Brian Anderson, for his endless patience in
working with me.

Thanks to Mom and Dad for their unfailing support; my brother Eric, the actual
writer in the family; and my two children, Benjamin and Julian. Finally, thanks to my
wife, Stacy, for everything.

From René
Thanks to my family, my wife, Simone, for the support and love, my three children—
Gil, Sarina, and Léanne—for the joy they brought into my life; to all those people
contributing to Ansible, thank you for your work; and a special thanks to Matthias
Blaser, who introduced Ansible to me.

From Bas
Thanks to Henk de Jongh for introducing me to O’Reilly books in the early nineties.
Thanks to Jordi Clement for introducing me to Ansible. Thanks to all those people
contributing to Ansible, thank you for your awesome work. Thanks to the formidable
teams that formed me: Antraciet, Integration and Engineering at IMC, iWelcome,
CD@GS, Vendora, CDaaS, Spitfire, Colibri, Wilbur, Duck Tape, Purple, ICC. Thanks
to Frank Bezema and Werner Dijkerman. Thanks to Jiri Hoogland and Vola Dynam‐
ics for supporting open source development. Massive thanks to Ton Kersten and
Kerim Satirli! Special thanks to Jan-Piet Mens, Marek Vette, and John Cunniff for
reviewing! Thanks to Serge van Ginderachter, Luke Murphy, Robert de Bock, Vincent
van der Kussen, Dag Wieers, Arnab Sinha, Anand Buddhef, and all others for their
great presentations in the Ansible Benelux Meetup: without them I could not have
authored this book. Thanks to Sarah Grey for editing this book. And thanks to my
dear family members for all the fun and love.

xx | Preface to the Third Edition

1 For more on building and maintaining these types of distributed systems, check out Thomas A. Limoncelli,
Strata R. Chalup, and Christina J. Hogan’s The Practice of Cloud System Administration, volumes 1 and 2
(Addison-Wesley), and Designing Data-Intensive Applications by Martin Kleppman (O’Reilly).

CHAPTER 1

Introduction

It’s an interesting time to be working in the IT industry. We no longer deliver
software to our customers by installing a program on a single machine and calling it a
day. Instead, we are all gradually turning into cloud engineers.

We now deploy software applications by stringing together services that run on
a distributed set of computing resources and communicate over different network‐
ing protocols. A typical application can include web servers, application servers,
memory-based caching systems, task queues, message queues, SQL databases, NoSQL
datastores, and load balancers.

IT professionals also need to make sure to have the proper redundancies in place,
so that when failures happen (and they will), our software systems will handle them
gracefully. Then there are the secondary services that we also need to deploy and
maintain, such as logging, monitoring, and analytics, as well as third-party services
we need to interact with, such as infrastructure-as-a-service (IaaS) endpoints for
managing virtual machine instances.1

You can wire up these services by hand: spinning up the servers you need, logging
into each one, installing packages, editing config files, and so forth, but it’s a pain. It’s
time-consuming, error-prone, and just plain dull to do this kind of work manually,
especially around the third or fourth time. And for more complex tasks, like standing
up an OpenStack cloud, doing it by hand is madness. There must a better way.

If you’re reading this, you’re probably already sold on the idea of configuration man‐
agement and considering adopting Ansible as your configuration management tool.

1

https://learning.oreilly.com/library/view/designing-data-intensive-applications/9781491903063/

Whether you’re a developer deploying your code to production, or you’re a systems
administrator looking for a better way to automate, I think you’ll find Ansible to be
an excellent solution to your problem.

A Note About Versions
The example code in this book was tested against several versions of Ansible. Ansible
5.9.0 is the latest version as of this writing; Ansible Tower includes version 2.9.27 in
the most recent release. Ansible 2.8 went End of Life with the release of 2.8.20 on
April 13, 2021. Expect Ansible to evolve further.

For years the Ansible community has been highly active in creating roles and mod‐
ules—so active that there are thousands of modules and more than 20,000 roles. The
difficulties of managing a project of this scale led creators to reorganize the Ansible
content into three parts:

• Core components, created by the Ansible team•
• Certified content, created by Red Hat’s business partners•
• Community content, created by thousands of enthusiasts worldwide•

Ansible 2.9 has lots of built-in features, and later versions are more composable. This
new setup makes it more easily maintainable as a whole.

The examples provided in this book should work in various versions of Ansible, but
version changes in general call for testing, which we will address in Chapter 14.

What’s with the Name Ansible?

It’s a science-fiction reference. An ansible is a fictional communica‐
tion device that can transfer information faster than the speed of
light. Ursula K. Le Guin invented the concept in her book Rocan‐
non’s World (Ace Books, 1966), and other sci-fi authors have since
borrowed the idea, including Orson Scott Card. Ansible cofounder
Michael DeHaan took the name Ansible from Card’s book Ender’s
Game (Tor, 1985). In that book, the ansible was used to control
many remote ships at once, over vast distances. Think of it as a
metaphor for controlling remote servers.

Ansible: What Is It Good For?
Ansible is often described as a configuration management tool and is typically men‐
tioned in the same breath as Puppet, Chef, and Salt. When IT professionals talk about
configuration management, we typically mean writing some kind of state description
for our servers, then using a tool to enforce that the servers are, indeed, in that

2 | Chapter 1: Introduction

2 Yes, Azure supports Linux servers.
3 For example, see “Using Ansible at Scale to Manage a Public Cloud”, a slide presentation by Jesse Keating,

formerly of Rackspace.

state: the right packages are installed, configuration files have the expected values and
have the expected permissions, the right services are running, and so on. Like other
configuration management tools, Ansible exposes a domain-specific language (DSL)
that you use to describe the state of your servers.

You can use these tools for software deployment as well. When people talk about
deployment, they are usually referring to the process of generating binaries or static
assets (if necessary) from software written by in-house developers, copying the
required files to servers, adding configuration properties and environment variables,
and starting services in a particular order. Capistrano and Fabric are two examples
of open source deployment tools. Ansible is a great tool for deployment as well as
configuration management. Using a single tool for both makes life simpler for the
folks responsible for system integration.

Some people talk about the need to orchestrate deployments. Orchestration is the
process of coordinating deployment when multiple remote servers are involved and
things must happen in a specific order. For example, you might need to bring up
the database before bringing up the web servers, or take web servers out of the load
balancer one at a time to upgrade them without downtime. DeHaan designed Ansible
from the ground up to be good at this, and to perform actions on multiple servers. It
has a refreshingly simple model for controlling the order in which actions happen.

Finally, you’ll hear people talk about provisioning new servers. In the context of
public clouds such as Amazon EC2, provisioning refers to spinning up new virtual
machine instances or cloud-native software as a service (SaaS). Ansible has got you
covered here, with modules for talking to clouds including EC2, Azure,2 Digital
Ocean, Google Compute Engine, Linode, and Rackspace,3 as well as any clouds that
support the OpenStack APIs.

Confusingly, the Vagrant tool, covered later in this chapter, uses
the term provisioner to refer to a tool that does configuration
management. It thus refers to Ansible as a kind of provisioner.
Vagrant calls tools that create machines, such as VirtualBox and
VMWare, providers. Vagrant uses the term machine to refer to a
virtual machine and box to refer to a virtual machine image.

Ansible: What Is It Good For? | 3

https://oreil.ly/djLsk

How Ansible Works
Figure 1-1 shows a sample use case of Ansible in action. A user we’ll call Alice is
using Ansible to configure three Ubuntu-based web servers to run NGINX. She has
written a script called webservers.yml. In Ansible, the equivalent of a script is called
a playbook. A playbook describes which hosts (what Ansible calls remote servers) to
configure, and an ordered list of tasks to perform on those hosts. In this example, the
hosts are web1, web2, and web3, and the tasks are things such as these:

• Install NGINX•
• Generate a NGINX configuration file•
• Copy over the security certificate•
• Start the NGINX service•

Figure 1-1. Running an Ansible playbook to configure three web servers

4 | Chapter 1: Introduction

In the next chapter, we’ll elaborate what’s in this playbook; for now, we’ll focus
on its role in the overall process. Alice executes the playbook by using the ansible-
playbook command. Alice starts her Ansible playbook by typing first the command
and then the name of the playbook on a terminal line:

$ ansible-playbook webservers.yml

Ansible will make SSH connections in parallel to web1, web2, and web3. It will then
execute the first task on the list on all three hosts simultaneously. In this example,
the first task is installing the NGINX package, so the task in the playbook would look
something like this:

- name: Install nginx
 package:
 name: nginx

Ansible will do the following:

1. Generate a Python script that installs the NGINX package1.
2. Copy the script to web1, web2, and web32.
3. Execute the script on web1, web2, and web33.
4. Wait for the script to complete execution on all hosts4.

Ansible will then move to the next task in the list and go through these same four
steps.

It’s important to note the following:

1. Ansible runs each task in parallel across all hosts.1.
2. Ansible waits until all hosts have completed a task before moving to the next task.2.
3. Ansible runs the tasks in the order that you specify them.3.

What’s So Great About Ansible?
There are several open source configuration management tools out there to choose
from, so why choose Ansible? Here are 21 reasons that drew us to it. In short: Ansible
is simple, powerful, and secure.

Simple
Ansible was designed to have a dead simple setup process and a minimal learning
curve.

What’s So Great About Ansible? | 5

Easy-to-read syntax
Ansible uses the YAML file format and Jinja2 templating, both of which are easy to
pick up. Recall that Ansible configuration management scripts are called playbooks.
Ansible actually builds the playbook syntax on top of YAML, which is a data format
language that was designed to be easy for humans to read and write. In a way, YAML
is to JSON what Markdown is to HTML.

Easy to audit
You can inspect Ansible playbooks in several ways, like listing all actions and hosts
involved. For dry runs, we often use ansible-playbook --check. With built-in
logging it is easy to see who did what and where. The logging is pluggable and log
collectors can easily ingest the logs.

Little to nothing to install on the remote hosts
To manage servers with Ansible, Linux servers need to have SSH and Python
installed, while Windows servers need WinRM enabled. On Windows, Ansible uses
PowerShell instead of Python, so there is no need to preinstall an agent or any other
software on the host.

On the control machine (that is, the machine that you use to control remote
machines), it is best to install Python 3.8 or later. Depending on the resources
you manage with Ansible, you might have external library prerequisites. Check the
documentation to see whether a module has specific requirements.

Ansible scales down
The authors of this book use Ansible to manage hundreds of nodes. But what got us
hooked is how it scales down. You can use Ansible on very modest hardware, like a
Raspberry Pi or an old PC. Using it to configure a single node is easy: simply write
a single playbook. Ansible obeys Alan Kay’s maxim: “Simple things should be simple;
complex things should be possible.”

Easy to share
We do not expect you to reuse Ansible playbooks across different contexts. In Chap‐
ter 7, we will discuss roles, which are a way of organizing your playbooks, and
Ansible Galaxy, an online repository of these roles.

The primary unit of reuse in the Ansible community nowadays is the collection.
You can organize your modules, plug-ins, libraries, roles, and even playbooks into
a collection and share it on Ansible Galaxy. You can also share internally using Auto‐
mation Hub, a part of Ansible Tower. Roles can be shared as individual repositories.

6 | Chapter 1: Introduction

https://oreil.ly/85aCX

In practice, though, every organization sets up its servers a little bit differently, and
you are best off writing playbooks for your organization rather than trying to reuse
generic ones. We believe the primary value of looking at other people’s playbooks is to
see how things work, unless you work with a particular product for which the vendor
is a certified partner or involved in the Ansible community.

System abstraction
Ansible works with simple abstractions of system resources like files, directories,
users, groups, services, packages, and web services.

By way of comparison, let’s look at how to configure a directory in the shell. You
would use these three commands:

mkdir -p /etc/skel/.ssh
chown root:root /etc/skel/.ssh
chmod go-wrx /etc/skel/.ssh

By contrast, Ansible offers the file module as an abstraction, where you define the
parameters of the desired state. This one action has the same effect as the three shell
commands combined:

- name: Ensure .ssh directory in user skeleton
 file:
 path: /etc/skel/.ssh
 mode: '0700'
 owner: root
 group: root
 state: directory

With this layer of abstraction, you can use the same configuration management
scripts to manage servers running Linux distributions. For example, instead of having
to deal with a specific package manager like dnf, yum, or apt, Ansible has a “package”
abstraction that you can use instead (just be aware that package names might differ).
But you can also use the system-specific abstractions if you prefer.

If you really want to, you can write your Ansible playbooks to take different actions,
depending on the variety of operating systems of the remote servers. But Bas, one
of the authors of this book, tries to avoid that where he can; he instead focuses on
writing playbooks for the systems that are in actual use.

Top to bottom tasks
Books on configuration management often mention the concept of convergence,
or eventual consistent state. Convergence in configuration management is strongly
associated with the configuration management system CFEngine by Mark Burgess.
If a configuration management system is convergent, the system may run multiple
times to put a server into its desired state, with each run bringing the server closer to
that state.

What’s So Great About Ansible? | 7

https://oreil.ly/ngtte

Eventual consistent state does not really apply to Ansible, since it does not run
multiple times to configure servers. Instead, Ansible modules work in such a way that
running a playbook a single time should put each server into the desired state.

Powerful
Having Ansible at your disposal can bring huge productivity gains in several areas of
systems management. The high-level abstractions Ansible provides (like roles) make
it so that you can set up and configure things faster and potentially more securely.

Batteries included
You can use Ansible to execute arbitrary shell commands on your remote servers, but
its real power comes from the wide variety of modules available. You use modules
to perform tasks such as installing a package, restarting a service, or copying a
configuration file.

As you will see later, Ansible modules are declarative; you use them to describe the
state you want the server to be in. For example, you would invoke the user module
like this to ensure there is an account named “deploy” in the web group:

- name: Ensure deploy user exists
 user:
 name: deploy
 group: web

Push-based
Chef and Puppet are configuration management systems that use agents. They are
pull-based by default. Agents installed on the servers periodically check in with a
central service and download configuration information from the service. Making
configuration management changes to servers goes something like this:

1. You: make a change to a configuration management script.1.
2. You: push the change up to a configuration management central service.2.
3. Agent on server: wakes up after periodic timer fires.3.
4. Agent on server: connects to configuration management central service.4.
5. Agent on server: downloads new configuration management scripts.5.
6. Agent on server: executes configuration management scripts locally that change6.

server state.

8 | Chapter 1: Introduction

In contrast, Ansible is push-based by default. Making a change looks like this:

1. You: make a change to a playbook.1.
2. You: run the new playbook.2.
3. Ansible: connects to servers and executes modules that change the state of the3.

servers.

As soon as you run the ansible-playbook command, Ansible connects to the remote
servers and does its thing; this lowers the risk of random servers potentially breaking
whenever their scheduled tasks fail to change things successfully. The push-based
approach has a significant advantage: you control when the changes happen to the
servers. You do not need to wait around for a timer to expire. Each step in a playbook
can target one or a group of servers. You get more work done instead of logging into
the servers by hand.

Multitier orchestration
Push mode also allows you to use Ansible for multitier orchestration, managing
distinct groups of machines for an operation like an update. You can orchestrate
the monitoring system, the load balancers, the databases, and the web servers with
specific instructions so they work in concert. That’s very hard to do with a pull-based
system.

Masterless
Advocates of the pull-based approach claim that it is superior for scaling to large
numbers of servers and for dealing with new servers that can come online anytime.
A central configuration management system, however, slowly stops working when
thousands of agents pull their configuration at the same time, especially when they
need multiple runs to converge. In comparison, Ansible comes with the ansible-
pull command, which can pull playbooks from a VCS repository like GitHub. Ansi‐
ble does not need a master, but you can use a central system to run playbooks if you
want to.

Pluggable and embeddable
A sizable part of Ansible’s functionality comes from the Ansible Plugin System, of
which the Lookup and Filter plug-ins are most used. Plug-ins augment Ansible’s
core functionality with logic and features that are accessible to all modules. Modules
introduce new “verbs” to the Ansible language. You can write your own plug-ins (see
Chapter 10) and modules (Chapter 12) in Python.

You can integrate Ansible into other products: Kubernetes and Ansible Tower are
examples of successful integrations. Ansible Runner “is a tool and python library that

What’s So Great About Ansible? | 9

4 Ansible Runner documentation, last accessed June 2, 2022.

helps when interfacing with Ansible directly or as part of another system whether
that be through a container image interface, as a standalone tool, or as a Python
module that can be imported.”4

Using the ansible-runner library, you can run an Ansible playbook from within a
Python script:

#!/usr/bin/env python3
import ansible_runner

r = ansible_runner.run(private_data_dir='./playbooks', playbook='playbook.yml')

print("{}: {}".format(r.status, r.rc))
print("Final status:")
print(r.stats)

Works with lots of stuff
Ansible modules cater to a wide range of system administration tasks. This list has
the categories of the kinds of modules that you can use. These link to the module
index in the documentation:

• Cloud
• Files
• Monitoring
• Source Control
• Clustering
• Identity
• Net Tools
• Storage
• Commands
• Infrastructure
• Network
• System
• Crypto
• Inventory
• Notification
• Utilities

10 | Chapter 1: Introduction

https://oreil.ly/sZwPY
https://oreil.ly/OXel7
https://oreil.ly/OXel7
https://oreil.ly/0xeNu
https://oreil.ly/3cq87
https://oreil.ly/z6dde
https://oreil.ly/WEMHZ
https://oreil.ly/b31cn
https://oreil.ly/39yJA
https://oreil.ly/Pb137
https://oreil.ly/IZBGX
https://oreil.ly/wyyJZ
https://oreil.ly/XhW90
https://oreil.ly/UFHZo
https://oreil.ly/mn569
https://oreil.ly/puZGg
https://oreil.ly/zBvdF
https://oreil.ly/ulrdH
https://oreil.ly/veSG4

• Database
• Messaging
• Packaging
• Windows

Really scalable
Large enterprises use Ansible successfully in production with tens of thousands of
nodes and have excellent support for environments where servers are dynamically
added and removed. Organizations with hundreds of software teams typically use
AWX or a combination of Ansible Tower and Automation Hub for auditability, and
for security with role-based access controls.

Worried about the scalability of SSH? Ansible uses SSH multiplexing to optimize
performance, and there are folks out there who are managing thousands of nodes
with Ansible (see Chapter 12 of this book).

Secure
Automation with Ansible helps us to improve system security to security baselines
and compliance standards.

Codified knowledge
Your authors like to think of Ansible playbooks as executable documentation. Play‐
books are like the README files that used to describe the commands you had to type
out to deploy your software, except that these instructions will never go out of date
because they are also the code that executes. Product experts can create playbooks
that take best practices into account. When novices use such a playbook to install the
product, they can be sure they’ll get a good result.

Reproducible systems
If you set up your entire system with Ansible, it will pass what Steve Traugott calls
the “tenth-floor test”: “Can I grab a random machine that’s never been backed up and
throw it out the tenth-floor window without losing sysadmin work?”

Equivalent environments
Ansible has a clever way to organize content that helps define configuration at the
proper level. It is easy to create a setup for distinct development, testing, staging,
and production environments. A staging environment is designed to be as similar as
possible to the production environment so that developers can detect any problems
before changes go live.

What’s So Great About Ansible? | 11

https://oreil.ly/iEv9l
https://oreil.ly/aTOvP
https://oreil.ly/71GLO
https://oreil.ly/c8NwK
https://oreil.ly/AMf1S
https://oreil.ly/AMf1S

5 If you are interested in what Ansible’s original author thinks of the idea of convergence, see Michael DeHaan’s
Ansible Project newsgroup post “Idempotence, Convergence, and Other Silly Fancy Words We Use Too
Often”.

Encrypted variables

If you need to store sensitive data such as passwords or tokens, then ansible-vault
is an effective tool to use. We use it to store encrypted variables in Git. We’ll discuss it
in detail in Chapter 8.

Secure transport
Ansible simply uses Secure Shell (SSH) for Linux and WinRM for Windows. We
typically secure and harden these widely used systems-management protocols with
strong configuration and firewall settings.

If you prefer using a pull-based model, Ansible has official support for pull mode,
using a tool it ships with called ansible-pull. This book won’t cover pull mode, but
you can read more about it in the official Ansible documentation.

Idempotency
Modules are also idempotent. Idempotence is a nice property because it means that it
is safe to run an Ansible playbook multiple times against a server. Let’s see what that
means when we need a user named deploy:

- name: Ensure deploy user exists
 user:
 name: deploy
 group: web

If the deploy user does not exist, Ansible will create it. If it does exist, Ansible will not
do anything. This is a vast improvement over the homegrown shell script approach,
where running the shell script a second time might have a different (and unintended)
effect.5

No daemons
There is no Ansible agent listening on a port. Therefore, when you use Ansible, there
is no extra attack surface. (There is still an attack surface with software supply chain
elements like Python libraries and other imported content.)

12 | Chapter 1: Introduction

https://oreil.ly/pNSNr
https://oreil.ly/pNSNr
https://docs.ansible.com

What Is Ansible, Inc.’s Relationship to Ansible?

The name Ansible refers to both the software and the company
that runs the open source project. Michael DeHaan, the creator of
Ansible the software, is the former CTO of Ansible the company.
To avoid confusion, we refer to the software as Ansible and to the
company as Ansible, Inc.
Ansible, Inc. sells training and consulting services for Ansible, as
well as a web-based management tool called Ansible Tower, which
we cover in Chapter 19. In October 2015, Red Hat bought Ansible,
Inc.; IBM bought Red Hat in 2019.

Is Ansible Too Simple?
When Lorin was working on an earlier edition of this book, the editor mentioned
that “some folks who use the XYZ configuration management tool call Ansible
a for-loop over SSH scripts.” If you are considering switching over from another
configuration management tool, you might be concerned at this point about whether
Ansible is powerful enough to meet your needs.

As you will soon learn, Ansible supplies a lot more functionality than shell scripts.
In addition to idempotence, Ansible has excellent support for templating, as well as
defining variables at different scopes. Anybody who thinks Ansible is equivalent to
working with shell scripts has never had to support a nontrivial program written in
shell. We will always choose Ansible over shell scripts for configuration management
tasks if given a choice.

What Do I Need to Know?
To be productive with Ansible, you need to be familiar with basic Unix/Linux system
administration tasks. Ansible makes it easy to automate your tasks, but it is not the
kind of tool that “automagically” does things that you otherwise would not know how
to do.

For this book, we have assumed that you are familiar with at least one Linux distribu‐
tion (such as Ubuntu, RHEL/CentOS, or SUSE), and that you know how to:

• Connect to a remote machine using SSH•
• Interact with the Bash command-line shell (pipes and redirection)•
• Install packages•
• Use the sudo command•
• Check and set file permissions•
• Start and stop services•

Is Ansible Too Simple? | 13

• Set environment variables•
• Write scripts (any language)•

If these concepts are all familiar to you, you are good to go with Ansible.

We will not assume you have knowledge of any particular programming language.
For instance, you do not need to know Python to use Ansible unless you want to
publish your own module.

What Isn’t Covered
This book is not an exhaustive treatment of Ansible. The first part is designed to get
you working productively in Ansible as quickly as possible. Then it describes how to
perform certain tasks that are not obvious from the official documentation.

We don’t cover all of Ansible’s modules in detail: there are more than 3,500 of them.
You can use the ansible-doc command-line tool with what you have installed to
view the reference documentation and the module index mentioned previously.

Chapter 8 covers only the basic features of Jinja2, the template engine that Ansible
uses, primarily because your authors memorize only basic features when we use Jinja2
with Ansible. If you need to use more advanced Jinja2 features in templates, check
out the official Jinja2 documentation.

Nor do we go into detail about some features of Ansible that are mainly useful when
you are running it on an older version of Linux.

Finally, there are features of Ansible we don’t cover simply to keep the book a
manageable length. We encourage you to check out the official documentation to find
out more about these features.

Moving Forward
This introductory chapter covered the basic concepts of Ansible at a general level,
including how it communicates with remote servers and how it differs from other
configuration management tools. The next chapters discuss how to practice using
Ansible.

14 | Chapter 1: Introduction

https://oreil.ly/LAXa7
https://docs.ansible.com

CHAPTER 2

Installation and Setup

Ansible is written in Python for use on Linux/macOS/BSD systems. It can target all
kinds of systems, and you generally do not need to install anything on the target
systems, assuming that the Linux/macOS/BSD systems have Python installed and that
Windows machines have PowerShell. So generally you will install Ansible on your
workstation. Python 3.8 is recommended on the machine where you run Ansible.

Installing Ansible
All the major Linux distributions package Ansible these days, so if you work on a
Linux machine, you can use your native package manager for a casual installation
(although this might be an older version of Ansible). If you work on macOS, I
recommend using the excellent Homebrew package manager to install Ansible:

$ brew install ansible

On any Unix/Linux/macOS machine, you can install Ansible using one of the Python
package managers. This way you can add Python-based tools and libraries that work
for you, provided you add ~/.local/bin to your PATH shell variable. If you want
to work with Ansible Tower or AWX, then you should install the same version of
ansible-core on your workstation.

$ pip3 install --user ansible==2.9.27

Using pip3 to install a version above 2.10 (e.g., 5.9.0) installs all standard collections
as well. It’s still “batteries included.”

15

1 To learn why Windows is not supported on the controller, read Matt Davis’s blog post “Why No Ansible
Controller for Windows?”.

If you work on multiple projects, you should install Ansible into a
Python virtualenv. This lets you avoid interfering with your system
Python or cluttering your user environment. Using Python’s venv
module and pip3, you can install just what you need to work on for
each project:

$ python3 -m venv .venv --prompt A
$ source .venv/bin/activate
(A)

During activation of the environment, your shell prompt will
change to (A) as a reminder. Enter deactivate to leave the virtual
environment.

Windows is not officially supported to run Ansible, but you can fully manage Win‐
dows systems remotely with Ansible, with PowerShell over WinRM under the hood.1

There is a way to run Ansible from a Windows host (that is, to
use a Windows-based control machine), and that is to run Ansible
within the Windows Subsystem for Linux (WSL2). In practice, this
means you’ll run Ubuntu next to Windows, on the same machine.
WSL2 is a feature that you can enable in Windows 10 Home Edi‐
tion (and higher). This is not supported by Ansible, so it should
not be used for production systems. To install Ansible in WSL2:

sudo apt-get update
sudo apt-get install python3-pip git libffi-dev
libssl-dev -y
pip3 install --user ansible

Loose Dependencies
Ansible plug-ins and modules might require that you install extra Python libraries.
For example, when you want to work with Windows systems and Docker, then you
install these two Python libraries:

(A) pip3 install pywinrm docker

In a way, the Python virtualenv was a precursor to containers: it creates a means to
isolate libraries and avoid “dependency hell.”

Running Ansible in Containers
ansible-builder is a tool that aids in creating execution environments by control‐
ling the execution of Ansible from within a container for single-purpose automation

16 | Chapter 2: Installation and Setup

https://oreil.ly/xrtnD
https://oreil.ly/xrtnD

workflows. It is based on the directory layout of ansible-runner. This is an advanced
subject, and outside the scope of this chapter. If you’d like to experiment with it, refer
to Chapter 23.

Ansible Development
If you are feeling adventurous and want to use the bleeding-edge version of Ansible,
you can grab the development branch from GitHub:

$ python3 -m venv .venv --prompt S
$ source .venv/bin/activate
(S) python3 -m pip install --upgrade pip
(S) pip3 install wheel
(S) git clone https://github.com/ansible/ansible.git --recursive
(S) pip3 install -r ansible/requirements.txt

If you are running Ansible from the development branch, you need to run these
commands each time to set up your environment variables, including your PATH
variable, so that your shell knows where the ansible and ansible-playbook pro‐
grams are:

(S) cd ./ansible
(S) source ./hacking/env-setup

Setting Up a Server for Testing
You need to have SSH access and root privileges on a Linux server to follow along
with the examples in this book. Fortunately, these days it’s easy to get low-cost access
to a Linux virtual machine through most public cloud services.

Using Vagrant to Set Up a Test Server
If you prefer not to spend money on a public cloud, install Vagrant on your machine.
Vagrant is an excellent open source tool for managing virtual machines. You can use
it to boot a Linux virtual machine inside your laptop, which you can use as a test
server.

Vagrant is a great environment for testing Ansible playbooks, which is why we’ll be
using it all along in this book, and why we often use Vagrant for testing our own
Ansible playbooks. Vagrant isn’t just for testing configuration management scripts; it
was originally designed to create repeatable development environments. If you’ve ever
joined a new software team and spent a couple of days discovering what software you
had to install on your laptop so you could run a development version of an internal
product, you’ve felt the pain that Vagrant was built to alleviate. Ansible playbooks are
a great way to specify how to configure a Vagrant machine, so newcomers on your
team can get up and running on day one.

Setting Up a Server for Testing | 17

Vagrant needs a hypervisor like VirtualBox installed on your machine. Download
VirtualBox first, and then download Vagrant. Vagrant has some built-in support for
Ansible that we can take advantage of. This chapter covers Vagrant’s support for using
Ansible to configure Vagrant machines.

We recommend you create a directory for your Ansible playbooks and related files. In
the following example, we’ve named ours playbooks. Directory layout is important for
Ansible: if you place files in the right places, the bits and pieces come together.

Run the following commands to create a Vagrant configuration file (Vagrantfile) for
an Ubuntu/Focal 64-bit virtual machine image, and boot it:

$ mkdir playbooks
$ cd playbooks
$ vagrant init ubuntu/focal64
$ vagrant up

The first time you use Vagrant, it will download the virtual
machine image file. This might take a while, depending on your
internet connection.

If all goes well, the output should look something like this:
$ vagrant up default
Bringing machine 'default' up with 'virtualbox' provider...
==> default: Importing base box 'ubuntu/focal64'...
==> default: Matching MAC address for NAT networking...
==> default: Checking if box 'ubuntu/default64' version is up to date...
==> default: Setting the name of the VM: default
==> default: Clearing any previously set network interfaces...
==> default: Preparing network interfaces based on configuration...
 default: Adapter 1: nat
==> default: Forwarding ports...
 default: 22 (guest) => 2222 (host) (adapter 1)
==> default: Running 'pre-boot' VM customizations...
==> default: Booting VM...
==> default: Waiting for machine to boot. This may take a few minutes...
 default: SSH address: 127.0.0.1:2222
 default: SSH username: vagrant
 default: SSH auth method: private key
==> default: Machine booted and ready!
==> default: Checking for guest additions in VM...
==> default: Setting hostname...
==> default: Configuring and enabling network interfaces...
==> default: Mounting shared folders...
 default: /vagrant => C:/Users/basme/ansiblebook/ch02/playbooks

You should be able to log in to your new Ubuntu 20.04 virtual machine by running
the following:

$ vagrant ssh

18 | Chapter 2: Installation and Setup

If this works, you should see a login screen like this:
Welcome to Ubuntu 20.04.2 LTS (GNU/Linux 5.4.0-72-generic x86_64)
 * Documentation: https://help.ubuntu.com
 * Management: https://landscape.canonical.com
 * Support: https://ubuntu.com/advantage
 System information as of Sun Apr 18 14:53:23 UTC 2021
 System load: 0.08 Processes: 118
 Usage of /: 3.2% of 38.71GB Users logged in: 0
 Memory usage: 20% IPv4 address for enp0s3: 10.0.2.15
 Swap usage: 0%

1 update can be installed immediately.
0 of these updates are security updates.
To see these additional updates run: apt list --upgradable

vagrant@ubuntu-focal:~$

A login with vagrant ssh lets you interact with the Bash shell, but Ansible needs to
connect to the virtual machine by using the regular SSH client. Tell Vagrant to output
its SSH configuration by typing the following:

$ vagrant ssh-config

On Bas’s Windows machine, the output looks like this:
Host default
 HostName 127.0.0.1
 User vagrant
 Port 2222
 UserKnownHostsFile /dev/null
 StrictHostKeyChecking no
 PasswordAuthentication no
 IdentityFile C:/Users/basme/.vagrant.d/insecure_private_key
IdentitiesOnly yes
LogLevel FATAL

The important lines are shown here:
HostName 127.0.0.1
 User vagrant
 Port 2222
 IdentityFile C:/Users/basme/.vagrant.d/insecure_private_key

Starting with version 1.7, Vagrant has changed how it manages
private SSH keys: it now generates a new private key for each
machine. Earlier versions used the same key, which was in the
default location of $HOME/.vagrant.d/insecure_private_key. The
examples in this book use Vagrant 2.2.

In your case, every field should be the same except for the path of the identity file.

Setting Up a Server for Testing | 19

Confirm that you can start an SSH session from the command line by using this
information. The SSH command also works with a relative path from the playbooks
directory:

$ ssh vagrant@127.0.0.1 -p 2222 \
 -i .vagrant/machines/default/virtualbox/private_key

You should see the Ubuntu login screen. Type exit to quit the SSH session.

Telling Ansible About Your Servers
Ansible can manage only the servers it explicitly knows about. You provide Ansible
with information about servers by specifying them in an inventory. We usually create
a directory called inventory to hold this information:

$ mkdir inventory

Each server needs a name that Ansible will use to identify it. You can use the
hostname of the server, or you can give it an alias and pass other arguments to tell
Ansible how to connect to it. We will give our Vagrant server the alias of testserver.

Create a text file in the inventory directory. Name the file vagrant.ini if you’re using a
Vagrant machine as your test server; name it ec2.ini if you use machines in Amazon
EC2. Be aware that although this inventory file format is called ini, it’s not strictly
an INI file as defined by Microsoft. In that format there are always key-value pairs,
which is not the case in an inventory file.

The .ini files will serve as an inventory for Ansible. They list the infrastructure that
you want to manage under groups, which are denoted in square brackets. If you use
Vagrant, your file should look like Example 2-1. The group [webservers] has one host:
testserver. Here we see one of the drawbacks of using Vagrant: you need to pass extra
vars data to Ansible to connect to the group. In most cases, you won’t need these
variables. On the other hand, if you use staging environments with different security
settings, then the inventory is a good place to define these differences.

Example 2-1. inventory/vagrant.ini

[webservers]
testserver ansible_port=2222

[webservers:vars]
ansible_host=127.0.0.1
ansible_user=vagrant
ansible_private_key_file=.vagrant/machines/default/virtualbox/private_key

If you have an Ubuntu machine on Amazon EC2 with a hostname like
ec2-203-0-113-120.compute-1.amazonaws.com, then your inventory file will look
something like this:

20 | Chapter 2: Installation and Setup

[webservers]
testserver ansible_host=ec2-203-0-113-120.compute- 1.amazonaws.com

[webservers:vars]
ansible_user=ec2-user
ansible_private_key_file=/path/to/keyfile.pem

Ansible supports the ssh-agent program, so you don’t need to
explicitly specify SSH key files in your inventory files. If you log in
with your own user ID, then you don’t need to specify that either.

We’ll use the ansible command-line tool to verify that we can use Ansible to connect
to the server. You won’t use the ansible command often; it’s mostly used for ad hoc,
one-off things.

Let’s tell Ansible to connect to the server named testserver described in the inventory
file named vagrant.ini and invoke the ping module:

$ ansible testserver -i inventory/vagrant.ini -m ping

If your local SSH client has host-key verification enabled, you might see something
that looks like this the first time Ansible tries to connect to the server:

The authenticity of host '[127.0.0.1]:2222 ([127.0.0.1]:2222)' can't be
established.
ED25519 key fingerprint is SHA256:6l2Lg8/EBqMFstGNPqFtLychVkxRxqdvRhvLlv/Tj1E.
Are you sure you want to continue connecting (yes/no)?

You can just type yes.

If it succeeds, the output will look like this:
testserver | SUCCESS => {
 "ansible_facts": {
 "discovered_interpreter_python": "/usr/bin/python3"
 },
 "changed": false,
 "ping": "pong"
}

If Ansible did not succeed, add the -vvvv flag to see more details
about the error:

$ ansible testserver -i inventory/vagrant.ini -m ping -vvvv

You can see that the module succeeded. The "changed": false part of the output
tells us that executing the module did not change the state of the server. The "ping":
"pong" output text is specific to the ping module.

Setting Up a Server for Testing | 21

The ping module doesn’t do anything other than check that Ansible can start an SSH
session with the servers. It’s a tool for testing that Ansible can connect to the servers:
very useful at the start of a big playbook.

Simplifying with the ansible.cfg File
You had to type a lot to use Ansible to ping your test server. Fortunately, Ansible
has ways to organize these sorts of variables, so you don’t have to put them all in
one place. Right now, we’ll add one such mechanism, the ansible.cfg file, to set some
defaults so we don’t need to type as much on the command line.

Where Should I Put My ansible.cfg File?

Ansible looks for an ansible.cfg file in the following places, in this
order:

• File specified by the ANSIBLE_CONFIG environment variable•
• ./ansible.cfg (ansible.cfg in the current directory)•
• ~/.ansible.cfg (.ansible.cfg in your home directory)•
• /etc/ansible/ansible.cfg (Linux) or /usr/local/etc/ansible/ansi‐•

ble.cfg (*BSD)

We typically put ansible.cfg in the current directory, alongside our
playbooks. That way, we can check it into the same version-control
repository that our playbooks are in. This also adds the possibility
to have a project-based configuration file.

Example 2-2 shows an ansible.cfg file that specifies the location of the inventory file
(inventory) and sets parameters that affect the way Ansible runs, for instance how the
output is presented.

Since the user you’ll log on to and its SSH private key might depend on the inventory
that you use, it is practical to use the vars block in the inventory file, rather than
in the ansible.cfg file, to specify such connection parameter values. Although it is
possible to add a private key filename to the ansible.cfg or the inventory files, doing
so make it less flexible to share your project with multiple users. The alternative is to
rely implicitly to your SSH configuration.

Our example ansible.cfg configuration also disables SSH host-key checking. This is
convenient when dealing with Vagrant machines; otherwise, we need to edit our
~/.ssh/known_hosts file every time we destroy and re-create a Vagrant machine.
However, disabling host-key checking can be a security risk when connecting to other
servers over the network.

22 | Chapter 2: Installation and Setup

Example 2-2. ansible.cfg

[defaults]
inventory = inventory/vagrant.ini
host_key_checking = False
stdout_callback = yaml
callback_enabled = timer

Ansible and Version Control

Ansible uses /etc/ansible/hosts as the default location for the inven‐
tory file. Keeping the inventory in the same directory as the play‐
books and so on gives you the possibility of a specific inventory per
project instead of just a global one. If you separate your project
from your inventory, then it is easier to reuse the project on
machines owned by others.
Although we don’t cover version control in this book, we strongly
recommend you commit to using the Git version-control system
to save all changes to your playbooks. If you’re a developer, you’re
already familiar with version-control systems. If you’re a systems
administrator and aren’t using version control yet, Git is a perfect
tool for you to really start with infrastructure as code!

With your default values set, you can invoke Ansible without passing the -i host‐
name arguments, like so:

$ ansible testserver -m ping

We like to use the ansible command-line tool to run arbitrary commands on remote
machines, like parallel SSH. You can execute arbitrary commands with the command
module. When invoking this module, you also need to pass an argument to the
module with the -a flag, which is the command to run.

For example, to check the uptime of your server, you can use this:
$ ansible testserver -m command -a uptime

The output should look like this:
testserver | CHANGED | rc=0 >>
 10:37:28 up 2 days, 14:11, 1 user, load average: 0.00, 0.00, 0.00

The command module is so commonly used that it’s the default module, so you can
omit it:

$ ansible testserver -a uptime

If your command has spaces, quote it so that the shell passes the entire string as
a single argument to Ansible. For example, to view the last ten lines of the /var/log/
dmesg logfile:

Setting Up a Server for Testing | 23

https://git-scm.com

$ ansible testserver -a "tail /var/log/dmesg"

The output from our Vagrant machine looks like this:
testserver | CHANGED | rc=0 >>
[9.940870] kernel: 14:48:17.642147 main VBoxService 6.1.16_Ubuntu r140961
(verbosity: 0) linux.amd64 (Dec 17 2020 22:06:23) release log
 14:48:17.642148 main Log opened 2021-04-18T14:48:17.642143000Z
[9.941331] kernel: 14:48:17.642623 main OS Product: Linux
[9.941419] kernel: 14:48:17.642718 main OS Release: 5.4.0-72-generic
[9.941506] kernel: 14:48:17.642805 main OS Version: #80-Ubuntu SMP Mon Apr 12
17:35:00 UTC 2021
[9.941602] kernel: 14:48:17.642895 main Executable: /usr/sbin/VBoxService
 14:48:17.642896 main Process ID: 751
 14:48:17.642896 main Package type: LINUX_64BITS_GENERIC
 (OSE)
[9.942730] kernel: 14:48:17.644030 main 6.1.16_Ubuntu r140961 started.
Verbose level = 0
[9.943491] kernel: 14:48:17.644783 main vbglR3GuestCtrlDetectPeekGetCancelSupport:
Supported (#1)

If you need privileged access, pass in the -b or --become flag to tell Ansible to become
the root user. On Unix/Linux this is commonly done with a tool like sudo that needs
to be set up. In the Vagrant examples in this book that has been done automatically.

For example, accessing /var/log/syslog might require elevated privileges:
$ ansible testserver -b -a "tail /var/log/syslog"

The output looks something like this:
testserver | CHANGED | rc=0 >>
Apr 23 10:39:41 ubuntu-focal multipathd[471]: sdb: failed to get udev uid:
Invalid argument
Apr 23 10:39:41 ubuntu-focal multipathd[471]: sdb: failed to get sysfs uid: No
data available
Apr 23 10:39:41 ubuntu-focal multipathd[471]: sdb: failed to get sgio uid: No
data available
Apr 23 10:39:42 ubuntu-focal multipathd[471]: sda: add missing path
Apr 23 10:39:42 ubuntu-focal multipathd[471]: sda: failed to get udev uid:
Invalid argument
Apr 23 10:39:42 ubuntu-focal multipathd[471]: sda: failed to get sysfs uid: No
data available
Apr 23 10:39:42 ubuntu-focal multipathd[471]: sda: failed to get sgio uid: No
data available
Apr 23 10:39:43 ubuntu-focal systemd[1]: session-95.scope: Succeeded.
Apr 23 10:39:44 ubuntu-focal systemd[1]: Started Session 97 of user vagrant.
Apr 23 10:39:44 ubuntu-focal python3[187384]: ansible-command Invoked with
_raw_params=tail /var/log/syslog warn=True _uses_shell=False stdin_add_newline=True
strip_empty_ends=True argv=None chdir=None executable=None creates=None
removes=None stdin=None

You can see from this output that Ansible writes to the syslog as it runs.

24 | Chapter 2: Installation and Setup

You are not restricted to the ping and command modules when using the ansible
command-line tool: you can use any module that you like. For example, you can
install NGINX on Ubuntu by using the following command:

$ ansible testserver -b -m package -a name=nginx

If installing NGINX fails for you, you might need to update the
package lists. To tell Ansible to do the equivalent of an apt-get
update before installing the package, change the argument from
name=nginx to name=nginx update_cache=yes.
You can restart NGINX as follows:

$ ansible testserver -b -m service -a "name=nginx
state=restarted"

You need the -b argument to become the root user because only root can install the
NGINX package and restart services.

Kill Your Darlings
We will improve the setup of the test server in this book, so don’t become attached to
your first virtual machine. Just remove it for now with:

$ vagrant destroy -f

Convenient Vagrant Configuration Options
Vagrant exposes many configuration options for virtual machines, but there are
two that are particularly useful when using Vagrant for testing: setting a specific IP
address and enabling agent forwarding.

Port Forwarding and Private IP Addresses
When you create a new Vagrantfile by using the vagrant init command, the default
networking configuration allows you to reach the Vagrant box only via an SSH port
that is forwarded from localhost. For the first Vagrant machine that you start,
that’s port 2222, and each subsequent Vagrant machine you bring up will forward a
different port. As a consequence, the only way to access your Vagrant machine in the
default configuration is to SSH to localhost on port 2222. Vagrant forwards this to
port 22 on the Vagrant machine.

Convenient Vagrant Configuration Options | 25

This default configuration isn’t very useful for testing web-based applications, since
the web application will be listening on a port that we can’t access.

There are two ways around this. One way is to tell Vagrant to set up another forwar‐
ded port. For example, if your web application listens on port 80 inside your Vagrant
machine, you can configure Vagrant to forward port 8040 on your local machine to
port 80 on the Vagrant machine. Likewise you can forward local port 8443 to port
443 in the guest.

As shown in Figure 2-1, we are going to configure Vagrant so that our local machine
forwards browser requests on ports 8080 and 8443 to ports 80 and 443 on the
Vagrant machine. This will allow us to access the web server running inside Vagrant
at http://localhost:8080 and https://localhost:8443.

Figure 2-1. Exposing ports on a Vagrant machine

Example 2-3 shows how to configure port forwarding by editing the Vagrantfile.

Example 2-3. Forwarding local port 8000 to Vagrant machine port 80

Vagrantfile
VAGRANTFILE_API_VERSION = "2"

Vagrant.configure(VAGRANTFILE_API_VERSION) do |config|
 # Other config options not shown
 config.vm.network :forwarded_port, host: 8000, guest: 80
 config.vm.network :forwarded_port, host: 8443, guest: 443
end

Port forwarding to other machines on the local network also works, so we find it
more useful to assign the Vagrant machine its own IP address. That way, interacting
with it is more like interacting with a private remote server: you can connect directly
to port 80 on the machine’s IP rather than connecting to port 8000 on localhost, and
you’re the only one unless you forward a port as well.

26 | Chapter 2: Installation and Setup

A simpler approach is to assign the machine a private IP. Example 2-4 shows how to
assign the IP address 192.168.33.10 to the machine by editing the Vagrantfile.

Example 2-4. Assign a private IP to a Vagrant machine

Vagrantfile
VAGRANTFILE_API_VERSION = "2"

Vagrant.configure(VAGRANTFILE_API_VERSION) do |config|
 # Other config options not shown

 config.vm.network "private_network", ip: "192.168.33.10"
end

If we run a web server on port 80 of our Vagrant machine, we can access it at http://
192.168.33.10.

This configuration uses a Vagrant private network. The machine will be accessible
only from the machine that runs Vagrant. You won’t be able to connect to this IP
address from another physical machine, even if it’s on the same network as the
machine running Vagrant. However, different Vagrant machines can connect to each
other.

Check out the Vagrant documentation for more details on the different networking
configuration options.

Enabling Agent Forwarding
If you are checking out a remote Git repository over SSH and you need to use agent
forwarding, then you must configure your Vagrant machine so that Vagrant enables
agent forwarding when it connects to the agent via SSH (see Example 2-5). For more
on agent forwarding, see Chapter 20.

Example 2-5. Enabling agent forwarding

Vagrantfile
VAGRANTFILE_API_VERSION = "2"

Vagrant.configure(VAGRANTFILE_API_VERSION) do |config|
 # Other config options not shown
 # enable ssh agent forwarding
 config.ssh.forward_agent = true
end

Convenient Vagrant Configuration Options | 27

https://oreil.ly/EXvBL

The Docker Provisioner
Sometimes you want to compare containers running on different Linux variants and
different container runtimes. Vagrant can create a virtual machine from a box, install
Docker or Podman, and run a container image automatically, all in one go:

Vagrant.configure("2") do |config|
 config.vm.box = "ubuntu/focal64"
 config.vm.provision "docker" do |d|
 d.run "nginx"
 end
end

The Ansible Local Provisioner
Vagrant has external tools called provisioners that it uses to configure a virtual
machine after it has started up. In addition to Ansible, Vagrant can also provision
with shell scripts, Chef, Puppet, Salt, and CFEngine.

Example 2-6 shows a Vagrantfile that has been configured with ansible_local,
which installs Ansible in the virtual machine and uses it as a provisioner, specifically
using the Ansible playbook named playbook.yml.

Example 2-6. Vagrantfile

VAGRANTFILE_API_VERSION = "2"
Vagrant.configure(VAGRANTFILE_API_VERSION) do |config|
 config.vm.box = "ubuntu/xenial64"
 config.vm.provision "ansible_local" do |ansible|
 ansible.compatibility_mode = "2.0"
 ansible.galaxy_role_file = "roles/requirements.yml"
 ansible.galaxy_roles_path = "roles"
 ansible.playbook = "playbook.yml"
 ansible.verbose = "vv"
 end
end

So, you don’t need to install Ansible on your machine to use it when you have
config.vm.provision "ansible_local" in your Vagrantfile; it will be installed and
run in the virtual machine. When you use config.vm.provision "ansible" in the
Vagrantfile, the provisioner does use Ansible on your machine. Adapt the examples in
the sample code to your liking.

28 | Chapter 2: Installation and Setup

When the Provisioner Runs
The first time you run vagrant up, Vagrant will execute the provisioner and record
that the provisioner was run. If you halt the virtual machine and then start it up,
Vagrant remembers that it has already run the provisioner and will not run it a
second time.

You can force Vagrant to run the provisioner against a running virtual machine as
follows:

$ vagrant provision

You can also reboot a virtual machine and run the provisioner after reboot:
$ vagrant reload --provision

Similarly, you can start up a halted virtual machine and have Vagrant run the
provisioner:

$ vagrant up --provision

Or you can start up the virtual machine and not run the provisioner:
$ vagrant up --no-provision

We use these commands quite often to run playbooks from the command line, with a
tag or a limit.

Vagrant Plug-ins
Vagrant is extensible by a plug-in mechanism. In recent versions you only need
to specify which plug-ins you want to use. Let’s look at two examples: vagrant-
hostmanager and vagrant-vbguest:

config.vagrant.plugins = ["vagrant-hostmanager", "vagrant-vbguest"]

Hostmanager
The vagrant-hostmanager plug-in helps in addressing multiple virtual machines by
hostname. It will change the hostnames and edit /etc/hosts on the guests, as well as the
host at times, depending on the configuration:

manage /etc/hosts
config.hostmanager.enabled = true
config.hostmanager.include_offline = true
config.hostmanager.manage_guest = true
config.hostmanager.manage_host = true

When the Provisioner Runs | 29

VBGuest
The vagrant-vbguest plug-in works on VirtualBox and can automatically install or
update Guest Additions in your guest virtual machines. Bas usually disables these
features on macOS, because file sharing between guests and macOS is not fast
enough, and not always reliable. Moreover, file sharing between host and guest does
not mimic the way we deploy software, from development to testing, staging, and
production environments. But for learning Ansible on Windows it works fine:

 # update guest additions
 if Vagrant.has_plugin?("vagrant-vbguest")
 config.vbguest.auto_update = true
 end

VirtualBox Customization
You can define properties of your virtual machine and its appearance in VirtualBox.
Here is an example:

 host_config.vm.provider "virtualbox" do |vb|
 vb.name = "web"
 virtualbox.customize ["modifyvm", :id,
 "--audio", "none",
 "--cpus", 2,
 "--memory", 2048,
 "--graphicscontroller", "VMSVGA",
 "--vram", "64"
]
 end

Vagrantfile Is Ruby
It helps to know that a Vagrant 2 file is executed by a Ruby interpreter, if only
for syntax highlighting in your editor. You can declare variables, work with control
structures and loops, and so on. In the source code that goes with this book, there is
a more evolved example of a Vagrantfile that we use to work with 15 different Linux
variants as shown in Figure 2-2.

30 | Chapter 2: Installation and Setup

https://oreil.ly/h1jTF

Figure 2-2. Running different Linux distributions in VirtualBox

We use a JSON file for guest configurations with elements like:
[
 {
 "name": "centos8",
 "cpus": 1,
 "distro": "centos",
 "family": "redhat",
 "gui": false,
 "box": "centos/stream8",
 "ip_addr": "192.168.56.6",
 "memory": "1024",
 "no_share": false,
 "app_port": "80",

Vagrantfile Is Ruby | 31

 "forwarded_port": "8006"
 },
 {
 "name": "focal",
 "cpus": 1,
 "distro": "ubuntu",
 "family": "debian",
 "gui": false,
 "box": "ubuntu/focal64",
 "ip_addr": "192.168.56.8",
 "memory": "1024",
 "no_share": false,
 "app_port": "80",
 "forwarded_port": "8008"
 }
]

And in the Vagrantfile, we have a couple of constructs to create one guest by name
when we enter, for example:

$ vagrant up focal

Here is the Vagrantfile:
Vagrant.require_version ">= 2.0.0"
Require JSON module
require 'json'
Read JSON file with config details
f = JSON.parse(File.read(File.join(File.dirname(__FILE__), 'config.json')))
Local PATH_SRC for mounting
$PathSrc = ENV['PATH_SRC'] || "."
Vagrant.configure(2) do |config|
 config.vagrant.plugins = ["vagrant-hostmanager", "vagrant-vbguest"]
 # check for updates of the base image
 config.vm.box_check_update = true
 # wait a while longer
 config.vm.boot_timeout = 1200
 # disable update guest additions
 if Vagrant.has_plugin?("vagrant-vbguest")
 config.vbguest.auto_update = false
 end
 # enable ssh agent forwarding
 config.ssh.forward_agent = true
 # use the standard vagrant ssh key
 config.ssh.insert_key = false
 # manage /etc/hosts
 config.hostmanager.enabled = true
 config.hostmanager.include_offline = true
 config.hostmanager.manage_guest = true
 config.hostmanager.manage_host = true
 # Iterate through entries in JSON file
 f.each do |g|
 config.vm.define g['name'] do |s|
 s.vm.box = g['box']
 s.vm.hostname = g['name']
 s.vm.network 'private_network', ip: g['ip_addr']

32 | Chapter 2: Installation and Setup

 s.vm.network :forwarded_port,
 host: g['forwarded_port'],
 guest: g['app_port']
 # set no_share to false to enable file sharing
 s.vm.synced_folder ".", "/vagrant", disabled: g['no_share']
 s.vm.provider :virtualbox do |virtualbox|
 virtualbox.customize ["modifyvm", :id,
 "--audio", "none",
 "--cpus", g['cpus'],
 "--memory", g['memory'],
 "--graphicscontroller", "VMSVGA",
 "--vram", "64"
]
 virtualbox.gui = g['gui']
 virtualbox.name = g['name']
 end
 end
 end
 config.vm.provision "ansible_local" do |ansible|
 ansible.compatibility_mode = "2.0"
 ansible.galaxy_role_file = "roles/requirements.yml"
 ansible.galaxy_roles_path = "roles"
 ansible.playbook = "playbook.yml"
 ansible.verbose = "vv"
 end
end

The properties of each virtual machine are configured in the config.json file.

Production Setup
Ansible uses SSH to connect to Linux/macOS/BSD machines, and WinRM to con‐
nect to Windows machines. Network devices can be managed over HTTPS or SSH.
There is no need for additional software on the target hosts (provided that Linux/
macOS/BSD machines have Python, and Windows machines have PowerShell).

Traditional system administrators are cautious when tools are introduced that need
system privileges, because typically only the system administrators themselves have
these permissions. A common pattern on Unix is to delegate only specific commands
to developers using the sudo tool with carefully crafted files in /etc/sudoers.d/.

This approach does not work with Ansible, nor does a restrictive shell like rbash.
Ansible creates temporary directories with random names for various Python scripts,
while sudo needs exact commands. The alternative is shifting the focus on the content
of changes to version control, in a staging environment, and having a sudoers file for
the ansible group like:

%ansible ALL=(ALL) ALL

Production Setup | 33

Conclusion
This chapter was an overview of how to get started by installing Ansible and creating
a test environment with VirtualBox and Vagrant to learn Ansible. Vagrant supports
many other options that aren’t covered in this chapter. For more details, see the
official Vagrant documentation. A full treatment of Vagrant is beyond the scope of
this book. For more information, check out Vagrant: Up and Running (O’Reilly),
authored by Mitchell Hashimoto, the creator of Vagrant.

34 | Chapter 2: Installation and Setup

https://learning.oreilly.com/library/view/vagrant-up-and/9781449336103

CHAPTER 3

Playbooks: A Beginning

When you start using Ansible, one of the first things you’ll do is begin writing
playbooks. Playbook is the term that Ansible uses for a configuration management
script. Let’s look at an example: here is a playbook for installing the NGINX web
server and configuring it for secure communication.

If you follow along in this chapter, you should end up with the directory tree listed
here:

.
├── Vagrantfile
├── ansible.cfg
├── files
│ ├── index.html
│ ├── nginx.conf
│ ├── nginx.crt
│ └── nginx.key
├── inventory
│ └── vagrant.ini
├── requirements.txt
├── templates
│ ├── index.html.j2
│ └── nginx.conf.j2
├── webservers-tls.yml
├── webservers.yml
└── webservers2.yml

Preliminaries
Modify your Vagrantfile so it looks like this:

Vagrant.configure(2) do |config|
 config.vm.box = "ubuntu/focal64"
 config.vm.hostname = "testserver"
 config.vm.network "forwarded_port",

35

 id: 'ssh', guest: 22, host: 2202, host_ip: "127.0.0.1", auto_correct: false
 config.vm.network "forwarded_port",
 id: 'http', guest: 80, host: 8080, host_ip: "127.0.0.1"
 config.vm.network "forwarded_port",
 id: 'https', guest: 443, host: 8443, host_ip: "127.0.0.1"
 # disable updating guest additions
 if Vagrant.has_plugin?("vagrant-vbguest")
 config.vbguest.auto_update = false
 end
 config.vm.provider "virtualbox" do |virtualbox|
 virtualbox.name = "ch03"
 end
end

This maps port 8080 on your local machine to port 80 of the Vagrant machine, and
port 8443 on your local machine to port 443 on the Vagrant machine. Also, it reserves
the forwarding port 2202 to this specific virtual machine (VM), as you might still
want to run the other from Chapter 1. Once you made these changes, tell Vagrant to
implement them by running this command:

$ vagrant up

You should see output that includes the following:
==> default: Forwarding ports...
 default: 22 (guest) => 2202 (host) (adapter 1)
 default: 80 (guest) => 8080 (host) (adapter 1)
 default: 443 (guest) => 8443 (host) (adapter 1)

Your test server is up and running now.

A Very Simple Playbook
For our first example playbook, we’ll configure a host to run a simple HTTP server.
You’ll see what happens when we run the playbook in webservers.yml (Example 3-1),
and then we’ll go over the contents of the playbook in detail. This is the simplest
playbook to achieve this task, and we will discuss ways to improve it.

Example 3-1. webservers.yml

- name: Configure webserver with nginx
 hosts: webservers
 become: True
 tasks:
 - name: Ensure nginx is installed
 package: name=nginx update_cache=yes

 - name: Copy nginx config file
 copy:
 src: nginx.conf

36 | Chapter 3: Playbooks: A Beginning

1 Although we call this file nginx.conf, it replaces the sites-enabled/default NGINX server block config file, not
the main /etc/nginx.conf config file.

 dest: /etc/nginx/sites-available/default

 - name: Enable configuration
 file: >
 dest=/etc/nginx/sites-enabled/default
 src=/etc/nginx/sites-available/default
 state=link

 - name: Copy index.html
 template: >
 src=index.html.j2
 dest=/usr/share/nginx/html/index.html

 - name: Restart nginx
 service: name=nginx state=restarted
...

Specifying an NGINX Config File
This playbook requires an NGINX configuration file.

NGINX ships with a configuration file that works out of the box if you just want
to serve static files. But you’ll always need to customize this, so we’ll overwrite the
default configuration file with our own as part of this playbook. As you’ll see later,
we’ll improve the configuration to support TLS. Example 3-2 shows a basic NGINX
config file. Put it in playbooks/files/nginx.conf.1

Example 3-2. nginx.conf

server {
 listen 80 default_server;
 listen [::]:80 default_server ipv6only=on;

 root /usr/share/nginx/html;
 index index.html index.htm;

 server_name localhost;

 location / {
 try_files $uri $uri/ =404;
 }
}

A Very Simple Playbook | 37

Creating a Web Page
Next, we’ll create a simple web page. Ansible has a system to generate the HTML page
from a template file. Put the content shown in Example 3-3 in playbooks/templates/
index.html.j2.

Example 3-3. playbooks/templates/index.html.j2

<html>
 <head>
 <title>Welcome to ansible</title>
 </head>
 <body>
 <h1>Nginx, configured by Ansible</h1>
 <p>If you can see this, Ansible successfully installed nginx.</p>

 <p>Running on {{ inventory_hostname }}</p>
 </body>
</html>

This template references a special Ansible variable named inventory_hostname.
When Ansible renders this template, it will replace this variable with the name of
the host as it appears in the inventory (see Figure 3-1). Rendered HTML tells a web
browser how to display the page.

An Ansible convention is to copy files from a subdirectory named files, and to
source Jinja2 templates from a subdirectory named templates. Ansible searches these
directories automatically. We follow this convention throughout the book.

Figure 3-1. Rendered HTML

Creating a Group
Let’s create a webservers group in our inventory file so that we can refer to this group
in our playbook. For now, this group will have only our test server.

38 | Chapter 3: Playbooks: A Beginning

The simplest inventory files are in the .ini file format. We’ll go into this format
in detail later in the book. Edit your playbooks/inventory/vagrant.ini file to have
a [webservers] line above the testserver line, as shown in playbooks/inventory/
vagrant.ini. This means that testserver is in the webservers group. The group can
have variables, for instance to establish the connection to the servers (vars is a
shorthand for variables). Your file should look like Example 3-4.

Example 3-4. playbooks/inventory/vagrant.ini

[webservers]
testserver ansible_port=2202

[webservers:vars]
ansible_user = vagrant
ansible_host = 127.0.0.1
ansible_private_key_file = .vagrant/machines/default/virtualbox/private_key

You created the ansible.cfg file with an inventory entry in Chapter 1, so you don’t need
to supply the -i command-line argument. You can now check your groups in the
inventory with this command:

$ ansible-inventory --graph

The output should look like this:
@all:
 |--@ungrouped:
 |--@webservers:
 | |--testserver

Running the Playbook
The ansible-playbook command executes playbooks. To run the playbook, use this
command:

$ ansible-playbook webservers.yml

Your output should look like Example 3-5.

Example 3-5. Output of ansible-playbook

PLAY [Configure webserver with nginx] **
TASK [Gathering Facts] ***
ok: [testserver]

TASK [Ensure nginx is installed] ***
changed: [testserver]

TASK [Copy nginx config file] **
changed: [testserver]

Running the Playbook | 39

2 If you do encounter an error, you might want to skip to Chapter 8 for assistance with debugging.

TASK [Enable configuration] **
ok: [testserver]

TASK [Copy index.html] ***
changed: [testserver]

TASK [Restart nginx] ***
changed: [testserver]

PLAY RECAP ***
testserver : ok=6 changed=4 unreachable=0 failed=0 skipped=0 rescued=0 ignored=0
Playbook run took 0 days, 0 hours, 0 minutes, 18 seconds

If you don’t get any errors, you should be able to point your browser to http://local‐
host:8080 and see the custom HTML page, as shown in Figure 3-1.2

Cowsay

No O’Reilly book with such a cover would be complete without
describing cowsay support. If you have the cowsay program
installed on your local machine, Ansible output will include a cow
in ASCII art like this:

< PLAY [Configure webserver with nginx] >

 \ ^__^
 \ (oo)_______
 (__)\)\/\
 ||----w |
 || ||

If you like more animals in your log, then try adding this to your
ansible.cfg file:

[defaults]
cow_selection = random
cowsay_enabled_stencils=cow,bunny,kitty,koala,moose,sheep,tux

For a full list of alternate images on your local machine, use:
cowsay -l

If you don’t want to see the cows, you can disable it by adding the
following to your ansible.cfg file:

[defaults]
nocows = 1

You can disable cowsay by setting the ANSIBLE_NOCOWS environ‐
ment variable like this:

$ export ANSIBLE_NOCOWS=1

40 | Chapter 3: Playbooks: A Beginning

Playbooks Are YAML
One writes Ansible playbooks in YAML syntax. YAML is a file format very much like
JSON, but it’s easier for humans to read and write. Before we go over the playbook,
let’s cover the most important YAML concepts for writing playbooks.

A valid JSON file is also a valid YAML file. This is because YAML
allows strings to be quoted, considers true and false to be valid
Booleans, and has inline lists and dictionary syntaxes that are
essentially the same as JSON arrays and objects. But don’t write
your playbooks as JSON—the whole point of YAML is that it’s
easier for people to read.

Start of Document
YAML has three dashes to mark the beginning of a document. Ansible files have only
one YAML document each.

In Ansible playbooks it is customary to start with the three “-” (so that editors can
pick up on this). However, if you forget to put those three dashes at the top of your
playbook files, Ansible won’t complain.

End of File
YAML files may end with three dots, which can be useful to prove completeness. But
quite often this practice is skipped.

...

If you forget to put those three dots at the end of your playbook files, Ansible won’t
complain.

Comments
Comments start with a hashmark (#) and apply to the end of the line, the same as in
shell scripts, Python, and Ruby. Indent comments with the other content.

This is a YAML comment

Indentation and Whitespace
Like Python, YAML uses space indentation to reduce the number of interpunction
characters. We use two spaces as a standard. For readability, we prefer to add white‐
space between each task in a playbook, and between sections in files.

Playbooks Are YAML | 41

Strings
In general, you don’t need to quote YAML strings. Even if there are spaces, you don’t
need to quote them. For example, this is a string in YAML:

this is a lovely sentence

The JSON equivalent is as follows:
"this is a lovely sentence"

In some scenarios in Ansible, you will need to quote strings. It is a good practice
just to quote all strings. Double-quoting typically involves the use of variable interpo‐
lation or other expressions. Use single quotes for literal values that should not be
evaluated, like version numbers and floating point numbers, or strings with reserved
characters like colons, brackets, or braces. We’ll get to those later.

Never, ever, put Boolean values in quotation marks! Remember this: NO is a string (the
country abbreviation of Norway).

Booleans
YAML has a native Boolean type and provides you with a variety of values that
evaluate to true or false. For example, these are all Boolean true values in YAML:

true, True, TRUE, yes, Yes, YES, on, On, ON

JSON only uses:
true

These are all Boolean false values in YAML:
false, False, FALSE, no, No, NO, off, Off, OFF

JSON only uses:
false

Bas uses only lowercase true and false in Ansible. One reason is that these two are
the values that are returned; for example, they are printed in debug when you use
any other allowed variant. Because true and false are valid Booleans in JSON too,
sticking to these simplifies using dynamic data, because Ansible actions return results
as JSON data.

42 | Chapter 3: Playbooks: A Beginning

Why Don’t You Use True in One Place and Yes in Another?

Sharp-eyed readers might have noticed that webservers.yml uses
True in one spot in the playbook (to become root) and yes in
another (to update the apt cache).
Ansible is flexible in how you use truthy and falsey values in play‐
books. Strictly speaking, Ansible treats module arguments (e.g.,
update_cache=yes) differently from values elsewhere in playbooks
(for example, become: True). Values elsewhere are handled by the
YAML parser and so use the YAML conventions of truthiness:

1. YAML truthy: true, True, TRUE, yes, Yes, YES, on, On, ON1.
2. YAML falsey: false, False, FALSE, no, No, NO, off, Off, OFF2.

Module arguments are passed as strings and use Ansible’s internal
conventions:

module arg truthy: yes, on, 1, true
module arg falsey: no, off, 0, false

It is good practice to check all YAML files with a command-line
tool called yamllint. In its default configuration it will issue this
warning:

warning truthy value should be one of [false, true] (truthy)

To adhere to this “truthy” rule, Bas uses only true and false
(unquoted).

Lists
YAML lists are like arrays in JSON and Ruby, or lists in Python. The YAML specifica‐
tion calls these sequences, but we call them lists here to be consistent with the official
Ansible documentation.

Indent list items and delimit them with hyphens. Lists have a name followed by a
colon, as follows:

shows:
 - My Fair Lady
 - Oklahoma
 - The Pirates of Penzance

This is the JSON equivalent:
{
 "shows": [
 "My Fair Lady",
 "Oklahoma",
 "The Pirates of Penzance"
]
}

Playbooks Are YAML | 43

As you can see, YAML is easier to read because fewer characters are needed. We don’t
have to quote the strings in YAML, even though they have spaces in them. YAML also
supports an inline format for lists, with comma-separated values in square brackets:

shows: [My Fair Lady , Oklahoma , The Pirates of Penzance]

Dictionaries
YAML dictionaries are like objects in JSON, dictionaries in Python, hashes in Ruby,
or associative arrays in PHP. The YAML specification calls them mappings, but we call
them dictionaries here to be consistent with the Ansible documentation. They look
like this:

address:
 street: Main Street
 appt: 742
 city: Logan
 state: Ohio

This is the JSON equivalent:
{
 "address": {
 "street": "Main Street",
 "appt": 742,
 "city": "Logan",
 "state": "Ohio"
 }
}

YAML also supports an inline format for dictionaries, with comma-separated tuples
in braces:

address: { street: Main Street, appt: '742', city: Logan, state: Ohio}

Multiline Strings
You can format multiline strings with YAML by combining a block style indicator
(| or >), a block chomping indicator (+ or –), and even an indentation indicator
(1 to 9). For example, when we need a preformatted block, we use the pipe character
with a plus sign (|+):

visiting_address: |+
 Department of Computer Science

 A.V. Williams Building
 University of Maryland
city: College Park
state: Maryland

The YAML parser will keep all line breaks as you enter them.

44 | Chapter 3: Playbooks: A Beginning

JSON does not support the use of multiline strings. You either need to replace all the
line breaks with \n (to encode a newline) or, to encode this in JSON, you would need
an array in the address field:

{
 "visiting_address": ["Department of Computer Science",
 "A.V. Williams Building",
 "University of Maryland"],
 "city": "College Park",
 "state": "Maryland"
}

Pure YAML Instead of String Arguments
When writing playbooks, you’ll often find situations where you’re passing many argu‐
ments to a module. For aesthetics, you might want to break this up across multiple
lines in your file. Moreover, you want Ansible to parse the arguments as a YAML
dictionary, because you can use yamllint to find typos in YAML that you won’t find
when you use the string format. This style also has shorter lines, which makes version
comparison easier.

Lorin likes this style:
- name: Ensure nginx is installed
 package: name=nginx update_cache=true

Bas prefers pure-YAML style, because that can be parsed for correctness by yamllint:
 - name: Ensure nginx is installed
 package:
 name: nginx
 update_cache: true

Anatomy of a Playbook
If we apply what we’ve discussed so far to our playbook, then we have a second
version (Example 3-6).

Example 3-6. webservers2.yml

- name: Configure webserver with nginx
 hosts: webservers
 become: true
 tasks:
 - name: Ensure nginx is installed
 package:
 name: nginx
 update_cache: true

 - name: Copy nginx config file

Anatomy of a Playbook | 45

 copy:
 src: nginx.conf
 dest: /etc/nginx/sites-available/default

 - name: Enable configuration
 file:
 src: /etc/nginx/sites-available/default
 dest: /etc/nginx/sites-enabled/default
 state: link

 - name: Copy home page template
 template:
 src: index.html.j2
 dest: /usr/share/nginx/html/index.html

 - name: Restart nginx
 service:
 name: nginx
 state: restarted
...

Plays
Looking at the YAML, it should be clear that a playbook is a list of dictionaries.
Specifically, a playbook is a list of plays. Our example is a list that has only a single
play, named Configure webserver with nginx.

Here’s the play from our example:
- name: Configure webserver with nginx
 hosts: webservers
 become: true

 tasks:
 - name: Ensure nginx is installed
 package:
 name: nginx
 update_cache: true

 - name: Copy nginx config file
 copy:
 src: nginx.conf
 dest: /etc/nginx/sites-available/default

 - name: Enable configuration
 file:
 src: /etc/nginx/sites-available/default
 dest: /etc/nginx/sites-enabled/default
 state: link

 - name: Copy index.html
 template:
 src: index.html.j2
 dest: /usr/share/nginx/html/index.html

46 | Chapter 3: Playbooks: A Beginning

 - name: Restart nginx
 service:
 name: nginx
 state: restarted
...

Every play must contain the hosts variable, and that can be a group like webservers,
the magic group all (all hosts in the inventory), or an expression of a set of hosts to
configure. Think of a play as the thing that connects to a group of hosts and a list of
things to do on those hosts for you. Sometimes you need to do different things on
more groups of hosts, and then you use more plays in a playbook.

In addition to specifying hosts and tasks, plays support optional settings. We’ll get
into those later, but here are three common ones:

name:

A comment that describes what the play is about. Ansible prints the name when
the play starts to run. Start the name with an uppercase letter as a best practice.

become:

If this Boolean variable is true, Ansible will become the become_user to run
tasks. This is useful when managing Linux servers, since by default you should
not log in as the root user. become can be specified per task, or per play, as
needed, and become_user can be used to specify root (the default if omitted) or
another user, yet become is subject to your system’s policies. A sudoers file might
need to be adjusted to be able to become root.

vars:

A list of variables and values. You’ll see this in action later in this chapter.

Tasks
Our example playbook contains one play that has five tasks. Here’s the first task of
that play:

- name: Ensure nginx is installed
 package:
 name: nginx
 update_cache: true

In the preceding example, the module name is package and the arguments are name:
nginx and update_cache: yes. These arguments tell the package module to install
the package named nginx and to update the package cache (the equivalent of doing
an apt-get update on Ubuntu) before installing the package.

Plays | 47

The name is optional, but it’s good style. Try to name a task with a logical and correct
name. Task names serve as good reminders for the intent of the task. (Names will
be very useful when somebody is trying to understand your playbook’s log, including
you in six months.) As you’ve seen, Ansible will print out the name of a task when
it runs. Finally, as you’ll see in Chapter 16, you can use the --start-at-task <task
name> flag to tell ansible-playbook to start a playbook in the middle of a play, but
you need to reference the task by name.

Arguments for a module can be passed as one string to the ansible command with
the -a flag; the -m flag specifies the module:

$ ansible webservers -b -m package -a 'name=nginx update_cache=true'

However, it’s important to understand that in this form, from the Ansible parser’s
point of view, the arguments are treated as one string, not as a dictionary. In ad hoc
commands that’s fine, but in playbooks this means that there is more space for bugs
to creep in, especially with complex modules with many optional arguments. Bas, for
better version control and linting, also prefers to break arguments into multiple lines.
Therefore, we always use the YAML syntax, like this:

- name: Ensure nginx is installed
 package:
 name: nginx
 update_cache: true

Modules
Modules are scripts that come packaged with Ansible and perform some kind of
action on a host. That’s a pretty generic description, but there is enormous variety
among Ansible modules. Recall from Chapter 1 that Ansible executes a task on a
host by generating a custom script based on the module name and arguments, and
then copies this script to the host and runs it. The modules for Unix/Linux that ship
with Ansible are written in Python, and the modules for Windows are written in
PowerShell, with a counterpart in Python that contains only the documentation. You
can write your own modules in any language.

We use the following modules in this chapter:

package
Installs or removes packages by using the host’s package manager

copy
Copies a file from the machine where you run Ansible to the web servers

file
Sets the attribute of a file, symlink, or directory

48 | Chapter 3: Playbooks: A Beginning

service
Starts, stops, or restarts a service

template
Generates a file from a template and copies it to the hosts

Viewing Ansible Module Documentation
Ansible ships with the ansible-doc command-line tool, which shows documentation
about the modules you have installed. Think of it as main pages for Ansible modules.
For example, to show the documentation for the service module, run this:

$ ansible-doc service

To find more specific modules related to the Ubuntu apt package manager, try:
$ ansible-doc -l | grep ^apt

Putting It All Together
To sum up, a playbook contains one or more plays. A play associates an unordered
set of hosts with an ordered list of tasks. Each task is associated with exactly one
module. Figure 3-2 depicts the relationships between playbooks, plays, hosts, tasks,
and modules.

Figure 3-2. Entity-relationship diagram of a playbook

Did Anything Change? Tracking Host State
When you run ansible-playbook, Ansible outputs status information for each task it
executes in the play.

Looking back at the output in Example 3-5, you might notice that some tasks have
the status changed and others have the status ok. For example, the “Ensure nginx is
installed task” has the status changed, which appears as yellow on our terminal:

TASK: [Ensure nginx is installed] ***
changed: [testserver]

Did Anything Change? Tracking Host State | 49

The enable configuration, on the other hand, has the status “ok”, which appears as
green on our terminal:

TASK: [Enable configuration] **
ok: [testserver]

Any Ansible task that runs has the potential to change the state of the host in some
way. Ansible modules will first check to see whether the state of the host needs to be
changed before taking any action. If the host’s state matches the module’s arguments,
Ansible takes no action on the host and responds with a state of “ok.”

On the other hand, if there is a difference between the host’s state and the module’s
arguments, Ansible will change the state of the host and return “changed.”

In the example output just shown, the “Ensure nginx is installed” task was changed,
which means that before we ran the playbook, the nginx package had not previously
been installed on the host. The “Enable configuration” task was unchanged, which
meant that there was already a symbolic link on the server that was identical to the
one we were creating. This means the playbook has a noop (“no operation”: that is, do
nothing) that we will remove. Try to run the playbook more often, and verify that the
status is “ok” on subsequent runs.

As you’ll see later in this chapter, you can use Ansible’s state change detection to
trigger additional actions using handlers. But, even without using handlers, seeing
what changes and where, as the playbook runs, is still a detailed form of feedback.

Getting Fancier: TLS Support
Let’s move on to a more complex example. We’re going to modify the previous
playbook so that our web servers support TLSv1.2. You can find the full playbook
in Example 3-9 at the end of this chapter. This section will briefly introduce these
Ansible features:

• Variables•
• Loops•
• Handlers•
• Testing•
• Validation•

50 | Chapter 3: Playbooks: A Beginning

TLS versus SSL

You might be familiar with the term SSL (Secure Sockets Layer)
rather than TLS (Transport Layer Security) in the context of secure
web servers. SSL is a family of protocols that secures the commu‐
nication between browsers and web servers; this adds the “S” in
HTTPS. SSL has evolved over time; the latest variant is TLSv1.3.
Although it is common to use the term SSL to refer to the HTTPS
secured protocol, in this book, we use TLS.

Generating a TLS Certificate
We will create a TLS certificate. In a production environment, you’d obtain your
TLS certificate from a certificate authority. We’ll use a self-signed certificate since
we can generate it easily for this example. Run this command from the directory
ansiblebook/ch03/playbooks:

$ openssl req -x509 -nodes -days 365 -newkey rsa:2048 \
 -subj /CN=localhost \
 -keyout files/nginx.key -out files/nginx.crt

It should generate the files nginx.key and nginx.crt in the files subdirectory of your
playbooks directory. The certificate has an expiration date of one year from the day
you created it.

Variables
The play in our playbook has a new section called vars:. This section defines five
variables and assigns a value to each variable:

vars:
 tls_dir: /etc/nginx/ssl/
 key_file: nginx.key
 cert_file: nginx.crt
 conf_file: /etc/nginx/sites-available/default
 server_name: localhost

In this example, each value is a string (such as /etc/nginx/sites-available/default),
but any valid YAML can be used as the value of a variable. You can use lists and
dictionaries in addition to strings and Booleans.

Variables can be used in tasks, as well as in template files. You reference variables by
using {{ mustache }} notation. Ansible replaces this {{ mustache }} with the value
of the variable named mustache.

Getting Fancier: TLS Support | 51

Consider this task in the playbook:
- name: Manage nginx config template
 template:
 src: nginx.conf.j2
 dest: "{{ conf_file }}"
 mode: '0644'
 notify: Restart nginx

Ansible will substitute "{{ conf_file }}" with /etc/nginx/sites-available/default
when it executes this task.

Quoting in Ansible Strings
If you reference a variable right after specifying the module, the YAML parser will
misinterpret the variable reference as the beginning of an inline dictionary. Consider
the following example:

- name: Perform some task
 command: {{ myapp }} -a foo

Ansible will try to parse the first part of {{ myapp }} -a foo as a dictionary instead
of a string, and will return an error. In this case, you must quote the arguments:

- name: Perform some task
 command: "{{ myapp }} -a foo"

A similar problem arises if your argument contains a colon. For example:
- name: Show a debug message
 debug:
 msg: The debug module will print a message: neat, eh?

The colon in the msg argument trips up the YAML parser. To get around this, you
need to quote the entire msg string. Single and double quotes are both correct; Bas
prefers to use double quotes when the string has variables:

- name: Show a debug message
 debug:
 msg: "The debug module will print a message: neat, eh?"

This will make the YAML parser happy. Ansible supports alternating single and
double quotes, so you can do this:

- name: Show escaped quotes
 debug:
 msg: '"The module will print escaped quotes: neat, eh?"'

- name: Show quoted quotes
 debug:
 msg: "'The module will print quoted quotes: neat, eh?'""

This yields the expected output:

52 | Chapter 3: Playbooks: A Beginning

TASK [Show escaped quotes] ***
ok: [localhost] ==> {
 "msg": "\"The module will print escaped quotes: neat, eh?\""
}
TASK [Show quoted quotes] **
ok: [localhost] ==> {
 "msg": "'The module will print quoted quotes: neat, eh?'"
}

Generating the NGINX Configuration Template
If you’ve done web programming, you’ve likely used a template system to generate
HTML. A template is just a text file that has special syntax for specifying variables
that should be replaced by values. If you’ve ever received a spam email, it was created
using an email template, as shown in Example 3-7.

Example 3-7. An email template

Dear {{ name }},
You have {{ random_number }} Bitcoins in your account, please click: {{ phishing_url }}.

Ansible’s use case isn’t HTML pages or emails—it’s configuration files. You don’t want
to hand-edit configuration files if you can avoid it. This is especially true if you have
to reuse the same bits of configuration data (say, the IP address of your queue server
or your database credentials) across multiple configuration files. It’s much better to
take the info that’s specific to your deployment, record it in one location, and then
generate all of the files that need this information from templates.

Ansible uses the Jinja2 template engine to implement templating, just like the excel‐
lent web framework Flask does. If you’ve ever used a templating library such as
Mustache, ERB, or Django, Jinja2 will feel very familiar.

NGINX’s configuration file needs information about where to find the TLS key
and certificate. We’re going to use Ansible’s templating functionality to define this
configuration file so that we can avoid hardcoding values that might change.

In your playbooks directory, create a templates subdirectory and create the file tem‐
plates/nginx.conf.j2, as shown in Example 3-8.

Example 3-8. templates/nginx.conf.j2

server {
 listen 80 default_server;
 listen [::]:80 default_server ipv6only=on;

 listen 443 ssl;
 ssl_protocols TLSv1.2;
 ssl_prefer_server_ciphers on;
 root /usr/share/nginx/html;

Getting Fancier: TLS Support | 53

 index index.html;
 server_tokens off;
 add_header X-Frame-Options DENY;
 add_header X-Content-Type-Options nosniff;

 server_name {{ server_name }};
 ssl_certificate {{ tls_dir }}{{ cert_file }};
 ssl_certificate_key {{ tls_dir }}{{ key_file }};

 location / {
 try_files $uri $uri/ =404;
 }
}

We use the .j2 extension to indicate that the file is a Jinja2 template. However, you can
use a different extension if you like; Ansible doesn’t care.

In our template, we reference four variables. We defined these variables in the
playbook:

server_name

The hostname of the web server (such as www.example.com)

cert_file

The filename of the TLS certificate

key_file

The filename of the TLS private key

tls_dir

The directory with the above files

Ansible also uses the Jinja2 template engine to evaluate variables in playbooks. Recall
that we saw the {{ conf_file }} syntax in the playbook itself. You can use all of
the Jinja2 features in your templates, but we won’t cover them in detail here. Check
out the Jinja2 Template Designer Documentation for more details. You probably
won’t need to use those advanced templating features, though. One Jinja2 feature you
probably will use with Ansible is filters; we’ll cover those in a later chapter.

Loop
When you want to run a task with each item from a list, you can use loop. A loop
executes the task multiple times, each time replacing item with different values from
the specified list:

- name: Copy TLS files
 copy:
 src: "{{ item }}"
 dest: "{{ tls_dir }}"
 mode: '0600'

54 | Chapter 3: Playbooks: A Beginning

https://oreil.ly/Je0rA

 loop:
 - "{{ key_file }}"
 - "{{ cert_file }}"
 notify: Restart nginx

Handlers
There are two new elements that we haven’t discussed yet in our webservers-tls.yml
playbook (Example 3-9). There’s a handlers section that looks like this:

handlers:
 - name: Restart nginx
 service:
 name: nginx
 state: restarted

In addition, several of the tasks contain a notify statement. For example:
- name: Manage nginx config template
 template:
 src: nginx.conf.j2
 dest: "{{ conf_file }}"
 mode: '0644'
 notify: Restart nginx

Handlers are one of the conditional forms that Ansible supports. A handler is similar
to a task, but it runs only if it has been notified by a task. A task will fire the
notification if Ansible recognizes that the task has changed the state of the system.

A task notifies a handler by passing the handler’s name as the argument. In the
preceding example, the handler’s name is Restart nginx. For an NGINX server, we’d
need to restart it if any of the following happens:

• The TLS key changes.•
• The TLS certificate changes.•
• The configuration file changes.•
• The contents of the sites-enabled directory change.•

We put a notify statement on each task to ensure that Ansible restarts NGINX if any
of these conditions are met.

A Few Things to Keep in Mind About Handlers
Handlers usually run at the end of the play after all of the tasks have been run. To
force a notified handler in the middle of a play, we use these two lines of code:

- name: Restart nginx
 meta: flush_handlers

Getting Fancier: TLS Support | 55

If a play contains multiple handlers, the handlers always run in the order that they are
defined in the handlers section, not the notification order. They run only once, even if
they are notified multiple times.

The official Ansible documentation mentions that the only common uses for han‐
dlers are reboots and restarting services. Lorin uses them only for restarting serv‐
ices—he thinks it’s a pretty small optimization to restart only once on change, since
we can always just unconditionally restart the service at the end of the playbook, and
restarting a service doesn’t usually take very long. But when you restart NGINX, you
might affect user sessions; notifying handlers help avoid unnecessary restarts. Bas
likes to validate the configuration before restarting, especially if it’s a critical service
like sshd. He has handlers notifying handlers.

