
NUMERICAL

METHODS
FOR ENGINEERS

AND SCl:ENTISTS

3rd Edition

An Introduction with Appliications Using MATLAB®

Numerical Methods

for Engineers and Scientists
An Introduction with

Applications using MATLAB®