Testing
One pitfall with handlers is that they can be troublesome when debugging a play‐
book. The problem usually unfolds something like this:

• You run a playbook.•
• One of the tasks with a notify on it changes state.•
• An error occurs on a subsequent task, stopping Ansible.•
• You fix the error in your playbook.•
• You run Ansible again.•
• None of the tasks reports a state change the second time around, so Ansible•

doesn’t run the handler.

When iterating like this, it is helpful to include a test in the playbook. Ansible has
a module called uri that can do an HTTPS request to check if the web server is
running and serving the web page:

 - name: "Test it! https://localhost:8443/index.html"
 delegate_to: localhost
 become: false
 uri:
 url: 'https://localhost:8443/index.html'
 validate_certs: false
 return_content: true
 register: this
 failed_when: "'Running on ' not in this.content"

Validation
Ansible is remarkably good at generating meaningful error messages if you forget
to put quotes in the right places and end up with invalid YAML; yamllint is very

56 | Chapter 3: Playbooks: A Beginning

helpful in finding even more issues. In addition, ansible-lint is a Python tool that
helps you find potential problems in playbooks.

You should also check the Ansible syntax of your playbook before running it. We
suggest you check all of your content before running the playbook:

$ ansible-playbook --syntax-check webservers-tls.yml
$ ansible-lint webservers-tls.yml
$ yamllint webservers-tls.yml
$ ansible-inventory --host testserver -i inventory/vagrant.ini
$ vagrant validate

The Playbook
If you have followed along, your playbook should now look like Example 3-9.

Example 3-9. playbooks/webservers-tls.yml

- name: Configure webserver with Nginx and TLS
 hosts: webservers
 become: true
 gather_facts: false

 vars:
 tls_dir: /etc/nginx/ssl/
 key_file: nginx.key
 cert_file: nginx.crt
 conf_file: /etc/nginx/sites-available/default
 server_name: localhost

 handlers:
 - name: Restart nginx
 service:
 name: nginx
 state: restarted

 tasks:
 - name: Ensure nginx is installed
 package:
 name: nginx
 update_cache: true
 notify: Restart nginx

 - name: Create directories for TLS certificates
 file:
 path: "{{ tls_dir }}"
 state: directory
 mode: '0750'
 notify: Restart nginx

 - name: Copy TLS files
 copy:

Getting Fancier: TLS Support | 57

 src: "{{ item }}"
 dest: "{{ tls_dir }}"
 mode: '0600'
 loop:
 - "{{ key_file }}"
 - "{{ cert_file }}"
 notify: Restart nginx

 - name: Manage nginx config template
 template:
 src: nginx.conf.j2
 dest: "{{ conf_file }}"
 mode: '0644'
 notify: Restart nginx

 - name: Enable configuration
 file:
 src: /etc/nginx/sites-available/default
 dest: /etc/nginx/sites-enabled/default
 state: link

 - name: Install home page
 template:
 src: index.html.j2
 dest: /usr/share/nginx/html/index.html
 mode: '0644'

 - name: Restart nginx
 meta: flush_handlers

 - name: "Test it! https://localhost:8443/index.html"
 delegate_to: localhost
 become: false
 uri:
 url: 'https://localhost:8443/index.html'
 validate_certs: false
 return_content: true
 register: this
 failed_when: "'Running on ' not in this.content"
 tags:
 - test
...

Running the Playbook
As before, use the ansible-playbook command to run the playbook:

$ ansible-playbook webservers-tls.yml

The output should look something like this:
PLAY [Configure webserver with Nginx and TLS] **********************************

TASK [Ensure nginx is installed] ***
ok: [testserver]

58 | Chapter 3: Playbooks: A Beginning

TASK [Create directories for TLS certificates] *********************************
changed: [testserver]

TASK [Copy TLS files] **
changed: [testserver] => (item=nginx.key)
changed: [testserver] => (item=nginx.crt)

TASK [Manage nginx config template] **
changed: [testserver]

TASK [Install home page] ***
ok: [testserver]

RUNNING HANDLER [Restart nginx] **
changed: [testserver]

TASK [Test it! https://localhost:8443/index.html] ******************************
ok: [testserver]

PLAY RECAP ***
testserver : ok=7 changed=4 unreachable=0 failed=0 skipped=0 rescued=0 ignored=0

Point your browser to https://localhost:8443 (don’t forget the s on https). If you’re
using Chrome, you’ll get a ghastly message that says something like, “Your connec‐
tion is not private” (see Figure 3-3).

Figure 3-3. Browsers such as Chrome don’t trust self-signed TLS certificates

Getting Fancier: TLS Support | 59

Don’t worry, though. We expected that error, since we generated a self-signed TLS
certificate: many browsers trust only certificates issued by a certificate authority.

Shebang

When a text file is executable in a Unix-like operating system,
then we call it a script. When the first line starts with the two
characters #! then the program loader mechanism parses the rest
of the file’s first line as a script interpreter directive. It will start
the script interpreter with the script. We changed the file mode of
our playbook (webservers-tls.yml) to executable and start the file
with the following shebang line. (The # character without ! is just a
comment.)

#!/usr/bin/env ansible-playbook
This playbook is executable as a script.

Conclusion
We’ve covered a lot in this chapter about the “what” of Ansible, for instance describ‐
ing what Ansible will do to your hosts. The handlers discussed here are just one form
of control flow that Ansible supports. In Chapter 9 you’ll learn more about complex
playbooks with more loops and running tasks conditionally based on the values of
variables. In the next chapter, we’ll talk about the “who”: in other words, how to
describe the hosts against which your playbooks will run.

60 | Chapter 3: Playbooks: A Beginning

CHAPTER 4

Inventory: Describing Your Servers

So far, we’ve been working with only one server (or host, as Ansible calls it). The
simplest inventory is a comma-separated list of hostnames, which you can do even
without a server:

$ ansible all -i 'localhost,' -a date

In reality, you’re going to be managing multiple hosts. The collection of hosts that
Ansible knows about is called the inventory. In this chapter, you will learn how to
describe a set of hosts as an Ansible inventory by creating an inventory that contains
multiple machines.

Your ansible.cfg file should look like Example 4-1, which enables all inventory plug-
ins explicitly.

Example 4-1. ansible.cfg

[defaults]
inventory = inventory

[inventory]
enable_plugins = host_list, script, auto, yaml, ini, toml

In this chapter, we will use a directory named inventory for the inventory examples.
The Ansible inventory is a very flexible object: it can be a file (in several formats), a
directory, or an executable, and some executables are bundled as plug-ins. Inventory
plug-ins allow us to point at data sources, like your cloud provider, to compile the
inventory. An inventory can be stored separately from your playbooks. This means
that you can create one inventory directory to use with Ansible on the command line,
with hosts running in Vagrant, Amazon EC2, Google Cloud Platform, or Microsoft
Azure, or wherever you like!

61

Serge van Ginderachter is the most knowledgeable person to read
on Ansible inventory. See his blog for in-depth details.

Inventory/Hosts Files
The default way to describe your hosts in Ansible is to list them in text files, called
inventory hosts files. The simplest form is just a list of hostnames in a file named hosts,
as shown in Example 4-2.

Example 4-2. A very simple inventory file

frankfurt.example.com
helsinki.example.com
hongkong.example.com
johannesburg.example.com
london.example.com
newyork.example.com
seoul.example.com
sydney.example.com

Ansible automatically adds one host to the inventory by default: localhost. It under‐
stands that localhost refers to your local machine, with which it will interact directly
rather than connecting by SSH.

Preliminaries: Multiple Vagrant Machines
To talk about inventory, you’ll need to interact with multiple hosts. Let’s configure
Vagrant to bring up three hosts. We’ll unimaginatively call them vagrant1, vagrant2,
and vagrant3.

Before you create a new Vagrantfile for this chapter, make sure you destroy your
existing virtual machine(s) by running the following:

$ vagrant destroy --force

If you don’t include the --force option, Vagrant will prompt you to confirm that you
want to destroy each virtual machine listed in the Vagrantfile.

Next, create a new Vagrantfile that looks like Example 4-3.

Example 4-3. Vagrantfile with three servers

VAGRANTFILE_API_VERSION = "2"
Vagrant.configure(VAGRANTFILE_API_VERSION) do |config|
 # Use the same key for each machine
 config.ssh.insert_key = false

62 | Chapter 4: Inventory: Describing Your Servers

https://oreil.ly/tUABr

 config.vm.define "vagrant1" do |vagrant1|
 vagrant1.vm.box = "ubuntu/focal64"
 vagrant1.vm.network "forwarded_port", guest: 80, host: 8080
 vagrant1.vm.network "forwarded_port", guest: 443, host: 8443
 end
 config.vm.define "vagrant2" do |vagrant2|
 vagrant2.vm.box = "ubuntu/focal64"
 vagrant2.vm.network "forwarded_port", guest: 80, host: 8081
 vagrant2.vm.network "forwarded_port", guest: 443, host: 8444
 end
 config.vm.define "vagrant3" do |vagrant3|
 vagrant3.vm.box = "centos/stream8"
 vagrant3.vm.network "forwarded_port", guest: 80, host: 8082
 vagrant3.vm.network "forwarded_port", guest: 443, host: 8445
 end
end

Vagrant, from version 1.7 on, defaults to using a different SSH key for each host.
Example 4-3 contains the line to revert to the earlier behavior of using the same SSH
key for each host:

config.ssh.insert_key = false

Using the same key on each host simplifies our Ansible setup because we can specify
a single SSH key in the configuration.

For now, let’s assume that each of these servers can potentially be a web server, so
Example 4-3 maps ports 80 and 443 inside each Vagrant machine to a port on the
local machine.

We should be able to bring up the virtual machines by running the following:
$ vagrant up

If all goes well, the output should look something like this:
Bringing machine 'vagrant1' up with 'virtualbox' provider...
Bringing machine 'vagrant2' up with 'virtualbox' provider...
Bringing machine 'vagrant3' up with 'virtualbox' provider...
...
 vagrant1: 80 (guest) => 8080 (host) (adapter 1)
 vagrant1: 443 (guest) => 8443 (host) (adapter 1)
 vagrant1: 22 (guest) => 2222 (host) (adapter 1)
==> vagrant1: Running 'pre-boot' VM customizations...
==> vagrant1: Booting VM...
==> vagrant1: Waiting for machine to boot. This may take a few minutes...
 vagrant1: SSH address: 127.0.0.1:2222
 vagrant1: SSH username: vagrant
 vagrant1: SSH auth method: private key
==> vagrant1: Machine booted and ready!
==> vagrant1: Checking for guest additions in VM...
==> vagrant1: Mounting shared folders...
 vagrant1: /vagrant => /Users/bas/code/ansible/ansiblebook/ansiblebook/ch03

Inventory/Hosts Files | 63

Next, we need to know what ports on the local machine map to the SSH port (22)
inside each VM. Recall that we can get that information by running the following:

$ vagrant ssh-config

The output should look something like this:
Host vagrant1
 HostName 127.0.0.1
 User vagrant
 Port 2222
 UserKnownHostsFile /dev/null
 StrictHostKeyChecking no
 PasswordAuthentication no
 IdentityFile /Users/lorin/.vagrant.d/insecure_private_key
 IdentitiesOnly yes
 LogLevel FATAL
Host vagrant2
 HostName 127.0.0.1
 User vagrant
 Port 2200
 UserKnownHostsFile /dev/null
 StrictHostKeyChecking no
 PasswordAuthentication no
 IdentityFile /Users/lorin/.vagrant.d/insecure_private_key
 IdentitiesOnly yes
 LogLevel FATAL
Host vagrant3
 HostName 127.0.0.1
 User vagrant
 Port 2201
 UserKnownHostsFile /dev/null
 StrictHostKeyChecking no
 PasswordAuthentication no
 IdentityFile /Users/lorin/.vagrant.d/insecure_private_key
 IdentitiesOnly yes
 LogLevel FATAL

A lot of the ssh-config information is repetitive and can be reduced. The informa‐
tion that differs per host is that vagrant1 uses port 2222, vagrant2 uses port 2200,
and vagrant3 uses port 2201.

Ansible uses your local SSH client by default, which means that it will understand any
aliases that you set up in your SSH config file. Therefore, we use a wildcard alias in
the file ~/.ssh/config:

Host vagrant*
 Hostname 127.0.0.1
 User vagrant
 UserKnownHostsFile /dev/null
 StrictHostKeyChecking no
 PasswordAuthentication no
 IdentityFile ~/.vagrant.d/insecure_private_key
 IdentitiesOnly yes
 LogLevel FATAL

64 | Chapter 4: Inventory: Describing Your Servers

Modify your inventory/hosts file so it looks like this:
vagrant1 ansible_port=2222
vagrant2 ansible_port=2200
vagrant3 ansible_port=2201

Now, make sure that you can access these machines. For example, to get information
about the network interface for vagrant2, run the following:

$ ansible vagrant2 -a "ip addr show dev enp0s3"

Your output should look something like this:
vagrant2 | CHANGED | rc=0 >>
2: enp0s3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state UP
group default qlen 1000
 link/ether 02:1e:de:45:2c:c8 brd ff:ff:ff:ff:ff:ff
 inet 10.0.2.15/24 brd 10.0.2.255 scope global dynamic enp0s3
 valid_lft 86178sec preferred_lft 86178sec
 inet6 fe80::1e:deff:fe45:2cc8/64 scope link
 valid_lft forever preferred_lft forever

Behavioral Inventory Parameters
To describe our Vagrant machines in the Ansible inventory file, we had to explicitly
specify the port (2222, 2200, or 2201) to which Ansible’s SSH client should connect.
Ansible calls such variables behavioral inventory parameters, and there are several of
them you can use when you need to override the Ansible defaults for a host (see
Table 4-1).

Table 4-1. Behavioral inventory parameters

Name Default Description
ansible_host Name of host Hostname or IP address to SSH to
ansible_port 22 Port to SSH to
ansible_user $USER User to SSH as
ansible_password (None) Password to use for SSH authentication
ansible_connection smart How Ansible will connect to host (see the following section)
ansible_ssh_private_key_file (None) SSH private key to use for SSH authentication
ansible_shell_type sh Shell to use for commands (see the following section)
ansible_python_interpreter /usr/bin/python Python interpreter on host (see the following section)
ansible_*_interpreter (None) Like ansible_python_interpreter for other

languages (see the following section)

Behavioral Inventory Parameters | 65

For some of these options, the meaning is obvious from the name, but others require
more explanation:

ansible_connection

Ansible supports multiple transports, which are mechanisms that Ansible uses
to connect to the host. The default transport, smart, will check whether the
locally installed SSH client supports a feature called ControlPersist. If the SSH
client supports ControlPersist, Ansible will use the local SSH client. If not, the
smart transport will fall back to using a Python-based SSH client library called
Paramiko.

ansible_shell_type

Ansible works by making SSH connections to remote machines and then invok‐
ing scripts. By default, Ansible assumes that the remote shell is the Bourne shell
located at /bin/sh, and will generate the appropriate command-line parameters
that work with that. It creates temporary directories to store these scripts.

Ansible also accepts csh, fish, and (on Windows) powershell as valid values for
this parameter. Ansible doesn’t work with restricted shells.

ansible_python_interpreter

Ansible needs to know the location of the Python interpreter on the remote
machine. You might want to change this to choose a version that works for you.
The easiest way to run Ansible under Python 3 is to install it with pip3 and set
this:

ansible_python_interpreter="/usr/bin/env python3"

ansible_*_interpreter

If you are using a custom module that is not written in Python, you can use this
parameter to specify the location of the interpreter (such as /usr/bin/ruby). We’ll
cover this in Chapter 12.

Changing Behavioral Parameter Defaults
You can override some of the behavioral parameter default values in the inven‐
tory file, or you can override them in the defaults section of the ansible.cfg file
(Table 4-2). Consider where you change these parameters. Are the changes a personal
choice, or does the change apply to your whole team? Does a part of your inventory
need a different setting? Remember that you can configure SSH preferences in the
~/.ssh/config file.

66 | Chapter 4: Inventory: Describing Your Servers

Table 4-2. Defaults that can be overridden in ansible.cfg

Behavioral inventory parameter ansible.cfg option
ansible_port remote_port

ansible_user remote_user

ansible_ssh_private_key_file ssh_private_key_file

ansible_shell_type executable (see the following paragraph)

The ansible.cfg executable config option is not exactly the same as the ansi
ble_shell_type behavioral inventory parameter. The executable specifies the full
path of the shell to use on the remote machine (for example, /usr/local/bin/fish).
Ansible will look at the base name of this path (in this case fish) and use that as the
default value for ansible_shell_type.

Groups and Groups and Groups
We typically want to perform configuration actions on groups of hosts, rather than
on an individual host. Ansible automatically defines a group called all (or *), which
includes all the hosts in the inventory. For example, we can check whether the clocks
on the machines are roughly synchronized by running the following:

$ ansible all -a "date"

or
$ ansible '*' -a "date"

The output on Bas’s system looks like this:
vagrant2 | CHANGED | rc=0 >>
Wed 12 May 2021 01:37:47 PM UTC
vagrant1 | CHANGED | rc=0 >>
Wed 12 May 2021 01:37:47 PM UTC
vagrant3 | CHANGED | rc=0 >>
Wed 12 May 2021 01:37:47 PM UTC

We can define our own groups in the inventory hosts file. Ansible uses the .ini file
format for inventory hosts files; it groups configuration values into sections.

Here’s how to specify that our vagrant hosts are in a group called vagrant, along with
the other example hosts mentioned at the beginning of the chapter:

frankfurt.example.com
helsinki.example.com
hongkong.example.com
johannesburg.example.com
london.example.com
newyork.example.com
seoul.example.com
sydney.example.com

Groups and Groups and Groups | 67

[vagrant]
vagrant1 ansible_port=2222
vagrant2 ansible_port=2200
vagrant3 ansible_port=2201

We could alternately list the Vagrant hosts at the top and then also in a group, like
this:

frankfurt.example.com
helsinki.example.com
hongkong.example.com
johannesburg.example.com
london.example.com
newyork.example.com
seoul.example.com
sydney.example.com
vagrant1 ansible_port=2222
vagrant2 ansible_port=2200
vagrant3 ansible_port=2201

[vagrant]
vagrant1
vagrant2
vagrant3

You can use groups in any way that suits you: they can overlap or be nested, however
you like. The order does not matter, except for human readability.

Example: Deploying a Django App
Imagine you’re responsible for deploying a Django-based web application that pro‐
cesses long-running jobs. The app needs to support the following services:

• The actual Django web app itself, run by a Gunicorn HTTP server•
• A NGINX web server, which will sit in front of Gunicorn and serve static assets•
• A Celery task queue that will execute long-running jobs on behalf of the web app•
• A RabbitMQ message queue that serves as the backend for Celery•
• A Postgres database that serves as the persistent store•

In later chapters, we will work through a detailed example of deploying this kind of
Django-based application, although our example won’t use Celery or RabbitMQ. For
now, we need to deploy this application into three different environments: production
(the real thing), staging (for testing on hosts that our team has shared access to), and
Vagrant (for local testing).

When we deploy to production, we want the entire system to respond quickly and
reliably, so we do the following:

68 | Chapter 4: Inventory: Describing Your Servers

• Run the web application on multiple hosts for better performance and put a load•
balancer in front of them

• Run task queue servers on multiple hosts for better performance•
• Put Gunicorn, Celery, RabbitMQ, and Postgres all on separate servers•
• Use two Postgres hosts: a primary and a replica•

Assuming we have one load balancer, three web servers, three task queues, one
RabbitMQ server, and two database servers, that’s 10 hosts we need to deal with
(Figure 4-1).

Figure 4-1. Ten hosts for deploying a Django app

Groups and Groups and Groups | 69

For our staging environment, we want to use fewer hosts than we do in production
to save costs, since it’s going to see a lot less activity than production will. Let’s say we
decide to use only two hosts for staging; we’ll put the web server and task queue on
one staging host, and RabbitMQ and Postgres on the other.

For our local Vagrant environment, we decide to use three servers: one for the web
app, one for a task queue, and one that will contain RabbitMQ and Postgres.

Example 4-4 shows a sample inventory file that groups servers by environment
(production, staging, Vagrant) and by function (web server, task queue, etc.).

Example 4-4. Inventory file for deploying a Django app

[production]
frankfurt.example.com
helsinki.example.com
hongkong.example.com
johannesburg.example.com
london.example.com
newyork.example.com
seoul.example.com
sydney.example.com
tokyo.example.com
toronto.example.com

[staging]
amsterdam.example.com
chicago.example.com

[lb]
helsinki.example.com

[web]
amsterdam.example.com
seoul.example.com
sydney.example.com
toronto.example.com
vagrant1

[task]
amsterdam.example.com
hongkong.example.com
johannesburg.example.com
newyork.example.com
vagrant2

[rabbitmq]
chicago.example.com
tokyo.example.com
vagrant3

[db]
chicago.example.com

70 | Chapter 4: Inventory: Describing Your Servers

frankfurt.example.com
london.example.com
vagrant3

We could have first listed all of the servers at the top of the inventory file, without
specifying a group, but that isn’t necessary, and that would’ve made this file even
longer.

Note that we need to specify the behavioral inventory parameters for the Vagrant
instances only once.

Aliases and Ports
We have described our Vagrant hosts like this:

[vagrant]
vagrant1 ansible_port=2222
vagrant2 ansible_port=2200
vagrant3 ansible_port=2201

The names vagrant1, vagrant2, and vagrant3 here are aliases. They are not the real
hostnames, just useful names for referring to these hosts. Ansible resolves hostnames
using the inventory, your SSH config file, /etc/hosts, and DNS. This flexibility is useful
in development but can be a cause of confusion.

Ansible also supports using <hostname>:<port> syntax when specifying hosts, so we
could replace the line that contains vagrant1 with 127.0.0.1:2222 (Example 4-5).

Example 4-5. This doesn’t work

[vagrant]
127.0.0.1:2222
127.0.0.1:2200
127.0.0.1:2201

However, we can’t actually run what you see in Example 4-5. The reason is that
Ansible’s inventory can associate only a single host with 127.0.0.1, so the Vagrant
group would contain only one host instead of three.

Groups of Groups
Ansible also allows you to define groups that are made up of other groups. For
example, since both the web servers and the task queue servers will need Django and
its dependencies, it might be useful to define a django group that contains both. You
would add this to the inventory file:

[django:children]
web
task

Groups and Groups and Groups | 71

1 This term has been popularized by Randy Bias of Cloudscaling.

Note that the syntax changes when you are specifying a group of groups, as opposed
to a group of hosts. That’s so Ansible knows to interpret web and task as groups and
not as hosts.

Numbered Hosts (Pets Versus Cattle)
The inventory file you saw back in Example 4-4 looks complex. It describes 15 hosts,
which doesn’t sound like a large number in this cloudy, scale-out world. However,
dealing with 15 hosts in the inventory file can be cumbersome, because each host has
a completely different hostname.

Bill Baker of Microsoft came up with the distinction between treating servers as pets
versus treating them like cattle.1 We give pets distinctive names and treat and care for
them as individuals; with cattle, though, we refer to them by identification number
and treat them as livestock.

The “cattle” approach to servers is much more scalable, and Ansible supports it
well by supporting numeric patterns. For example, if your 20 servers are named
web1.example.com, web2.example.com, and so on, then you can specify them in the
inventory file like this:

[web]
web[1:20].example.com

If you prefer to have a leading zero (such as web01.example.com), specify that in the
range, like this:

[web]
web[01:20].example.com

Ansible also supports using alphabetic characters to specify ranges. If you want to
use the convention web-a.example.com, web-b.example.com, and so on, for your 20
servers, then you can do this:

[web]
web-[a:t].example.com

Hosts and Group Variables: Inside the Inventory
Recall how we can specify behavioral inventory parameters for Vagrant hosts:

vagrant1 ansible_host=127.0.0.1 ansible_port=2222
vagrant2 ansible_host=127.0.0.1 ansible_port=2200
vagrant3 ansible_host=127.0.0.1 ansible_port=2201

72 | Chapter 4: Inventory: Describing Your Servers

https://oreil.ly/Zsvdf

Those parameters are variables that have special meaning to Ansible. We can also
define arbitrary variable names and associated values on hosts. For example, we could
define a variable named color and set it to a value for each server:

amsterdam.example.com color=red
seoul.example.com color=green
sydney.example.com color=blue
toronto.example.com color=purple

We could then use this variable in a playbook, just like any other variable. Personally,
your authors don’t often attach variables to specific hosts. On the other hand, we
often associate variables with groups.

Circling back to our Django example, the web application and task queue service
need to communicate with RabbitMQ and Postgres. We’ll assume that access to the
Postgres database is secured both at the network layer (so only the web application
and the task queue can reach the database) and by username and password. Rab‐
bitMQ is secured only by the network layer.

To set everything up, you can:

• Configure the web servers with the hostname, port, username, password of the•
primary Postgres server, and name of the database.

• Configure the task queues with the hostname, port, username, password of the•
primary Postgres server, and the name of the database.

• Configure the web servers with the hostname and port of the RabbitMQ server.•
• Configure the task queues with the hostname and port of the RabbitMQ server.•
• Configure the primary Postgres server with the hostname, port, and username•

and password of the replica Postgres server (production only).

This configuration info varies by environment, so it makes sense to define these as
group variables on the production, staging, and Vagrant groups. Example 4-6 shows
one way to do so in the inventory file. (A better way to store passwords is discussed in
Chapter 8).

Example 4-6. Specifying group variables in inventory

[all:vars]
ntp_server=ntp.ubuntu.com
[production:vars]
db_primary_host=frankfurt.example.com
db_primary_port=5432
db_replica_host=london.example.com
db_name=widget_production
db_user=widgetuser
db_password=pFmMxcyD;Fc6)6
rabbitmq_host=johannesburg.example.com

Hosts and Group Variables: Inside the Inventory | 73

rabbitmq_port=5672
[staging:vars]
db_primary_host=chicago.example.com
db_primary_port=5432
db_name=widget_staging
db_user=widgetuser
db_password=L@4Ryz8cRUXedj
rabbitmq_host=chicago.example.com
rabbitmq_port=5672
[vagrant:vars]
db_primary_host=vagrant3
db_primary_port=5432
db_name=widget_vagrant
db_user=widgetuser
db_password=password
rabbitmq_host=vagrant3
rabbitmq_port=5672

Note how the group variables are organized into sections named [<group

name>:vars]. Also, we’ve taken advantage of the all group (which, you’ll recall,
Ansible creates automatically) to specify variables that don’t change across hosts.

Host and Group Variables: In Their Own Files
The inventory file is a reasonable place to put host and group variables if you don’t
have too many hosts. But as your inventory gets larger, it gets more difficult to
manage variables this way. Additionally, even though Ansible variables can hold
Booleans, strings, lists, and dictionaries, in an inventory file you can specify only
Booleans and strings.

Ansible offers a more scalable approach to keep track of host and group variables:
you can create a separate variable file for each host and each group. Ansible expects
these variable files to be in YAML format.

It looks for host variable files in a directory called host_vars and group variable files
in a directory called group_vars. Ansible expects these directories to be in either the
directory that contains your playbooks or the directory adjacent to your inventory
file. When you have both directories, then the first (the playbook directory) has
priority.

For example, if Lorin has a directory containing his playbooks at /home/lorin/play‐
books/ with an inventory directory and hosts file at /home/lorin/inventory/hosts, he
should put variables for the amsterdam.example.com host in the file /home/lorin/
inventory/host_vars/amsterdam.example.com and variables for the production group
in the file /home/lorin/inventory/group_vars/production (shown in Example 4-7).

74 | Chapter 4: Inventory: Describing Your Servers

Example 4-7. group_vars/production

db_primary_host: frankfurt.example.com
db_primary_port: 5432
db_replica_host: london.example.com
db_name: widget_production
db_user: widgetuser
db_password: 'pFmMxcyD;Fc6)6'
rabbitmq_host: johannesburg.example.com
rabbitmq_port: 5672
...

We can also use YAML dictionaries to represent these values, as shown in
Example 4-8.

Example 4-8. group_vars/production, with dictionaries

db:
 user: widgetuser
 password: 'pFmMxcyD;Fc6)6'
 name: widget_production
 primary:
 host: frankfurt.example.com
 port: 5432
 replica:
 host: london.example.com
 port: 5432
rabbitmq:
 host: johannesburg.example.com
 port: 5672
...

If we choose YAML dictionaries, we access the variables with dot notation like this:
"{{ db.primary.host }}"

We can also access the variables in the dictionary like this:
"{{ db['primary']['host'] }}"

Contrast that to how we would otherwise access them:
"{{ db_primary_host }}"

If we want to break things out even further, Ansible lets us define group_vars/produc‐
tion as a directory instead of a file. We can place multiple YAML files into it that
contain variable definitions. For example, we could put database-related variables in
one file and the RabbitMQ-related variables in another file, as shown in Examples 4-9
and 4-10.

Host and Group Variables: In Their Own Files | 75

Example 4-9. group_vars/production/db

db:
 user: widgetuser
 password: 'pFmMxcyD;Fc6)6'
 name: widget_production
 primary:
 host: frankfurt.example.com
 port: 5432
 replica:
 host: london.example.com
 port: 5432
...

Example 4-10. group_vars/production/rabbitmq

rabbitmq:
 host: johannesburg.example.com
 port: 6379
...

It’s often better to start simple, rather than splitting variables out across too many
files. In larger teams and projects, the value of separate files increases, since many
people might need to pull and work in files at the same time.

Dynamic Inventory
Up until this point, we’ve been explicitly specifying all our hosts in our hosts inven‐
tory file. However, you might have a system external to Ansible that keeps track
of your hosts. For example, if your hosts run on Amazon EC2, then EC2 tracks
information about your hosts for you. You can retrieve this information through
EC2’s web interface, its Query API, or command-line tools such as awscli. Other
cloud providers have similar interfaces.

If you’re managing your own servers using an automated provisioning system such
as Cobbler or Ubuntu Metal as a Service (MAAS), then your system is already
keeping track of your servers. Or, maybe you have one of those fancy configuration
management databases (CMDBs) where all of this information lives.

You don’t want to manually duplicate this information in your hosts file, because
eventually that file will not jibe with your external system, which is the true source
of information about your hosts. Ansible supports a feature called dynamic inventory
that allows you to avoid this duplication.

If the inventory file is marked executable, Ansible will assume it is a dynamic inven‐
tory script and will execute the file instead of reading it.

76 | Chapter 4: Inventory: Describing Your Servers

To mark a file as executable, use the chmod +x command. For
example:

$ chmod +x vagrant.py

Inventory Plug-ins
Ansible comes with several executables that can connect to various cloud systems,
provided you install the requirements and set up authentication. These plug-ins
typically need a YAML configuration file in the inventory directory, as well as some
environment variables or authentication files.

To see the list of available plug-ins:
$ ansible-doc -t inventory -l

To see plug-in-specific documentation and examples:
$ ansible-doc -t inventory <plugin name>

Amazon EC2
If you are using Amazon EC2, install the requirements:

$ pip3 install boto3 botocore

Create a file inventory/aws_ec2.yml with, at the very least:
plugin: aws_ec2

Azure Resource Manager
Install these requirements in a Python virtualenv with Ansible 2.9.xx:

$ pip3 install msrest msrestazure

Create a file inventory/azure_rm.yml with, at the very least:
plugin: azure_rm
platform: azure_rm
auth_source: auto
plain_host_names: true

The Interface for a Dynamic Inventory Script
An Ansible dynamic inventory script must support two command-line flags:

• --host=<hostname> for showing host details•
• --list for listing groups•

Dynamic Inventory | 77

Also it should return output in JSON format with a specific structure that Ansible can
interpret.

Showing host details
To get the details of the individual host, Ansible will call an inventory script with the
--host= argument:

$ ansible-inventory -i inventory/hosts --host=vagrant2

Ansible includes a script that functions as a dynamic inventory
script for the static inventory provided with the -i command-line
argument: ansible-inventory.

The output should contain any host-specific variables, including behavioral parame‐
ters, like this:

{
 "ansible_host": "127.0.0.1",
 "ansible_port": 2200,
 "ansible_ssh_private_key_file": "~/.vagrant.d/insecure_private_key",
 "ansible_user": "vagrant"
}

The output is a single JSON object; the names are variable names, and the values are
the variable values.

Listing groups
Dynamic inventory scripts need to be able to list all of the groups and details about
the individual hosts. In the GitHub repository that accompanies this book, there is an
inventory script for the Vagrant hosts called vagrant.py. Ansible will call it like this to
get a list of all of the groups:

$./vagrant.py --list

In the simplest form the output could look like this:
{"vagrant": ["vagrant1", "vagrant2", "vagrant3"]}

This output is a single JSON object; the names are Ansible group names, and the
values are arrays of hostnames.

As an optimization, the --list command can contain the values of the host variables
for all of the hosts, which saves Ansible the trouble of making a separate --host
invocation to retrieve the variables for the individual hosts.

To take advantage of this optimization, the --list command should return a key
named _meta that contains the variables for each host, in this form:

78 | Chapter 4: Inventory: Describing Your Servers

https://oreil.ly/vseIj

"_meta": {
 "hostvars": {
 "vagrant1": {
 "ansible_user": "vagrant",
 "ansible_host": "127.0.0.1",
 "ansible_ssh_private_key_file": "~/.vagrant.d/insecure_private_key",
 "ansible_port": "2222"
 },
 "vagrant2": {
 "ansible_user": "vagrant",
 "ansible_host": "127.0.0.1",
 "ansible_ssh_private_key_file": "~/.vagrant.d/insecure_private_key",
 "ansible_port": "2200"
 },
 "vagrant3": {
 "ansible_user": "vagrant",
 "ansible_host": "127.0.0.1",
 "ansible_ssh_private_key_file": "~/.vagrant.d/insecure_private_key",
 "ansible_port": "2201"
 }
 }

Writing a Dynamic Inventory Script
One of the handy features of Vagrant is that you can see which machines are cur‐
rently running by using the vagrant status command. Assuming we have a Vagrant
file that looks like Example 4-3, if we run vagrant status, the output would look like
Example 4-11.

Example 4-11. Output of vagrant status

$ vagrant status
Current machine states:

vagrant1 running (virtualbox)
vagrant2 running (virtualbox)
vagrant3 running (virtualbox)

This environment represents multiple VMs. The VMs are all listed
above with their current state. For more information about a specific
VM, run 'vagrant status NAME'.

Because Vagrant already keeps track of machines for us, there’s no need for us to list
them in an Ansible inventory file. Instead, we can write a dynamic inventory script
that queries Vagrant about which machines are running. Once we’ve set up a dynamic
inventory script for Vagrant, even if we alter our Vagrantfile to run different numbers
of Vagrant machines, we won’t need to edit an Ansible inventory file.

Let’s work through an example of creating a dynamic inventory script that retrieves
the details about hosts from Vagrant. Our dynamic inventory script is going to need
to invoke the vagrant status command. The output shown in Example 4-11 is

Dynamic Inventory | 79

designed for humans to read. We can get a list of running hosts in a format that is
easier for computers to parse with the --machine-readable flag, like so:

$ vagrant status --machine-readable

The output looks like this:
1620831617,vagrant1,metadata,provider,virtualbox
1620831617,vagrant2,metadata,provider,virtualbox
1620831618,vagrant3,metadata,provider,virtualbox
1620831619,vagrant1,provider-name,virtualbox
1620831619,vagrant1,state,running
1620831619,vagrant1,state-human-short,running
1620831619,vagrant1,state-human-long,The VM is running. To stop this
VM%!(VAGRANT_COMMA) you can run `vagrant halt` to\nshut it down
forcefully%!(VAGRANT_COMMA) or you can run `vagrant suspend` to
simply\nsuspend the virtual machine. In either case%!(VAGRANT_COMMA)
to restart it again%!(VAGRANT_COMMA)\nsimply run `vagrant up`.
1620831619,vagrant2,provider-name,virtualbox
1620831619,vagrant2,state,running
1620831619,vagrant2,state-human-short,running
1620831619,vagrant2,state-human-long,The VM is running. To stop this
VM%!(VAGRANT_COMMA) you can run `vagrant halt` to\nshut it down
forcefully%!(VAGRANT_COMMA) or you can run `vagrant suspend` to
simply\nsuspend the virtual machine. In either case%!(VAGRANT_COMMA)
to restart it again%!(VAGRANT_COMMA)\nsimply run `vagrant up`.
1620831620,vagrant3,provider-name,virtualbox
1620831620,vagrant3,state,running
1620831620,vagrant3,state-human-short,running
1620831620,vagrant3,state-human-long,The VM is running. To stop this
VM%!(VAGRANT_COMMA) you can run `vagrant halt` to\nshut it down
forcefully%!(VAGRANT_COMMA) or you can run `vagrant suspend` to
simply\nsuspend the virtual machine. In either case%!(VAGRANT_COMMA)
to restart it again%!(VAGRANT_COMMA)\nsimply run `vagrant up`.
1620831620,,ui,info,Current machine states:\n\nvagrant1
running (virtualbox)\nvagrant2 running (virtualbox)\nvagrant3
running (virtualbox)\n\nThis environment represents multiple VMs. The VMs
are all listed\nabove with their current state. For more information about
a specific\nVM%!(VAGRANT_COMMA) run `vagrant status NAME`

To get details about a particular Vagrant machine, say, vagrant2, we would run this:
$ vagrant ssh-config vagrant2

The output looks like this:
Host vagrant2
 HostName 127.0.0.1
 User vagrant
 Port 2200
 UserKnownHostsFile /dev/null
 StrictHostKeyChecking no
 PasswordAuthentication no
 IdentityFile /Users/lorin/.vagrant.d/insecure_private_key
 IdentitiesOnly yes
 LogLevel FATAL

80 | Chapter 4: Inventory: Describing Your Servers

Our dynamic inventory script will need to call these commands, parse the outputs,
and output the appropriate JSON. We can use the Paramiko library to parse the
output of vagrant ssh-config. First, install the Python Paramiko library with pip:

$ pip3 install --user paramiko

Here’s an interactive Python session that shows how to use the Paramiko library to do
this:

$ python3
>>> import io
>>> import subprocess
>>> import paramiko
>>> cmd = ["vagrant", "ssh-config", "vagrant2"]
>>> ssh_config = subprocess.check_output(cmd).decode("utf-8")
>>> config = paramiko.SSHConfig()
>>> config.parse(io.StringIO(ssh_config))
>>> host_config = config.lookup("vagrant2")
>>> print (host_config)
{'hostname': '127.0.0.1', 'user': 'vagrant', 'port': '2200', 'userknownhostsfile':
'/dev/null', 'stricthostkeychecking': 'no', 'passwordauthentication': 'no',
'identityfile': ['/Users/bas/.vagrant.d/insecure_private_key'], 'identitiesonly':
'yes', 'loglevel': 'FATAL'}

Example 4-12 shows our complete vagrant.py script.

Example 4-12. vagrant.py

#!/usr/bin/env python3
""" Vagrant inventory script """
Adapted from Mark Mandel's implementation
https://github.com/markmandel/vagrant_ansible_example

import argparse
import io
import json
import subprocess
import sys

import paramiko

def parse_args():
 """command-line options"""
 parser = argparse.ArgumentParser(description="Vagrant inventory script")
 group = parser.add_mutually_exclusive_group(required=True)
 group.add_argument('--list', action='store_true')
 group.add_argument('--host')
 return parser.parse_args()

def list_running_hosts():
 """vagrant.py --list function"""
 cmd = ["vagrant", "status", "--machine-readable"]

Dynamic Inventory | 81

 status = subprocess.check_output(cmd).rstrip().decode("utf-8")
 hosts = []
 for line in status.splitlines():
 (_, host, key, value) = line.split(',')[:4]
 if key == 'state' and value == 'running':
 hosts.append(host)
 return hosts

def get_host_details(host):
 """vagrant.py --host <hostname> function"""
 cmd = ["vagrant", "ssh-config", host]
 ssh_config = subprocess.check_output(cmd).decode("utf-8")
 config = paramiko.SSHConfig()
 config.parse(io.StringIO(ssh_config))
 host_config = config.lookup(host)
 return {'ansible_host': host_config['hostname'],
 'ansible_port': host_config['port'],
 'ansible_user': host_config['user'],
 'ansible_private_key_file': host_config['identityfile'][0]}

def main():
 """main"""
 args = parse_args()
 if args.list:
 hosts = list_running_hosts()
 json.dump({'vagrant': hosts}, sys.stdout)
 else:
 details = get_host_details(args.host)
 json.dump(details, sys.stdout)

if __name__ == '__main__':
 main()

Breaking the Inventory into Multiple Files
If you want to have both a regular inventory file and a dynamic inventory script (or,
really, any combination of static and dynamic inventory files), just put them all in
the same directory and configure Ansible to use that directory as the inventory. You
can do this via the inventory parameter in ansible.cfg or by using the -i flag on the
command line. Ansible will process all of the files and merge the results into a single
inventory.

This means that you can create one inventory directory to use with Ansible on the
command line with hosts running in Vagrant, Amazon EC2, Google Cloud Platform,
Microsoft Azure, or wherever you need them!

82 | Chapter 4: Inventory: Describing Your Servers

For example, Bas’s directory structure looks like this:

inventory/aws_ec2.yml
inventory/azure_rm.yml
inventory/group_vars/vagrant
inventory/group_vars/staging
inventory/group_vars/production
inventory/hosts
inventory/vagrant.py

Adding Entries at Runtime with add_host and group_by
Ansible will let you add hosts and groups to the inventory during the execution of a
playbook. This is useful when managing dynamic clusters, such as Redis Sentinel.

add_host
The add_host module adds a host to the inventory; this is useful if you’re using Ansi‐
ble to provision new virtual machine instances inside an infrastructure-as-a-service
cloud.

Why Do I Need add_host if I’m Using Dynamic Inventory?
Even if you’re using dynamic inventory scripts, the add_host module is useful for
scenarios where you start up new virtual machine instances and configure those
instances in the same playbook.

If a new host comes online while a playbook is executing, the dynamic inventory
script will not pick up this new host. This is because the dynamic inventory script
is executed at the beginning of the playbook: if any new hosts are added while the
playbook is executing, Ansible won’t see them.

We’ll cover a cloud computing example that uses the add_host module in Chapter 14.

Invoking the module looks like this:
- name: Add the host
 add_host
 name: hostname
 groups: web,staging
 myvar: myval

Specifying the list of groups and additional variables is optional.

Adding Entries at Runtime with add_host and group_by | 83

Here’s the add_host command in action, bringing up a new Vagrant machine and
then configuring the machine:

- name: Provision a Vagrant machine
 hosts: localhost
 vars:
 box: centos/stream8

 tasks:
 - name: Create a Vagrantfile
 command: "vagrant init {{ box }}"
 args:
 creates: Vagrantfile

 - name: Bring up the vagrant machine
 command: vagrant up
 args:
 creates: .vagrant/machines/default/virtualbox/box_meta

 - name: Add the vagrant machine to the inventory
 add_host:
 name: default
 ansible_host: 127.0.0.1
 ansible_port: 2222
 ansible_user: vagrant
 ansible_private_key_file: >
 .vagrant/machines/default/virtualbox/private_key

- name: Do something to the vagrant machine
 hosts: default
 tasks:
 # The list of tasks would go here
 - name: ping
 ping:
...

The add_host module adds the host only for the duration of the
execution of the playbook. It does not modify your inventory file.

When we provision inside our playbooks, we like to split it into two plays. The first
play runs against localhost and provisions the hosts, and the second play configures
the hosts.

Note that we use the creates: Vagrantfile argument in this task:
- name: Create a Vagrantfile
 command: "vagrant init {{ box }}"
 args:
 creates: Vagrantfile

84 | Chapter 4: Inventory: Describing Your Servers

This tells Ansible that if the Vagrantfile file is present, there is no need to run the
command again. Ensuring that the (potentially nonidempotent) command is run
only once is a way of achieving idempotence in a playbook that invokes the command
module. The same is done with the vagrant up command module.

group_by
Ansible’s group_by module allows you to create new groups while a playbook is
executing. Any group you create will be based on the value of a variable that has been
set on each host, which Ansible refers to as a fact. (Chapter 5 covers facts in more
detail.)

If Ansible fact gathering is enabled, Ansible will associate a set of variables with
a host. For example, the ansible_machine variable will be i386 for 32-bit x86
machines and x86_64 for 64-bit x86 machines. If Ansible is interacting with a mix of
such hosts, we can create i386 and x86_64 groups with the task.

If we’d rather group our hosts by Linux distribution (for example, Ubuntu or
CentOS), we can use the ansible_fact.distribution fact:

- name: Create groups based on Linux distribution
 group_by:
 key: "{{ ansible_facts.distribution }}"

In Example 4-13, we use group_by to create separate groups for our Ubuntu and
CentOS hosts, then we use the apt module to install packages onto Ubuntu and the
yum module to install packages into CentOS.

Example 4-13. Creating ad hoc groups based on Linux distribution

- name: Group hosts by distribution
 hosts: all
 gather_facts: true
 tasks:
 - name: Create groups based on distro
 group_by:
 key: "{{ ansible_facts.distribution }}"

- name: Do something to Ubuntu hosts
 hosts: Ubuntu
 become: true
 tasks:
 - name: Install jdk and jre
 apt:
 update_cache: true
 name:
 - openjdk-11-jdk-headless
 - openjdk-11-jre-headless

Adding Entries at Runtime with add_host and group_by | 85

- name: Do something else to CentOS hosts
 hosts: CentOS
 become: true
 tasks:
 - name: Install jdk
 yum:
 name:
 - java-11-openjdk-headless
 - java-11-openjdk-devel

Conclusion
That about does it for Ansible’s inventory. It is a very flexible object that helps
describe your infrastructure and the way you want to use it. The inventory can be as
simple as one text file or as complex as you can handle.

The next chapter covers how to use variables.

86 | Chapter 4: Inventory: Describing Your Servers

CHAPTER 5

Variables and Facts

Ansible is not a full-fledged programming language, but it does have several features
of one, and one of the most important of these is variable substitution, or using the
values of variables in strings or in other variables. This chapter presents Ansible’s
support for variables in more detail, including a certain type of variable that Ansible
calls a fact.

Defining Variables in Playbooks
The simplest way to define variables is to put a vars section in your playbook with
the names and values of your variables. Recall from Example 3-9 that we used this
approach to define several configuration-related variables, like this:

vars:
 tls_dir: /etc/nginx/ssl/
 key_file: nginx.key
 cert_file: nginx.crt
 conf_file: /etc/nginx/sites-available/default
 server_name: localhost

Defining Variables in Separate Files
Ansible also allows you to put variables into one or more files, which are then
referenced in the playbook using a section called vars_files. Let’s say you want to
take the preceding example and put the variables in a file named nginx.yml instead
of putting them right in the playbook. You would replace the vars section with a
vars_files that looks like this:

vars_files:
 - nginx.yml

The nginx.yml file would look like Example 5-1.

87

Example 5-1. nginx.yml

key_file: nginx.key
cert_file: nginx.crt
conf_file: /etc/nginx/sites-available/default
server_name: localhost

You’ll see an example of vars_files in action in Chapter 6 when we use it to separate
out the variables that hold sensitive information.

Directory Layout
As we discussed in Chapter 4, Ansible also lets you define variables associated with
hosts or groups in the inventory. You’ll do this in separate directories that live
alongside either the inventory hosts file or your playbooks. Files and directories in
the subdirectory group_vars are matched against the groups defined in the file hosts.
Files and directories in the subdirectory host_vars are matched against the individual
hosts:

inventory/
 production/
 hosts
 group_vars/
 webservers.yml
 all.yml
 host_vars/
 hostname.yml

Viewing the Values of Variables
For debugging, it’s often handy to be able to view the output of a variable. You saw in
Chapter 3 how to use the debug module to print out an arbitrary message. You can
also use it to output the value of the variable. It works like this:

- debug: var=myvarname

This shorthand notation, without a name and in pure-YAML style, is practical in
development. We’ll use this form of the debug module several times in this chapter.
We typically remove debug statements before going to production.

Variable Interpolation
When you want to display a debug message with a variable, then you would use a
double-quoted string with the variable name embedded in double braces:

- name: Display the variable
 debug:
 msg: "The file used was {{ conf_file }}"

88 | Chapter 5: Variables and Facts

Variables can be concatenated between the double braces by using the tilde operator
~, as shown here:

- name: Concatenate variables
 debug:
 msg: "The URL is https://{{ server_name ~'.'~ domain_name }}/"

Registering Variables
Often, you’ll need to set the value of a variable based on the result of a task. Remem‐
ber that each Ansible module returns results in JSON format. To use these results,
you create a registered variable using the register clause when invoking a module.
Example 5-2 shows how to capture the output of the whoami command to a variable
named login.

Example 5-2. Capturing the output of a command to a variable

- name: Capture output of whoami command
 command: whoami
 register: login

To use the login variable later, you need to know the type of value to expect. The
value of a variable set using the register clause is always a dictionary, but the specific
keys of the dictionary will be different depending on the module that you use.

Unfortunately, the official Ansible module documentation doesn’t contain informa‐
tion about what the return values look like for each module. It does often mention
examples that use the register clause, which can be helpful. Lorin found that the
simplest way to find out what a module returns is to register a variable and then
output that variable with the debug module.

Let’s say we run the playbook shown in Example 5-3.

Example 5-3. whoami.yml

- name: Show return value of command module
 hosts: fedora
 gather_facts: false
 tasks:
 - name: Capture output of id command
 command: id -un
 register: login

 - debug: var=login
 - debug: msg="Logged in as user {{ login.stdout }}"
...

Registering Variables | 89

The output of the debug module looks like this:
TASK [debug] ***
ok: [fedora] ==> {
 "login": {

 "changed": true,

 "cmd": [
 "id",
 "-un"
],
 "delta": "0:00:00.002262",
 "end": "2021-05-30 09:25:41.696308",
 "failed": false,

 "rc": 0,
 "start": "2021-05-30 09:25:41.694046",

 "stderr": "",
 "stderr_lines": [],

 "stdout": "vagrant",

 "stdout_lines": [
 "vagrant"
]
 }
}

The changed key is present in the return value of all Ansible modules, and Ansi‐
ble uses it to determine whether a state change has occurred. For the command
and shell modules, this will always be set to true unless overridden with the
changed_when clause, which we cover in Chapter 8.

The cmd key contains the invoked command as a list of strings.

The rc key contains the return code. If it is nonzero, Ansible will assume the task
failed to execute successfully.

The stderr key contains any text written to standard error, as a single string.

The stdout key contains any text written to standard out, as a single string.

The stdout_lines key contains any text written to split by newline. It is a list,
and each element of the list is a line of output.

If you’re using the register clause with the command module, you’ll likely want access
to the stdout key, as shown in Example 5-4.

90 | Chapter 5: Variables and Facts

Example 5-4. Using the output of a command in a task

- name: Capture output of id command
 command: id -un
 register: login

- debug: msg="Logged in as user {{ login.stdout }}"

Sometimes it’s useful to do something with the output of a failed task—for instance,
when running a program fails. However, if the task fails, Ansible will stop executing
tasks for the failed host. You can use the ignore_errors clause, as shown in Exam‐
ple 5-5, so Ansible does not stop on the error. That allows you to print the program’s
output.

Example 5-5. Ignoring when a module returns an error

- name: Run myprog
 command: /opt/myprog
 register: result
 ignore_errors: true

- debug: var=result

The shell module has the same output structure as the command module, but other
modules have different keys.

Example 5-6 shows the relevant piece of the output of the stat module that collects
properties of a file.

Example 5-6. The relevant piece of the stat module output

TASK [Display result.stat] ***
ok: [ubuntu] ==> {
 "result.stat": {
 "atime": 1622724660.888851,
 "attr_flags": "e",
 "attributes": [
 "extents"
],
 "block_size": 4096,
 "blocks": 8,
 "charset": "us-ascii",
 "checksum": "7df51a4a26c00e5b204e547da4647b36d44dbdbf",
 "ctime": 1621374401.1193385,
 "dev": 2049,
 "device_type": 0,
 "executable": false,
 "exists": true,
 "gid": 0,

Registering Variables | 91

 "gr_name": "root",
 "inode": 784,
 "isblk": false,
 "ischr": false,
 "isdir": false,
 "isfifo": false,
 "isgid": false,
 "islnk": false,
 "isreg": true,
 "issock": false,
 "isuid": false,
 "mimetype": "text/plain",
 "mode": "0644",
 "mtime": 1621374219.5709288,
 "nlink": 1,
 "path": "/etc/ssh/sshd_config",
 "pw_name": "root",
 "readable": true,
 "rgrp": true,
 "roth": true,
 "rusr": true,
 "size": 3287,
 "uid": 0,
 "version": "1324051592",
 "wgrp": false,
 "woth": false,
 "writeable": true,
 "wusr": true,
 "xgrp": false,
 "xoth": false,
 "xusr": false
 }
}

The results from the stat module tell you everything there is to know about a file.

Accessing Dictionary Keys in a Variable
If a variable contains a dictionary, you can access the keys of the dictionary by using
either a dot (.) or a subscript ([]). Example 5-6 has a variable reference that uses dot
notation:

{{ result.stat }}

We could have used subscript notation instead:

{{ result['stat'] }}

This rule applies to multiple dereferences, so all of the following are equivalent:

result['stat']['mode']
result['stat'].mode
result.stat['mode']
result.stat.mode

92 | Chapter 5: Variables and Facts

Bas prefers dot notation, unless the key is a string that holds a character that’s not
allowed as a variable name, such as a dot, space, or hyphen.

A big advantage of subscript notation is that you can use variables in the brackets
(these are not quoted):

- name: Display result.stat detail
 debug: var=result['stat'][stat_key]

Ansible uses Jinja2 to implement variable dereferencing, so for more details on this
topic, see the Jinja2 documentation on variables.

If your playbooks use registered variables, make sure you know
the content of those variables, both for cases where the module
changes the host’s state and for when the module doesn’t change
the host’s state. Otherwise, your playbook might fail when it tries to
access a key in a registered variable that doesn’t exist.

Facts
As you’ve already seen, when Ansible runs a playbook, before the first task runs, this
happens:

TASK [Gathering Facts] ***
ok: [debian]
ok: [fedora]
ok: [ubuntu]

When Ansible gathers facts, it connects to the hosts and queries it for all kinds
of details about the hosts: CPU architecture, operating system, IP addresses, mem‐
ory info, disk info, and more. You can access this data in the ansible_facts vari‐
able. By default, you can also access some Ansible facts as top-level variables with
ansible_ prefix, and they behave just like any other variable. You can disable this
behavior using the INJECT_FACTS_AS_VARS setting.

Example 5-7 is a playbook that prints out the operating system details of each server.

Example 5-7. Playbook to print operating system details

- name: 'Ansible facts.'
 hosts: all
 gather_facts: true
 tasks:
 - name: Print out operating system details
 debug:
 msg: >-
 os_family:
 {{ ansible_facts.os_family }},

Facts | 93

https://oreil.ly/8hKiE

 distro:
 {{ ansible_facts.distribution }}
 {{ ansible_facts.distribution_version }},
 kernel:
 {{ ansible_facts.kernel }}
...

Here’s what the output looks like for virtual machines running Debian, Fedora, and
Ubuntu:

PLAY [Ansible facts.] **
TASK [Gathering Facts] ***
ok: [debian]
ok: [fedora]
ok: [ubuntu]
TASK [Print out operating system details] **************************************
ok: [ubuntu] ==> {
 "msg": "os_family: Debian, distro: Ubuntu 20.04, kernel: 5.4.0-73-generic"
}
ok: [fedora] ==> {
 "msg": "os_family: RedHat, distro: Fedora 34, kernel: 5.11.12-300.fc34.x86_64"
}
ok: [debian] ==> {
 "msg": "os_family: Debian, distro: Debian 10, kernel: 4.19.0-16-amd64"
}
PLAY RECAP ***
debian : ok=2 changed=0 unreachable=0 failed=0 skipped=0 rescued=0 ignored=0
fedora : ok=2 changed=0 unreachable=0 failed=0 skipped=0 rescued=0 ignored=0
ubuntu : ok=2 changed=0 unreachable=0 failed=0 skipped=0 rescued=0 ignored=0

Viewing All Facts Associated with a Server
Ansible implements fact collecting through the use of a special module called the
setup module. You don’t need to call this module in your playbooks because Ansible
does that automatically when it gathers facts. However, you can invoke it manually
with the ansible command-line tool, like this:

$ ansible ubuntu -m setup

When you do this, Ansible will output all of the facts, as shown in Example 5-8.

Example 5-8. Output of setup module

ubuntu | SUCCESS => {
 "ansible_facts": {
 "ansible_all_ipv4_addresses": [
 "192.168.4.10",
 "10.0.2.15"
],
 "ansible_all_ipv6_addresses": [
 "fe80::a00:27ff:fef1:d47",
 "fe80::a6:4dff:fe77:e100"

94 | Chapter 5: Variables and Facts

],
(many more facts)

Note that the returned value is a dictionary whose key is ansible_facts and whose
value is a dictionary that has the names and values of the actual facts.

Viewing a Subset of Facts
Because Ansible collects so many facts, the setup module supports a filter parame‐
ter that lets you filter by fact name, or by specifying a glob. (A glob is what shells use
to match file patterns, such as *.txt.) The filter option filters only the first level subkey
below ansible_facts.

$ ansible all -m setup -a 'filter=ansible_all_ipv6_addresses'

The output looks like this:
debian | SUCCESS => {
 "ansible_facts": {
 "ansible_all_ipv6_addresses": [
 "fe80::a00:27ff:fe8d:c04d",
 "fe80::a00:27ff:fe55:2351"
]
 },
 "changed": false
}
fedora | SUCCESS => {
 "ansible_facts": {
 "ansible_all_ipv6_addresses": [
 "fe80::505d:173f:a6fc:3f91",
 "fe80::a00:27ff:fe48:995"
]
 },
 "changed": false
}
ubuntu | SUCCESS => {
 "ansible_facts": {
 "ansible_all_ipv6_addresses": [
 "fe80::a00:27ff:fef1:d47",
 "fe80::a6:4dff:fe77:e100"
]
 },
 "changed": false
}

Using a filter helps with finding the main details of a machine’s setup. The filter
ansible_env collects environment variables on the target hosts.

Any Module Can Return Facts or Info
If you look closely at Example 5-8, you’ll see that the output is a dictionary whose key
is ansible_facts. The use of ansible_facts in the return value is an Ansible idiom.
If a module returns a dictionary that contains ansible_facts as a key, Ansible will

Facts | 95

create variable names in the environment with those values and associate them with
the active host. Modules that return information about objects that are not unique for
the host have their name ending in _info.

For modules that return facts, there’s no need to register variables, since Ansible
creates these variables for you automatically. In Example 5-9, the task uses the
service_facts module to retrieve facts about services, then prints out the part about
the secure shell daemon. (Note the subscript notation—that’s due to the embedded
dot.)

Example 5-9. Using the service_facts module to retrieve facts

- name: Show a fact returned by a module
 hosts: debian
 gather_facts: false
 tasks:
 - name: Get services facts
 service_facts:

 - debug: var=ansible_facts['services']['sshd.service']

The output looks like this:
TASK [debug] ***
ok: [debian] ==> {
 "ansible_facts['services']['sshd.service']": {
 "name": "sshd.service",
 "source": "systemd",
 "state": "active",
 "status": "enabled"
 }
}

Note that we do not need to use the register keyword when invoking
service_facts, since the returned values are facts. Several modules that ship with
Ansible return facts.

Local Facts
Ansible provides an additional mechanism for associating facts with a host. You
can place one or more files on the remote host machine in the /etc/ansible/facts.d
directory. Ansible will recognize the file if it is:

• In .ini format
• In JSON format
• An executable that takes no arguments and outputs JSON on the standard output

stream

96 | Chapter 5: Variables and Facts

These facts are available as keys of a special variable named ansible_local. For
instance, Example 5-10 shows a fact file in .ini format.

Example 5-10. /etc/ansible/facts.d/example.fact

[book]
title=Ansible: Up and Running
authors=Meijer, Hochstein, Moser
publisher=O'Reilly

If you copy this file to /etc/ansible/facts.d/example.fact on the remote host, you can
access the contents of the ansible_local variable in a playbook:

- name: Print ansible_local
 debug: var=ansible_local

- name: Print book title
 debug: msg="The title of the book is {{ ansible_local.example.book.title }}"

The output of these tasks looks like this:
TASK [Print ansible_local] ***
ok: [fedora] ==> {
 "ansible_local": {
 "example": {
 "book": {
 "authors": "Meijer, Hochstein, Moser",
 "publisher": "O'Reilly",
 "title": "Ansible: Up and Running"
 }
 }
 }
}
TASK [Print book title] **
ok: [fedora] ==> {
 "msg": "The title of the book is Ansible: Up and Running"
}

Note the structure of the value in the ansible_local variable. Because the fact file
is named example.fact, the ansible_local variable is a dictionary that contains a key
named example.

Using set_fact to Define a New Variable
Ansible also allows you to set a fact (effectively the same as defining a new vari‐
able) in a task by using the set_fact module. Lorin often likes to use set_fact
immediately after service_facts to make it simpler to refer to a variable. Exam‐
ple 5-11 demonstrates how to use set_fact so that a variable can be referred to as
nginx_state instead of ansible_facts.services.nginx.state.

Facts | 97

Example 5-11. Using set_fact to simplify variable reference

- name: Set nginx_state
 when: ansible_facts.services.nginx.state is defined
 set_fact:
 nginx_state: "{{ ansible_facts.services.nginx.state }}"

Built-In Variables
Ansible defines several variables that are always available in a playbook. Some are
shown in Table 5-1. Refer to the online documentation for special magic variables.

Table 5-1. Built-in variables

Parameter Description
hostvars A dict whose keys are Ansible hostnames and values are dicts that map variable names to

values
inventory_hostname The name of the current host as known in the Ansible inventory, might include domain

name
inventory_host

name_short

Name of the current host as known by Ansible, without the domain name (e.g., myhost)

group_names A list of all groups that the current host is a member of
groups A dict whose keys are Ansible group names and values are a list of hostnames that are

members of the group. Includes all and ungrouped groups: {“all”: [...], “web”: [...],
“ungrouped”: [...]}

ansible_check_mode A boolean that is true when running in check mode (see “Check Mode”)
ansible_play_batch A list of the inventory hostnames that are active in the current batch (see “Running on a

Batch of Hosts at a Time”)
ansible_play_hosts A list of all of the inventory hostnames that are active in the current play
ansible_version A dict with Ansible version info: {“full”: 2.3.1.0”, “major”: 2, “minor”: 3,

“revision”: 1, “string”: “2.3.1.0”}

The hostvars, inventory_hostname, and groups variables merit some additional
discussion.

hostvars
In Ansible, variables are scoped by host. It makes sense to talk only about the value of
a variable relative to a given host.

The idea that variables are relative to a given host might sound confusing, since
Ansible allows you to define variables on a group of hosts. For example, if you define
a variable in the vars section of a play, you are defining the variable for the set of
hosts in the play. But what Ansible is really doing is creating a copy of that variable
for each host in the group.

98 | Chapter 5: Variables and Facts

https://oreil.ly/hao2l

1 See Chapter 11 for information about fact caching.

Sometimes, a task that’s running on one host needs the value of a variable defined
on another host. Say you need to create a configuration file on web servers that
contains the IP address of the eth1 interface of the database server, and you don’t
know in advance what this IP address is. This IP address is available as the ansi‐
ble_eth1.ipv4.address fact for the database server.

The solution is to use the hostvars variable. This is a dictionary that contains all of
the variables defined on all of the hosts, keyed by the hostname as known to Ansible.
If Ansible has not yet gathered facts on a host, you will not be able to access its facts
by using the hostvars variable, unless fact caching is enabled.1

Continuing our example, if our database server is db.example.com, then we could put
the following in a configuration template:

{{ hostvars['db.example.com'].ansible_eth1.ipv4.address }}

This evaluates to the ansible_eth1.ipv4.address fact associated with the host named
db.example.com.

hostvars Versus host_vars

Please be warned that hostvars is computed when you run Ansi‐
ble, while host_vars is a directory that you can use to define
variables for a particular system.

inventory_hostname
The inventory_hostname is the hostname of the current host, as known by Ansible.
If you have defined an alias for a host, this is the alias name. For example, if your
inventory contains a line like this:

ubuntu ansible_host=192.168.4.10

then inventory_hostname would be ubuntu.

You can output all of the variables associated with the current host with the help of
the hostvars and inventory_hostname variables:

- debug: var=hostvars[inventory_hostname]

groups
The groups variable can be useful when you need to access variables for a group
of hosts. Let’s say we are configuring a load-balancing host, and our configuration

Built-In Variables | 99

file needs the IP addresses of all of the servers in our web group. The file template
contains a fragment that looks like this:

backend web-backend
{% for host in groups.web %}
 server {{ hostvars[host].inventory_hostname }} \
 {{ hostvars[host].ansible_default_ipv4.address }}:80
{% endfor %}

The generated file looks like this:
backend web-backend
 server georgia.example.com 203.0.113.15:80
 server newhampshire.example.com 203.0.113.25:80
 server newjersey.example.com 203.0.113.38:80

With the groups variable you can iterate over hosts in a group in a configuration
file template, only by using the group name. You can change the hosts in the group
without changing the configuration file template.

Extra Variables on the Command Line
Variables set by passing -e var=value to ansible-playbook have the highest prece‐
dence, which means you can use this to override variables that are already defined.
Example 5-12 shows how to set the value of the variable named greeting to the value
hiya.

Example 5-12. Setting a variable from the command line

$ ansible-playbook 4-12-greet.yml -e greeting=hiya

Use the ansible-playbook -e variable=value method when you want to use a
playbook as you would a shell script that takes a command-line argument. The -e flag
effectively allows you to pass a variable with its value. Specify -e multiple times to
pass as many variable values as you need.

Example 5-13 shows a playbook that outputs a message specified by a variable.

Example 5-13. Outputting a message specified by a variable

- name: Pass a message on the command line
 hosts: localhost
 gather_facts: false

 vars:
 greeting: "you didn't specify a message"

 tasks:
 - name: Output a message

100 | Chapter 5: Variables and Facts

 debug:
 msg: "{{ greeting }}"
...

You can invoke it like this:
$ ansible-playbook 4-12-greet.yml -e greeting=hiya

The output will look like this:
PLAY [Pass a message on the command line] **************************************
TASK [Gathering Facts] ***
ok: [localhost]
TASK [Output a message] **
ok: [localhost] ==> {
 "msg": "hiya"
}
PLAY RECAP ***
localhost : ok=2 changed=0 unreachable=0 failed=0 skipped=0 rescued=0 ignored=0

If you want to put a space in the variable, you need to use quotes like this:
$ ansible-playbook greet.yml -e 'greeting="hi there"'

You have to put single quotes around the entire 'greeting="hi there"' so that the
shell interprets that as a single argument to pass to Ansible, and you have to put
double quotes around "hi there" so that Ansible treats that message as a single
string.

Ansible also allows you to pass a file containing the variables instead of passing them
directly on the command line by passing @filename.yml as the argument to -e; for
example, say you have a file that looks like Example 5-14.

Example 5-14. greetvars.yml

greeting: hiya

You can pass this file to the command line like this:
$ ansible-playbook 5-12-greet.yml -e @5-14-greetvars.yml

Example 5-15 shows a simple technique to display any variable given with the -e flag
on the command line.

Example 5-15. Displaying a variable given with the -e flag

- name: Show any variable during debugging.
 hosts: all
 gather_facts: true
 tasks:
 - debug: var="{{ variable }}"
...

Extra Variables on the Command Line | 101

2 “Understanding variable precedence,” Ansible documentation.

Using this technique effectively gives you a “variable variable” that you can use for
debugging:

$ ansible-playbook 5-15-variable-variable.yml -e variable=ansible_python

Precedence
We’ve covered several ways of defining variables. It is possible to define the same
variable multiple times for a host, using different values. Avoid this when you can,
but if you can’t, then keep in mind Ansible’s precedence rules. When the same
variable is defined in multiple ways, the precedence rules determine which value wins
(or overrides).

Ansible does apply variable precedence,2 and you might have a use for it. Here
is a simple rule of thumb: the closer to the host, the higher the precedence. So
group_vars overrules role defaults, and host_vars overrules group_vars. Here is the
order of precedence, from least to greatest. The last listed variables override all other
variables:

1. command line values (for example, -u my_user; these are not variables)1.
2. role defaults (defined in role/defaults/main.yml)2.
3. inventory file or script group vars3.
4. inventory group_vars/all4.
5. playbook group_vars/all5.
6. inventory group_vars/*6.
7. playbook group_vars/*7.
8. inventory file or script host vars8.
9. inventory host_vars/*9.

10. playbook host_vars/*10.
11. host facts / cached set_facts11.
12. play vars12.
13. play vars_prompt13.
14. play vars_files14.
15. role vars (defined in role/vars/main.yml)15.
16. block vars (only for tasks in block)16.
17. task vars (only for the task)17.

102 | Chapter 5: Variables and Facts

https://oreil.ly/gqsfK

18. include_vars18.
19. set_facts / registered vars19.
20. role (and include_role) params20.
21. include params21.
22. extra vars (for example, -e "user=my_user")22.

Conclusion
In this chapter, we covered several ways to define and access variables and facts.
Separating variables from tasks and creating inventories with the proper values for
the variables allows you to create staging environments for your software. Ansible is
very powerful in its flexibility to define data at the appropriate level. The next chapter
focuses on a realistic example of deploying an application.

Conclusion | 103

1 This installs the Python packages into a virtualenv; the online example provisions a Vagrant VM
automatically.

CHAPTER 6

Introducing Mezzanine:
Our Test Application

Chapter 3 covered the basics of writing playbooks. But real life is always messier than
the introductory chapters of programming books, so in this chapter we’re going to
work through a complete example of deploying a nontrivial application. In the next
chapter we will do the implementation.

Our example application is an open source content management system (CMS) called
Mezzanine, which is similar in spirit to WordPress. Mezzanine is built on top of
Django, the free Python-based framework for writing web applications.

Why Is Deploying to Production Complicated?
Let’s take a little detour and talk about the differences between running software in
development mode on your laptop versus running the software in production. Mez‐
zanine is a great example of an application that is much easier to run in development
mode than it is to deploy. Example 6-1 shows a provisioning script to get Mezzanine
running on Ubuntu Focal/64.1

Example 6-1. Running Mezzanine in development mode

$ sudo apt-get install -y python3-venv
$ python3 -m venv venv
$ source venv/bin/activate
$ pip3 install wheel
$ pip3 install mezzanine

105

https://oreil.ly/xqgMN

$ mezzanine-project myproject
$ cd myproject
$ sed -i 's/ALLOWED_HOSTS = \[\]/ALLOWED_HOSTS = ["*"]/' myproject/settings.py
$ python manage.py migrate
$ python manage.py runserver 0.0.0.0:8000

You should eventually see output on the terminal that looks like this:

 d^^^^^^^^^b
 .d'' ``b.
 .p' `q.
 .d' `b.
 .d' `b. * Mezzanine 4.3.1
 :: :: * Django 1.11.29
 :: M E Z Z A N I N E :: * Python 3.8.5
 :: :: * SQLite 3.31.1
 `p. .q' * Linux 5.4.0-74-generic
 `p. .q'
 `b. .d'
 `q.. ..p'
 ^q........p^
 ''''
Performing system checks...
System check identified no issues (0 silenced).
June 15, 2021 - 19:24:35
Django version 1.11.29, using settings 'myproject.settings'
Starting development server at http://0.0.0.0:8000/
Quit the server with CONTROL-C.

If you point your browser to http://127.0.0.1:8000/, you should see a web page that
looks like Figure 6-1. (This server accepts connections from every IP address; that’s
what 0.0.0.0 stands for.)

Deploying this application to production is another matter. When you run the
mezzanine-project command, Mezzanine will generate a Fabric deployment script
at myproject/fabfile.py that you can use to deploy your project to a production server.
(Fabric is a Python-based tool that helps automate running tasks via SSH.) The script
is almost 700 lines long, and that’s not counting the included configuration files that
are also involved in deployment.

106 | Chapter 6: Introducing Mezzanine: Our Test Application

http://www.fabfile.org

Figure 6-1. Mezzanine after a fresh install

Why is deploying to production so much more complex? We’re glad you asked.
When run in development, Mezzanine provides the following simplifications (see
Figure 6-2):

• The system uses SQLite as the backend database and will create the database file•
if it doesn’t exist.

• The development HTTP server serves up both the static content (images, .css•
files, JavaScript) and the dynamically generated HTML.

• The development HTTP server uses HTTP (insecure), not (secure) HTTPS.•
• The development HTTP server process runs in the foreground, taking over your•

terminal window.
• The hostname for the HTTP server is always 127.0.0.1 (localhost).•

Now, let’s look at what happens when you deploy to production.

Why Is Deploying to Production Complicated? | 107

Figure 6-2. Django app in development mode

Postgres: The Database
SQLite is a serverless database. In production, you want to run a server-based
database, because those have better support for multiple, concurrent requests, and
server-based databases allow us to run multiple HTTP servers for load balancing.
This means you need to deploy a database management system, such as MySQL or
Postgres. Setting up one of these database servers requires more work. You’ll need to
do the following:

1. Install the database software.1.
2. Ensure the database service is running.2.
3. Create the database inside the database management system.3.
4. Create a database user who has the appropriate permissions for the database4.

system.
5. Configure the Mezzanine application with the database user credentials and5.

connection information.

Gunicorn: The Application Server
Because Mezzanine is a Django-based application, you can run it using Django’s
HTTP server, referred to as the development server in the Django documentation.
Here’s what the Django 1.11 docs have to say about the development server:

Don’t use this server in anything resembling a production environment. It’s intended
only for use while developing. (We’re in the business of making Web frameworks, not
Web servers.)

108 | Chapter 6: Introducing Mezzanine: Our Test Application

https://oreil.ly/vBIFd

2 The WSGI protocol is documented in Python Enhancement Proposal (PEP) 3333.
3 Gunicorn 0.17 added support for TLS encryption. Before that, you had to use a separate application such as

NGINX to handle the encryption.

Django implements the standard Web Server Gateway Interface (WSGI),2 so any
Python HTTP server that supports WSGI is suitable for running a Django application
such as Mezzanine. We’ll use Gunicorn, one of the most popular HTTP WSGI
servers, which is what the Mezzanine deploy script uses. Also note that Mezzanine
uses an insecure version of Django that is no longer supported.

NGINX: The Web Server
Gunicorn will execute our Django application, just like the development server does.
However, Gunicorn won’t serve any of the static assets associated with the applica‐
tion. Static assets are files such as images, .css files, and JavaScript files. They are called
static because they never change, in contrast with the dynamically generated web
pages that Gunicorn serves up.

Although Gunicorn can handle TLS encryption, it’s common to configure NGINX to
handle the encryption.3

We’re going to use NGINX as our web server for serving static assets and for handling
the TLS encryption, as shown in Figure 6-3.

Figure 6-3. NGINX as a reverse proxy

We need to configure NGINX as a reverse proxy for Gunicorn. If the request is for
a static asset, such as a .css file, NGINX will serve that file directly from the local
filesystem. Otherwise, NGINX will proxy the request to Gunicorn, by making an
HTTP request against the Gunicorn service that is running on the local machine.
NGINX uses the URL to determine whether to serve a local file or proxy the request
to Gunicorn.

NGINX: The Web Server | 109

https://oreil.ly/yyMcf

Note that requests to NGINX will be (encrypted) HTTPS, and all requests that
NGINX proxies to Gunicorn will be (unencrypted) HTTP.

Supervisor: The Process Manager
When we run in development mode, we run the application server in the foreground
of our terminal. If we were to close our terminal, the program would terminate. For a
server application, we need it to run as a background process, so it doesn’t terminate,
even if we close the terminal session we used to start the process.

The colloquial terms for such a process are daemon or service. We need to run
Gunicorn as a daemon, and we’d like to be able to stop it and restart it easily.
Numerous service managers can do this job. We’re going to use Supervisor because
that’s what the Mezzanine deployment scripts use.

Conclusion
At this point, you should have a sense of the steps involved in deploying a web
application to production. We’ll go over how to implement this deployment with
Ansible in Chapter 7.

110 | Chapter 6: Introducing Mezzanine: Our Test Application

1 Mezzanine no longer ships a fabfile for automatic deployments.

CHAPTER 7

Deploying Mezzanine with Ansible

It’s time to write an Ansible playbook, one to deploy Mezzanine to a server. We’ll go
through it step by step, but if you’re the type of person who starts off by reading the
last page of a book to see how it ends, you can find the full playbook at the end of this
chapter as Example 7-27. It’s also available on GitHub. Check out the README file
before trying to run it directly.

We have tried to hew as closely as possible to the original scripts that Mezzanine
author Stephen McDonald wrote.1

Listing Tasks in a Playbook
Before we dive into the guts of our playbook, let’s get a high-level view. The ansible-
playbook command-line tool supports a flag called --list-tasks. This flag prints
out the names of all the tasks in a playbook. Here’s how you use it:

$ ansible-playbook --list-tasks mezzanine.yml

Example 7-1 shows the output for the mezzanine.yml playbook in Example 7-27.

Example 7-1. List of tasks in Mezzanine playbook

 playbook: mezzanine.yml
 play #1 (web): Deploy mezzanine TAGS: []
 tasks:
 Install apt packages TAGS: []
 Create project path TAGS: []
 Create a logs directory TAGS: []
 Check out the repository on the host TAGS: []

111

 Create python3 virtualenv TAGS: []
 Copy requirements.txt to home directory TAGS: []
 Install packages listed in requirements.txt TAGS: []
 Create project locale TAGS: []
 Create a DB user TAGS: []
 Create the database TAGS: []
 Ensure config path exists TAGS: []
 Create tls certificates TAGS: []
 Remove the default nginx config file TAGS: []
 Set the nginx config file TAGS: []
 Enable the nginx config file TAGS: []
 Set the supervisor config file TAGS: []
 Install poll twitter cron job TAGS: []
 Set the gunicorn config file TAGS: []
 Generate the settings file TAGS: []
 Apply migrations to create the database, collect static content TAGS: []
 Set the site id TAGS: []
 Set the admin password TAGS: []

It’s a handy way to summarize what a playbook is going to do.

Organization of Deployed Files
As we discussed earlier, Mezzanine is built atop Django. In Django, a web app is
called a project. We get to choose what to name our project, and we’ve chosen to name
this one mezzanine_example.

Our playbook deploys into a Vagrant machine and will deploy the files into the home
directory of the Vagrant user’s account.

Example 7-2. Directory structure under /home/vagrant

.
|---- logs
|---- mezzanine
| |___ mezzanine_example
|____ .virtualenvs
 |___ mezzanine_example

Example 7-2 shows the relevant directories under /home/vagrant:

• /home/vagrant/mezzanine/mezzanine-example will contain the source code that•
will be cloned from a source code repository on GitHub.

• /home/vagrant/.virtualenvs/mezzanine_example is the virtualenv directory, which•
means that we’re going to install all of the Python packages into that directory.

• /home/vagrant/logs will contain log files generated by Mezzanine.•

112 | Chapter 7: Deploying Mezzanine with Ansible

Variables and Secret Variables
As you can see in Example 7-3, this playbook defines quite a few variables.

Example 7-3. Defining the variables

vars:
 user: "{{ ansible_user }}"
 proj_app: mezzanine_example
 proj_name: "{{ proj_app }}"
 venv_home: "{{ ansible_env.HOME }}/.virtualenvs"
 venv_path: "{{ venv_home }}/{{ proj_name }}"
 proj_path: "{{ ansible_env.HOME }}/mezzanine/{{ proj_name }}"
 settings_path: "{{ proj_path }}/{{ proj_name }}"
 reqs_path: requirements.txt
 manage: "{{ python }} {{ proj_path }}/manage.py"
 live_hostname: 192.168.33.10.nip.io
 domains:
 - 192.168.33.10.nip.io
 - www.192.168.33.10.nip.io
 repo_url: git@github.com:ansiblebook/mezzanine_example.git
 locale: 'en_US.UTF-8'
 # Variables below don't appear in Mezzanine's fabfile.py
 # but I've added them for convenience
 conf_path: /etc/nginx/conf
 tls_enabled: true
 python: "{{ venv_path }}/bin/python"
 database_name: "{{ proj_name }}"
 database_user: "{{ proj_name }}"
 database_host: localhost
 database_port: 5432
 gunicorn_procname: gunicorn_mezzanine

vars_files:
 - secrets.yml

We’ve tried for the most part to use the same variable names that the Mezzanine
Fabric script uses. I’ve also added some extra variables to make things a little clearer.
For example, the Fabric scripts directly use proj_name as the database name and
database username. For clarity, Lorin prefers to define intermediate variables named
database_name and database_user and define these in terms of proj_name.

It’s worth noting a few things here. First off, we can define one variable in terms of
another. For example, we define venv_path in terms of venv_home and proj_name.

Also, we can reference Ansible facts in these variables. For example, venv_home is
defined in terms of the ansible_env fact collected from each host.

Finally, we have specified some of our variables in a separate file, called secrets.yml:
vars_files:
 - secrets.yml

Variables and Secret Variables | 113

This file contains credentials such as passwords and tokens that need to remain
private. The GitHub repository does not actually contain this file. Instead, it contains
a file called secrets.yml.example that looks like this:

db_pass: e79c9761d0b54698a83ff3f93769e309
admin_pass: 46041386be534591ad24902bf72071B
secret_key: b495a05c396843b6b47ac944a72c92ed
nevercache_key: b5d87bb4e17c483093296fa321056bdc

You need to create a Twitter application at https://dev.twitter.com
in order to get the credentials required for Mezzanine's
twitter integration.
See https://mezzanine.readthedocs.io/en/latest/twitter-integration.html
for details on Twitter integration
twitter_access_token_key: 80b557a3a8d14cb7a2b91d60398fb8ce
twitter_access_token_secret: 1974cf8419114bdd9d4ea3db7a210d90
twitter_consumer_key: 1f1c627530b34bb58701ac81ac3fad51
twitter_consumer_secret: 36515c2b60ee4ffb9d33d972a7ec350a

To use this repo, copy secrets.yml.example to secrets.yml and edit it so that it contains
the credentials specific to your site.

The secrets.yml file is included in the .gitignore file in the Git
repository to prevent someone from accidentally committing these
credentials. It’s best to avoid committing unencrypted credentials
into your version-control repository because of the security risks
involved. This is just one possible strategy for maintaining secret
credentials. We also could have passed them as environment vari‐
ables. Another option, which we will describe in Chapter 8, is
to commit an encrypted version of the secrets.yml file by using
ansible-vault functionality.

Installing Multiple Packages
We’re going to need to install two types of packages for our Mezzanine deployment:
some system-level packages and some Python packages. Because we’re going to
deploy on Ubuntu, we’ll use apt as our package manager for the system packages.
We’ll use pip to install the Python packages.

System-level packages are generally easier to deal with than Python packages because
they’re designed specifically to work with the operating system. However, the system
package repositories often don’t have the newest versions of the Python libraries we
need, so we turn to the Python packages to install those. It’s a trade-off between
stability and running the latest and greatest.

Example 7-4 shows the task we’ll use to install the system packages.

114 | Chapter 7: Deploying Mezzanine with Ansible

Example 7-4. Installing system packages

 - name: Install apt packages
 become: true
 apt:
 update_cache: true
 cache_valid_time: 3600
 pkg:
 - acl
 - git
 - libjpeg-dev
 - libpq-dev
 - memcached
 - nginx
 - postgresql
 - python3-dev
 - python3-pip
 - python3-venv
 - python3-psycopg2
 - supervisor

Because we’re installing multiple packages, Ansible will pass the entire list to the apt
module, and the module will invoke the apt program only once, passing it the entire
list of packages to be installed. The apt module has been designed to handle this list
entirely.

Adding the Become Clause to a Task
In the playbook examples you read in Chapter 3, we wanted the whole playbook
to run as root, so we added the become: true clause to the play. When we deploy
Mezzanine, most of the tasks will be run as the user who is SSHing to the host, rather
than root. Therefore, we don’t want to run as root for the entire play, only for select
tasks.

We can accomplish this by adding become: true to the tasks that do need to run as
root, such as Example 7-4. For auditing purposes, Bas prefers to add become: true
right under the - name:.

Updating the apt Cache
Ubuntu maintains a cache with the names of all of the apt packages that are available
in the Ubuntu package archive. Let’s say you try to install the package named libssl-
dev. We can use the apt-cache program to query the local cache to see what version
it knows about:

$ apt-cache policy libssl-dev

Adding the Become Clause to a Task | 115

All of the example commands in this subsection are run on the
(Ubuntu) remote host, not the control machine.

The output is shown in Example 7-5.

Example 7-5. apt-cache output

libssl-dev:
 Installed: (none)
 Candidate: 1.1.1f-1ubuntu2.4
 Version table:
 1.1.1f-1ubuntu2.4 500
 500 http://archive.ubuntu.com/ubuntu focal-updates/main amd64 Packages
 1.1.1f-1ubuntu2.3 500
 500 http://security.ubuntu.com/ubuntu focal-security/main amd64 Packages
 1.1.1f-1ubuntu2 500
 500 http://archive.ubuntu.com/ubuntu focal/main amd64 Packages

As you can see, this package is not installed locally. According to the local cache, the
latest version is 1.1.1f-1ubuntu2.4. It also tells us the location of the package archive.

In some cases, when the Ubuntu project releases a new version of a package, it
removes the old version from the package archive. If the local apt cache of an Ubuntu
server hasn’t been updated, then it will attempt to install a package that doesn’t exist
in the package archive.

To continue with our example, let’s say we attempt to install the libssl-dev package:
$ sudo apt-get install libssl-dev

If version 1.1.1f-1ubuntu2.4 is no longer available in the package archive, we’ll see an
error.

On the command line, the way to bring the local apt cache up to date is to run
apt-get update. When using the apt Ansible module, however, you’ll do this update
by passing the update_cache: true argument when invoking the module, as shown
in Example 7-4.

Because updating the cache takes additional time, and because we might be running
a playbook multiple times in quick succession to debug it, we can avoid paying the
cache update penalty by using the cache_valid_time argument to the module. This
instructs to update the cache only if it’s older than a certain threshold. The example in
Example 7-4 uses cache_valid_time: 3600, which updates the cache only if it’s older
than 3,600 seconds (1 hour).

116 | Chapter 7: Deploying Mezzanine with Ansible

Checking Out the Project Using Git
Although Mezzanine can be used without writing any custom code, one of its
strengths is that it is written on top of the Django web application platform, which
is great if you know Python. If you just want a CMS, you’ll likely just use something
like WordPress. But if you’re writing a custom application that incorporates CMS
functionality, Mezzanine is a good way to go.

As part of the deployment, you need to check out the Git repository that contains
your Django applications. In Django terminology, this repository must contain a
project. We’ve created a repository on GitHub that contains a Django project with the
expected files. That’s the project that gets deployed in this playbook.

We created these files using the mezzanine-project program that ships with Mezza‐
nine, like this:

$ mezzanine-project mezzanine_example
$ chmod +x mezzanine_example/manage.py

Note that we don’t have any custom Django applications in the repository, just the
files that are required for the project. In a real Django deployment, this repository
would contain subdirectories with additional Django applications.

Example 7-6 shows how to use the git module to check out a Git repository to a
remote host.

Example 7-6. Checking out the Git repository

 - name: Check out the repository on the host
 git:
 repo: "{{ repo_url }}"
 dest: "{{ proj_path }}"
 version: master
 accept_hostkey: true

We’ve made the project repository public so that you can access it, but in general,
you’ll be checking out private Git repositories over SSH. For this reason, we’ve set the
repo_url variable to use the scheme that will clone the repository over SSH:

repo_url: git@github.com:ansiblebook/mezzanine_example.git

If you’re following along at home, to run this playbook, you must have a GitHub
account. Then, you would:

1. Add your public SSH key to your account1.
2. Start your SSH agent:2.

$ eval $(ssh-agent)

3. Once your SSH agent is running, add your key:3.

Checking Out the Project Using Git | 117

https://oreil.ly/HtoNP
https://github.com/signup
https://github.com/signup
https://github.com/settings/keys

$ ssh-add <path to the private key>

If successful, the following command will output the public key of the SSH you just
added:

$ ssh-add -L

The output should look something like this:
ssh-ed25519 AAAAC3NzaC1lZDI1NTE5AAAAIN1/YRlI7Oc+KyM6NFZt7fb7pY+btItKHMLbZhdbwhj2

To enable agent forwarding, add the following to your ansible.cfg:
[ssh_connection]
ssh_args = -o ForwardAgent=yes

You can verify that agent forwarding is working by using Ansible to list the known
keys:

$ ansible web -a "ssh-add -L"

You should see the same output as when you run ssh-add -L on your local machine.

Another useful check is to verify that you can reach GitHub’s SSH server:
$ ansible web -a "ssh -T git@github.com"

If successful, the output should look like this:
web | FAILED | rc=1 >>
Hi bbaassssiiee! You've successfully authenticated, but GitHub does not provide
shell access.

Even though the word FAILED appears in the output (we cannot log in to a bash shell
on GitHub), if this message from GitHub appears, then it was successful.

In addition to specifying the repository URL with the repo parameter and the des‐
tination path of the repository as the dest parameter, we also pass an additional
parameter, accept_hostkey, which is related to host-key checking. (We discuss SSH
agent forwarding and host-key checking in more detail in Chapter 20.)

Installing Mezzanine and Other Packages into a
Virtual Environment
We can install Python packages systemwide as the root user, but it’s better practice to
install these packages in an isolated environment to avoid polluting the system-level
Python packages. In Python, these types of isolated package environments are called
virtual environments, or virtualenvs. A user can create multiple virtualenvs and can
install Python packages into a virtualenv without needing root access. (Remember,
we’re installing some Python packages to get more recent versions.)

118 | Chapter 7: Deploying Mezzanine with Ansible

Ansible’s pip module has support for installing packages into a virtualenv, as well as
for creating the virtualenv if it is not available.

Example 7-7 shows how to use pip to install a Python 3 virtualenv with the latest
package tools.

Example 7-7. Install Python virtualenv

 - name: Create python3 virtualenv
 pip:
 name:
 - pip
 - wheel
 - setuptools
 state: latest
 virtualenv: "{{ venv_path }}"
 virtualenv_command: /usr/bin/python3 -m venv

Example 7-8 shows the two tasks that we use to install Python packages into the vir‐
tualenv. A common pattern in Python projects is to specify the package dependencies
in a file called requirements.txt.

Example 7-8. Install Python packages

 - name: Copy requirements.txt to home directory
 copy:
 src: requirements.txt
 dest: "{{ reqs_path }}"
 mode: '0644'

 - name: install packages listed in requirements.txt
 pip:
 virtualenv: "{{ venv_path }}"
 requirements: "{{ reqs_path }}"

Indeed, the repository in our Mezzanine example contains a requirements.txt file. It
looks like Example 7-9.

Example 7-9. requirements.txt

Mezzanine==4.3.1

Note that the Mezzanine Python package in requirements.txt is pinned to a specific
version (4.3.1). That requirements.txt file is missing several other Python packages
that we need for the deployment, so we explicitly specify these in a requirements.txt
file in the playbooks directory that we then copy to the host.

Installing Mezzanine and Other Packages into a Virtual Environment | 119

Ansible allows you to specify file permissions used by several mod‐
ules, including file, copy, and template. You can specify the mode
as a symbolic mode (for example: 'u+rwx' or 'u=rw,g=r,o=r').
For those used to /usr/bin/chmod, remember that modes are
actually octal numbers. You must either add a leading zero so that
Ansible’s YAML parser knows it is an octal number (like 0644 or
01777), or quote it (like '644' or '1777') so that Ansible receives
a string it can convert into a number. If you give Ansible a num‐
ber without following one of these rules, you will end up with a
decimal number, which will have unexpected results. Being explicit
with every file’s mode, with single quoting and stating absence of
special bits (suid, segid) like '0755', is a good practice to avoid
ambiguity.

We just take the latest available version of the other dependencies.

Alternately, if you wanted to pin all of the packages, you’d have several options: for
example, you could specify all the packages in the requirements.txt file, for repeata‐
bility. This file contains information about the packages and the dependencies. An
example file looks like Example 7-10.

Example 7-10. Example requirements.txt

beautifulsoup4==4.9.3
bleach==3.3.0
certifi==2021.5.30
chardet==4.0.0
Django==1.11.29
django-appconf==1.0.4
django-compressor==2.4.1
django-contrib-comments==2.0.0
filebrowser-safe==0.5.0
future==0.18.2
grappelli-safe==0.5.2
gunicorn==20.1.0
idna==2.10
Mezzanine==4.3.1
oauthlib==3.1.1
packaging==21.0
Pillow==8.3.1
pkg-resources==0.0.0
psycopg2==2.9.1
pyparsing==2.4.7
python-memcached==1.59
pytz==2021.1
rcssmin==1.0.6
requests==2.25.1
requests-oauthlib==1.3.0
rjsmin==1.1.0
setproctitle==1.2.2

120 | Chapter 7: Deploying Mezzanine with Ansible

six==1.16.0
soupsieve==2.2.1
tzlocal==2.1
urllib3==1.26.6
webencodings==0.5.1

If you have an existing virtualenv with the packages installed, you can use the pip
freeze command to print out a list of installed packages. For example, if your virtua‐
lenv is in ~/.virtualenvs/mezzanine_example, then you can activate your virtualenv
and save the packages in the virtualenv into a requirements.txt file:

$ source .virtualenvs/mezzanine_example/bin/activate
$ pip freeze > requirements.txt

Example 7-11 shows how to specify both the package names and their versions in
the list. with_items passes a list of dictionaries, to dereference the elements with
item.name and item.version when the pip module iterates.

Example 7-11. Specifying package names and version

- name: Install python packages with pip
 pip:
 virtualenv: "{{ venv_path }}"
 name: "{{ item.name }}"
 version: "{{ item.version }}"
 with_items:
 - {name: mezzanine, version: '4.3.1' }
 - {name: gunicorn, version: '20.1.0' }
 - {name: setproctitle, version: '1.2.2' }
 - {name: psycopg2, version: '2.9.1' }
 - {name: django-compressor, version: '2.4.1' }
 - {name: python-memcached, version: '1.59' }

Please note the single quotes around version numbers: this ensures they are treated as
literals and are not rounded off in edge cases.

Complex Arguments in Tasks: A Brief Digression
When you invoke a module, you can pass the argument as a string (great for ad
hoc use). Taking the pip example from Example 7-11, we could have passed the pip
module a string as an argument:

- name: Install package with pip
 pip: virtualenv={{ venv_path }} name={{ item.name }} version={{ item.version }}

If you don’t like long lines in your files, you could break up the argument string
across multiple lines by using YAML’s line folding:

- name: Install package with pip
 pip: >
 virtualenv={{ venv_path }}

Complex Arguments in Tasks: A Brief Digression | 121

 name={{ item.name }}
 version={{ item.version }}

Ansible provides a better option for breaking up a module invocation across multiple
lines. Instead of passing a string, you can pass a dictionary in which the keys are the
variable names. This means you could invoke Example 7-11 like this instead:

- name: Install package with pip
 pip:
 virtualenv: "{{ venv_path }}"
 name: "{{ item.name }}"
 version: "{{ item.version }}"

The dictionary-based approach to passing arguments is also useful when invoking
modules that take a complex argument, or an argument to a module that is a list
or a dictionary. The uri module, which sends web requests, is a good example.
Example 7-12 shows how to call a module that takes a list as an argument for the body
parameter.

Example 7-12. Calling a module with complex arguments

- name: Login to a form based webpage
 uri:
 url: 'https://your.form.based.auth.example.com/login.php'
 method: POST
 body_format: form-urlencoded
 body:
 name: your_username
 password: 'your_password'
 enter: Sign in
 status_code: 302
 register: login

Passing module arguments as dictionaries instead of strings is a practice that can
avoid the whitespace bugs that can arise when using optional arguments, and it works
really well in version control systems. The big advantage of this type of notation is
that this is pure YAML and all YAML parsers and linters understand what you are
doing. The notation with the equal sign (=) is considered old-fashioned and is not
preferred.

If you want to break your arguments across multiple lines and you aren’t passing
complex arguments, which form you choose is a matter of taste. Bas generally prefers
dictionaries to multiline strings, but in this book we use both forms.

122 | Chapter 7: Deploying Mezzanine with Ansible

Configuring the Database
When Django runs in development mode, it uses the SQLite backend. This backend
will create the database file if the file does not exist.

When using a database management system such as Postgres, we need to first create
the user account that owns the database inside Postgres and then create the database.
Later, we will configure Mezzanine with the credentials of this user.

Ansible ships with the postgresql_user and postgresql_db modules for creating
users and databases inside Postgres. Example 7-13 shows how we invoke these mod‐
ules in our playbook.

When creating the database, we specify locale information through the lc_ctype and
lc_collate parameters. We use the locale_gen module to ensure that the locale we
are using is installed in the operating system.

Example 7-13. Creating the database and database user

 - name: Create project locale
 become: true
 locale_gen:
 name: "{{ locale }}"

 - name: Create a DB user
 become: true
 become_user: postgres
 postgresql_user:
 name: "{{ database_user }}"
 password: "{{ db_pass }}"

 - name: Create the database
 become: true
 become_user: postgres
 postgresql_db:
 name: "{{ database_name }}"
 owner: "{{ database_user }}"
 encoding: UTF8
 lc_ctype: "{{ locale }}"
 lc_collate: "{{ locale }}"
 template: template0

Note the use of become: true and become_user: postgres on the last two tasks.
When you install Postgres on Ubuntu, the installation process creates a user named
postgres that has administrative privileges for the Postgres installation. Since the
root account does not have administrative privileges in Postgres by default, we need
to become the Postgres user in the playbook in order to perform administrative tasks,
such as creating users and databases.

Configuring the Database | 123

2 See the Postgres documentation for more details about template databases.

When we create the database, we set the encoding (UTF8) and locale categories
(LC_CTYPE, LC_COLLATE) associated with the database. Because we are setting locale
information, we use templateO as the template.2

Generating the local_settings.py File from a Template
Django expects to find project-specific settings in a file called settings.py. Mezzanine
follows the common Django idiom of breaking these settings into two groups:

• Settings that are the same for all deployments (settings.py)•
• Settings that vary by deployment (local_settings.py)•

We define the settings that are the same for all deployments in the settings.py file in
our project repository.

The settings.py file contains a Python snippet that loads a local_settings.py file that
contains deployment-specific settings. The .gitignore file is configured to ignore the
local_settings.py file, since developers will commonly create this file and configure it
for local development.

As part of our deployment, we need to create a local_settings.py file and upload it to
the remote host. Example 7-14 shows the Jinja2 template that we use.

Example 7-14. local_settings.py.j2

Make these unique, and don't share it with anybody.
SECRET_KEY = "{{ secret_key }}"
NEVERCACHE_KEY = "{{ nevercache_key }}"
ALLOWED_HOSTS = [{% for domain in domains %}"{{ domain }}",{% endfor %}]

DATABASES = {
 "default": {
 # Ends with "postgresql_psycopg2", "mysql", "sqlite3" or "oracle".
 "ENGINE": "django.db.backends.postgresql_psycopg2",
 # DB name or path to database file if using sqlite3.
 "NAME": "{{ proj_name }}",
 # Not used with sqlite3.
 "USER": "{{ proj_name }}",
 # Not used with sqlite3.
 "PASSWORD": "{{ db_pass }}",
 # Set to empty string for localhost. Not used with sqlite3.
 "HOST": "127.0.0.1",
 # Set to empty string for default. Not used with sqlite3.
 "PORT": "",
 }
}

124 | Chapter 7: Deploying Mezzanine with Ansible

https://oreil.ly/GhjeJ
https://oreil.ly/HtoNP
https://oreil.ly/HtoNP

CACHE_MIDDLEWARE_KEY_PREFIX = "{{ proj_name }}"
CACHES = {
 "default": {
 "BACKEND": "django.core.cache.backends.memcached.MemcachedCache",
 "LOCATION": "127.0.0.1:11211",
 }
}
SESSION_ENGINE = "django.contrib.sessions.backends.cache"

Most of this template is straightforward; it uses the {{ variable }} syntax to
insert the values of variables such as secret_key, nevercache_key, proj_name, and
db_pass. The only nontrivial bit of logic is the line shown in Example 7-15.

Example 7-15. Using a for loop in a Jinja2 template

ALLOWED_HOSTS = [{% for domain in domains %}"{{ domain }}",{% endfor %}]

If you look back at our variable definition, you’ll see we have a variable called
domains that’s defined like this:

domains:
 - 192.168.33.10.nip.io
 - www.192.168.33.10.nip.io

Our Mezzanine app is going to respond only to requests that are for one of
the hostnames listed in the domains variable: http://192.168.33.10.nip.io or http://
www.192.168.33.10.nip.io in our case. If a request reaches Mezzanine but the host
header is something other than those two domains, the site will return “Bad Request
(400).”

We want this line in the generated file to look like this:
ALLOWED_HOSTS = ["192.168.33.10.nip.io", "www.192.168.33.10.nip.io"]

We can achieve this by using a for loop, as shown in Example 7-15. Note that it
doesn’t do exactly what we want. Instead, it will have a trailing comma, like this:

ALLOWED_HOSTS = ["192.168.33.10.nip.io", "www.192.168.33.10.nip.io",]

However, Python is perfectly happy with trailing commas in lists, so we can leave it
like this.

What’s nip.io?
You might have noticed that the domains we are using look a little strange:
192.168.33.10.nip.io and www.192.168.33.10.nip.io. They are domain names, but they
have the IP address embedded within them.

Generating the local_settings.py File from a Template | 125

When you access a website, you pretty much always point your browser to a domain
name, such as http://www.ansiblebook.com, instead of an IP address, such as http://
151.101.192.133. When we write our playbook to deploy Mezzanine to Vagrant, we
want to configure the application with the domain name or names by which it should
be accessible.

The problem is that we don’t have a DNS record that maps to the IP address of
our Vagrant box. In this case, that’s 192.168.33.10. There’s nothing stopping us from
setting up a DNS entry for this. For example, we could create a DNS entry from
mezzanine-internal.ansiblebook.com that points to 192.168.33.10.

However, if we want to create a DNS name that resolves to a particular IP address,
there’s a convenient service called nip.io, provided free of charge by Exentrique
Solutions, that we can use so that we don’t need to create our own DNS records.
If AAA.BBB.CCC.DDD is an IP address, the DNS entry AAA.BBB.CCC.DDD.nip.io
will resolve to AAA.BBB.CCC.DDD. For example, 192.168.33.10.nip.io resolves to
192.168.33.10. In addition, www.192.168.33.10.nip.io also resolves to 192.168.33.10.

I find nip.io to be a great tool when I’m deploying web applications to private IP
addresses for testing purposes. Alternatively, you can simply add entries to the /etc/
hosts file on your local machine, which also works when you’re offline.

Let’s examine the Jinja2 for loop syntax. To make things a little easier to read, we’ll
break it up across multiple lines, like this:

ALLOWED_HOSTS = [
{% for domain in domains %}
 "{{ domain }}",
{% endfor %}
]

The generated config file looks like this, which is still valid Python:
ALLOWED_HOSTS = [
 "192.168.33.10.nip.io",
 "www.192.168.33.10.nip.io",
]

Note that the for loop has to be terminated by an {% endfor %} statement. Fur‐
thermore, the for statement and the endfor statement are surrounded by {% %}
delimiters, which are different from the {{ }} delimiters that we use for variable
substitution.

All variables and facts that have been defined in a playbook are available inside Jinja2
templates, so we never need to explicitly pass variables to templates.

126 | Chapter 7: Deploying Mezzanine with Ansible

Running django-manage Commands
Django applications use a special script called manage.py that performs administra‐
tive actions for Django applications such as the following:

• Creating database tables•
• Applying database migrations•
• Loading fixtures from files into the database•
• Dumping fixtures from the database to files•
• Copying static assets to the appropriate directory•

In addition to the built-in commands that manage.py supports, Django applications
can add custom commands. Mezzanine adds a custom command called createdb
that is used to initialize the database and copy the static assets to the appropriate
place. The official Fabric scripts do the equivalent of this:

$ manage.py createdb --noinput --nodata

Ansible ships with a django_manage module that invokes manage.py commands. We
could invoke it like this:

- name: Initialize the database
 django_manage:
 command: createdb --noinput --nodata
 app_path: "{{ proj_path }}"
 virtualenv: "{{ venv_path }}"

Unfortunately, the custom createdb command that Mezzanine adds isn’t idempotent.
If invoked a second time, it will fail like this:

TASK [initialize the database] **
fatal: [web]: FAILED! => {"changed": false, "cmd": "./manage.py createdb --
noinput --nodata", "msg": "\n:stderr: CommandError: Database already create
d, you probably want the migrate command\n", "path": "/home/vagrant/.virtua
lenvs/mezzanine_example/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/b
in:/sbin:/bin:/usr/games:/usr/local/games:/snap/bin", "syspath": ["/tmp/ans
ible_django_manage_payload_4xfy5e7i/ansible_django_manage_payload.zip", "/u
sr/lib/python38.zip", "/usr/lib/python3.8", "/usr/lib/python3.8/lib-dynload
", "/usr/local/lib/python3.8/dist-packages", "/usr/lib/python3/dist-package
s"]}

Fortunately, the custom createdb command is effectively equivalent to two idempo‐
tent built-in manage.py commands:

migrate

Create and update database tables for Django models

collectstatic

Copy the static assets to the appropriate directories

Running django-manage Commands | 127

https://oreil.ly/BrUy8

By invoking these commands, we get an idempotent task:
- name: Apply migrations to create the database, collect static content
 django_manage:
 command: "{{ item }}"
 app_path: "{{ proj_path }}"
 virtualenv: "{{ venv_path }}"
 loop:
 - syncdb
 - collectstatic

Running Custom Python Scripts in the Context
of the Application
To initialize our application, we need to make two changes to our database:

• We need to create a Site model object that contains the domain name of our site•
(in our case, that’s 192.168.33.10.nip.io).

• We need to set the administrator username and password.•

Although we could make these changes with raw SQL commands or Django data
migrations, the Mezzanine Fabric scripts use Python scripts, so that’s how we’ll do it.

There are two tricky parts here. The Python scripts need to run in the context of
the virtualenv that we’ve created, and the Python environment needs to be set up
properly so that the script will import the settings.py file that’s in ~/mezzanine/mezza‐
nine_example/mezzanine_example.

In most cases, if we needed some custom Python code, we’d write a custom Ansible
module. However, as far as we know, Ansible doesn’t let you execute a module in the
context of a virtualenv, so that’s out.

We used the script module instead. This will copy over a custom script and execute
it. Lorin wrote two scripts: one to set the Site record, and the other to set the admin
username and password.

You can pass command-line arguments to script modules and parse them out, but
we decided to pass the arguments as environment variables instead. We didn’t want to
pass passwords via command-line argument (those show up in the process list when
you run the ps command), and it’s easier to parse out environment variables in the
scripts than it is to parse command-line arguments.

You can set environment variables with an environment clause on a
task, passing it a dictionary that contains the environment variable
names and values. You can add an environment clause to any task;
it doesn’t have to be a script.

128 | Chapter 7: Deploying Mezzanine with Ansible

https://oreil.ly/COd8x

To run these scripts in the context of the virtualenv, we also needed to set the path
variable so that the first Python executable in the path would be the one inside the
virtualenv. Example 7-16 shows how we invoked the two scripts.

Example 7-16. Using the script module to invoke custom Python code

- name: Set the site id
 script: scripts/setsite.py
 environment:
 PATH: "{{ venv_path }}/bin"
 PROJECT_DIR: "{{ proj_path }}"
 PROJECT_APP: "{{ proj_app }}"
 WEBSITE_DOMAIN: "{{ Uve_hostname }}"

- name: Set the admin password
 script: scripts/setadmin.py
 environment:
 PATH: "{{ venv_path }}/bin"
 PROJECT_DIR: "{{ proj_path }}"
 PROJECT_APP: "{{ proj_app }}"
 ADMIN_PASSWORD: "{{ admin_pass }}"

The scripts themselves are shown in Example 7-17 and Example 7-18. You can find
them in the scripts subdirectory.

Example 7-17. scripts/setsite.py

#!/usr/bin/env python3
""" A script to set the site domain """
Assumes three environment variables
#
PROJECT_DIR: root directory of the project
PROJECT_APP: name of the project app
WEBSITE_DOMAIN: the domain of the site (e.g., www.example.com)
import os
import sys

Add the project directory to system path
proj_dir = os.path.expanduser(os.environ['PROJECT_DIR'])
sys.path.append(proj_dir)

proj_app = os.environ['PROJECT_APP']
os.environ['DJANGO_SETTINGS_MODULE'] = proj_app + '.settings'
import django
django.setup()
from django.conf import settings
from django.contrib.sites.models import Site
domain = os.environ['WEBSITE_DOMAIN']
Site.objects.filter(id=settings.SITE_ID).update(domain=domain)
Site.objects.get_or_create(domain=domain)

Running Custom Python Scripts in the Context of the Application | 129

Example 7-18. scripts/setadmin.py

#!/usr/bin/env python3
""" A script to set the admin credentials """
Assumes three environment variables
#
PROJECT_DIR: root directory of the project
PROJECT_APP: name of the project app
ADMIN_PASSWORD: admin user's password

import os
import sys

Add the project directory to system path
proj_dir = os.path.expanduser(os.environ['PROJECT_DIR'])
sys.path.append(proj_dir)

proj_app = os.environ['PROJECT_APP']
os.environ['DJANGO_SETTINGS_MODULE'] = proj_app + '.settings'
import django
django.setup()
from django.contrib.auth import get_user_model
User = get_user_model()
u, _ = User.objects.get_or_create(username='admin')
u.is_staff = u.is_superuser = True
u.set_password(os.environ['ADMIN_PASSWORD'])
u.save()

The environment variable DJANGO_SETTINGS_MODULE needs to be
set before importing django.

Setting Service Configuration Files
Next, we set the configuration file for Gunicorn (our application server), NGINX
(our web server), and Supervisor (our process manager), as shown in Example 7-19.
The template for the Gunicorn configuration file is shown in Example 7-21, and the
template for the Supervisor configuration file is shown in Example 7-22.

Example 7-19. Setting configuration files

- name: Set the gunicorn config file
 template:
 src: templates/gunicorn.conf.py.j2
 dest: "{{ proj_path }}/gunicorn.conf.py"
 mode: '0750'

- name: Set the supervisor config file
 become: true
 template:

130 | Chapter 7: Deploying Mezzanine with Ansible

 src: templates/supervisor.conf.j2
 dest: /etc/supervisor/conf.d/mezzanine.conf
 mode: '0640'
 notify: Restart supervisor

- name: Set the nginx config file
 become: true
 template:
 src: templates/nginx.conf.j2
 dest: /etc/nginx/sites-available/mezzanine.conf
 mode: '0640'
 notify: Restart nginx

In all three cases, we generate the config files by using templates. The Supervisor and
NGINX processes are started by root (although they drop down to nonroot users
when running), so we need to use become so that we have the appropriate permissions
to write their configuration files.

If the Supervisor config file changes, Ansible will notify the restart supervisor
handler. If the NGINX config file changes, Ansible will notify the restart nginx
handler, as shown in Example 7-20. Notified handlers run after the tasks have been
finished.

Example 7-20. Handlers

handlers:

 - name: Restart supervisor
 become: true
 supervisorctl:
 name: "{{ gunicorn_procname }}"
 state: restarted

 - name: Restart nginx
 become: true
 service:
 name: nginx
 state: restarted

Gunicorn has a Python-based configuration file; we pass in the value of some
variables.

Example 7-21. templates/gunicorn.conf.py.j2

from multiprocessing import cpu_count

bind = "unix:{{ proj_path }}/gunicorn.sock"
workers = cpu_count() * 2 + 1
errorlog = "/home/{{ user }}/logs/{{ proj_name }}_error.log"
loglevel = "error"
proc_name = "{{ proj_name }}"

Running Custom Python Scripts in the Context of the Application | 131

The Supervisor configuration file also has pretty straightforward variable
interpolation.

Example 7-22. templates/supervisor.conf.j2

[program:{{ gunicorn_procname }}]
command={{ venv_path }}/bin/gunicorn -c gunicorn.conf.py -p gunicorn.pid \
 {{ proj_app }}.wsgi:application
directory={{ proj_path }}
user={{ user }}
autostart=true
stdout_logfile = /home/{{ user }}/logs/{{ proj_name }}_supervisor
autorestart=true
redirect_stderr=true
environment=LANG="{{ locale }}",LC_ALL="{{ locale }}",LC_LANG="{{ locale }}"

The only template that has any template logic (other than variable substitution) is
Example 7-23. It has conditional logic to enable TLS if the tls_enabled variable is
set to true. You’ll see some if statements scattered about the templates that look like
this:

{% if tls_enabled %}
...
{% endif %}

It also uses the join Jinja2 filter here:
server_name {{ domains|join(", ") }};

This code snippet expects the variable domains to be a list. It will generate a string
with the elements of domains, separated by commas. Recall that in our case, the
domains list is defined as follows:

domains:
 - 192.168.33.10.nip.io
 - www.192.168.33.10.nip.io

When the template renders, the line looks like this:
server_name 192.168.33.10.nip.io, www.192.168.33.10.nip.io;

Example 7-23. templates/nginx.conf.j2

upstream {{ proj_name }} {
 server unix:{{ proj_path }}/gunicorn.sock fail_timeout=0;
}
server {
 listen 80;
 {% if tls_enabled %}
 listen 443 ssl;
 {% endif %}
 server_name {{ domains|join(", ") }};
 server_tokens off;

132 | Chapter 7: Deploying Mezzanine with Ansible

 client_max_body_size 10M;
 keepalive_timeout 15;
 {% if tls_enabled %}
 ssl_certificate conf/{{ proj_name }}.crt;
 ssl_certificate_key conf/{{ proj_name }}.key;
 ssl_session_tickets off;
 ssl_session_cache shared:SSL:10m;
 ssl_session_timeout 10m;
 ssl_protocols TLSv1.3;
 ssl_ciphers EECDH+AESGCM:EDH+AESGCM;
 ssl_prefer_server_ciphers on;
 {% endif %}
 location / {
 proxy_redirect off;
 proxy_set_header Host $host;
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_set_header X-Forwarded-Protocol $scheme;
 proxy_pass http://{{ proj_name }};
 }
 location /static/ {
 root {{ proj_path }};
 access_log off;
 log_not_found off;
 }
 location /robots.txt {
 root {{ proj_path }}/static;
 access_log off;
 log_not_found off;
 }
 location /favicon.ico {
 root {{ proj_path }}/static/img;
 access_log off;
 log_not_found off;
 }
}

You can create templates with control structures like if/else and for loops, and Jinja2
templates have lots of features to transform data from your variables, facts, and
inventory into configuration files.

Enabling the NGINX Configuration
The convention on Ubuntu with NGINX configuration files is to put your configura‐
tion files in /etc/nginx/sites-available and enable them by creating a symbolic link
to /etc/nginx/sites-enabled. (On Red Hat systems this is /etc/nginx/conf.d.)

The Mezzanine Fabric scripts just copy the configuration file directly into sites-
enabled, but we’re going to deviate from how Mezzanine does it because it gives
us an excuse to use the file module to create a symlink (Example 7-24). We also
need to remove the default configuration file that the NGINX package sets up in /etc/
nginx/sites-enabled/default.

Enabling the NGINX Configuration | 133

Example 7-24. Enabling NGINX configuration

- name: Remove the default nginx config file
 become: true
 file:
 path: /etc/nginx/sites-enabled/default
 state: absent
 notify: Restart nginx

- name: Set the nginx config file
 become: true
 template:
 src: templates/nginx.conf.j2
 dest: /etc/nginx/sites-available/mezzanine.conf
 mode: '0640'
 notify: Restart nginx

- name: Enable the nginx config file
 become: true
 file:
 src: /etc/nginx/sites-available/mezzanine.conf
 dest: /etc/nginx/sites-enabled/mezzanine.conf
 state: link
 mode: '0777'
 notify: Restart nginx

As shown in Example 7-24, we use the file module to create the symlink and
to remove the default config file. This module is useful for creating directories, sym‐
links, and empty files; deleting files, directories, and symlinks; and setting properties
such as permissions and ownership.

Installing TLS Certificates
Our playbook defines a variable named tls_enabled. If this variable is set to true,
the playbook will install TLS certificates. In our example, we use self-signed certifi‐
cates, so the playbook will create the certificate if it doesn’t exist. In a production
deployment, you would copy an existing TLS certificate that you obtained from a
certificate authority.

Example 7-25 shows the two tasks involved in configuring for TLS certificates. We
use the file module to ensure that the directory that will house the TLS certificates
exists.

Example 7-25. Installing TLS certificates

- name: Ensure config path exists
 become: true
 file:
 path: "{{ conf_path }}"
 state: directory

134 | Chapter 7: Deploying Mezzanine with Ansible

 mode: '0755'

- name: Create tls certificates
 become: true
 command: >
 openssl req -new -x509 -nodes -out {{ proj_name }}.crt
 -keyout {{ proj_name }}.key -subj '/CN={{ domains[0] }}' -days 365
 args:
 chdir: "{{ conf_path }}"
 creates: "{{ conf_path }}/{{ proj_name }}.crt"
 when: tls_enabled
 notify: Restart nginx

Note that one task contains this clause:
when: tls_enabled

If tls_enabled evaluates to false, Ansible will skip the task.

Ansible doesn’t ship with modules for creating TLS certificates, so we use the command
module to invoke the openssl command in order to create the self-signed certificate.
Since the command is very long, we use YAML line-folding syntax, with the “>”
character, so that we can break the command across multiple lines.

The chdir parameter changes the directory before running the command. The
creates parameter implements idempotence: Ansible will first check whether the
file {{ conf_path }}/{{ proj_name }}.crt exists on the host. If it already exists,
Ansible will skip this task.

Installing Twitter Cron Job
If you run manage.py poll_twitter, Mezzanine will retrieve tweets associated with
the configured accounts and show them on the home page. The Fabric scripts that
ship with Mezzanine keep these tweets up-to-date by installing a cron job that runs
every five minutes.

If we followed the Fabric scripts exactly, we’d copy a cron script into the /etc/cron.d
directory that had the cron job. We could use the template module to do this.
However, Ansible ships with a cron module that allows us to create or delete cron
jobs, which we find more elegant. Example 7-26 shows the task that installs the cron
job.

Example 7-26. Installing the cron job for polling Twitter

- name: Install poll twitter cron job
 cron:
 name: "poll twitter"
 minute: "*/5"

Installing Twitter Cron Job | 135

 user: "{{ user }}"
 job: "{{ manage }} poll_twitter"

If you manually SSH to the box, you can see the cron job that gets installed by using
crontab -l to list the jobs. Here’s what it looks like when we deploy as the Vagrant
user:

#Ansible: poll twitter
*/5 * * * * /home/vagrant/.virtualenvs/mezzanine_example/bin/python3 \
/home/vagrant/mezzanine/mezzanine_example/manage.py poll_twitter

Notice the comment at the first line. That’s how the Ansible module supports deleting
cron jobs by name. For example:

- name: Remove cron job
 cron:
 name: "poll twitter"
 state: absent

If you were to do this, the cron module would look for the comment line that
matches the name and delete the job associated with that comment.

The Full Playbook
Example 7-27 shows the complete playbook in all its glory.

Example 7-27. mezzanine.yml: The complete playbook

- name: Deploy mezzanine
 hosts: web

 vars:
 user: "{{ ansible_user }}"
 proj_app: 'mezzanine_example'
 proj_name: "{{ proj_app }}"
 venv_home: "{{ ansible_env.HOME }}/.virtualenvs"
 venv_path: "{{ venv_home }}/{{ proj_name }}"
 proj_path: "{{ ansible_env.HOME }}/mezzanine/{{ proj_name }}"
 settings_path: "{{ proj_path }}/{{ proj_name }}"
 reqs_path: '~/requirements.txt'
 manage: "{{ python }} {{ proj_path }}/manage.py"
 live_hostname: 192.168.33.10.nip.io
 domains:
 - 192.168.33.10.nip.io
 - www.192.168.33.10.nip.io
 repo_url: 'git@github.com:ansiblebook/mezzanine_example.git'
 locale: 'en_US.UTF-8'
 # Variables below don't appear in Mezannine's fabfile.py
 # but I've added them for convenience
 conf_path: /etc/nginx/conf
 tls_enabled: true
 python: "{{ venv_path }}/bin/python3"

136 | Chapter 7: Deploying Mezzanine with Ansible

 database_name: "{{ proj_name }}"
 database_user: "{{ proj_name }}"
 database_host: localhost
 database_port: 5432
 gunicorn_procname: gunicorn_mezzanine

 vars_files:
 - secrets.yml

 tasks:
 - name: Install apt packages
 become: true
 apt:
 update_cache: true
 cache_valid_time: 3600
 pkg:
 - acl
 - git
 - libjpeg-dev
 - libpq-dev
 - memcached
 - nginx
 - postgresql
 - python3-dev
 - python3-pip
 - python3-venv
 - python3-psycopg2
 - supervisor

 - name: Create project path
 file:
 path: "{{ proj_path }}"
 state: directory
 mode: '0755'

 - name: Create a logs directory
 file:
 path: "{{ ansible_env.HOME }}/logs"
 state: directory
 mode: '0755'

 - name: Check out the repository on the host
 git:
 repo: "{{ repo_url }}"
 dest: "{{ proj_path }}"
 version: master
 accept_hostkey: true

 - name: Create python3 virtualenv
 pip:
 name:
 - pip
 - wheel
 - setuptools
 state: latest
 virtualenv: "{{ venv_path }}"

The Full Playbook | 137

 virtualenv_command: /usr/bin/python3 -m venv

 - name: Copy requirements.txt to home directory
 copy:
 src: requirements.txt
 dest: "{{ reqs_path }}"
 mode: '0644'

 - name: Install packages listed in requirements.txt
 pip:
 virtualenv: "{{ venv_path }}"
 requirements: "{{ reqs_path }}"

 - name: Create project locale
 become: true
 locale_gen:
 name: "{{ locale }}"

 - name: Create a DB user
 become: true
 become_user: postgres
 postgresql_user:
 name: "{{ database_user }}"
 password: "{{ db_pass }}"

 - name: Create the database
 become: true
 become_user: postgres
 postgresql_db:
 name: "{{ database_name }}"
 owner: "{{ database_user }}"
 encoding: UTF8
 lc_ctype: "{{ locale }}"
 lc_collate: "{{ locale }}"
 template: template0

 - name: Ensure config path exists
 become: true
 file:
 path: "{{ conf_path }}"
 state: directory
 mode: '0755'

 - name: Create tls certificates
 become: true
 command: >
 openssl req -new -x509 -nodes -out {{ proj_name }}.crt
 -keyout {{ proj_name }}.key -subj '/CN={{ domains[0] }}' -days 365
 args:
 chdir: "{{ conf_path }}"
 creates: "{{ conf_path }}/{{ proj_name }}.crt"
 when: tls_enabled
 notify: Restart nginx

 - name: Remove the default nginx config file
 become: true

138 | Chapter 7: Deploying Mezzanine with Ansible

 file:
 path: /etc/nginx/sites-enabled/default
 state: absent
 notify: Restart nginx

 - name: Set the nginx config file
 become: true
 template:
 src: templates/nginx.conf.j2
 dest: /etc/nginx/sites-available/mezzanine.conf
 mode: '0640'
 notify: Restart nginx

 - name: Enable the nginx config file
 become: true
 file:
 src: /etc/nginx/sites-available/mezzanine.conf
 dest: /etc/nginx/sites-enabled/mezzanine.conf
 state: link
 mode: '0777'
 notify: Restart nginx

 - name: Set the supervisor config file
 become: true
 template:
 src: templates/supervisor.conf.j2
 dest: /etc/supervisor/conf.d/mezzanine.conf
 mode: '0640'
 notify: Restart supervisor

 - name: Install poll twitter cron job
 cron:
 name: "poll twitter"
 minute: "*/5"
 user: "{{ user }}"
 job: "{{ manage }} poll_twitter"

 - name: Set the gunicorn config file
 template:
 src: templates/gunicorn.conf.py.j2
 dest: "{{ proj_path }}/gunicorn.conf.py"
 mode: '0750'

 - name: Generate the settings file
 template:
 src: templates/local_settings.py.j2
 dest: "{{ settings_path }}/local_settings.py"
 mode: '0750'

 - name: Apply migrations to create the database, collect static content
 django_manage:
 command: "{{ item }}"
 app_path: "{{ proj_path }}"
 virtualenv: "{{ venv_path }}"
 with_items:
 - migrate

The Full Playbook | 139

 - collectstatic

 - name: Set the site id
 script: scripts/setsite.py
 environment:
 PATH: "{{ venv_path }}/bin"
 PROJECT_DIR: "{{ proj_path }}"
 PROJECT_APP: "{{ proj_app }}"
 DJANGO_SETTINGS_MODULE: "{{ proj_app }}.settings"
 WEBSITE_DOMAIN: "{{ live_hostname }}"

 - name: Set the admin password
 script: scripts/setadmin.py
 environment:
 PATH: "{{ venv_path }}/bin"
 PROJECT_DIR: "{{ proj_path }}"
 PROJECT_APP: "{{ proj_app }}"
 ADMIN_PASSWORD: "{{ admin_pass }}"

 handlers:

 - name: Restart supervisor
 become: true
 supervisorctl:
 name: "{{ gunicorn_procname }}"
 state: restarted

 - name: Restart nginx
 become: true
 service:
 name: nginx
 state: restarted
...

Playbooks can become longer than needed, and harder to maintain, when all actions
and variables are listed in one file. So this playbook should be considered as a step
in your education on Ansible. We’ll discuss a better way to structure this in the next
chapter.

Running the Playbook Against a Vagrant Machine
The live_hostname and domains variables in our playbook assume that the host
we are going to deploy to is accessible at 192.168.33.10. The Vagrantfile shown in
Example 7-28 configures a Vagrant machine with that IP address.

Example 7-28. Vagrantfile

Vagrant.configure("2") do |this|
 # Forward ssh-agent for cloning from Github.com
 this.ssh.forward_agent = true
 this.vm.define "web" do |web|
 web.vm.box = "ubuntu/focal64"

140 | Chapter 7: Deploying Mezzanine with Ansible

 web.vm.hostname = "web"
 # This IP is used in the playbook
 web.vm.network "private_network", ip: "192.168.33.10"
 web.vm.network "forwarded_port", guest: 80, host: 8000
 web.vm.network "forwarded_port", guest: 443, host: 8443
 web.vm.provider "virtualbox" do |virtualbox|
 virtualbox.name = "web"
 end
 end
 this.vm.provision "ansible" do |ansible|
 ansible.playbook = "mezzanine.yml"
 ansible.verbose = "v"
 ansible.compatibility_mode = "2.0"
 ansible.host_key_checking = false
 end
end

Deploying Mezzanine into a new Vagrant machine is fully automated with the
provision block:

$ vagrant up

You can then reach your newly deployed Mezzanine site at any of the following URLs:

• http://192.168.33.10.nip.io•
• https://192.168.33.10.nip.io•
• http://www.192.168.33.10.nip.io•
• https://www.192.168.33.10.nip.io•

Troubleshooting
You might hit a few speed bumps when trying to run this playbook on your local
machine. This section describes how to overcome some common obstacles.

Cannot Check Out Git Repository
You may see the task named “check out the repository on the host” fail with this
error:

fatal: Could not read from remote repository.

A likely fix is to remove a preexisting entry for 192.168.33.10 in your ~/.ssh/
known_hosts file.

Troubleshooting | 141

Cannot Reach 192.168.33.10.nip.io
Some WiFi routers ship with DNS servers that won’t resolve the hostname
192.168.33.10.nip.io. You can check whether yours does by typing the following on
the command line:

dig +short 192.168.33.10.nip.io

The output should be as follows:
192.168.33.10

If the output is blank, your DNS server is refusing to resolve nip.io hostnames. If this
is the case, a workaround is to add the following to your /etc/hosts file:

192.168.33.10 192.168.33.10.nip.io

Bad Request (400)
If your browser returns the error “Bad Request (400),” it is likely that you are trying
to reach the Mezzanine site by using a hostname or IP address that is not in the
ALLOWED_HOSTS list in the Mezzanine configuration file. This list is populated using
the domains Ansible variable in the playbook:

domains:
 - 192.168.33.10.nip.io
 - www.192.168.33.10.nip.io

Conclusion
In this scenario, we’ve deployed Mezzanine entirely on a single machine. You’ve now
seen what it’s like to deploy a real application with Mezzanine.

The next chapter covers some more advanced features of Ansible that didn’t come
up in our example. We’ll show a playbook that deploys across the database and web
services on separate hosts, which is common in real-world deployments.

142 | Chapter 7: Deploying Mezzanine with Ansible

CHAPTER 8

Debugging Ansible Playbooks

Let’s face it: mistakes happen. Whether it’s a bug in a playbook or a config file on your
control machine with the wrong configuration value, eventually something’s going to
go wrong. In this chapter, we’ll review some techniques you can use to help track
down those errors.

Humane Error Messages
When an Ansible task fails, the output format isn’t very friendly to any human reader
trying to debug the problem. Here’s an example of an error message generated while
working on this book:

TASK [mezzanine : check out the repository on the host]

fatal: [web]: FAILED! => {"changed": false, "cmd": "/usr/bin/git ls-remote
'' -h refs/heads/master", "msg": "Warning:********@github.com: Permission
denied (publickey).\r\nfatal: Could not read from remote
repository.\n\nPlease make sure you have the correct access rights\nand the
repository exists.", "rc": 128, "stderr": "Warning: Permanently added
'github.com,140.82.121.4' (RSA) to the list of known
hosts.\r\ngit@github.com: Permission denied (publickey).\r\nfatal: Could not
read from remote repository.\n\nPlease make sure you have the correct access
rights\nand the repository exists.\n", "stderr_lines": ["Warning:
Permanently added 'github.com,140.82.121.4' (RSA) to the list of known
hosts.", "git@github.com: Permission denied (publickey).", "fatal: Could not
read from remote repository.", "", "Please make sure you have the correct
access rights", "and the repository exists."], "stdout": "", "stdout_lines":
[]}

As mentioned in Chapter 18, the debug callback plug-in makes this output much
easier for a human to read:

TASK [mezzanine : check out the repository on the host] ************************
fatal: [web]: FAILED! => {

143

 "changed": false,
 "cmd": "/usr/bin/git ls-remote '' -h refs/heads/master",
 "rc": 128
}
STDERR:
git@github.com: Permission denied (publickey).
fatal: Could not read from remote repository.
Please make sure you have the correct access rights
and the repository exists.

Enable the plug-in by adding the following to the defaults section of ansible.cfg:
[defaults]
stdout_callback = debug

Be aware, however, that the debug callback plug-in does not print all the information;
the YAML callback plug-in is more verbose than you would expect.

Debugging SSH Issues
Sometimes Ansible fails to make a successful SSH connection with the host. Let’s see
how it looks if the SSH server is not responding at all:

$ ansible web -m ping
web | UNREACHABLE! => {
 "changed": false,
 "msg": "Failed to connect to the host via ssh:
kex_exchange_identification: Connection closed by remote host",
 "unreachable": true
}

When this happens, there might be several causes:

• The SSH server is not running at all.
• The SSH server is running on a nonstandard port.
• Something else is running on the port you expect.
• The port might be filtered by the firewall on the host.
• The port might be filtered by another firewall.
• Tcpwrappers is configured, check /etc/hosts.allow and /etc/hosts.deny.
• The host runs in a hypervisor with micro-segmetation.

Once you verified on the system console that the SSH server is running on the host,
you can try to connect remotely with nc, or even the telnet client to check the banner:

$ nc hostname 2222
SSH-2.0-OpenSSH_8.2p1 Ubuntu-4ubuntu0.4

Then you can try to connect remotely with the SSH client using the verbose flag for
debugging:

144 | Chapter 8: Debugging Ansible Playbooks

$ ssh -v user@hostname

You can see exactly what arguments Ansible is passing to the underlying SSH client so
you can reproduce the problem manually on the command line. It can be handy for
debugging to see the exact SSH commands that Ansible invokes:

$ ansible web -vvv -m ping

Example 8-1 shows parts of the output.

Example 8-1. Example output when three verbose flags are enabled

<127.0.0.1> SSH: EXEC ssh -vvv -4 -o PreferredAuthentications=publickey -o
ForwardAgent=yes -o StrictHostKeyChecking=no -o Port=2200 -o
'IdentityFile="/Users/bas/.vagrant.d/insecure_private_key"' -o
KbdInteractiveAuthentication=no -o
PreferredAuthentications=gssapi-with-mic,gssapi-keyex,hostbased,publickey -o
PasswordAuthentication=no -o 'User="vagrant"' -o ConnectTimeout=10 127.0.0.1
'/bin/sh -c '"'"'rm -f -r
/home/vagrant/.ansible/tmp/ansible-tmp-1633182008.6825979-95820-
137028099318259/ > /dev/null 2>&1 && sleep 0'"'"''
<127.0.0.1> (0, b'', b'OpenSSH_8.1p1, LibreSSL 2.7.3\r\ndebug1: Reading
configuration data /Users/bas/.ssh/config\r\ndebug3: kex names ok:
[curve25519-sha256,diffie-hellman-group-exchange-sha256]\r\ndebug1: Reading
configuration data /etc/ssh/ssh_config\r\ndebug1: /etc/ssh/ssh_config line
20: Applying options for *\r\ndebug1: /etc/ssh/ssh_config line 47: Applying
options for *\r\ndebug2: resolve_canonicalize: hostname 127.0.0.1 is
address\r\ndebug1: auto-mux: Trying existing master\r\ndebug2: fd 3 setting
O_NONBLOCK\r\ndebug2: mux_client_hello_exchange: master version 4\r\ndebug3:
mux_client_forwards: request forwardings: 0 local, 0 remote\r\ndebug3:
mux_client_request_session: entering\r\ndebug3: mux_client_request_alive:
entering\r\ndebug3: mux_client_request_alive: done pid = 95516\r\ndebug3:
mux_client_request_session: session request sent\r\ndebug3:
mux_client_read_packet: read header failed: Broken pipe\r\ndebug2: Received
exit status from master 0\r\n')
web | SUCCESS => {

"changed": false,
"invocation": {

"module_args": {
"data": "pong"

}
},
"ping": "pong"

}

Sometimes you might need to use -vvvv when debugging a connection issue to see an
error message that the SSH client is throwing; it’s like adding the -v flag for the ssh
command that Ansible is using:

$ ansible all -vvvv -m ping

Example 8-2 shows lots of debug output.

Debugging SSH Issues | 145

Example 8-2. Example output when four verbose flags are enabled

<192.168.56.10> ESTABLISH SSH CONNECTION FOR USER: vagrant
<192.168.56.10> SSH: EXEC ssh -vvv -4 -o PreferredAuthentications=publickey
-o ForwardAgent=yes -o StrictHostKeyChecking=no -o
'IdentityFile="/Users/bas/.vagrant.d/insecure_private_key"' -o
KbdInteractiveAuthentication=no -o
PreferredAuthentications=gssapi-with-mic,gssapi-keyex,hostbased,publickey -o
PasswordAuthentication=no -o 'User="vagrant"' -o ConnectTimeout=10
192.168.56.10 '/bin/sh -c '"'"'/usr/bin/python3 && sleep 0'"'"''
debug1: Reading configuration data /Users/bas/.ssh/config
debug1: Reading configuration data /etc/ssh/ssh_config
debug1: /etc/ssh/ssh_config line 21: include /etc/ssh/ssh_config.d/* matched
no files
debug1: /etc/ssh/ssh_config line 54: Applying options for *
debug1: Authenticator provider $SSH_SK_PROVIDER did not resolve; disabling
debug1: Connecting to 192.168.56.10 [192.168.56.10] port 22.
debug1: fd 3 clearing O_NONBLOCK
debug1: Connection established.
debug1: identity file /Users/bas/.vagrant.d/insecure_private_key type -1
debug1: Local version string SSH-2.0-OpenSSH_8.6
debug1: Remote protocol version 2.0, remote software version OpenSSH_8.2p1
Ubuntu-4ubuntu0.5
debug1: compat_banner: match: OpenSSH_8.2p1 Ubuntu-4ubuntu0.5 pat OpenSSH*
compat 0x04000000
debug1: Authenticating to 192.168.56.10:22 as \'vagrant\'
debug1: SSH2_MSG_KEXINIT sent
debug1: SSH2_MSG_KEXINIT received
debug1: kex: algorithm: curve25519-sha256
debug1: kex: host key algorithm: ssh-ed25519
debug1: kex: server->client cipher: chacha20-poly1305@openssh.com MAC:
<implicit> compression: none
debug1: kex: client->server cipher: chacha20-poly1305@openssh.com MAC:
<implicit> compression: none
debug1: expecting SSH2_MSG_KEX_ECDH_REPLY
debug1: SSH2_MSG_KEX_ECDH_REPLY received
debug1: Server host key: ssh-ed25519
SHA256:BnlxL1InYlrSLQU10HFYzg6ZZkj1boxRSloEsK3bpxA
debug1: Host \'192.168.56.10\' is known and matches the ED25519 host key.
debug1: Found key in /Users/bas/.ssh/known_hosts:57
debug1: rekey out after 134217728 blocks
debug1: SSH2_MSG_NEWKEYS sent
debug1: expecting SSH2_MSG_NEWKEYS
debug1: SSH2_MSG_NEWKEYS received
debug1: rekey in after 134217728 blocks
debug1: Will attempt key: /Users/bas/.vagrant.d/insecure_private_key
explicit
debug1: SSH2_MSG_EXT_INFO received
debug1: kex_input_ext_info:
server-sig-algs=<ssh-ed25519,sk-ssh-ed25519@openssh.com,ssh-rsa,rsa-sha2-256
,rsa-sha2-512,ssh-dss,ecdsa-sha2-nistp256,ecdsa-sha2-nistp384,ecdsa-sha2-
nistp521,sk-ecdsa-sha2-nistp256@openssh.com>
debug1: SSH2_MSG_SERVICE_ACCEPT received
debug1: Authentications that can continue: publickey
debug1: Next authentication method: publickey

146 | Chapter 8: Debugging Ansible Playbooks

debug1: Trying private key: /Users/bas/.vagrant.d/insecure_private_key
debug1: Authentication succeeded (publickey).
Authenticated to 192.168.56.10 ([192.168.56.10]:22).
debug1: channel 0: new [client-session]
debug1: Requesting no-more-sessions@openssh.com
debug1: Entering interactive session.
debug1: pledge: filesystem full
debug1: client_input_global_request: rtype hostkeys-00@openssh.com
want_reply 0
debug1: client_input_hostkeys: searching /Users/bas/.ssh/known_hosts for
192.168.56.10 / (none)
debug1: client_input_hostkeys: no new or deprecated keys from server
debug1: Remote: /home/vagrant/.ssh/authorized_keys:1: key options:
agent-forwarding port-forwarding pty user-rc x11-forwarding
debug1: Requesting authentication agent forwarding.
debug1: Sending environment.
debug1: channel 0: setting env LC_TERMINAL_VERSION = "3.4.16"
debug1: channel 0: setting env LC_CTYPE = "UTF-8"
debug1: channel 0: setting env LC_TERMINAL = "iTerm2"
debug1: Sending command: /bin/sh -c \'/usr/bin/python3 && sleep 0\'
debug1: client_input_channel_req: channel 0 rtype exit-status reply 0
debug1: channel 0: free: client-session, nchannels 1
Transferred: sent 117208, received 1664 bytes, in 0.4 seconds
Bytes per second: sent 284246.0, received 4035.4
debug1: Exit status 0
')
web | SUCCESS => {
 "changed": false,
 "invocation": {
 "module_args": {
 "data": "pong"
 }
 },
 "ping": "pong"
}
META: ran handlers
META: ran handlers

You should know that "ping": "pong" means a successful connection was made,
even though it is preceded by debug messages.

Common SSH Challenges
Ansible uses SSH to connect to and manage hosts, often with administrative privi‐
leges. It is worthwhile to know about its security challenges, which can puzzle casual
users at first.

PasswordAuthentication no
PasswordAuthentication no greatly improves the security of your servers. By
default, Ansible assumes you are using SSH keys to connect to remote machines.
Having a SSH key pair is one thing, but the public key needs to be distributed to

Common SSH Challenges | 147

the machines you want to manage. This is traditionally done with ssh-copy-id, but
when PasswordAuthentication is disabled, an administrator needs to use an account
with public keys in place to copy your public key to the servers, preferably with the
authorized_key module:

- name: Install authorized_keys taken from file
 authorized_key:
 user: "{{ the_user }}"
 state: present
 key: "{{ lookup('file',the_pub_key) }}"
 key_options: 'no-port-forwarding,from="93.184.216.34"'
 exclusive: true

Note that ed25519 public keys are short enough to type in a console if necessary.

SSH as a Different User
You can connect to different hosts with different users. Restrict users from logging in
as the root user as much as possible. If you need a particular user per machine, then
you can set ansible_user in the inventory:

[mezzanine]
web ansible_host=192.168.33.10 ansible_user=webmaster
db ansible_host=192.168.33.11 ansible_user=dba

Note that you cannot override that user on the command line, but you can specify a
user if it’s different:

$ ansible-playbook --user vagrant -i inventory/hosts mezzanine.yml

You can also use the SSH config file to define the user for each host. Finally, you can
set remote_user: in the header of a play or on a per task basis.

Host Key Verification Failed
When you try to connect to a machine, you may get an error, such as:

$ ansible -m ping web
web | UNREACHABLE! => {
 "changed": false,
 "msg": "Failed to connect to the host via ssh:
@@@\r\n@ WARNING:
REMOTE HOST IDENTIFICATION HAS CHANGED!
@\r\n@@@\r\nIT IS
POSSIBLE THAT SOMEONE IS DOING SOMETHING NASTY!\r\nSomeone could be
eavesdropping on you right now (man-in-the-middle attack)!\r\nIt is also
possible that a host key has just been changed.\r\nThe fingerprint for the
ED25519 key sent by the remote host
is\nSHA256:+dX3jRW5eoZ+FzQP9jc6cIALXugh9bftvYvaQig+33c.\r\nPlease contact
your system administrator.\r\nAdd correct host key in
/Users/bas/.ssh/known_hosts to get rid of this message.\r\nOffending ED25519
key in /Users/bas/.ssh/known_hosts:2\r\nED25519 host key for 192.168.56.10
has changed and you have requested strict checking.\r\nHost key verification

148 | Chapter 8: Debugging Ansible Playbooks

failed.",
 "unreachable": true
}

If that happens, don’t disable StrictHostKeyChecking in the SSH config. Instead,
remove the old host key and add the new key:

ssh-keygen -R 192.168.33.10
ssh-keyscan 192.168.33.10 >> ~/.ssh/known_hosts

Private Networks
Since Ansible uses the OpenSSH client by default, you can easily use a bastion host: a
central access point in a DMZ for other hosts in a private network. Here, all hosts in
the domain private.cloud are accessible through the ProxyJump bastion setting in the
file ~/.ssh/config:

Host bastion
 Hostname 100.123.123.123
 User bas
 PasswordAuthentication no
Host *.private.cloud
 User bas
 CheckHostIP no
 StrictHostKeyChecking no
 ProxyJump bastion

If you set up the bastion with a VPN, then you don’t need SSH on
the internet. Tailscale is an easy-to-use VPN based on WireGuard
that allows traffic from clients via the bastion to other private hosts
in a subnet without further configuration on those hosts.

The debug Module
We’ve used the debug module several times in this book. It’s Ansible’s version of a
print statement. As shown in Example 8-3, you can use it to print out either the
value of a variable or an arbitrary string.

Example 8-3. The debug module in action

- debug: var=myvariable
- debug: msg="The value of myvariable is {{ var }}"

As we discussed in Chapter 5, you can print out the values of all the variables
associated with the current host by invoking the following:

- debug: var=hostvars[inventory_hostname]

The debug Module | 149

https://tailscale.com
https://www.wireguard.com

Playbook Debugger
Ansible 2.5 added support for an interactive debugger. You can use the debugger
keyword to enable (or disable) the debugger for a specific play, role, block, or task:

- name: deploy mezzanine on web
 hosts: web
 debugger: always
 ...

If debugging is always enabled like that, Ansible drops into the debugger and you can
step though the playbook by entering c (continue):

PLAY [deploy mezzanine on web] ***
TASK [mezzanine : install apt packages] **
changed: [web]
[web] TASK: mezzanine : install apt packages (debug)> c
TASK [mezzanine : create a logs directory] *************************************
changed: [web]
[web] TASK: mezzanine : create a logs directory (debug)> c

Table 8-1 shows the seven commands supported by the debugger.

Table 8-1. Debugger commands

Command Shortcut Action
print p Print information about the task
task.args[key] = value no shortcut Update module arguments
task_vars[key] = value no shortcut Update task variables (you must update_task next)
update_task u Re-create a task with updated task variables
redo r Run the task again
continue c Continue executing, starting with the next task
quit q Quit the debugger

Table 8-2 shows the variables supported by the debugger.

Table 8-2. Variables supported by the debugger

Variable Description
p task The name of the task that failed
p task.args The module arguments
p result The result returned by the failed task
p vars Value of all known variables
p vars[key] Value of one variable

150 | Chapter 8: Debugging Ansible Playbooks

Here’s an example interaction with the debugger:
 TASK [mezzanine : install apt packages **
ok: [web]
[web] TASK: mezzanine : install apt packages (debug)> p task.args
{'_ansible_check_mode': False,
 '_ansible_debug': False,
 '_ansible_diff': False,
 '_ansible_keep_remote_files': False,
 '_ansible_module_name': 'apt',
 '_ansible_no_log': False,
 '_ansible_remote_tmp': '~/.ansible/tmp',
 '_ansible_selinux_special_fs': ['fuse',
 'nfs',
 'vboxsf',
 'ramfs',
 '9p',
 'vfat'],
 '_ansible_shell_executable': '/bin/sh',
 '_ansible_socket': None,
 '_ansible_string_conversion_action': 'warn',
 '_ansible_syslog_facility': 'LOG_USER',
 '_ansible_tmpdir': '/home/vagrant/.ansible/tmp/ansible-tmp-1633193380-7157/',
 '_ansible_verbosity': 0,
 '_ansible_version': '2.11.0',
 'cache_valid_time': 3600,
 'pkg': ['git',
 'libjpeg-dev',
 'memcached',
 'python3-dev',
 'python3-pip',
 'python3-venv',
 'supervisor'],
 'update_cache': True}

While you’ll probably find printing out variables to be its most useful feature, you can
also use the debugger to modify variables and arguments to the failed task. See the
Ansible playbook debugger docs for more details.

If you are running legacy playbooks or roles, you may see the
debugger enabled as a strategy. This may have been removed in
newer versions of Ansible. With the default linear strategy enabled,
Ansible halts execution while the debugger is active, then runs the
debugged task immediately after you enter the redo command.
With the free strategy enabled, however, Ansible does not wait for
all hosts and may queue later tasks on one host before a task fails
on another host; it does not queue or execute any tasks while the
debugger is active. However, all queued tasks remain in the queue
and run as soon as you exit the debugger. You can learn more about
strategies in the documentation.

Playbook Debugger | 151

https://oreil.ly/IZSCl
https://oreil.ly/bLqah
https://oreil.ly/bLqah

The assert Module
The assert module will fail with an error if a specified condition is not met. For
example, to fail the playbook if there’s no enp0s3 interface:

- name: Assert that the enp0s3 ethernet interface exists
 assert:
 that: ansible_enp0s3 is defined

When debugging a playbook, it can be helpful to insert assertions so that a failure
happens as soon as any assumption you’ve made is violated.

Keep in mind that the code in an assert statement is Jinja2, not
Python. For example, if you want to assert the length of a list, you
might be tempted to do this:

Invalid Jinja2, this won't work!
assert:
 that: "len(ports) == 2"

Unfortunately, Jinja2 does not support Python’s built-in len func‐
tion. Instead, you need to use the Jinja2 length filter:

assert:
 that: "ports|length == 2"

If you want to check on the status of a file on the host’s filesystem, it’s useful to call the
stat module first and make an assertion based on the return value of that module:

- name: Stat /boot/grub
 stat:
 path: /boot/grub
 register: st

- name: Assert that /boot/grub is a directory
 assert:
 that: st.stat.isdir

The stat module collects information about the state of a filepath. It returns a
dictionary that contains a stat field with the values shown in Table 8-3.

Table 8-3. Stat module return values (some platforms might add additional fields)

Field Description
atime Last access time of path, in Unix timestamp format
attributes List of file attributes
charset Character set or encoding of the file
checksum Hash value of the file
ctime Time of last metadata update or creation, in Unix timestamp format
dev Numeric ID of the device that the inode resides on

152 | Chapter 8: Debugging Ansible Playbooks

Field Description
executable Tells you if the invoking user has execute permission on the path
exists If the destination path actually exists or not
gid Numeric ID representing the group of the owner
gr_name Group name of owner
inode Inode number of the path
isblk Tells you if the path is a block device
ischr Tells you if the path is a character device
isdir Tells you if the path is a directory
isfifo Tells you if the path is a named pipe
isgid Tells you if the invoking user’s group ID matches the owner’s group ID
islnk Tells you if the path is a symbolic link
isreg Tells you if the path is a regular file
issock Tells you if the path is a Unix domain socket
isuid Tells you if the invoking user’s ID matches the owner’s ID
lnk_source Target of the symlink normalized for the remote filesystem
lnk_target Target of the symlink
mimetype File magic data or mime-type
mode Unix permissions as a string, in octal (e.g., “1777”)
mtime Last modification time of path, in Unix timestamp format
nlink Number of hard links to the file
pw_name User name of file owner
readable Tells you if the invoking user has the right to read the path
rgrp Tells you if the owner’s group has read permission
roth Tells you if others have read permission
rusr Tells you if the owner has read permission
size Size in bytes for a plain file, amount of data for some special files
uid Numeric ID representing the file owner
wgrp Tells you if the owner’s group has write permission
woth Tells you if others have write permission
writeable Tells you if the invoking user has the right to write the path
wusr Tells you if the owner has write permission
xgrp Tells you if the owner’s group has execute permission
xoth Tells you if others have execute permission
xusr Tells you if the owner has execute permission

Checking Your Playbook Before Execution
The ansible-playbook command supports several flags that allow you to “sanity-
check” your playbook before you execute it. They do not execute the playbook.

Checking Your Playbook Before Execution | 153

Syntax Check
The --syntax-check flag, shown in Example 8-4, checks that your playbook’s syntax
is valid.

Example 8-4. Syntax check

$ ansible-playbook --syntax-check playbook.yml

List Hosts
The --list-hosts flag, shown in Example 8-5, outputs the hosts against which the
playbook will run.

Example 8-5. List hosts

$ ansible-playbook --list-hosts playbook.yml

Sometimes you get this dreaded warning:
[WARNING]: provided hosts list is empty, only localhost
is available. Note that the implicit localhost does not
match 'all'
[WARNING]: Could not match supplied host pattern,
ignoring: db
[WARNING]: Could not match supplied host pattern,
ignoring: web

One host must be explicitly specified in your inventory or you’ll
get this warning, even if your playbook runs against only the local
host. If your inventory is initially empty (perhaps because you’re
using a dynamic inventory script and haven’t launched any hosts
yet), you can work around this by explicitly adding the groups to
your inventory:

ansible-playbook --list-hosts -i web,db playbook.yml

List Tasks
The --list-tasks flag, shown in Example 8-6, outputs the tasks against which the
playbook will run.

Example 8-6. List tasks

$ ansible-playbook --list-tasks playbook.yml

Recall that we used this flag back in Chapter 7, in Example 7-1, to list the tasks in our
first playbook. Again, none of these flags will execute the playbook.

154 | Chapter 8: Debugging Ansible Playbooks

Check Mode
The -C and --check flags run Ansible in check mode (sometimes called a dry run).
This tells you whether each task in the playbook will modify the host, but it does not
make any changes to the server:

$ ansible-playbook -C playbook.yml
$ ansible-playbook --check playbook.yml

One of the challenges with using check mode is that later parts of a playbook might
succeed only if earlier parts were executed. Running check mode on Example 7-28
yields the error shown in Example 8-7 because this task depended on an earlier task
(installing the NGINX program on the host). Another challenge is that the modules
used in the playbook should support check mode or else it fails.

Example 8-7. Check mode failing on a correct playbook

TASK [nginx : create ssl certificates] ***
fatal: [web]: FAILED! => {
 "changed": false
}
MSG:
Unable to change directory before execution: [Errno 2] No such file or directory:
b'/etc/nginx/conf'

See Chapter 19 for more details on how modules implement check mode.

Diff (Show File Changes)
The -D and -diff flags output differences for any files that are changed on the
remote machine. It’s a helpful option to use in conjunction with --check to show how
Ansible would change the file if it were run normally:

$ ansible-playbook -D --check playbook.yml
$ ansible-playbook --diff --check playbook.yml

If Ansible would modify any files (e.g., using modules such as copy, file, template,
and lineinfile), it will show the changes in .diff format, like this:

TASK [mezzanine : create a logs directory] *************************************
--- before
+++ after
@@ -1,4 +1,4 @@
 {
 "path": "/home/vagrant/logs",
- "state": "absent"
+ "state": "directory"
 }

 changed: [web]

Checking Your Playbook Before Execution | 155

Some modules support diff as a Boolean telling it to display the diff or not.

Tags
Ansible allows you to add one or more tags to a task, a role, or a play. For example,
here’s a play that’s tagged with mezzanine and nginx. (Bas prefers to use tags at the
role level, because they can be hard to maintain on a task level.)

- name: deploy postgres on db
 hosts: db
 debugger: on_failed
 vars_files:
 - secrets.yml
 roles:
 - role: database
 tags: database
 database_name: "{{ mezzanine_proj_name }}"
 database_user: "{{ mezzanine_proj_name }}"

- name: deploy mezzanine on web
 hosts: web
 debugger: always
 vars_files:
 - secrets.yml

 roles:
 - role: mezzanine
 tags: mezzanine
 database_host: "{{ hostvars.db.ansible_enp0s8.ipv4.address }}"
 - role: nginx
 tags: nginx

Use the -t tagnames or --tags tagnames flag to tell Ansible to run only plays and
tasks that have certain tags. Use the --skip-tags tagnames flag to tell Ansible to skip
plays and tasks that have certain tags (see Example 8-8).

Example 8-8. Running or skipping tags

$ ansible-playbook -tnxinx playbook.yml
$ ansible-playbook --tags=xinx,database playbook.yml
$ ansible-playbook --skip-tags=mezzanine playbook.yml

Limits
Ansible allows you to restrict the set of hosts targeted for a playbook with a --limit
flag to ansible-playbook. You can do a canary release this way, but be sure to set it
up with an audit trail. The limit flag reduces the run of the playbook to a set of hosts
defined by an expression. In the simplest example, it can be a single hostname:

$ ansible-playbook -vv --limit db playbook.yml

156 | Chapter 8: Debugging Ansible Playbooks

https://oreil.ly/seUXz

Limits and tags are really useful during development; just be aware that tags are
harder to maintain on a large scale. Limits are really useful for testing and rolling out
over parts of your infrastructure.

Conclusion
Ansible has several features that help in debugging; if you use them well you can
reduce the time it takes to test every change. This is useful when scaling up your
playbooks in the coming chapters.

Conclusion | 157

CHAPTER 9

Roles: Scaling Up Your Playbooks

In Ansible, the role is the primary mechanism for breaking a playbook into multiple
files. This simplifies writing complex playbooks, and it makes them easier to reuse.
Think of a role as something you assign to one or more hosts. For example, you’d
assign a database role to the hosts that will function as database servers. One of
the things I like about Ansible is how it scales both up and down. Ansible scales
down well because simple tasks are easy to implement. It scales up well because it
provides mechanisms for decomposing complex jobs into smaller pieces. A role is
very structured and doesn’t have any site-specific data in it, so it can be shared with
others, who can compose their site by combining roles in their own playbooks.

I’m not referring to the number of hosts you’re managing, but rather the complexity
of the jobs you’re trying to automate. This chapter will get you Up and Running with
Ansible roles!

Basic Structure of a Role
An Ansible role has a name, such as database. Files associated with the database role
go in the roles/database directory, which contains the following files and directories:

defaults/
 main.yml
files/
 pg_hba.conf
handlers/
 main.yml
meta/
 main.yml
tasks/
 main.yml
templates/
 postgres.conf.j2

159

vars/
 main.yml

Tasks
The tasks directory has a main.yml file that serves as an entry point for the
actions a role does.

Files
Holds files and scripts to be uploaded to hosts.

Templates
Holds Jinja2 template files to be uploaded to hosts.

Handlers
The handlers directory has a main.yml file that has the actions that respond to
change notifications.

Vars
Variables that shouldn’t generally be overridden.

Defaults
Default variables that can be overridden.

Meta
Information about the role.

Each individual file is optional; if your role doesn’t have any handlers, for example,
there’s no need to have an empty handlers/main.yml file and no reason to commit
such a file.

Where Does Ansible Look for My Roles?
Ansible looks for roles in the roles directory alongside your playbooks. It also looks
for systemwide roles in /etc/ansible/roles. You can customize the systemwide location
of roles by setting the roles_path setting in the defaults section of your ansible.cfg file,
as shown in Example 9-1. This setup separates roles defined in the project from roles
installed into the project and has no systemwide location.

Example 9-1. ansible.cfg: Overriding default roles path

[defaults]
roles_path = galaxy_roles:roles

You can also override this by setting the ANSIBLE_ROLES_PATH environment variable.

160 | Chapter 9: Roles: Scaling Up Your Playbooks

Example: Deploying Mezzanine with Roles
Let’s take our Mezzanine playbook and implement it with Ansible roles. We could
create a single role called mezzanine, but instead we’re going to break out the
deployment of the Postgres database into a separate role called database, and the
deployment of NGINX in a separate role as well. This will make it easier to eventually
deploy the database on a host separate from the Mezzanine application. It will also
separate the concerns related to the web server.

Using Roles in Your Playbooks
Before we get into the details of how to define roles, let’s go over how to assign roles
to hosts in a playbook. Example 9-2 shows what our playbook looks like for deploying
Mezzanine onto a single host, once we have the database, nginx, and mezzanine
roles defined.

Example 9-2. mezzanine-single-host.yml

- name: Deploy mezzanine on vagrant
 hosts: web

 vars_files:
 - secrets.yml

 roles:
 - role: database
 database_name: "{{ mezzanine_proj_name }}"
 database_user: "{{ mezzanine_proj_name }}"
 - role: mezzanine
 database_host: '127.0.0.1'
 - role: nginx
...

When we use roles, we usually have a roles section in our playbook. This section
expects a list of roles. In our example, our list contains three roles: database, nginx,
and mezzanine.

Note that we can pass in variables when invoking the roles. In our example, we
passed the database_name and database_user variables for the database role. If
these variables have already been defined in the role (either in vars/main.yml or
defaults/main.yml), then the values will be overridden with the variables that were
passed in.

If you aren’t passing in variables to roles, you can simply specify the names of the
role, as we did for nginx in the example.

Example: Deploying Mezzanine with Roles | 161

With the database, nginx, and mezzanine roles defined, writing a playbook that
deploys the web application and database services to multiple hosts becomes much
simpler. Example 9-3 shows a playbook that deploys the database on the db host and
the web service on the web host.

Example 9-3. mezzanine-across-hosts.yml

- name: Deploy postgres on db
 hosts: db

 vars_files:
 - secrets.yml

 roles:
 - role: database
 database_name: "{{ mezzanine_proj_name }}"
 database_user: "{{ mezzanine_proj_name }}"

- name: Deploy mezzanine on web
 hosts: web

 vars_files:
 - secrets.yml

 roles:
 - role: mezzanine
 database_host: "{{ hostvars.db.ansible_enp0s8.ipv4.address }}"
 - role: nginx
...

Note that this playbook contains two separate plays: “Deploy postgres on db” and
“Deploy mezzanine on web”; each play affects a different group of hosts in principle,
but we have only one machine in each group: a db server and a web server.

Pre-Tasks and Post-Tasks
Sometimes you want to run tasks before or after you invoke your roles. For example,
you might want to update the apt cache before you deploy Mezzanine, and you might
want to send a notification to a Slack channel after you deploy.

Ansible allows you to define the order in your playbooks:

• A list of tasks that execute before the roles with a pre_tasks section•
• A list of roles to execute•
• A list of tasks that execute after the roles with a post_tasks section•

162 | Chapter 9: Roles: Scaling Up Your Playbooks

Example 9-4 shows an example of using pre_tasks, roles, and post_tasks to deploy
Mezzanine.

Example 9-4. Using pre-tasks and post-tasks

- name: Deploy mezzanine on web
 hosts: web
 vars_files:
 - secrets.yml

 pre_tasks:
 - name: Update the apt cache
 apt:
 update_cache: yes

 roles:
 - role: mezzanine
 database_host: "{{ hostvars.db.ansible_enp0s8.ipv4.address }}"
 - role: nginx

 post_tasks:
 - name: Notify Slack that the servers have been updated
 delegate_to: localhost
 slack:
 domain: acme.slack.com
 token: "{{ slack_token }}"
 msg: "web server {{ inventory_hostname }} configured."
...

But enough about using roles; let’s talk about writing them.

A database Role for Deploying the Database
The job of our database role will be to install Postgres and create the required
database and database user.

Our database role is comprised of the following files:

• roles/database/defaults/main.yml•
• roles/database/files/pg_hba.conf•
• roles/database/handlers/main.yml•
• roles/database/meta/main.yml•
• roles/database/tasks/main.yml•
• roles/database/templates/postgresql.conf.j2•
• roles/database/vars/main.yml•

Example: Deploying Mezzanine with Roles | 163

This role includes two customized Postgres configuration files:

postgresql.conf.j2
Modifies the default listen_addresses configuration option so that Postgres will
accept connections on any network interface. The default for Postgres is to accept
connections only from localhost, which doesn’t work for us if we want our
database to run on a separate host from our web application.

pg_hba.conf
Configures Postgres to authenticate connections over the network by using a
username and password.

These files aren’t shown here because they are quite large. You can
find them in the code samples on GitHub in the ch07 directory.

Example 9-5 shows the tasks involved in deploying Postgres.

Example 9-5. roles/database/tasks/main.yml

- name: Install apt packages
 become: true
 apt:
 update_cache: true
 cache_valid_time: 3600
 pkg: "{{ postgres_packages }}"

- name: Copy configuration file
 become: true
 template:
 src: postgresql.conf.j2
 dest: /etc/postgresql/12/main/postgresql.conf
 owner: postgres
 group: postgres
 mode: '0644'
 notify: Restart postgres

- name: Copy client authentication configuration file
 become: true
 copy:
 src: pg_hba.conf
 dest: /etc/postgresql/12/main/pg_hba.conf
 owner: postgres
 group: postgres
 mode: '0640'
 notify: Restart postgres

164 | Chapter 9: Roles: Scaling Up Your Playbooks

https://oreil.ly/PddOX

- name: Create project locale
 become: true
 locale_gen:
 name: "{{ locale }}"

- name: Create a DB user
 become: true
 become_user: postgres
 postgresql_user:
 name: "{{ database_user }}"
 password: "{{ db_pass }}"

- name: Create the database
 become: true
 become_user: postgres
 postgresql_db:
 name: "{{ database_name }}"
 owner: "{{ database_user }}"
 encoding: UTF8
 lc_ctype: "{{ locale }}"
 lc_collate: "{{ locale }}"
 template: template0
...

Example 9-6 shows the handlers file, used when notifying actions trigger a change.

Example 9-6. roles/database/handlers/main.yml

- name: Restart postgres
 become: true
 service:
 name: postgresql
 state: restarted
...

The only thing in vars that we are going to specify is the database port; this is used in
the postgresql.conf.j2 template.

In Example 9-7 we see the list of packages to install, obviously the database itself and
the C and Python client libraries, but also acl.

The acl package is needed when both the connection user and
the become_user are unprivileged. The module file is written by
the connection user, but the file needs to be readable by the
become_user. Ansible will use the setfacl command to share the
file only with the become_user.

Example: Deploying Mezzanine with Roles | 165

Example 9-7. roles/database/defaults/main.yml

postgres_packages:
 - acl # for become_user: postgres
 - libpq-dev
 - postgresql
 - python3-psycopg2
...

Note that our list of tasks refers to several variables that we haven’t defined anywhere
in the role:

• database_name•
• database_user•
• db_pass•
• locale•

In Examples 9-2 and 9-3, we passed database_name and database_user when we
invoked the database role. We’re assuming that db_pass is defined in the secrets.yml
file, which is included in the vars_files section. The locale variable is likely
something that would be the same for every host, and might be used by multiple
roles or playbooks, so we defined it in the group_vars/all file in the code samples that
accompany this book.

Why Are There Two Ways to Define Variables in Roles?
When Ansible first introduced support for roles, there was only one place to define
role variables, in vars/main.yml. Variables defined in this location have a higher
precedence than those defined in the vars section of a play, which meant you couldn’t
override the variable unless you explicitly passed it as an argument to the role.

Ansible later introduced the notion of default role variables that go in defaults/
main.yml. This type of variable is defined in a role, but has a low precedence, so it will
be overridden if another variable with the same name is defined in the playbook.

If you think you might want to change the value of a variable in a role, use a default
variable. If you don’t want it to change, use a regular variable.

A mezzanine Role for Deploying Mezzanine
The job of our mezzanine role will be to install Mezzanine. This includes installing
NGINX as the reverse proxy and Supervisor as the process monitor.

166 | Chapter 9: Roles: Scaling Up Your Playbooks

The role is comprised of the following files:

• roles/mezzanine/files/setadmin.py•
• roles/mezzanine/files/setsite.py•
• roles/mezzanine/handlers/main.yml•
• roles/mezzanine/tasks/django.yml•
• roles/mezzanine/tasks/main.yml•
• roles/mezzanine/templates/gunicorn.conf.pyj2•
• roles/mezzanine/templates/local_settings.py.filters.j2•
• roles/mezzanine/templates/local_settings.py.j2•
• roles/mezzanine/templates/supervisor.conf.j2•
• roles/mezzanine/vars/main.yml•

Example 9-8 shows the variables we’ve defined for this role. Note that we’ve prefixed
the names of the variables so that they all start with mezzanine. It’s good practice
to do this with role variables because Ansible doesn’t have any notion of namespace
across roles. This means that variables that are defined in other roles, or elsewhere in
a playbook, will be accessible everywhere. This can cause some unexpected behavior
if you accidentally use the same variable name in two different roles.

Example 9-8. roles/mezzanine/vars/main.yml

vars file for mezzanine
mezzanine_user: "{{ ansible_user }}"
mezzanine_venv_home: "{{ ansible_env.HOME }}/.virtualenvs"
mezzanine_venv_path: "{{ mezzanine_venv_home }}/{{ mezzanine_proj_name }}"
mezzanine_repo_url: git@github.com:ansiblebook/mezzanine_example.git
mezzanine_settings_path: "{{ mezzanine_proj_path }}/{{ mezzanine_proj_name }}"
mezzanine_reqs_path: '~/requirements.txt'
mezzanine_python: "{{ mezzanine_venv_path }}/bin/python"
mezzanine_manage: "{{ mezzanine_python }} {{ mezzanine_proj_path }}/manage.py"
mezzanine_gunicorn_procname: gunicorn_mezzanine
...

Because the task list is pretty long, we’ve decided to break it up across several files.
Example 9-9 shows the top-level task file for the mezzanine role. It installs the apt
packages, and then it uses include statements to invoke two other task files that are in
the same directory, shown in Examples 9-10 and 9-11.

Example: Deploying Mezzanine with Roles | 167

Example 9-9. roles/mezzanine/tasks/main.yml

- name: Install apt packages
 become: true
 apt:
 update_cache: true
 cache_valid_time: 3600
 pkg:
 - git
 - libjpeg-dev
 - memcached
 - python3-dev
 - python3-pip
 - python3-venv
 - supervisor

- include_tasks: setup.yml
- include_tasks: django.yml
...

Example 9-10. roles/mezzanine/tasks/setup.yml

- name: Create a logs directory
 file:
 path: "{{ ansible_env.HOME }}/logs"
 state: directory
 mode: '0755'

- name: Check out the repository on the host
 git:
 repo: "{{ mezzanine_repo_url }}"
 dest: "{{ mezzanine_proj_path }}"
 version: master
 accept_hostkey: true
 update: false
 tags:
 - repo

- name: Create python3 virtualenv
 pip:
 name:
 - pip
 - wheel
 - setuptools
 state: latest
 virtualenv: "{{ mezzanine_venv_path }}"
 virtualenv_command: /usr/bin/python3 -m venv
 tags:
 - skip_ansible_lint

- name: Copy requirements.txt to home directory
 copy:

168 | Chapter 9: Roles: Scaling Up Your Playbooks

 src: requirements.txt
 dest: "{{ mezzanine_reqs_path }}"
 mode: '0644'

- name: Install packages listed in requirements.txt
 pip:
 virtualenv: "{{ mezzanine_venv_path }}"
 requirements: "{{ mezzanine_reqs_path }}"

Example 9-11. roles/mezzanine/tasks/django.yml

- name: Generate the settings file
 template:
 src: templates/local_settings.py.j2
 dest: "{{ mezzanine_settings_path }}/local_settings.py"
 mode: '0750'

- name: Apply migrations to database, collect static content
 django_manage:
 command: "{{ item }}"
 app_path: "{{ mezzanine_proj_path }}"
 virtualenv: "{{ mezzanine_venv_path }}"
 with_items:
 - migrate
 - collectstatic

- name: Set the site id
 script: setsite.py
 environment:
 PATH: "{{ mezzanine_venv_path }}/bin"
 PROJECT_DIR: "{{ mezzanine_proj_path }}"
 PROJECT_APP: "{{ mezzanine_proj_app }}"
 DJANGO_SETTINGS_MODULE: "{{ mezzanine_proj_app }}.settings"
 WEBSITE_DOMAIN: "{{ live_hostname }}"

- name: Set the admin password
 script: setadmin.py
 environment:
 PATH: "{{ mezzanine_venv_path }}/bin"
 PROJECT_DIR: "{{ mezzanine_proj_path }}"
 PROJECT_APP: "{{ mezzanine_proj_app }}"
 ADMIN_PASSWORD: "{{ admin_pass }}"

- name: Set the gunicorn config file
 template:
 src: templates/gunicorn.conf.py.j2
 dest: "{{ mezzanine_proj_path }}/gunicorn.conf.py"
 mode: '0750'

- name: Set the supervisor config file
 become: true
 template:
 src: templates/supervisor.conf.j2
 dest: /etc/supervisor/conf.d/mezzanine.conf

Example: Deploying Mezzanine with Roles | 169

 mode: '0640'
 notify: Restart supervisor

- name: Install poll twitter cron job
 cron:
 name: "poll twitter"
 minute: "*/5"
 user: "{{ mezzanine_user }}"
 job: "{{ mezzanine_manage }} poll_twitter"
...

There’s one important caveat when it comes to using the copy, script, or template
modules. There is a difference between tasks defined in a role and tasks defined in a
regular playbook. When invoking copy or script in a task defined in a role, Ansible
will look in this order in these directories for the location of the file to copy or run
and will use the first one found. These paths are relative to the directory where you
start the top-level playbook from.

• ./roles/role_name/files/•
• ./roles/role_name/•
• ./roles/role_name/tasks/files/•
• ./roles/role_name/tasks/•
• ./files/•
• ./•

Similarly, when invoking template in a task defined in a role, Ansible will first check
the role_name/templates directory and then the playbooks/templates directory for the
location of the template to use (along with less obvious directories). This way, roles
define default files in their files/ and templates/ directories, but you cannot simply
override them with files in the files/ and templates/ subdirectories of your project.

This means that a task that used to look like this in our playbook:
 - name: Copy requirements.txt to home directory
 copy:
 src: files/requirements.txt
 dest: "{{ mezzanine_reqs_path }}"
 mode: '0644'

now looks like this when invoked from inside a role (note the change of the src
parameter):

 - name: Copy requirements.txt to home directory
 copy:
 src: "{{ files_src_path | default() }}requirements.txt"
 dest: "{{ mezzanine_reqs_path }}"
 mode: '0644'

170 | Chapter 9: Roles: Scaling Up Your Playbooks

files_src_path is a variable path that you can override, but it can be empty as well,
for default behavior. Ramon de la Fuente proposed this use of variable paths for files
and templates in roles.

Example 9-12 shows the handlers file; handlers run when notified by changes in
tasks.

Example 9-12. roles/mezzanine/handlers/main.yml

- name: Restart supervisor
 become: true
 supervisorctl:
 name: gunicorn_mezzanine
 state: restarted
...

We won’t show the template files here, since they’re basically the same as in the
previous chapter, although some of the variable names have changed. Check out the
accompanying code samples for details.

Creating Role Files and Directories with ansible-galaxy
Ansible ships with another command-line tool we haven’t talked about yet: ansible-
galaxy. Its primary purpose is to download roles that have been shared by the com‐
munity—more on that later in the chapter. It can also be used to generate scaffolding,
an initial set of files and directories involved in a role:

$ ansible-galaxy role init --init-path playbooks/roles web

The --init-path flag tells ansible-galaxy the location of your roles directory. If
you don’t specify it, the role files will be created in your current directory. Running
the command creates the following files and directories:

playbooks
|___ roles
 |___ web
 |—— README.md
 |—— defaults
 | |___ main.yml
 |—— files
 |—— handlers
 | |___ main.yml
 |—— meta
 | |___ main.yml
 |—— tasks
 | |___ main.yml
 |—— templates
 |—— tests
 | |___ inventory

Creating Role Files and Directories with ansible-galaxy | 171

https://oreil.ly/WgI9l
https://oreil.ly/PddOX
https://galaxy.ansible.com
https://galaxy.ansible.com

1 NTP stands for Network Time Protocol, used for synchronizing clocks.

 | |___ test.yml
 |___ vars
 |___ main.yml

Dependent Roles
Imagine that we have two roles, web and database, that both require an NTP1 server
to be installed on the host. We could specify the installation of the NTP server in both
the web and database roles, but that would result in duplication. We could create a
separate ntp role, but then we would have to remember that whenever we apply the
web or database role to a host, we have to apply the ntp role as well. This would avoid
the duplication, but it’s error-prone because we might forget to specify the ntp role.
What we really want is to have an ntp role that is always applied to a host whenever
we apply the web role or the database role.

Ansible supports a feature called dependent roles to deal with this scenario. When you
define a role, you can specify that it depends on one or more other roles. Ansible will
ensure that roles that are specified as dependencies are executed first.

Continuing with our example, let’s say that we create an ntp role that configures a
host to synchronize its time with an NTP server. Ansible allows us to pass parameters
to dependent roles, so let’s also assume that we can pass the NTP server as a parame‐
ter to that role.

We specify that the web role depends on the ntp role by creating a roles/web/meta/
main.yml file and listing ntp as a role, with a parameter, as shown in Example 9-13.

Example 9-13. roles/web/meta/main.yml

dependencies:
 - { role: ntp, ntp_server=ntp.ubuntu.com }

We can also specify multiple dependent roles. For example, if we have a django role
for setting up a Django web server, and we want to specify nginx and memcached as
dependent roles, then the role metadata file might look like Example 9-14.

Example 9-14. roles/django/meta/main.yml

dependencies:
 - { role: web }
 - { role: memcached }

172 | Chapter 9: Roles: Scaling Up Your Playbooks

For details on how Ansible evaluates the role dependencies, check out the official
Ansible documentation on role dependencies.

Ansible Galaxy
If you need to deploy an open source software system onto your hosts, chances are
some people have already written Ansible roles to do it. Although Ansible does make
it easier to write scripts for deploying software, some systems are just plain tricky to
deploy.

Whether you want to reuse a role somebody has already written, or you just want
to see how someone else solved the problem you’re working on, Ansible Galaxy
can help you out. Ansible Galaxy is an open source repository of Ansible roles
contributed by the Ansible community. The roles themselves are stored on GitHub.
https://galaxy.ansible.com is the central website for Ansible content; ansible-galaxy
is a command-line interface (CLI) tool.

Web Interface
You can explore the available roles on the Ansible Galaxy site. Galaxy supports free
text searching, filtering, and browsing by category or contributor.

Command-Line Interface
The ansible-galaxy command-line tool allows you to download roles from Ansible
Galaxy, or to create a standard directory structure for an ansible-role.

Installing a role

Let’s say I want to install a role named ntp, written by GitHub user oefenweb (Mischa
ter Smitten, one of the most active authors on Ansible Galaxy). This is a role that will
configure a host to synchronize its clock with an NTP server.

You can install the role with the ansible-galaxy install command:
$ ansible-galaxy install oefenweb.ntp

The ansible-galaxy program will install roles to the first directory in roles_path by
default (see “Where Does Ansible Look for My Roles?” on page 160), but you can
override this path with the -p flag (the directory is created if needed).

The output should look something like this:
Starting galaxy role install process
- downloading role 'ntp', owned by oefenweb
- downloading role from https://github.com/Oefenweb/ansible-ntp/archive/v1.1.33.
tar.gz

Ansible Galaxy | 173

https://oreil.ly/3nJ4K
https://galaxy.ansible.com
https://galaxy.ansible.com

- extracting oefenweb.ntp to ./galaxy_roles/oefenweb.ntp
- oefenweb.ntp (v1.1.33) was installed successfully

The ansible-galaxy tool will install the role files to galaxy_roles/oefenweb.ntp.

Ansible will install some metadata about the installation to the file ./gal‐
axy_roles/oefenweb.ntp/meta/.galaxy_install_info. On Bas’ machine, that file contains
the following:

install_date: Tue Jul 20 12:13:44 2021
version: v1.1.33

The oefenweb.ntp role has a specific version number, so the ver‐
sion will be listed. Some roles will not have a specific version
number and will be listed with their default branch in Git, like
main.

Listing installed roles
You can list installed roles as follows:

$ ansible-galaxy list

The output is based on the galaxy_info key in meta/main.yml, which should look
similar to the following:

/Users/bas/ansiblebook/ch07/playbooks/galaxy_roles
- oefenweb.ntp, v1.1.33
/Users/bas/ansiblebook/ch07/playbooks/roles
- database, (unknown version)
- web, (unknown version)

Uninstalling a role

You can remove a role with the remove command:
$ ansible-galaxy remove oefenweb.ntp

Role Requirements in Practice
It is common practice to list dependencies in a file called requirements.yml in the roles
directory, located at <project-top-level-directory>/roles/requirements.yml. If this file is
found when using AWX/Ansible Tower, then ansible-galaxy installs the listed roles
automatically. This file allows you to reference Galaxy roles, or roles within other
repositories, which can be checked out in conjunction with your own project. The
addition of this Ansible Galaxy support eliminates the need to create Git submodules
for achieving this result.

In the following code snippet the first source is a dependency on the oefenweb.ntp
role (downloads are counted by Galaxy when specifying src in this way). The second

174 | Chapter 9: Roles: Scaling Up Your Playbooks

example does a direct download from GitHub of a docker role written by Jeff Geerl‐
ing (well known in the Ansible community for his book Ansible for DevOps, 2nd
ed. [LeanPub], and many roles on Galaxy). The third example downloads from an
on-premises Git repo. The name parameter in requirements.yml can be used to rename
roles after downloading.

- src: oefenweb.ntp

- src: https://github.com/geerlingguy/ansible-role-docker.git
 scm: git
 version: '4.0.0'
 name: geerlingguy.docker

- src: https://tools.example.intra/bitbucket/scm/ansible/install-nginx.git
 scm: git
 version: master
 name: web
...

Contributing Your Own Role
See “Contributing Content” on the Ansible Galaxy website for details on how to
contribute a role to the community. Because the roles are hosted on GitHub, you need
to have a GitHub account to contribute.

Conclusion
At this point, you should have an understanding of how to use roles, how to write
your own roles, and how to download roles written by others. Roles are a great way to
organize your playbooks. We use them all the time, and we highly recommend them.
If you find that a particular resource that you work on has no role on Galaxy, then
consider uploading!

Conclusion | 175

https://oreil.ly/lfLle

CHAPTER 10

Complex Playbooks

In the preceding chapter, we went over a fully functional Ansible playbook for
deploying the Mezzanine CMS. That example used some common Ansible features,
but it didn’t cover all of them. This chapter touches on those other features, which
makes it a bit of a grab bag.

Dealing with Badly Behaved Commands
Recall that in Chapter 7, we avoided invoking the custom createdb manage.py
command, shown in Example 10-1, because the call wasn’t idempotent.

Example 10-1. Calling django manage.py createdb

- name: Initialize the database
 django_manage:
 command: createdb --noinput --nodata
 app_path: "{{ proj_path }}"
 virtualenv: "{{ venv_path }}"

We got around this problem by invoking several django manage.py commands
that were idempotent, and that did the equivalent of createdb. But what if we
didn’t have a module that could invoke equivalent commands? The answer is to use
changed_when and failed_when clauses to change how Ansible detects that a task has
changed state or failed.

Let’s make sure you understand the output of this command the first and second
times it’s run.

Recall from Chapter 5 that to capture the output of a failed task, you add a register
clause to save the output to a variable and a failed_when: false clause so that the

177

execution doesn’t stop even if the module returns failure. Then you add a debug
task to print out the variable, and finally a fail clause so that the playbook stops
executing, as shown in Example 10-2.

Example 10-2. Viewing the output of a task

- name: Initialize the database
 django_manage:
 command: createdb --noinput --nodata
 app_path: "{{ proj_path }}"
 virtualenv: "{{ venv_path }}"
 failed_when: false
 register: result

- debug: var=result

- fail:

The output of the playbook, when invoked another time, is shown in Example 10-3.

Example 10-3. Returned values when database has already been created

TASK [debug] ***
ok: [web] ==> {
 "result": {
 "changed": false,
 "cmd": "./manage.py createdb --noinput --nodata",
 "failed": false,
 "failed_when_result": false,
 "msg": "\n:stderr: CommandError: Database already created, you probably want
the migrate command\n",
 "path": "/home/vagrant/.virtualenvs/mezzanine_example/bin:/usr/local/sbin:/
usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/
games:/snap/bin",
 "syspath": [
 "/tmp/ansible_django_manage_payload_hb62e1ie/ansible_django_manage_pay
load.zip",
 "/usr/lib/python38.zip",
 "/usr/lib/python3.8",
 "/usr/lib/python3.8/lib-dynload",
 "/usr/local/lib/python3.8/dist-packages",
 "/usr/lib/python3/dist-packages"
]
 }
}

This is what happens when the task has been run multiple times. To see what happens
the first time, drop the database and then have the playbook re-create it. The simplest
way to do that is to run an Ansible ad hoc task that drops the database:

$ ansible web -b --become-user postgres -m postgresql_db \
 -a "name=mezzanine_example state=absent"

178 | Chapter 10: Complex Playbooks

Now when we run the playbook again, we get the output in Example 10-4.

Example 10-4. Returned values when invoked the first time

TASK [debug] ***
ok: [web] ==> {
 "result": {
 "app_path": "/home/vagrant/mezzanine/mezzanine_example",
 "changed": false,
 "cmd": "./manage.py createdb --noinput --nodata",
 "failed": false,
 "failed_when_result": false,
 "out": "Operations to perform:\n Apply all migrations: admin, auth, blog,

conf, contenttypes, core, django_comments, forms, galleries, generic, pages,
redirects, sessions, sites, twitter\nRunning migrations:\n Applying
contenttypes.0001_initial... OK\n Applying auth.0001_initial... OK\n
Applying admin.0001_initial... OK\n Applying
admin.0002_logentry_remove_auto_add... OK\n Applying
contenttypes.0002_remove_content_type_name... OK\n Applying
auth.0002_alter_permission_name_max_length... OK\n Applying
auth.0003_alter_user_email_max_length... OK\n Applying
auth.0004_alter_user_username_opts... OK\n Applying
auth.0005_alter_user_last_login_null... OK\n Applying
auth.0006_require_contenttypes_0002... OK\n Applying
auth.0007_alter_validators_add_error_messages... OK\n Applying
auth.0008_alter_user_username_max_length... OK\n Applying
sites.0001_initial... OK\n Applying blog.0001_initial... OK\n Applying
blog.0002_auto_20150527_1555... OK\n Applying blog.0003_auto_20170411_0504...
OK\n Applying conf.0001_initial... OK\n Applying core.0001_initial... OK\n
Applying core.0002_auto_20150414_2140... OK\n Applying
django_comments.0001_initial... OK\n Applying
django_comments.0002_update_user_email_field_length... OK\n Applying
django_comments.0003_add_submit_date_index... OK\n
Applying pages.0001_initial... OK\n Applying forms.0001_initial... OK\n
Applying forms.0002_auto_20141227_0224... OK\n Applying forms.0003_emailfield...
OK\n Applying forms.0004_auto_20150517_0510... OK\n Applying
forms.0005_auto_20151026_1600... OK\n Applying forms.0006_auto_20170425_2225...
OK\n Applying galleries.0001_initial... OK\n Applying
galleries.0002_auto_20141227_0224... OK\n Applying generic.0001_initial... OK\n
Applying generic.0002_auto_20141227_0224... OK\n Applying
generic.0003_auto_20170411_0504... OK\n Applying pages.0002_auto_20141227_0224...
OK\n Applying pages.0003_auto_20150527_1555... OK\n Applying
pages.0004_auto_20170411_0504... OK\n Applying redirects.0001_initial... OK\n
Applying sessions.0001_initial... OK\n Applying sites.0002_alter_domain_unique...
OK\n Applying twitter.0001_initial... OK\n\nCreating default site record: web
...\n\nInstalled 2 object(s) from 1 fixture(s)\n",

 "pythonpath": null,
 "settings": null,
 "virtualenv": "/home/vagrant/.virtualenvs/mezzanine_example"
 }
}

Dealing with Badly Behaved Commands | 179

Note that changed is set to false even though it did, indeed, change the state of
the database. That’s because the django_manage module always returns "changed":
false when it runs commands that the module doesn’t know about.

We can add a changed_when clause that looks for "Creating tables" in the out
return value, as shown in Example 10-5.

Example 10-5. First attempt at adding changed_when

- name: Initialize the database
 django_manage:
 command: createdb --noinput --nodata
 app_path: "{{ proj_path }}"
 virtualenv: "{{ venv_path }}"
 register: result
 changed_when: '"Creating tables" in result.out'

The problem with this approach is that, if we look back at Example 10-3, we see that
there is no out variable. Instead, there’s a msg variable. If we executed the playbook,
we would get the following (not terribly helpful) error the second time:

TASK: [Initialize the database] **
fatal: [default] => error while evaluating conditional: "Creating tables" in
result.out

Instead, we need to ensure that Ansible evaluates result.out only if that variable is
defined. One way is to explicitly check whether the variable is defined:

changed_when: result.out is defined and "Creating tables" in result.out

Alternatively, we could provide a default value for result.out if it doesn’t exist by
using the Jinja2 default filter:

changed_when: '"Creating tables" in result.out|default("")'

The final idempotent task is shown in Example 10-6.

Example 10-6. Idempotent manage.py created

- name: Initialize the database
 django_manage:
 command: createdb --noinput --nodata
 app_path: "{{ proj_path }}"
 virtualenv: "{{ venv_path }}"
 register: result
 changed_when: '"Creating tables" in result.out|default("")'

180 | Chapter 10: Complex Playbooks

Filters
Filters are a feature of the Jinja2 templating engine. Since Ansible uses Jinja2 for
evaluating variables as well as for templates, you can use filters inside {{ double
curly braces }} in your playbooks and your template files. Using filters resembles
using Unix pipes, whereby a variable is piped through a filter. Jinja2 ships with a set
of built-in filters. In addition, Ansible ships with its own filters to augment the Jinja2
filters.

We’ll cover a few sample filters here, but check out the official Jinja2 and Ansible docs
for a complete list of the available filters.

The default Filter
The default filter is a useful one. Here’s an example of this filter in action:

host: "{{ database_host | default('localhost') }}"

If the variable database_host is defined, the braces will evaluate to the value of that
variable. If the variable database_host is not defined, the braces will evaluate to the
string localhost. Some filters take arguments, some don’t.

Filters for Registered Variables
Let’s say we want to run a task and print out its output, even if the task fails. However,
if the task does fail, we want Ansible to fail for that host after printing the output.
Example 10-7 shows how to use the failed filter in the argument to the failed_when
clause.

Example 10-7. Using the failed filter

- name: Run myprog
 command: /opt/myprog
 register: result
 ignore_errors: true

- debug: var=result

- debug:
 msg: "Stop running the playbook if myprog failed"
 failed_when: result|failed

more tasks here

Table 10-1 shows a list of filters you can use on registered variables to check the
status.

Filters | 181

https://oreil.ly/7svtE
https://oreil.ly/DlvWZ

1 Thanks to John Jarvis for this tip.

Table 10-1. Task return value filters

Name Description
failed True if the value was registered by a task that failed
changed True if the value was registered by a task changed
success True if the value was registered by a task that succeeded
skipped True if the value was registered by a task that was skipped

Filters That Apply to Filepaths
Table 10-2 shows filters that are useful when a variable holds the path to a file on the
control machine’s filesystem.

Table 10-2. Filepath filters

Name Description
basename Base name of filepath
dirname Directory of filepath
expanduser Filepath with ~ replaced by home directory
realpath Canonical path of filepath, resolves symbolic links

Consider this playbook fragment:
vars:
 homepage: /usr/share/nginx/html/index.html

tasks:
 - name: Copy home page
 copy:
 src: files/index.html
 dest: "{{ homepage }}"

Note that it references index.html twice: once in the definition of the homepage
variable, and a second time to specify the path to the file on the control machine.

The basename filter extracts the index.html part of the filename from the full path,
allowing us to write the playbook without repeating the filename:1

vars:
 homepage: /usr/share/nginx/html/index.html

tasks:

 - name: Copy home page
 copy:
 src: "files/{{ homepage | basename }}"
 dest: "{{ homepage }}"

182 | Chapter 10: Complex Playbooks

Writing Your Own Filter
Recall that in our Mezzanine example, we generated the local_settings.py file from a
template, and a line in the generated file looks like Example 10-8.

Example 10-8. Line from local_settings.py generated by template

ALLOWED_HOSTS = ["www.example.com", "example.com"]

We used a variable named domains that had a list of the hostnames. We originally
used a for loop in our template to generate this line, but a filter would be an even
more elegant approach.

There is a built-in Jinja2 filter called join that will join a list of strings with a
delimiter such as a comma. Unfortunately, it doesn’t quite give us what we want. If we
did this in the template:

ALLOWED_HOSTS = [{{ domains|join(", ") }}]

We would end up with the strings unquoted in our file, as shown in Example 10-9.

Example 10-9. Strings incorrectly unquoted

ALLOWED_HOSTS = [www.example.com, example.com]

If we had a Jinja2 filter that quoted the strings in the list, as shown in Example 10-10,
then the template would generate the output depicted in Example 10-8.

Example 10-10. Using a filter to quote the strings in the list

ALLOWED_HOSTS = [{{ domains|surround_by_quotes|join(", ") }}]

Unfortunately, there’s no existing surround_by_quotes filter that does what we want.
However, we can write it ourselves.In fact, Hanfei Sun covered this very topic on
Stack Overflow.

Ansible will look for custom filters in the filter_plugins directory, relative to the
directory containing your playbooks.

Example 10-11 shows what the filter implementation looks like.

Example 10-11. filter_plugins/surround_by_quotes.py

''' https://stackoverflow.com/a/68610557/571517 '''
class FilterModule():
 ''' FilterModule class must have a method named filters '''
 @staticmethod
 def surround_by_quotes(a_list):

Filters | 183

https://oreil.ly/Y5kqL

2 Don’t Repeat Yourself, a term popularized by The Pragmatic Programmer: From Journeyman to Master
(Addison-Wesley), which is a fantastic book.

 ''' implements surround_by_quotes for each list element '''
 return ['"%s"' % an_element for an_element in a_list]
 def filters(self):
 ''' returns a dictionary that maps filter names to
 callables implementing the filter '''
 return {'surround_by_quotes': self.surround_by_quotes}

The surround_by_quotes function defines the Jinja2 filter. The FilterModule class
defines a filters method that returns a dictionary with the name of the filter
function and the function itself. The FilterModule class is Ansible-specific code that
makes the Jinja2 filter available to Ansible.

You can also place filter plug-ins in the ~/.ansible/plugins/filter directory or the /usr/
share/ansible/plugins/filter directory, or you can specify by setting the ANSIBLE_FIL
TER_PLUGINS environment variable to the directory where your plug-ins are located.

More examples and documentation of filter plug-ins are available on GitHub.

Lookups
In an ideal world, all of your configuration information would be stored as Ansible
variables in all the various places where Ansible lets you define variables (like the
vars section of your playbooks, files loaded by vars_files, or files in the host_vars or
group_vars directories discussed in Chapter 3).

Alas, the world is a messy place, and sometimes a piece of configuration data you
need lives somewhere else. Maybe it’s in a text file or a .csv file, and you don’t want
to just copy the data into an Ansible variable file because having to maintain two
copies of the same data would violate the DRY2 principle. Or maybe the data isn’t
maintained as a file at all, but in a key-value storage service such as Redis. Ansible
has a feature called lookups that allows you to read in configuration data from various
sources and then use that data in your playbooks and template.

Ansible supports a collection of lookups for retrieving data from diverse sources. To
list the lookups in your installed Ansible, try:

$ ansible-doc -t lookup -l

The ansible.builtin lookups are shown in Table 10-3.

184 | Chapter 10: Complex Playbooks

https://oreil.ly/hGzbQ

Table 10-3. ansible.builtin lookups

Name Description
config Look up current Ansible configuration values
csvfile Entry in a .csv file
dict Returns key/value pair items from dictionaries
dnstxt DNS TXT record
env Environment variable
file Contents of a file
fileglob List files matching a pattern
first_found Return first file found from list
indexed_items Rewrites lists to return “indexed items”
ini Read data from a INI file
inventory_hostnames List of inventory hosts matching a host pattern
items List of items
lines Read lines from command
list Simply returns what it is given
nested Composes a list with nested elements of other lists
password Retrieve or generate a random password, stored in a file
pipe Output of locally executed command
random_choice Return random element from list
redis Redis key lookup
sequence Generate a list based on a number sequence
subelements Traverse nested key from a list of dictionaries
template Jinja2 template after evaluation
together Merges lists into synchronized list
unvault Read vaulted file(s) contents
url Return contents from URL
varnames Look up matching variable names
vars Look up templated value of variables

To learn how to use any lookup, run:
$ ansible-doc -t lookup <plugin name>

All Ansible lookup plug-ins execute on the control machine, not the remote host.

You invoke lookups by calling the lookup function with two arguments. The first is
a string with the name of the lookup, and the second is a string that contains one or
more arguments to pass to the lookup. For example, we call the file lookup like this:

lookup('file', '/path/to/file.txt')

Lookups | 185

3 Run ansible-doc authorized_key to learn how this module helps protect your SSH configuration.

You can invoke lookups in your playbooks between {{ braces }} or put them in
templates.

In the next sections, we provide only a few examples of the many lookups available.
The Ansible documentation supplies more details.

file
Let’s say you have a text file on your control machine that has a public SSH key
that you want to copy to a remote server. Example 10-12 shows how to use the
file lookup to read the contents of a file and pass that as a parameter to the
authorized_key module.3

Example 10-12. Using the file lookup

- name: Add my public key for SSH
 authorized_key:

user: vagrant
key: "{{ lookup('file', item) }}"

 with_first_found:
- ~/.ssh/id_ed25519.pub
- ~/.ssh/id_rsa.pub
- ~/.ssh/id_ecdsa.pub

You can invoke lookups in templates as well. If we want to use the same lookup
to create an authorized_keys file that contains the contents of a public-key file and
options, we could create a Jinja2 template that invokes the lookup (Example 10-13),
and then call the template module in our playbook, as shown in Example 10-14.

Example 10-13. authorized_keys.j2

from="10.0.2.2" {{ lookup('file', '~/.ssh/id_ed25519.pub') }}

Example 10-14. Task to generate authorized_keys

- name: Copy authorized_keys template
 template:
 src: authorized_keys.j2
 dest: /home/vagrant/.ssh/authorized_keys
 owner: vagrant
 group: vagrant
 mode: '0600'

186 | Chapter 10: Complex Playbooks

https://oreil.ly/tnCmt

pipe
The pipe lookup invokes an external program on the control machine and evaluates
to the program’s output on standard out. For example, to install the default public
key for the Vagrant user, we could use this pipe lookup. Every vagrant install comes
with the same insecure_private_key file, so every developer can use Vagrant boxes.
The public key can be derived from it with a command that we define as a variable (to
avoid a line-length warning):

- name: Add default public key for vagrant user
 authorized_key:
 user: vagrant
 key: "{{ lookup('pipe', pubkey_cmd) }}"
 vars:
 pubkey_cmd: 'ssh-keygen -y -f ~/.vagrant.d/insecure_private_key'

env
The env lookup retrieves the value of an environment variable set on the control
machine. For example, we could use the lookup like this:

- name: Get the current shell
 debug: msg="{{ lookup('env', 'SHELL') }}"

Since Bas uses the bash shell, the output looks like this when he runs it:
TASK: [Get the current shell] ***
ok: [web] ==> {
 "msg": "/bin/bash"
}

password
The password lookup evaluates to a random password, and it will also write the
password to a file specified in the argument. For example, if we want to create a user
named deploy with a random password and write that password to pw.txt on the
control machine, we can do this:

- name: Create deploy user, save random password in pw.txt
 become: true
 user:
 name: deploy
 password: "{{ lookup('password', 'pw.txt encrypt=sha512_crypt') }}"

template
The template lookup lets you specify a Jinja2 template file, then returns the result of
evaluating the template. Say we have a template that looks like Example 10-15.

Lookups | 187

Example 10-15. message.j2

This host runs {{ ansible_facts.distribution }}

If we define a task like this:
- name: Output message from template
 debug:
 msg: "{{ lookup('template', 'message.j2') }}"

then we’ll see output that looks like this:
TASK: [Output message from template] **
ok: [web] ==> {
 "msg": "This host runs Ubuntu\n"
}

csvfile
The csvfile lookup reads an entry from a .csv file. Assume Lorin has a .csv file that
looks like Example 10-16.

Example 10-16. users.csv

username,email
lorin,lorin@ansiblebook.com
john,john@example.com
sue,sue@example.org

If he wants to extract Sue’s email address by using the csvfile lookup plug-in, he
would invoke the lookup plug-in like this:

lookup('csvfile', 'sue file=users.csv delimiter=, col=1')

The csvfile lookup is a good example of a lookup that takes multiple arguments.
Here, four arguments are being passed to the plug-in:

• sue•
• file=users.csv•
• delimiter=,•
• col=1•

You don’t specify a name for the first argument to a lookup plug-in, but you do
specify names for the additional arguments. In the case of csvfile, the first argument
is an entry that must appear exactly once in column 0 (the first column, 0-indexed) of
the table.

188 | Chapter 10: Complex Playbooks

4 DNS service providers typically have web interfaces to let you perform DNS-related tasks such as creating
TXT records.

The other arguments specify the name of the .csv file, the delimiter, and which
column should be returned. In our example, we want to do three things:

• Look in the file named users.csv and locate where the fields are delimited by•
commas.

• Look up the row where the value in the first column is sue.•
• Return the value in the second column (column 1, indexed by 0). This evaluates•

to sue@example.org.

If the username we want to look up is stored in a variable named username, we could
construct the argument string by using the + sign to concatenate the username string
with the rest of the argument string:

lookup('csvfile', username + ' file=users.csv delimiter=, col=1')

dig
If you’re reading this book, you probably know what the Domain Name System
(DNS) does, but just in case you don’t: DNS is the service that translates hostnames,
such as ansiblebook.com, to IP addresses, such as 64.98.145.30.

The dig module requires that you install the dnspython Python
package on the Ansible controller.

DNS works by associating one or more records with a hostname. The most common
types of DNS records are A records and CNAME records, which associate a hostname
with an IP address (an A record) or specify that a hostname is an alias for another
hostname (a CNAME record).

The DNS protocol supports another type called a TXT record: an arbitrary string that
you can attach to a hostname so that anybody can retrieve it by using a DNS client.

For example, Lorin owns the domain ansiblebook.com, so he can create TXT records
associated with any hostnames in that domain.4 He associated a TXT record with the
ansiblebook.com hostname that contains the ISBN number for this book. You can look
up the TXT record by using the dig command-line tool, as shown in Example 10-17.

Lookups | 189

Example 10-17. Using the dig tool to look up a TXT record

$ dig +short ansiblebook.com TXT
"isbn=978-1098109158"

The dig lookup queries the DNS server for records associated with the host. We
create a task in a playbook to query the TXT records:

- name: Look up TXT record
 debug:
 msg: "{{ lookup('dnstxt', 'ansiblebook.com', 'qtype=TXT') }}"

And the output will look like this:
TASK: [Look up TXT record] **
ok: [myserver] ==> {
 "msg": "isbn=978-1098109158"
}

For more information on the dig lookup plug-in:
$ ansible-doc -t lookup dig

redis
Redis is a popular key-value store, commonly used as a cache, as well as a data store
for job queue services such as Sidekiq. You can use the redis lookup to retrieve the
value of a list of keys. The list must be expressed as a string, as the module does the
equivalent of calling the Redis GET command. This lookup is configured differently
than most others because it supports looking up lists of variable length.

The redis module requires that you install the redis Python pack‐
age on the control machine.

For example, let’s say that we have a Redis server running on our control machine.
We set the key weather to the value sunny and the key temp to 25 by doing something
like this:

$ redis-cli SET weather sunny
$ redis-cli SET temp 25

We define a task in our playbook that invokes the redis lookup:
- name: Look up values in Redis
 debug:
 msg: "{{ lookup('redis', 'weather','temp') }}"

The output will look like this:

190 | Chapter 10: Complex Playbooks

TASK: [Look up values in Redis] **
ok: [localhost] ==> {
 "msg": "sunny,25"
}

The module will default to redis://localhost:6379 if the host and port aren’t specified.
We should invoke the module with environment variables if we need another server
for this task:

- name: Look up values in Redis
 environment:
 ANSIBLE_REDIS_HOST: redis1.example.com
 ANSIBLE_REDIS_PORT: 6379
 debug:
 msg: "{{ lookup('redis', 'weather','temp') }}"

You can also configure Redis in ansible.cfg:
[lookup_redis]
host: redis2.example.com
port: 6666

Redis can be configured as a cluster.

Writing Your Own Lookup Plug-in
You can also write your own lookup plug-in if you need functionality that is not
provided by the existing plug-ins. Writing custom lookup plug-ins is out of scope for
this book, but if you’re really interested, we suggest that you take a look at the source
code for the lookup plug-ins that ship with Ansible.

Once you’ve written your lookup plug-in, place it in one of the following directories:

• The lookup_plugins directory next to your playbook•
• ~/.ansible/plugins/lookup•
• /usr/share/ansible/plugins/lookup•
• The directory specified in your ANSIBLE_LOOKUP_PLUGINS environment variable•

More Complicated Loops
Up until this point, whenever we’ve written a task that iterates over a list of items,
we’ve used the with_items clause to specify that list. Although this is the most
common way to do a loop, Ansible supports other mechanisms for iteration. For
instance, you can use the until keyword to retry a task until it succeeds:

- name: Unarchive maven
 unarchive:
 src: "{{ maven_url }}"
 dest: "{{ maven_location }}"
 copy: false

More Complicated Loops | 191

https://oreil.ly/DbSU4
https://oreil.ly/DbSU4

 mode: '0755'
 register: maven_download
 until: maven_download is success
 retries: 5
 delay: 3

The keyword loop is equivalent to with_items, and the list should be a uniform
list, not a list with various data (not a mixed list with scalars, arrays, and dicts). You
can do all kinds of things with loop! The official documentation covers these quite
thoroughly, so we’ll show examples from just a few of them to give you a sense of how
they work and when to use them. Here is one from a more complicated loop:

 - name: Iterate with loop
 debug:
 msg: "KPI: {{ item.kpi }} prio: {{ i + 1 }} goto: {{ item.dept }}"
 loop:
 - kpi: availability
 dept: operations
 - kpi: performance
 dept: development
 - kpi: security
 dept: security
 loop_control:
 index_var: i
 pause: 3

You can pass a list directly to most packaging modules, such as apt, yum, and pack
age. Older playbooks might still have with_items, but that is no longer needed.
Nowadays we use:

- name: Install packages
 become: true
 package:
 name: "{{ list_of_packages }}"
 state: present

With Lookup Plug-in
It’s good to know that with_items relies on a lookup plug-in; items is just one of the
lookups. Table 10-4 provides a summary of the available constructs for looping with a
lookup plug-in. You can even hook up your own lookup plug-in to iterate.

Table 10-4. Looping constructs

Name Input Looping strategy
with_items List Loop over list elements
with_lines Command to execute Loop over lines in command output
with_fileglob Glob Loop over filenames
with_first_found List of paths First file in input that exists
with_dict Dictionary Loop over dictionary elements

192 | Chapter 10: Complex Playbooks

https://oreil.ly/bgbdX

Name Input Looping strategy
with_flattened List of lists Loop over flattened list
with_indexed_items List Single iteration
with_nested List Nested loop
with_random_choice List Single iteration
with_sequence Sequence of integers Loop over sequence
with_subelements List of dictionaries Nested loop
with_together List of lists Loop over zipped list
with_inventory_hostnames Host pattern Loop over matching hosts

Let’s go over a few of the most important constructs.

with_lines
The with_lines looping construct lets you run an arbitrary command on your
control machine and iterate over the output, one line at a time.

Imagine you have a file that has a list of names. You want your computer to pro‐
nounce their names. Imagine a file like this:

Ronald Linn Rivest
Adi Shamir
Leonard Max Adleman
Whitfield Diffie
Martin Hellman

Example 10-18 shows how to use with_lines to read a file and iterate over its
contents line by line.

Example 10-18. Using with_lines as a loop

- name: Iterate over lines in a file
 say:
 msg: "{{ item }}"
 with_lines:
 - cat files/turing.txt

with_fileglob
The with_fileglob construct is useful for iterating over a set of files on the control
machine.

Example 10-19 shows how to iterate over files that end in .pub in the /var/keys direc‐
tory, as well as a keys directory next to your playbook. It then uses the file lookup
plug-in to extract the contents of the file, which are passed to the authorized_key
module.

More Complicated Loops | 193

Example 10-19. Using with_fileglob to add keys

- name: Add public keys to account
 become: true
 authorized_key:
 user: deploy
 key: "{{ lookup('file', item) }}"
 with_fileglob:
 - /var/keys/*.pub
 - keys/*.pub

with_dict
The with_dict construct lets you iterate over a dictionary instead of a list. When
you use this looping construct, each item loop variable is a dictionary with two
properties:

key
One of the keys in the dictionary

value
The value in the dictionary that corresponds to key

For example, if our host has an enp0s8 interface, there will be an Ansible fact named
ansible_enp0s8. It will have a key named ipv4 that contains a dictionary that looks
something like this:

{
 "address": "192.168.33.10",
 "broadcast": "192.168.33.255",
 "netmask": "255.255.255.0",
 "network": "192.168.33.0"
}

We could iterate over this dictionary and print out the entries one at a time:
- name: Iterate over ansible_enp0s8
 debug:
 msg: "{{ item.key }}={{ item.value }}"
 with_dict: "{{ ansible_enp0s8.ipv4 }}"

The output looks like this:
TASK [Iterate over ansible_enp0s8] **
ok: [web] => (item={'key': 'address', 'value': '192.168.33.10'}) => {
 "msg": "address=192.168.33.10"
}
ok: [web] => (item={'key': 'broadcast', 'value': '192.168.33.255'}) => {
 "msg": "broadcast=192.168.33.255"
}
ok: [web] => (item={'key': 'netmask', 'value': '255.255.255.0'}) => {
 "msg": "netmask=255.255.255.0"
}
ok: [web] => (item={'key': 'network', 'value': '192.168.33.0'}) => {

194 | Chapter 10: Complex Playbooks

 "msg": "network=192.168.33.0"
}

Iterating over a dictionary often helps reduce the amount of code.

Looping Constructs as Lookup Plug-ins
Ansible implements looping constructs as lookup plug-ins. You just slap a with onto
the beginning of a lookup plug-in to use it in its loop form. For example, we can
rewrite Example 10-12 by using the with_file form in Example 10-20.

Example 10-20. Using the file lookup as a loop

- name: Add my public key for SSH
 authorized_key:
 user: vagrant
 key: "{{ item }}"
 key_options: 'from="10.0.2.2"'
 exclusive: true
 with_file: '~/.ssh/id_ed25519.pub'

Typically, we use a lookup plug-in as a looping construct only if it returns a list, which
is how we were able to separate out the plug-ins into Table 10-3 (return strings) and
Table 10-4 (return lists).

Loop Controls
Ansible provides users with more control over loop handling than most program‐
ming languages, but that does not mean you should use all the variants. Try to keep it
as simple as possible.

Setting the Variable Name
The loop_var control allows us to give the iteration variable a different name than
the default name, item, as shown in Example 10-21.

Example 10-21. Use user as loop variable

- name: Add users
 become: true
 user:
 name: "{{ user.name }}"
 with_items:
 - { name: gil }
 - { name: sarina }
 - { name: leanne }
 loop_control:
 loop_var: user

Loop Controls | 195

Although in Example 10-21 loop_var provides only a cosmetic improvement, it can
be essential for more advanced loops.

In Example 10-22, we would like to loop over multiple tasks at once. One way to
achieve that is to use include with with_items.

However, the vhosts.yml file that is going to be included may also contain with_items
in some tasks. This would produce a conflict, because the default loop_var item is
used for both loops at the same time. To prevent a naming collision, we specify a
different name for loop_var in the outer loop.

Example 10-22. Use vhost as loop variable

- name: Run a set of tasks in one loop
 include: vhosts.yml
 with_items:
 - { domain: www1.example.com }
 - { domain: www2.example.com }
 - { domain: www3.example.com }
 loop_control:
 loop_var: vhost

In the included task file vhosts.yml (Example 10-23), we can now use the default
loop_var name item, as we used to do.

Example 10-23. Included file can contain a loop

- name: Create nginx directories
 file:
 path: "/var/www/html/{{ vhost.domain }}/{{ item }}"
 state: directory
 with_items:
 - logs
 - public_http
 - public_https
 - includes

- name: Create nginx vhost config
 template:
 src: "{{ vhost.domain }}.j2"
 dest: /etc/nginx/conf.d/{{ vhost.domain }}.conf

We keep the default loop variable in the inner loop.

Labeling the Output
The label control was added in Ansible 2.2 and provides some control over how the
loop output will be shown to the user during execution.

The following example contains an ordinary list of dictionaries:

196 | Chapter 10: Complex Playbooks

- name: Create nginx vhost configs
 become: true
 template:
 src: "{{ item.domain }}.conf.j2"
 dest: "/etc/nginx/conf.d/{{ item.domain }}.conf"
 mode: '0640'
 with_items:
 - { domain: www1.example.com, tls_enabled: true }
 - { domain: www2.example.com, tls_enabled: false }
 - { domain: www3.example.com, tls_enabled: false,
 aliases: [edge2.www.example.com, eu.www.example.com] }

By default, Ansible prints the entire dictionary in the output. For larger dictionaries,
the output can be difficult to read without a loop_control clause that specifies a
label:

TASK [Create nginx vhost configs] ***
changed: [web] => (item={'domain': 'www1.example.com', 'tls_enabled': True})
changed: [web] => (item={'domain': 'www2.example.com', 'tls_enabled': False})
changed: [web] => (item={'domain': 'www3.example.com', 'tls_enabled': False,
'aliases': ['edge2.www.example.com', 'eu.www.example.com']})

Since we are interested only in the domain names, we can simply add a label in
the loop_control clause describing what should be printed when we iterate over the
items:

- name: Create nginx vhost configs
 become: true
 template:
 src: "{{ item.domain }}.conf.j2"
 dest: "/etc/nginx/conf.d/{{ item.domain }}.conf"
 mode: '0640'
 with_items:
 - { domain: www1.example.com, tls_enabled: true }
 - { domain: www2.example.com, tls_enabled: false }
 - { domain: www3.example.com, tls_enabled: false,
 aliases: [edge2.www.example.com, eu.www.example.com] }
 loop_control:
 label: "for domain {{ item.domain }}"

This results in much more readable output:
TASK [Create nginx vhost configs] ***
ok: [web] => (item=for domain www1.example.com)
ok: [web] => (item=for domain www2.example.com)
ok: [web] => (item=for domain www3.example.com)

Keep in mind that running in verbose mode (using -v) will show
the full dictionary; don’t use label to hide your passwords from
log output! Set no_log: true on the task instead.

Loop Controls | 197

Imports and Includes
The import_* feature allows you to include tasks, or even whole roles, in the tasks
section of a play through the use of the keywords import_tasks and import_role.
When importing files in other playbooks statically, Ansible runs the plays and tasks in
each imported playbook in the order they are listed, just as if they had been defined
directly in the main playbook.

The include_* features allow you to dynamically include tasks, vars, or even whole
roles by the use of the keywords include_tasks, include_vars, and include_role.
This is often used in roles to separate or even group tasks and task arguments to
each task in the included file. Included roles and tasks may—or may not—run,
depending on the results of other tasks in the playbook. When a loop is used with
include_tasks or include_role, the included tasks or role will be executed once for
each item in the loop.

Please note that the bare include keyword is deprecated in favor of
the keywords include_tasks, include_vars, and include_role.

Let’s consider an example. Example 10-24 contains two tasks of a play that share an
identical become argument, a when condition, and a tag.

Example 10-24. Identical arguments

- name: Install nginx
 become: true
 when: ansible_os_family == 'RedHat'
 package:
 name: nginx
 tags:
 - nginx

- name: Ensure nginx is running
 become: yes
 when: ansible_os_family == 'RedHat'
 service:
 name: nginx
 state: started
 enabled: yes
 tags:
 -nginx

198 | Chapter 10: Complex Playbooks

When we separate these two tasks in a file as in Example 10-25 and use
include_tasks, as in Example 10-26, we can simplify the play by adding the task
arguments only to the include_tasks.

Example 10-25. Separate tasks into a different file

- name: Install nginx
 package:
 name: nginx

- name: Ensure nginx is running
 service:
 name: nginx
 state: started
 enabled: yes

Example 10-26. Using an include for the tasks file applying the arguments in common

- include_tasks: nginx_include.yml
 become: yes
 when: ansible_os_family == 'RedHat'
 tags: nginx

Dynamic Includes
A common pattern in roles is to define tasks specific to a particular operating system
into separate task files. Depending on the number of operating systems supported by
the role, this can lead to a lot of boilerplate for the include_tasks:

- include_tasks: Redhat.yml
 when: ansible_os_family == 'Redhat'

- include_tasks: Debian.yml
 when: ansible_os_family == 'Debian'

Since version 2.0, Ansible has allowed users to include a file dynamically by using
variable substitution. This is called a dynamic include:

- name: Play platform specific actions
 include_tasks: "{{ ansible_os_family }}.yml"

However, there is a drawback to using dynamic includes. If Ansible does not have
enough information to populate the variables that determine which file will be
included, ansible-playbook --list-tasks might not list the tasks. For example,
fact variables (see Chapter 5) are not populated when the --list-tasks argument is
used.

Imports and Includes | 199

Role Includes
The include_role clause differs from the import_role clause, which statically
imports all parts of the role. By contrast, include_role allows us to select what
parts of a role to include and use, as well as where in the play:

- name: Install nginx
 yum:
 pkg: nginx

- name: Install php
 include_role:
 name: php

- name: Configure nginx
 template:
 src: nginx.conf.j2
 dest: /etc/nginx/nginx.conf

The include_role clause makes the handlers available as well, so
you can notify about a restart, for instance.

Role Flow Control
You can use separate task files in an Ansible role’s tasks directory for the separate use
cases it supports. The main.yml tasks file will use include_tasks for each use case.
However, the include_role clause can run parts of roles with tasks_from. Imagine
that in a role dependency that runs before the main role, a file task changes the owner
of a file—but the system user now designated as the owner does not yet exist. It will
be created later, in the main role, during a package installation:

- name: Install nginx
 yum:
 pkg: nginx

- name: Install php
 include_role:
 name: php
 tasks_from: install

- name: Configure nginx
 template:
 src: nginx.conf.j2
 dest: /etc/nginx/nginx.conf

- name: Configure php
 include_role:
 name: php
 tasks_from: configure

200 | Chapter 10: Complex Playbooks

1. Include and run install.yml from the php role.1.
2. Include and run configure.yml from the php role. 2.

Blocks
Much like the include_* clauses, the block clause provides a mechanism for group‐
ing tasks. It allows you to set conditions or arguments for all tasks within a block at
once:

- block:
 - name: Install nginx
 package:
 name: nginx

 - name: Ensure nginx is running
 service:
 name: nginx
 state: started
 enabled: yes

 become: yes
 when: "ansible_os_family == 'RedHat'

Unlike the include clause, however, looping over a block clause is
not currently supported.

Next, let’s look at an even more interesting application for the block clause: error
handling.

Error Handling with Blocks
Dealing with error scenarios has always been a challenge. Historically, Ansible has
been error-agnostic, in the sense that errors and failures may occur on a host.
Ansible’s default error-handling behavior is to take a host out of the play if a task fails
but continue the play as long as there are hosts remaining that haven’t encountered
errors.

In combination with the serial and max_fail_percentage clause, Ansible gives
users some control over when a play must be declared failed. With the block clause,
as shown in Example 10-27, it advances error handling a bit further and lets us
automate recovery and roll back tasks in case of a failure.

Blocks | 201

Example 10-27. app-upgrade.yml

 - block:
 - debug: msg="You will see a failed tasks right after this"

 - name: Returns 1
 command: /usr/bin/false

 - debug: msg="You never see this message"

 rescue:
 - debug: msg="You see this message in case of failure in the block"

 always:
 - debug: msg="This will be always executed"

block starts the construct.

rescue lists tasks to be executed in case of a failure in the block clause.

always lists tasks to execute either way.

If you have some programming experience, the way error handling is implemented
may remind you of the try-except-finally paradigm—and it works much the same
way as in this Python division function:

def division(x, y):
 try:
 result = x / y
 except ZeroDivisionError:
 print("division by zero!")
 else:
 print("result is", result)
 finally:
 print("executing finally clause")

To demonstrate how upgrades always work, René starts with a daily chore: upgrading
an application. The application is distributed in a cluster of virtual machines (VMs)
and deployed on an IaaS cloud (Apache CloudStack). CloudStack provides the func‐
tionality to snapshot a VM. Simplified, the playbook looks like this:

1. Take VM out of the load balancer.1.
2. Create a VM snapshot before the app upgrade.2.
3. Upgrade the application.3.
4. Run smoke tests.4.
5. Roll back when something goes wrong.5.
6. Move VM back to the load balancer.6.

202 | Chapter 10: Complex Playbooks

https://oreil.ly/zIDUh

7. Clean up and remove the VM snapshot.7.

Let’s put these tasks into a playbook (Example 10-28). Note that they are still simpli‐
fied and not yet runnable.

Example 10-28. app-upgrade.yml

- hosts: app-servers
 serial: 1
 tasks:
 - name: Take VM out of the load balancer
 - name: Create a VM snapshot before the app upgrade
 - block:
 - name: Upgrade the application
 - name: Run smoke tests
 rescue:
 - name: Revert a VM to the snapshot after a failed upgrade
 always:
 - name: Re-add webserver to the loadbalancer
 - name: Remove a VM snapshot
..

In this playbook, we will most certainly end up with a running VM as a member of a
load-balancer cluster, even if the upgrade fails. No downtime due to failure!

The tasks under the always clause will be executed, even if an error
occurs in the rescue clause! Be careful what you put in the always
clause.

If all we want to do is get upgraded VMs back to the load-balancer cluster, the play
will look a bit different (Example 10-29).

Example 10-29. app-upgrade.yml

- hosts: app-servers
 serial: 1

 tasks:

 - name: Take VM out of the load balancer

 - name: Create a VM snapshot before the app upgrade

 - block:
 - name: Upgrade the application

Error Handling with Blocks | 203

 - name: Run smoke tests

 rescue:
 - name: Revert a VM to the snapshot after a failed upgrade

 - name: Re-add webserver to the loadbalancer
 - name: Remove a VM snapshot
...

In this example, we removed the always clause and put the two tasks at the end of the
play. This ensures that the two tasks will be executed only if the rescue goes through.
As a result, only upgraded VMs go back to the load balancer.

The final playbook is shown in full in Example 10-30.

Example 10-30. Error-agnostic application-upgrade playbook

- hosts: app-servers
 serial: 1
 tasks:

 - name: Take app server out of the load balancer
 delegate_to: localhost
 cs_loadbalancer_rule_member:
 name: balance_http
 vm: "{{ inventory_hostname_short }}"
 state: absent

 - name: Create a VM snapshot before an upgrade
 delegate_to: localhost
 cs_vmsnapshot:
 name: Snapshot before upgrade
 vm: "{{ inventory_hostname_short }}"
 snapshot_memory: true

 - block:
 - name: Upgrade the application
 script: upgrade-app.sh
 - name: Run smoke tests
 script: smoke-tests.sh
 rescue:
 - name: Revert the VM to a snapshot after a failed upgrade
 delegate_to: localhost
 cs_vmsnapshot:
 name: Snapshot before upgrade
 vm: "{{ inventory_hostname_short }}"
 state: revert

 - name: Re-add app server to the loadbalancer
 delegate_to: localhost
 cs_loadbalancer_rule_member:
 name: balance_http
 vm: "{{ inventory_hostname_short }}"

204 | Chapter 10: Complex Playbooks

 state: present

 - name: Remove a VM snapshot after successful upgrade or successful rollback
 delegate_to: localhost
 cs_vmsnapshot:
 name: Snapshot before upgrade
 vm: "{{ inventory_hostname_short }}"
 state: absent
...

On day two we should look into the failed VMs.

Encrypting Sensitive Data with ansible-vault
The Mezzanine playbook requires access to sensitive information, such as database
and administrator passwords. We dealt with this in Chapter 6 by putting all of the
sensitive information in a separate file called secrets.yml and making sure that we
didn’t check this file into our version-control repository.

Ansible provides an alternative solution: instead of keeping the secrets.yml file out
of version control, we can commit an encrypted file. That way, even if our version-
control repository is compromised, the attacker can’t access to the contents of the file
unless they also have the password used for the encryption.

The ansible-vault command-line tool allows us to create and edit an encrypted file
that ansible-playbook will recognize and decrypt automatically, given the password.

Encryption at Rest

This tool ensures the data is encrypted at rest (i.e, on disk) only.
It is your own responsibility to set no_log: true on tasks that use
this data.

We can encrypt an existing file like this:
$ ansible-vault encrypt secrets.yml

Alternately, we can create a new encrypted file in the special directory group_vars/all/
next to our playbook. Bas stores global variables in group_vars/all/vars.yml and
secrets in group_vars/all/vault (without extension, to not confuse linters and editors).

$ mkdir -p group_vars/all/
$ ansible-vault create group_vars/all/vault

ansible-vault prompts for a password, and will then launch a text editor so that
you can work in the file. It launches the editor specified in the $EDITOR environment
variable. If that variable is not defined in your shell’s profile (export EDITOR=code),
it defaults to vim.

Encrypting Sensitive Data with ansible-vault | 205

Example 10-31 shows an example of the contents of a file encrypted using ansible-
vault.

Example 10-31. Partial contents of file encrypted with ansible-vault

$ANSIBLE_VAULT;1.1;AES256
38626635666338393730353966303331643566646561363838333832623138613931363835363963
3638396538626433393763386136636235326139633666640a343437613564616635316532373635
...
35373564313132356663633633346136376332633665373634363234666363356530386562616463
35343436313638613837386661336366633832333938666532303931346434386433

Use the vars_files section of a play to reference a file encrypted with ansible-
vault the same way you would access a regular file: you don’t need to change
Example 7-28 at all when you encrypt the secrets.yml file.

ansible-playbook needs to prompt us for the password of the encrypted file, or it
will simply error out. Do so by using the --ask-vault-pass argument:

$ ansible-playbook --ask-vault-pass playbook.yml

You can also store the password in a text file and tell ansible-playbook its location
by using the ANSIBLE_VAULT_PASSWORD_FILE environment variable or the --vault-
password-file argument:

$ ansible-playbook playbook.yml --vault-password-file ~/password.txt

If the argument to --vault-password-file has the executable bit set, Ansible will
execute it and use the contents of standard out as the vault password. This allows
you to use a script to supply the password to Ansible.

Table 10-5 shows the available ansible-vault commands.

Table 10-5. ansible-vault commands

Command Description
ansible-vault encrypt file.yml Encrypt the plain-text file.yml file
ansible-vault decrypt file.yml Decrypt the encrypted file.yml file
ansible-vault view file.yml Print the contents of the encrypted file.yml file
ansible-vault create file.yml Create a new encrypted file.yml file
ansible-vault edit file.yml Edit an encrypted file.yml file
ansible-vault rekey file.yml Change the password on an encrypted file.yml file

206 | Chapter 10: Complex Playbooks

Multiple Vaults with Different Passwords
One password might be sufficient for a small team, but you might want to segretate
concerns by having different passwords for the production environment. In version
2.4, support was introduced to have a separate vault-ID for a particular encrypted
file. Such a vault identity is like the name for the specific password; for example, the
vault-ID “dev” is for the development environment, and the vault-ID “prod” is for the
production environment.

In ansible.fcg under [defaults] we create a reference for the vault-IDs and their
corresponding vault password file (these files should exist):

[defaults]
vault_identity_list = dev@~/.vault_dev, prod@~/.vault_prod

When we encrypt the production variables with the vault-ID prod:
ansible-vault encrypt --encrypt-vault-id=prod group_vars/prod/vault

Then we notice the vault-ID in the header of the encrypted file:
$ANSIBLE_VAULT;1.2;AES256;prod

Conclusion
Ansible has lots of features that help everyone work with corner cases in flexible
ways, whether it is handling errors, data inputs and transformation, iteration, excep‐
tions, or sensitive data. This chapter introduced some complex features of Ansible—
you might want to revisit it if you actually need them. The next chapter is more
helpful for beginners.

Conclusion | 207

CHAPTER 11

Customizing Hosts, Runs, and Handlers

Sometimes Ansible’s default behaviors don’t quite fit your use case. In this chapter, we
cover Ansible features that provide customization by controlling which hosts to run
against, and how tasks and handlers are run.

Patterns for Specifying Hosts
So far, the host parameter in our plays has specified a single host or group, like this:

hosts: web

Instead of specifying a single host or group, though, you can also specify a pattern.
You’ve already seen the all pattern, which will run a play against all known hosts:

hosts: all

You can specify a union of two groups with a colon; this example specifies all dev and
staging machines:

hosts: dev:staging

You can specify an intersection by using a colon and ampersand. For example, to
specify all of the database servers in your staging environment, you might do this:

hosts: staging:&database

Table 11-1 shows the patterns that Ansible supports. Note that the regular-expression
pattern always starts with a tilde.

209

Table 11-1. Supported patterns

Action Example usage
All hosts all

All hosts *

Union dev:staging

Intersection staging:&database

Exclusion dev:!queue

Wildcard *.example.com

Range of numbered servers web[5:10]

Regular expression ~web\d+\.example\.(com|org)

Ansible supports multiple combinations of patterns:
hosts: dev:staging:&database:!queue

Limiting Which Hosts Run
A limit targets a playbook to a subset of all potential hosts. Use either the -l or the
--limit flag, as shown in Example 11-1 with a pattern of choice.

Example 11-1. Limiting which hosts run

$ ansible-playbook -l <pattern> playbook.yml

$ ansible-playbook --limit <pattern> playbook.yml

You can use the pattern syntax to specify arbitrary combinations of hosts. For
example:

$ ansible-playbook -l 'staging:&database' playbook.yml

Running a Task on the Control Machine
Sometimes you want to run a particular task on the control machine instead of on the
remote host. To support this, Ansible provides the delegate_to: localhost clause
for tasks.

In most organizations you cannot access the internet directly from servers, but you
might be able to download, using a proxy, on your laptop. If so, then you can delegate
downloading to your laptop:

 - name: Download goss binary
 delegate_to: localhost
 connection: local
 become: false
 get_url:

210 | Chapter 11: Customizing Hosts, Runs, and Handlers

1 Shadow IT refers to practices that people resort to when the (central) IT department limits or restricts access
to code from the internet. For instance, you can uuencode binaries into Microsoft Word documents that you
mail to yourself.

 url: "https://oreil.ly/RuRsL"
 dest: "~/Downloads/goss"
 mode: '0755'
 ignore_errors: true

Bas uses ignore_errors: true because if this action fails, we need shadow IT1 to get
that file into the Downloads directory. Goss is a very comprehensive server-validation
tool based on a YAML specification.

Manually Gathering Facts
If it’s possible that the SSH server wasn’t yet running when you started the playbook,
you need to turn off explicit fact gathering; otherwise, Ansible will try to SSH to
the host to gather facts before running the first tasks. Because you still need access
to facts (recall that we use the ansible_env fact in the playbook), you can explicitly
invoke the setup module to get Ansible to gather facts, as shown in Example 11-2.

Example 11-2. Waiting for SSH server to come up

- name: Chapter 9 playbook
 hosts: web
 gather_facts: false
 become: false
 tasks:
 - name: Wait for web ssh daemon to be running
 wait_for:
 port: 22
 host: "{{ inventory_hostname }}"
 search_regex: OpenSSH

 - name: Gather facts
 setup:
...

Retrieving an IP Address from the Host
In our playbook, several of the hostnames we use are derived from the IP address of
the web server:
live_hostname: 192.168.33.10.xip.io
domains:
 - 192.168.33.10.xip.io
 - www.192.168.33.10.xip.io

Manually Gathering Facts | 211

What if we want to use the same scheme but not hardcode the IP addresses into the
variables? That way, if the IP address of the web server changes, we don’t have to
change our playbook.

Ansible retrieves the IP addresses of each host and stores that information in
ansible_facts. Each network interface has an associated Ansible fact. For exam‐
ple, details about network interface eth0 are stored in the ansible_eth0 fact (see
Example 11-4).

Example 11-4. ansible_eth0 fact

 "ansible_eth0": {
 "active": true,
 "device": "eth0",
 "ipv4": {
 "address": "10.0.2.15",
 "broadcast": "10.0.2.255",
 "netmask": "255.255.255.0",
 "network": "10.0.2.0"
 },
 "ipv6": [
 {
 "address": "fe80::5054:ff:fe4d:77d3",
 "prefix": "64",
 "scope": "link"
 }
],
 "macaddress": "52:54:00:4d:77:d3",
 "module": "e1000",
 "mtu": 1500,
 "promisc": false,
 "speed": 1000,
 "type": "ether"
}

Our Vagrant box has two interfaces, eth0 and eth1. The eth0 interface is a private
interface whose IP address (10.0.2.15) we cannot reach. The eth1 interface is the one
that has the IP address we’ve assigned in our Vagrantfile (192.168.33.10).

We can define our variables like this:
live_hostname: "{{ ansible_facts.eth1.ipv4.address }}.xip.io"
domains:
 - "{{ ansible_facts.eth1.ipv4.address }}.xip.io"
 - "www.{{ ansible_facts.eth1.ipv4.address }}.xip.io"
Running a Task on a Machine Other than the Host

Sometimes you want to run a task that’s associated with a host, but you want to
execute the task on a different server. You can use the delegate_to clause to run the
task on a different host.

212 | Chapter 11: Customizing Hosts, Runs, and Handlers

Two common use cases are as follows:

• Enabling host-based alerts with an alerting system, such as Nagios•
• Adding a host to a load balancer, such as HAProxy•

For example, imagine we want to enable Nagios alerts for all of the hosts in our web
group. Assume we have an entry in our inventory named nagios.example.com that is
running Nagios. Example 11-5 shows an example that uses delegate_to.

Example 11-5. Using delegate_to with Nagios

- name: Enable alerts for web servers
 hosts: web
 tasks:
 - name: enable alerts
 delegate_to: nagios.example.com
 nagios:
 action: enable_alerts
 service: web
 host: "{{ inventory_hostname }}"

In this example, Ansible would execute the nagios task on nagios.example.com, but
the inventory_hostname variable referenced in the play would evaluate to the web
host.

For a more detailed example that uses delegate_to, see the lamp_haproxy/roll‐
ing_update.yml example in the Ansible project’s examples GitHub repo.

Running on One Host at a Time
By default, Ansible runs each task in parallel across all hosts. Sometimes you want
to run your task on one host at a time. The canonical example is when upgrading
application servers that are behind a load balancer. Typically, you take the application
server out of the load balancer, upgrade it, and put it back. But you don’t want to take
all of your application servers out of the load balancer, or your service will become
unavailable.

You can use the serial clause on a play to tell Ansible to restrict the number of hosts
on which a play runs. Example 11-6 removes hosts one at a time from an Amazon
EC2 elastic load balancer, upgrades the system packages, and then puts them back.
(We cover Amazon EC2 in more detail in Chapter 14.)

Running on One Host at a Time | 213

https://oreil.ly/XtkLO

Example 11-6. Removing hosts from load balancer and upgrading packages

- name: Upgrade packages on servers behind load balancer
 hosts: myhosts
 serial: 1
 tasks:
 - name: Get the ec2 instance id and elastic load balancer id
 ec2_facts:

 - name: Take the host out of the elastic load balancer
 delegate_to: localhost
 ec2_elb:
 instance_id: "{{ ansible_ec2_instance_id }}"
 state: absent

 - name: Upgrade packages
 apt:
 update_cache: true
 upgrade: true

 - name: Put the host back in the elastic load balancer
 delegate_to: localhost
 ec2_elb:
 instance_id: "{{ ansible_ec2_instance_id }}"
 state: present
 ec2_elbs: "{{ item }}"
 with_items: ec2_elbs
...

In our example, we pass 1 as the argument to the serial clause, telling Ansible to run
on only one host at a time. If we had passed 2, Ansible would have run two hosts at a
time.

Normally, when a task fails, Ansible stops running tasks against the host that fails but
continues to run them against other hosts. In the load-balancing scenario, you might
want Ansible to fail the entire play before all hosts have failed a task. Otherwise, you
might end up with no hosts left inside your load balancer (you have taken each host
out of the load balancer and they all fail).

You can use a max_fail_percentage clause along with the serial clause to specify
the maximum percentage of failed hosts before Ansible fails the entire play. A maxi‐
mum fail percentage of 25% is shown here:

- name: Upgrade packages on servers behind load balancer
 hosts: myhosts
 serial: 1
 max_fail_percentage: 25
 tasks:
 # tasks go here

214 | Chapter 11: Customizing Hosts, Runs, and Handlers

If we have four hosts behind the load balancer and one fails a task, then Ansible will
keep executing the play, because this doesn’t exceed the 25% threshold. However, if a
second host fails a task, Ansible will fail the entire play. If you want Ansible to fail if
any of the hosts fail a task, set the max_fail_percentage to 0.

Running on a Batch of Hosts at a Time
You can also pass serial a percentage value instead of a fixed number. Ansible will
apply this percentage to the total number of hosts per play to determine the number
of hosts per batch, as shown in Example 11-7.

Example 11-7. Using a percentage value as a serial

- name: Upgrade 50% of web servers
 hosts: myhosts
 serial: 50%
 tasks:
 # tasks go here

We can get even more sophisticated. For example, you might want to run the play on
one host first, to verify that it works as expected, and then run it on a larger number
of hosts in subsequent runs. A possible use case would be managing a large logical
cluster of independent hosts: for example, 30 hosts of a content delivery network
(CDN).

Since version 2.2, Ansible has let users specify a list of serials (number or percent‐
age) to achieve this behavior, as shown in Example 11-8.

Example 11-8. Using a list of serials

- name: Configure CDN servers
 hosts: cdn
 serial:
 - 1
 - 30%
 tasks:
 # tasks go here

Ansible will restrict the number of hosts on each run to the next available serial
item unless the end of the list has been reached or there are no hosts left. This means
that the last serial will be kept and applied to each batch run as long as there are
hosts left in the play.

In the preceding play, with 30 CDN hosts, Ansible would run against one host on the
first batch run, and on each subsequent batch run it would run against at most 30% of
the hosts (for instance, 1, 9, 9, 9, and 2).

Running on a Batch of Hosts at a Time | 215

Running Only Once
Sometimes you might want a task to run only once, even if there are multiple hosts.
For example, perhaps you have multiple application servers running behind the
load balancer and you want to run a database migration, but you need to run the
migration on only one application server.

You can use the run_once clause to tell Ansible to run the command only once:
- name: Run the database migrations
 command: /opt/run_migrations
 run_once: true

This can be particularly useful when using delegate_to: localhost, if your play‐
book involves multiple hosts and you want to run the local task only once:

- name: Run the task locally, only once
 delegate_to: localhost
 command /opt/my-custom-command
 run_once: true

Limiting Which Tasks Run
Sometimes you don’t want Ansible to run every single task in your playbook, partic‐
ularly when you’re first writing and debugging it. Ansible provides several command-
line options that let you control which tasks run.

step
The --step flag has Ansible prompt you before running each task, like this:

$ ansible-playbook --step playbook.yml
Perform task: Install packages (y/n/c):

You can choose to execute the task (y), skip it (n), or continue running the rest of the
playbook without Ansible prompting you (c).

start-at-task
The --start-at-task taskname flag tells Ansible to start running the playbook at
the specified task, instead of at the beginning. This can be handy if one of your tasks
fails because of a bug and you want to rerun your playbook starting at the task you
just fixed.

Running Tags
Ansible allows you to add one or more tags to a task, a role, or a play. Use the -t
tagnames or --tags tag1,tag2 flag to tell Ansible to run only plays, roles, and tasks
that have certain tags (Example 11-9).

216 | Chapter 11: Customizing Hosts, Runs, and Handlers

Example 11-9. Tagging tasks

- name: Strategies
 hosts: strategies
 connection: local
 gather_facts: false

 tasks:

 - name: First task
 command: sleep "{{ sleep_seconds }}"
 changed_when: false
 tags:
 - first

 - name: Second task
 command: sleep "{{ sleep_seconds }}"
 changed_when: false
 tags:
 - second

 - name: Third task
 command: sleep "{{ sleep_seconds }}"
 changed_when: false
 tags:
 - third
...

When we run this playbook with the argument --tags first, the output looks as in
Example 11-10.

Example 11-10. Run only the first tag

$./playbook.yml --tags first
PLAY [Strategies] **
PLAY [Strategies] **
TASK [First task] **
ok: [one]
ok: [two]
ok: [three]
PLAY RECAP ***
one : ok=1 changed=0 unreachable=0 failed=0 skipped=0 rescued=0 ignored=0
three : ok=1 changed=0 unreachable=0 failed=0 skipped=0 rescued=0 ignored=0
two : ok=1 changed=0 unreachable=0 failed=0 skipped=0 rescued=0 ignored=0

“Tagging all the things” is one way to get granular control over your playbooks.

Limiting Which Tasks Run | 217

Skipping Tags
Use the --skip-tags tagnames flag to tell Ansible to skip plays, roles, and tasks that
have certain tags.

Running Strategies
The strategy clause on a play level gives you additional control over how Ansible
behaves per task for all hosts.

The default behavior we are already familiar with is the linear strategy, in which
Ansible executes one task on all hosts and waits until it has completed (or failed) on
all hosts before executing the next task on all hosts. As a result, a task takes as much
time as the slowest host takes to complete the task.

Let’s create a play to demonstrate the strategy feature (Example 11-9). We create a
minimalistic hosts file (Example 11-11), which contains three hosts, each containing
the variable sleep_seconds with a different value in seconds.

Example 11-11. Inventory group with three hosts having a different value for
sleep_seconds

[strategies]
one sleep_seconds=1
two sleep_seconds=6
three sleep_seconds=10

Linear
The playbook in Example 11-12, which we execute locally by using connection:
local, has a play with three identical tasks. In each task, we execute sleep with the
time specified in sleep_seconds.

Example 11-12. Playbook in linear strategy

- name: Strategies
 hosts: strategies
 connection: local
 gather_facts: false

 tasks:

 - name: First task
 command: sleep "{{ sleep_seconds }}"
 changed_when: false

 - name: Second task

218 | Chapter 11: Customizing Hosts, Runs, and Handlers

 command: sleep "{{ sleep_seconds }}"
 changed_when: false

 - name: Third task
 command: sleep "{{ sleep_seconds }}"
 changed_when: false
...

Running the playbook in the default strategy as linear results in the output shown
in Example 11-13.

Example 11-13. Result of the linear strategy run

$./playbook.yml -l strategies
PLAY [Strategies] **
TASK [First task] **
Sunday 08 August 2021 16:35:43 +0200 (0:00:00.016) 0:00:00.016 *********
ok: [one]
ok: [two]
ok: [three]
TASK [Second task] ***
Sunday 08 August 2021 16:35:54 +0200 (0:00:10.357) 0:00:10.373 *********
ok: [one]
ok: [two]
ok: [three]
TASK [Third task] **
Sunday 08 August 2021 16:36:04 +0200 (0:00:10.254) 0:00:20.628 *********
ok: [one]
ok: [two]
ok: [three]
PLAY RECAP ***
one : ok=3 changed=0 unreachable=0 failed=0 skipped=0 rescued=0 ignored=0
three : ok=3 changed=0 unreachable=0 failed=0 skipped=0 rescued=0 ignored=0
two : ok=3 changed=0 unreachable=0 failed=0 skipped=0 rescued=0 ignored=0
Sunday 08 August 2021 16:36:14 +0200 (0:00:10.256) 0:00:30.884 *********
===
First task --- 10.36s
Third task --- 10.26s
Second task -- 10.25s

We get the familiar ordered output. Note the identical order of task results: host one
is always the quickest (as it sleeps the least) and host three is the slowest (as it sleeps
the most).

Free
Another strategy available in Ansible is the free strategy. In contrast to linear,
Ansible will not wait for results of the task to execute on all hosts. Instead, if a host
completes one task, Ansible will execute the next task on that host.

Running Strategies | 219

Depending on the hardware resources and network latency, one host may have
executed the tasks faster than other hosts located at the end of the world. As a result,
some hosts will already be configured, while others are still in the middle of the play.

If we change the playbook to the free strategy, the output changes (Example 11-14).

Example 11-14. Playbook in free strategy

- name: Strategies
 hosts: strategies
 connection: local
 strategy: free
 gather_facts: false

 tasks:

 - name: First task
 command: sleep "{{ sleep_seconds }}"
 changed_when: false

 - name: Second task
 command: sleep "{{ sleep_seconds }}"
 changed_when: false

 - name: Third task
 command: sleep "{{ sleep_seconds }}"
 changed_when: false
...

Note that we changed the strategy to free on the third line of this play. As the output
in Example 11-15 shows, host one is already finished before host three has even
finished its first task.

Example 11-15. Results of running the playbook with the free strategy

$./playbook.yml -l strategies
PLAY [Strategies] **
Sunday 08 August 2021 16:40:35 +0200 (0:00:00.020) 0:00:00.020 *********
Sunday 08 August 2021 16:40:35 +0200 (0:00:00.008) 0:00:00.028 *********
Sunday 08 August 2021 16:40:35 +0200 (0:00:00.006) 0:00:00.035 *********
TASK [First task] **
ok: [one]
Sunday 08 August 2021 16:40:37 +0200 (0:00:01.342) 0:00:01.377 *********
TASK [Second task] ***
ok: [one]
Sunday 08 August 2021 16:40:38 +0200 (0:00:01.225) 0:00:02.603 *********
TASK [Third task] **
ok: [one]
TASK [First task] **
ok: [two]
Sunday 08 August 2021 16:40:42 +0200 (0:00:03.769) 0:00:06.372 *********

220 | Chapter 11: Customizing Hosts, Runs, and Handlers

ok: [three]
Sunday 08 August 2021 16:40:46 +0200 (0:00:04.004) 0:00:10.377 *********
TASK [Second task] ***
ok: [two]
Sunday 08 August 2021 16:40:48 +0200 (0:00:02.229) 0:00:12.606 *********
TASK [Third task] **
ok: [two]
TASK [Second task] ***
ok: [three]
Sunday 08 August 2021 16:40:56 +0200 (0:00:07.998) 0:00:20.604 *********
TASK [Third task] **
ok: [three]
PLAY RECAP ***
one : ok=3 changed=0 unreachable=0 failed=0 skipped=0 rescued=0 ignored=0
three : ok=3 changed=0 unreachable=0 failed=0 skipped=0 rescued=0 ignored=0
two : ok=3 changed=0 unreachable=0 failed=0 skipped=0 rescued=0 ignored=0
Sunday 08 August 2021 16:41:06 +0200 (0:00:10.236) 0:00:30.841 *********
===
Third task --- 10.24s
Second task --- 2.23s
First task -- 1.34s

To add timing information to the logging, we added a line to the
ansible.cfg file (callbacks are discussed in the next chapter):

callback_whitelist = profile_tasks ;

callback_whitelist will be normalized to callback_enabled.

Like many core parts in Ansible, strategy is implemented as a new type of plug-in.

Advanced Handlers
When Ansible’s default behavior for handlers doesn’t quite fit your particular use
case, you can gain tighter control over when your handlers fire. This subsection
describes how.

Handlers in Pre- and Post-Tasks
When we covered handlers, you learned that they are usually executed after all tasks
once, and only when they get notified. But keep in mind there are not only tasks but
pre_tasks and post_tasks.

Each tasks section in a playbook is handled separately; any handler notified in
pre_tasks, tasks, or post_tasks is executed at the end of each section. As a
result, it is possible to execute one handler several times in one play, as shown in
Example 11-16.

Advanced Handlers | 221

Example 11-16. handlers.yml

- name: Chapter 9 advanced handlers
 hosts: localhost

 handlers:
 - name: Print message
 command: echo handler executed

 pre_tasks:
 - name: Echo pre tasks
 command: echo pre tasks
 notify: Print message

 tasks:
 - name: Echo tasks
 command: echo tasks
 notify: Print message

 post_tasks:
 - name: Post tasks
 command: echo post tasks
 notify: Print message

When we run the playbook, we see the results in Example 11-17.

Example 11-17. handlers.yml output

$./handlers.yml
PLAY [Chapter 9 advanced handlers] ***
TASK [Gathering Facts] ***
ok: [localhost]
TASK [Echo pre tasks] **
changed: [localhost]
RUNNING HANDLER [Print message] **
changed: [localhost]
TASK [Echo tasks] **
changed: [localhost]
RUNNING HANDLER [Print message] **
changed: [localhost]
TASK [Post tasks] **
changed: [localhost]
RUNNING HANDLER [Print message] **
changed: [localhost]
PLAY RECAP ***
localhost : ok=7 changed=6 unreachable=0 failed=0 skipped=0 rescued=0 ignored=0

In a play there are more sections to notify handlers.

222 | Chapter 11: Customizing Hosts, Runs, and Handlers

Flush Handlers
You may be wondering why we wrote that handlers usually execute after all tasks. We
say usually because this is the default. However, Ansible lets us control the execution
point of the handlers with the help of a special module called meta.

In Example 11-18, we see a part of a play in which we use meta with flush_handlers
in the middle of the tasks. We do this for a reason: we want to run a smoke test and
validate a health check URL, returning OK if the application is in a healthy state. But
validating the healthy state before the services restart would not make sense.

Example 11-18. Smoke test for the home page

- name: Install home page
 template:
 src: index.html.j2
 dest: /usr/share/nginx/html/index.html
 mode: '0644'
 notify: Restart nginx

- name: Restart nginx
 meta: flush_handlers

- name: "Test it! https://localhost:8443/index.html"
 delegate_to: localhost
 become: false
 uri:
 url: 'https://localhost:8443/index.html'
 validate_certs: false
 return_content: true
 register: this
 failed_when: "'Running on ' not in this.content"
 tags:
 - test

With flush_handlers we force notified handlers to run in the middle of this play.

Meta Commands
Meta commands can influence Ansible’s internal execution or state; they can be used
anywhere in your playbook. One example is the command flush_handlers that we
just discussed, another is refresh_inventory to reload the inventory (ensure it’s not
cached). clear_facts and clear_host_errors are options not often needed. If you
need more flow control meta offers:

• end_batch ends the current batch when using serial
• end_host ends tasks for the current host without failing
• end_play ends the play without failure

Advanced Handlers | 223

Handlers Notifying Handlers
In the handlers file of the role roles/nginx/tasks/main.yml we run a configuration
check before reloading the configuration of restarting NGINX (Example 11-19). This
prevents downtime when the new configuration is incorrect.

Example 11-19. Checking the configuration before the service restarts

- name: Restart nginx
 debug:
 msg: "checking config first"
 changed_when: true
 notify:
 - Check nginx configuration
 - Restart nginx - after config check

- name: Reload nginx
 debug:
 msg: "checking config first"
 changed_when: true
 notify:
 - Check nginx configuration
 - Reload nginx - after config check

- name: Check nginx configuration
 command: "nginx -t"
 register: result
 changed_when: "result.rc != 0"
 check_mode: false

- name: Restart nginx - after config check
 service:
 name: nginx
 state: restarted

- name: Reload nginx - after config check
 service:
 name: nginx
 state: reloaded

You can notify a list of handlers; they will execute in the order of the list.

Handlers Listen
Before Ansible 2.2, there was only one way to notify a handler: by calling notify on
the handler’s name. This is simple and works well for most use cases.

Before we go into detail about how the handler’s listen feature can simplify your
playbooks and roles, take a look at Example 11-20.

224 | Chapter 11: Customizing Hosts, Runs, and Handlers

Example 11-20. listen feature for handlers

- hosts: mailservers
 tasks:

 - name: Copy postfix config file
 copy:
 src: main.conf
 dest: /etc/postfix/main.cnf
 mode: '0640'
 notify: Postfix config changed

 handlers:
 - name: Restart postfix
 service:
 name: postfix
 state: restarted
 listen: Postfix config changed
...

The listen clause defines what we’ll call an event, on which one or more handlers
can listen. This decouples the task notification key from the handler’s name. To notify
more handlers of the same event, we just let them listen; they will also get notified.

The scope of all handlers is on the play level. We cannot notify
across plays, with or without handlers listening.

The SSL Case for the listen Feature
The real benefit of the listen feature for handlers is related to roles and role depen‐
dencies. One of the most obvious use cases we have come across is managing SSL
certificates for different services.

Because developers use SSL heavily in our hosts and across projects, it makes sense
to make an ssl role. It is a simple role whose only purpose is to copy our SSL
certificates and keys to the remote host. It does this in a few tasks, as in roles/ssl/
tasks/main.yml in Example 11-21, and it is prepared to run on Red Hat–based Linux
operating systems because it has the appropriate paths set in the variables file roles/ssl/
vars/RedHat.yml (Example 11-22).

Advanced Handlers | 225

Example 11-21. Role tasks in the ssl role

- name: Include OS specific variables
 include_vars: "{{ ansible_os_family }}.yml"

- name: Copy SSL certs
 copy:
 src: "{{ item }}"
 dest: {{ ssl_certs_path }}/
 owner: root
 group: root
 mode: '0644'
 loop: "{{ ssl_certs }}"

- name: Copy SSL keys
 copy:
 src: "{{ item }}"
 dest: "{{ ssl_keys_path }}/"
 owner: root
 group: root
 mode: '0640'
 with_items: "{{ ssl_keys }}"
 no_log: true
...

Example 11-22. Variables for Red Hat–based systems

ssl_certs_path: /etc/pki/tls/certs
ssl_keys_path: /etc/pki/tls/private
...

In the definition of the role defaults in Example 11-23, we have empty lists of SSL
certificates and keys, so no certificates and keys will be handled. We have options for
overwriting these defaults to make the role copy the files.

Example 11-23. Defaults of the ssl role

ssl_certs: []
ssl_keys: []
...

At this point, we can use the ssl role in other roles as a dependency, just as we do
in Example 11-24 for an nginx role by modifying the file roles/nginx/meta/main.yml.
Every role dependency will run before the parent role. This means in our case that
the ssl role tasks will be executed before the nginx role tasks. As a result, the SSL

226 | Chapter 11: Customizing Hosts, Runs, and Handlers

certificates and keys are already in place and usable within the nginx role (that is, in
the vhost config).

Example 11-24. The nginx role depends on ssl

dependencies:
 - role: ssl
...

Logically, the dependency would be one way: the nginx role depends on the ssl role,
as shown in Figure 11-1.

Figure 11-1. One-way dependency

Our nginx role would, of course, handle all aspects of the NGINX web server.
This role has tasks in roles/nginx/tasks/main.yml for templating the NGINX config
and restarting the NGINX service by notifying the appropriate handler by its name
(Example 11-25).

Example 11-25. Tasks in the nginx role

- name: Configure nginx
 template:
 src: nginx.conf.j2
 dest: /etc/nginx/nginx.conf
 notify: Restart nginx

The last line notifies the handler to restart the NGINX web server.

As you would expect, the corresponding handler for the nginx role in roles/nginx/
handlers/main.yml looks like Example 11-26.

Example 11-26. Handlers in the nginx role

- name: Restart nginx
 service:
 name: nginx
 state: restarted

Advanced Handlers | 227

That’s it, right?

Not quite. The SSL certificates need to be replaced occasionally. And when that
happens, every service consuming an SSL certificate must be restarted to make use of
the new certificate.

So how should we do that? Notify to restart nginx in the ssl role, I hear you say?
OK, let’s try it.

We edit roles/ssl/tasks/main.yml of our ssl role to append the notify clause for
restarting NGINX to the tasks of copying the certificates and keys (Example 11-27).

Example 11-27. Append notify to the tasks to restart NGINX

- name: Include OS specific variables
 include_vars: "{{ ansible_os_family }}.yml"

- name: Copy SSL certs
 copy:
 src: "{{ item }}"
 dest: {{ ssl_certs_path }}/
 owner: root
 group: root
 mode: '0644'
 with_items: "{{ ssl_certs }}"
 notify: Restart nginx

- name: Copy SSL keys
 copy:
 src: "{{ item }}"
 dest: "{{ ssl_keys_path }}/"
 owner: root
 group: root
 mode: '0644'
 with_items: "{{ ssl_keys }}"
 no_log: true
 notify: Restart nginx
...

Great, that works. But wait! We’ve just added a new dependency to our ssl role: the
nginx role (Figure 11-2).

228 | Chapter 11: Customizing Hosts, Runs, and Handlers

Figure 11-2. The nginx role depends on the ssl role, and the ssl role depends on the
nginx role

What are the consequences of this? If we use the ssl role for other roles as a
dependency the way we use it for nginx (that is, for postfix, dovecot, or ldap, to
name just a few possibilities), Ansible will complain about notifying an undefined
handler, because restart nginx will not be defined within these roles.

Ansible version 1.9 complained about notifying undefined
handlers. This behavior was seen as a regression bug and reimple‐
mented in version 2.2. However, you can configure it in ansible.cfg
with error_on_missing_handler. The default is error_on_miss
ing_handler = True.

What’s more, we would need to add more handler names to be notified for every
additional role where we use the ssl role as a dependency. This simply wouldn’t scale
well.

This is where listen comes into the game! Instead of notifying a handler’s
name in the ssl role, we notify an event—for example, ssl_certs_changed, as in
Example 11-28.

Example 11-28. Notify an event to listen in handlers

- name: Include OS specific variables
 include_vars: "{{ ansible_os_family }}.yml"

- name: Copy SSL certs
 copy:
 src: "{{ item }}"
 dest: "{{ ssl_certs_path }}/"
 owner: root
 group: root
 mode: '0644'
 with_items: "{{ ssl_certs }}"
 notify: ssl_certs_changed

Advanced Handlers | 229

- name: Copy SSL keys
 copy:
 src: "{{ item }}"
 dest: "{{ ssl_keys_path }}/"
 owner: root
 group: root
 mode: '0644'
 with_items: "{{ ssl_keys }}"
 no_log: true
 notify: ssl_certs_changed
...

Ansible will still complain about notifying an undefined handler, but making it happy
again is as simple as adding a no-op handler to the ssl role (Example 11-29).

Example 11-29. Add a no-op handler to the ssl role to listen to the event

- name: SSL certs changed
 debug:
 msg: SSL changed event triggered
 listen: ssl_certs_changed
...

Back to our nginx role, where we want to react to the ssl_certs_changed event and
restart the NGINX service when a certificate has been replaced. Because we already
have an appropriate handler that does the job, we simply append the listen clause to
the corresponding handler, as in Example 11-30.

Example 11-30. Append the listen clause to the existing handler in the nginx role

- name: restart nginx
 debug:
 msg: "checking config first"
 changed_when: true
 notify:
 - check nginx configuration
 - restart nginx - after config check
 listen: Ssl_certs_changed
...

Let’s look back to our dependency graph (Figure 11-3). Things looks a bit different.
We restored the one-way dependency and can reuse the ssl role in other roles, just as
we use it in the nginx role.

230 | Chapter 11: Customizing Hosts, Runs, and Handlers

Figure 11-3. Use the ssl role in other roles

Role creators on Ansible Galaxy should consider using the listen feature and event
notifications in Ansible roles where it makes sense.

Conclusion
Well, you made it! By now you know how Ansible basically works. The rest of the
book is dedicated to specific use cases for Ansible, and ways to extend and secure IT
automation.

Conclusion | 231

CHAPTER 12

Managing Windows Hosts

Ansible is sometimes called “SSH configuration management on steroids.” Histori‐
cally, Ansible has had a strong association with Unix and Linux, and we saw evidence
of this in things like variable naming (ansible_ssh_host, ansible_ssh_connection,
and sudo, for example). However, Ansible has had built-in support for various con‐
nection mechanisms since its early days.

Supporting unfamiliar operating systems—as Windows is to Linux—was a matter
of not only figuring out how to connect to Windows but also making internal
naming more operating-system generic (e.g., renaming variables ansible_ssh_host
to ansible_host, and sudo to become).

Windows module contributions have lagged a bit compared to the Linux communi‐
ty’s contributions. If you are interested in using Ansible to manage Windows systems,
follow the blog posts of Jordan Borean, the Windows specialist on the Ansible Core
team. He created the VirtualBox image we’ll use in this chapter.

Connection to Windows
To add Windows support, Ansible did not depart from its path by adding an agent
on Windows—and in our opinion, this was a great decision. Introducing a new
agent that listens on the network would introduce a new attack surface. Instead,
Ansible uses the integrated Windows Remote Management (WinRM) functionality, a
SOAP-based protocol over HTTPS created by Microsoft.

WinRM is the first dependency, and you should install the WinRM Python library
in a virtualenv on the control host (authentication to Active Directory requires
Kerberos):

$ python3 -mvenv py3
source py3/bin/activate

233

https://oreil.ly/s3zeS

pip3 install --upgrade pip
pip3 install wheel
pip3 install pywinrm[kerberos]

By default, Ansible will try to connect by SSH to a remote machine, which is why
we must tell it in advance to change the connection mechanism. Usually, the idea
here is to put all Windows hosts into an inventory group. The particular group name
you choose doesn’t matter, but we use the same group names for development and
production in separate inventory files, while development uses the vagrant.ini file that
defines the Vagrant/VirtualBox development environment described in this chapter:

[windows]
windows2022 ansible_host=127.0.0.1

We then add the connection variables to the inventory file (hosts). If you have more
environments, it makes sense to set connection variables in a particular inventory
because security requirements, like certificate validation, might differ:

[windows:vars]
ansible_user=vagrant
ansible_password=vagrant
ansible_connection=winrm
ansible_port=45986
ansible_winrm_server_cert_validation=ignore
ansible_winrm_scheme=https
ansible_become_method=runas
ansible_become_user=SYSTEM

The SOAP-based protocol relies on HTTP in this case. By default, Ansible attempts to
set up a secured HTTP (HTTPS) connection on port 5986 unless the ansible_port is
configured to 5985.

PowerShell
PowerShell on Microsoft Windows is a powerful command-line interface and script‐
ing language built on top of the .NET framework. It supplies full management access
from the local environment and through remote access. Ansible modules for Win‐
dows are all written in PowerShell as PowerShell scripts.

In 2016, Microsoft made PowerShell open source under the MIT
license. The source and binary packages for recent versions of
macOS, Ubuntu, and CentOS are available on GitHub. As of early
2022, the stable version of PowerShell is 7.1.3.

Ansible expects at least PowerShell version 3 to be present on the remote machine.
PowerShell 3 is available for Microsoft Windows 7 SP1, Microsoft Windows Server
2008 SP1, and later versions of these. To see the version of PowerShell you have
installed, run the following command in a PowerShell console:

234 | Chapter 12: Managing Windows Hosts

https://oreil.ly/PbQOt

$PSVersionTable

You should see output that looks like Figure 12-1.

Figure 12-1. PowerShell version determination

The control machine, from which we run Ansible, is not required
to have PowerShell installed!

However, there were bugs in version 3; use the latest patches from Microsoft if you
must stick with version 3 for any reason. To simplify the process of installation,
upgrade, setup, and configuring PowerShell for Windows, Ansible provides a script.
For development purposes this is fine, but for production you will need to improve
its security.

To get started on your own Windows machine, run the code in Example 12-1 in
PowerShell, and you are ready to go. The script won’t break anything if you run it
multiple times. You don’t need to run the script if you are using the example source
code that comes with this chapter.

PowerShell | 235

https://oreil.ly/shpIC

Example 12-1. Setting up Windows for Ansible

[Net.ServicePointManager]::SecurityProtocol = [Net.SecurityProtocolType]::Tls12
$url = "https://gist.github.com/bbaassssiiee/9b4b4156cba717548650b0e115344337"
$file = "$env:temp\ConfigureRemotingForAnsible.ps1"
(New-Object -TypeName System.Net.WebClient).DownloadFile($url, $file)
powershell.exe -ExecutionPolicy ByPass -File $file

To test the connection configuration, try a simple ping via win_ping to the Windows
host. Like the Ansible ping on Linux, this is not an ICMP ping; it is a test for
establishing an Ansible connection:

$ ansible windows -i inventory -m win_ping

If you get an error like the one in Example 12-2, you must either get a valid public
TLS/SSL certificate or add a trust chain for an existing internal certificate authority.

Example 12-2. Error resulting from an invalid certificate

$ ansible windows -i inventory -m win_ping
windows2022 | UNREACHABLE! => {
 "changed": false,
 "msg": "ssl: HTTPSConnectionPool(host='127.0.0.1', port=45986): Max
retries exceeded with url: /wsman (Caused by
SSLError(SSLCertVerificationError(1, '[SSL: CERTIFICATE_VERIFY_FAILED]
certificate verify failed: self signed certificate (_ssl.c:1131)')))",
 "unreachable": true
}

To disable TLS/SSL certificate validation (at your own risk), use:
ansible_winrm_server_cert_validation: ignore

If you see output that looks like Example 12-3, you have successfully tested the
connection.

Example 12-3. Result of a working connection

$ ansible -m win_ping -i hosts windows
windows2022 | SUCCESS => {
 "changed": false,
 "ping": "pong"
}

The online documentation has more information about connecting with WinRM.

236 | Chapter 12: Managing Windows Hosts

https://oreil.ly/ghlAM

Windows Modules
With Ansible’s native Windows support out of the box, you can:

• Gather facts on Windows hosts•
• Install and uninstall MSIs•
• Enable and disable Windows features•
• Start, stop, and manage Windows services•
• Create and manage local users and groups•
• Manage Windows packages via the Chocolatey package manager•
• Manage and install Windows updates•
• Fetch files from remote sites•
• Push and execute any PowerShell scripts you write•

Modules for Windows are prefixed with win_, except for the setup module, which
works both on Linux and Windows. Here is a simple example to create a directory:

 - name: Manage tools directory
 win_file:
 path: 'C:/Tools'
 state: directory

The online documentation lists common use cases for managing Windows with
Ansible.

Our Java Development Machine
Now that we have a Windows machine, let’s create a playbook to show the usage of
Windows modules. The machine will be provisioned with software for Java program‐
ming: not the latest version, but you’ll get the idea. Chocolatey is an open source
package manager for Windows. Its choco command can install and update many
packages, made available online. The Ansible module win_chocolatey can be used in
a comparable way as the package module on Linux, except that it is also capable of
installing Chocolatey on the Windows machine if it is not present:

- name: Use Chocolatey
 win_chocolatey:
 name: "chocolatey"
 state: present

Let’s create a simple playbook, shown in Example 12-4, in which we install software
and do some configuration.

Windows Modules | 237

https://oreil.ly/bgg0u
https://chocolatey.org

Example 12-4. Playbook for Windows

- name: Setup machine for Java development
 hosts: windows
 gather_facts: false
 vars:
 pre_tasks:
 - name: Verifying connectivity
 win_ping:
 roles:
 - role: win_config
 tags: config
 - role: win_choco
 tags: choco
 - role: win_vscode
 tags: vscode
 - role: java_developer
 tags: java
 - role: win_updates
 tags: updates
...

The playbook in Example 12-4 doesn’t look much different from what we would have
implemented for Linux.

It is a widespread practice to create roles for several operating
systems. The tasks/main.yml file of such a role looks like this:

multi-platform tasks file
- name: install software on Linux
 include_tasks: linux.yml
 when:
 - ansible_facts.os_family != 'Windows'
 - ansible_facts.os_family != 'Darwin'
 tags:
 - linux

- name: install software on MacOS
 include_tasks: macos.yml
 when:
 - ansible_facts.os_family == 'Darwin'
 tags:
 - mac

- name: install software on Windows
 include_tasks: windows.yml
 when: ansible_facts.os_family == 'Windows'
 tags:
 - windows
...

238 | Chapter 12: Managing Windows Hosts

Adding a Local User
In this part of the chapter, we are going to create a user and a group on Windows.
You might think that this is a solved problem: just use Microsoft Active Directory,
right? However, being able to run Windows anywhere in the cloud without relying on
a directory service can be helpful for some use cases.

In Example 12-5, we are going to create a group named developers and a user, just
to show the modules. In a more production-like Ansible project, the users and groups
would be defined in group_vars with dictionaries to loop over, and the password
would be an encrypted variable, but for better readability we’ll keep this quite simple.

Example 12-5. Manage local groups and users on Windows

- name: Ensure group developers
 win_group:
 name: developers

- name: Ensure ansible user exists
 win_user:
 name: ansible
 password: '%4UJ[nLbQz*:BJ%9gV|x'
 groups: developers
 password_expired: true
 groups_action: add

Note that the password_expired parameter is set to true. This means that the user
needs to define a new password next time they log on.

The win_user’s default behavior of groups is replace: the user will be removed from
any other group they are already a member of. We change the default to add to
prevent any removal. However, we can overwrite the behavior per user.

Windows Features
Windows has features that you can disable or enable. Run Get-WindowsFeature in
PowerShell to get the full list and make a list of the ones you want to remove named
windows_features_remove:

- name: Manage Features
 win_feature:
 name: "{{ item }}"
 state: absent
 loop: "{{ windows_features_remove }}"

- name: Manage IIS Web-Server with sub features and management tools
 win_feature:
 name: Web-Server
 state: present

Adding a Local User | 239

 include_sub_features: true
 include_management_tools: true
 register: win_iis_feature

- name: Reboot if installing Web-Server feature requires it
 win_reboot:
 when: win_iis_feature.reboot_required

Windows reboots are often needed; win_feature has a return value for that.

Installing Software with Chocolatey
To ensure that we can maintain the installed software, we’ll create two lists. Once that
is done, we can use this tasks/main.yml file in a role:

- name: Use Chocolatey
 win_chocolatey:
 name: "chocolatey"
 state: present

- name: Ensure absense of some packages
 win_chocolatey:
 name: "{{ uninstall_choco_packages }}"
 state: absent
 force: true

- name: Ensure other packages are present
 win_chocolatey:
 name: "{{ install_choco_packages }}"
 state: present

For smaller packages this works fine, but sometimes the internet does not work as
we wish. To make the installation of Visual Studio Code more robust, we’ve added a
win_stat check and retries:

- name: Check for vscode
 win_stat:
 path: 'C:\Program Files\Microsoft VS Code\Code.exe'
 register: vscode

- name: Install VSCode
 when: not vscode.stat.exists|bool
 win_chocolatey:
 name: "{{ vscode_distribution }}"
 state: present
 register: download_vscode
 until: download_vscode is succeeded
 retries: 10
 delay: 2

- name: Install vscode extensions
 win_chocolatey:
 name: "{{ item }}"
 state: present

240 | Chapter 12: Managing Windows Hosts

 with_items: "{{ vscode_extensions }}"
 retries: 10
 delay: 2

Configuration of Java
It is by now clear that you can use Chocolatey to install software, but in the case of
good old Java 8, we need to configure a bit more:

- name: Install Java8
 win_chocolatey:
 name: "{{ jdk_package }}"
 state: present

- name: Set Java_home
 win_environment:
 state: present
 name: JAVA_HOME
 value: "{{ win_java_home }}"
 level: machine

- name: Add Java to path
 win_path:
 elements:
 - "{{ win_java_path }}"

The takeaway here is that you can configure environment variables on Windows as
well as the PATH.

Updating Windows
One of an administrator’s daily hassles is installing software security updates. It is
one of these tasks no administrator really likes—it’s important and necessary, but
boring. It can also cause a lot of trouble if the update goes wrong. Therefore, we
recommend you disable automated installation of security updates in your operating
system settings and test updates before you run them in production environments.

Ansible helps to automate software installation with simple tasks, as shown in Exam‐
ple 12-6. The machine also reboots afterward if necessary. Finally, it informs all users
to log out before the system goes down.

Example 12-6. Windows updates

- name: Install critical and security updates
 win_updates:
 category_names:
 - CriticalUpdates
 - SecurityUpdates
 state: installed
 register: update_result

Configuration of Java | 241

- name: Reboot if required
 win_reboot:
 when: update_result.reboot_required

Ansible makes managing Microsoft Windows hosts almost as simple as managing
Linux and Unix.

Conclusion
Microsoft’s WinRM works well, even though its execution speed is not as fast as with
SSH. The Ansible modules for Windows are very usable and not divergent from the
other modules. The community around them is still small. Nevertheless, Ansible is
the simplest tool for orchestrating IT across operating systems.

242 | Chapter 12: Managing Windows Hosts

CHAPTER 13

Ansible and Containers

The Docker project has taken the IT world by storm since it was introduced in
2013. We can’t think of another technology that was so quickly embraced by the
community. This chapter covers how Ansible relates to container images.

What Is a Container?
In hardware virtualization, a program called the hypervisor virtualizes an entire phys‐
ical machine, including a virtualized CPU, memory, and devices such as disks and
network interfaces. Because the entire machine is virtualized, hardware virtualization
is flexible. You can run an entirely different operating system in the guest computer
than in the host computer (for example, a Windows Server 2016 guest inside a Red
Hat Enterprise Linux host), and you can suspend and resume a virtual machine just
as you can a physical machine. This flexibility brings with it extra overhead needed to
virtualize the hardware.

Containers are sometimes referred to as operating system virtualization to distinguish
them from hardware virtualization technologies. With operating system virtualization
(containers), the guest processes are isolated from the host by the operating system.
The guest processes run on the same kernel as the host. The host operating system
ensures that the guest processes are fully isolated from the host.

Containerization is a form of virtualization. When you use virtualization to run
processes in a guest operating system, these guest processes have no visibility into
the host operating system that runs on the physical hardware. Guest processes cannot
access physical resources directly, even if they are provided with the illusion that they
have root access.

243

When running a Linux-based container program such as Docker, the guest processes
also must be Linux programs. However, the overhead is much lower than that of
hardware virtualization because you are running only a single operating system.
Processes start up much more quickly inside containers than inside virtual machines.

Docker, Inc. (Docker’s creator—I’ll use the “Inc.” here to distinguish the company
name from the product name) created more than just containers, however: Docker
is known as the platform where containers are a building block. To use an analogy,
containers are to Docker what virtual machines are to a hypervisor such as VMWare
or VirtualBox. The other two major pieces Docker, Inc. created are its image format
and the Docker API.

To illustrate, let’s compare container images to virtual machine images. A container
image holds a filesystem with an installed operating system, along with metadata. One
major difference from virtual machine images is that container images are layered.
To create a new container image, you customize an existing one by adding, changing,
and removing files. The new container image will contain a reference to the original
container image, as well as the filesystem differences between the two. The layered
approach means that container images are smaller than traditional virtual machine
images, so they’re faster to transfer over the internet than virtual machine images are.
The Docker project hosts a registry (that is, a repository) of publicly available images.

Docker also has a remote API that enables third-party tools to interact with Docker.
Ansible’s docker_* modules use the Docker remote API. You can use these Ansible
modules to manage containers on the Docker platform. You can manage the whole
software life cycle with Ansible, the OS, the container runtimes, the tools, the registry,
the containers, all of it.

Kubernetes
Containers running on Kubernetes are typically not orchestrated using Ansible from
a control host, although the k8s module can be used for that purpose. The Kuber‐
netes Operator SDK offers three other ways to manage Kubernetes resources: Go
Operators, Helm Charts, and Ansible Operators. Helm Charts are most popular in
the community. I won’t go into detail about Kubernetes and Ansible. If you are inter‐
ested in Ansible and Kubernetes, Jeff Geerling is currently writing the book Ansible
for Kubernetes. Kubernetes Operators by Jason Dobies and Joshua Wood (O’Reilly)
covers operators in depth.

If you are looking for a public cloud for trying out containers, Red Hat operates
an OpenShift-based cloud platform called OpenShift Online, and Google provides
a trial of its Google Kubernetes Engine. Both platforms are also open source, so if
you manage your own hardware, you can deploy either OpenShift or Kubernetes on

244 | Chapter 13: Ansible and Containers

https://hub.docker.com
https://oreil.ly/yRVOx
https://learning.oreilly.com/library/view/kubernetes-operators/9781492048039/
https://oreil.ly/t6XgM
https://oreil.ly/hCSNm

them. If you want to deploy on another platform, read this blog post about a Vagrant
setup. You can use Kubespray for other setups.

You should know that serious production systems often rely on using Kubernetes
combined with bare-metal or virtual machines for storage or specific software; for
example, see the documentation for installing wire-server. Ansible is useful for gluing
pieces together in such infrastructures, in a common language.

Docker Application Life Cycle
Here’s what the typical life cycle of a container-based application looks like:

1. Pull container base image from registry.1.
2. Customize container image on your local machine.2.
3. Push container image up from your local machine to the registry.3.
4. Pull container image down to your remote hosts from the registry.4.
5. Run containers on the remote hosts, passing in any configuration information to5.

the containers on startup.

You typically create your container image on your local machine or a continuous
integration system that supports creating container images, such as GitLab or Jenkins.
Once you’ve created your image, you need to store it somewhere that will be conve‐
nient for downloading onto your remote hosts.

Registries
Container images typically reside in a registry. The Docker project runs a registry
called Docker Hub, which can host both public and private container images. The
Docker command-line tools there have built-in support for pushing images up to
a registry and for pulling images down from a registry. Red Hat runs a registry
called Quay. You can host registries on-premises using Sonatype Nexus. Public cloud
providers can host private registries for your organization as well.

Once your container image is in the registry, you connect to a remote host, pull
down the container image, and then run the container. Note that if you try to run
a container whose image isn’t on the host, Docker will automatically pull down the
image from the registry, so you do not need to explicitly issue a command to do so.

Docker Application Life Cycle | 245

https://oreil.ly/b0aKF
https://oreil.ly/b0aKF
https://oreil.ly/M2jiC
https://oreil.ly/rMZYp
https://quay.io
https://oreil.ly/IvZ9G

Ansible and Docker
When you use Ansible to create container images and start the containers on the
remote hosts, the application life cycle looks like this:

1. Write Ansible playbooks for creating container images.1.
2. Run the playbooks to create container images on your local machine.2.
3. Push container images up from your local machine to the registry.3.
4. Write Ansible playbooks to pull container images down to remote hosts and run4.

them, passing in configuration information.
5. Run Ansible playbooks to start up the containers.5.

Connecting to the Docker Daemon
All the Ansible Docker modules communicate with the Docker daemon. If you are
running on Linux or on macOS using Docker Desktop, all modules should work
without passing other arguments.

If you are running on macOS using Boot2Docker or Docker Machine, or for other
cases where the machine that executes the module is not the same machine running
the Docker daemon, you may need to pass extra information to the modules so they
can reach the Docker daemon. Table 13-1 lists these options, which can be passed
as either module arguments or environment variables. See the docker_container
module documentation for more details.

Table 13-1. Docker connection options

Module argument Environment variable Default
docker_host DOCKER_HOST unix://var/run/docker.sock

tls_hostname DOCKER_TLS_HOSTNAME localhost

api_version DOCKER_API_VERSION auto

cert_path DOCKER_CERT_PATH (None)
ssl_version DOCKER_SSL_VERSION (None)
tls DOCKER_TLS no

tls_verify DOCKER_TLS_VERIFY no

timeout DOCKER_TIMEOUT 60 (seconds)

Example Application: Ghost
In this chapter, we’re going to switch from Mezzanine to Ghost as our example
application. Ghost is an open source blogging platform, like WordPress. The Ghost
project has an official Docker container that we’ll be using.

246 | Chapter 13: Ansible and Containers

What we’ll cover in this chapter:

• Running a Ghost container on your local machine•
• Running a Ghost container fronted by an NGINX container with SSL configured•
• Pushing a custom NGINX image to a registry•
• Deploying our Ghost and NGINX containers to a remote machine•

Running a Docker Container on Our Local Machine
The docker_container module starts and stops Docker containers, implementing
some of the functionality of the docker command-line tool such as the run, kill, and
rm commands.

Assuming you have Docker installed locally, the following invocation will download
the Ghost image from the Docker registry and execute it locally. It will map port
2368 inside the container to 8000 on your machine, so you can access Ghost at
http://localhost:8000:

$ ansible localhost -m docker_container -a "name=test-ghost image=ghost \
 ports=8000:2368"

The first time you run this, it may take minutes for Docker to download the image.
If it succeeds, this docker ps command will show relevant details of the running
container:

 $ docker ps --format "table {{.ID }} {{.Image}} {{.Ports}}"
 CONTAINER ID IMAGE PORTS
 ff728315015e ghost 0.0.0.0:8000->2368/tcp

To stop and remove the container, run:
$ ansible localhost -m docker_container -a "name=test-ghost state=absent"

The docker_container module supports many options: if you can pass an argument
by using the docker command-line tool, you’re likely to find an equivalent possibility
on the module.

Building an Image from a Dockerfile
The official way to create your own container images is by writing special text files
called Dockerfiles, which resemble shell scripts. The stock Ghost image works great
on its own, but if you want to ensure that access is secure, you’ll need to front it with
a web server configured for TLS.

The NGINX project puts out a stock NGINX image, but you’ll need to configure it
to function as a frontend for Ghost and to enable TLS, like we did in Chapter 7 for
Mezzanine. Example 13-1 shows the Dockerfile for this.

Running a Docker Container on Our Local Machine | 247

Example 13-1. Dockerfile

FROM nginx
RUN rm /etc/nginx/conf.d/default.conf
COPY ghost.conf /etc/nginx/conf.d/ghost.conf

Example 13-2 shows the NGINX configuration for being a frontend for Ghost. The
main difference between this one and the one for Mezzanine is that in this case
NGINX is communicating with Ghost by using a TCP socket (port 2368), while with
Mezzanine the communication was over a Unix domain socket.

The other difference is that the path holding the TLS files is /certs.

Example 13-2. ghost.conf

server {
 listen 80 default_server;
 listen [::]:80 default_server;
 server_name _;
 return 301 https://$host$request_uri;
}
server {
 listen 443 ssl;
 client_max_body_size 10M;
 keepalive_timeout 15;
 ssl_certificate /certs/nginx.crt;
 ssl_certificate_key /certs/nginx.key;
 ssl_session_cache shared:SSL:10m;
 ssl_session_timeout 10m;
 ssl_protocols TLSv1.3;
 ssl_ciphers EECDH+AESGCM:EDH+AESGCM;
 ssl_prefer_server_ciphers on;
 location / {
 proxy_pass http://ghost:2368;
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header Host $http_host;
 proxy_set_header X-Forwarded-Proto https;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 }
}

This configuration assumes that NGINX can reach the Ghost server via the hostname
ghost. When you deploy these containers, ensure that this is the case; otherwise, the
NGINX container will not be able to reach the Ghost container.

Assuming you put the Dockerfile and nginx.conf file in a directory named nginx,
this task will create an image named ansiblebook/nginx-ghost. We used the prefix
ansiblebook/ since we pushed to the ansiblebook/nginx-ghost Docker Hub repository,
but you should use the prefix that corresponds to your username on the Docker site:

- name: Create Nginx image
 docker_image:

248 | Chapter 13: Ansible and Containers

https://hub.docker.com

 build:
 path: ./nginx
 source: build
 name: ansiblebook/nginx-ghost
 state: present
 force_source: "{{ force_source | default(false) }}"
 tag: "{{ tag | default('latest') }}"

You can confirm this with the docker images command:
$ docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
ansiblebook/nginx-ghost latest e8d39f3e9e57 6 minutes ago 133MB
ghost latest e8bc5f42fe28 3 days ago 450MB
nginx latest 87a94228f133 3 weeks ago 133MB

Note that invoking the docker_image module to build an image will have no effect
if an image with that name already exists, even if you’ve updated the Dockerfile.
If you’ve updated the Dockerfile and want to rebuild, set the force_source: true
option with an extra variable:

$ ansible-playbook build.yml -e force_source=true

In general, though, it’s a clever idea to add a tag option with a version number as an
extra variable and increment this each time you do a new build. The docker_image
module will then build the new image without needing to be forced. The tag latest
is the default, but it’s not really useful for specific versioning.

$ ansible-playbook build.yml -e tag=v2

Pushing Our Image to the Docker Registry
We’ll use a separate playbook to publish our image to Docker Hub (Example 13-3).
Note that you must invoke the docker_login module to log in to the registry before
you can push the image. The docker_login and docker_image modules both default
to Docker Hub as the registry.

Example 13-3. publish.yml

- name: Publish image to docker hub
 hosts: localhost
 gather_facts: false

 vars_prompt:
 - name: username
 prompt: Enter Docker Registry username
 - name: password
 prompt: Enter Docker Registry password
 private: true

 tasks:

Pushing Our Image to the Docker Registry | 249

 - name: Authenticate with repository
 docker_login:
 username: "{{ username }}"
 password: "{{ password }}"
 tags:
 - login

 - name: Push image up
 docker_image:
 name: "ansiblebook/nginx-ghost"
 push: true
 source: local
 state: present
 tags:
 - push

If you wish to use a different registry, specify a registry_url option to docker_login
and prefix the image name with the hostname and port (if not using the standard
HTTP/HTTPS port) of the registry. Example 13-4 shows how the tasks change when
using a registry at http://reg.example.com.

Example 13-4. publish.yml with custom registry

 tasks:
 - name: Authenticate with repository
 docker_login:
 registry_url: https://reg.example.com
 username: "{{ username }}"
 password: "{{ password }}"
 tags:
 - login

 - name: Push image up
 docker_image:
 name: reg.example.com/ansiblebook/nginx-ghost
 push: true
 source: local
 state: present
 tags:
 - push

Note that the playbook for creating the image will also need to change to reflect the
new name of the image: reg.example.com/ansiblebook/nginx-ghost.

Orchestrating Multiple Containers on Our Local Machine
It’s common to run multiple Docker containers and wire them up together. During
development, you typically run all these containers together on your local machine;
in production, they are usually hosted on different machines. Applications are often
deployed to a Kubernetes cluster, while databases often run on dedicated machines.

250 | Chapter 13: Ansible and Containers

For local development, where all containers run on the same machine, the Docker
project has a tool called Docker Compose that makes it simpler to bring containers
up and wire them together. You use the docker_compose Ansible module to control
Docker Compose—that is, to bring the services up or down.

Example 13-5 shows a docker-compose.yml file that will start up NGINX and Ghost.
The file assumes there’s a directory that has the TLS certificate files.

Example 13-5. docker-compose.yml

version: '2'
services:
 nginx:
 image: ansiblebook/nginx-ghost
 ports:
 - "8000:80"
 - "8443:443"
 volumes:
 - ${PWD}/certs:/certs
 links:
 - ghost
 ghost:
 image: ghost

Example 13-6 shows a playbook that creates the custom NGINX image file, creates
self-signed certificates, and then starts up the services specified in Example 13-5.

Example 13-6. ghost.yml

- name: Run Ghost locally
 hosts: localhost
 gather_facts: false
 tasks:

 - name: Create Nginx image
 docker_image:
 build:
 path: ./nginx
 source: build
 name: bbaassssiiee/nginx-ghost
 state: present
 force_source: "{{ force_source | default(false) }}"
 tag: "{{ tag | default('v1') }}"

 - name: Create certs
 command: >
 openssl req -new -x509 -nodes
 -out certs/nginx.crt -keyout certs/nginx.key
 -subj '/CN=localhost' -days 365
 args:
 creates: certs/nginx.crt

Orchestrating Multiple Containers on Our Local Machine | 251

 - name: Bring up services
 docker_compose:
 project_src: .
 state: present
...

docker_compose is an interesting module for application developers. Once the appli‐
cation matures to be deployed in production, the runtime requirements often lead to
the use of Kubernetes.

Querying Local Images
The docker_image_info module allows you to query the metadata on a locally stored
image. Example 13-7 shows an example of a playbook that uses this module to query
the Ghost image for the exposed port and volumes.

Example 13-7. image-info.yml

- name: Get exposed ports and volumes
 hosts: localhost
 gather_facts: false
 vars:
 image: ghost
 tasks:

 - name: Get image info
 docker_image_info:
 name: ghost
 register: ghost

 - name: Extract ports
 set_fact:
 ports: "{{ ghost.images[0].Config.ExposedPorts.keys() }}"

 - name: We expect only one port to be exposed
 assert:
 that: "ports|length == 1"

 - name: Output exposed port
 debug:
 msg: "Exposed port: {{ ports[0] }}"

 - name: Extract volumes
 set_fact:
 volumes: "{{ ghost.images[0].Config.Volumes.keys() }}"

 - name: Output volumes
 debug:
 msg: "Volume: {{ item }}"

252 | Chapter 13: Ansible and Containers

 with_items: "{{ volumes }}"
...

The output looks like this:
$ ansible-playbook image-info.yml
PLAY [Get exposed ports and volumes] ***
TASK [Get image info] **
ok: [localhost]
TASK [Extract ports] ***
ok: [localhost]
TASK [We expect only one port to be exposed] ***********************************
ok: [localhost] ==> {
 "changed": false,
 "msg": "All assertions passed"
}
TASK [Output exposed port] ***
ok: [localhost] ==> {
 "msg": "Exposed port: 2368/tcp"
}
TASK [Extract volumes] ***
ok: [localhost]
TASK [Output volumes] **
ok: [localhost] => (item=/var/lib/ghost/content) => {
 "msg": "Volume: /var/lib/ghost/content"
}

Use the docker_image_info module to log important details about your images.

Deploying the Dockerized Application
By default, Ghost uses SQLite as its database backend; however, for deployment in
this chapter, we’re going to use MySQL.

We’re going to provision two separate machines with Vagrant. One machine (ghost)
will run Docker to run the Ghost and NGINX containers, and the other machine
(mysql) will run the MySQL server as a persistent store for the Ghost data.

This example assumes the following variables are defined somewhere where they are
in scope for the frontend and backend machines, such as in the group_vars/all file:

• database_name=ghost•
• database_user=ghost•
• database_password=mysupersecretpassword•

Provisioning MySQL
To provision the MySQL machine, we install a couple of packages (Example 13-8).

Deploying the Dockerized Application | 253

Example 13-8. MySQL provisioning

- name: Provision database machine
 hosts: mysql
 become: true
 gather_facts: false
 tasks:

 - name: Install packages for mysql
 apt:
 update_cache: true
 cache_valid_time: 3600
 name:
 - mysql-server
 - python3-pip
 state: present

 - name: Install requirements
 pip:
 name: PyMySQL
 state: present
 executable: /usr/bin/pip3

Deploying the Ghost Database
To deploy the Ghost database we need to create a database and database user that
can connect from another machine. This means we need to reconfigure MySQL’s
bind-address so it listens to the network, then restart MySQL with a handler so it
only restarts if that configuration changes (Example 13-9).

Example 13-9. Deploy database

- name: Deploy database
 hosts: database
 become: true
 gather_facts: false

 handlers:
 - name: Restart Mysql
 systemd:
 name: mysql
 state: restarted
 tasks:

 - name: Listen
 lineinfile:
 path: /etc/mysql/mysql.conf.d/mysqld.cnf
 regexp: '^bind-address'
 line: 'bind-address = 0.0.0.0'
 state: present
 notify: Restart Mysql

 - name: Create database

254 | Chapter 13: Ansible and Containers

 mysql_db:
 name: "{{ database_name }}"
 state: present
 login_unix_socket: /var/run/mysqld/mysqld.sock

 - name: Create database user
 mysql_user:
 name: "{{ database_user }}"
 password: "{{ database_password }}"
 priv: '{{ database_name }}.*:ALL'
 host: '%'
 state: present
 login_unix_socket: /var/run/mysqld/mysqld.sock

In this example, we listen to 0.0.0.0 and the user can connect from any machine (not
the most secure setup).

Frontend
The frontend deployment is more complex since we have two containers to deploy:
Ghost and NGINX. We also need to wire them up and pass configuration informa‐
tion to the Ghost container so it can access the MySQL database.

We’re going to use Docker networks to enable the NGINX container to connect to the
Ghost container. Using Docker networks, we’ll create a custom Docker network and
attach containers to it. The containers can access each other by using the container
names as hostnames.

Creating a Docker network is simple:
- name: Create network
 docker_network:
 name: "{{ net_name }}"

It makes more sense to use a variable for the network name, since we’ll need to refer‐
ence it for each container we bring up. Example 13-10 illustrates how our playbook
will start.

Example 13-10. Deploy Ghost

- name: Deploy Ghost
 hosts: ghost
 become: true
 gather_facts: false

 vars:
 url: "https://{{ inventory_hostname }}"
 database_host: "{{ groups['database'][0] }}"
 data_dir: /data/ghostdata
 certs_dir: /data/certs
 net_name: ghostnet

Deploying the Dockerized Application | 255

 tasks:
 - name: Create network
 docker_network:
 name: "{{ net_name }}"

Note that this playbook assumes there’s a group named database that has a single
host; it uses this information to populate the database_host variable.

Frontend: Ghost
We need to configure Ghost to connect to the MySQL database, as well as to run in
production mode, by passing the production flag to the npm start command. We
pass this configuration to the container in environment variables. We also want to
ensure that the persistent files that it generates are written to a volume mount.

Here’s the part of the playbook that creates the directory that will hold the per‐
sistent data. It also starts up the container, connected to the ghostnet network
(Example 13-11).

Example 13-11. Ghost container

- name: Create ghostdata directory
 file:
 path: "{{ data_dir }}"
 state: directory
 mode: '0750'

- name: Start ghost container
 docker_container:
 name: ghost
 image: ghost
 container_default_behavior: compatibility
 network_mode: host
 networks:
 - name: "{{ net_name }}"
 volumes:
 - "{{ data_dir }}:/var/lib/ghost/content"
 env:
 database__client: mysql
 database__connection__host: "{{ database_host }}"
 database__connection__user: "{{ database_user }}"
 database__connection__password: "{{ database_password }}"
 database__connection__database: "{{ database_name }}"
 url: "https://{{ inventory_hostname }}"
 NODE_ENV: production

Note that we don’t need to publish any ports here, since only the NGINX container
will communicate with the Ghost container.

256 | Chapter 13: Ansible and Containers

Frontend: NGINX
We hardwired the NGINX container’s configuration into it when we created the
ansiblebook/nginx-ghost image: it is configured to connect to ghost:2368.

However, we do need to copy the TLS certificates. As in earlier examples, we’ll just
generate self-signed certificates (Example 13-12).

Example 13-12. NGINX container

- name: Create certs directory
 file:
 path: "{{ certs_dir }}"
 state: directory
 mode: '0750'

- name: Generate tls certs
 command: >
 openssl req -new -x509 -nodes
 -out "{{ certs_dir }}/nginx.crt"
 -keyout "{{ certs_dir }}/nginx.key"
 -subj "/CN={{ ansible_host }}" -days 90
 args:
 creates: certs/nginx.crt

- name: Start nginx container
 docker_container:
 name: nginx_ghost
 image: bbaassssiiee/nginx-ghost
 container_default_behavior: compatibility
 network_mode: "{{ net_name }}"
 networks:
 - name: "{{ net_name }}"
 pull: true
 ports:
 - "0.0.0.0:80:80"
 - "0.0.0.0:443:443"
 volumes:
 - "{{ certs_dir }}:/certs"

Only use self-signed certificates for a short time, while developing on your internal
network. As soon as others depend on the web service, get a certificate signed by a
certificate authority.

Cleaning Out Containers
Ansible makes it easy to stop and remove containers, which is useful when you’re
developing and testing deployment scripts. Example 13-13 is a playbook that cleans
up the ghost host.

Deploying the Dockerized Application | 257

Example 13-13. Container cleanup

- name: Remove all Ghost containers and networks
 hosts: ghost
 become: true
 gather_facts: false
 tasks:

 - name: Remove containers
 docker_container:
 name: "{{ item }}"
 state: absent
 container_default_behavior: compatibility
 loop:
 - nginx_ghost
 - ghost

 - name: Remove network
 docker_network:
 name: ghostnet
 state: absent

docker_container also has a cleanup Boolean parameter, which ensures the con‐
tainer is removed after each run.

Conclusion
Docker has clearly proven that it has staying power. In this chapter, we covered how
to manage container images, containers, and networks with Ansible modules.

258 | Chapter 13: Ansible and Containers

CHAPTER 14

Quality Assurance with Molecule

If you want to develop a role, then you need test infrastructure. Using disposable
Docker containers is a perfect fit for testing with multiple distributions, or versions,
of Linux without touching the machines others use.

Molecule is a Python testing framework for Ansible roles. Using it, you can test
multiple instances, operating systems, and distributions. You can use a couple of test
frameworks and as many testing scenarios as you need. Molecule is extensible in its
support for various virtualization platforms, using a type of plug-in called a driver. A
driver, for a provider, is a Python library that is used to manage test hosts (that is, to
create and destroy them).

Molecule encourages an approach that results in consistently developed roles that are
well-written and easily understood and maintained. Developed as open source on
GitHub since 2015 by @retr0h, Molecule is now community-maintained as part of
the Ansible by Red Hat project.

Installation and Setup
Molecule depends on Python version 3.6 or greater and Ansible version 2.8 or
greater. Depending on your operating system, you might need to install additional
packages. Ansible is not a direct dependency but is called as a command-line tool.

For Red Hat, the command is:
yum install -y gcc python3-pip python3-devel openssl-devel python3-libselinux

For Ubuntu, use:
apt install -y python3-pip libssl-dev

259

After installing the required dependencies, you can install Molecule with pip. We
recommend you install it in a Python virtual environment. It is important to isolate
Molecule and its Python dependencies from the system Python packages. This can
save time and energy when managing Python packaging issues.

Configuring Molecule Drivers
Molecule comes with only the driver named delegated. If you want to have Mole‐
cule manage instances in containers, hypervisors, or the cloud, then you need to
install a driver plug-in and its dependencies. Several driver plug-ins depend on
pyyaml>=5.1,<6.

Drivers are installed with pip just like other Python dependencies. Ansible depen‐
dencies are nowadays bundled as Collections (more about Collections in the next
chapter). To install the Collection you’ll need, use the following:

$ ansible-galaxy collection install <collection_name>

Molecule can be extended for specific cloud enviroments, so it is possible to create an
ephemeral test infrastructure.

Table 14-1 provides a list of Molecule drivers and their dependencies.

Table 14-1. Molecule drivers

Driver plug-in Public cloud Private cloud Containers Python dependencies Ansible collection
molecule-alicloud √ ansible_alicloud

ansible_alicloud_module_utils

molecule-azure √
molecule-containers √ molecule-docker

molecule-podman

molecule-docker √ docker community.docker
molecule-digitalocean √
molecule-ec2 √ boto3
molecule-gce √ google.cloud

community.crypto
molecule-hetznercloud √
molecule-libvirt
molecule-linode
molecule-lxd √
molecule-openstack √ openstacksdk
molecule-podman √ containers.podman
molecule-vagrant python-vagrant
molecule-vmware √ pyvmomi

260 | Chapter 14: Quality Assurance with Molecule

https://oreil.ly/wtQ6p

Creating an Ansible Role
You can create a role with:

$ ansible-galaxy role init my_role

This creates the following files in the directory my_role:
my_role/
├── README.md
├── defaults
│ └── main.yml
├── files
├── handlers
│ └── main.yml
├── meta
│ └── main.yml
├── tasks
│ └── main.yml
├── templates
├── tests
│ ├── inventory
│ └── test.yml
└── vars
 └── main.yml

To initialize Molecule in an existing role, or add a scenario, you would use:
$ molecule init scenario -r <role_name> --driver-name docker s_name

molecule init extends ansible-galaxy role init by creating a directory tree for a
role with additional files, for testing with Molecule. The following command should
get you started running Molecule:

$ molecule init role my_new_role --driver-name docker

This creates the following files in the directory my_new_role:
├── README.md
├── defaults
│ └── main.yml
├── files
├── handlers
│ └── main.yml
├── meta
│ └── main.yml
├── molecule
│ └── default
│ ├── converge.yml
│ ├── molecule.yml
│ └── verify.yml
├── tasks
│ └── main.yml
├── templates
├── tests
│ ├── inventory

Creating an Ansible Role | 261

│ └── test.yml
└── vars
 └── main.yml

Scenarios
In the above example, you see a subdirectory named default. This is a first scenario
where you can use the molecule test command to check the syntax, run linters, run
a playbook with the role, run it again to check idempotence, and run a verification
check. This all happens using a CentOS 8 container in Docker.

You can add scenarios when, for instance, you would like to test with Ubuntu or
Debian. Each scenario can be used independent of the other with the following flag:

$ molecule test -s <scenario_name>

Desired State
Bas often adds a scenario for localhost when he creates a role that installs software.
Using the commands molecule converge (to install) and molecule cleanup (to
uninstall), Bas can test the desired states. A role’s tasks directory contents could be:

• absent.yml
• main.yml
• present.yml

main.yml is simply an entry point from which the absent and present files are
referenced, depending on the desired_state variable:

- name: "Desired state is {{ desired_state }}"
 include_tasks: "{{ desired_state }}.yml"
...

Configuring Scenarios in Molecule
The file molecule/s_name/molecule.yml is used to configure Molecule and the driver
used in a scenario.

Let’s look at three example configurations that we find useful. The minimal example
(Example 14-1) uses localhost for testing with the delegated driver. The only thing
you need to do is make sure that you can log in with SSH. You can use the delegated
driver with existing inventory.

262 | Chapter 14: Quality Assurance with Molecule

Example 14-1. delegated driver

dependency:
 name: galaxy
 options:
 role-file: requirements.yml
 requirements-file: collections.yml
driver:
 name: delegated
lint: |
 set -e
 yamllint .
 ansible-lint
platforms:
 - name: localhost
provisioner:
 name: ansible
verifier:
 name: ansible

Note that Molecule can install roles and collections in the dependency phase of its
operation, as shown in Example 14-1. If you work on-premises, you can set options
to ignore certificates; however, don’t do that when using proper certificates.

Managing Virtual Machines
Molecule works great with containers, but in some scenarios, like when targeting
Windows machines, we like to use a virtual machine. Data scientists working with
Python often use Conda as a package manager for Python and other libraries. To
test a role for installing Miniconda on various operating systems, you can create a
scenario for Windows with a separate molecule.yml file.

Example 14-2 uses the vagrant driver to launch a Windows VM in VirtualBox.

Example 14-2. Windows machine in Vagrant VirtualBox

driver:
 name: vagrant
 provider:
 name: virtualbox
lint: |
 set -e
 yamllint .
 ansible-lint
platforms:
 - name: WindowsServer2016
 box: jborean93/WindowsServer2016
 memory: 4069
 cpus: 2

Scenarios | 263

https://oreil.ly/YU8KJ

 groups:
 - windows
provisioner:
 name: ansible
 inventory:
 host_vars:
 WindowsServer2016:
 ansible_user: vagrant
 ansible_password: vagrant
 ansible_port: 55986
 ansible_host: 127.0.0.1
 ansible_connection: winrm
 ansible_winrm_scheme: https
 ansible_winrm_server_cert_validation: ignore
verifier:
 name: ansible

The VirtualBox image in this example was created by Jordan Borean, who has blog‐
ged about the process of creating it with Packer.

Managing Containers
Molecule can create a network for containers in Docker that allows us to evaluate
cluster setups. Redis is an open source, in-memory data structure store, used as a
database, cache, and message broker. Redis provides data structures such as strings,
hashes, lists, sets, sorted sets with range queries, bitmaps, hyperlogs, geospatial
indexes, and streams. It works great for large-scale applications, and as a cache
for Ansible facts. Example 14-3 uses the docker driver to simulate a Redis Sentinel
cluster running on CentOS 7 as illustrated in Figure 14-1.

Figure 14-1. Using the docker driver to simulate a Redis Sentinel cluster on CentOS 7

Such a cluster runs multiple instances of Redis that watch each other; if the main
instance goes down, another one can be elected to take the lead.

264 | Chapter 14: Quality Assurance with Molecule

https://oreil.ly/CXzzg
https://oreil.ly/CXzzg

Example 14-3. Redis cluster with Docker

dependency:
 name: galaxy
driver:
 name: docker
lint: |
 set -e
 yamllint .
 ansible-lint
platforms:
 - name: redis1_centos7
 image: milcom/centos7-systemd
 privileged: true
 groups:
 - redis_server
 - redis_sentinel
 docker_networks:
 - name: 'redis'
 ipam_config:
 - subnet: '10.16.0.0/24'
 networks:
 - name: "redis"
 ipv4_address: '10.16.0.10'
 - name: redis2_centos7
 image: milcom/centos7-systemd
 privileged: true
 groups:
 - redis_server
 - redis_sentinel
 docker_networks:
 - name: 'redis'
 ipam_config:
 - subnet: '10.16.0.0/24'
 networks:
 - name: "redis"
 ipv4_address: '10.16.0.11'
 - name: redis3_centos7
 image: milcom/centos7-systemd
 privileged: true
 groups:
 - redis_server
 - redis_sentinel
 docker_networks:
 - name: 'redis'
 ipam_config:
 - subnet: '10.16.0.0/24'
 networks:
 - name: "redis"
 ipv4_address: '10.16.0.12'
provisioner:
 name: ansible
verifier:
 name: ansible

Scenarios | 265

If you run molecule converge from the role’s directory, you can watch the cluster
being created in Docker and the Redis software being installed and configured.

Molecule Commands
Molecule is a command with subcommands, each of which performs part of the
quality assurance. Table 14-2 lists the purpose of each command.

Table 14-2. Molecule subcommands

Command Purpose
check Use the provisioner to perform a dry run (destroy, dependency, create, prepare, converge).
cleanup Use the provisioner to clean up any changes made to external systems during the stages of testing.
converge Use the provisioner to configure instances (dependency, create, prepare, converge).
create Use the provisioner to start the instances.
dependency Manage the role’s dependencies.
destroy Use the provisioner to destroy the instances.
drivers List drivers.
idempotence Use the provisioner to configure the instances and parse the output to determine idempotence.
init Initialize a new role or scenario.
lint Lint the role (dependency, lint).
list List status of instances.
login Log in to one instance.
matrix List matrix of steps used to test instances.
prepare Use the provisioner to prepare the instances into a particular starting state.
reset Reset molecule temporary folders.
side-effect Use the provisioner to perform side effects on the instances.
syntax Use the provisioner to syntax-check the role.
test Runs a matrix of tests
verify Run automated tests against instances.

We usually start by running molecule converge several times to get the Ansible role
just right. Converge runs the converge.yml playbook that molecule init created. If
there is a pre-condition for the role, like another role to run first, then it makes sense
to create a prepare.yml playbook to save time during development. When using the
delegated driver, create a cleanup.yml playbook. You can call these extra playbooks
with molecule prepare and molecule cleanup, respectively.

Linting
Linting is the process of running a program that will analyze code for potential
errors, before running the code. Ansible content can be analyzed on several levels:

266 | Chapter 14: Quality Assurance with Molecule

the ansible-playbook command has a --syntax-check option, and there are other
programs that look at the YAML formatting, the application of best practices, and
good code style. Molecule can run all these linters in one go. If you are into code
quality and verification, this configuration for molecule lint is quite useful:

lint: |
 set -e
 yamllint .
 ansible-lint
 ansible-later

YAMLlint
YAMLlint checks YAML files not only for syntax validity but also for weirdness like
key repetition and cosmetic problems such as line length, trailing spaces, indentation,
etc. YAMLlint helps in creating uniform YAML files, and that is very useful when you
share code. We typically create a config file named .yamllint for it so it works well
with the other linters (Example 14-4).

Example 14-4. YAMLlint config file (.yamllint)

extends: default
rules:
 braces:
 max-spaces-inside: 1
 level: error
 document-start: enable
 document-end: enable
 key-duplicates: enable
 line-length: disable
 new-line-at-end-of-file: enable
 new-lines:
 type: unix
 trailing-spaces: enable
 truthy: enable
...

You can enable or disable these rules. We recommend at least adhering to YAMLlint’s
default settings.

ansible-lint
ansible-lint was created by Will Thames as a static analysis tool for Ansible. It
checks playbooks for practices and behavior that can potentially be improved. It uses
a directory with rules implemented as Python scripts. You can even program an extra
directory with rules yourself if you want to check certain behavior.

Linting | 267

https://oreil.ly/2rhid
https://oreil.ly/WtN09

1 Alternatively, you can maintain a skip_list: in a file named .ansible-lint.

To check a playbook you use the ansible-lint command with the playbook’s filename
as argument. To run Example 14-5, you would run:

$ ansible-lint lintme.yml

Example 14-5. lintme.yml

- name: Run ansible-lint with the roles
 hosts: all
 gather_facts: true
 become: yes
 roles:
 - ssh
 - miniconda
 - redis

When we run ansible-lint with Example 14-5, the following output is shown:
WARNING Listing 3 violation(s) that are fatal
yaml: truthy value should be one of [false, true] (yaml[truthy])
lintme.yml:6

yaml: missing document end "..." (yaml[document-end])
lintme.yml:14

yaml: too many blank lines (3> 0) (yaml[empty-lines])
lintme.yml:14

You can skip specific rules by adding them to your configuration file:
.config/ansible-lint.yml
skip_list:
 - yaml # Violations reported by yamllint.

Finished with 3 failure(s), 0 warning(s) on 22 files.

Usually it is a good idea to fix any issue that arises: this makes your Ansible code
more easily maintainable.1 ansible-lint is maintained by the Ansible community on
GitHub.

ansible-later
ansible-later is another best-practice scanner for Ansible roles and playbooks; it
was forked from ansible-review, which was another project (abandoned) by Will
Thames. The nice thing about it is that it helps to enforce code-style guidelines.
This will make Ansible roles more readable for all maintainers and can reduce
troubleshooting time. ansible-later complements YAMLlint and ansible-lint

268 | Chapter 14: Quality Assurance with Molecule

https://oreil.ly/Yq7nq

when configured for compatibility with a file named .later.yml in the top-level direc‐
tory (Example 14-6).

Example 14-6. ansible-later config file (.later.yml)

ansible:
 # Add the name of used custom Ansible modules.
 custom_modules: []
 # List of yamllint compatible literal bools (ANSIBLE0014)
 literal-bools:
 - "true"
 - "false"
...

Verifiers
Verifiers are tools used to assert the success of running the role in a playbook. While
we know that each module of Ansible has been tested, the outcome of a role is not
guaranteed. It is good practice to automate tests that validate the outcome. There are
three verifiers available for use with Molecule:

Ansible
The default verifier

Goss
A third-party verifier based on YAML specifications

TestInfra
A Python test framework

The Goss and TestInfra verifiers use the files from the tests subdirectory of a molecule
scenario, test_default.yaml for Goss and test_default.py for TestInfra.

Ansible
You can use a playbook named verify.yml to verify the results of the converge and
idempotence steps once they have finished. Just use Ansible modules like wait_for,
package_facts, service_facts, uri, and assert to test the outcomes. To do so, use:

$ molecule verify

Goss
You can do server validation quickly and easily with Goss, a YAML-based program
published by Ahmed Elsabbahy. To see what Goss can verify, let’s look at the
test_sshd.yml file for SSH, shown in Example 14-7. This checks if the SSH service is

Verifiers | 269

https://oreil.ly/QTJ4H

running, if it is enabled after reboot, if it listens on TCP port 22, what the properties
of the host key are, and so on.

Example 14-7. Goss file for SSH server

file:
 /etc/ssh/ssh_host_ed25519_key.pub:
 exists: true
 mode: '0644'
 owner: root
 group: root
 filetype: file
 contains:
 - 'ssh-ed25519 '
port:
 tcp:22:
 listening: true
 ip:
 - 0.0.0.0
service:
 sshd:
 enabled: true
 running: true
user:
 sshd:
 exists: true
 uid: 74
 gid: 74
 groups:
 - sshd
 home: /var/empty/sshd
 shell: /sbin/nologin
group:
 sshd:
 exists: true
process:
 sshd:
 running: true

If you run Goss to validate the server settings with this file on the command line, it
will look like this:

$ /usr/local/bin/goss -g /tmp/molecule/goss/test_sshd.yml v -f tap
1..18
ok 1 - Group: sshd: exists: matches expectation: [true]
ok 2 - File: /etc/ssh/ssh_host_ed25519_key.pub: exists: matches expectation:
[true]
ok 3 - File: /etc/ssh/ssh_host_ed25519_key.pub: mode: matches expectation:
["0644"]
ok 4 - File: /etc/ssh/ssh_host_ed25519_key.pub: owner: matches expectation:
["root"]
ok 5 - File: /etc/ssh/ssh_host_ed25519_key.pub: group: matches expectation:
["root"]

270 | Chapter 14: Quality Assurance with Molecule

ok 6 - File: /etc/ssh/ssh_host_ed25519_key.pub: filetype: matches expectation:
["file"]
ok 7 - File: /etc/ssh/ssh_host_ed25519_key.pub: contains: all expectations found:
[ssh-ed25519]
ok 8 - Process: sshd: running: matches expectation: [true]
ok 9 - User: sshd: exists: matches expectation: [true]
ok 10 - User: sshd: uid: matches expectation: [74]
ok 11 - User: sshd: gid: matches expectation: [74]
ok 12 - User: sshd: home: matches expectation: ["/var/empty/sshd"]
ok 13 - User: sshd: groups: matches expectation: [["sshd"]]
ok 14 - User: sshd: shell: matches expectation: ["/sbin/nologin"]
ok 15 - Port: tcp:22: listening: matches expectation: [true]
ok 16 - Port: tcp:22: ip: matches expectation: [["0.0.0.0"]]
ok 17 - Service: sshd: enabled: matches expectation: [true]
ok 18 - Service: sshd: running: matches expectation: [true]

To integrate Goss with Molecule, install molecule-goss with pip and create a
scenario:

$ molecule init scenario -r ssh \
 --driver-name docker \
 --verifier-name goss goss

Create the Goss YAML files in the molecule/goss/tests/ subdirectory of your role. It’s a
quick, powerful way to introduce automated testing to operations.

TestInfra
If you have advanced testing requirements, it’s helpful to have a Python-based test
framework. With TestInfra, you can write unit tests in Python to verify the actual
state of your Ansible-configured servers. TestInfra aspires to be the Python equivalent
of the Ruby-based ServerSpec, which gained popularity as a test framework for
systems managed with Puppet.

To use TestInfra as a verifier, install it first:
$ pip install pytest-testinfra

Create a scenario:
$ molecule init scenario -r ssh \
 --driver-name docker \
 --verifier-name testinfra testinfra

To create a test suite in TestInfra for an SSH server, create a file named molecule/tes‐
tinfra/tests/test_default.py and add the code from Example 14-8. After importing
libraries, it calls upon the Molecule inventory to get testinfra_hosts.

Each host in turn is tested for the presence of the openssh-server package, the sshd
service, the file with the ed25519 host key, and the proper user and group.

Verifiers | 271

Example 14-8. TestInfra file for SSH server

import os
import testinfra.utils.ansible_runner

testinfra_hosts = testinfra.utils.ansible_runner.AnsibleRunner(
 os.environ["MOLECULE_INVENTORY_FILE"]
).get_hosts("all")

def test_sshd_is_installed(host):
 sshd = host.package("openssh-server")
 assert sshd.is_installed

def test_sshd_running_and_enabled(host):
 sshd = host.service("sshd")
 assert sshd.is_running
 assert sshd.is_enabled

def test_sshd_config_file(host):
 sshd_config = host.file("/etc/ssh/ssh_host_ed25519_key.pub")
 assert sshd_config.contains("ssh-ed25519 ")
 assert sshd_config.user == "root"
 assert sshd_config.group == "root"
 assert sshd_config.mode == 0o644

def test_ssh_user(host):
 assert host.user("sshd").exists

def test_ssh_group(host):
 assert host.group("ssh").exists

As you might imagine, you’ll have lots of possibilities for verifying your servers if you
have Python available. TestInfra reduces the work by offering tests for the common
cases.

Conclusion
If you’re an Ansible user, Molecule is a terrific addition to your toolbox. It can help
you develop roles that are consistent, tested, well-written, and easily understood and
maintained.

272 | Chapter 14: Quality Assurance with Molecule

CHAPTER 15

Collections

Collections are a distribution format for Ansible content. A typical collection
addresses a set of related use cases. For example, the cisco.ios collection automates
management of Cisco iOS devices. Ansible Content Collections, which we’ll simply
refer to as collections for the rest of the chapter, represent the new standard of dis‐
tributing, maintaining, and consuming automation. You can think of collections as a
package format for Ansible content. By combining multiple types of Ansible content
(playbooks, roles, modules, and plug-ins), collections greatly improve flexibility and
scalability.

Traditionally, module creators have had to wait for their modules to be marked
for inclusion in an upcoming Ansible release or else add them to roles, which
made consumption and management more difficult. Now that the Ansible project
has decoupled Ansible executables from most of the content, high-quality Ansible
releases can be delivered more quickly and asynchronously from collection releases.

Shipping modules in Ansible Collections, along with roles and documentation,
removes a barrier to entry, so creators can move as fast as the demand for their
collection. This means vendors can roll out and automate new functionalities for
existing or new products and services, independent of the release of Ansible.

Anyone can create a collection and publish it to Ansible Galaxy or to a private
Automation Hub instance. Red Hat partners can publish certified collections to the
Red Hat Automation Hub, part of the Red Hat Ansible Automation Platform—the
release of which means Ansible Content Collections are now fully supported.

273

Confession

Up until this point in the book, Bas has written every module
name as a single word to ease your learning curve. This did not
take namespaces into account. Namespaces are used to distinguish
owners/maintainers and their collections. It makes sense to use the
fully qualified collection name (FQCN) in playbooks, since module
names become so specific that we can look them up (try googling
“group” versus “ansible.builtin.group”).
Instead of using only a module, like so:

- name: create group members
 group:
 name: members

We use the namespace.collection.module notation:
- name: create group members
 ansible.builtin.group:
 name: members

For ansible.builtin this might look odd, but when using collec‐
tions it becomes essential to avoiding name collisions.
The collections keyword lets you define a list of collections that
your role or playbook should search for unqualified module and
action names. So you can use the collections keyword, then refer to
modules and action plug-ins by their short-form names through‐
out that role or playbook:

myrole/meta/main.yml
collections:
 - my_namespace.first_collection:version

You can install a collection next to a full Ansible install and over‐
ride the bundled collection with the version you installed.

Installing Collections
You can find and download collections through the website Ansible Galaxy and with
the ansible-galaxy command. By default, ansible-galaxy collection install
uses https://galaxy.ansible.com as the Galaxy server, but you can store roles and
collections in private Git repositories just as well:

$ ansible-galaxy collection install my_namespace.my_collection

You can use a requirements.yml file that lists recommended security-related collec‐
tions and roles as input for the ansible-galaxy command:

$ ansible-galaxy install -r requirements.yml

274 | Chapter 15: Collections

By default, this will install the collections in a “global” way, in a subdirectory in your
home directory:

$HOME/.ansible/collections/ansible_collections

Configure collections_paths in ansible.cfg to install elsewhere. A collections direc‐
tory, next to the playbook.yml, is a good place in a project structure.

Example 15-1 shows the format for a requirements.yml file with two lists: one for
the roles and the other for the collections.

Example 15-1. requirements.yml

roles:
 - src: leonallen22.ansible_role_keybase
 name: keybase
 - src: https://github.com/dockpack/base_tailscale.git
 name: tailscale
collections:
 - check_point.gaia
 - check_point.mgmt
 - cyberark.conjur
 - cyberark.pas
 - fortinet.fortios
 - ibm.isam
 - junipernetworks.junos
 - paloaltonetworks.panos
...

Listing Collections
The first thing to do after installing collections is to see which collections you
installed separately and which came bundled with your installed Ansible:

$ ansible-galaxy collection list

The list has more than a hundred entries, but Ansible does have “batteries included.”
To list the modules included in a collection, run:

$ ansible-doc -l namespace.collection

Ansible collections extend what you can do. If you find this overwhelming, consider
installing just ansible-core and the collections you really need.

Using Collections in a Playbook
Collections can package and distribute playbooks, roles, modules, and plug-ins.
When you depend on modules from collections that you install, it makes sense to
start using the FQCN for modules in your playbooks: for example, instead of writing

Listing Collections | 275

file, you’d write ansible.builtin.file. Also, for clarity, when you use custom
collections, use the collections keyword at the top of the playbook to declare the
ones you use (Example 15-2).

Example 15-2. Collections playbook

- name: Collections playbook
 hosts: all
 collections:
 - our_namespace.her_collection
 tasks:
 - name: Using her module from her collection
 her_module:
 option1: value

 - name: Using her role from her collection
 import_role:
 name: her_role

 - name: Using lookup and filter plug-ins from her collection
 debug:
 msg: '{{ lookup("her_lookup", "param1") | her_filter }}'

 - name: Create directory
 become: true
 become_user: root
 ansible.builtin.file:
 path: /etc/my_software
 state: directory
 mode: '0755'
...

Collections actually allow us to extend Ansible with “new words in the language,” and
we can choose to run ansible-core only with the collections that we really need.

Developing a Collection
Collections have a simple, predictable data structure with a straightforward defini‐
tion. The ansible-galaxy command-line utility has been updated to manage collec‐
tions, providing much of the same functionality as has always been used to manage,
create, and consume roles. For example, ansible-galaxy collection init can be
used to create a starting point for a new user-created collection:

$ ansible-galaxy collection init a_namespace.the_bundle

276 | Chapter 15: Collections

When I create a collection named the_bundle under the namespace ansiblebook,
this directory structure is created:

ansiblebook/
└── the_bundle
 ├── README.md
 ├── docs
 ├── galaxy.yml
 ├── plugins
 │ └── README.md
 └── roles

The metadata for the collection is stored in the file galaxy.yml (Example 15-3). This
includes links to the repository, its documentation, and the issue tracker. The tags are
search terms for https://galaxy.ansible.com. build_ignore is used to filter files from
the artifact.

Example 15-3. Example galaxy.yml

namespace: community
name: postgresql
version: 2.1.3
readme: README.md
authors:
 - Ansible PostgreSQL community
description: null
license_file: COPYING
tags:
 - database
 - postgres
 - postgresql
repository: https://github.com/ansible-collections/community.postgresql
documentation: https://docs.ansible.com/ansible/latest/collections/community/postgresql
homepage: https://github.com/ansible-collections/community.postgresql
issues: https://github.com/ansible-collections/community.postgresql/issues
build_ignore:
 - .gitignore
 - changelogs/.plugin-cache.yaml
 - '*.tar.gz'

Refer to the developer guide for distributing collections for full information on the
requirements and distribution process.

To distribute your collection and allow others to use it, you can publish your collec‐
tion on one or more distribution servers. Distribution servers include Ansible Galaxy,
Red Hat Automation Hub (content by certified Red Hat partners), and a privately
hosted Automation Hub (see Chapter 23).

Developing a Collection | 277

https://oreil.ly/zo08v

Collections distribution is based on tarballs instead of source code, as is usual for
roles on Ansible Galaxy. The tag.gz format is more suitable for use on-premises. The
tarball is created from the collection with this command:

$ ansible-galaxy collection build

Verify the installation locally and test it:
$ ansible-galaxy collection install \
 a_namespace-the_bundle-1.0.0.tar.gz \
 -p ./collections

Now you can finally publish the collection:
$ ansible-galaxy collection publish path/to/a_namespace-the_bundle-1.0.0.tar.gz

Conclusion
Collections have been a great step forward in the maturity of the Ansible project.
The project’s vision of Ansible coming with “batteries included” turned out not to
be maintainable over time with thousands of developers. We believe that having
proper namespaces and segregation of duties, with vendors taking part in Red Hat’s
ecosystem and enough room for community innovation, will bring back users’ trust
in Ansible for critical IT automation. If you manage your dependencies well—your
collections, roles, and Python libraries—then you can automate with confidence.

278 | Chapter 15: Collections

https://galaxy.ansible.com

CHAPTER 16

Creating Images

Creating Images with Packer
Packer is a tool that helps create machine images for multiple platforms from a single
source. Both virtual machine images and container images can be constructed with
Packer.

A Dockerfile lets you package your application into a single image that’s easy to
deploy in different environments (yet on a container platform only), which is why
the Docker project has embraced the metaphor of the shipping container. Its remote
API simplifies the automation of software systems that run on top of Docker, but one
should be aware of the security challenges of such an API.

For simple container images the standard Dockerfile works just fine. However, when
you start to create more complex images, you’ll quickly miss the power that Ansible
provides. Fortunately, you can use Ansible playbooks as a provisioner for HashiCorp
Packer. Using a playbook with roles helps reduce the complexity.

The workflows in this chapter are useful when you want to postpone the choice of
where and how you run your applications; with one source, you can create images for
several cloud providers as well as for containers. Also you can reduce you cloud bills
because you can combine online use in the cloud with local development in Vagrant
VirtualBox.

Vagrant VirtualBox VM
The first example is a Packer definition to create a RHEL 8 image for Vagrant/Virtual‐
Box, or a box as VirtualBox calls it.

279

https://oreil.ly/Fktch
https://oreil.ly/Fktch

Build the image with:
$ packer build rhel8.pkr.hcl

This Packer file defines variables for the ISO image used in the Kickstart, the proper‐
ties of the virtual machine used to build the image, and the steps of provisioning
(Example 16-1). The installation of Red Hat Linux variants is based on Kickstart:
when starting the machine, a boot command requests a Kickstart configuration
over HTTP. This Kickstart configuration is input for the Red Hat installer, named
Anaconda.

Example 16-1. rhel8.pkr.hcl

variable "iso_url1" {
 type = string
 default = "file:///Users/Shared/rhel-8.4-x86_64-dvd.iso"
}
variable "iso_url2" {
 type = string
 default = "https://developers.redhat.com/content-gateway/file/rhel-8.4-x86_64-dvd.iso"
}
variable "iso_checksum" {
 type = string
 default = "sha256:48f955712454c32718dcde858dea5aca574376a1d7a4b0ed6908ac0b85597811"
}
source "virtualbox-iso" "rhel8" {
 boot_command = [
 "<tab> text inst.ks=http://{{ .HTTPIP }}:{{ .HTTPPort }}/
 ks.cfg<enter><wait>"
]
 boot_wait = "5s"
 cpus = 2
 disk_size = 65536
 gfx_controller = "vmsvga"
 gfx_efi_resolution = "1920x1080"
 gfx_vram_size = "128"
 guest_os_type = "RedHat_64"
 guest_additions_mode = "upload"
 hard_drive_interface = "sata"
 headless = true
 http_directory = "kickstart"
 iso_checksum = "${var.iso_checksum}"
 iso_urls = ["${var.iso_url1}", "${var.iso_url2}"]
 memory = 4096
 nested_virt = true
 shutdown_command = "echo 'vagrant' | sudo -S /sbin/halt -h -p"
 ssh_password = "vagrant"
 ssh_username = "root"
 ssh_wait_timeout = "10000s"
 rtc_time_base = "UTC"
 virtualbox_version_file= ".vbox_version"
 vrdp_bind_address = "0.0.0.0"
 vrdp_port_min = "5900"

280 | Chapter 16: Creating Images

 vrdp_port_max = "5900"
 vm_name = "RedHat-EL8"
}
build {
 sources = ["source.virtualbox-iso.rhel8"]
 provisioner "shell" {
 execute_command = "echo 'vagrant' | {{ .Vars }} sudo -S -E bash '{{ .Path }}'"
 scripts = ["scripts/vagrant.sh", "scripts/cleanup.sh"]
 }
 provisioner "ansible" {
 playbook_file = "./packer-playbook.yml"
 }
 post-processors {
 post-processor "vagrant" {
 keep_input_artifact = true
 compression_level = 9
 output = "output-rhel8/rhel8.box"
 vagrantfile_template = "Vagrantfile.template"
 }
 }
}

When the Anaconda installer finishes, the virtual machine reboots and Packer starts
provisioning by running the scripts and eventually packer-playbook.yml with the
provisioner "ansible". This runs from your machine.

Individual developers can register and manage 16 RHEL 8 systems for free. Since this
is subscription-based, you need to define three environment variables with your login
(RH_USER) and password (RH_PASS) for Red Hat and optionally a Pool ID (RH_POOL).
You can do that in a shell before running Packer. This playbook in Example 16-2
registers the virtual machine and installs container tools.

Example 16-2. packer-playbook.yml

- hosts: all:!localhost
 become: true
 gather_facts: false
 tasks:

 - name: Register RHEL 8
 redhat_subscription:
 state: present
 username: "{{ lookup('env','RH_USER') }}"
 password: "{{ lookup('env','RH_PASS') }}"
 pool_ids: "{{ lookup('env','RH_POOL') }}"
 syspurpose:
 role: "Red Hat Enterprise Server"
 usage: "Development/Test"
 service_level_agreement: "Self-Support"

 - name: Install packages

Creating Images with Packer | 281

https://oreil.ly/Z8HUI
https://oreil.ly/DuyQ8

 yum:
 name: "{{ item }}"
 state: present
 loop:
 - podman
 - skopeo
...

When the build finishes successfully, you can add the box file as a template for
Vagrant/VirtualBox:

$ vagrant box add --force --name RedHat-EL8 output-rhel8/rhel8.box

The sample code for this chapter includes a Vagrantfile that you can use to bring up a
virtual machine named rhel8 based on that template:

$ vagrant up rhel8

Once it launches, you can connect to it with Remote Desktop as the Vagrant user on:
rdp://localhost:5900

Launch Visual Studio Code to see what was installed.

Combining Packer and Vagrant
For developing images with Packer, it makes sense to make use of Vagrant. You can
use a Vagrantfile to prototype new features that you eventually add to the cloud
images. A playbook running against a local virtual machine will finish quicker than a
full Packer run, allowing you to develop faster. Packer runs in one go and will destroy
any resources it created on failure. Having Vagrant on the side adds the possibility for
more incremental development. This Vagrantfile launches a virtual machine with a
box called "centos/7":

Vagrant.configure("2") do |config|
 config.vm.box = "centos/7"
 config.vm.box_check_update = true
 if Vagrant.has_plugin?("vagrant-vbguest")
 config.vbguest.auto_update = false
 end
 config.vm.graceful_halt_timeout=15
 config.ssh.insert_key = false
 config.ssh.forward_agent = true
 config.vm.provider "virtualbox" do |virtualbox|
 virtualbox.gui = false
 virtualbox.customize ["modifyvm", :id, "--memory", 2048]
 virtualbox.customize ["modifyvm", :id, "--vram", "64"]
 end
 config.vm.define :bastion do |host_config|
 host_config.vm.box = "centos/7"
 host_config.vm.hostname = "bastion"
 host_config.vm.network "private_network", ip: "192.168.56.20"
 host_config.vm.network "forwarded_port", id: 'ssh', guest: 22, host: 2220
 host_config.vm.synced_folder ".", "/vagrant", disabled: true

282 | Chapter 16: Creating Images

 host_config.vm.provider "virtualbox" do |vb|
 vb.name = "bastion"
 vb.customize ["modifyvm", :id, "--memory", 2048]
 vb.customize ["modifyvm", :id, "--vram", "64"]
 end
 end
 config.vm.provision :ansible do |ansible|
 ansible.compatibility_mode = "2.0"
 # Disable default limit to connect to all the servers
 ansible.limit = "all"
 ansible.galaxy_role_file = "ansible/roles/requirements.yml"
 ansible.galaxy_roles_path = "ansible/roles"
 ansible.inventory_path = "ansible/inventories/vagrant.ini"
 ansible.playbook = "ansible/playbook.yml"
 ansible.verbose = ""
 end
end

Vagrant can configure many aspects of the Ansible provisioner; everything can hap‐
pen automatically, but you can also run parts of the playbook with tags, log in to
inspect, etc.

Cloud Images
Packer can create virtual machine images for the major cloud providers (AWS EC2,
Azure, Digital Ocean, GCP, Hetzner Cloud, Oracle) and for hypervisors (OpenStack,
Hyper-V, Proxmox, VMWare, VirtualBox, QEMU). Packer allows you to postpone
decisions about deploying your applications and unifies lots of the differences in a
common interface.

These cloud providers and technologies work with both Ansible and Packer:

Alicloud ECS Amazon EC2 Azure CloudStack Digital Ocean
Docker Google Cloud Platform Hetzner Cloud HuaweiCloud Hyper-V
Kamatera Linode LXC LXD OpenStack
Oracle Parallels ProfitBricks Proxmox QEMU
Scaleway Vagrant VirtualBox VMware Vultr

Google Cloud Platform
Getting started with Google Cloud Platform (GCP) is straightforward. Sign in, create
a project in the Compute Engine, and copy the project ID (the name with a number
appended). Create an environment variable with that project ID:

export GCP_PROJECT_ID=myproject-332421

Creating Images with Packer | 283

https://oreil.ly/4hLD4

Select a default and zone on the settings page for your project and create a pair of
environment variables:

export CLOUDSDK_COMPUTE_REGION=europe-west4
export CLOUDSDK_COMPUTE_ZONE=europe-west4-b

The examples in ansiblebook/ch16/cloud are based on ansible-roles in the require‐
ments.yml file. To install these roles, run:

cd ansible && ansible-galaxy install -f -p roles -r roles/requirements.yml

This Packer file (Example 16-3) defines variables for GCP, the base image used in the
install, the name of the resulting image, the properties of the virtual machine used
to build the image, and the steps in provisioning. The machine type used to create
the image is unrelated to the machine that is instantiated from that image. We use
powerful machines to create complex images, at the same cost, but the job is done
quickly.

Example 16-3. gcp.pkr.hcl

variable "gcp_project_id" {
 type = string
 default = "${env("GCP_PROJECT_ID")}"
 description = "Create a project and use the project-id"
}
variable "gcp_region" {
 type = string
 default = "${env("CLOUDSDK_COMPUTE_REGION")}"
 description = "https://console.cloud.google.com/compute/settings"
}
variable "gcp_zone" {
 type = string
 default = "${env("CLOUDSDK_COMPUTE_ZONE")}"
 description = "https://console.cloud.google.com/compute/settings"
}
variable "gcp_centos_image" {
 type = string
 default = "centos-7-v20211105"
 description = ""
}
variable "image" {
 type = string
 default = "centos7"
 description = "Name of the image when created"
}
source "googlecompute" "gcp_image" {
 disk_size = "30"
 image_family = "centos-7"
 image_name = "${var.image}"
 machine_type = "e2-standard-2"
 project_id = "${var.gcp_project_id}"
 region = "${var.gcp_region}"
 source_image = "${var.gcp_centos_image}"

284 | Chapter 16: Creating Images

https://oreil.ly/zTvzc

 ssh_username = "centos"
 state_timeout = "20m"
 zone = "${var.gcp_zone}"
}
build {
 sources = ["googlecompute.gcp_image"]
 provisioner "shell" {
 execute_command = "{{ .Vars }} sudo -S -E bash '{{ .Path }}'"
 scripts = ["scripts/ansible.sh"]
 }
 provisioner "ansible-local" {
 extra_arguments = ["--extra-vars \"image=${var.image}\""]
 playbook_dir = "./ansible"
 playbook_file = "ansible/packer.yml"
 }
 provisioner "shell" {
 execute_command = "{{ .Vars }} /usr/bin/sudo -S -E bash '{{ .Path }}'"
 script = "scripts/cleanup.sh"
 }
}

First, the provisioner "shell" runs a script to install Ansible on the virtual machine.
This can then be used as provisioner "ansible-local". Effectively, the whole direc‐
tory where the Packer file is stored is uploaded to the virtual machine running in
GCP, so be cautious when creating boxes in that same directory.

Azure
To get started with Azure, sign in and search for your Subscription ID. Create an
environment variable with it:

export ARM_SUBSCRIPTION_ID=xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx

Before you can create images, you need to create two other things first: a resource
group and a storage account. You also need to decide on which location to use to host
them.

The Packer file (Example 16-4) to create a virtual machine image is similar to the one
for GCP, but it needs more details and other variables.

Example 16-4. azure.pkr.hcl

variable "arm_subscription_id" {
 type = string
 default = "${env("ARM_SUBSCRIPTION_ID")}"
 description = "https://www.packer.io/docs/builders/azure/arm"
}
variable "arm_location" {
 type = string
 default = "westeurope"
 description = "https://azure.microsoft.com/en-us/global-infrastructure/geographies/"
}

Creating Images with Packer | 285

https://portal.azure.com
https://oreil.ly/UOXYU

variable "arm_resource_group" {
 type = string
 default = "${env("ARM_RESOURCE_GROUP")}"
 description = "make arm-resourcegroup in Makefile"
}
variable "arm_storage_account" {
 type = string
 default = "${env("ARM_STORAGE_ACCOUNT")}"
 description = "make arm-storageaccount in Makefile"
}
variable "image" {
 type = string
 default = "centos7"
 description = "Name of the image when created"
}
source "azure-arm" "arm_image" {
 azure_tags = {
 product = "${var.image}"
 }
 image_offer = "CentOS"
 image_publisher = "OpenLogic"
 image_sku = "7.7"
 location = "${var.arm_location}"
 managed_image_name = "${var.image}"
 managed_image_resource_group_name = "${var.arm_resource_group}"
 os_disk_size_gb = "30"
 os_type = "Linux"
 subscription_id = "${var.arm_subscription_id}"
 vm_size = "Standard_D8_v3"
}
build {
 sources = ["source.azure-arm.arm_image"]
 provisioner "shell" {
 execute_command = "{{ .Vars }} sudo -S -E bash '{{ .Path }}'"
 scripts = ["scripts/ansible.sh"]
 }
 provisioner "ansible-local" {
 extra_arguments = ["--extra-vars \"image=${var.image}\""]
 playbook_dir = "./ansible"
 playbook_file = "ansible/packer.yml"
 }
 provisioner "shell" {
 execute_command = "{{ .Vars }} /usr/bin/sudo -S -E bash '{{ .Path }}'"
 script = "scripts/cleanup.sh"
 }
 provisioner "shell" {
 execute_command = "chmod +x {{ .Path }}; {{ .Vars }} sudo -E sh '{{ .Path }}'"
 inline = [
 "/usr/sbin/waagent -force -deprovision+user",
 "sync"
]
 inline_shebang = "/bin/sh -x"
 }
}

286 | Chapter 16: Creating Images

The provisioning extends the one for GCP by running the waagent at the end. This
cleans the VM from users and SSH keys so that the image can safely be used in a new
virtual machine instance.

Amazon EC2
To get started with EC2, the infrastructure as a service part of Amazon’s cloud
offering, log in and set up Identity and Access Management. We assume you know
how to use the environment variables AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY,
and AWS_REGION. More information on Amazon’s cloud infrastructure is given in the
next chapter.

The Packer template (Example 16-5) is similar to the other cloud image templates, yet
it needs a region-specific base image in the variable aws_centos_image.

Example 16-5. aws.pkr.hcl

variable "aws_region" {
 type = string
 default = "${env("AWS_REGION")}"
 description = "https://docs.aws.amazon.com/general/latest/gr/rande.html"
}

variable "aws_centos_image" {
 type = string
 default = "ami-0e8286b71b81c3cc1"
 description = "https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html"
}

variable "image" {
 type = string
 default = "centos7"
 description = "Name of the image when created"
}

locals { timestamp = regex_replace(timestamp(), "[- TZ:]", "") }

source "amazon-ebs" "aws_image" {
 ami_name = "${var.image}-${local.timestamp}"
 instance_type = "t2.micro"
 region = "${var.aws_region}"
 source_ami = "${var.aws_centos_image}"
 ssh_username = "centos"
 tags = {
 Name = "${var.image}"
 }
}

build {
 sources = ["source.amazon-ebs.aws_image"]

Creating Images with Packer | 287

https://aws.amazon.com/console

 provisioner "shell" {
 execute_command = "{{ .Vars }} sudo -S -E bash '{{ .Path }}'"
 scripts = ["scripts/ansible.sh"]
 }

 provisioner "ansible-local" {
 extra_arguments = ["--extra-vars \"image=${var.image}\""]
 playbook_dir = "./ansible"
 playbook_file = "ansible/playbook.yml"
 }

 provisioner "shell" {
 execute_command = "{{ .Vars }} /usr/bin/sudo -S -E bash '{{ .Path }}'"
 script = "scripts/cleanup.sh"
 }

}

The Playbook
The images are based on CentOS 7, a well-known distribution that can be used as a
bastion host or as a VPN:

- hosts: all:127.0.0.1
 gather_facts: true
 become: true
 vars:
 net_allow:
 - '10.1.0.0/16'
 - '192.168.56.0/24'
 roles:
 - {role: common, tags: common}
 - {role: epel, tags: epel}
 - {role: ansible-auditd, tags: auditd}
 - {role: nettime, tags: nettime}
 - {role: rsyslog, tags: syslog}
 - {role: crontab, tags: crontab}
 - {role: keybase, tags: keybase}
 - {role: gpg_agent, tags: gpg}
 - {role: tailscale, tags: tailscale}
...

Virtual machines in the cloud need to be secured, so we run a couple of roles to set up
security, auditing, and time synchronization. Then we configure the SSH settings and
install extra software for encryption and VPN.

Docker Image: GCC 11
The last example in this chapter is using Packer to create a complex container image
for GCC. GCC is used to create Linux and compile native software for it. Your
Linux distribution came bundled with a version of GCC so you can compile C/C++

288 | Chapter 16: Creating Images

source code. GCC is under active development, and newer versions of the compilers
typically create faster binaries of the same source code than older versions, due to
advances in optimization technology. In short, if you want the fastest programs, use
the latest compiler; if needed, compile GCC 11 yourself, because it is not bundled yet.

To compile GCC and use it for C++ programming on CentOS/RHEL 7, you need to
install some other packages, tools, and libraries. For instance, Boost is a well-known
set of libraries for C++ programming; CMake is a build tool that is widely used. The
Red Hat Developer Toolset (DTS) bundles lots of other tools required by developers.

Let’s assume you want to configure the versions and options in a playbook that
requires other roles (which Bas has published on Ansible Galaxy). You can specify
such requirements in a file named requirements.yml in a directory named roles:

- src: dockpack.base_gcc
 name: base_gcc
 version: '1.3.2'
- src: dockpack.compile_gcc
 name: compile_gcc
 version: 'v1.0.5'
- src: dockpack.base_cmake
 name: base_cmake
 version: '1.3.1'
- src: dockpack.base_boost
 name: base_boost
 version: '2.1.9'
- src: dockpack.base_python
 name: base_python
 version: 'v1.1.2'

The playbook sets the variables and the order of installation (Example 16-6). To
compile the source code for GCC 11 you need GCC, a kind of a chicken-and-egg
problem. We will install Developer Toolset 10 from Software Collections on CentOS
7 to have the latest release of GCC, and we’ll also install Python and CMake before
compiling GCC. Once we compile GCC, we can compile Boost with it.

Example 16-6. docker-playbook.yml

- hosts: all:!localhost
 gather_facts: true
 vars:
 # Install Software Collections?
 collections_enabled: true
 # Devtoolset to compile with
 DTSVER: 10
 # C++ compiler to compile
 GCCVER: '11.2.0'
 dependencies_url_signed: false
 # Boost version to compile

Docker Image: GCC 11 | 289

https://oreil.ly/6EzPZ

 boost_version: 1.66.0
 boost_cflags: '-fPIC -fno-rtti'
 boost_cxxflags: '-fPIC -fno-rtti'
 boost_properties: "link=static threading=multi runtime-link=shared"
 roles:
 - role: base_python
 - role: base_cmake
 - role: base_gcc
 - role: compile_gcc
 - role: base_boost
...

Packer’s behavior is determined by a template, which consists of a series of declara‐
tions and commands for Packer to follow. This template, gcc.pkr.hcl (Example 16-7),
tells Packer what plug-ins (builders, provisioners, post-processors) to use, how to
configure each of those plug-ins, and what order to run them in.

Example 16-7. gcc.pkr.hcl

packer {
 required_plugins {
 docker = {
 version = ">= 0.0.7"
 source = "github.com/hashicorp/docker"
 }
 }
}
source "docker" "gcc" {
 changes = ["CMD [\"/bin/bash\"]", "ENTRYPOINT [\"\"]"]
 commit = true
 image = "centos:7"
 run_command = [
 "-d",
 "-i",
 "-t",
 "--network=host",
 "--entrypoint=/bin/sh",
 "--", "{{ .Image }}"
]
}
build {
 name = "docker-gcc"
 sources = [
 "source.docker.gcc"
]
 provisioner "shell" {
 inline = ["yum -y install sudo"]
 }
 provisioner "ansible" {
 playbook_file = "./playbooks/docker-playbook.yml"
 galaxy_file = "./roles/requirements.yml"
 }
 post-processors {

290 | Chapter 16: Creating Images

 post-processor "docker-tag" {
 repository = "localhost/gcc11-centos7"
 tags = ["0.1"]
 }
 }
}

To create the container image, run the Packer build:
$ packer build gcc.pkr.hcl

Please note that this will take hours to complete.

Conclusion
We know that Docker images can become complex when created with Dockerfiles.
Packer and Ansible, however, provide a clean separation of concerns that allows us
to rethink what we do with our software at any time. Packer, Vagrant, and Ansible
are a fantastic combination for creating base images for infrastructure as a service, in
the cloud, and on-premises. If you work in a large organization, you can create base
images that others can build upon.

Conclusion | 291

1 The National Institute of Standards and Technology (NIST) has a pretty good definition of cloud computing
in “The NIST Definition of Cloud Computing”.

CHAPTER 17

Cloud Infrastructure

Ansible has several features that make working with public and private clouds
much easier. A cloud can be seen as a layered platform where the user can create
resources to run software applications.1 Users can dynamically allocate or program‐
matically remove cloud infrastructure—including compute, networking, and storage
resources—which is called infrastructure as a service (IaaS).

An IaaS cloud service enables users to provision (create) new servers. All IaaS clouds
are self-service, meaning that the user interacts directly with a software service rather
than, say, filing a ticket with the IT department. Most IaaS clouds offer three types of
interfaces to allow users to interact with the system:

• Web interface•
• Command-line interface•
• REST API•

In the case of EC2, the web interface is called the AWS Manage‐
ment Console, and the command-line interface is called (unima‐
ginatively) the AWS Command-Line Interface. The REST API is
documented at Amazon.

IaaS clouds typically use virtual machines to implement the servers, although you
can build an IaaS cloud by using bare-metal servers (where users run directly on the
hardware rather than inside a virtual machine) or containers. Most IaaS clouds let

293

https://oreil.ly/Y1hnY
https://oreil.ly/b443M
https://oreil.ly/b443M
https://oreil.ly/tm9Rx
http://amzn.to/1F7g6yA

you do more than just start up and tear down servers. In particular, they typically
let you provision storage so you can attach and detach disks to and from your
servers. This type of storage is commonly referred to as block storage. They also offer
networking features, so you can define network topologies that describe how your
servers are interconnected, as well as firewall rules or security groups that restrict
networking to and from your servers.

The next layer in a cloud consists of specific innovations developed by cloud service
providers and application runtimes like container clusters, application servers, ser‐
verless environments, operating systems, and databases. This layer is called platform
as a service (PaaS). You manage your applications and data; the platform manages
the rest. PaaS allows distinctive features that are a point of competition among cloud
providers, especially since competing over cost-efficiency in IaaS is a race to the
bottom. However, the Kubernetes container platform, a common platform in any
cloud, has seen the greatest interest.

Any app that runs in the cloud has many layers, but when only one is visible to the
cloud customer (or their customers) it is software as a service (SaaS). They just use
the software, unaware of the servers’ whereabouts.

What Is Cloud Provisioning?
We’ll be precise about what we mean by provisioning. To start, here’s a typical user
interaction with an IaaS cloud:

User
I want five servers, each one with two CPUs, 4 GB of memory, and 100 GB of
storage, running Ubuntu 20.04.

Service
Request received. Your request number is 432789.

User
What’s the current status of request 432789?

Service
Your servers are ready to go, at IP addresses 203.0.113.5, 203.0.113.13,
203.0.113.49, 203.0.113.124, and 203.0.113.209.

User
I’m done with the servers associated with request 432789.

Service
Request received. The servers will be terminated.

Provisioning is the process of creating the resources needed to configure and run
software.

294 | Chapter 17: Cloud Infrastructure

The professional way to create resources in a cloud is using its API in one way or
another, called infrastructure as code. There are some generic cloud APIs and vendor-
specific APIs, and as programmers do, there are abstractions that let us combine
some of these APIs. You can create a declarative model of the desired state of the
resources, have the tool compare that to the current state, and act accordingly; or
you can imperatively code the actions required to achieve one desired state. Starting
from scratch, either method will need to describe the resources and their properties.
The imperative coder needs to know more about the order of the stack’s creation:
network, subnet, security group, network interface, disk, virtual machine image,
virtual machine. The declarative coder only needs to know the interdependencies.
HashiCorp Terraform is a declarative tool for provisioning, whereas Ansible is more
imperative: it can define one state in an idempotent way. These two methods differ
when you want to change the infrastructure as well as when the infrastructure
changes state by other means than the provisioning tool.

Could you simply provision any other version of the infrastructure? Ansible modules
are not required to be inversible, but with some extra effort we can make our
playbooks idempotent and undoable, that is, using a desired state variable to allow us
to remove the resources:

state: "{{ desired_state }}"

But even if we implement the undo/redo pattern, Ansible has no state that it uses
to plan changes, like Terraform does. Ansible inventories can be versioned with
idempotent, desired-state provisioning playbooks in similar amounts of code, due to
the length of the object property descriptions. The amount of Ansible code increases
when, to make changes, you need to query the state of the infrastructure.

Ansible ships with modules for many other cloud services, including Microsoft
Azure, Alibaba, Cloudscale, Digital Ocean, Google Compute Engine, Hetzner, Oracle
Cloud, IBM Cloud, Rackspace, and Vultr, as well as private clouds built using oVirt,
OpenStack, CloudStack, Proxmox, and VMWare vSphere.

When you install Ansible, most of the capabilities are provided by bundled collec‐
tions, which might not be the very latest version. When you use a specific cloud
service, then it makes sense to install the collection for it. If you can’t find the
vendor in Table 17-1, then look into the documentation for the community.general
collection, which has lots of functionality. In general, if the vendor has not published
a collection yet, you will need to install the required Python library for the cloud of
your choice.

Cloud Infrastructure | 295

https://oreil.ly/HHKMk
https://oreil.ly/HHKMk

Table 17-1. Cloud service collections and Python libraries

Cloud Collection Python library
Amazon Web Services amazon.aws boto3
Alibaba Cloud Compute Services footmark
Cloudscale.ch cloudscale_ch.cloud
CloudStack ngine_io.cloudstack cs
Digital Ocean community.digitalocean
Google Cloud google.cloud google-auth

requests
Hetzner Cloud hetzner.hcloud hcloud-python
IBM Cloud ibm.cloudcollection
Microsoft Azure azure.azcollection ansible[azure]
Openstack openstack.cloud
Oracle Cloud Infrastructure oracle.oci oci
Ovirt ovirt.ovirt
Packet.net packet-python
Rackspace openstack.cloud
Scaleway community.general
Vultr ngine_io.vultr

Amazon EC2
This chapter focuses on Amazon Elastic Compute Cloud (EC2) because it’s the most
popular cloud service. However, many of the concepts should transfer to other clouds
supported by Ansible. Ansible supports EC2 in two ways:

• A dynamic inventory plug-in for automatically populating your Ansible inven‐•
tory, instead of manually specifying your servers

• Modules that perform actions on EC2, such as creating new servers•

This chapter covers both the EC2 dynamic inventory plug-in and the bundled EC2
modules.

Ansible has more than a hundred modules that relate to EC2 as
well as to other features offered by Amazon Web Services (AWS).
We have space to cover only a few of them here, so we will focus on
the basics.

296 | Chapter 17: Cloud Infrastructure

https://oreil.ly/1T1Rp
https://oreil.ly/9YoAD
https://oreil.ly/k3iCE
https://oreil.ly/AdPO8
https://oreil.ly/Nhbkq
https://oreil.ly/TqTn9
https://oreil.ly/bh4Pw
https://oreil.ly/R11XU
https://oreil.ly/B4nmQ
https://oreil.ly/VGkRE
https://oreil.ly/Si7nX
https://www.ovirt.org
https://oreil.ly/8PYcX
https://oreil.ly/ycnze
https://oreil.ly/Yf8Of
https://www.vultr.com

Terminology
EC2 exposes many concepts. We’ll explain these concepts as they come up in this
chapter, but there are three terms we’d like to cover up front: instance, Amazon
Machine Image, and tags.

Instance
EC2’s documentation uses the term instance to refer to a virtual machine, and we use
that terminology in this chapter. Keep in mind that an EC2 instance is a host from
Ansible’s perspective.

EC2 documentation interchangeably uses the terms creating instances, launching
instances, and running instances to describe the process of bringing up a new instance.
However, starting instances means something different—starting up an instance that
had previously been put in the stopped state.

Amazon Machine Image
An Amazon Machine Image (AMI) is a virtual machine image that has a filesystem
with an operating system installed on it. When you create an instance on EC2, you
choose which operating system you want your instance to run by specifying the AMI
that EC2 will use to create the instance.

Each AMI has an associated identifier string, called an AMI ID, which starts with
ami- and then has hexadecimal characters—for example, ami-1234567890abcdef0.
Prior to January 2016, the IDs assigned to newly created AMIs used eight characters
after the hyphen (for example, ami-1a2b3c4d). Between January 2016 and June 2018,
Amazon was in the process of changing the IDs of all these resource types to use
17 characters after the hyphen. Depending on when your account was created, you
might have resources with short IDs, though any new resources of these types receive
the longer IDs.

Tags
EC2 lets you annotate your instances (and other entities such as AMIs, volumes, and
security groups) with custom metadata that it calls tags. Tags are just key-value pairs
of strings. For example, we could annotate an instance with the following tags:

Name=Staging database
env=staging
type=database

If you’ve ever given your EC2 instance a name in the AWS Management Console,
you’ve used tags without even knowing it. EC2 implements instance names as tags;
the key is Name, and the value is whatever name you gave the instance. Other than

Terminology | 297

http://amzn.to/1Fw5S8l

that, there’s nothing special about the Name tag, and you can also configure the
management console to show the values of other tags.

Tags don’t have to be unique, so you can have one hundred instances that all have
the same tag. Because Ansible’s EC2 modules often use tags to identify resources and
implement idempotence, they will come up several times in this chapter.

It’s good practice to add meaningful tags to all your EC2 resources,
since they function as a form of documentation.

Specifying Credentials
When you make requests against Amazon EC2, you need to specify credentials. If
you’ve used the Amazon web console, you’ve used your username and password to
log in. However, all the bits of Ansible that interact with EC2 talk to the EC2 API.
The API does not use a username and password for credentials. Instead, it uses two
strings: an access key ID and a secret access key.

These strings typically look like this:

• Sample EC2 access key ID: AKIAIOSFODNN7EXAMPLE•
• Sample EC2 secret access key: wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY•

You can obtain these credentials through the Identity and Access Management (IAM)
service. Using this service, you can create different IAM users with different permis‐
sions. Once you have created an IAM user, you can generate the access key ID and
secret access key for that user.

When you are calling EC2-related modules, you can pass these strings as module
arguments. For the dynamic inventory plug-in, you can specify the credentials in
the aws_ec2.yml file (discussed in the next section). However, both the EC2 modules
and the dynamic inventory plug-in also allow you to specify these credentials as
environment variables. You can also use something called IAM roles if your control
machine is itself an Amazon EC2 instance.

Environment Variables
Although Ansible does allow you to pass credentials explicitly as arguments to mod‐
ules, it also supports setting EC2 credentials as environment variables. Example 17-1
shows how to set these environment variables.

298 | Chapter 17: Cloud Infrastructure

https://oreil.ly/2oll2

Example 17-1. Setting EC2 environment variables

Don't forget to replace these values with your actual credentials!
export AWS_ACCESS_KEY_ID=AKIAIOSFODNN7EXAMPLE
export AWS_SECRET_ACCESS_KEY=wJatrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY
export AWS_DEFAULT_REGION=us-west-2

Bas recommends using environment variables for
AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY, because this
allows you to use EC2-related modules and inventory plug-ins
without putting your credentials in any of your Ansible-related
files.
Bas exports the variables in a file named .env.rc, which is encrypted
with ansible-vault. The file is loaded when the session starts. Bas
uses Zsh, so in this case, that file is ~/.zshrc. If you’re running Bash,
you might want to put it in your -/.bash_profile file. If you’re using
a shell other than Bash or Zsh, you’re probably knowledgeable
enough to know which dotfile to modify to set these environment
variables:

export ANSIBLE_VAULT_PASSWORD_FILE=~/.apw_exe
$(ansible-vault view ~/.ec2.rc)

The ANSIBLE_VAULT_PASSWORD_FILE is an executable that is used
to decrypt yet another file that has the password. Bas uses GNU
Privacy Guard (GPG), the open source variant of PGP:

#!/bin/sh
exec gpg -q -d ${HOME}/vault_pw.gpg

GPG ensures there is no sensitive data unencrypted at rest: in other
words, there is no plain-text file with the vault password. GPG
Agent removes the burden of typing the password all the time.

Once you have set these credentials in your environment variables, you can invoke
the Ansible EC2 modules on your control machine and use the dynamic inventory.

Configuration Files
An insecure alternative to using environment variables is to place your EC2 creden‐
tials in a configuration file. As discussed in the next section, Ansible uses the Python
Boto3 library, so it supports Boto3’s conventions for maintaining credentials in a
Boto configuration file. We don’t cover the format here; for more information, check
out the Boto3 config documentation.

Specifying Credentials | 299

https://oreil.ly/FtqeK

2 You might need to use sudo or activate another virtualenv to install this package, depending on how you
installed Ansible.

Prerequisite: Boto3 Python Library
All the Ansible EC2 functionality requires you to install the Python Boto3 library as a
Python system package on the control machine. To do so, use this command:2

python3 -m venv --system-site-packages /usr/local
source /usr/local/bin/activate
(local) # pip3 install boto3

If you already have instances running on EC2, you can verify that Boto3 is installed
properly and that your credentials are correct by interacting with the Python com‐
mand line, as shown in Example 17-2.

Example 17-2. Testing out Boto3 and credentials

$ python3
Python 3.6.8 (default, Sep 9 2021, 07:49:02)
[GCC 8.5.0 20210514 (Red Hat 8.5.0-3)] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import boto3
>>> ec2 = boto3.client("ec2")
>>> regions = [region["RegionName"] for region in ec2.describe_regions()["Regions"]]
>>> for r in regions:
... print(f" - {r}")
...
 - eu-north-1
 - ap-south-1
 - eu-west-3
 - eu-west-2
 - eu-west-1
 - ap-northeast-3
 - ap-northeast-2
 - ap-northeast-1
 - sa-east-1
 - ca-central-1
 - ap-southeast-1
 - ap-southeast-2
 - eu-central-1
 - us-east-1
 - us-east-2
 - us-west-1
 - us-west-2
>>>

When you explore the modules installed with Ansible, then you might stumble upon
legacy modules that require the Boto library for Python 2, for instance the ec2
module maintained by the Ansible Core Team (not by Amazon):

300 | Chapter 17: Cloud Infrastructure

fatal: [localhost]: FAILED! => changed=false
 msg: boto required for this module

In such cases, you should ensure that the playbook uses the fully qualified module
names, prefixed with amazon.aws.

Dynamic Inventory
If your servers live on EC2, you don’t want to keep a separate copy of these servers
in an Ansible inventory file, because that file is going to go stale as you spin up new
servers and tear down old ones. It’s much simpler to track your EC2 servers by taking
advantage of Ansible’s support for a dynamic inventory plug-in to pull information
about hosts directly from EC2.

This plug-in is part of the amazon.aws collection (version 2.2.0). You might already
have this collection installed if you installed the Ansible package. To check which
version is installed, run:

$ ansible-galaxy collection list|grep amazon.aws

To install the latest version of the collection, use:
$ ansible-galaxy collection install amazon.aws

Previously, we had a playbooks/inventory/hosts file that served as our inventory.
Now, we’re going to use a playbooks/inventory directory. We’ll place a file named
aws_ec2.yml into that directory.

Example 17-3 shows an example of a simple EC2 inventory.

Example 17-3. EC2 dynamic inventory

Minimal example using environment variables
Fetch all hosts in eu-central-1
plugin: amazon.aws.aws_ec2
regions:
 - eu-north-1
 - ap-south-1
 - eu-west-1
 - ap-northeast-1
 - sa-east-1
 - ca-central-1
 - ap-southeast-1
 - eu-central-1
 - us-east-1
 - us-west-1
Ignores 403 errors rather than failing
strict_permissions: false
...

Dynamic Inventory | 301

https://oreil.ly/OpS3x

If you’ve set up your environment variables as described in the previous section, you
should be able to confirm that the inventory is working by running the following:

$ ansible-inventory --list|jq -r .aws_ec2

The command should output information about your EC2 instances. The structure
should look something like this:

{
 "hosts": [
 "ec2-203-0-113-75.eu-central-1.compute.amazonaws.com"
]
}

Inventory Caching
When Ansible executes the EC2 inventory plug-in, the script has to make requests
against one or more EC2 endpoints to retrieve this information. Because this can
take time, the script can cache the information the first time it is invoked by writing
to local cache: on subsequent calls, the dynamic inventory script will use the cached
information until the cache expires.

You can modify this behavior by editing the cache configuration options in the
Ansible configuration file ansible.cfg. The cache timeout defaults to 300 seconds (5
minutes). If you want caching for an hour, you can set it to 3,600 (Example 17-4).

Example 17-4. ansible.cfg

[defaults]
fact_caching = jsonfile
fact_caching_connection = /tmp/ansible_fact_cache
fact_caching_timeout = 3600

[inventory]
cache = true
cache_plugin = jsonfile
cache_timeout = 3600

Listing the inventory should be faster in the next hour after you do this. Ansible
will cache inventory details in the fact cache. You can verify that the cache has been
created:

$ ls /tmp/ansible_fact_cache/
ansible_inventory_amazon.aws.aws_ec2_6b737s_3206c

If you create or destroy instances, the EC2 dynamic inventory
script will not reflect these changes unless the cache expires or you
manually remove the cache.

302 | Chapter 17: Cloud Infrastructure

Other Configuration Options
The aws_ec2.yml file includes configuration options that control the behavior of the
dynamic inventory script. Because the parameters are well-documented, we won’t
cover those options in detail here.

Defining Dynamic Groups with Tags
Recall that the dynamic inventory script automatically creates groups based on quali‐
ties such as instance type, security group, key pair, and tags. EC2 tags are the most
convenient way of creating Ansible groups because you can define them however you
like.

When using the inventory plug-in, you can configure extra inventory structure based
on the metadata returned by AWS. For example, you might use keyed_groups to
create groups from instance tags:

plugin: aws_ec2
keyed_groups:
 - prefix: tag
 key: tags

Ansible will automatically create a group called tag_type_web that contains all of the
servers tagged with a name of type and a value of web.

EC2 allows you to apply multiple tags to an instance. For example, if you have
separate staging and production environments, you can tag your production web
servers like this:

env=production
type=web

Now you can refer to production machines as tag_env_production and your web
servers as tag_type_web. If you want to refer to your production web servers, use the
Ansible intersection syntax, like this:

hosts: tag_env_production:&tag_type_web

Applying Tags to Existing Resources
Ideally, you’ll tag your EC2 instances as soon as you create them. However, if you’re
using Ansible to manage existing EC2 instances, you will likely already have instances
running that you need to tag. Ansible has an ec2_tag module that allows you to
do so.

For example, if you want to tag an instance with env=production and type=web, you
can do it in a simple playbook, as shown in Example 17-5.

Defining Dynamic Groups with Tags | 303

https://oreil.ly/FGx2h

Example 17-5. Adding EC2 tags to instances

- name: Add tags to existing instances
 hosts: localhost
 vars:
 web_production:
 - i-1234567890abcdef0
 - i-1234567890abcdef1
 web_staging:
 - i-abcdef01234567890
 - i-33333333333333333
 tasks:
 - name: Tag production webservers
 ec2_tag:
 resource: "{{ item }}"
 region: "{{ lookup('env','AWS_REGION') }}"
 args:
 tags: {type: web, env: production}
 loop: "{{ web_production }}"

 - name: Tag staging webservers
 ec2_tag:
 resource: "{{ item }}"
 region: "{{ lookup('env','AWS_REGION') }}"
 args:
 tags: {type: web, env: staging}
 loop: "{{ web_staging }}"
...

This example uses the inline syntax for YAML dictionaries when specifying the tags
({type: web, env: production}) to make the playbook more compact, but the
regular YAML dictionary syntax would work as well:

tags:
 type: web
 env: production

Nicer Group Names
Personally, Lorin doesn’t like the name tag_type_web for a group. He prefers to just
call it web.

To change that name, we need to add a new file to the playbooks/inventory directory
that will have information about groups. This is just a traditional Ansible inventory
file, which we’ll call playbooks/inventory/hosts (see Example 17-6).

Example 17-6. playbooks/inventory/hosts

[web:children]
tag_type_web
[tag_type_web]

304 | Chapter 17: Cloud Infrastructure

3 Amazon’s internal network is divided into subnets, but users do not have any control over how instances are
allocated to subnets.

Once you do this, you can refer to web as a group in your Ansible plays.

The aws_ec2 inventory plug-in has many other features for fine-
grained control over your inventory. Example 17-3 is just enough
to get started. For more information refer to the aws_ec2 inventory
plug-in documentation.

Virtual Private Clouds
When Amazon first launched EC2 back in 2006, all of the EC2 instances were
effectively connected to the same flat network.3 Every EC2 instance had a private IP
address and a public IP address. In 2009, Amazon introduced a feature called Virtual
Private Cloud (VPC). VPC allows users to control how their instances are networked
together and whether they will be publicly accessible from the internet or isolated.
Amazon uses the term VPC to describe the virtual networks that users can create
inside EC2. Think of a VPC as an isolated network. When you create a VPC, you
specify an IP address range. It must be a subset of one of the private address ranges
(10.0.0.0/8, 172.16.0.0/12, or 192.168.0.0/16).

You carve your VPC into subnets, which have IP ranges that are subsets of the IP
range of your entire VPC. In Example 17-14, the VPC has the IP range 10.0.0.0/16,
and you’ll associate two subnets: 10.0.0.0/24 and 10.0.10/24.

When you launch an instance, you assign it to a subnet in a VPC. You can configure
your subnets so that your instances get either public or private IP addresses. EC2 also
allows you to define routing tables for routing traffic between your subnets and to
create internet gateways for routing traffic from your subnets to the internet.

Configuring networking is a complex topic that’s (way) outside the scope of this book.
For more info, check out Amazon’s EC2 documentation on VPC.

Configuring ansible.cfg for Use with ec2
When Lorin is using Ansible to configure EC2 instances, he adds the following lines
to his ansible.cfg file:

[defaults]
remote_user = ec2-user
host_key_checking = False

Virtual Private Clouds | 305

https://oreil.ly/nP8px
https://oreil.ly/nP8px
http://amzn.to/1Fw89Af

4 From Lorin: It’s possible to retrieve the host key by querying EC2 for the instance console output, but I must
admit that I never bother doing this because I’ve never gotten around to writing a proper script that parses
out the host key from the console output.

Depending on the images you use, you need to SSH as a particular user, in this
case ec2-user, but it could also be ubuntu or centos. Lorin also turns off host-key
checking, since he doesn’t know in advance what the host keys are for new instances.4

Launching New Instances
The amazon.aws.ec2_instance module allows you to launch new instances on EC2.
It’s one of the most complex Ansible modules because it supports so many arguments.

Example 17-7 shows a simple playbook for launching an Ubuntu 20.04 EC2 instance.

Example 17-7. Action to create an EC2 instance

- name: Configure and start EC2 instance
 amazon.aws.ec2_instance:
 name: 'web1'
 image_id: 'ami-0e8286b71b81c3cc1'
 instance_type: 't2.micro'
 key_name: 'ec2key'
 region: "{{ lookup('env', 'AWS_REGION') }}"
 security_group: "{{ security_group }}"
 network:
 assign_public_ip: true
 tags:
 type: web
 env: production
 volumes:
 - device_name: /dev/sda1
 ebs:
 volume_size: 16
 delete_on_termination: true
 wait: true
 register: ec2

Let’s go over what these parameters mean.

The image_id parameter in Example 17-7 refers to the AMI ID, which you
must always specify. As described earlier in the chapter, an image is basically
a filesystem that contains an installed operating system. The example just used,
ami-0e8286b71b81c3cc1, refers to an image that has the 64-bit version of CentOS 7
installed on it.

The instance_type parameter describes the number of CPU cores and the amount
of memory and storage your instance will have. EC2 doesn’t let you choose arbitrary

306 | Chapter 17: Cloud Infrastructure

5 There’s also a handy (unofficial) website that provides a single table with all of the available EC2 instance
types.

combinations of cores, memory, and storage. Instead, Amazon defines a collection of
instance types.5 Example 17-7 uses the t2.micro instance type. This is a 64-bit instance
type with one core, 1 GB of RAM, and EBS-based storage (more on that later).

The key_name parameter refers to a registered SSH key pair. Amazon uses SSH key
pairs to provide users with access to their servers. Before you start your first server,
you must either create a new SSH key pair or upload the public key of a key pair that
you have previously created. Either way, you must register your SSH key pair under a
name.

The regions parameter refers to the location of the data center where the instance
will be hosted. In this example we look up the value for the environment variable
AWS_REGION.

The security_group parameter refers to a list of firewall rules associated with an
instance. Such security groups determine the kinds of inbound and outbound net‐
work connections that are allowed, like for a web server to listen on TCP ports 80 and
443, and for Ansible to use SSH on TCP port 22.

Under network we specified that we’d like a public IP address on the internet.

The tags parameter associates metadata with the instance in the form of EC2 tags,
which are key-value pairs. In the preceding example, we set the following tags:

tags:
 Name: ansiblebook
 type: web
 env: production

Invoking the amazon.aws.ec2_instance module from the com‐
mand line is a simple way to terminate an instance, assuming you
know the instance ID:

$ ansible localhost -m amazon.aws.ec2_instance -a \
'instance_id=i-01176c6682556a360' \
-a state=absent'

EC2 Key Pairs
In Example 17-7, we assumed that Amazon already knew about an SSH key pair
named mykey. Let’s see how you can use Ansible to register your key pair.

EC2 Key Pairs | 307

https://oreil.ly/ztoCB

Creating a New Key
First you create a secure key pair by using a passphrase on a keypair of type ed25519,
with brute-force protection:

$ ssh-keygen -t ed25519 -a 100 -C '' -f ~/.ssh/ec2-user

The public key is saved in the file ~/.ssh/ec2-user.pub. This file will have just one line,
like:

ssh-ed25519 AAAAC3NzaC1lZDI1NTE5AAAAIOvcnUtQI2wd4GwfOL4RckmwTinG1Zw7ia96EpVObs9x

Uploading Your Public Key
If you have an SSH key pair, you should only upload the public key to Amazon to
register the key pair. The private key is not to be shared with anyone, and you should
not log the public key you use, either. Privacy and security matter.

- name: Register SSH keypair
 hosts: localhost
 gather_facts: false
 tasks:
 - name: Upload public key
 amazon.aws.ec2_key:
 name: ec2key
 key_material: "{{ item }}"
 state: present
 force: true
 no_log: true
 with_file:
 - ~/.ssh/ec2key.pub
...

Security Groups
Example 17-7 assumes that the security group my_security_group already exists.
We can use the amazon.aws.ec2_group module to ensure that we have this security
group before we use it.

Security groups are like firewall rules: you specify who may connect to the machine
and how. In Example 17-8, we specify the security group as allowing anybody on
the internet to connect to ports 80 and 443. For this example, we allow anybody
on the internet to connect on port 22, but you might want to restrict that to
known addresses. We allow outbound HTTP and HTTPS connections to the internet,
because we need them enabled to download packages from the internet. A safer
alternative would be to allow access to a repository or filtering proxy server.

308 | Chapter 17: Cloud Infrastructure

6 This example happens to correspond to a special IP address range named TEST-NET-3, which is reserved for
examples. It’s the example.com of IP subnets.

Example 17-8. Security groups

- name: Configure SSH security group
 amazon.aws.ec2_group:
 name: my_security_group
 description: SSH and Web Access
 rules:
 - proto: tcp
 from_port: 22
 to_port: 22
 cidr_ip: '0.0.0.0/0'
 - proto: tcp
 from_port: 80
 to_port: 80
 cidr_ip: 0.0.0.0/0
 - proto: tcp
 from_port: 443
 to_port: 443
 cidr_ip: 0.0.0.0/0
 rules_egress:
 - proto: tcp
 from_port: 443
 to_port: 443
 cidr_ip: 0.0.0.0/0
 - proto: tcp
 from_port: 80
 to_port: 80
 cidr_ip: 0.0.0.0/0

If you haven’t used security groups before, the parameters to the rules dictionary
bear some explanation. Table 17-2 supplies a quick summary of the parameters for
security group connection rules.

Table 17-2. Security group rule parameters

Parameter Description
proto IP protocol (tcp, udp, icmp) or all to allow all protocols and ports
cidr_ip Subnet of IP addresses that are allowed to connect, using CIDR notation
from_port The first port in the range of permitted ports
to_port The last port in the range of permitted ports

Permitted IP Addresses
Security groups allow you to restrict which IP addresses may connect to an instance.
You specify a subnet by using classless interdomain routing (CIDR) notation. An
example of a subnet specified with CIDR notation is 203.0.113.0/24,6 which means

Security Groups | 309

7 Subnets that are /8, /16, and /24 make splendid examples because the math is much easier than, say, /17 or /23.
8 Sharp observers might have noticed that ports 5900–5999 are commonly used by the VNC remote desktop

protocol, one of the few applications where specifying a range of ports makes sense.

that the first 24 bits of the IP address must match the first 24 bits of 203.0.113.0.
People sometimes just say “/24” to refer to the size of a CIDR that ends in /24.

A /24 is a nice value because it corresponds to the first three octets of the address,
namely 203.0.113.7 What this means is that any IP address that starts with 203.0.113
is in the subnet, that is, any IP address in the range 203.0.113.0 to 203.0.113.255. Be
aware that addresses 0 and 255 are not allowed for hosts.

If you specify 0.0.0.0/0, any IP address may connect.

Security Group Ports
One of the things that we find confusing about EC2 security groups is the from port
and to port notation. EC2 allows you to specify a range of ports that you may use.
For example, you could allow TCP connections on any port from 5900 to 5999 by
specifying the following:

- proto: tcp
 from_port: 5900
 to_port: 5999
 cidr_ip: 0.0.0.0/0

However, we find the from/to notation confusing because we almost never specify a
range of ports.8 Instead, I usually want to enable nonconsecutive ports, such as 80
and 443. Therefore, in almost every case, the from_port and to_port parameters are
going to be the same.

The amazon.aws.ec2_group module has other parameters. Check out its documenta‐
tion for more details.

Getting the Latest AMI
In Example 17-7, we explicitly specified a CentOS AMI like this:

image_id: ami-0e8286b71b81c3cc1

However, suppose you want to launch the latest Ubuntu 20.04 image instead: you
wouldn’t want to hardcode the AMI like this. That’s because Canonical (the company
that runs the Ubuntu project) frequently makes minor updates to Ubuntu, and
every time it does, it generates a new AMI. Just because ami-0d527b8c289b4af7f
corresponded to the latest release of Ubuntu 20.04 yesterday doesn’t mean it will
correspond to the latest release of Ubuntu 20.04 tomorrow.

310 | Chapter 17: Cloud Infrastructure

The amazon.aws collection has a module called ec2_ami_info that will retrieve a list
of AMIs based on filter criteria, such as the architecture, name of the image, and so
forth. Example 17-9 shows how to use this to find an AMI identifier for the latest
version of 64-bit Ubuntu Focal 20.04 running for an EBS-backed instance that uses
SSDs. You could use the same means to create an instance with the latest AMI.

Example 17-9. Retrieving the latest Ubuntu AMI

- name: Find latest Ubuntu image on Amazon EC2
 hosts: localhost
 gather_facts: false
 tasks:
 - name: Gather information on Ubuntu AMIs published by Canonical
 amazon.aws.ec2_ami_info:
 owners: 099720109477
 filters:
 name: "ubuntu/images/hvm-ssd/ubuntu-focal-20.04-*"
 architecture: "x86_64"
 root-device-type: "ebs"
 virtualization-type: "hvm"
 state: "available"
 register: ec2_ami_info

 - name: Sort the list of AMIs by date for the latest image
 set_fact:
 latest_ami: |
 {{ ec2_ami_info.images | sort(attribute='creation_date') | last }}
 - name: Display the latest AMI ID
 debug:
 var: latest_ami.image_id
...

Here we needed to know the naming convention that Ubuntu uses for images. Its
image names always end with a date stamp: for example, ubuntu/images/hvm-ssd/
ubuntu-focal-20.04-amd64-server-20211129. The name filter for the ec2_ami_info
module permits specifying * as a glob.

The task registers the list of AMIs, so the way to get the most recent image is to sort
on creation date and use just the very last AMI.

Each distribution uses its own naming strategy for AMIs, so if you
want to deploy an AMI from a distribution other than Ubuntu,
you’ll need to do some research to figure out the appropriate search
string.

Getting the Latest AMI | 311

Create a New Instance and Add It to a Group
Sometimes Lorin likes to write a single playbook that launches an instance and then
runs a playbook against that instance.

Unfortunately, before you’ve run the playbook, the host doesn’t exist yet. Disabling
caching on the dynamic inventory script won’t help here, because Ansible invokes
the dynamic inventory script only at the beginning of playbook execution—which is
before the host exists.

You can add a task that uses the add_host module to add the instance to a group, as
shown in Example 17-10.

Example 17-10. Adding an instance to groups

- name: Create an ubuntu instance on Amazon EC2
 hosts: localhost
 gather_facts: false
 tasks:
 - name: Configure and start EC2 instance
 amazon.aws.ec2_instance:
 name: 'web1'
 image_id: "{{ latest_ami.image_id }}"
 instance_type: "{{ instance_type }}"
 key_name: "{{ key_name }}"
 security_group: "{{ security_group }}"
 network:
 assign_public_ip: true
 tags: {type: web, env: production}
 volumes:
 - device_name: /dev/sda1
 ebs:
 volume_size: 16
 delete_on_termination: true
 wait: true
 register: ec2

 - name: Add the instances to the web and production groups
 add_host:
 hostname: "{{ item.public_dns_name }}"
 groupname:
 - web
 - production
 loop: "{{ ec2.instances }}"
 - name: Configure Web Server
 hosts: web:&production
 become: true
 gather_facts: true
 remote_user: ubuntu
 roles:
 - webserver

312 | Chapter 17: Cloud Infrastructure

Returned Information

The amazon.aws.ec2_instance module returns a dictionary with
lots of information about the instances launched. To read the docu‐
mentation, run this command for your installed collection instead
of Googling:

$ ansible-doc amazon.aws.ec2_instance

Waiting for the Server to Come Up
While IaaS clouds like EC2 are remarkable feats of technology, creating new instances
still requires some time. You can’t run a playbook against an EC2 instance immedi‐
ately after you submit a request to create it. Instead, you need to wait for the EC2
instance to come up. You should also be aware that an instance consists of multiple
parts, each created in turn. So you have to wait, but how?

The ec2 module supports a wait parameter. If it’s set to yes, the ec2 task will not
return until the instance has transitioned to the running state.

Unfortunately, waiting for the instance to be in the running state isn’t enough to
ensure that you can execute a playbook against a host. You still need to wait until the
instance has advanced far enough in the boot process that the SSH server has started
and is accepting incoming connections.

The wait_for module is designed for this kind of scenario. Here’s how you would use
the ec2 and wait_for modules in concert to start an instance and then wait until the
instance is ready to receive SSH connections:

- name: Wait for EC2 instance to be ready
 wait_for:
 host: "{{ item.public_dns_name }}"
 port: 22
 search_regex: OpenSSH
 delay: 60
 loop: "{{ ec2.instances }}"
 register: wait

This invocation of wait_for uses the search_regex argument to look for the string
OpenSSH after connecting to the host. This regex takes advantage of the fact that
a fully functioning SSH server will return a string that looks something like Exam‐
ple 17-11 when an SSH client first connects.

Example 17-11. Initial response of an SSH server running on Ubuntu

SSH-2.0-OpenSSH_8.2p1 Ubuntu-4ubuntu0.3

You could invoke the wait_for module just to check if port 22 is listening for
incoming connections. However, sometimes an SSH server has gotten far enough

Waiting for the Server to Come Up | 313

along in the startup process that it is listening on port 22 but is not fully functional
yet. You’ll use a delay of one minute because the public DNS name takes extra time.
Waiting for the initial response ensures that the wait_for module will return only
when the SSH server has fully started up.

Putting It All Together
Example 17-12 shows the playbook that creates an EC2 instance and configures it as a
web server. This playbook is idempotent, so you can safely run it multiple times, and
it will create a new instance only if it isn’t created yet.

Example 17-12. ec2-example.yml: complete EC2 playbook

- name: Provision Ubuntu Web Server on Amazon EC2
 hosts: localhost
 gather_facts: false
 vars:
 instance_type: t2.micro
 key_name: ec2key
 aws_region: "{{ lookup('env', 'AWS_REGION') }}"
 security_group: my_security_group
 tasks:
 - name: Upload public key ec2key.pub
 amazon.aws.ec2_key:
 name: "{{ key_name }}"
 key_material: "{{ item }}"
 state: present
 force: true
 no_log: true
 with_file:
 - ~/.ssh/ec2key.pub

 - name: Configure my_security_group
 amazon.aws.ec2_group:
 name: "{{ security_group }}"
 region: "{{ aws_region }}"
 description: SSH and Web Access
 rules:
 - proto: tcp
 from_port: 22
 to_port: 22
 cidr_ip: '0.0.0.0/0'
 - proto: tcp
 from_port: 80
 to_port: 80
 cidr_ip: 0.0.0.0/0
 - proto: tcp
 from_port: 443
 to_port: 443
 cidr_ip: 0.0.0.0/0
 rules_egress:

314 | Chapter 17: Cloud Infrastructure

 - proto: tcp
 from_port: 443
 to_port: 443
 cidr_ip: 0.0.0.0/0
 - proto: tcp
 from_port: 80
 to_port: 80
 cidr_ip: 0.0.0.0/0

 - name: Gather information on Ubuntu AMIs published by Canonical
 amazon.aws.ec2_ami_info:
 region: "{{ aws_region }}"
 owners: 099720109477
 filters:
 name: "ubuntu/images/hvm-ssd/ubuntu-focal-20.04-*"
 architecture: "x86_64"
 root-device-type: "ebs"
 virtualization-type: "hvm"
 state: "available"
 register: ec2_ami_info

 - name: Sort the list of AMIs by date for the latest image
 set_fact:
 latest_ami: |
 {{ ec2_ami_info.images | sort(attribute='creation_date') | last }}

 - name: Configure and start EC2 instance
 amazon.aws.ec2_instance:
 region: "{{ aws_region }}"
 name: 'web1'
 image_id: "{{ latest_ami.image_id }}"
 instance_type: "{{ instance_type }}"
 key_name: "{{ key_name }}"
 security_group: "{{ security_group }}"
 network:
 assign_public_ip: true
 tags:
 type: web
 env: production
 volumes:
 - device_name: /dev/sda1
 ebs:
 volume_size: 16
 delete_on_termination: true
 wait: true
 register: ec2

 - name: Wait for EC2 instance to be ready
 wait_for:
 host: "{{ item.public_dns_name }}"
 port: 22
 search_regex: OpenSSH
 delay: 30
 loop: "{{ ec2.instances }}"
 register: wait

Putting It All Together | 315

 - name: Add the instances to the web and production groups
 add_host:
 hostname: "{{ item.public_dns_name }}"
 groupname:
 - web
 - production
 loop: "{{ ec2.instances }}"

 - name: Configure Web Server
 hosts: web:&production
 become: true
 gather_facts: true
 remote_user: ubuntu
 roles:
 - ssh
 - webserver
...

The roles in this example can be found on GitHub.

Specifying a Virtual Private Cloud
So far, we’ve been launching our instances into the default VPC. Ansible also allows
us to create new VPCs and launch instances into them.

Example 17-13 shows how to create a VPC with an internet gateway, two subnets, and
a routing table that routes outbound connections using the internet gateway.

Example 17-13. create-vpc.yml: creating a VPC

- name: Create a Virtual Private Cloud (VPC)
 hosts: localhost
 gather_facts: false
 vars:
 aws_region: "{{ lookup('env', 'AWS_REGION') }}"
 tasks:
 - name: Create a vpc
 amazon.aws.ec2_vpc_net:
 region: "{{ aws_region }}"
 name: "Book example"
 cidr_block: 10.0.0.0/16
 tags:
 env: production
 register: result

 - name: Set vpc_id as fact
 set_fact:
 vpc_id: "{{ result.vpc.id }}"

 - name: Add gateway
 amazon.aws.ec2_vpc_igw:
 region: "{{ aws_region }}"

316 | Chapter 17: Cloud Infrastructure

https://oreil.ly/2hAPe

 vpc_id: "{{ vpc_id }}"

 - name: Create web subnet
 amazon.aws.ec2_vpc_subnet:
 region: "{{ aws_region }}"
 vpc_id: "{{ vpc_id }}"
 cidr: 10.0.0.0/24
 tags:
 env: production
 tier: web

 - name: Create db subnet
 amazon.aws.ec2_vpc_subnet:
 region: "{{ aws_region }}"
 vpc_id: "{{ vpc_id }}"
 cidr: 10.0.1.0/24
 tags:
 env: production
 tier: db

 - name: Set routes
 amazon.aws.ec2_vpc_route_table:
 region: "{{ aws_region }}"
 vpc_id: "{{ vpc_id }}"
 tags:
 purpose: permit-outbound
 subnets:
 - 10.0.0.0/24
 - 10.0.1.0/24
 routes:
 - dest: 0.0.0.0/0
 gateway_id: igw
...

Each of these commands is idempotent, but the idempotence-checking mechanism
differs slightly per module, as shown in Table 17-3.

Table 17-3. Idempotence-checking logic for some VPC modules

Module Idempotence check
ec2_vpc_net Name and CIDR options
ec2_vpc_igw An internet gateway exists
ec2_vpc_subnet vpc_id and CIDR options
ec2_vpc_route_table vpc_id and tagsa

a If the lookup option is set to id, the idempotence check will use the route_table_id option instead of tags.

If multiple entities match the idempotence check, Ansible will fail the module.

Specifying a Virtual Private Cloud | 317

If you don’t specify tags to the ec2_vpc_route_table, it will create
a new route table each time you execute the module.

Admittedly, Example 17-12 is a simple example from a networking perspective, as
we’ve defined just two subnets: one subnet that’s routable to the internet, and another
that’s not routable to the internet. We should have some security groups for routing
traffic from the web subnet to the database, from the internet to the web subnet,
SSH access to the restricted subnet where we are, and the outbound rules to install
packages. Example 17-14 shows an example of creating such security groups.

Example 17-14. EC2 security groups

- name: Create EC2 Security Groups
 hosts: localhost
 vars:
 aws_region: "{{ lookup('env', 'AWS_REGION') }}"
 database_port: 5432
 cidrs:
 web: 10.0.0.0/24
 db: 10.0.1.0/24
 ssh: 203.0.113.0/24
 tasks:
 - name: DB security group
 amazon.aws.ec2_group:
 name: db
 region: "{{ aws_region }}"
 description: allow database access for web servers
 vpc_id: "{{ vpc_id }}"
 rules:
 - proto: tcp
 from_port: "{{ database_port }}"
 to_port: "{{ database_port }}"
 cidr_ip: "{{ cidrs.web }}"

 - name: Web security group
 amazon.aws.ec2_group:
 name: web
 region: "{{ aws_region }}"
 description: allow http and https access to web servers
 vpc_id: "{{ vpc_id }}"
 rules:
 - proto: tcp
 from_port: 80
 to_port: 80
 cidr_ip: 0.0.0.0/0
 - proto: tcp
 from_port: 443
 to_port: 443

318 | Chapter 17: Cloud Infrastructure

 cidr_ip: 0.0.0.0/0

 - name: SSH security group
 amazon.aws.ec2_group:
 name: ssh
 region: "{{ aws_region }}"
 description: allow ssh access
 vpc_id: "{{ vpc_id }}"
 rules:
 - proto: tcp
 from_port: 22
 to_port: 22
 cidr_ip: "{{ cidrs.ssh }}"

 - name: Outbound security group
 amazon.aws.ec2_group:
 name: outbound
 description: allow outbound connections to the internet
 region: "{{ aws_region }}"
 vpc_id: "{{ vpc_id }}"
 rules_egress:
 - proto: all
 cidr_ip: 0.0.0.0/0
...

Please note that the vpc_id should be a cached fact or an extra variable on the
command line.

Dynamic Inventory and VPC
When using a VPC, you often will place some instances inside a private subnet that is
not routable from the internet. When you do this, no public IP address is associated
with the instance.

In such cases, you might want to run Ansible from an instance inside your VPC.
The Ansible dynamic inventory script is smart enough that it will return internal IP
addresses for VPC instances that don’t have public IP addresses.

Conclusion
Ansible supports even more of EC2, as well as other AWS services. Using Ansible
with EC2 is a large enough topic that you could write a whole book about it. In fact,
Yan Kurniawan wrote that book: Ansible for AWS (Packt, 2016). After digesting this
chapter, you should have enough knowledge under your belt to pick up the other
modules without difficulty.

Conclusion | 319

CHAPTER 18

Callback Plug-ins

Ansible supports a feature called callback plug-ins that can perform custom actions
in response to Ansible events, such as a play starting or a task completing on a host.
You can use a callback plug-in to do things such as send a Slack message or write an
entry to a remote logging server. In fact, the output you see in your terminal when
you execute an Ansible playbook is implemented as a callback plug-in.

Ansible supports three kinds of callback plug-ins:

• Stdout plug-ins•
• Notification plug-ins•
• Aggregate plug-ins•

Stdout plug-ins control the format of the output displayed to the terminal. Ansible’s
implementation makes no distinction between notification and aggregate plug-ins,
which can perform a variety of actions.

Stdout Plug-ins
Only a single stdout plug-in can be active at a time. You specify a stdout callback
by setting the stdout_callback parameter in the defaults section of ansible.cfg.
For example, here is how to select the yaml plug-in, which makes the logging more
readable:

[defaults]
stdout_callback = yaml

You can use ansible-doc -t callback -l to see the list of plug-ins available in the
version you installed. Some stdout_callback plug-ins that Bas finds interesting are
listed in Table 18-1.

321

Table 18-1. Stdout plug-ins

Name Description Python requirement
ara ARA Records Ansible ara[server]
debug Formatted stdout/stderr display
default Default Ansible screen output
dense Overwrite output instead of scrolling
json JSON output
minimal Show task results with minimal formatting
null Don’t display this to screen
oneline Like minimal, but on a single line

actionable has been removed in Ansible 2.11. Use the default
callback plug-in with the display_skipped_hosts = false and
display_ok_hosts = false options.

ARA
ARA Records Ansible (ARA, another recursive acronym) is more than just a callback
plug-in. It provides reporting by saving detailed and granular results of ansible and
ansible-playbook commands wherever you run them (Figure 18-1). If your whole
team uses ARA everyone can see what is going on!

Figure 18-1. Recording data from Ansible to a database by ARA

322 | Chapter 18: Callback Plug-ins

In the simplest setup it simply records into an SQLite file, but you can also run a
Django site to view with a browser, an API, or the CLI client. Install ARA with the
Python that you use for Ansible:

$ pip3 install --user "ara[server]"
$ export ANSIBLE_CALLBACK_PLUGINS="$(python3 -m ara.setup.callback_plugins)"
... run playbooks or ad-hoc ...
$ ara-manage runserver

Read more about it at in the ARA documentation.

debug
The debug plug-in makes it easier to read stdout (normal output of commands)
and stderr (error output of commands) returned by tasks, which can be helpful for
debugging. The default plug-in can make it difficult to read the output:

TASK [Clone repository] **
fatal: [one]: FAILED! => {"changed": false, "cmd": "/usr/bin/git clone --origin
origin '' /tmp/mezzanine_example", "msg": "Cloning into '/tmp/mezzanine_example'...
\n/private/tmp/mezzanine_example/.git: Permission denied", "rc": 1, "stderr":
"Cloning into '/tmp/mezzanine_example'...\n/private/tmp/mezzanine_example/.git:
Permission denied\n", "stderr_lines": ["Cloning into '/tmp/mezzanine_example'...",
"/private/tmp/mezzanine_example/.git: Permission denied"], "stdout": "",
"stdout_lines": []}

With the debug plug-in, the formatting is much easier to read:
TASK [Clone repository] **
fatal: [one]: FAILED! => {
 "changed": false,
 "cmd": "/usr/bin/git clone --origin origin '' /tmp/mezzanine_example",
 "rc": 1
}
STDERR:
Cloning into '/tmp/mezzanine_example'...
/private/tmp/mezzanine_example/.git: Permission denied
MSG:
Cloning into '/tmp/mezzanine_example'...
/private/tmp/mezzanine_example/.git: Permission denied

default
If you do not configure stdout_callback the default plug-in formats a task like this:

TASK [Clone repository] **
changed: [one]

dense
The dense plug-in (new in Ansible 2.3) always shows two lines of output. It over‐
writes the existing lines rather than scrolling:

Stdout Plug-ins | 323

https://oreil.ly/RCqcF
https://oreil.ly/1q40c

PLAY 1: LOCAL
task 1: one

json
The json plug-in generates machine-readable JSON as output. This is useful if you
want to process the Ansible output by using a script. Note that this callback will not
generate output until the entire playbook has finished executing. The JSON output is
too verbose to show here.

minimal
The minimal plug-in does very little processing of the result Ansible returns from an
event. For example, the default plug-in formats a task like this:

TASK [Clone repository] **
changed: [one]

However, the minimal plug-in outputs this:
 one | CHANGED => {
 "after": "2c19a94be566058e4430c46b75e3ce9d17c25f56",
 "before": null,
 "changed": true
}

null
The null plug-in shows no output at all.

oneline
The oneline plug-in is similar to minimal, but it prints output on a single line
(shown in the print book on multiple lines because the text doesn’t fit on one line in
the book):

one | CHANGED => {"after": "2c19a94be566058e4430c46b75e3ce9d17c25f56","before": ...

Notification and Aggregate Plug-ins
Other plug-ins perform a variety of actions, such as recording execution time or
sending a Slack notification. Table 18-2 lists them.

Unlike stdout plug-ins, you can enable multiple other plug-ins at the same time.
Enable the other plug-ins you want in ansible.cfg by setting callback_whitelist to a
comma-separated list; for example:

[defaults]
callback_whitelist = mail, slack

324 | Chapter 18: Callback Plug-ins

callback_whitelist will be normalized to callback_enabled.

Many of these plug-ins have configuration options, which are set via environment
variables or in ansible.cfg. Bas prefers setting these options in ansible.cfg so as to not
clutter the environment variables. Additionally, ansible.cfg can be stored in source
control so users/developers can share these settings.

To look up a particular callback plug-in’s options, try:
$ ansible-doc -t callback plugin

Table 18-2. Other plug-ins

Name Description Python requirement
foreman Send notifications to Foreman requests
jabber Send notifications to Jabber xmpppy
junit Write JUnit-formatted XML file junit_xml
log_plays Log playbook results per hosts
logentries Send notifications to Logentries certifi flatdict
logstash Send results to Logstash logstash
mail Send email when tasks fail
nrdp Post task result to a Nagios server
say Notify using software speech synthesizer
profile_roles Adds timing information to roles
profile_tasks Adds time information to tasks
slack Send notifications to Slack prettytable
splunk Sends task result events to Splunk
timer Adds time to play stats

Python Requirements
Many plug-ins need one or two Python libraries installed on the Ansible control host.
Table 18-2 lists the plug-ins and their requirements. Install them in the Python that
you use for Ansible, for instance, the prettytable Python library for Slack:

$ pip3 install prettytable

foreman
The foreman plug-in sends notifications to Foreman. Table 18-3 lists the config items
under the group [callback_foreman] in ansible.cfg used to configure this plug-in.

Notification and Aggregate Plug-ins | 325

http://theforeman.org

Table 18-3. foreman plug-in environment variables

Environment var Description Default
url URL to the Foreman server. http://localhost:3000
client_cert X509 certificate to authenticate to Foreman if HTTPS is used. /etc/foreman/client_cert.pem

client_key The corresponding private key. /etc/foreman/client_key.pem

verify_certs Tells Ansible whether to verify the Foreman certificate. Can
be set to 1 to verify SSL certificates using the installed CAs
or to a path pointing to a CA bundle. Set to 0 to disable
certificate checking.

1

jabber
The jabber plug-in sends notifications to Jabber. Note that there are no default
values for any of the configuration options for the jabber plug-in. These options are
set as environment variables exclusively, as listed in Table 18-4.

Table 18-4. jabber plug-in environment variables

Environment var Description
JABBER_SERV Hostname of Jabber server
JABBER_USER Jabber username for auth
JABBER_PASS Jabber password auth
JABBER_TO Jabber user to send the notification to

junit
The junit plug-in writes the results of a playbook execution to an XML file in JUnit
format. It is configured by using the environment variables listed in Table 18-5. The
plug-in uses the conventions in Table 18-6 for generating the XML report.

Table 18-5. junit plug-in environment variables

Environment var Description Default
JUNIT_OUTPUT_DIR Destination directory for files ~/.ansible.log

JUNIT_TASK_CLASS Configure output: one class per YAML file false

JUNIT_FAIL_ON_CHANGE Consider any tasks reporting “changed” as a
JUnit test failure

false

JUNIT_FAIL_ON_IGNORE Consider failed tasks as a JUnit test failure
even if
ignore_on_error is set

false

JUNIT_HIDE_TASK_ARGUMENTS Hide the arguments for a task false

JUNIT_INCLUDE_SETUP_TASKS_IN_REPORT Should the setup tasks be included in the final
report

true

326 | Chapter 18: Callback Plug-ins

http://jabber.org

Table 18-6. JUnit report

Ansible task output JUnit report
ok pass
failed with EXPECTED FAILURE in the task name pass
failed due to an exception error
failed for other reasons failure
skipped skipped

log_plays
The log_plays plug-in logs the results to log files in log_folder, one log file per
host.

logentries
The logentries plug-in will generate JSON objects and send them to Logentries via
TCP for auditing/debugging purposes. The plug-in’s config items can be put under a
group [callback_logentries] in ansible.cfg and are listed in Table 18-7.

Table 18-7. logentries plug-in config items

Logentries config item Description Default
token Logentries token (None)
api Hostname of Logentries endpoint data.logentries.com

port Logentries port 80

tls_port Logentries TLS port 443

use_tls Use TLS with Logentries false

flatten Flatten results false

logstash
The logstash plug-in will report facts and task events to Logstash. The plug-in’s
config items can be put under a group [callback_logstash] in ansible.cfg; they’re
listed in Table 18-8.

Table 18-8. logstash plug-in config items

Logstash config item Description Default
format_version Logging format v1

server Logstash server hostname localhost

port Logstash server port 5000

pre_command Executes command before run and result put to ansible_pre_command_output field null

type Message type ansible

Notification and Aggregate Plug-ins | 327

http://logentries.com
https://oreil.ly/uajyQ

mail
The mail plug-in sends an email whenever a task fails on a host. The plug-in’s config
items can be put under a group [callback_mail] in ansible.cfg; they’re listed in
Table 18-9.

Table 18-9. mail plug-in environment variables

Environment var Description Default
bcc BCC’d recipient null

cc CC’d recipient null

mta Mail transfer agent localhost

mtaport Mail transfer agent port 25

sender Mail sender null

to Mail recipient root

profile_roles
This callback module aggregates profiling information for Ansible roles.

profile_tasks
The profile_tasks plug-in generates a summary of the execution time of individual
tasks and total execution time for the playbook:

Wednesday 11 August 2021 23:00:43 +0200 (0:00:00.910) 0:01:26.498 ******
===
Install apt packages --- 83.50s
Gathering Facts --- 1.46s
Check out the repository on the host ------------------------------------ 0.91s
Create project path --- 0.40s
Create a logs directory --- 0.21s

The plug-in also outputs execution time info as the tasks are running, displaying the
following:

• Date and time that the task started•
• Execution time of previous task, shown in parentheses•
• Cumulative execution time for this play•

Here’s an example of that output:
TASK [Create project path] ***
Wednesday 11 August 2021 23:00:42 +0200 (0:01:23.500) 0:01:24.975
changed: [web] ==> {"changed": true, "gid": 1000, "group": "vagrant", "mode":
"0755", "owner": "vagrant", "path": "/home/vagrant/mezzanine/mezzanine_example",
"size": 4096, "state": "directory", "uid": 1000}

328 | Chapter 18: Callback Plug-ins

Table 18-10 lists the environment variables used for configuration.

Table 18-10. profile-tasks plug-in environment variables

Environment var Description Default
PROFILE_TASKS_SORT_ORDER Sort output (ascending, none) none

PROFILE_TASKS_TASK_OUTPUT_LIMIT Number of tasks to show, or all 20

say
The say plug-in uses the say or espeak program to speak about play events. The say
plug-in has no configuration options. The say module has a voice parameter.

Note that osx_say was renamed say in version 2.8.

slack
The slack plug-in sends notifications to a Slack channel during playbook execution.
The plug-in’s config items can be put under a group [callback_slack] in ansible.cfg.
The variables are listed in Table 18-11.

Table 18-11. slack plug-in environment variables

Config item Description Default
webhook_url Slack webhook URL (None)
channel Slack room to post in #ansible

username Username to post as ansible

validate_certs Validate the SSL certificate of the Slack server true

splunk
This callback plug-in will send task results as JSON-formatted events to a Splunk
HTTP collector. The plug-in’s config items can be put under a group [call
back_mail] in ansible.cfg and are listed in Table 18-12.

Table 18-12. splunk plugin environment variables

Config item Description Default
authtoken Token to authenticate the connection to the Splunk HTTP collector null
include_milliseconds Whether to include milliseconds as part of the generated timestamp field false

url URL to the Splunk HTTP collector source ansible

validate_certs Validate the SSL certificate of the Splunk server true

Notification and Aggregate Plug-ins | 329

http://slack.com

timer
The timer plug-in simply adds total play duration to your statistics:

Playbook run took 0 days, 0 hours, 2 minutes, 16 seconds

You’re generally better off using the profile_tasks plug-in instead, which also shows
execution time per task.

Conclusion
Ansible’s callback plug-ins provide many ways to integrate reporting into the commu‐
nication channels that organizations use. This adds value because Ansible can be used
to compose solutions in various domains in harmony with other tools.

330 | Chapter 18: Callback Plug-ins

CHAPTER 19

Custom Modules

Sometimes you want to perform a task that is too complex for the command or shell
modules, and there is no existing module that does what you want. In that case, you
might want to write your own module.

You can think of modules as the “verbs” of the Ansible “language”—without them,
the YAML would not do anything. Ansible modules are programmed in Python for
Linux/BSD/Unix machines and in PowerShell for Windows machines, but in princi‐
ple they can be written in any language. Figure 19-1 shows the major components of
Ansible: projects witplaybooks, inventory, and modules.

Figure 19-1. Modules

331

Example: Checking That You Can Reach a Remote Server
Let’s say you want to check that you can connect to a remote server on a particular
port. If you can’t, you want Ansible to treat that as an error and stop running the play.

The custom module we will develop in this chapter is basically a
simpler version of the wait_for module.

Using the Script Module Instead of Writing Your Own
Recall that back in Chapter 7, in Example 7-13, we used the script module to
execute custom scripts on remote hosts. Sometimes it’s simpler to use the script
module than to write a full-blown Ansible module.

Lorin likes putting these types of scripts in a scripts folder along with his playbooks.
For example, we could create a script file called playbooks/scripts/can_reach.sh that
accepts as arguments the name of a host, the port to connect to, and how long it
should try to connect before timing out:

$./can_reach.sh www.example.com 80 1

We can create a shell script to call netcat as shown in Example 19-1.

Example 19-1. can_reach.sh

#!/bin/bash -eu
host="$1"
port="$2"
timeout="$3"
nc -z -w "$timeout" "$host" "$port"

We can then invoke this:
- name: Run my custom script
 script: scripts/can_reach.sh www.google.com 80 1

Keep in mind that your script will execute on the remote hosts, just like Ansible
modules do. Therefore, any program your script requires must have been installed
previously on the remote hosts (like nc in Example 19-1). The example Vagrantfile for
this chapter provisions everything required with vagrant up, so you can play it with
the playbook.yml.

332 | Chapter 19: Custom Modules

1 Note that this script complies to perlcritic --brutal.

You can write your script in pure Perl if Perl is installed on the remote hosts. The first
line of the script will invoke the Perl interpreter, as in Example 19-2.1

Example 19-2. can_reach.pl

#!/usr/bin/perl
use strict;
use English qw(-no_match_vars); # PBP 79
use Carp; # PBP 283
use warnings; # PBP 431
use Socket;
our $VERSION = 1;
my $host = $ARGV[0], my $port = $ARGV[1];

create the socket, connect to the port
socket SOCKET, PF_INET, SOCK_STREAM, (getprotobyname 'tcp')[2]
 or croak "Can't create a socket $OS_ERROR\n";
connect SOCKET, pack_sockaddr_in($port, inet_aton($host))
 or croak "Can't connect to port $port! \n";

eclectic reporting
print "Connected to $host:$port\n" or croak "IO Error $OS_ERROR";

close the socket
close SOCKET or croak "close: $OS_ERROR";
__END__

Use whichever scripting language you like with the script module.

can_reach as a Module
Next, we will implement can_reach as a proper Ansible Python module. You should
invoke this module with these parameters:

- name: Check if host can reach the database
 can_reach:
 host: example.com
 port: 5432
 timeout: 1

The module checks whether the host can make a TCP connection to example.com on
port 5432. It will time out after one second if it does not make a connection.

We’ll use this example throughout the rest of this chapter.

Example: Checking That You Can Reach a Remote Server | 333

Should You Develop a Module?
Before you start developing a module, it’s worth asking a few basic questions: Is
your module really something new? Does a similar module exist? Should you use
or develop an action plug-in? Could you simply use a role? Should you create a
collection instead of a single module? It is far easier to reuse existing code if you
can, and it is easier to use Ansible than to program in Python. If you are a vendor
with a Python API to your product, then it makes sense to develop a collection for it.
Modules can be part of a collection, as discussed in Chapter 15.

Where to Put Your Custom Modules
Ansible will look in the library directory relative to the playbook. In our example,
we put our playbooks in the playbooks directory, so we will put our custom module
in playbooks/library/can_reach. ansible-playbook will look in the library directory
automatically, but if you want to use it in Ansible ad hoc commands then add this
line to ansible.cfg:

library = library

Modules can also be added in the library directory of an Ansible role or to collections.
You can use the .py file extension, or the extension that is common for your scripting
language.

How Ansible Invokes Modules
Before we implement the module, let’s go over how Ansible invokes them:

1. Generate a standalone Python script with the arguments (Python modules only)1.
2. Copy the module to the host2.
3. Create an arguments file on the host (non-Python modules only)3.
4. Invoke the module on the host, passing the arguments file as an argument4.
5. Parse the standard output of the module5.

Let’s look at each of these steps in more detail.

Generate a Standalone Python Script with the Arguments
(Python Only)
If the module is written in Python and uses the helper code that Ansible provides
(described later), then Ansible will generate a self-contained Python script that injects
helper code, as well as the module arguments.

334 | Chapter 19: Custom Modules

Copy the Module to the Host
Ansible will copy the generated Python script (for Python-based modules) or
the local file playbooks/library/can_reach (for non-Python-based modules) to a
temporary directory on the remote host. If you are accessing the remote host as
the vagrant user, Ansible will copy the file to a path that looks like the following:

/home/vagrant/.ansible/tmp/ansible-tmp-1412459504.14-47728545618200/can_reach

Create an Arguments File on the Host (Non-Python Only)
If the module is not written in Python, Ansible will create a file on the remote host
with a name like this:

/home/vagrant/.ansible/tmp/ansible-tmp-1412459504.14-47728545618200/arguments

If we invoke the module like this:
- name: Check if host can reach the database server
 can_reach:
 host: db.example.com
 port: 5432
 timeout: 1

then the arguments file will have the following content:
host=db.example.com port=5432 timeout=1

We can tell Ansible to generate the arguments file for the module as JSON, by adding
the following line to playbooks/library/can_reach:

WANT_JSON

If our module is configured for JSON input, the arguments file will look like this:
{"host": "www.example.com", "port": "80", "timeout": "1"}

Invoke the Module
Ansible will call the module and pass the arguments file as arguments. If it’s a Python-
based module, Ansible executes the equivalent of the following (with /path/to/
replaced by the actual path):

/path/to/can_reach

If not, Ansible will look at the first line of the module to determine the interpreter
and execute the equivalent of this:

/path/to/interpreter /path/to/can_reach /path/to/arguments

Assuming the can_reach module is implemented as a Bash script and starts with
#!/bin/bash, then Ansible should do something like this:

/bin/bash /path/to/can_reach /path/to/arguments

How Ansible Invokes Modules | 335

But this isn’t strictly true. What Ansible actually does is a bit more complicated; it
wraps the module in a secure shell command line to prepare the locale and to cleanup
afterward:

/bin/sh -c 'LANG=en_US.UTF-8 LC_CTYPE=en_US.UTF-8 /bin/bash /path/to/can_reach \
/path/to/arguments; rm -rf /path/to/ >/dev/null 2>&1'

You can see the exact command that Ansible invokes by passing -vvv to ansible-
playbook.

Debian might need to be configured for these locale settings:
localedef -i en_US -f UTF-8 en_US.UTF-8

Running Ansible Python modules remotely is a shell-centric implementation. Note
that Ansible cannot use a restricted shell.

Expected Outputs
Ansible expects modules to output JSON. For example:

{"changed": false, "failed": true, "msg": "could not reach the host"}

As you’ll see later, if you write your modules in Python, Ansible supplies helper
methods that make it easy to generate JSON output.

Output Variables That Ansible Expects
Your module can return whatever variables you like, but Ansible has special treat‐
ment for certain returned variables.

changed

All Ansible modules should return a changed variable. The changed variable is a
Boolean that tells whether the module execution caused the host to change state.
When Ansible runs, it will show in the output whether a state change has happened.
If a task has a notify clause to notify a handler, the notification will fire only if
changed is true.

failed

If the module fails to complete, it should return "failed": true. Ansible will treat
this task execution as a failure and will not run any further tasks against the host that
failed unless the task has an ignore_errors or failed_when clause.

336 | Chapter 19: Custom Modules

If the module succeeds, you can either return "failed": false or you can simply
leave out the variable.

msg

Use the msg variable to add a descriptive message that describes the reason that a
module failed.

If a task fails, and the module returns a msg variable, then Ansible will output that
variable slightly differently than it does the other variables. For example, if a module
returns the following:

{"failed": true, "msg": "could not reach www.example.com:81"}

then Ansible will output the following lines when executing this task:
failed: [fedora] ==> {"failed": true}
msg: could not reach www.example.com:81

After a host fails, Ansible tries to continue with the remaining hosts that did not fail.

Implementing Modules in Python
If you implement your custom module in Python, Ansible supplies the AnsibleMod
ule Python class. That makes it easier to parse the inputs, return outputs in JSON
format, and invoke external programs.

In fact, when writing a Python module, Ansible will inject the arguments directly into
the generated Python file rather than require you to parse a separate arguments file.
We’ll discuss how shorthand input works later in this chapter.

We’ll create our module in Python by creating a can_reach file. We’ll start with the
implementation and then break it down (see Example 19-3).

Example 19-3. can_reach

#!/usr/bin/env python3
""" can_reach ansible module """

from ansible.module_utils.basic import AnsibleModule

def can_reach(module, host, port, timeout):
 """ can_reach is a method that does a tcp connect with nc """

 nc_path = module.get_bin_path('nc', required=True)
 args = [nc_path, "-z", "-w", str(timeout), host, str(port)]
 # (return_code, stdout, stderr) = module.run_command(args)

 return module.run_command(args,check_rc=True)

def main():
 """ ansible module that uses netcat to connect """

Implementing Modules in Python | 337

 module = AnsibleModule(

 argument_spec=dict(
 host=dict(required=True),

 port=dict(required=True, type='int'),

 timeout=dict(required=False, type='int', default=3)
),

 supports_check_mode=True
)

 # In check mode, we take no action
 # Since this module never changes system state, we just
 # return changed=False

 if module.check_mode:

 module.exit_json(changed=False)

 host = module.params['host']
 port = module.params['port']
 timeout = module.params['timeout']

 if can_reach(module, host, port, timeout)[0] == 0:
 msg = "Could reach %s:%s" % (host, port)

 module.exit_json(changed=False, msg=msg)
 else:
 msg = "Could not reach %s:%s" % (host, port)

 module.fail_json(msg=msg)

if __name__ == "__main__":
 main()

Imports the AnsibleModule helper class

Gets the path of an external program

Invokes an external program

Instantiates the AnsibleModule helper class

Specifies the permitted set of arguments

A required argument

An optional argument with a default value

Specifies that this module supports check mode

Tests whether the module is running in check mode

Exits successfully, passing a return value

Extracts an argument

338 | Chapter 19: Custom Modules

Exits successfully, passing a message

Exits with failure, passing an error message

Parsing Arguments
It’s easier to understand the way AnsibleModule handles argument parsing by looking
at an example. Recall that our module is invoked like this:

- name: Check if host can reach the database server
 can_reach:
 host: db.example.com
 port: 5432
 timeout: 1

Let’s assume that the host and port parameters are required, and timeout is an
optional parameter with a default value of 3 seconds.

You instantiate an AnsibleModule object by passing it an argument_spec, which is a
dictionary in which the keys are parameter names and the values are dictionaries that
contain information about the parameters:

module = AnsibleModule(
 argument_spec=dict(
 ...

In Example 19-2, we declare a required argument named host. Ansible will report an
error if this argument isn’t passed to the module when we use it in a task:

host=dict(required=True),

The variable named timeout is optional. Ansible assumes that arguments are strings
unless specified otherwise. Our timeout variable is an integer, so we specify the type
as int so that Ansible will automatically convert it into a Python number. If timeout
is not specified, the module will assume it has a value of 3:

timeout=dict(required=False, type='int', default=3)

The AnsibleModule constructor takes arguments other than argument_spec. In the
preceding example, we added this argument:

supports_check_mode = True

This indicates that our module supports check mode. We’ll explain check mode a
little later in this chapter.

Accessing Parameters
Once you’ve declared an AnsibleModule object, you can access the values of the
arguments through the params dictionary, like this:

Implementing Modules in Python | 339

module = AnsibleModule(...)
host = module.params["host"]
port = module.params["port"]
timeout = module.params["timeout"]

Importing the AnsibleModule Helper Class
Ansible deploys a module to the host by sending a ZIP file containing the module
file along with the imported helper files. One consequence of this it that you can
explicitly import classes, such as the following:

from ansible.module_utils.basic import AnsibleModule

Argument Options
For each argument to an Ansible module, you can specify several options, as listed in
Table 19-1.

Table 19-1. Argument options

Option Description
required If True, argument is required
default Default value if argument is not required
choices A list of possible values for the argument
deprecated_aliases A tuple or list of dictionaries with name, version, date, collection_name
aliases Other names you can use as an alias for this argument
type Argument type
elements When type is list, elements can define the type of the list elements
fallback A tuple of a lookup function and a list to pass to it
no_log A Boolean that defines masking in logs
options Implements the ability to create complex arguments in a dict of sub-optionsa

mutually_exclusive A list of mutually exclusive sub-option names
required_together A list of names of sub-options
required_one_of A list of required mutually exclusive sub-options
required_if A sequence of sequences
required_by A dictionary mapping option names to sequences of option names
a Refer to the documentation for dependencies between module options.

required

The required option is the only option that you should always specify. If it is True,
Ansible will return an error if the user fails to specify the argument.

In our can_reach module example, host and port are required, and timeout is not
required.

340 | Chapter 19: Custom Modules

https://oreil.ly/yJ74M

default

For arguments that have required=False set, you should generally specify a default
value for that option. In our example:

timeout=dict(required=False, type='int', default=3)

If the user invokes the module like this:
can_reach: host=www.example.com port=443

then module.params["timeout"] will have the value 3.

choices

The choices option allows you to restrict the allowed arguments to a predefined list.

Consider the distro argument in the following example:
distro=dict(required=True, choices=['ubuntu', 'centos', 'fedora'])

If the user were to pass an argument that was not in the list—for example:
distro=debian

this would cause Ansible to throw an error.

aliases

The aliases option allows you to use different names to refer to the same argument.
For example, consider the package argument in the apt module:

module = AnsibleModule(
 argument_spec=dict(
 ...
 package = dict(default=None, aliases=['pkg', 'name'], type='list'),
)
)

Since pkg and name are aliases for the package argument, these invocations are all
equivalent:

- apt:
 package: vim

- apt:
 name: vim

- apt:
 pkg: vim

type

The type option enables you to specify the type of an argument. By default, Ansible
assumes all arguments are strings.

Implementing Modules in Python | 341

However, you can specify a type for the argument, and Ansible will convert the
argument to the desired type. The types supported are as follows:

• str

• list

• dict

• bool

• int

• float

• path

• raw

• jsonarg

• json

• bytes

• bits

In our example, we specified the port argument as int:
port=dict(required=True, type='int'),

When we access it from the params dictionary, like this:
port = module.params['port']

the value of the port variable will be an integer. If we had not specified the type as
int when declaring the port variable, the module.params['port'] value would have
been a string instead of an integer.

Lists are comma-delimited. For example, if you have a module named foo with a list
parameter named colors:

colors=dict(required=True, type='list')

then you pass a list like this:
foo: colors=red,green,blue

For dictionaries, you can either use key=value pairs, delimited by commas, or you
can use JSON inline.

For example, if you have a module named bar, with a dict parameter named tags:
tags=dict(required=False, type='dict', default={})

then you can pass the argument like this:

342 | Chapter 19: Custom Modules

- bar: tags=env=staging,function=web

Or you can pass the argument like this:
- bar: tags={"env": "staging", "function": "web"}

The official Ansible documentation uses the term complex args to refer to lists and
dictionaries that are passed to modules as arguments. See “Complex Arguments in
Tasks: A Brief Digression” for how to pass these types of arguments in playbooks.

AnsibleModule Initializer Parameters
The AnsibleModule initializer method takes various arguments, listed in Table 19-2.
The only required argument is argument_spec.

Table 19-2. AnsibleModule initializer arguments

Parameter Default Description
argument_spec (None) Dictionary that holds information about arguments
bypass_checks False If true, don’t check any of the parameter constraints
no_log False If true, don’t log the behavior of this module
check_invalid_arguments True If true, return error if user passed an unknown argument
mutually_exclusive (None) List of mutually exclusive arguments
required_together (None) List of arguments that must appear together
required_one_of (None) List of arguments where at least one must be present
add_file_common_args False Supports the arguments of the file module
supports_check_mode False If true, says module supports check mode

argument_spec
This is a dictionary that contains the descriptions of the allowed arguments for the
module, as described in the previous section.

no_log
When Ansible executes a module on a host, the module will log output to the syslog,
which on Ubuntu is at /var/log/syslog.

The logging output looks like this:
Aug 29 18:55:05 ubuntu-focal python3[5688]: ansible-lineinfile Invoked with
dest=/etc/ssh/sshd_config.d/10-crypto.conf regexp=^HostKeyAlgorithms line=
state=present path=/etc/ssh/sshd_config.d/10-crypto.conf backrefs=False
create=False backup=False firstmatch=False unsafe_writes=False
search_string=None insertafter=None insertbefore=None validate=None
mode=None owner=None group=None seuser=None serole=None selevel=None
setype=None attributes=None
Aug 29 18:55:05 ubuntu-focal python3[5711]: ansible-stat Invoked with
path=/etc/ssh/ssh_host_ed25519_key follow=False get_md5=False
get_checksum=True get_mime=True get_attributes=True checksum_algorithm=sha1

Implementing Modules in Python | 343

Aug 29 18:55:06 ubuntu-focal python3[5736]: ansible-file Invoked with
path=/etc/ssh/ssh_host_ed25519_key mode=384 recurse=False force=False
follow=True modification_time_format=%Y%m%d%H%M.%S
access_time_format=%Y%m%d%H%M.%S unsafe_writes=False state=None
_original_basename=None _diff_peek=None src=None modification_time=None
access_time=None owner=None group=None seuser=None serole=None selevel=None
setype=None attributes=None
Aug 29 18:55:06 ubuntu-focal python3[5759]: ansible-lineinfile Invoked with
dest=/etc/ssh/sshd_config regexp=^HostKey /etc/ssh/ssh_host_ed25519_key
line=HostKey /etc/ssh/ssh_host_ed25519_key insertbefore=^# HostKey
/etc/ssh/ssh_host_rsa_key mode=384 state=present path=/etc/ssh/sshd_config
backrefs=False create=False backup=False firstmatch=False
unsafe_writes=False search_string=None insertafter=None validate=None
owner=None group=None seuser=None serole=None selevel=None setype=None
attributes=None

If a module accepts sensitive information as an argument, you might want to disable
this logging. To configure a module so that it does not write to syslog, pass the
no_tog=True parameter to the AnsibleModule initializer.

check_invalid_arguments
By default, Ansible will verify that all of the arguments that a user passed to a module
are legal arguments. You can disable this check by passing the check_invalid_argu
ments=False parameter to the AnsibleModule initializer.

mutually_exclusive

The mutually_exclusive parameter is a list of arguments that cannot be specified
during the same module invocation. For example, the lineinfile module allows you
to add a line to a file. You can use the insertbefore argument to specify which line
it should appear before, or the insertafter argument to specify which line it should
appear after, but you can’t specify both.

Therefore, this module specifies that the two arguments are mutually exclusive, like
this:

mutually_exclusive=[['insertbefore', 'insertafter']]

required_one_of

The required_one_of parameter expects a list of arguments with at least one that
must be passed to the module. For example, the pip module, which is used for
installing Python packages, can take either the name of a package or the name of a
requirements file that contains a list of packages. The module specifies that one of
these arguments is required like this:

required_one_of=[['name', 'requirements']]

344 | Chapter 19: Custom Modules

add_file_common_args
Many modules create or modify a file. A user will often want to set some attributes on
the resulting file, such as the owner, group, and file permissions.

You could invoke the file module to set these parameters, like this:
- name: Download a file
 get_url:
 url: http://www.example.com/myfile.dat
 dest: /tmp/myfile.dat

- name: Set the permissions
 file:
 path: /tmp/myfile.dat
 owner: vagrant
 mode: '0600'

As a shortcut, Ansible allows you to specify that a module will accept all of the same
arguments as the file module, so you can simply set the file attributes by passing the
relevant arguments to the module that created or modified the file. For example:

- name: Download a file
 get_url:
 url: http://www.example.com/myfile.dat
 dest: /tmp/myfile.dat
 owner: vagrant
 mode: '0600'

To specify that a module should support these arguments:
add_file_common_args=True

The AnsibleModule module provides helper methods for working with these
arguments.

The load_file_common_arguments method takes the parameters dictionary as an
argument and returns a parameters dictionary that contains all of the arguments that
relate to setting file attributes.

The set_fs_attributes_if_different method takes a file parameters dictionary
and a Boolean indicating whether a host state change has occurred yet. The method
sets the file attributes as a side effect and returns true if there was a host state change
(either the initial argument was true, or it made a change to the file as part of the side
effect).

If you are using the common file arguments, do not specify the arguments explicitly.
To get access to these attributes in your code, use the helper methods to extract the
arguments and set the file attributes, like this:

module = AnsibleModule(
 argument_spec=dict(
 dest=dict(required=True),

Implementing Modules in Python | 345

 ...
),
 add_file_common_args=True
)

"changed" is True if module caused host to change state
changed = do_module_stuff(param)

file_args = module.load_file_common_arguments(module.params)

changed = module.set_fs_attributes_if_different(file_args, changed)
module.exit_json(changed=changed, ...)

Ansible assumes your module has an argument named path or
dest, which holds the path to the file. Unfortunately, this is not
consistent, so check it with:

$ ansible-doc module

bypass_checks
Before an Ansible module executes, it first checks that all of the argument constraints
are satisfied and returns an error if they aren’t. These include the following:

• No mutually exclusive arguments are present.•
• Arguments marked with the required option are present.•
• Arguments restricted by the choices option have the expected values.•
• Arguments that specify a type have values that are consistent with the type.•
• Arguments marked as required_together appear together.•
• At least one argument in the list of required_one_of is present.•

You can disable all of these checks by setting bypass_checks=True.

Returning Success or Failure
Use the exit_json method to return success. You should always return changed as an
argument, and it’s good practice to return msg with a meaningful message:

module = AnsibleModule(...)
...
module.exit_json(changed=False, msg="meaningful message goes here")

Use the fail_json method to express failure. You should always return a msg param‐
eter to explain to the user the reason for the failure:

module = AnsibleModule(...)
...
module.fail_json(msg="Out of disk space")

346 | Chapter 19: Custom Modules

2 For more on the Python standard library subprocess.Popen class, see its documentation.

Invoking External Commands
The AnsibleModule class provides the run_command convenience method for calling
an external program, which wraps the native Python subprocess module. It accepts
the arguments listed in Table 19-3.

Table 19-3. run_command arguments

Argument Type Default Description
args (default) String or list of

strings
(None) The command to be executed (see the following section)

check_rc Boolean False If true, will call fail_json if command returns a nonzero
value, with stderr included

close_fds Boolean True Passes as close_fds argument to subprocess.Popen
executable String (path to

program)
(None) Passes as executable argument to subprocess.Popen

data String (None) Send to stdin if child process
binary_data Boolean False If false and data is present, Ansible will send a newline to

stdin after sending data
path_prefix String (list of paths) (None) Colon-delimited list of paths to prepend to PATH environment

variable
cwd String (directory

path)
(None) If specified, Ansible will change to this directory before executing

use_unsafe_shell Boolean False See the following section

If args is passed as a list, as shown in Example 19-4, then Ansible will invoke
subprocess.Popen with shell=False.

Example 19-4. Passing args as a list

module = AnsibleModule(...)
...
module.run_command(['/usr/local/bin/myprog', '-i', 'myarg'])

If args is passed as a string, as shown in Example 19-5, then the behavior depends on
the value of use_unsafe_shell. If use_unsafe_shell is false, Ansible will split args
into a list and invoke subprocess.Popen with shell=False. If use_unsafe_shell is
true, Ansible will pass args as a string to subprocess.Popen with shell=True.2

Implementing Modules in Python | 347

https://oreil.ly/trNKm

Example 19-5. Passing args as a string

module = AnsibleModule(...)
...
module.run_command('/usr/local/bin/myprog -i myarg')

Check Mode (Dry Run)
Ansible supports something called check mode, which is enabled when passing the -C
or --check flag to ansible-playbook. It is similar to the dry run mode supported by
many other tools.

When Ansible runs a playbook in check mode, it will not make any changes to
the hosts when it runs. Instead, it will simply report whether each task would have
changed the host, returned successfully without making a change, or returned an
error.

Modules must be explicitly configured to support check mode. If
you’re going to write your own module, I recommend you support
check mode so that your module can be used in a dry run of
playbooks.

To tell Ansible that your module supports check mode, set supports_check_mode to
True in the AnsibleModule initializer method, as shown in Example 19-6.

Example 19-6. Telling Ansible the module supports check mode

module = AnsibleModule(
 argument_spec=dict(...),
 supports_check_mode=True)

Your module should confirm that check mode has been enabled by validating the
value of the check_mode attribute of the AnsibleModule object, as shown in Exam‐
ple 19-7. Call the exit_json or fail_json methods as you would normally.

Example 19-7. Checking whether check mode is enabled

module = AnsibleModule(...)
...if module.check_mode:
 # check if this module would make any changes
 would_change = would_executing_this_module_change_something()
 module.exit_json(changed=would_change)

It is up to you, the module author, to ensure that your module does not modify the
state of the host when running in check mode.

348 | Chapter 19: Custom Modules

Documenting Your Module
You should document your modules according to the Ansible project standards so
that HTML documentation for your module will be correctly generated and the
ansible-doc program will display documentation for your module. Ansible uses a
special YAML-based syntax for documenting modules.

Near the top of your module, define a string variable called DOCUMENTATION that con‐
tains the documentation, and a string variable called EXAMPLES that contains example
usage. If your module returns information as JSON, document it in a variable called
RETURN.

Example 19-8 shows an example for the documentation section for our can_reach
module.

Example 19-8. Example of module documentation

DOCUMENTATION = r'''

module: can_reach
short_description: Checks server reachability
description: Checks if a remote server can be reached
version_added: "1.8"
options:
 host:
 description:
 - A DNS hostname or IP address
 required: true
 port:
 description:
 - The TCP port number
 required: true
 timeout:
 description:
 - The amount of time trying to connect before giving up, in seconds
 required: false
 default: 3
requirements: [nmap]
author: Lorin Hochstein, Bas Meijer
notes:
 - This is just an example to demonstrate how to write a module.
 - You probably want to use the native M(wait_for) module instead.
'''
EXAMPLES = r'''
Check that ssh is running, with the default timeout
- can_reach: host=localhost port=22 timeout=1
Check if postgres is running, with a timeout
- can_reach: host=example.com port=5432
'''

Documenting Your Module | 349

Ansible supports limited markup in the documentation. Table 19-4 shows the sup‐
ported markup syntax, with recommendations about when you should use it.

Table 19-4. Documentation markup

Type Syntax with example When to use
URL U(http://www.example.com) URLs
Module M(apt) Module names
Italics I(port) Parameter names
Constant-width C(/bin/bash) File and option names

The existing Ansible modules are a great source of examples for documentation.

Debugging Your Module
The Ansible repository in GitHub has a couple of scripts that allow you to invoke
your module directly on your local machine, without having to run it by using the
ansible or ansible-playbook commands.

Clone the Ansible repository:
$ git clone https://github.com/ansible/ansible.git

Change directory to the repository root directory:
$ cd ansible

Create a virtual environment:
$ python3 -m venv venv

Activate the virtual environment:
$ source venv/bin/activate

Install development requirements:
$ python3 -m pip install --upgrade pip
$ pip install -r requirements.txt

Run the environment setup script for each new dev shell process:
$ source hacking/env-setup

Invoke your module:
$ ansible/hacking/test-module -m /path/to/can_reach -a "host=example.com port=81"

Since example.com doesn’t have a service that listens on port 81, our module should
fail with a meaningful error message. And it does:

* including generated source, if any, saving to:
/Users/bas/.ansible_module_generated
* ansiballz module detected; extracted module source to:

350 | Chapter 19: Custom Modules

/Users/bas/debug_dir

RAW OUTPUT

{"cmd": "/usr/bin/nc -z -v -w 3 example.com 81", "rc": 1, "stdout": "",
"stderr": "nc: connectx to example.com port 81 (tcp) failed: Operation timed
out\n", "failed": true, "msg": "nc: connectx to example.com port 81 (tcp)
failed: Operation timed out", "invocation": {"module_args": {"host":
"example.com", "port": 81, "timeout": 3}}}

PARSED OUTPUT
{

"cmd": "/usr/bin/nc -z -v -w 3 example.com 81",
"failed": true,
"invocation": {

"module_args": {
"host": "example.com",
"port": 81,
"timeout": 3

}
},
"msg": "nc: connectx to example.com port 81 (tcp) failed: Operation

timed out",
"rc": 1,
"stderr": "nc: connectx to example.com port 81 (tcp) failed: Operation

timed out\n",
"stdout": ""

}

As the output suggests, when you run this test-module, Ansible will generate
a Python script and copy it to ~/.ansible_module_generated. This is a standalone
Python script that you can execute directly if you like.

Starting with Ansible 2.1.0, this Python script has a base64-encoded ZIP file with the
actual source code from your module, as well as code to expand the ZIP file and
execute the source code within it.

This file does not take any arguments; rather, Ansible inserts the arguments directly
into the file in the ANSIBALLZ_PARAMS variable:

ANSIBALLZ_PARAMS = '{"ANSIBLE_MODULE_ARGS": {"_ansible_selinux_special_fs":
["fuse", "nfs", "vboxsf", "ramfs", "9p", "vfat"], "_ansible_tmpdir":
"/Users/bas/.ansible/tmp/ansible-local-12753r6nenhh",
"_ansible_keep_remote_files": false, "_ansible_version": "2.12.0.dev0",
"host": "example.com", "port": "81"}}'

Diving into debugging Ansible modules helps you understand Ansible, even if you
don’t write a module.

Debugging Your Module | 351

Implementing the Module in Bash
If you’re going to write an Ansible module for Linux/Unix, we recommend writing
it in Python because, as you saw earlier in this chapter, Ansible provides helper
classes for writing modules in Python. PowerShell is used to create modules that
manage Windows systems. However, you can write modules in other languages as
well. Perhaps you need to write in another language because your module depends
on a third-party library that’s not implemented in Python. Or maybe the module is so
simple that it’s easiest to write it in Bash.

In this section, we’ll work through an example of implementing the module as a Bash
script. It’s going to look quite like the implementation in Example 19-1. The main
difference is parsing the input arguments and generating the outputs that Ansible
expects.

We’re going to use the JSON format for input and use a tool called jq for parsing out
JSON on the command line. This means that you’ll need to provision jq on the hosts
before invoking this module. Example 19-9 shows the complete Bash implementation
of our module.

Example 19-9. can_reach module in Bash

#!/bin/bash -e
WANT_JSON
Read the variables from the file with jq
host=$(jq -r .host <"$1")
port=$(jq -r .port <"$1")
timeout=$(jq -r .timeout <"$1")
Default timeout=3
if [[$timeout = null]]; then
 timeout=3
fi
Check if we can reach the host
if nc -z -w "$timeout" "$host" "$port"; then
 echo '{"changed": false}'
else
 echo "{\"failed\": true, \"msg\": \"could not reach $host:$port\"}"
fi

We add WANT_JSON in a comment to tell Ansible that we want the input to be in JSON
syntax. Michael DeHaan called this type of JSON “Baby JSON”; in 2013 he wrote:
“Ansible also supports ‘baby JSON’ which is just a list of key=value pairs, so you don’t
technically have to output JSON.”

352 | Chapter 19: Custom Modules

http://stedolan.github.io/jq/

Bash Modules with Shorthand Input
It’s possible to implement Bash modules by using the shorthand notation for input.
We don’t recommend doing it this way, since the simplest approach involves using
the source built-in, which is a potential security risk. However, if you’re really deter‐
mined, check out the blog post “Shell Scripts as Ansible Modules” by Jan-Piet Mens.
Instead of using jq, JP asks the shell to parse the input file with module arguments:

source ${1} # Very, *very*, dangerous!

Specifying an Alternative Location for Bash
Note that our module assumes that Bash is located at /bin/bash. However, not all
systems will have the Bash executable in that location. You can tell Ansible to look
elsewhere for the Bash interpreter by setting the ansible_bash_interpreter variable
on hosts that install it elsewhere.

For example, let’s say you have a FreeBSD host named fileserver.example.com that has
Bash installed in /usr/local/bin/bash. You can create a host variable by creating the file
host_vars/fileserver.example.com that contains the following:

ansible_bash_interpreter: /usr/local/bin/bash

Then, when Ansible invokes this module on the FreeBSD host, it will use /usr/
local/bin/bash instead of /bin/bash.

Ansible determines which interpreter to use by looking for the shebang (#!) and then
looking at the base name of the first element. In our example, it will see this line:

#!/bin/bash

Ansible will then look for the base name of /bin/bash, which is bash. It will then use
the ansible_bash_interpreter if the user specified one.

If your shebang calls /usr/bin/env, for example #!/usr/bin/env
bash, Ansible will mistakenly identify the interpreter as env
because it will call basename on /usr/bin/env to identify the
interpreter.
Here’s the takeaway: don’t invoke env in shebang. Instead, explic‐
itly specify the location of the interpreter and override with
ansible_bash_interpreter (or equivalent) when needed.

Specifying an Alternative Location for Bash | 353

https://oreil.ly/A11X6

Conclusion
In this chapter, we covered how to write modules in Python, as well as in other
languages, and how to avoid writing your own full-blown modules by using the
script module. If you want to dive deeper into modules, a great place to start is
to read the dev guide for developing modules. The best way to learn how to write
Ansible modules is to read the source code on GitHub for the modules that ship with
Ansible.

354 | Chapter 19: Custom Modules

https://oreil.ly/YCSdz
https://oreil.ly/G4CUl

CHAPTER 20

Making Ansible Go Even Faster

Once you start using Ansible on a regular basis, you’ll often find yourself wishing that
your playbooks could run more quickly. This chapter presents strategies for reducing
the time it takes Ansible to execute playbooks.

SSH Multiplexing and ControlPersist
If you’ve made it this far in the book, you know that Ansible uses SSH as its primary
transport mechanism for communicating with servers. In particular, it uses the sys‐
tem SSH program by default.

Because the SSH protocol runs on top of the TCP protocol, when you make a
connection to a remote machine with SSH, you need to make a new TCP connection.
The client and server must negotiate this connection before you can actually start
doing useful work. The negotiation takes a small amount of time, but it adds up if you
have to do it many times, so it becomes a “penalty.”

When Ansible runs a playbook it makes many SSH connections, to do things such as
copy over files and run modules. Each time Ansible makes a new SSH connection to a
host, it has to pay this negotiation penalty.

OpenSSH is the most common implementation of SSH; if you are on Linux or
macOS, it is almost certainly the SSH client you have installed on your local machine.
OpenSSH supports an optimization called SSH multiplexing, also referred to as Con‐
trolPersist, which allows multiple SSH sessions to the same host to share the same
TCP connection. This means that the TCP connection negotiation happens only the
first time, thus eliminating the negotiation penalty.

355

When you enable multiplexing, here is what happens:

• The first time you try to SSH to a host, OpenSSH starts one connection.•
• OpenSSH creates a Unix domain socket (known as the control socket) that is•

associated with the remote host.
• The next time you try to SSH to a host, OpenSSH will use the control socket to•

communicate with the host instead of making a new TCP connection.

The main connection stays open for a user-configurable amount of time (Ansible
uses a default of 60 seconds), and then the SSH client will close the connection.

Manually Enabling SSH Multiplexing
Ansible enables SSH multiplexing automatically, but to give you a sense of what’s
going on behind the scenes, let’s work through the steps of manually enabling SSH
multiplexing and using it to SSH to a remote machine.

Example 20-1 shows an entry to configure SSH to use multiplexing in the ~/.ssh/
config file.

Example 20-1. ~/.ssh/config for enabling SSH multiplexing

ControlMaster auto
ControlPath ~/.ssh/sockets/%r@%h:%p
ControlPersist 10m

ControlMaster auto enables SSH multiplexing and tells SSH to create the main
connection and the control socket if they do not exist yet.

ControlPersist 10m tells SSH to close the master connection if there have been no
SSH connections for 10 minutes.

ControlPath ~/.ssh/sockets/%r@%h:%p tells SSH where to put the control Unix
domain socket files on the filesystem.

• %l is a placeholder for the local hostname, including the domain.•
• %h is a placeholder for the target hostname.•
• %p is a placeholder for the port.•
• %r is a placeholder for the remote login username.•
• %C is a placeholder for the hash of %l%h%p%r.•

If we want to SSH with these options as the Vagrant user:
$ ssh -i ~/.vagrant.d/insecure_private_key vagrant@192.168.56.10.nip.io

356 | Chapter 20: Making Ansible Go Even Faster

1 The output format may look different, depending on your shell and OS. We’re running Bash on macOS.

SSH will create a control socket at ~/.ssh/sockets/vagrant@192.168.56.10.nip.io:22 the
first time you SSH to the server. Arguments to ControlPath can use the tilde syntax
to refer to a user’s home directory. We recommend that any ControlPath you use for
opportunistic connection sharing include at least %h, %p, and %r (or alternatively %C)
and that you place it in a directory that is not writable by other users. This ensures
that shared connections are uniquely identified.

You can check whether a master connection is open by using the -O check flag:
$ ssh -O check vagrant@192.168.56.10.nip.io

It will return output like this if the control master is running:
Master running (pid=5099)

Here’s what the control master process looks like if you use ps 5099:
 PID TT STAT TIME COMMAND
 5099 ?? Ss 0:00.00 ssh: /Users/bas/.ssh/sockets/vagrant@192.168.56.10.
 nip.io:22 [mux]

You can also stop the master connection by using the -O exit flag, like this:
$ ssh -O exit vagrant@192.168.56.10.nip.io

You can see more details about these settings on the ssh_config manual page:
$ man 5 ssh_config

We tested the speed of making an SSH connection. The following times how long it
takes to initiate an SSH connection to the server and run the /usr/bin/true program,
which simply exits with a return code 0:

$ time ssh -i ~/.vagrant.d/insecure_private_key \
 vagrant@192.168.56.10.nip.io \
 /usr/bin/true

The first time we ran it, the timing part of the output looked like this:1

real 0m0.319s
user 0m0.018s
sys 0m0.011s

The time we really care about is the total time: 0m0.319s total. This tells us it took
0.319 seconds to execute the whole command. (Total time is also sometimes called
wall-clock time, since it’s how much time elapses in the real world: that is, you could
measure it by watching a clock on the wall.)

SSH Multiplexing and ControlPersist | 357

2 One of these steps can be optimized away by using pipelining, described later in this chapter.

The second time we ran it, the output looked like this:
real 0m0.010s
user 0m0.004s
sys 0m0.006s

The total time went down to 0.010s, for a savings of about 0.3s for each SSH connec‐
tion after the first one. Recall that Ansible uses at least two SSH sessions to execute
each task: one session to copy the module file to the host, and another session to
execute the module file.2 This means that SSH multiplexing should save you roughly
one or two seconds for each task that runs in your playbook.

SSH Multiplexing Options in Ansible
Ansible uses the options for SSH multiplexing shown in Table 20-1.

Table 20-1. Ansible’s SSH multiplexing options

Option Value
ControlMaster auto
ControlPath ~/.ssh/sockets/%r@%h:%p
ControlPersist 60s

We’ve never needed to change Ansible’s default ControlMaster values. ControlPer
sist=10m reduces the overhead of creating sockets, but there is a trade-off when you
sleep your laptop with active multiplexing: it takes that amount of time to pick up
networking changes that break your connectivity.

We did need to change the value for the ControlPath option. That’s because the
operating system sets a maximum length on the path of a Unix domain socket, and
if the ControlPath string is too long, then multiplexing won’t work. Unfortunately,
Ansible won’t tell you if the ControlPath string is too long; it will simply run without
using SSH multiplexing.

You can test it out on your control machine by manually trying to SSH using the
same ControlPath that Ansible would use:

$ CP=~/.ansible/cp/ansible-ssh-%h-%p-%r
$ ssh -o ControlMaster=auto -o ControlPersist=60s \
 -o ControlPath=$CP \
 ubuntu@ec2-203-0-113-12.compute-1.amazonaws.com \
 /bin/true

358 | Chapter 20: Making Ansible Go Even Faster

If the ControlPath is too long, you’ll see an error that looks like Example 20-2.

Example 20-2. ControlPath too long

"/Users/lorin/.ansible/cp/ansible-ssh-ec2-203-0-113-12.compute-1.amazonaws.
com-22-ubuntu.KIwEKEsRzCKFABch"
too long for Unix domain socket

This is a common occurrence when connecting to Amazon EC2 instances, because
EC2 uses long hostnames.

The workaround is to configure Ansible to use a shorter ControlPath. The official
documentation recommends setting this option in your ansible.cfg file:

[ssh_connection]
control_path = %(directory)s/%%h-%%r

Ansible sets %(directory)s to $HOME/.ansible/cp. The double percent signs (%%)
are needed to escape these characters because percent signs are special characters for
files in the .ini format.

If you have SSH multiplexing enabled and you change a configu‐
ration of your SSH connection—say, by modifying the ssh_args
configuration option—the change won’t take effect if the control
socket is still open from a previous connection.

More SSH Tuning
When you are in charge of all your servers, or simply responsible enough to look at
their security, you’ll want to consider optimizing the configuration of the SSH client
and servers. The SSH protocol uses several algorithms to negotiate and establish
a connection, to authenticate the server and the client hosts, and to set the user
and session parameters. Negotiating takes time, and algorithms differ in speed and
security. If you manage servers with Ansible on a daily basis, then why not look a bit
closer at their SSH settings?

Algorithm Recommendations
Major Linux distributions ship with a “compatible” configuration for the SSH server.
The idea is that everyone will be able to connect and log in to the server using
whatever client software they like, from whatever source IP address, as long as they
know a valid user login method. Better take a closer look if that is what you want!

More SSH Tuning | 359

https://oreil.ly/V6qpw
https://oreil.ly/V6qpw

Bas researched the performance of the SSH connections of Ansible by changing the
order and values of ssh_args and replaying tests.yml ad nauseam, but came to the
conclusion that most of it has already been optimized. Bas did, however, find two
ssh_args values that shave some microseconds, if combined with the multiplexing
options discussed earlier:

 ssh_args = -4 -o PreferredAuthentications=publickey

The -4 selects the inet protocol family (ipv4) exclusively, and PreferredAuthentica
tions reorders the user authentication to the socket of ssh-agent.

For sshd_config, Bas selects the fastest algorithm first and allows a few secure
alternatives for compatibility, but in reverse order for speed.

For additional speed, Bas changed the key pair types to a modern standard. Elliptic
curve 25519 is both faster and more secure than RSA, so he uses it with PublicKey
Authentication and for host keys.

When Bas generated his key pair on his machine, he used the -a 100 option for
brute-force protection:

$ ssh-keygen -t ed25519 -a 100 -C bas

This task ensures that Bas’s key has exclusive access to the deploy user:
- name: Change ssh key to ed25519
 authorized_key:
 user: deploy
 key: "{{ lookup('file', '~/.ssh/id_ed25519.pub') }}"
 exclusive: true

These tasks ensure that the host key is generated and configured:
- name: Check the ed25519 host key
 stat:
 path: /etc/ssh/ssh_host_ed25519_key
 register: ed25519

- name: Generate ed25519 host key
 command: ssh-keygen -t ed25519 -f /etc/ssh/ssh_host_ed25519_key -N ""
 when:
 - not ed25519.stat.exists|bool
 notify: Restart sshd
 changed_when: true

- name: Set permissions
 file:
 path: /etc/ssh/ssh_host_ed25519_key
 mode: '0600'

- name: Configure ed25519 host key
 lineinfile:
 dest: /etc/ssh/sshd_config
 regexp: '^HostKey /etc/ssh/ssh_host_ed25519_key'

360 | Chapter 20: Making Ansible Go Even Faster

https://oreil.ly/7KzzL

 line: 'HostKey /etc/ssh/ssh_host_ed25519_key'
 insertbefore: '^# HostKey /etc/ssh/ssh_host_rsa_key'
 mode: '0600'
 state: present
 notify: Restart sshd

Bas also ensures that his SSH server’s configuration matches his SSH client configura‐
tion, so the first negotiated offer fits both ends. Adding optimization options in client
configuration does not improve performance as much as adding them for server side,
because these files are read for each SSH connection.

Pipelining
Recall how Ansible executes a task:

1. It generates a Python script based on the module being invoked.1.
2. It copies the Python script to the host.2.
3. It executes the Python script.3.

Ansible supports an optimization called pipelining. Pipelining, if supported by the
connection plug-in, reduces the number of network operations required to execute
a module on the remote server, by executing many Ansible modules without actual
file transfer. Ansible executes the Python scripts by piping them to the SSH session
instead of copying them. This saves time because it tells Ansible to use one SSH
session instead of two.

Enabling Pipelining
Pipelining is off by default because it can require some configuration on your remote
hosts, but we like to enable it because it is a big speed-up you can implement in
Ansible. To enable it, change your ansible.cfg file as shown in Example 20-3.

Example 20-3. Enable pipelining in ansible.cfg

[connection]
pipelining = True

Configuring Hosts for Pipelining
For pipelining to work on Linux, you need to make sure that requiretty is not
enabled in your /etc/sudoers file on your hosts. Otherwise, you’ll get errors that look
like Example 20-4 when you run your playbook.

Pipelining | 361

Example 20-4. Error when requiretty is enabled

failed: [centos] ==> {"failed": true, "parsed": false}
invalid output was: sudo: sorry, you must have a tty to run sudo

If sudo on your hosts is configured to read files from the /etc/sudoers.d, then the
simplest way to resolve this is to add a sudoers config file that disables the requiretty
restriction for the user with which you use SSH.

If the /etc/sudoers.d directory is present, your hosts should support adding sudoers
config files in that directory. You can use the ansible command-line tool to check for
the directory:

$ ansible vagrant -a "file /etc/sudoers.d"

If the directory is present, the output will look like this:
centos | CHANGED | rc=0 >>
/etc/sudoers.d: directory
ubuntu | CHANGED | rc=0 >>
/etc/sudoers.d: directory
fedora | CHANGED | rc=0 >>
/etc/sudoers.d: directory
debian | CHANGED | rc=0 >>
/etc/sudoers.d: directory

If the directory is not present, the output will look like this:
vagrant3 | FAILED | rc=1 >>
/etc/sudoers.d: ERROR: cannot open `/etc/sudoers.d' (No such file or
directory)
vagrant2 | FAILED | rc=1 >>
/etc/sudoers.d: ERROR: cannot open `/etc/sudoers.d' (No such file or
directory)
vagrant1 | FAILED | rc=1 >>
/etc/sudoers.d: ERROR: cannot open `/etc/sudoers.d" (No such file or
directory)

If the directory is present, create a template file that looks like Example 20-5.

Example 20-5. templates/disable-requiretty.j2

Defaults:{{ ansible_user }} !requiretty

Then run the playbook shown in Example 20-6, replacing vagrant with your hosts.
Don’t forget to disable pipelining before you do, or the it will fail with an error.

Example 20-6. disable-requiretty.yml

- name: Do not require tty for ssh-ing user
 hosts: vagrant

362 | Chapter 20: Making Ansible Go Even Faster

 become: true

 tasks:
 - name: Set a sudoers file to disable tty
 template:
 src: disable-requiretty.j2
 dest: /etc/sudoers.d/disable-requiretty
 owner: root
 group: root
 mode: '0440'
 validate: 'bash -c "cat /etc/sudoers /etc/sudoers.d/* %s | visudo -cf-"'
...

Validating Files
The copy and template modules support a validate clause. This clause lets you
specify a program to run against the file that Ansible will generate. Use %s as a
placeholder for the filename. For example:

validate: 'bash -c "cat /etc/sudoers /etc/sudoers.d/* %s|visudo -cf-"'

When the validate clause is present, Ansible will copy the file to a temporary direc‐
tory first and then run the specified validation program. If the validation program
returns success (0), Ansible will copy the file from the temporary location to the
proper destination. If the validation program returns a nonzero return code, Ansible
will return an error that looks like this:

SSH | 367
failed: [myhost] ==> {"checksum": "ac32f572f0a670c3579ac2864cc3069ee8a19588",
"failed": true}
msg: failed to validate: rc:1 error:
FATAL: all hosts have already failed -- aborting

Since bad sudoers files on a host can prevent us from accessing the host as root,
it’s always a good idea to validate the combination of the sudoers file, and the files
(aka sudo snippets) you create in /etc/sudoers.d by using the visudo program. For
a cautionary tale about invalid sudoers files, see Ansible contributor Jan-Piet Mens’s
blog post “Don’t Try This at the Office: /etc/sudoers”.

Mitogen for Ansible
Mitogen is a third-party Python library for writing distributed self-replicating pro‐
grams. Mitogen for Ansible is a completely redesigned UNIX connection layer and
module runtime for Ansible. Requiring minimal configuration changes, it updates
Ansible’s slow and wasteful shell-centric implementation with pure-Python equiva‐
lents, invoked via highly efficient remote procedure calls to persistent interpreters
tunnelled over SSH.

Mitogen for Ansible | 363

https://oreil.ly/B9H0n
https://oreil.ly/t6TcY

Please note that at the time of writing Mitogen only supports Ansible 2.9; later
versions are not supported yet. No changes are required to target hosts, but on the
Ansible controller you will need to install Mitogen with:

$ pip3 install --user mitogen

To configure Mitogen as a strategy plug-in in ansible.cfg:
[defaults]
strategy_plugins = /path/to/strategy
strategy = mitogen_linear

Fact Caching
Facts about your servers contain all kinds of variables that can be useful in your
playbook. These facts are gathered at the beginning of a playbook, but this gathering
takes time, so it is a candidate for tuning. One option is to create a local cache with
this data; another option is not to gather the facts.

If your play doesn’t reference any Ansible facts, you can turn off fact gathering for
that play. You can disable fact gathering with the gather_facts clause in a play; for
example:

- name: An example play that doesn't need facts
 hosts: myhosts
 gather_facts: false
 tasks:
 # tasks go here:

You can disable fact gathering by default by adding the following to your ansible.cfg
file:

[defaults]
gathering = explicit

If you write plays that do reference facts, you can use fact caching so that Ansible
gathers facts for a host only once—even if you rerun the playbook or run a different
playbook that connects to the same host.

If fact caching is enabled, Ansible will store facts in a cache the first time it connects
to hosts. For later playbook runs, Ansible will look up the facts in the cache instead of
fetching them from the remote host, until the cache expires.

Example 20-7 shows the lines you must add to your ansible.cfg file to enable fact
caching. The fact_caching_timeout value is in seconds, and the example uses a
24-hour (86,400-second) timeout.

364 | Chapter 20: Making Ansible Go Even Faster

As with all caching-based solutions, there’s always the danger of
the cached data becoming stale. Some facts, such as the CPU archi‐
tecture (stored in the ansible_architecture fact), are unlikely to
change often. Others, such as the date and time reported by the
machine (stored in the ansible_date_time fact), are guaranteed to
change often.
If you decide to enable fact caching, make sure you know how
quickly the facts used in your playbook are likely to change, and set
an appropriate fact-caching timeout value. If you want to clear the
fact cache before running a playbook, pass the --flush-cache flag
to ansible-playbook.

Example 20-7. Enable fact caching in ansible.cfg

[defaults]
gathering = smart# 24-hour timeout, adjust if needed
fact_caching_timeout = 86400
You must specify a fact caching implementation
fact_caching = ...

Setting the gathering configuration option to smart in ansible.cfg tells Ansible to use
smart gathering. This means that Ansible will gather facts only if they are not present
in the cache or if the cache has expired. The caching mechanism is plug-in based, and
a list of available plug-ins can be retrieved with:

$ ansible-doc -t cache -l

If you want to use fact caching, make sure your playbooks do not
explicitly specify gather_facts: true or gather_facts: false.
With smart gathering enabled in the configuration file, Ansible will
gather facts only if they are not present in the cache.

You must explicitly specify a fact_caching implementation in ansible.cfg, or Ansible
will not cache facts between playbook runs. As of this writing, there are three types of
fact_caching implementations:

• File-based: JSON, YAML, Pickle•
• RAM backed, nonpersistant: memory•
• NoSQL: Redis, Memcached, MongoDB•

Redis is the most-used implementation of fact caching.

Fact Caching | 365

JSON File Fact-Caching Backend
With the JSON file fact-caching backend, Ansible will write the facts it gathers to files
on your control machine. If the files are present on your system, it will use those files
instead of connecting to the host and gathering facts.

To enable the JSON file fact-caching backend, add the settings in Example 20-8 to
your ansible.cfg file.

Example 20-8. ansible.cfg with JSON fact caching

[defaults]
gathering = smart
24-hour timeout, adjust if needed
fact_caching_timeout = 86400
JSON file implementation
fact_caching = jsonfile
fact_caching_connection = /tmp/ansible_fact_cache

Use the fact_caching_connection configuration option to specify a directory where
Ansible should write the JSON files that contain the facts. If the directory does not
exist, Ansible will create it.

Ansible uses the file modification time to determine whether the fact-caching timeout
has occurred yet. Using a JSON file is the easiest option for fact caching, but it is
limited in multi-user/multi-controller scenarios, because of file permissions and/or
file locations.

Redis Fact-Caching Backend
Redis is a popular key-value data store that is often used as a cache. It is especially
useful when you scale to multiple machines. To enable fact caching by using the Redis
backend, you need to do the following:

1. Install Redis on your control machine.1.
2. Ensure that the Redis service is running on the control machine.2.
3. Install the Python Redis package.3.
4. Modify ansible.cfg to enable fact caching with Redis.4.

Example 20-9 shows how to configure ansible.cfg to use Redis as the cache backend.

Example 20-9. ansible.cfg with Redis fact caching

[defaults]
gathering = smart
24-hour timeout, adjust if needed

366 | Chapter 20: Making Ansible Go Even Faster

3 You may need to sudo or activate a virtualenv, depending on how you installed Ansible on your control
machine.

fact_caching_timeout = 86400

fact_caching = redis

Ansible needs the Python Redis package on the control machine, which you can
install using pip:3

$ pip install redis

You must also install Redis and ensure that it is running on your control machine.
If you are using macOS, you can install Redis by using Homebrew. If you are using
Linux, install Redis by using your native package manager.

Memcached Fact-Caching Backend
Memcached is another popular key-value data store that is often used as a cache
due to its simplicity and low resource usage. To enable fact caching by using the
Memcached backend, you need to do the following:

1. Install Memcached on your control machine.1.
2. Ensure that the Memcached service is running on the control machine.2.
3. Install the Python Memcached package.3.
4. Modify ansible.cfg to enable fact caching with Memcached.4.

Example 20-10 shows how to configure ansible.cfg to use Memcached as the cache
backend.

Example 20-10. ansible.cfg with Memcached fact caching

[defaults]
gathering = smart# 24-hour timeout, adjust if needed
fact_caching_timeout = 86400
fact_caching = memcached

Ansible needs the Python Memcached package on the control machine, which you
can install using pip. You might need to sudo or activate a virtualenv, depending on
how you installed Ansible on your control machine.

$ pip install python-memcached

You must also install Memcached and ensure that it is running on your control
machine. If you are using macOS, you can install Memcached by using Homebrew. If
you are using Linux, install Memcached by using your native package manager.

Fact Caching | 367

For more information on fact caching, check out the official documentation.

Parallelism
For each task, Ansible will connect to the hosts in parallel to execute the tasks. But
Ansible doesn’t necessarily connect to all of the hosts in parallel. Instead, the level
of parallelism is controlled by a parameter, which defaults to 5. You can change this
default parameter in one of two ways.

You can set the ANSIBLE_FORKS environment variable, as shown in Example 20-11.

Example 20-11. Setting ANSIBLE_FORKS

$ export ANSIBLE_FORKS=8
$ ansible-playbook playbook.yml

You also can modify the Ansible configuration file (ansible.cfg) by setting a forks
option in the defaults section, as shown in Example 20-12. Bas expects a relation
between the number of cores on your Ansible controller and the optimal number of
forks: if you set the number too high, the context switches cost you performance. I set
the number to 8 on my machine. There is also a relation to the memory in the control
node. The more forks you use, the more memory the controlling process needs to
keep track of the current running tasks. In production environments a number of 25
or 50 is a rather common value, of course depending on the total number of hosts.

Example 20-12. Configuring number of forks in ansible.cfg

[defaults]
forks = 8

Concurrent Tasks with Async
Ansible introduced support for asynchronous actions with the async clause to work
around the problem of connection timeouts. If the execution time for a task exceeds
that timeout, Ansible will lose its connection to the host and report an error. Marking
a long-running task with the async clause eliminates the risk of a connection timeout.

However, asynchronous actions can also be used for a different purpose: to start a
second task before the first task has completed. This can be useful if you have two
tasks that both take a long time to execute and are independent (that is, you don’t
need the first to complete to execute the second).

Example 20-13 shows a list of tasks that use the async clause to clone a large Git
repository. Because the task is marked as async, Ansible will not wait until the Git
clone is complete before it begins to install the operating system packages.

368 | Chapter 20: Making Ansible Go Even Faster

Example 20-13. Using async to overlap tasks

- name: Install git
 become: true
 apt:
 name: git
 update_cache: true

- name: Clone Linus's git repo
 git:
 repo: git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
 dest: /home/vagrant/linux

 async: 3600

 poll: 0

 register: linux_clone

- name: Install several packages
 apt:
 name:
 - apt-transport-https
 - ca-certificates
 - linux-image-extra-virtual
 - software-properties-common
 - python-pip
 become: true

- name: Wait for linux clone to complete

 async_status:

 jid: "{{ linux_clone.ansible_job_id }}"
 register: result

 until: result.finished
 retries: 3600

We specify that this is an async task that should take less than 3,600 seconds. If
the execution time exceeds this value, Ansible will automatically stop the process
associated with the task.

We specify a poll argument of 0 to tell Ansible that it should immediately move
on to the next task after it spawns this task asynchronously. If we had specified
a nonzero value instead, Ansible would not move on to the next task. Instead,
it would periodically poll the status of the async task to check whether it was
complete, sleeping between checks for the amount of time in seconds specified by
the poll argument.

When we run async, we must use the register clause to capture the async
result. The result object has an ansible_job_id value that we will use later to
poll for the job status.

We use the async_status module to poll for the status of the async job we
started earlier.

Concurrent Tasks with Async | 369

We must specify a jid value that identifies the async job.

The async_status module polls only a single time. We need to specify an until
clause so that it will keep polling until the job completes, or until we exhaust the
specified number of retries.

Conclusion
You should now know how to configure SSH, pipelining, fact caching, parallelism,
and async in order to get your playbooks to run more quickly. Next, we’ll discuss
networking and security with Ansible.

370 | Chapter 20: Making Ansible Go Even Faster

CHAPTER 21

Networking and Security

Network Management
Managing and configuring network devices always makes us feel nostalgic. Log in to
a console by telnet, type some commands, save the configuration to startup config,
and you’re done. For a long time, we had two types of management strategies for
network devices:

• Buy an expensive proprietary software that configures your devices.•
• Develop minimal tooling around your configuration files: back up your configs•

locally, make some changes by editing them, and copy the result back onto the
devices through the console.

We have seen some movement in this space. The first thing we noticed was that
network device vendors started to create or open their APIs for everyone. The second
thing is that the Ansible community did not stop going lower down the stack, to
the core: hardware servers, load-balancer appliances, firewall appliances, network
devices, and even routers and specialized appliances. Red Hat coordinated Ansible
for Network Automation in release 2.5 of Ansible. Between the 2.5 and 2.9 versions
of Ansible, the focus was on network modules. For maintainability reasons, this idea
has since been abandoned in favor of collections, and networking is maybe the best
evidence that it was a good decision to follow up on JP Mens’s blog post by focusing
on ansible-core with the Ansible team, as well as to delegate certified content cre‐
ation to Red Hat partners and the rest to the community. Network vendors jumped
on the bandwagon, perhaps because they can publish such content autonomously.

371

https://oreil.ly/MW1Ie
https://oreil.ly/DizNw

Supported Vendors
The first question you’ll ask is, “Is my preferred vendor or network operating system
supported?” The list of vendor collections is long and too dynamic to print, but you
can find it here. The Community namespace has a lot of content that was developed
independently of vendors. In addition, ansible.netcommon offers abstractions that
can be used with different vendors, which also means that coordination and design
have been applied (nice to have). Collections include, but are not limited to, these
brands:

• Arista•
• Checkpoint•
• Cisco ACI•
• Cisco Meraki•
• Cyberark•
• F5 Networks•
• Fortinet•
• IBM•
• Infoblox•
• Juniper•
• Vyos•

Some of these vendors offer virtual appliances that you can download for use with
Vagrant. The Vagrantfile for this chapter in the sample code includes junos, nxosv,
and vyos.

Use network automation modules explicitly from installed collec‐
tions. You should also make sure to use the fully qualified col‐
lection namespace when using modules, not the short names
of the modules bundled with Ansible. When inspecting task
files or playbooks, look for the modules to have dots, as in
cisco.iosxr.iosxr_l2_interfaces.

Ansible Connection for Network Automation
You can manage network devices using Ansible, but there are some differences
compared to managing machines running Windows, macOS, or Linux. Linux systems
are universally managed over an SSH connection, and Windows machines can be
managed over a WinRM connection. Other connections that we have used so far

372 | Chapter 21: Networking and Security

https://oreil.ly/CEHsD
https://oreil.ly/AsBf2
https://oreil.ly/sLvpl
https://oreil.ly/TNOAT
https://oreil.ly/gExAe
https://oreil.ly/vMQse
https://oreil.ly/GcDFd
https://oreil.ly/R1sDM
https://oreil.ly/fiiWQ
https://oreil.ly/yCcpH
https://oreil.ly/Js4de
https://oreil.ly/MnTbI

are local, docker, and raw. Using REST with the uri module doesn’t count as an
ansible_connection because we cannot use other modules over that “connection.”

Since network appliances don’t run Python, network automation needed another
paradigm. Network automation runs on the control node and talks to the APIs of the
network devices. A playbook for network automation typically has this in the header:

 hosts: localhost

The ansible_connection from the control node to the device depends on the
platform and the purpose of the modules you use. The transport protocol can be SSH
or HTTP/HTTPS. HTTPS connections are typically used for REST APIs, while SSH
can be used for CLI use, like the command and shell modules in “normal” Ansible.
XML over SSH is unique for network configuration (netconf). You’ll need to install
the Python library ncclient to use it.

Privileged Mode
Several network devices support a separation between normal user mode and a
privileged mode for critical tasks with ansible_become: true. You should note that
this does not use the sudo method that we know in Linux. Instead, the method is
called enable. We like to use become at the beginning of a task, right under the name,
for ease of auditing.

You can configure the Ansible connection for each type of device with a couple of
parameters. The vars block in the inventory is a natural choice to register these
parameters. Aside from the protocol for the connection, Ansible needs to know
the operating system of the network device, as shown in the inventory INI file in
Example 21-1.

Example 21-1. playbooks/inventory/hosts

[arista:vars]
https://galaxy.ansible.com/arista/eos
ansible_connection=ansible.netcommon.httpapi
ansible_network_os=arista.eos.eos
ansible_become_method=enable

[cisco:vars]
https://galaxy.ansible.com/cisco/ios
ansible_connection=ansible.netcommon.network_cli
ansible_network_os=cisco.ios.ios
ansible_become_method=enable

[junos:vars]
https://galaxy.ansible.com/junipernetworks/junos
ansible_connection=ansible.netcommon.netconf
ansible_network_os=junipernetworks.junos.junos
ansible_become_method=enable

Network Management | 373

Network Inventory
While we favor the simplicity of the INI format for inventory files and dynamic
inventories for cloud and Vagrant, the YAML format is better suited for inventories
of large network topologies with a hierarchy (Example 21-2). A best practice in
modeling is answering the basic questions: What is it? Where is it? Who owns it? And
when will it go through development, test, pilot, staging, and production?

Example 21-2. YAML inventory

backbone:
 hosts:
 rt_dc1_noc_p:
 ansible_host: 10.31.1.1
 vars:
 ansible_connection: ansible.netcommon.network_cli
 ansible_network_os: cisco.ios.ios
 ansible_become_method: enable

perimeter:
 hosts:
 proxy_dc1_soc_p:
 ansible_host: 10.31.2.1
 vars:
 ansible_become_method: sudo

network:
 children:
 backbone:
 perimeter:

You can view the inventory as a graph, to assess it, with this command:
ansible-inventory -i inventory/hosts.yml --graph

Network Automation Use Cases
The theory that you could carefully create network drawings to design an infrastruc‐
ture for corporate IT that lasts has been falsified in recent decades by general entropy:
think of IT developments, disruptive competition, global crises, and market volatility,
to name a few adversaries of stability. Organizations need to adapt to changing
conditions, and that implies change—continuous change—and agility.

The idea that multifunctional teams can work autonomously to serve business goals,
leveraged by cloud-native technology purchased in distributed ways, worries the
network operations centers and security operations centers (to put it mildly).

Ansible can examine the state of all appliances and hosts at scale to gather the facts
you need for configuration management and situational awareness. It can configure
devices, automate updates, and test whether things run as expected. In general,

374 | Chapter 21: Networking and Security

1 Bas committed a bit for CIS and DISA-STIG compliance.
2 Ken Thompson, “Reflections on Trusting Trust”, Communications of the ACM 27, no. 8 (August 1984).

Ansible Network Automation is a great step forward over configuring devices by
hand.

Security
Every organization has different security requirements. There are several security
baselines such as CIS, DISA-STIG, PCI, HIPAA, NIST, and FedRAMP for different
industries in the United States, including payment cards, health care, the federal gov‐
ernment, and defense contractors. In Europe, national institutes like BSI Germany,
BSI UK, and NCSC publish recommendations to help secure computers and their
connections. If your government does not require a security standard, you can look at
the examples provided by software foundations like Mozilla.

Even before Red Hat bought Ansible, Inc., there was an opportunity to assure
compliance with particular security baselines. In 2015, Ansible, Inc., assigned coor‐
dination of the open source ansible-lockdown project to the security company
MindPointGroup.1 A lot has happened since. This content has partially moved from
PDF documents and spreadsheets to playbooks. One area where Ansible is gaining
ground is security automation.

For hardening systems like network devices, clusters, and hosts, using Ansible seems
like an excellent idea. Separation of concerns is a principle of control theory, so
in practice you would seek a scanning tool to assess the results of the hardening
playbooks based on the security profile of your choice.

The Center for Internet Security maintains cybersecurity benchmarks for a wide
variety of operating systems and middleware, which explain configurations in detail.
Security scanners are available commercially. OpenSCAP publishes a security guide
for free that allows you to select a profile suitable for your industry to scan RHEL
systems for compliance in great detail. Did you know you can even generate an Ansi‐
ble playbook backed by Red Hat to remediate divergence? (How cool is that!) There
are other hardening projects by independent developers on GitHub, for instance the
DevSec Project from Germany.

Comply with Compliance?
Yet even with these tools at your fingertips, Thompson’s question remains:2 Whom do
you trust? Drill down and you find more questions within that one: Do you trust an
Ansible hardening playbook more than a vendor’s scanning results? Is compliance the
same as security? Do national standards restrict cryptography in your country? How

Security | 375

https://oreil.ly/mAxJw
https://oreil.ly/EgDNP
https://oreil.ly/f52cw
https://oreil.ly/4oGAp
https://oreil.ly/UQ3f0
https://oreil.ly/eM8aP
https://oreil.ly/CVYED
https://oreil.ly/mq03N
https://www.fedramp.gov
https://oreil.ly/jyRtY
https://oreil.ly/RNXOj
https://oreil.ly/pBdtI
https://oreil.ly/vzWsX
https://oreil.ly/0lzC8
https://oreil.ly/l4EiB
https://oreil.ly/3oMj6
https://dev-sec.io/project
https://oreil.ly/68zJp

are your security decisions affected by surveillance, intrusion detection, malware
detection, intellectual property, civil rights, employment law, unions, and politics?
Are cybersecurity concerns getting in the way of your organization reaching its goals?
How private are dialogs, anyway?

In modern IT architectures, several factors affect the use of the internet and cryptog‐
raphy. SSL inspection is common in web proxy servers to avoid malware infection in
PCs. SSL inspection allows IT administrators to see, and intervene in, website traffic
from web browsers in the company. To avoid legal implications, these proxy servers
support using lists of trusted and distrusted site categories. Web proxy servers can
limit the internet use of employees with good intentions, but there can be security
issues with software as well. Either way, proxy inspection can help avoid viruses and
ransomware, but it can also block development and innovation.

It is also a good practice to create a software library proxy to streamline the supply
chain for programmers. Chapter 23 will create an example of such a proxy with
Sonatype Nexus. The web traffic of both business users and IT staff should be subject
to a policy that eradicates the use of covert channels.

Secured, but Not Secure
The sample code for this chapter creates a Vagrant box named ansiblebook/Bastion
that is hardened to comply on the Operating System Protection Profile (OSPP) for
RHEL 8.

This configuration profile is consistent with CNSSI-1253, which requires US National
Security Systems to adhere to certain configuration parameters. Accordingly, this
configuration profile is suitable for use in US National Security Systems.

For these purposes, it should be secured, right? Of course!

The ansible_role_ssh in the sample code can enforce a (custom) system-wide
crypto-policy. The ansible_role_ansible installs Python, Python requirements,
Ansible, collections, and roles onto this hardened operating system. It deals with
the restrictions of volume mount options, SELinux, and fapolicyd.

We published these two roles separately on GitHub so you can use them in other
playbooks:

• ansible_role_ssh•
• ansible_role_ansible•

In the kickstart configuration (Example 21-3), the org_fedora_oscap add-on uses
ospp as a profile. OSPP is based on the crypto policy FIPS. The FIPS:OSPP crypto
policy restricts the set of algorithms even further than FIPS does. At the moment

376 | Chapter 21: Networking and Security

https://oreil.ly/kC4cN
https://oreil.ly/BXdzQ
https://oreil.ly/BXdzQ
https://oreil.ly/ajtGQ
https://oreil.ly/H3Ha6
https://oreil.ly/c9XmX

FIPS excludes some cryptographic algorithms and US government agencies mandate
the use of a particular set of algorithms evaluated by NIST.

Example 21-3. packer-playbook.yml

- name: Provisioner
 hosts: all
 become: true
 gather_facts: true
 vars:
 crypto_policy: FIPS:OSPP
 intended_user: vagrant
 home_dir: "/home/{{ intended_user }}"
 pre_tasks:
 - name: Generate 4096 bits RSA key pair for SSH
 user:
 name: "{{ intended_user }}"
 generate_ssh_key: true
 ssh_key_bits: 4096

 - name: Fetch ssh keys
 fetch:
 flat: true
 src: "{{ home_dir }}/.ssh/{{ item }}"
 dest: files/
 mode: '0600'
 loop:
 - id_rsa
 - id_rsa.pub

 - name: Install authorized_keys from generated file
 authorized_key:
 user: "{{ intended_user }}"
 state: present
 key: "{{ lookup('file','files/id_rsa.pub') }}"
 exclusive: false

 - name: Fix auditd max_log_file_action
 lineinfile:
 path: /etc/audit/auditd.conf
 regexp: '^max_log_file_action'
 line: max_log_file_action = rotate
 state: present
 roles:
 - ansible_book_ssh
 - ansible_book_ansible

The ansiblebook/Bastion box was provisioned with Packer, creating a larger-than-
default key pair for Vagrant. You can launch it with Vagrant after downloading this
4096-bit RSA key; name it like in the Vagrantfile:

config.ssh.private_key_path = "./playbooks/files/id_rsa"

Security | 377

https://oreil.ly/HTiwq

The Ansible playbook in Example 21-4 will run a security audit and create a report in
your Downloads folder.

Example 21-4. vagrant-playbook.yml

- name: Security Audit
 hosts: bastion
 become: true
 gather_facts: true
 tasks:
 - name: 'Run the audit and create a report.'
 command:
 oscap xccdf eval \
 --report /tmp/report.html
 --profile ospp
 /usr/share/xml/scap/ssg/content/ssg-rhel8-ds.xml
 no_log: true
 ignore_errors: true

 - name: 'Fetch the report.'
 fetch:
 flat: true
 src: /tmp/report.html
 dest: "~/Downloads/ospp.html"
...

You’ll notice that the machine passes 198 of the 200 security tests, rather good! It is
hardened.

However, if you run ssh-audit on this “hardened” system you’ll see lots of weak‐
nesses:

key exchange algorithms
(kex) ecdh-sha2-nistp256 -- [fail] using weak elliptic curves
(kex) ecdh-sha2-nistp384 -- [fail] using weak elliptic curves
(kex) ecdh-sha2-nistp521 -- [fail] using weak elliptic curves
host-key algorithms
(key) ecdsa-sha2-nistp256 -- [fail] using weak elliptic curves
 `- [warn] using weak random number generator could
 reveal the key
encryption algorithms (ciphers)
(enc) aes256-cbc -- [fail] removed (in server) since OpenSSH 6.7,
unsafe algorithm
 `- [warn] using weak cipher mode
(enc) aes128-cbc -- [fail] removed (in server) since OpenSSH 6.7,
unsafe algorithm
 `- [warn] using weak cipher mode
message authentication code algorithms
(mac) hmac-sha2-256 -- [warn] using encrypt-and-MAC mode
(mac) hmac-sha2-512 -- [warn] using encrypt-and-MAC mode
algorithm recommendations (for OpenSSH 8.0)
(rec) -aes128-cbc -- enc algorithm to remove
(rec) -aes256-cbc -- enc algorithm to remove

378 | Chapter 21: Networking and Security

https://oreil.ly/gepyo

3 Kelly Shortridge has written an eloquent blog post about such security obstructionism.

(rec) -ecdh-sha2-nistp256 -- kex algorithm to remove
(rec) -ecdh-sha2-nistp384 -- kex algorithm to remove
(rec) -ecdh-sha2-nistp521 -- kex algorithm to remove
(rec) -ecdsa-sha2-nistp256 -- key algorithm to remove
(rec) -hmac-sha2-256 -- mac algorithm to remove
(rec) -hmac-sha2-512 -- mac algorithm to remove

Similar weaknesses can be found in the default setup of OpenSSH 8, and in the
recommendations by states favoring surveillance over system security. You can use
the SSH role with the default crypto_policy: STRICT to use the ed25519 curves.
This is faster as well as safe, as the research of the Technische Universiteit Eindhoven
has proven. The use of ed25519 curves is proposed for an updated version of FIPS,
but the FIPS 186-5 document still has a “draft” status. The STRICT crypto policy
passes ssh-audit. Note that you can only have a system that is compliant to a security
baseline with weak crypto.

The emergence of quantum computers can have major implications for organizations
that process sensitive information. The consequences are serious: data encrypted
with popular cryptographic algorithms may already have been intercepted, awaiting
decryption with a future quantum computer. OpenSSH changed in release 9; it now
uses the NTRU algorithm and X25519 ECDH key exchange by default to prevent
that.

Shadow IT
Is your device secured or secure? Are your security controls effective? Do the restric‐
tions enforce the policy, or can you go around them? How about all the other devices
in your company? Has your IT department secured the network infrastructure, the
servers, data access, and your desktops so stringently that you find yourself emailing
files to your personal address just to get useful work done? Are you reaching for
other alternatives? Corporate governance can grind innovation initiatives to a halt
with its approval processes, definitions of “done,” and risk and compliance audits,
not to mention technical security controls like end-point protection, SSL inspection,
and air-gapped environments.3 Employees either waste paid time jumping through all
these hoops, or they create shadow IT.

Shadow IT involves any computing resources that are not procured or delivered
under corporate governance. It includes private laptops, old PCs hidden under the
desks, personal cloud subscriptions, personal servers, and so on. To leapfrog the
competition, some corporations even create a greenfield company to avoid dealing
with all the red tape accumulated over decades. If the central IT organization delivers

Security | 379

https://oreil.ly/NCrp9
https://oreil.ly/Tz9u0
https://oreil.ly/Tz9u0
https://oreil.ly/lZgN1

4 John Kindervag, “The Hallmark of Zero Trust Is Simplicity”, Wall Street Journal, April 15, 2021.

systems that don’t meet developers’ expectations, the developers will create their own
systems.

Sunshine IT
Modern software is best created by autonomous teams, enabled by platforms that
don’t hinder productivity across departments, regions, and most of all, the corporate
firewall. These software teams have, to coin a phrase, intelligence autonomy; that is,
they have access to any information, API, AI, SaaS, IaaS, PaaS, source code, library,
or tool they need to get the job done. They can organize their own work and
communicate in strict privacy. If you think about it, strategically, this is a competitive
advantage. It might disrupt your position if you work in central IT, but fear not!

Sunshine IT is all about collaboration and enabling teams to shine by creating a
common platform for them, centered around internet-facing APIs, self-service infra‐
structure, and secure collaboration. Next to the business-specific applications, an
enabling technology stack relieves teams’ burdens with elements like:

• Software-defined infrastructure: application centric/cloud-based•
• Platform services: CI/CD as a service, container platforms•
• Integration platform: API managers/event streaming/messaging•
• Technology monitoring•

So instead of autonomous development teams, sunshine IT is about collaboration
between teams in an organization where some core elements can reinforce the auton‐
omous teams.

Zero Trust
The idea of zero trust, a trending term coined by security expert John Kindervag,
holds that the traditional “fortress” model of security operates on an outdated
assumption: that everything inside an organization’s network should be implicitly
trusted, with bastions and firewalls to secure the perimeter. This implicit trust means
a lack of granular security controls, so that once on the network, users—including
threat actors and malicious insiders—are free to move laterally and access or exfil‐
trate sensitive data. This model no longer works in an age of cloud and container
technologies. Salespeople will offer you identity management, explicit verification,
automation, least privilege, and other buzzwords to try to sell more. Just point them
to this quote from Kindervag:4

380 | Chapter 21: Networking and Security

https://oreil.ly/41KGi

The hallmark of zero trust is simplicity. When every user, packet, network interface,
and device is untrusted, protecting assets becomes simple. To reduce the complexity
of cybersecurity environments, organizations can prioritize security technologies and
tools that support simplicity by automating repetitive and manual tasks, integrating,
and managing multiple security tools and systems, and auto remediating known
vulnerabilities.

There is a new generation of network security software that can be managed with
simple apps. They allow administrators to create groups of trusted users whose
systems can connect over untrusted networks. These offer fine-grained user control
and cross-platform encryption.

Conclusion
To learn more about network automation with Ansible, see Network Getting Started
and Network Advanced Topics. If you’d like to experiment, install the roles and
collections from Example 15-1. See the Mozilla Foundation’s advice site to learn
more.

Security automation is an Ansible use case that could fill another book, so it’s fortu‐
nate that Ansible has published a guide: Security Automation. Continuing on the
theme of automation, the next chapter will look at CI/CD and Ansible.

Conclusion | 381

https://oreil.ly/JLMz6
https://oreil.ly/1NvKm
https://oreil.ly/ViJ3a
https://oreil.ly/JF7g6

CHAPTER 22

CI/CD and Ansible

Roles are the basic components used to compose infrastructure as code (IaC) with
Ansible. Treating systems administration as software engineering and applying soft‐
ware development practices to IaC is one of the foundations of Agile operations. You
can decrease errors, increase productivity, and achieve more successful changes and
less downtime by staging these changes in software environments and automating
the verification of changes. By assessing code quality and automated tests in isolated
environments, you can eliminate errors before their blast radius gets too large.

This chapter describes how to set up the core of a continuous integration and contin‐
uous delivery (CI/CD) environment for software teams, consisting of a central reposi‐
tory proxy for binaries and libraries, a source control system, a code quality tool, and
a continuous integration server. The example code provisions four virtual machines
with Sonatype Nexus3, Gitea, SonarQube, and Jenkins. Jenkins can use Ansible ad
hoc commands and Ansible playbooks via the Ansible plug-in. The Ansible Tower
plug-in for Jenkins can access Ansible Automation Platform (still affectionally known
as Tower) to request various things like starting job templates.

Continuous Integration
In 2006, Martin Fowler published an influential article on Continuous Integration, a
successful practice in software development, describing it as follows:

a software development practice where members of a team integrate their work fre‐
quently, usually each person integrates at least daily—leading to multiple integrations
per day. Each integration is verified by an automated build (including test) to detect
integration errors as quickly as possible. Many teams find that this approach leads
to significantly reduced integration problems and allows a team to develop cohesive
software more rapidly.

383

https://oreil.ly/AO3QV

These practices are often called for when development teams want to deliver software
in a reliably repeatable way. As Fowler put it: “Anyone should be able to bring in a
virgin machine, check the sources out of the repository, issue a single command, and
have a running system on their machine.”

Nowadays there are even bigger challenges: most modern systems are more complex,
they often need more than one machine to run, and their infrastructure, configura‐
tion management, system operations, security, and compliance are often in code as
well.

Developers store all of that code in version control and run various tasks on integra‐
tion machines, so we can test it and store it safely in a repository to deploy it when
we’re ready to go live. Put simply, we want to automate that.

Elements in a CI System
Storing everything your system requires in a version control system (VCS) is a
precondition for CI. There are two kinds of VCS: those for text-based data, such as
source code of any kind, and artifact repositories for binary data, such as software
packages of any kind.

Artifact repository
JFrog Artifactory and Sonatype Nexus are the most popular artifact repositories.
The sample code that accompanies this book deploys Nexus as a proxy for Python
libraries. Nexus is a Java program, and the playbook to deploy it can be as simple as
this:

#!/usr/bin/env ansible-playbook

- name: Artefact Repository
 hosts: nexus
 become: true
 roles:

 - role: java
 tags: java
 - role: nexus
 tags: nexus

We have an inventory with a group named nexus with a named server in it. You can
create an inventory with four servers that you want to use for this project; it is reusa‐
ble. The roles are installed from Ansible Galaxy using the file roles/requirements.yml:

roles:
 - src: ansible-thoteam.nexus3-oss
 name: nexus
 - src: geerlingguy.java
 name: java

384 | Chapter 22: CI/CD and Ansible

Next we create group_vars/nexus. For this example we’ll set simple configuration
options, such as:

nexus_config_pypi: true
nexus_config_docker: true
nexus_admin_password: 'changeme'
nexus_anonymous_access: true
nexus_public_hostname: "{{ ansible_fqdn }}"
nexus_public_scheme: http
httpd_setup_enable: false

Nexus has many configuration options and is scriptable.

Gitea
For source-code versioning, Git is the most popular VCS choice nowadays, widely
implemented by global vendors and SaaS services. Well-known brands include Git‐
Hub, Atlassian’s BitBucket, and GitLab (which is open source). In corporate environ‐
ments it is typical to find BitBucket in use with other Atlassian tools, like Confluence
and Jira. GitHub and GitLab have enterprise offerings and compete on feature sets.
If you want to “roll your own Git,” a lightweight option to consider is Gitea, an open
source, self-hosted solution with a Github-like UI and a very accessible API.

Let’s create a group called git in our inventory and a playbook to deploy Gitea with
the database manager MySQL on the same host:

- name: Git Server
 hosts: git
 become: true
 collections:
 - community.mysql
 roles:
 - role: mysql
 tags: mysql
 - role: gitea
 tags: gitea

The collection and roles are installed from Ansible Galaxy using these entries in
roles/requirements.yml:

collections:
 - community.mysql
roles:
 - src: do1jlr.gitea
 name: gitea

 - src: do1jlr.mysql
 name: mysql

In group_vars/git there is configuration for the database and Gitea:
https://github.com/roles-ansible/ansible_role_gitea
gitea_db_host: '127.0.0.1:3306'

Continuous Integration | 385

https://github.com
https://github.com
https://bitbucket.org
https://gitlab.com

gitea_db_name: 'gitea'
gitea_db_type: 'mysql'
gitea_db_password: "YourOwnPasswordIsBetter"
gitea_require_signin: false
gitea_fqdn: "{{ ansible_fqdn }}"
gitea_http_listen: '0.0.0.0'
gitea_http_port: '3000'
https://github.com/roles-ansible/ansible_role_mysql
mysql_bind_address: '127.0.0.1'
mysql_root_password: '' # insecure
mysql_user_home: /home/vagrant
mysql_user_name: vagrant
mysql_user_password: vagrant
mysql_databases:
 - name: 'gitea'
mysql_users:
 - name: "{{ gitea_db_name }}"
 password: "{{ gitea_db_password }}"
 priv: "{{ gitea_db_name }}.*:ALL"
 state: present

This configuration is just the beginning of a Gitea install; it could evolve, in a more
mature setup.

Code quality
Developers need software quality control tools, and measuring technical debt and
identifying security hotspots both call for tooling too. SonarSource SonarQube is
open source software that can help. To install SonarQube, use this playbook:

 - name: Code Quality
 hosts: sonar
 become: true
 collections:
 - community.postgres
 roles:
 - role: utils
 - role: java
 - role: postgres
 tags: postgres
 - role: sonarqube

The collection and roles are installed from Ansible Galaxy using these entries in
roles/requirements.yml:

collections:
 - community.postgresql
roles:
 - src: dockpack.base_utils
 name: utils
 - src: geerlingguy.java
 name: java
 - src: lrk.sonarqube
 name: sonarqube

386 | Chapter 22: CI/CD and Ansible

 - src: robertdebock.postgres
 name: postgres

In group_vars/sonar there is configuration for the database and SonarQube, also
known as Sonar, as well as the required packages. Sonar can be extended with
plug-ins. There is a plug-in to run ansible-lint, which could be useful in software
projects that use Ansible along with source code in other languages. SonarQube is a
Java program, yet it supports many programming languages. It works well with the
Postgres database; however, to create users we had to install some extra packages to
build the database library Python needed. Here is what you’ll need, at minimum:

base_utils:
 - gcc
 - make
 - python36-devel
 - unzip
java_packages:
 - java-11-openjdk-devel

CI server
Depending on how your organization manages source code, you might want your
own build server to run automated tasks. GitHub has Actions and GitLab has Run‐
ners to run automated tasks in containers. Both options are available in the cloud as
well as on-premises, with different commercial plans. An alternative is to run your
own CI server, using, for instance, TeamCity, Atlassian Bamboo, or Jenkins.

Jenkins
Jenkins is the de facto standard CI server. It is a Java program and is highly customiz‐
able through plug-ins. There are several plug-ins to work with Git systems, including
Gitea, GitHub, and BitBucket. Ansible and Ansible Tower plug-ins are available as
well.

However, for system administrators, setting up Jenkins has long been a manual,
siloed process that involves installing dependencies, running and configuring the
Jenkins server, defining pipelines, and configuring jobs. Needless to say, that should
be automated as much as possible.

We have created a group jenkins in our inventory and a playbook to deploy Jenkins,
using roles written by Jeff Geerling (author of Ansible for DevOps and @geerlingguy
on Ansible Galaxy and GitHub):

- name: CI Server
 hosts: jenkins
 become: true
 roles:
 - role: epel
 tags: epel
 - role: utils

Continuous Integration | 387

 tags: utils
 - role: java
 - role: docker
 tags: docker
 - role: jenkins
 tags: jenkins
 - role: configuration
 tags: qa

Most roles are installed from Ansible Galaxy using these entries in roles/require‐
ments.yml:

roles:
 - src: dockpack.base_utils
 name: utils
 - src: geerlingguy.repo-epel
 name: epel
 - src: geerlingguy.docker
 name: docker
 - src: geerlingguy.java
 name: java
 - src: geerlingguy.jenkins
 name: jenkins
...

In group_vars/jenkins there is basic setup configuration, such as for plug-ins and a
few tools that you’ll need:

jenkins_plugins:
 - ansible
 - ansible-tower
 - ansicolor
 - configuration-as-code
 - docker
 - docker-build-step
 - docker-workflow
 - git
 - gitea
 - job-dsl
 - pipeline-build-step
 - pipeline-rest-api
 - pipeline-stage-view
 - sonar
 - timestamps
 - ws-cleanup
base_utils:
 - unzip
 - git
docker_users:
 - jenkins
 - vagrant

This code installs Docker and allows Jenkins to use it.

388 | Chapter 22: CI/CD and Ansible

Jenkins and Ansible
Installing the plug-ins for Ansible and Ansible Tower adds only the Java archives with
the .jpi filename extension; you’ll need to install Python and Ansible yourself. There
are many installation options, but for this example, let’s create a role for Jenkins and
test some roles using it.

Jenkins configuration as code
If you are convinced by the ideas of configuration management, then you’ll want
to configure Jenkins automatically. It has an API that is used in the geerlingguy.jen
kins role, with methods such as get_url and uri. Internally, Jenkins is configured
mostly by XML files. There are a few Ansible modules, as listed in Table 22-1.

Table 22-1. Ansible modules for configuring Jenkins

Module Purpose
jenkins_job Manage Jenkins jobs
jenkins_job_facts Get information about Jenkins jobs
jenkins_job_info Get information about Jenkins jobs
jenkins_plugin Add or remove the Jenkins plug-in
jenkins_script Executes a Groovy script in the Jenkins instance

Groovy is a JVM scripting language that Jenkins uses internally.

You can also use Jenkins from the command line, provided that you download the
Java jarfile from the API:

- name: Get Jenkins CLI for automation
 get_url:
 url: "http://127.0.0.1:8080/jnlpJars/jenkins-cli.jar"
 dest: /var/lib/jenkins/jenkins-cli.jar
 mode: '0755'
 timeout: 300
 retries: 3
 delay: 10

For a complex pluggable automation system like Jenkins, you should rather use a
minimal amount of Ansible, to have it manage itself. The plug-in configuration-as-
code (casc) uses a YAML file to configure different parts of the Jenkins setup.
Jenkins can install some tools itself given this YAML config file, which we install with
the template module as follows:

tool:
 ansibleInstallation:
 installations:
 - home: "/usr/local/bin"
 name: "ansible"
 git:

Continuous Integration | 389

 installations:
 - home: "git"
 name: "Default"
 jdk:
 installations:
 - properties:
 - installSource:
 installers:
 - jdkInstaller:
 acceptLicense: true
 id: "jdk-8u221-oth-JPR"
 maven:
 installations:
 - name: "Maven3"
 properties:
 - installSource:
 installers:
 - maven:
 id: "3.8.4"
 mavenGlobalConfig:
 globalSettingsProvider: "standard"
 settingsProvider: "standard"
 sonarRunnerInstallation:
 installations:
 - name: "SonarScanner"
 properties:
 - installSource:
 installers:
 - sonarRunnerInstaller:
 id: "4.6.2.2472"

Not all tools are supported. We installed Git with the utils role.

The great advantage of this method is that Jenkins will install these tools on demand,
on the build agents that need them. (Build agents are extra servers that you add when
there is more load.) Here is how to configure Jenkins with YAML files. Note that
Jenkins needs to be restarted with an extra Java property that tells it where to find
these files:

- name: Ensure casc_configs directory exists
 file:
 path: "{{ casc_configs }}"
 state: directory
 owner: jenkins
 group: root
 mode: '0750'

- name: Create Jenkins jobs configuration
 template:
 src: jenkins.yaml.j2
 dest: "{{ casc_configs }}/jenkins.yaml"
 owner: jenkins
 group: root
 mode: '0440'

390 | Chapter 22: CI/CD and Ansible

- name: Enable configuration as code
 lineinfile:
 dest: /etc/sysconfig/jenkins
 regexp: '^JENKINS_JAVA_OPTIONS='
 line:>-
 JENKINS_JAVA_OPTIONS="-Djava.awt.headless=true
 -Djenkins.install.runSetupWizard=false
 -Dcasc.jenkins.config={{ casc_configs }}"
 state: present
 mode: '0600'
 notify: Restart Jenkins

- name: Flush handlers
 meta: flush_handlers

- name: Wait for Jenkins
 wait_for:
 port: 8080
 state: started
 delay: 10
 timeout: 600

Install the YAML file in the directory /var/lib/jenkins/casc_configs and configure the
Java property -Dcasc.jenkins.config=/var/lib/jenkins/casc_configs. This tells
Jenkins to look there for configurations to apply.

Jenkins job configurations as code

You can implement an extra level of automation with the job-dsl plug-in. Here’s how
the Jenkins plug-in documentation describes it:

Jenkins is a wonderful system for managing builds, and people love using its UI to
configure jobs. Unfortunately, as the number of jobs grows, maintaining them becomes
tedious, and the paradigm of using a UI falls apart. Additionally, the common pattern
in this situation is to copy jobs to create new ones. But these “children” have a habit
of diverging from their original “template,” making it difficult to maintain consistency
between jobs.
The Job DSL plug-in attempts to solve this problem by allowing jobs to be defined
in a programmatic form in a human-readable file. You can write such a file without
being a Jenkins expert, fortunately, since the configuration from the web UI translates
intuitively into code.

In short, you generate Jenkins jobs based on a seed job. To configure Jenkins to do so,
you’ll add an extra block in the YAML casc template:

jobs:
 - file: /home/jenkins/jobs.groovy

Now you need a Groovy file to describe the jobs. As Ansible adepts, we grab for a
Jinja2 template, jobs.groovy.j2:

Continuous Integration | 391

https://oreil.ly/AXKGW
https://oreil.ly/QuJRE

{% for repo in git_repositories %}
pipelineJob('{{ repo }}') {
 triggers {
 scm ''
 }
 definition {
 cpsScm {
 scm {
 git {
 remote {
 url('https://{{ git_host }}/{{ git_path }}/{{ repo }}.git')
 }
 }
 }
 scriptPath('Jenkinsfile')
 }
 }
}
{% endfor %}

This template needs the following variables defined:
git_host: github.com
git_path: ansiblebook
git_repositories:
 - ansible_role_ssh
 - ansible_role_ansible
 - ansible_role_web

This jobs.groovy file is now installed. You can use the command module to activate
the jobs with jenkins-cli.jar, a Java command-line tool for Jenkins:

- name: Create Job DSL plugin seed job
 template:
 src: jobs.groovy.j2
 dest: /home/jenkins/jobs.groovy
 owner: jenkins
 mode: '0750'

- name: Activate jobs configuration with Jenkins CLI
 command: |
 java -jar jenkins-cli.jar \
 -s http://127.0.0.1:8080/ \
 -auth admin:{{ jenkins_admin_password }} \
 reload-jcasc-configuration
 changed_when: true
 args:
 chdir: /var/lib/jenkins

Running CI for Ansible Roles
Molecule (discussed in Chapter 14) is a great framework to use for quality assurance
of Ansible roles. To automate a Jenkins job, you’ll add a Groovy script to the root
directory for each source repository that we want to use Jenkins for. This script

392 | Chapter 22: CI/CD and Ansible

should be named Jenkinsfile. The Jenkinsfile in the example defines a Jenkins stage
for each Molecule stage that we want to use, with an informational stage up front:

pipeline {
 agent any
 options {
 disableConcurrentBuilds()
 ansiColor('vga')
 }
 triggers {
 pollSCM 'H/15 * * * *'
 cron 'H H * * *'
 }
 stages {
 stage ("Build Environment") {
 steps {
 sh '''
 source /usr/local/bin/activate
 python -V
 ansible --version
 molecule --version
 '''
 }
 }
 stage ("Syntax") {
 steps {
 sh '(source /usr/local/bin/activate && molecule syntax)'
 }
 }
 stage ("Linting") {
 steps {
 sh '(source /usr/local/bin/activate && molecule lint)'
 }
 }
 stage ("Playbook") {
 steps {
 sh '(source /usr/local/bin/activate && molecule converge)'
 }
 }
 stage ("Verification") {
 steps {
 sh '(source /usr/local/bin/activate && molecule verify)'
 }
 }
 stage ("Idempotency") {
 steps {
 sh '(source /usr/local/bin/activate && molecule idempotence)'
 }
 }
 }
}

Continuous Integration | 393

Defining these stages allows you to see your progress at a glance in Jenkins
(Figure 22-1).

Figure 22-1. Jenkins pipeline for Ansible role

Jenkinsfiles have many possibilities. This is just a simple example of a pipeline job
that maps well to Molecule’s stages, but it leaves other tasks unimplemented. The
Jenkins documentation has more information on pipelines.

Staging
Most organizations that develop software have a blueprint for staging. Staging means
running separate environments for different purposes in the life cycle of software.
You develop software on a virtual desktop, and the software is built on the dev
environment, tested on the test environment, and then deployed for “acceptance” and
eventually production. There are many ways to do this, but in general you’d like to
find problems as early as possible. It is a good practice to use network separation
and security controls like firewalls, access management, and redundancy. Figure 22-2
depicts such staging environments.

A basic setup quickly becomes a rather complex beast to manage, but Jenkins and
especially Jenkins agents that are confined to such environments can help automate
the staging process in a reasonably secure way.

394 | Chapter 22: CI/CD and Ansible

https://oreil.ly/YOtO4

Figure 22-2. Different staging environments

Ansible Plug-in
The Ansible Jenkins plug-in creates the user interface for a build step in a Jenkins job.
If you would like to use a pipeline job with a Jenkinsfile, then you can use a snippet
like this to run a playbook as part of your pipeline:

Ansible Plug-in | 395

ansiblePlaybook become: true, colorized: true, credentialsId: 'Machines',
disableHostKeyChecking: true, installation: 'ansible', inventory:
'inventory/hosts', limit: 'webservers', playbook: 'playbooks/playbook.yml',
tags: 'ssh', vaultCredentialsId: 'ANSIBLE_VAULT_PASSWORD'

Use the Snippet Generator to parameterize the build step (Figure 22-3).

Figure 22-3. Jenkins Snippet Generator for Ansible playbook build step

396 | Chapter 22: CI/CD and Ansible

The advantage of using Jenkins to run playbooks is central execution and logging.
It is a natural fit for development teams that already know and use Jenkins. Ansible
needs to be present on the Jenkins server or on the Jenkins agents that will execute
the jobs.

Ansible Tower Plug-in
If you’re automating your enterprise production environment with Ansible Automa‐
tion Controller (see Chapter 23), you’ll also want to make use of the Ansible Tower
plug-in if you develop applications. Ansible Automation Controller allows for better
scaling, both in the number of teams that can use it and in role-based access control.
Ansible Automation Controller also has more security features than Jenkins.

To separate concerns for internal control, organizations often create staging environ‐
ments and limit access to production environments. Developers might be given the
rights to start a job or workflow with a well-defined combination of playbooks,
machines, credentials, and other pre-filled options. Using Jenkins to start a job tem‐
plate can be a great step toward continuous delivery! With Jenkins Snippet Generator,
it is possible to create fine-grained access to Ansible Automation Controller to start
a playbook with specified parameters (a job template; Figure 22-4). You can store
credentials safely in Ansible Automation Controller and delegate their use to the
Jenkins job. This means that the developers won’t need to log in to the inventory
to deploy their app. They might not bother, or they might not be allowed to for
compliance/risk reasons.

This plug-in could be used after software has been built and tested in a staging
environment, to deploy the app into production. You can compose such a final build
step in the Jenkinsfile with the Snippet Generator using the following code:

ansibleTower jobTags: 'appdeploy', jobTemplate: '1234', jobType: 'run', limit:
'web', throwExceptionWhenFail: false, towerCredentialsId:
'ANSIBLE_VAULT_PASSWORD', towerLogLevel: 'false', towerServer: 'tower'

Ansible Tower Plug-in | 397

Figure 22-4. Jenkins Snippet Generator for Ansible Tower job template build step

Conclusion
Ansible is a great tool in continuous delivery of complex software systems. It can not
only manage the development environment, but also integrate deeply into software
staging processes by automating all kinds of chores that kill productivity when done
manually.

398 | Chapter 22: CI/CD and Ansible

CHAPTER 23

Ansible Automation Platform

Ansible Automation Platform is a commercial software product offered by Red Hat.
Ansible Automation Platform 2 is the next-generation automation platform for the
enterprise. It consists of a rearchitected Automation Controller 4, formerly known
as Tower/AWX, and the Automation Hub, an on-premises repository for Ansible
content that replaces the on-premises Ansible Galaxy. You can curate the Automation
Hub to match your organization’s governance policies or simply sync it with commu‐
nity content. Example 23-1 is a file that can be uploaded by the administrator of the
Automation Hub (see Figure 23-1). It defines the collections that the Automation
Hub will serve on the local network. The Automation Hub needs internet connectiv‐
ity to download these.

Example 23-1. requirements.yml for community content on Automation Hub

collections:
 # Install collections from Ansible Galaxy.
 - name: ansible.windows
 source: https://galaxy.ansible.com
 - name: ansible.utils
 source: https://galaxy.ansible.com
 - name: awx.awx
 source: https://galaxy.ansible.com
 - name: community.crypto
 source: https://galaxy.ansible.com
 - name: community.docker
 source: https://galaxy.ansible.com
 - name: community.general
 source: https://galaxy.ansible.com
 - name: community.kubernetes
 source: https://galaxy.ansible.com
...

399

Figure 23-1. Uploading the requirements file

You can configure multiple servers for the ansible-galaxy command in ansi‐
ble.cfg if you use the Private Automation Hub in Ansible Automation Platform 2
(Example 23-2).

Example 23-2. ansible.cfg

[galaxy]
server_list = automation_hub, release_galaxy, my_org_hub, my_test_hub

[galaxy_server.automation_hub]
url=https://cloud.redhat.com/api/automation-hub/
auth_url=https://sso.redhat.com/auth/realms/redhat-external/protocol/openid-connect/token
token=my_ah_token

[galaxy_server.release_galaxy]
url=https://galaxy.ansible.com/
token=my_token

[galaxy_server.my_org_hub]
url=https://automation.my_org/
username=my_user
password=my_pass

[galaxy_server.my_test_hub]
url=https://automation-test.my_org/
username=test_user
password=test_pass

Staging environments like my_test_hub can be used for testing local collections,
published eventually in my_org_hub.

400 | Chapter 23: Ansible Automation Platform

The architecture of Ansible Automation Platform 2 benefits from developments in
container technology. It is more scalable and secure than the previous generation.
The biggest difference is that it decouples the control plane from the execution
environments, as shown in Figure 23-2.

Figure 23-2. Ansible Automation Platform 2 Architecture

Ansible Tower used Python virtual environments to manage dependencies, but this
method presented challenges for Tower operations teams. Ansible Automation Plat‐
form 2 introduces automation execution environments; in other words, it runs the
automation in container images that include Ansible, Ansible content, and any other
dependencies, as shown in Figure 23-3.

Figure 23-3. Ansible Execution Environment

Ansible Automation Platform | 401

Ansible Execution Environments are based on ansible-builder (discussed later in
this chapter).

Ansible Automation Platform can be installed in RedHat OpenShift or on Red Hat
Enterprise Linux 8 hosts (rhel/8). The sample code for this chapter creates a devel‐
opment cluster on VirtualBox with Vagrant. A Packer configuration is included to
create a rhel/8 VirtualBox box (Packer is discussed in Chapter 16).

The Automation Controller provides more granular user- and role-based access
policy management combined with a web user interface, shown in Figure 23-4, a
RESTful API.

Figure 23-4. Ansible Automation Controller dashboard

Subscription Models
Red Hat offers support as an annual subscription model with three subscription
types, each with different service-level agreements (SLAs):

• Self-Support (no support and SLA)•
• Standard (support and SLA: business hours)•
• Premium (support and SLA: 24 hours a day, 7 days a week)•

402 | Chapter 23: Ansible Automation Platform

https://oreil.ly/NlgNY
https://oreil.ly/qsiFg

All subscription levels include regular updates and releases of Ansible Automation
Platform.

As a developer, you can get free access to the many technology resources Red Hat
has to offer. All you need to do is register for a Red Hat Developer Subscription for
Individuals.

Ansible Automation Platform Trial
Red Hat provides a free 60-day trial license with the feature set of the Self-Support
subscription model for up to 100 managed hosts.

Once you register as a developer and apply for the trial, you’ll be able to export the
license manifest to activate your instance, as shown in Figure 23-5.

Figure 23-5. Managing subscriptions

After acquiring Ansible, Inc., in 2015, Red Hat started working on
an open source version of Ansible Tower called AWX. This installs
in Kubernetes with the AWX Operator. See the documentation for
instructions. The AWX source is available on GitHub.

Subscription Models | 403

https://oreil.ly/Q7UDb
https://oreil.ly/wSoD5
https://oreil.ly/7j8MF
https://oreil.ly/7j8MF
https://oreil.ly/NjaVt
https://oreil.ly/heqzB

For a quick evaluation setup using Vagrant, use the source “ansiblebook” on Github:
$ git clone https://github.com/ansiblebook/ansiblebook.git
$ cd ansiblebook/ch23 && vagrant up

If the Vagrant machine is not reachable at https://server03/, you may need to run the
following command inside the Vagrant machine to bring up the network interface
associated with the IP address 192.168.56.13:

$ sudo systemctl restart network.service

What Ansible Automation Platform Solves
Ansible Automation Platform is not just a web user interface on top of Ansible: it
extends Ansible’s functionality with access control, projects, inventory management,
and the ability to run jobs by job templates. Let’s take a closer look at each of these in
turn.

Access Control
In large corporations, Ansible Automation Platform helps manage automation by
delegating control. You can create an organization for each department, and a local
system administrator can set up teams with roles and add employees to them, giving
each person as much control of the managed hosts and devices as they need to do
their job.

Ansible Automation Platform was built with separation of duties in mind—a pow‐
erful idea, if applied well. Imagine that the developers of a playbook are not the
same people as the owners of the infrastructure. Try creating a repository for your
playbooks and another one for your inventory, so a team with their own machines
can create another inventory to reuse your playbooks. Ansible Automation Platform
has the concept of organizations with teams, each with distinct levels of permissions.

Ansible Automation Platform acts as a gatekeeper to hosts. No team or employee is
required to have direct access to the managed hosts, which reduces complexity and
increases security. Figure 23-6 shows Ansible Automation Platform’s user manage‐
ment web interface. With a product like this it is also possible to use other authentica‐
tion systems, such as Azure AD, GitHub, Google OAuth2, LDAP, RADIUS, SAML,
or TACACS+. Connecting Ansible Automation Platform with existing authentication
systems such as LDAP directories can reduce administrative cost per user.

404 | Chapter 23: Ansible Automation Platform

https://oreil.ly/FRY0I

Figure 23-6. User management

Projects
A project in Ansible Automation Platform terminology is nothing more than a bucket
holding logically related playbooks and roles.

In classic Ansible projects, static inventories are often kept alongside the playbooks
and roles. Ansible Automation Platform handles inventories separately. Anything
related to inventories and inventory variables that is kept in projects, such as group
variables and host variables, will not be accessible later on.

The target (for example, hosts: <target>) in these playbooks is
essential. Choose wisely by using a common name across play‐
books. This allows you to use the playbooks with different invento‐
ries. We will discuss this further later in the chapter.

As it is a best practice, we keep our projects with our playbooks in revision control on
a source code management (SCM) system, and recommend that you do as well. The
project management in Ansible Automation Platform can be configured to download
these projects from your SCM servers and supports major open source SCM systems
such as Git, Mercurial, and Subversion.

What Ansible Automation Platform Solves | 405

As a fallback if you do not want to use an SCM, you can set a static path
under /var/lib/awx/projects, where the project resides locally on the Ansible Automa‐
tion Controller. You can also download a remote archive.

Since projects evolve over time, the projects on Ansible Automation Controller must
be updated to stay in sync with the SCM. But no worries—Ansible Automation
Platform has multiple solutions for updating projects.

First, ensure that Ansible Automation Platform has the latest state of your project
by enabling “Update on Launch,” as shown in Figure 23-7. Additionally, you can set
a regularly scheduled update job on each project. Finally, you can manually update
projects if you wish to maintain control of when updates happen.

Figure 23-7. Ansible Automation Controller project SCM update options

Inventory Management
Ansible Automation Platform allows you to manage inventories as dedicated
resources, including managing access control. A common pattern is to put the
production, staging, and testing hosts into separate inventories with their own cre‐
dentials and variable values.

Within these inventories, you can add default variables and manually add groups
and hosts. In addition, as shown in Figure 23-8, Ansible Automation Platform allows

406 | Chapter 23: Ansible Automation Platform

you to query hosts dynamically from a source (such as a Microsoft Azure Resource
Manager) and put these hosts in a group.

Figure 23-8. Ansible Automation Controller inventory source

Group and host variables can be added in form fields that will overwrite defaults.

You can even temporarily disable hosts by clicking a button (Figure 23-9), so they will
be excluded from any job run.

Figure 23-9. Ansible Automation Platform inventory excluded hosts

What Ansible Automation Platform Solves | 407

Run Jobs by Job Templates
Job templates connect projects with inventories (Figure 23-10). They define how users
are allowed to execute a playbook from a project to specific targets from a selected
inventory.

Figure 23-10. Ansible Automation Platform job templates

Refinements can be applied on a playbook level, such as additional parameters and
tags. Further, you can specify in what mode the playbook will run. For example, some
users may be allowed to execute a playbook only in check mode, while others may be
allowed to do so only on a subset of hosts but in live mode.

On the target level, you can select an inventory and, optionally, limit it to some hosts
or a group.

An executed job template creates a new job entry (Figure 23-11).

408 | Chapter 23: Ansible Automation Platform

Figure 23-11. Ansible Automation Platform job entries

In the detail view of each job entry (Figure 23-12), you’ll find information not only
about whether the job was successful but also the date and time it was executed, when
it finished, who started it, and with which parameters. You can even filter by play to
see all the tasks and their results. All of this information is stored and kept in the
database, so you can audit it at any time.

What Ansible Automation Platform Solves | 409

Figure 23-12. Ansible Automation Platform job detail view

RESTful API
The Ansible Automation Controller exposes a Representational State Transfer
(REST) API that lets you integrate with existing build-and-deploy pipelines or con‐
tinuous deployment systems.

Since the API is browsable, you can inspect the whole thing in your favorite browser
by opening the URL http://<tower_server>/api/v2/ to get all the available resources
(Figure 23-13):

$ firefox https://server03/api/v2/

At the time of writing, the latest API version is v2.

Using the API can be a solution for integration, but to access the Ansible Automation
Controller, there is an Ansible collection: awx.awx.

410 | Chapter 23: Ansible Automation Platform

Figure 23-13. Ansible Automation Platform API version 2

RESTful API | 411

AWX.AWX
So, how do you create a new user in Ansible Automation Controller or launch a
job by using nothing but the API? Of course, you could use the all-time favorite
command-line (CLI) HTTP tool, cURL, but Ansible has made an even more user-
friendly way: playbooks!

Unlike the Ansible Automation Platform application, Ansible
Tower CLI is open source software, published on GitHub under
the Apache 2.0 license.

Installation
To install awx.awx, use Ansible Galaxy:

$ ansible-galaxy collection install awx.awx

Since Ansible Automation Platform uses a preconfigured, self-signed SSL/TLS certifi‐
cate, skip the verification in the template for the tower_cli.cfg file:

[general]
host = https://{{ awx_host }}
verify_ssl = false
oauth_token = {{ awx_token }}

Before you can access the API, you’ll have to configure the credentials with the
admin_password as an extra variable, like in Example 23-3.

Example 23-3. awx-config.yml

- name: Configure awx
 hosts: automationcontroller
 become: false
 gather_facts: false

 vars:
 awx_host: "{{ groups.automationcontroller[0] }}"
 awx_user: admin
 cfg: "-k --conf.host https://{{ awx_host }} --conf.user {{ awx_user }}"

 tasks:

 - name: Login to Tower
 delegate_to: localhost
 no_log: true
 changed_when: false
 command: "awx {{ cfg }} --conf.password {{ admin_password }} -k login"
 register: awx_login

412 | Chapter 23: Ansible Automation Platform

https://oreil.ly/ryjSo

 - name: Set awx_token
 delegate_to: localhost
 set_fact:
 awx_token: "{{ awx_login.stdout | from_json | json_query('token') }}"

 - name: Create ~/.tower_cli.cfg
 delegate_to: localhost
 template:
 src: tower_cli.cfg
 dest: "~/.tower_cli.cfg"
 mode: '0600'
...

This creates the file ~/.tower_cli.cfg with the token. Now you can create a playbook to
automate your Automation Controller—next-level automation!

Create an Organization
The data model listed in Figure 23-13 requires some objects to be present before
others can be created, so the first thing you need to create is an organization:

- name: Configure Organization
 hosts: localhost
 gather_facts: false
 collections:
 - awx.awx

 tasks:

 - name: Create organization
 tower_organization:
 name: "Tower"
 description: "Tower organization"
 state: present

 - name: Create a team
 tower_team:
 name: "Tower Team"
 description: "Tower team"
 organization: "Tower"
 state: present

Everything links to either an organization or an inventory.

Create an Inventory
For the sake of the example code, we’ve created a simple inventory of the
Ansible Automation Platform with the awx.awx collection. Normally you would
use a tower_project pointing to a Git repository, and tie that as a tower_inven
tory_source to a tower_inventory:

AWX.AWX | 413

- name: Configure Tower Inventory
 hosts: localhost
 gather_facts: false
 collections:
 - awx.awx

 tasks:

 - name: Create inventory
 tower_inventory:
 name: "Tower Inventory"
 description: "Tower infra"
 organization: "Tower"
 state: present

 - name: Populate inventory
 tower_host:
 name: "{{ item }}"
 inventory: "Tower Inventory"
 state: present
 with_items:
 - 'server01'
 - 'server02'
 - 'server03'

 - name: Create groups
 tower_group:
 name: "{{ item.group }}"
 inventory: "Tower Inventory"
 state: present
 hosts:
 - "{{ item.host }}"
 with_items:
 - group: automationcontroller
 host: 'server03'
 - group: automationhub
 host: 'server02'
 - group: database
 host: 'server01'

If you create and destroy virtual machines using Ansible, then you manage the
inventory that way.

Running a Playbook with a Job Template
If you are used to running playbooks using only Ansible Core on the command line,
you are probably used to administrator privileges. Ansible Automation Platform has
ways to model this into a secure setup that scales well.

Playbooks are stored in a source-control system like Git. A project corresponds to
such a Git repository. You can import a project using the tower_project module:

414 | Chapter 23: Ansible Automation Platform

- name: Create project
 tower_project:
 name: "test-playbooks"
 organization: "Tower"
 scm_type: git
 scm_url: https://github.com/ansible/test-playbooks.git

When you run an Ansible playbook on the command line, you probably set up
SSH keys or another way to log in to the target systems in the inventory. Running
the playbook that way is bound to your user account on the Ansible control host.
If you use Ansible Automation Platform, then you store machine credentials in the
(encrypted) platform database to access the machines in an inventory.

Although SSH keys are sensitive data, there is a way to add encrypted private keys
to the Ansible Automation Controller and have it ask for the passphrase when a job
template that uses it launches:

- name: Create machine credential
 tower_credential:
 name: 'Tower Credential'
 credential_type: Machine
 ssh_key_unlock: ASK
 organization: "Tower"
 inputs:
 ssh_key_data: "{{ lookup('file', 'files/tower_ed25519') }}"

Now that you have a project, an inventory, and access to the machines with the
machine credential, you can create a job template to run a playbook from the project
on the machines in the inventory:

- name: Create job template
 tower_job_template:
 name: "Test Job Template"
 project: "test-playbooks"
 inventory: "Tower Inventory"
 credential: 'Tower Credential'
 playbook: ping.yml

You’ll probably want to automate running a job from a job template. The awx.awx
collection makes this pretty straightforward. All you need to know is the name of the
job template you want to launch:

 - name: Launch the Job Template
 tower_job_launch:
 job_template: "Test Job Template"

Job templates are really useful for standard operational procedures. The examples
given so far are easy to follow on a development system. When you work with
multiple teams, ask for input when you launch a job template. This way you can
delegate all kinds of standard tasks to teams on their infrastructure environments by
asking for their inventory and their credentials.

AWX.AWX | 415

Using Containers to Run Ansible
Containers simplify working with Ansible in two areas. One is in testing Ansible roles
with Molecule , which we discussed in Chapter 14.

The second argument for using containers appears when external dependencies cre‐
ate complexity, which might be different for each project or team. When you import
Python libraries and external Ansible content like roles, modules, plug-ins, and
collections, creating and using container images can help ensure they stay updated
for long-term use. There are many moving parts: Linux packages, Python version,
Ansible version, and Ansible roles and collections are updated constantly. It can be
hard to get the same execution environment for Ansible on multiple machines or
at different points in time. Execution environments are a consistent, reproducible,
portable, and sharable method to run Ansible Automation jobs on your laptop in the
exact same way as they are executed on the AWX/Ansible Automation Platform.

Creating Execution Environments
Creating Ansible execution environments is an advanced topic that you might
need when you work with Ansible Automation Platform 2. Execution environments
evolved from the work on the Python library ansible-runner. They are built with
Podman on RHEL 8 using a Python tool called ansible-builder. (Podman is the
container runtime for developers on RHEL 8).

Let’s see how to create an execution environment. First, create a virtual environment
to work with ansible-builder and ansible-runner:

$ python3 -m venv .venv

Activate the virtual environment and update your tools:
$ source .venv/bin/activate
$ python3 -m pip install --upgrade pip
$ pip3 install wheel

Then install ansible-builder and ansible-runner:
$ pip3 install ansible-builder
$ pip3 install ansible-runner

Ansible Builder needs a definition in a file named execution-environment.yml:

version: 1

ansible_config: 'ansible.cfg'

dependencies:
 galaxy: requirements.yml
 python: requirements.txt
 system: bindep.txt

416 | Chapter 23: Ansible Automation Platform

https://oreil.ly/cQr6T
https://oreil.ly/hpefh
https://oreil.ly/bkOei
https://oreil.ly/1vpq5

additional_build_steps:
 prepend: |
 RUN pip3 install --upgrade pip setuptools
 append:
 - RUN yum clean all

Python libraries should be listed in requirements.txt, and Ansible requirements in
requirements.yml. A new file type is used for binary dependencies, like the git and
unzip packages. These are listed with their platform’s package manager in bindep.txt:

git [platform:rpm]
unzip [platform:rpm]

Once you are happy with the definition of your execution environment, you can
build it:

$ ansible-builder \
--build-arg ANSIBLE_RUNNER_IMAGE=quay.io/ansible/ansible-runner:stable-2.11-latest \
-t ansible-controller -c context --container-runtime podman

To use the execution environment, create a wrapper script around this command:
$ podman run --rm --network=host -ti \
 -v${HOME}/.ssh:/root/.ssh \
 -v ${PWD}/playbooks:/runner \
 -e RUNNER_PLAYBOOK=playbook.yml \
 ansible-controller

Conclusion
Ansible Automation Platform 2 is a product for enterprise-wide IT automation. The
Automation Controller (formerly known as Ansible Tower) offers role-based access
control, segregation of duties, and delegation. Ansible projects are retrieved from
source control, credentials can be managed securely, inventory can be allocated,
and every system change can be accounted for. This empowers organizations with
hundreds of teams to manage tens of thousands of machines. No wonder the license
cost is calculated over the number of hosts.

Automation Hub offers Ansible collections created by Red Hat’s partners while ena‐
bling the administrators to curate community content and to restrict or replace access
to Ansible Galaxy.

In Ansible Automation Platform 2, the Ansible execution environments isolate soft‐
ware dependencies in containers, which offers greater flexibility than the virtual
environments used in Ansible Tower. You can simply store Ansible’s technical debt
(particular versions needed, conflicting libraries, etc.) in several containers. Execution
environments can be built by the teams, instead of by the administrator, which saves
handovers.

Conclusion | 417

https://galaxy.ansible.com

CHAPTER 24

Best Practices

In this chapter, we propose a set of best practices as a conversation starter, knowing
that best practices don’t transpose to other contexts very well. What works for Spotify
or Netflix does not necessarily work for other companies. Our main goal is to get you
thinking about these matters and discussing the ones that trigger your imagination
or concern. The best practices are based on design principles and experience using
Ansible in various settings. On the management level, we need to consider how
practitioners perform and how to benchmark DevOps teams.

Simplicity, Modularity, and Composability
Michael DeHaan designed Ansible to automate the boring stuff in the simplest
conceivable way because he wanted to spend his time doing more interesting things.
Inexperienced users can now browse the Ansible Galaxy site for roles and collections
to get something up and running within hours using Ansible.

Ever since DeHaan and Greg DeKoenigsberg started the Ansible community, they’ve
been thinking and writing about best practices—the documentation, however,
changed its terminology from “best practices” in 2.9 to “tips and tricks” in 2.10. They
point out that open source projects are more likely to gain and keep contributors
when they have two particular properties: high modularity and high option value.
High modularity, or loose coupling, allows freedom to add to Ansible. High option
value, also known as composability, allows you to pick and choose: you might take
from Galaxy what fits best in your situation, for instance, or choose Terraform for
infrastructure provisioning and Ansible for systems management. Composability is
also one of the foundations of the Tao of HashiCorp.

419

https://galaxy.ansible.com
https://oreil.ly/ubBBZ
https://oreil.ly/Yp36I
https://oreil.ly/0pOeP
https://oreil.ly/Kohiw

Organize Content
• Use GitHub to share your Ansible content for collaboration and preservation.•
• Use a repo per role, collection, project, and inventory.•
• Track changes and approvals with a workflow like GitHub Flow.•
• Manage your dependencies: distributions, packages, libraries, tools.•
• Magic happens when you put your files in the right places.•
• Use the right tool for the job: try finding a module first.•
• Don’t solve complexity with Ansible; try writing a module with Python.•

Decouple Inventories from Projects
• Make projects reusable to cater to multiple users.•
• Let infrastructure owners define access to hosts in inventory.•
• Use an inventory with group names based on function (or role).•
• Combine projects and inventories, with separate Git repositories.•
• Create staging environments to test properly before going live.•
• Use the alternative directory layout to prepare for AWX/Ansible Automation•

Platform.

Decouple Roles and Collections
• Be aware that roles are ways of automatically loading vars, files, tasks, handlers,•

and templates based on a known file structure. Convention over configuration is
a powerful pattern.

• Do one thing well with a role.•
• Collections are a composite of roles, modules, plug-ins, etc. Test them as•

components.
• Group content by roles to allow for easy sharing with other users.•
• Use the roles/requirements.yml manifest to express versioned dependencies.•
• Separate project roles, shared roles, and Galaxy roles. Configure roles_path to•

search for these roles.
• Use top-level directories: files, templates for local implementation of role•

templates.

420 | Chapter 24: Best Practices

https://oreil.ly/kgyjK
https://oreil.ly/HH0VX

• The defaults are easy to override by the user with group_vars.•
• The vars are not meant for the user to change.•

Playbooks
• Make playbooks readable for nonspecialists (note to self).•
• Think declarative, desired state, or simple state change.•
• Safe defaults for newbies. Make IT simple for the whole team.•
• When you can do something simply, do something simply.•
• Playbooks are executable (with the #! shebang); vars files are not.•

Code Style
• Format playbooks with native YAML style.•
• Editors use file extensions for syntax coloring and linting.•
• Always name your playbooks, plays, and tasks considering the logging.•
• Comments start with a hashmark (#). Overuse comments and empty lines.•
• To find problems in your content before you commit, use the rules of ansible-•
lint, ansible-later, yamllint, SonarQube, Pylint, ShellCheck, Perl::Critic, or
any other linter required in your project.

Tag and Test All the Things
• Tags help organize execution of playbooks. You can run or skip parts of•

playbooks.
• Tags can help in testing. Add unit test tasks with the unitTest tag.•
• Use Molecule for testing roles; verify the result.•

Desired State
• Idempotency: the same operation should yield the same result, again and again.•
• Ensure there are no changes unless things change.•
• No uncertainty: describe the desired state and use variables to toggle state.•
• Try to support check mode.•
• Test states with a delegated driver: molecule converge and molecule cleanup.•

Playbooks | 421

https://oreil.ly/HHMti
https://oreil.ly/HHMti
https://oreil.ly/zmXVV
https://oreil.ly/4SW35
https://oreil.ly/07p8h
https://oreil.ly/B6TRI
https://oreil.ly/vX2mS
https://oreil.ly/hBnfg
https://oreil.ly/kBZYZ
https://oreil.ly/iTjBY

Deliver Continuously
• Try to schedule provisioning and deployment as early and often as possible.•
• Use the same playbooks in each environment with different credentials.•
• Roll out changes to all environments in stages, in a visible way, by using Tower or•

Jenkins with ARA.
• Understand the serial keyword for rolling updates.•

Security
• Make it easy to manage vault variables.•
• Don’t login as root. Don’t use service accounts interactively.•
• Design users and groups to minimize using privileges.•
• Don’t store logins and passwords in inventory.•
• Encrypt logins, passwords, and tokens with ansible-vault.•
• Use vault IDs for different access levels.•
• Document become at the top of the task for easier auditing.•
• Harden SSH and your system’s attack surface.•
• Run ssh-audit to validate SSH crypto.•
• Consider using signed SSH keys.•

Deployment
• Create and store software packages in a repository, like Nexus or Artifactory.•
• Releasing software is a one-bit decision, not a transfer of bytes.•
• Manage applications’ configuration with a central system or Git workflow.•
• Create smoke tests to confirm proper startup, and validate the proper startup•

order.

Performance Indicators
If you are a team manager, scrum master, product owner, or another stakeholder
in a software project, you’ll need a yardstick. CALMS is a framework that assesses
the ability to adopt DevOps processes, as well as a way of measuring success dur‐
ing a DevOps transformation. Jez Humble, coauthor of The DevOps Handbook (IT

422 | Chapter 24: Best Practices

https://oreil.ly/15D7z
https://oreil.ly/gTwbw
https://oreil.ly/BIJwU
https://oreil.ly/twN0f
https://oreil.ly/J1GUT
https://oreil.ly/XOHiB
https://oreil.ly/kI9AZ

Revolution Press), coined the acronym, which stands for Culture, Automation, Lean,
Measurement, and Sharing.

Key performance indicators for the adoption of best practices in software engineering
include:

Collaboration
Is the team sharing technical knowledge and proactively collaborating with other
teams to integrate applications and environments?

Automation
Is the team automating the deployment and promotion process for applications
and environments?

Culture
Is the team striving for improvement, best practices, and common principles
when building and configuring applications and environments?

Measurement
Is the team confirming functional and nonfunctional requirements (automati‐
cally) before promoting applications to production environments?

Sharing
Is the team supplying and receiving the feedback they need to maintain control
of the solutions they manage?

Benchmark Evidence
Proper application of Ansible best practices should be sufficient to provide evidence
to all of the following challenges:

• Can we exactly reproduce any of our environments, including the version of the•
operating system, its patch level, the network configuration, the SW stack, the
application deployed into it, and its configuration?

• Can we easily make an incremental change to any of these individual items and•
deploy the change to any, and all, of our environments?

• Can we easily see each change that occurred to a particular environment and•
trace it back to see exactly what the change was, who made it, and when?

• Can we satisfy all the compliance regulations to which we are subject?•
• Is it easy for every member of the team to get the information they need, and•

to make changes? Or does our strategy get in the way of efficient delivery by
increasing cycle time and decreasing feedback?

• When we onboard a new team member, do we give them an enthusiastic first•
impression?

Benchmark Evidence | 423

Final Words
After writing all these pages for you, we can hardly claim that you can learn Ansible
in two hours and deploy NGINX and Postgres in the third, but after reading Ansible:
Up and Running, you may try teaching what you’ve learned to your coworkers, or
even share a demo project in a Meetup. The Ansible community is global! If you
are interested in joining the community, just go to Ansible’s community page. Ansi‐
ble discussion groups moved between RC, GitHub, Discord, and Reddit for online
discussions and support.

If there’s no Meetup close to you, then start one. If it’s not active, then take the baton.
That’s how Bas started with the Ansible Benelux Meetup group in 2014. Meetups are
a fantastic way to learn new things and to meet people who share the same interests.
Bas has fond memories of the discussions, demonstrations, and workshops we held in
various places around Amsterdam. Thanks, everybody!

Dear readers, we hope you got what you were after out of this book and the source
code repositories, and that you have learned enough about Ansible for the tasks
ahead of you. Good luck!

424 | Chapter 24: Best Practices

https://oreil.ly/7KNaF

Bibliography

Barrett, Daniel, Richard Silverman and Robert Byrnes. SSH The Secure Shell: The
Definitive Guide. Sebastopol, CA: O’Reilly Media, 2005.

Bauer, Kirk. Automating UNIX and Linux Administration. New York: Apress, 2003.
Clark, Mike. Pragmatic Project Automation: How to Build, Deploy, and Monitor Java

Applications. Raleigh, NC: Pragmatic Bookshelf, 2004.
Conway, Damien. Perl Best Practices. Sebastopol, CA: O’Reilly Media, 2005.
Dobies, Jason, and Joshua Wood. Kubernetes Operators. Sebastopol, CA: O’Reilly

Media, 2020.
Duvall, Paul, Steve Matyas, and Andrew Glover. Continuous Integration: Improving

Software Quality and Reducing Risk. Upper Saddle River, NJ: Pearson Education,
2007.

Forsgren, Nicole, Jez Humble, and Gene Kim. Accelerate: Building and Scaling High
Performing Technology Organizations. Portland, OR: IT Revolution, 2018.

Geewax, JJ. Google Cloud Platform in Action. Shelter Island, NY: Manning Publica‐
tions, 2018.

Gift, Noah, and Jeremy Jones. Python for Unix and Linux System Administration.
Sebastopol, CA: O’Reilly Media, 2008.

Hashimoto, Mitchell. Vagrant: Up and Running. Sebastopol, CA: O’Reilly Media,
2013.

Holzner, Steve. Ant: The Definitive Guide. Sebastopol, CA: O’Reilly Media, 2005.
Humble, Jeff, and David Farley. Continuous Delivery: Reliable Software Releases

through Build, Test, and Deployment Automation. Upper Saddle River, NJ: Pearson
Education, 2011.

Hunt, Andrew, and David Thomas. The Pragmatic Programmer: From Journeyman to
Master. Boston, MA: Addison-Wesley, 2000.

Jaynes, Matt. Taste Test: Puppet, Chef, Salt, Ansible. Self-published, 2014.
Kernighan, Brian, and Rob Pike. The UNIX Programming Environment. Hoboken, NJ:

Prentice Hall, 1984.

425

Kim, Gene, Jez Humble, Patrick DeBois, and John Willis. The DevOps Handbook:
How to Create World-Class Agility, Reliability, and Security in Technology Organiza‐
tions. Portland, OR: IT Revolution, 2016.

Kleppmann, Martin. Designing Data-Intensive Applications. Sebastopol, CA: O’Reilly
Media, 2015.

Kurniawan, Yan. Ansible for AWS. Leanpub, 2016.
Limoncelli, Thomas A., Christina J. Hogan, and Strata R. Chalup. The Practice of

Cloud System Administration: Designing and Operating Large Distributed Systems.
Boston, MA: Addison-Wesley Professional, 2014.

Luksa, Marko. Kubernetes in Action. Shelter Island, NY: Manning Publications, 2018.
Mell, Peter, and Timothy Grance. The NIST Definition of Cloud Computing. NIST

Special Publication 800-145, 2011.
Morris, Kief. Infrastructure as Code: Dynamic Systems for the Cloud Age. Sebastopol,

CA: O’Reilly Media, 2021.
OpenSSH/Cookbook/Multiplexing, Wikibooks, October 28, 2014.
Oram, Andrew, and Steve Talbott. Managing Projects with Make. Sebastopol, CA:

O’Reilly Media, 1986.
Reitz, Kenneth, and Tanya Schlusser. The Hitchhiker’s Guide to Python: Best Practices

for Development. Sebastopol, CA: O’Reilly Media, 2016.
Ryan, Mike, and Federico Lucifredi. AWS System Administration. Sebastopol, CA:

O’Reilly Media, 2018.
Shafer, Andrew Clay. Agile Infrastructure in Web Operations: Keeping the Data on

Time. Sebastopol, CA: O’Reilly Media, 2010.
Turnbull, James, and Jeffrey McCune. Pro Puppet: Maximize and Customize Puppet’s

Capabilities for Your Environment. New York: Apress, 2011.

426 | Bibliography

http://bit.ly/1bpeV0y

Index

A
abstractions of system resources, 7
access control, 404
access key ID, 298
acl package, 165
Active Directory, 239
add_file_common_args parameter, 345
add_host module, 83, 312
agent forwarding, 118, 360

enabling for Vagrant machine, 27
aggregate plugins (see callback plugins)
aliases (for hostnames), 71
aliases option, 341
all group, 47
all pattern, 209
ALLOWED_HOSTS list, 142
always clause, 202, 204
Amazon EC2, 77, 287-288, 296

Ansible support for, 296
complete playbook, 314-316
configuring ansible.cfg file for use with, 305
creating instance and adding it to a group,

312
creating VM image with Packer, 287
dynamic inventory, 301-303
getting started with, 287
getting the latest AMI, 310-311
key pairs, 307-308
launching new instances, 306
prerequisite, Boto3 Python library, 300
removing hosts from load balancer and

upgrading, 213
security groups, 308-310
specifying a Virtual Private Cloud, 316-319

terminology, 297
Amazon Machine Image (AMI), 297
instance, 297
tags, 297

Virtual Private Clouds, 305
waiting for server to come up, 313

Amazon Elastic Compute Cloud (see Amazon
EC2)

amazon.aws collection, 301
ec2_ami_info module, 311

amazon.aws.ec2_group module, 308
amazon.aws.ec2_instance module, 306

information returned from, 313
invoking from command line to terminate

instance, 307
AMI (Amazon Machine Image), 297

AMI ID, 306
getting the latest, 310-311

Anaconda installer, 280
Ansible

benefits of, 2, 5-13
how it works, 4
imperative coding of desired state, 295
installing, 15-17
origins of name, 2
prerequisite knowledge for, 13
subject matter not covered by this book, 14
versions, 2

ansible all -vvvv -m ping command, 145
Ansible Automation Controller

project SCM updates, 406
RESTful API, 410-410

Ansible Automation Platform, 399-417

427

architecture of Ansible Automation Plat‐
form 2, 401

awx.awx collection, 412
RESTful API, 410-410
solutions provided by, 404-410

access control, 404
inventory management, 406
projects, 405
run jobs by job templates, 408-410

subscription models, 402
trial of, 403
using containers to run Ansible, 416-417

ansible command, 21
-a and -m flags, 48
-b or --become flag for root user, 24
-vvvv flag, 21
installing NGINX on Ubuntu, 25
invoking command module, 23
invoking setup module with, 94

Ansible community, 424
Ansible Content Collections (see collections)
Ansible Galaxy, 6, 173-175

command-line interface, ansible-galaxy,
173-174
installing a role, 173
listing installed roles, 174
uninstalling a role, 174

contributing your own role, 175
finding and downloading collections

through, 274
installing awx.awx with, 412
role requirements in practice, 174
web interface, 173

Ansible Operators, 244
Ansible Tower, 397-398

open source version AWX, 403
plug-in for Jenkins, 383

ansible web -vvv -m ping command, 145
Ansible, Inc., 13
ansible-builder, 16
ansible-core, 15
ansible-doc -t lookup -l command, 184
ansible-doc command-line tool, 49

ansible-doc -l namespace.collection, 275
ansible-doc -t callback -l command, 321
ansible-doc -t callback plugin command,

325
ansible-galaxy command-line tool, 171,

173-174

--init-path flag, 171
ansible-galaxy collection install command,

274
ansible-galaxy collection list command, 275
ansible-galaxy install command, 173
ansible-galaxy list command, 174
ansible-galaxy remove command, 174
commands for managing collections,

276-278, 301
configuring multiple servers for, 400
creating an Ansible role, 261

ansible-inventory
-i --host= arguments, 78
-i argument, 78, 82

ansible-later, 268
ansible-lint, 57, 267
ansible-playbook command, 39, 58

--ask-vault-pass argument, 206
--flush-cache flag, 365
--limit flag, 156
--list-hosts flag, 154
--list-tasks flag, 111, 154, 199
--skip-tags tagnames flag, 156
--start-at-task flag, 48, 216
--step flag, 216
--syntax-check flag, 154, 266
--tags first argument, 217
--user flag, 148
--vault-password-file argument, 206
-C and --check flags, 155
-D and -diff flags, 155
-e @filename.yml argument, 101
-e variable=value flag, 100
-l or --limit flag, 210
-t tagnames or --tags tagnames flag, 156
force_source: true option, 249

ansible-vault command-line tool, 205-207, 422
commands, 206
encrypting existing file, 205
multiple vaults with different passwords,

207
partial contents of file encrypted with, 205

ansible.cfg file, 22-25
configuring for use with EC2, 305

AnsibleModule Python class, 337
check_mode attribute, 348
importing, 340
initializer parameters, 343-346
parsing arguments, 339

428 | Index

run_command method, 347
ansible_ prefix, 93
ansible_bash_interpreter variable, 353
ansible_connection, 373
ansible_enp0s8 fact, 194
ansible_env filter, 95
ansible_fact.distribution fact, 85
ansible_facts key, 95
ansible_facts variable, 93

IP addresses of hosts stored in, 212
ANSIBLE_FORKS environment variable, 368
ansible_local variable, 97
ANSIBLE_LOOKUP_PLUGINS environment

variable, 191
ansible_machine variable, 85
ANSIBLE_NOCOWS environment variable, 40
ANSIBLE_ROLES_PATH environment vari‐

able, 160
ansible_role_ansible, 376
ansible_role_ssh, 376
ansible_user variable, 148
ANSIBLE_VAULT_PASSWORD_FILE, 299
ANSIBLE_FILTER_PLUGINS environment

variable, 184
APIs

cloud, 295
RESTful API, Automation Controller,

410-410
application server, Gunicorn, 108
apt module, 115

cache_valid_time argument, 116
update_cache: true argument, 116

apt package manager, 114
apt-cache program, 115
apt-get update, 116
ara plugin, 322
ARA Records Ansible, 322
arguments

options for modules, 340-343
argument_spec parameter, 343
assert module, 152-153
async clause, concurrent tasks with, 368-370
async_status module, 369
auditability, 6
authentication systems, 404
authorized_key module, 148
Automation Controller, 402
Automation Controller 4, 399
automation execution environments, 401

Automation Hub, 399
requirements.yml for community content,

399
AWS (Amazon Web Services), 293

(see also Amazon EC2)
Ansible modules related to, 296

AWS_ACCESS_KEY_ID, 299
aws_centos_image variable, 287
aws_ec2 inventory plugin, 305
AWS_SECRET_ACCESS_KEY, 299
AWX, 403
awx.awx collection, 412-415

creating an inventory, 413
creating an organization, 413
installing, 412
running playbook with a job template, 414

Azure, 285-287, 295
creating resource group and storage account

for, 285
getting started with, 285
Packer file to creating virtual machine

image, 285
Azure Resource Manager, 77

B
Bad Request (400) error, 142
bare-metal servers, 293
basename filter, 182
Bash

implementing custom module in, 352-353
specifying alternative location for, 353

bastion host, 149
become clause, 422

adding become: true to a task, 115
ansible_become: true, 373
become: true and become_user: postgres,

123
become_user, sharing acl with, 165

become setting (in plays), 47
behavioral inventory parameters, 65-67, 72

ansible_*_interpreter, 66
ansible_connection, 66
ansible_python_interpreter, 66
ansible_shell_type, 66
changing default values, 66

benchmarking evidence, 423
/bin/sh directory, 66
blocks, 44

block clause, 201

Index | 429

error handling with, 201-205
Boolean type in YAML, 42
Boto3 Python library, 299
Bourne shell, 66
build agents, 390
build_ignore filter, 277
bypass_checks parameter, 346

C
callback plugins, 321-330

notification and aggregate, 324-330
foreman, 325
jabber, 326
junit, 326
logentries, 327
logstash, 327
log_plays, 327
mail, 328
profile_roles, 328
profile_tasks, 328
Python requirements for, 325
say, 329
slack, 329
splunk, 329
timer, 330

stdout, 321-324
callback_enabled setting, 325
callback_whitelist setting, 324
CALMS framework, 422
can_reach module, 333

implemented in Bash, 352
implementing in Python, 337

cattle versus pets, 72
ccsvfile lookup, 188
CentOS 7, 288
certificates

disabling TLS/SSL certificate validation for
WinRM server, 236

error resulting from invalid certificate for
Windows host, 236

generating TLS certificate, 51
installing TLS certificates in Mezzanine

deployment, 134
self-signed TLS certificates, browsers not

trusting, 60
certified content, 2
changed key in return value of Ansible mod‐

ules, 90
changed_when clause, 90, 177-181

check mode, 155, 348
failing on a correct playbook, 155

check_invalid_arguments parameter, 344
chmod +x command, 77
Chocolatey package manager, 237

installing software with, 240
choices option, 341
CI server, 387

Jenkins as de facto standard, 387-388
CI/CD, 383-398

Ansible Jenkins plug-in, 395, 397
Ansible Tower plug-in, 397-398
continuous integration, 383-394

running CI for Ansible roles, 392
delivering continuously, 422
staging, 394

CIDR (classless interdomain routing) notation,
309

cloud infrastructure, 293-319
Amazon EC2, 296

complete EC2 playbook, 314-316
configuring ansible.cfg for use with, 305
creating instance and adding it to a

group, 312
defining dynamic groups with tags,

303-305
dynamic inventory, 301-303
getting the latest AMI, 310-311
key pairs, 307-308
launching new instances, 306
prerequisite, Boto3 Python library, 300
security groups, 308-310
specifying a Virtual Private Cloud,

316-319
specifying credentials, 298
terminology, 297
Virtual Private Clouds, 305
waiting for server to come up, 313

Ansible modules for cloud services, 295
cloud provisioning, 294
interfaces for users, 293
Packer creating virtual machine images for,

283
cmd key, 90
CNAME records (DNS), 189
code quality, 386
code style, 421
collections, 6, 260, 273-278

amazon.aws, 301

430 | Index

cloud service, 295
decoupling from roles, 420
developing, 276-278
listing, 275
namespaces, 274
using in a playbook, 275

collections keyword, 274
collections_paths, 275
collectstatic command, 127
command module, 23, 85

changed key, 90
invoking openssl to create self-signed TLS

certificate, 135
using register clause with, access to stdout

key, 90
commands

badly behaved, dealing with, 177-181
invoking external commands from Python

module, 347-348
meta, 223
Molecule, 266
running only once, 216
supported by debugger, 150

comments in YAML, 41
community content, 2
complex arguments, 122, 343
composability, 419
concatenating strings with + operator, 189
concurrent tasks with async, 368-370
Conda package manager, 263
configuration

checking before the server starts, 224
Vagrant configuration options, 25-28

configuration file, placing EC2 credentials in,
299

configuration management, 2
configuration management databases

(CMDBs), 76
configuration-as-code (casc), 389, 391
container images, 279

(see also images)
building image from a Dockerfile, 247-249
creation of, 245
pushing to Docker registry, 249-250
registries for, 245
versus virtual machine images, 244

containerization, 243
containers, 243-258

about, 243

Ansible and Docker, 246
connections to Docker daemon, 246
deploying Dockerized application, 253-258

cleaning out containers, 257
deploying Ghost database, 254
frontend, Ghost and NGINX, 255-257
provisioning MySQL, 253

Docker application life cycle, 245
Ghost example application, 246
managing with Molecule, 264
orchestrating multiple on local machine,

250
querying local container images, 252
running Ansible in, 16
running Docker container on local machine,

247
running on Kubernetes, 244
using to run Ansible, 416-417

content managements systems (CMS)
Mezzanine, 105

(see also Mezzanine)
using for Mezzanine test application, 117

continuous integration/continuous delivery
(see CI/CD)

control machine, 6
Python Memcached package on, 367
Python Redis package on, 367
running a task on instead of on remote host,

210
control structures in templates, 133
ControlMaster, 356, 358
ControlPath, 356, 358
ControlPersist, SSH multiplexing and, 355-359
convergence, 7
copy module

invoking on task defined in a role, 170
validate clause, 363

core components, 2
cowsay program, 40
createdb command, 177
credentials

for Amazon EC2, testing out, 300
machine credentials, creating and storing on

Ansible Automation Platform, 415
specifying for Amazon EC2, 298

environment variables, 298
in configuration file, 299

stored in secrets file, 114
cron job for polling Twitter, 135

Index | 431

cron module, 135
crypto policy FIPS, 376
crypto_policy: STRICT, 379
custom modules, 331-354

debugging, 350-351
deciding whether to develop a module, 334
documenting, 349-350
example, checking that you can reach a

remote server, 332
expected outputs, 336
how Ansible invokes modules, 334-336
implementing in Bash, 352-353
implementing in Python, 337-348

accessing parameters, 339
AnsibleModule initializer parameters,

343-346
argument options, 340-343
check mode (dry run), 348
importing AnsibleModule class, 340
invoking external commands, 347-348
parsing arguments, 339
returning success or failure, 346

location of, 334
specifying alternative location for Bash, 353

D
daemons

Docker daemon, connecting to, 246
Gunicorn as a daemon, 110
no daemons in Ansible, 12

databases
configuring Postgres database for Mezza‐

nine, 123
database role for deploying Postgres in Mez‐

zanine, 163
Mezzanine custom command, createdb, 127
MySQL, provisioning, 253
server-based versus serverless, 108

database_name variable, 161, 166
database_user variable, 161, 166
db_pass variable, 166
debug module, 149

outputting registered variable with, 89
outputting value of a variable, 88
printing out a message with, 52

debug plugin, 323
making error messages easier for humans,

143
debugger keyword, 150

debugging playbooks, 143-157
assert module, 152-153
checking playbook before execution,

153-157
check mode, 155
diff, 155
limits, 156
listing hosts, 154
listing tasks, 154
syntax check, 154
tags, 156

common SSH challenges, 147-149
debug module, 149
debug task, 178
error messages, 143
interactive playbook debugger, 150-151
SSH issues, 144-147

debugging your module, 350-351
declarative model of desired state of resources,

295
default filter (Jinja2), 180, 181
default option, 341
default plugin, 323
default variables for roles, 166
defaults directory, 160
delegated driver (Molecule), 260

creating cleanup.yml playbook, 266
using localhost for testing with, 262

delegate_to clause
delegate_to: localhost, 210, 216
using with Nagios, 212

delivering continuously, 422
dense plugin, 323
dependencies

in Python projects, specifying in require‐
ments.txt file, 119
example requirements.txt file, 120

Python libraries, 16
dependent roles, 172, 174
deployments, 3

best practices, 422
complications in deployment to production,

105-107
deploying Dockerized Ghost application,

253-258
deploying Mezzanine with Ansible, 111-142

complex arguments in tasks, 121
configuring the database, 123
enabling NGINX configuration, 133

432 | Index

full playbook, 136-140
generating local_settings.py file from

template, 124-126
installing Mezzanine and other packages

into virtual environment, 118-121
installing multiple packages, 114
installing TLS certificates, 134
installing Twitter cron job, 135
organization of deployed files, 112
running django-manage commands, 127
running playbook against Vagrant

machine, 140
troubleshooting, 141

deploying Mezzanine with roles, 161-171
dereferencing variables, 92
desired state, 262, 421

declarative and imperative models of, 295
using desired_state variable, 295

dest argument, 346
development branch (Ansible on GitHub), 17
DevOps, 422
dictionaries

accessing dictionary keys in a variable, 92
ansible_local variable with key named

example, 97
facts returned by setup module, 95
iterating over, with_dict construct, 194
modules returning with ansible_facts as key,

95
passed as module arguments, 342
passing module arguments as, 122
value of variables set using register clause,

89
in YAML, 44

diff (showing file changes), 155
dig tool, looking up DNS TXT record, 189
directories

creating role files and directories with
ansible-galaxy, 171

custom modules in, 334
directory layout for Ansible, 18
directory layout for host and group vari‐

ables in the inventory, 88
directory structure for collections you cre‐

ate, 277
Mezzanine playbook deployed into Vagrant

machine, 112
distro argument, 341
Django-based applications

django role with memcached and nginx
dependent roles, 172

example, deploying an app, 68-71
Mezzanine test application, 105

(see also Mezzanine)
projects, 112

django-manage commands, 177-181
changed_when and failed_when clauses,

177
createdb, 177
final idempotent task, 180
return values when database already cre‐

ated, 178
django_manage module, running commands,

127
DJANGO_SETTINGS_MODULE environment

variable, 130
DNS

domain name mapping to IP address of
Vagrant box, 126

not resolving hostname
192.168.33.10.nip.io, 142

translation of hostnames to IP addresses,
189

dnspython package, 189
Docker, 28, 279, 388

Ansible and, 246
application life cycle, 245
connecting to Docker daemon, 246
containers as building block, 244
deploying Dockerized application, 253-258
Docker image GCC 11, 288-291
pushing container image to Docker registry,

249-250
Redis cluster with, 264
registry of publicly available container

images, 244
remote API, 244
running container on local machine, 247

docker command-line tool, 247
docker images command, 249
docker ps command, 247

Docker Compose tool, 250
Docker Desktop, 246
docker driver, 264
Docker Hub, 245, 249
Docker, Inc., 244
Dockerfiles, 247, 279
docker_* modules, 244

Index | 433

docker_compose module, 251
docker_container module, 247

cleanup parameter, 258
documentation, 246

docker_image module, 249
docker_image_info module, 252
docker_login module, 249
documentation

Ansible modules, 49
documenting your module, 349-350

domains variable, 125, 140, 183
list of domains, 132
populating ALLOWED_HOSTS list for

Mezzanine, 142
dot notation (.)

accessing keys of a dictionary, 92
accessing variables in YAML dictionaries, 75

drivers, 259
configuring for Molecule, 260
Molecule drivers and their dependencies,

260
dynamic groups, defining for EC2 with tags,

303-305
adding tags to existing resources, 303
nicer group names, 304

dynamic includes, 199
dynamic inventory, 76

(see also inventory)
for Amazon EC2, 301, 303
using add_host module in addition to, 83
and VPCs, 319

dynamic inventory plugin for EC2, 296

E
EC2 (see Amazon EC2)
ec2 module, wait parameter, 313
ec2_tag module, 303
editors, 205
embeddability of Ansible, 9
encoding (UTF8) for Postgres, 123
encryption

encrypted variables, 12
encrypting sensitive data with ansible-vault,

205-207
multiple vaults with different passwords,

207
encryption at rest, 205
NGINX handling TLS encryption, 109

endfor statement, 126

end_batch command, 223
end_host command, 223
end_play command, 223
enp0s8 interface, 194
env lookup, 187
environment variables

Amazon EC2, setting, 298
collecting on target hosts, 95
configuration on Windows, 241
setting with environment clause on a task,

128
environments, equivalent, with Ansible, 11
error handling with blocks, 201-205
errors

humane error messages, 143
ignoring when a module returns, 91

/etc/ansible/facts.d directory, 96
eth0 interface, 212
eth1 interface, 212
eventual consistent state, 7
executables

executable config option, 67
inventories as, 61
marking file as, using chmod +x, 77

execution environments, creating, 416-417

F
Fabric

deployment script for Mezzanine example,
106

Mezzanine Fabric scripts, 133
scripts shipping with Mezzanine to keep

tweets up-to-date, 135
facts, 85, 93-98

caching, 364-368
JSON fact-caching backend, 366
Memcached fact-caching backend, 367
Redis fact-caching backend, 366

gathering manually, 211
local, 96
return by any module, 95
using set_fact to define a new variable, 97
viewing all facts associated with a server, 94
viewing subset of, 95

fact_caching implementations, 365
fact_caching_connection configuration option,

366
fail clause, 178
failed_when clause, 177

434 | Index

failed filter in argument, 181
failures

failed variable, 336
fail_json method for, 346
specifying maximum percentage of failed

hosts before pulling the play, 214
file lookup, 185

using as a loop, 195
file module, 7

using to create a symlink, 133
file permissions used by several modules, speci‐

fying, 120
filepaths, filters for, 182
files

creating role files with ansible-galaxy, 171
with_fileglob looping construct, 193

files directory, 160
files_src_path, 171
filter parameter (setup module), 95
FilterModule class, 184
filters, 181-184

default, 181
filepath, 182
for registered variables, 181
writing your own, 183

filter_plugins directory, 183
FIPS:OSPP crypto policy, 376
flush handlers, 223
for loops, 125

Jinja2 for loop syntax, 126
{% %} delimiters, 126

force_source: true option (ansible-playbook),
249

foreman plugin, 325
forks option, 368
FQCN (see fully qualified collection name)
free strategy, 219-221
from port/to port notation, 310
fully qualified collection name (FQCN), 274

using for modules in your playbooks, 275

G
galaxy_info key, 174
gathering configuration option, 365
gather_facts clause, 364, 365
GCC, Docker image GCC 11, 288-291
GCP (Google Cloud Platform), 283-285
Ghost (example application), 246

deploying, 253-258

cleaning out containers, 257
deploying Ghost database, 254
frontend, Ghost and NGINX, 255-257
provisioning MySQL, 253

docker-compose file starting up, 251
querying locally stored container images,

252
git module, checking out repository to remote

host, 117
Git version-control system, 23

cannot check out Git repository, 141
checking out Mezzanine project using,

117-118
.gitignore file in Git repository, 114

Gitea, 383, 385
GitHub accounts, 117
globs, 95
GNU Privacy Guard (GPG), 299
Go Operators, 244
Google Cloud Platform (see GCP)
Google Kubernetes Engine, 244
Goss, 269

file for SSH server, 270
integrating with Molecule, 271
SSH server validation output, 270

groups, 67-72
aliases and ports, 71
example, hosts for deploying Django app,

68-71
group variables in inventory, 73
of groups, 71
groups variable, 99
of hosts, 47
listing in dynamic inventory script, 78
managing local groups and users on Win‐

dows, 239
specifying group variables in inventory, 73
specifying union of two groups, 209

group_by module, 85
group_vars directory, 74, 88
Gunicorn (application server), 108

NGINX as reverse proxy for, 109
setting configuration file for, 130
TLS encryption, 109

H
handlers, 55, 160

advanced, 221-231
flush handlers, 223

Index | 435

handlers notifying handlers, 224
listen feature, 224-231
meta commands, 223
in pre- and post-tasks, 221

for database role in Mezzanine, 165
important facts about, 55
restart supervisor and restart nginx, 131

HashiCorp Packer (see Packer)
HashiCorp Terraform, 295
health checks, 223
Helm Charts, 244
host and group variables

defining in the inventory, 88
in their own files, 74-76
inside the inventory, 72-74

host-key checking, 118, 306
hostmanager plugin (Vagrant), 29
hostnames

DNS not resolving 192.168.33.10.nip.io, 142
inventory_hostname variable, 99
translation to IP addresses by DNS, 189

hosts
adding to inventory at runtime with

add_host, 83
configuring for pipelining, 361-363
failed host key verification, 148
gathering facts from, 93
inventory of, 61

(see also inventory)
limiting set of hosts targeted for a playbook,

156
limiting which hosts run, 210
listing for Ansible playbook, 154
patterns for specifying, 209
in plays, 47
retrieving IP address from, 211-213
running on batch of hosts at a time, 215
running on one host at a time, 213-215
showing details in dynamic inventory script,

78
tracking host state, 49
Windows, 233

(see also Windows hosts, managing)
hostvars variable, 98

versus host_vars directory, 99
host_vars directory, 74, 88
HTTP

development HTTP server for Mezzanine,
107

WinRM SOAP-based protocol relying on,
234

HTTP WSGI servers, 109
HTTPS requests, 56
hypervisors, 18, 243

Packer creating images for, 283

I
IaaS (infrastructure as a service), 293

cloud services, 293
IAM (Identity and Access Management), 298
idempotence, 12

idempotence-checking logic for a VPC, 317
implemented by creates parameter, 135
making playbooks idempotent and undoa‐

ble, 295
ignore_errors clause, 91, 211
images

AMI ID, 306
creating Docker image, GCC 11, 288-291
creating with Packer, 279-288

Amazon EC2 AMI, 287-288
Azure virtual machine, 285-287
combining Packer and Vagrant, 282
for cloud providers, 283
Google Cloud Platform, 283-285
playbook, 288

imperatively coding actions for desired state,
295

imports, import_* feature, 198
includes, 198-201

dynamic, 199
included file containing a loop, 196
role, 200
role flow control, 200

include_role, 198, 200
running parts of roles with tasks_from, 200

include_tasks, 198
include_vars, 198
info, modules returning, 96
infrastructure as a service (see IaaS)
infrastructure as code, 295
INJECT_FACTS_AS_VARS setting, 93
insecure_private_key file, 187
instances (EC2), 297

adding tags to, 303
assigning to subnet in VPC, 305
creating and adding to a group, 312
launching new instances, 306

436 | Index

instance_type parameter, 306
intelligence autonomy, 380
interpreters, 66
intersection, 209
inventory, 61-86

adding entries at runtime with add_host
and group_by, 83-86

adding webservers group to, 39
behavioral inventory parameters, 65-67
breaking into multiple files, 82
creating on Ansible Automation Platform

with awx.awx, 413
decoupling from projects, 420
dynamic, 76-82

interface for dynamic inventory script,
77-79

plugins connecting to cloud systems, 77
using Amazon EC2, 77
using Azure Resource Manager, 77
writing dynamic inventory script, 79-82

dynamic inventory for EC2, 301-303
inventory caching, 302
other configuration options, 303

dynamic inventory plugin for EC2, 296
explicitly adding groups to, 154
groups, 67-72
host and group variables in, 72-74, 88
host and group variables in their own files,

74-76
inventory/hosts files, 62
management by Ansible Automation Plat‐

form, 406-408
multiple Vagrant machines, 62-65
network, 374
numbered hosts, 72
providing information about servers to

Ansible, 20
putting all Windows hosts into a group, 234

inventory file
adding Windows connection variables to,

234
.ini format, 20

inventory parameter (ansible.cfg), 82
inventory_hostname variable, 38, 99
IP addresses

assigning private IP address to Vagrant
machine, 27

embedded in nip.io domain names, 125
permitted to connect to EC2 instance, 309

retrieving address from the host, 211-213
translation of hostnames to by DNS, 189
for Virtual Private Clouds, 305

items lookup plugin, 192
iteration, mechanisms for, 191

J
jabber plugin, 326
Java

configuration of, 241
Java development machine, 237
Jenkins written in, 387

Jenkins, 383, 387-388
and Ansible, 389-392

Jenkins configuration as code, 389
Jenkins job configurations as code, 391

Ansible Jenkins plug-in, 395-397
Jinja2 templating, 6

assert statement code, 152
configuration template for NGINX, 53
features to transform data into configura‐

tion files, 133
Template Designer Documentation, 54

job templates
running jobs by, 408-410
running playbook with a job template, 415

job-dsl plug-in, 391
join filter (Jinja2), 132, 183
JSON

guest configurations file, 31
input for modules in Bash, 352
JSON file fact-caching backend, 366
json plugin, 324
logentries plugin generating JSON objects,

327
output from modules, 336

junit plugin, 326

K
Kerberos, 233
key pairs, 307-308
key_name parameter, 307
Kickstart, 280
Kubernetes, 244
Kubernetes Operator SDK, 244
Kubernetes Operators (Dobies and Wood), 244

Index | 437

L
label control, 196
length filter (Jinja2), 152
limits, 156, 210
linear strategy, 218-219
linting, 266-269
Linux

creating ad hoc groups based on Linux dis‐
tribution, 85

installing Ansible, 15
Linux-based container programs, 244
running different distributions in Virtual‐

Box, 30
--list command, 78
listen feature (handlers), 224-231

SSL case for, 225-231
lists

passed as module arguments, 342
in YAML, 43

live_hostname variable, 140
load balancers

adding a host to, 213
removing host from and upgrading pack‐

ages, 213
local facts, 96
locale categories for Postgres database, 123
locale variable, 166
locale_gen module, 123
local_settings.py file, generating from template,

124-126
logentries plugin, 327
logstash plugin, 327
log_plays plugin, 327
lookups, 184-191

ansible.bultin lookups, 184
csvfile, 188
dig, 189
env, 187
file, 186
invoking using lookup function, 185
looping constructs as lookup plugins, 192,

195
password, 187
pipe, 187
redis, 190
template, 187
writing your own plugin, 191

loop keyword, 192
loops, 54

controls, 195-197
labeling output, 196
setting variable name, 195

more complicated, 191-195
looping constructs as lookup plugins,

192, 195
with_dict construct, 194
with_fileglob construct, 193
with_lines construct, 193

loop_control clause, 197

M
machine credentials, 415
machine images (see images)
mail plugin, 328
manage.py poll_twitter, 135
mappings in YAML, 44
markup in documentation, 350
masterless nature of Ansible, 9
max_fail_percentage clause, 201, 214
memcached dependent role, 172
Memcached fact-caching backend, 367
meta directory, 160
meta module, 223

commands, 223
metadata, tags in EC2, 297
Mezzanine (test application), 105-110

deploying to production, complications
with, 105-107

deploying using Ansible, 111-142
completed playbook, 136-140
configuring the database, 123
enabling NGINX configuration, 133
generating local_settings.py file from

template, 124-126
installing multiple packages, 114
installing TLS certificates, 134
installing Twitter cron job, 135
listing tasks in Mezzanine playbook, 111
organization of deployed files, 112
running custom Python scripts in appli‐

cation context, 128-133
running django-manage commands, 127
running playbook against Vagrant

machine, 140
troubleshooting, 141

deploying with roles, 161-171
database role for deploying the database,

163

438 | Index

mezzanine role for deploying Mezza‐
nine, 166-171

pre-tasks and post-tasks, 162
using roles in playbooks, 161-162

Gunicorn application server, 108
NGINX web server, 109
Postgres database, 108
Supervisor as process manager, 110

Microsoft Active Directory (see Active Direc‐
tory)

Microsoft Azure (see Azure)
migrate command, 127
Miniconda, 263
minimal plugin, 324
Mitogen for Ansible, 363
modes (file permissions), 120
modularity, 419
modules, 2, 48, 331

Ansible Docker, connecting to Docker dae‐
mon, 246

Ansible modules for configuring Jenkins,
389

Ansible modules performing actions on
EC2, 296

benefits of, 8
categories of, 10
check mode support, 155
custom (see custom modules)
docker_*, 244
documentation for, 49
FQCN for modules, 275
included in a collection, listing, 275
invocations, breaking up across multiple

lines, 122
invoking, using register clause, 89
name and arguments in tasks, 47
output variables expected by Ansible, 336
returning facts or info, 95
Windows, 237

Molecule, 259-272, 421
commands, 266
configuring drivers, 260
initializing in existing role or adding a sce‐

nario, 261
installation and setup, 259
linting with, 266-269
scenarios, 262-266

configuring, 262
desired state, 262

managing containers, 264
verifiers used with, 269-272

Ansible, 269
Goss, 269
TestInfra, 271

molecule cleanup command, 262, 266
molecule converge command, 262, 266
molecule lint command, 267
molecule prepare command, 266
molecule test command, 262
molecule verify command, 269
molecule-goss, 271
msg variable, 180, 337
multiline strings in YAML, 44
multitier orchestration, 9
mustache notation referencing variables {{ }},

51, 88
mutually_exclusive parameter, 344
MySQL

configuring Ghost to connect to, 256
deploying as Ghost application database,

254
persistent store for Ghost, 253
provisioning, 253

N
Nagios alerting system, 212
names

Amazon EC2 instance names as tags, 297
name setting in plays, 47

namespace.collection.module notation, 274
namespaces, 274
.NET framework, 234
network parameter (EC2 instance), 307
networking, 371-375

Ansible Connection for network automa‐
tion, 372

bastion host in private network, 149
creating Docker network, 255
EC2 complete playbook example, 318
getting network interface information for

Vagrant machine, 65
network automation use cases, 374
network automation with Ansible, 381
network inventory, 374
privileged mode, 373
VPCs in Amazon EC2, 305

NGINX, 109

Index | 439

checking configuration before server starts,
224

configuration for frontend for Ghost, 247
configuring as reverse proxy for Gunicorn,

109
configuring host to run, 36-39

creating a web page, 38
creating webservers group, 38
specifying config file, 37

deploying NGINX container in Ghost appli‐
cation, 257

Docker network enabling to connect to
Ghost container, 255

docker-compose file starting up NGINX
and Ghost, 251

enabling configuration in Mezzanine, 133
example playbook installing and configur‐

ing web server, 35
generating configuration template for, 53
installing on Ubuntu with ansible com‐

mand, 25
nginx dependent role for django role, 172
nginx role in Mezzanine, 161
setting configuration file for, 130
SSL case for listen feature, 225-231

nip.io, 125
about, 125
cannot reach 192.168.33.10.nip.io, 142

notification plugins (see callback plugins)
notifications

handlers notifying handlers, 224
restarting nginx in ssl role, 228

no_log parameter, 343
no_log: true setting, 197, 205
npm start command, 256
ntp role for NTP server, 172
null plugin, 324
numbered hosts, 72

O
octal numbers, 120
oefenweb.ntp role, 173, 174
oneline plugin, 324
OpenShift, 245
OpenSSH, 149, 355

changes in OpenSSH 9, 379
security weakness in default setup of

OpenSSH 8, 379
openssh-server package, 271

openssl command, 135
operating system virtualization, 243

(see also containers)
orchestration, 3

multitier, 9
orchestrating multiple containers on local

machine, 250
organization, creating, 413
organizing content, 420
OSPP, 376
output variables from modules expected by

Ansible, 336

P
PaaS (platform as a service), 294
package managers

Chocolatey, for Windows, 237
Conda, 263
package abstraction for Linux distributions,

7
packaging modules, passing list directly to, 192
Packer, 377

creating images with, 279-288
Amazon EC2, 287-288
Azure, 285-287
combining Packer and Vagrant, 282-283
GCC container image, 288-291
Google Cloud Platform, 283-285
playbook, 288
Vagrant/VirtualBox VM, 279-282

parallelism, 368
params dictionary, 339
password lookup, 187
PasswordAuthentication no, 147
passwords for Windows users, 239
path argument, 346
path variable, 129
patterns

for specifying hosts, 209
supported by Ansible, 209

performance indicators, 422
performance, making Ansible faster, 355-370

concurrent tasks with async, 368-370
fact caching, 364-368
Mitogen for Ansible, 363
more SSH tuning, 359-361
parallelism, 368
pipelining, 361-363

pets versus cattle, 72

440 | Index

php role, 201
ping module, invoking, 21
pings

"ping": "pong", meaning successful connec‐
tion, 147

pinging SSH server, 144
win_ping to Windows host, 236
working connection to Windows host, 236

pip freeze command, 121
pip module

installing Python packages with, 119
specifying package names version, 121

installing Python virtualenv, 119
passing string to as an argument, 121

pip, installing Molecule and dependencies with,
260

pipe lookup, 187
pipelining, 361-363

configuring hosts for, 361-363
enabling, 361
validating files, 363

platform as a service (see PaaS)
playbooks, 4, 35-60

anatomy of, 45-60
hosts, 47
modules, 48
plays, 46
relationships between entities, 49
tasks, 47

best practices, 421
complete EC2 playbook, 314-316
complete Mezzanine playbook, 136-140
complex, 177-207

dealing with badly behaved commands,
177-181

filters, 181-184
lookups, 184-191
more complicated loops, 191-195

creating playbook for Windows, 237
debugging (see debugging playbooks)
defining variables in, 87
for Docker image of GCC 11, 289
example playbook to print operating system

details, 93
example, configuring host to run NGINX,

36-39
example, installing and configuring NGINX

web server, 35
image creation with Packer, 288

listing tasks in Mezzanine playbook, 111
modifying example to add TLS support,

50-60
finished playbook, 57
generating NGINX configuration tem‐

plate, 53
generating TLS certificate, 51
handlers, 55
loop, 54
quoting in Ansible strings, 52
running the playbook, 58
testing the playbook, 56
validation, 57
variables, 51

more complex
blocks, 201
encrypting sensitive data with ansible-

vault, 205-207
error handling with blocks, 201-205
imports and includes, 198-201
loop controls, 195-197

running example playbook for NGINX web
server, 39-41

running Mezzanine playbook against
Vagrant machine, 140

running with a job template, 414
running with Jenkins, 395
tracking host state, 49
using collections in, 275
using roles in, 161-162
YAML syntax, 41-45

plays, 46-47
entity relationships in playbooks, 49
tags on, 156

pluggability of Ansible, 9
plugins

callback (see callback plugins)
filter, 183
inventory, 61, 77
Vagrant, 29

port forwarding (Vagrant), 25
ports

in hostnames, 71
security group, on Amazon EC2, 310

Postgres
configuring database for Mezzanine, 123
database role to install for Mezzanine, 163
setting up database server for, 108

postgresql_db module, 123

Index | 441

postgresql_user module, 123
PowerShell, 234-236

Get-WindowsFeature, 239
modules for Windows, 48
script to set up Windows for Ansible, 235
test for connection configuration, 236
version determination, 234

pre-tasks and post-tasks, 162
handlers in, 221

PreferredAuthentications, 360
Private Automation Hub in Ansible Automa‐

tion Platform 2, 400
private networks, 149
privileged mode, 373
production environment, Ansible staging envi‐

ronment similar to, 11
production mode, configuring Ghost to run in,

256
production setup, 33
profile_roles module, 328
profile_tasks plugin, 328
projects

Ansible Automation Platform, 405
decoupling inventories from, 420
in Django, 112, 117

provision block, 141
provisioners

Ansible local provisioner, using with
Vagrant, 28

Ansible playbooks as provisioner for Packer,
279

Docker, 28
installing Ansible on GCP virtual machine,

285
running with vagrant, 29

provisioning, 3
for Azure VM image, 287
cloud, 294
of MySQL database machine, 253
using automated provisioning systems, 76

ProxyJump bastion setting, 149
PublicKeyAuthentication, 360
pull mode, 12
pull-based configuration management, 8
push-based configuration management, 9
Python, 6

ansible_python_interpreter parameter, 66
Boto3 library, 299
cloud service libraries, 295

custom scripts, running in application con‐
text, 128-133

implementing modules in (see custom mod‐
ules)

installing packages for Mezzanine deploy‐
ment, 114

installing packages into virtualenv, 118-121
loose dependencies for Ansible, 16
modules for Linux/Unix, 48
Molecule testing framework for roles, 259
package managers, using to install Ansible

on Unix/Linux/macOS machine, 15
Paramiko library, 81
requirements for plugins, 325
WinRM library, 233

Q
quality assurance with Molecule (see Molecule)

R
ranges, 72
rc key, 90
Red Hat

hosts for Ansible Automation Platform, 402
OpenShift-based cloud platform, 244
Quay registry, 245
subscription models, 402

Ansible Automation Platform trial, 403
Red Hat Ansible Automation Platform, 273,

399
(see also Ansible Automation Platform)

Redis, 184, 264
fact-caching backend, 366
redis lookup, 190
using docker driver to simulate Redis Senti‐

nel cluster on CentOS 7, 264
refresh_inventory command, 223
regions parameter, 307
register clause, 178

not needed when invoking service_facts to
return facts, 96

using when invoking a module, 89
registered variables, 89

(see also variables)
filters for, 181

registries, 245
pushing container image to Docker registry,

249-250
registry_url option (for docker_login), 250

442 | Index

regular expressions, 313
patterns beginning with ~, 209

remote_user variable, 148
repo_url variable, 117
reproducible systems, 11
required option, 340
required_one_of parameter, 344
requirements.yml file, 174

for roles and collections, 275
requiretty, 361

disable-requiretty.yml file, 362
rescue clause, 202
restart supervisor handler, 131
RESTful API, 410-410
result.out variable, 180
retries, 240
reuse of Ansible, 6
reverse proxy, NGINX for Gunicorn, 109
RHEL 8 image for Vagrant/VirtualBox, 279
RHEL 8 systems, 281
roles, 2, 159-175

Ansible Galaxy, 173-175
basic structure, 159, 160
creating, 261
creating for several operating systems, 238
creating role files and directories with

ansible-galaxy, 171
decoupling from collections, 420
dependent, 172
example, deploying Mezzanine with roles,

161-171
database role for deploying the database,

163
mezzanine role to deploy Mezzanine,

166-171
pre-tasks and post-tasks, 162
using roles in your playbooks, 161-162

IAM, 298
includes, 200

role flow control, 200
location of, 160
running CI for Ansible roles, 392
tags on, 156

roles directory, 171
roles_path setting, 160, 173
root user, 24
Ruby, Vagrantfile written in, 30
running strategies, 218

free strategy, 219-221

linear strategy, 218-219
runs

limiting which hosts run, 210
limiting which tasks run, 216-218
running a task on the control machine, 210
running on batch of hosts at a time, 215
running on one host at a time, 213-215
running only once, 216

run_once clause, 216

S
SaaS (software as a service), 294
say plugin, 329
scalability (Ansible), 11
scaling

Ansible scaling down, 6
Ansible scaling up and down, 159

scenarios, 262-266
configuring in Molecule, 262
desired state, 262
managing containers, 264
managing virtual machines, 263

script module, 128
invoking in task defined in a role, 170
using instead of writing your own module,

332
using to invoke custom Python code, 129

secret access key, 298
secret variables, 113
secure transport, 12
security, 375-381

benefits of Ansible, 11
best practices, 422
secured, but not secure, 376-379
security automation in Ansible, 381
shadow IT, 379
sunshine IT, 380
zero trust, 380

security groups, 308-310
permitted IP addresses, 309
ports, 310
routing traffic on EC2, 318
rule parameters, 309
security_group parameter for EC2 instance,

307
self-service IaaS clouds, 293
sequences in YAML, 43
serial clause, 201, 213

using a list of serials, 215

Index | 443

using percentage value, 215
using with max_fail_percentage, 214

servers
describing, 61

(see also inventory)
setting up a server for testing, 17-25
viewing all facts associated with, 94

service, 110
service_facts module, 96

using to return facts, 96
setfacl command, 165
setup module

filter parameter, 95
invoking explicitly to gather facts, 211
output of, 94
working on both Linux and Windows, 237

set_fact module, 97
shadow IT, 211, 379
sharing Ansible, 6
shebang (#!), 60, 353
shell module

changed key, 90
output structure, 91

shells
ansible_shell_type parameter, 66
Bash and Zsh, 299

simplicity of Ansible, 5-8, 13
simplicity, modularity, and composability, 419
skipping tags, 218
slack plugin, 329
smart gathering, 365
smoke tests, 223
SOAP-based protocol over HTTPS (WinRM),

233
software as a service (see SaaS)
SonarQube, 383, 386
Sonatype Nexus, 245
Sonatype Nexus3, 383
source code management (SCM) systems, 405
splunk plugin, 329
SQLite database, 123
SSH, 6

agent forwarding, 118
cloning Git repository over, 117
common challenges, 147-149

host key verification failed, 148
PasswordAuthentication no, 147
private networks, 149
SSH as a different user, 148

debugging SSH issues, 144-147
initial response of SSH server on Ubuntu,

313
key pairs, 307-308
more tuning, 359-361

algorithm recommendations, 359
scalability of, 11
security, 422
server validation with Goss, 270
specifying same key for each host in

Vagrant, 63
SSH multiplexing and ControlPersist,

355-359
manually enabling SSH multiplexing,

356
SSH multiplexing options in Ansible,

358
TestInfra file for SSH server, 271
vagrant ssh-config command, 19, 64
Vagrant's management of private SSH keys,

19
verifying you can reach GitHub SSH server,

118
ssh -v command, 144
ssh-add -L command, 118
ssh-add command, 117
ssh-agent command, 117
ssh-audit, 378, 422
ssh-copy-id command, 148
ssh-keygen command, 149, 360
ssh-keyscan command, 149
sshd service, 271
sshd_config, 360
ssh_args, 360
SSL

case for the listen feature, 225-231
TLS versus, 51

staging, 394
staging environment, 11

or testing local collections, 400
--start-at-task flag, 216
stat module

calling and making assertion, 152
output when collecting properties of a file,

91
return values, 152

static assets, 109
copying to appropriate directories, 127

stderr key, 90

444 | Index

stdout key, 90
stdout plugins, 321-324

ara, 322
debug, 323
default, 323
dense, 323
json, 324
minimal, 324
null, 324
oneline, 324

stdout_callback parameter, 321
stdout_lines key, 90
--step flag, 216
strategies, 218-221

free strategy, 219-221
linear strategy, 218-219

strategy plug-ins, 364
StrictHostKeyChecking setting, 149
strings

multiline strings in YAML, 44
passing module arguments as, 121
pure YAML instead of string arguments, 45
quoting in a list, using a filter, 183
quoting in Ansible strings, 52
in YAML, 42

subnets, 318
subscript notation ([]), 92
success, returning, 346
sudo utility, 33, 362
sudoers config file to disable requiretty, 362
sunshine IT, 380
Supervisor (process manager), 110

Python-based configuration file, 131
setting configuration file for, 130

surround_by_quotes function, 184
symlinks, 133
syntax check, 154, 266
system abstraction, 7
system packages, installing for Mezzanine test

application, 114

T
tags, 156

EC2, 297
defining dynamic groups with, 303-305

running, 216
skipping, 218
tagging and testing all the things, 421
tagging container image, 249

tags parameter for EC2 instance, 307
tag_env_production group, 303
tag_type_web group, 303
Tailscale VPN, 149
tasks, 4

adding become: true clause to, 115
changed state or failed, detecting, 177-181
complex arguments in, 121
concurrent tasks with async, 368
defined in role versus defined in playbook,

170
defining in playbook to invoke redis lookup,

190
from dynamic includes, listing with ansible-

playbook, 199
grouping, using block clause, 201
with identical arguments without includes,

198
separating into separate files, 199

limiting which tasks run, 216-218
listing for Ansible playbook, 154
listing in Mezzanine playbook, 111
in plays, 47
pre-tasks and post-tasks, 162

handlers in, 221
profile_tasks plugin, 328
return value filters, 181
running on control machine instead of

remote host, 210
running only once, 216
tags on, 156
tasks directory, 160
using command output in, 90
using include for task files applying argu‐

ments in common, 199
tasks_from, using with include_role, 200
TCP sockets, 248
template lookup, 187
template module, 186

invoking in task defined in a role, 170
validate clause, 363

templates, 160
creating for lookup of authorized_keys file,

186
generating HTML web page from, 38
generating local_settings.py file from tem‐

plate, 124-126
generating NGINX configuration template,

53

Index | 445

transforming data into configuration files,
130-133

Terraform, 295
test server for Ansible, 17-25
TestInfra, 271
testing

tags helping in, 421
using Molecule (see Molecule)

text editors, 205
tilde operator (~), concatenating variables

between double braces, 89
timer plugin, 330
TLS

adding support to example playbook, 50-60
generating NGINX configuration tem‐

plate, 53
generating TLS certificate, 51
quoting in Ansible strings, 52
variables, 51

configuring NGINIX to handle encryption,
109

installing certificates in Mezzanine deploy‐
ment, 134

versus SSL, 51
tls_enabled variable, 132

TLS/SSL certificates, 236
TLS certificates for NGINX container in

Ghost application, 257
troubleshooting

running Mezzanine playbook, 141
Bad Request (400) error, 142
cannot check out Git repository, 141
cannot reach 192.168.33.10.nip.io, 142

truthy and falsey values in playbooks, 43
Twitter cron job, installing in Mezzanine

deployment, 135
TXT records (DNS), 189
type option, 341

U
Ubuntu

retrieving latest AMI for, 310
updating the apt cache, 115

undo/redo pattern, 295
union of two groups, 209
until keyword, 191
uri module, 56

calling with complex arguments, 122
user variable, 195

users
adding local user on Windows, 239
SSH as a different user, 148
user management by Ansible Automation

Platform, 404

V
-v flags (see verbose flags)
Vagrant

Ansible local provisioner, 28
configuring to bring up three hosts, 62-65
convenient configuration options, 25-28

enabling agent forwarding, 27
port forwarding and private IP

addresses, 25
development cluster onVirtualBox with, 402
Docker provisioner, 28
installing default public key for user, using

pipe lookup, 187
plugins, 29
running Mezzanine playbook against

Vagrant machine, 140
running the provisioner, 29
setting up Ansible test server with, 17-20, 35
using with Packer to create images, 282
vagrant driver launching Windows VM in

VirtualBox, 263
Vagrant/VirtualBox VM, 279-282
Vagrantfile, 30-33

vagrant destroy --force command, 62
vagrant destroy command, 25
vagrant init command

creates: Vagrantfile argument, 84
vagrant ssh command, 18
vagrant ssh-config command, 64

parsing output with Paramiko library, 81
vagrant status command, 79
vagrant up --no-provision command, 29
vagrant up --provision command, 29
vagrant up focal command, 32
vagrant-hostmanager plugin, 29
vagrant-vbguest plugin, 30
validating files, 363
variable interpolation, 88, 125

in Supervisor configuration file, 132
variables, 87-93

accessing Ansible facts as top-level vari‐
ables, 93

built-in, 98-100

446 | Index

groups variable, 99
hostvars, 98
inventory_hostname, 99

default, 160
defining in playbooks, 87

in separate files, 87
defining new variable using set_fact, 97
dereferencing, 92
displaying variable given with -e flag on

command line, 101
extra, on the command line, 100-102
facts, 85
host and group variables in inventory, 39,

72-74
in NGINX configuration template, 54
in playbook with TLS support, 51
precedence, 102
printing out and modifying with debugger,

151
referencing with {{ mustache }} notation, 51
registering, 89-93
and secret variables defined in Mezzanine

playbook, 113
setting name with loop_var control, 195
supported by debugger, 150
two ways to define in roles, 166
vars directory, 160
vars setting in plays, 47
viewing values of, 88

vars_files section (playbooks), 87, 206
db_pass in secrets.yml file, 166

vault-ID, 207
verbose flags, 144

example output using -vvv, 145
example output using -vvvv, 145

verifiers
Ansible, 269
Goss, 269
TestInfra, 271

version control, 48
Ansible and, 23
passing arguments as dictionaries instead of

strings, 122
secrets.yml file and, 205

vhost as loop variable, 196
virtual machine images, 279

(see also images)
container images versus, 244

creating for cloud providers with Packer,
283

Vagrant VirtualBox image, creating with
Packer, 280-282

virtual machines
managing with Molecole scenario, 263
use in IaaS clouds to implement servers, 293

Virtual Private Clouds (see VPCs)
VirtualBox, 18

customization, 30
running different Linux distributions in, 30

virtualenv (Python), 16, 16
installing Mezzanine and other packages

into, 118-121
Molecule and its Python dependencies in,

260
running custom scripts in, 128

virtualization
containerization as form of, 243
hardware, 243

Visual Studio Code, installing, 240
VPCs (Virtual Private Clouds), 305

specifying a VPC, 316-319
VPNs, 288

bastion host set up with VPN, 149

W
wait parameter (ec2 module), 313
wait_for module, 313, 332

search_regex argument, 313
Web Server Gateway Interface (WSGI), 109
webservers group, creating, 38
when: tls_enabled clause, 135
whoami command, 89
Windows

running Ansible on, 16
virtual machine, launching in VirtualBox

with vagrant driver, 263
Windows hosts, managing, 233-242

adding a local user, 239
configuration of Java, 241
connection to Windows, 233
installing software with Chocolatey, 240
Java development machine, 237
PowerShell, 234-236
updating Windows, 241
Windows features, 239
Windows modules, 237

Windows servers, 6

Index | 447

Windows Subsystem for Linux (WSL2), 16
windows_features_remove, 239
WinRM (Windows Remote Management), 6,

233
win_chocolatey module, 237
win_stat check, 240
win_user module, 239
with_dict looping construct, 194
with_file looping construct, 195
with_fileglob looping construct, 193
with_items clause, 192, 196
with_lines looping construct, 193
WSGI (Web Server Gateway Interface), 109
WSL2 (Windows Subsystem for Linux), 16

Y
YAML, 6, 41-45

Boolean type, 42
comments, 41
dictionaries (or mappings), 44
documents starting with three dashes (---),

41

end of file (...), 41
indentation and whitespace, 41
inline syntax for dictionaries, 304
line folding, 121, 135
lists (or sequences), 43
multiline strings, 44
pure YAML instead of string arguments, 45,

122
secrets.yml file for Mezzanine test applica‐

tion, 114
strings, 42
syntax for module arguments, 48
using dictionaries to represent group vari‐

ables, 75
yaml plugin, 321

YAMLlint, 267
yamllint tool, 45

Z
zero trust, 380

448 | Index

About the Authors
Bas Meijer is a freelance software engineer and devops coach. With a major from the
University of Amsterdam, he has been pioneering web development since the early
nineties. He worked in high-frequency trading, banking, cloud security, aviation,
high-tech, and government. Bas has been an Ansible Ambassador since 2014 and a
HashiCorp Ambassador from 2020–2021.

Lorin Hochstein is a senior software engineer on the Chaos Team at Netflix, where
he works on ensuring that Netflix remains available. He is a coauthor of the Open‐
Stack Operations Guide (O’Reilly), as well as numerous academic publications.

René Moser lives in Switzerland with his wife and three kids, likes simple things
that work and scale, and has earned an Advanced Diploma of Higher Education in
IT. He has been engaged in the open source community for the past 15 years, most
recently working as an ASF CloudStack Committer and as the author of the Ansible
CloudStack integration with over 30 CloudStack modules. He became an Ansible
Community Core Member in April 2016 and is currently a senior system engineer at
SwissTXT.

Colophon
The animal on the cover of Ansible: Up and Running is a Holstein Friesian (Bos
primigenius), often shortened to Holstein in North America and Friesian in Europe.
This breed of cattle originated in Europe in what is now the Netherlands, bred with
the goal of obtaining animals that could exclusively eat grass—the area’s most abun‐
dant resource—resulting in a high-producing, black-and-white dairy cow. Holstein
Friesians were introduced to the United States from 1621 to 1664, but American
breeders didn’t become interested in the breed until the 1830s.

Holsteins are known for their large size, distinct black-and-white markings, and high
production of milk. The black and white coloring is a result of artificial selection
by the breeders. Healthy calves weigh 90–100 pounds at birth; mature Holsteins
can weigh up to 1,280 pounds and stand at 58 inches tall. Heifers of this breed are
typically bred by 13 to 15 months; their gestation period is 9½ months.

This breed of cattle averages about 2,022 gallons of milk per year; pedigree animals
average 2,146 gallons per year and can produce up to 6,898 gallons in a lifetime.

In September 2000, the Holstein became the center of controversy when one of its
own, Hanoverhill Starbuck, was cloned from frozen fibroblast cells recovered one
month before his death, birthing Starbuck II. The cloned calf was born 21 years and 5
months after the original Starbuck.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world.

Color illustration by Karen Montgomery, based on an antique line engraving from
Riverside Natural History. The cover fonts are Gilroy Semibold and Guardian Sans.
The text font is Adobe Minion Pro; the heading font is Adobe Myriad Condensed;
and the code font is Dalton Maag’s Ubuntu Mono.

Learn from experts.
Become one yourself.
Books | Live online courses
Instant Answers | Virtual events
Videos | Interactive learning

Get started at oreilly.com.

©
20

22
 O

’R
ei

lly
 M

ed
ia

, I
nc

. O
’R

ei
lly

 is
 a

 re
gi

st
er

ed
 tr

ad
em

ar
k

of
 O

’R
ei

lly
 M

ed
ia

, I
nc

. |
 17

5

https://oreilly.com

	Cover
	Copyright
	Table of Contents
	Preface to the Third Edition
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments
	From Lorin
	From René
	From Bas

	Chapter 1. Introduction
	A Note About Versions
	Ansible: What Is It Good For?
	How Ansible Works
	What’s So Great About Ansible?
	Simple
	Powerful
	Secure

	Is Ansible Too Simple?
	What Do I Need to Know?
	What Isn’t Covered
	Moving Forward

	Chapter 2. Installation and Setup
	Installing Ansible
	Loose Dependencies
	Running Ansible in Containers
	Ansible Development

	Setting Up a Server for Testing
	Using Vagrant to Set Up a Test Server
	Telling Ansible About Your Servers
	Simplifying with the ansible.cfg File
	Kill Your Darlings

	Convenient Vagrant Configuration Options
	Port Forwarding and Private IP Addresses
	Enabling Agent Forwarding

	The Docker Provisioner
	The Ansible Local Provisioner
	When the Provisioner Runs
	Vagrant Plug-ins
	Hostmanager
	VBGuest

	VirtualBox Customization
	Vagrantfile Is Ruby
	Production Setup
	Conclusion

	Chapter 3. Playbooks: A Beginning
	Preliminaries
	A Very Simple Playbook
	Specifying an NGINX Config File
	Creating a Web Page
	Creating a Group

	Running the Playbook
	Playbooks Are YAML
	Start of Document
	End of File
	Comments
	Indentation and Whitespace
	Strings
	Booleans
	Lists
	Dictionaries
	Multiline Strings
	Pure YAML Instead of String Arguments

	Anatomy of a Playbook
	Plays
	Tasks
	Modules
	Viewing Ansible Module Documentation
	Putting It All Together

	Did Anything Change? Tracking Host State
	Getting Fancier: TLS Support
	Generating a TLS Certificate
	Variables
	Quoting in Ansible Strings
	Generating the NGINX Configuration Template
	Loop
	Handlers
	A Few Things to Keep in Mind About Handlers
	Testing
	Validation
	The Playbook
	Running the Playbook

	Conclusion

	Chapter 4. Inventory: Describing Your Servers
	Inventory/Hosts Files
	Preliminaries: Multiple Vagrant Machines

	Behavioral Inventory Parameters
	Changing Behavioral Parameter Defaults

	Groups and Groups and Groups
	Example: Deploying a Django App
	Aliases and Ports
	Groups of Groups
	Numbered Hosts (Pets Versus Cattle)

	Hosts and Group Variables: Inside the Inventory
	Host and Group Variables: In Their Own Files
	Dynamic Inventory
	Inventory Plug-ins
	Amazon EC2
	Azure Resource Manager
	The Interface for a Dynamic Inventory Script
	Writing a Dynamic Inventory Script

	Breaking the Inventory into Multiple Files
	Adding Entries at Runtime with add_host and group_by
	add_host
	group_by

	Conclusion

	Chapter 5. Variables and Facts
	Defining Variables in Playbooks
	Defining Variables in Separate Files
	Directory Layout

	Viewing the Values of Variables
	Variable Interpolation

	Registering Variables
	Facts
	Viewing All Facts Associated with a Server
	Viewing a Subset of Facts
	Any Module Can Return Facts or Info
	Local Facts
	Using set_fact to Define a New Variable

	Built-In Variables
	hostvars
	inventory_hostname
	groups

	Extra Variables on the Command Line
	Precedence
	Conclusion

	Chapter 6. Introducing Mezzanine: Our Test Application
	Why Is Deploying to Production Complicated?
	Postgres: The Database
	Gunicorn: The Application Server
	NGINX: The Web Server
	Supervisor: The Process Manager
	Conclusion

	Chapter 7. Deploying Mezzanine with Ansible
	Listing Tasks in a Playbook
	Organization of Deployed Files
	Variables and Secret Variables
	Installing Multiple Packages
	Adding the Become Clause to a Task
	Updating the apt Cache
	Checking Out the Project Using Git
	Installing Mezzanine and Other Packages into a Virtual Environment
	Complex Arguments in Tasks: A Brief Digression
	Configuring the Database
	Generating the local_settings.py File from a Template
	Running django-manage Commands
	Running Custom Python Scripts in the Context of the Application
	Setting Service Configuration Files

	Enabling the NGINX Configuration
	Installing TLS Certificates
	Installing Twitter Cron Job
	The Full Playbook
	Running the Playbook Against a Vagrant Machine
	Troubleshooting
	Cannot Check Out Git Repository
	Cannot Reach 192.168.33.10.nip.io
	Bad Request (400)

	Conclusion

	Chapter 8. Debugging Ansible Playbooks
	Humane Error Messages
	Debugging SSH Issues
	Common SSH Challenges
	PasswordAuthentication no
	SSH as a Different User
	Host Key Verification Failed
	Private Networks

	The debug Module
	Playbook Debugger
	The assert Module
	Checking Your Playbook Before Execution
	Syntax Check
	List Hosts
	List Tasks
	Check Mode
	Diff (Show File Changes)
	Tags
	Limits

	Conclusion

	Chapter 9. Roles: Scaling Up Your Playbooks
	Basic Structure of a Role
	Example: Deploying Mezzanine with Roles
	Using Roles in Your Playbooks
	Pre-Tasks and Post-Tasks
	A database Role for Deploying the Database
	A mezzanine Role for Deploying Mezzanine

	Creating Role Files and Directories with ansible-galaxy
	Dependent Roles
	Ansible Galaxy
	Web Interface
	Command-Line Interface
	Role Requirements in Practice
	Contributing Your Own Role

	Conclusion

	Chapter 10. Complex Playbooks
	Dealing with Badly Behaved Commands
	Filters
	The default Filter
	Filters for Registered Variables
	Filters That Apply to Filepaths
	Writing Your Own Filter

	Lookups
	file
	pipe
	env
	password
	template
	csvfile
	dig
	redis
	Writing Your Own Lookup Plug-in

	More Complicated Loops
	With Lookup Plug-in
	with_lines
	with_fileglob
	with_dict
	Looping Constructs as Lookup Plug-ins

	Loop Controls
	Setting the Variable Name
	Labeling the Output

	Imports and Includes
	Dynamic Includes
	Role Includes
	Role Flow Control

	Blocks
	Error Handling with Blocks
	Encrypting Sensitive Data with ansible-vault
	Multiple Vaults with Different Passwords

	Conclusion

	Chapter 11. Customizing Hosts, Runs, and Handlers
	Patterns for Specifying Hosts
	Limiting Which Hosts Run
	Running a Task on the Control Machine
	Manually Gathering Facts
	Retrieving an IP Address from the Host
	Running on One Host at a Time
	Running on a Batch of Hosts at a Time
	Running Only Once
	Limiting Which Tasks Run
	step
	start-at-task
	Running Tags
	Skipping Tags

	Running Strategies
	Linear
	Free

	Advanced Handlers
	Handlers in Pre- and Post-Tasks
	Flush Handlers
	Meta Commands
	Handlers Notifying Handlers
	Handlers Listen
	The SSL Case for the listen Feature

	Conclusion

	Chapter 12. Managing Windows Hosts
	Connection to Windows
	PowerShell
	Windows Modules
	Our Java Development Machine
	Adding a Local User
	Windows Features
	Installing Software with Chocolatey
	Configuration of Java
	Updating Windows
	Conclusion

	Chapter 13. Ansible and Containers
	Kubernetes
	Docker Application Life Cycle
	Registries
	Ansible and Docker
	Connecting to the Docker Daemon
	Example Application: Ghost
	Running a Docker Container on Our Local Machine
	Building an Image from a Dockerfile
	Pushing Our Image to the Docker Registry
	Orchestrating Multiple Containers on Our Local Machine
	Querying Local Images
	Deploying the Dockerized Application
	Provisioning MySQL
	Deploying the Ghost Database
	Frontend
	Frontend: Ghost
	Frontend: NGINX
	Cleaning Out Containers

	Conclusion

	Chapter 14. Quality Assurance with Molecule
	Installation and Setup
	Configuring Molecule Drivers
	Creating an Ansible Role
	Scenarios
	Desired State
	Configuring Scenarios in Molecule
	Managing Virtual Machines
	Managing Containers

	Molecule Commands
	Linting
	YAMLlint
	ansible-lint
	ansible-later

	Verifiers
	Ansible
	Goss
	TestInfra

	Conclusion

	Chapter 15. Collections
	Installing Collections
	Listing Collections
	Using Collections in a Playbook
	Developing a Collection
	Conclusion

	Chapter 16. Creating Images
	Creating Images with Packer
	Vagrant VirtualBox VM
	Combining Packer and Vagrant
	Cloud Images
	Google Cloud Platform
	Azure
	Amazon EC2
	The Playbook

	Docker Image: GCC 11
	Conclusion

	Chapter 17. Cloud Infrastructure
	Terminology
	Instance
	Amazon Machine Image
	Tags

	Specifying Credentials
	Environment Variables
	Configuration Files

	Prerequisite: Boto3 Python Library
	Dynamic Inventory
	Inventory Caching
	Other Configuration Options

	Defining Dynamic Groups with Tags
	Applying Tags to Existing Resources
	Nicer Group Names

	Virtual Private Clouds
	Configuring ansible.cfg for Use with ec2
	Launching New Instances
	EC2 Key Pairs
	Creating a New Key
	Uploading Your Public Key

	Security Groups
	Permitted IP Addresses
	Security Group Ports

	Getting the Latest AMI
	Create a New Instance and Add It to a Group
	Waiting for the Server to Come Up
	Putting It All Together
	Specifying a Virtual Private Cloud
	Dynamic Inventory and VPC

	Conclusion

	Chapter 18. Callback Plug-ins
	Stdout Plug-ins
	ARA
	debug
	default
	dense
	json
	minimal
	null
	oneline

	Notification and Aggregate Plug-ins
	Python Requirements
	foreman
	jabber
	junit
	log_plays
	logentries
	logstash
	mail
	profile_roles
	profile_tasks
	say
	slack
	splunk
	timer

	Conclusion

	Chapter 19. Custom Modules
	Example: Checking That You Can Reach a Remote Server
	Using the Script Module Instead of Writing Your Own
	can_reach as a Module

	Should You Develop a Module?
	Where to Put Your Custom Modules
	How Ansible Invokes Modules
	Generate a Standalone Python Script with the Arguments (Python Only)
	Copy the Module to the Host
	Create an Arguments File on the Host (Non-Python Only)
	Invoke the Module

	Expected Outputs
	Output Variables That Ansible Expects

	Implementing Modules in Python
	Parsing Arguments
	Accessing Parameters
	Importing the AnsibleModule Helper Class
	Argument Options
	AnsibleModule Initializer Parameters
	Returning Success or Failure
	Invoking External Commands
	Check Mode (Dry Run)

	Documenting Your Module
	Debugging Your Module
	Implementing the Module in Bash
	Specifying an Alternative Location for Bash
	Conclusion

	Chapter 20. Making Ansible Go Even Faster
	SSH Multiplexing and ControlPersist
	Manually Enabling SSH Multiplexing
	SSH Multiplexing Options in Ansible

	More SSH Tuning
	Algorithm Recommendations

	Pipelining
	Enabling Pipelining
	Configuring Hosts for Pipelining

	Mitogen for Ansible
	Fact Caching
	JSON File Fact-Caching Backend
	Redis Fact-Caching Backend
	Memcached Fact-Caching Backend

	Parallelism
	Concurrent Tasks with Async
	Conclusion

	Chapter 21. Networking and Security
	Network Management
	Supported Vendors
	Ansible Connection for Network Automation
	Privileged Mode
	Network Inventory
	Network Automation Use Cases

	Security
	Comply with Compliance?
	Secured, but Not Secure
	Shadow IT
	Sunshine IT
	Zero Trust

	Conclusion

	Chapter 22. CI/CD and Ansible
	Continuous Integration
	Elements in a CI System
	Jenkins and Ansible
	Running CI for Ansible Roles

	Staging
	Ansible Plug-in
	Ansible Tower Plug-in
	Conclusion

	Chapter 23. Ansible Automation Platform
	Subscription Models
	Ansible Automation Platform Trial

	What Ansible Automation Platform Solves
	Access Control
	Projects
	Inventory Management
	Run Jobs by Job Templates

	RESTful API
	AWX.AWX
	Installation
	Create an Organization
	Create an Inventory
	Running a Playbook with a Job Template

	Using Containers to Run Ansible
	Creating Execution Environments

	Conclusion

	Chapter 24. Best Practices
	Simplicity, Modularity, and Composability
	Organize Content
	Decouple Inventories from Projects
	Decouple Roles and Collections
	Playbooks
	Code Style
	Tag and Test All the Things
	Desired State
	Deliver Continuously
	Security
	Deployment
	Performance Indicators
	Benchmark Evidence
	Final Words

	Bibliography
	Index
	About the Authors
	Colophon

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

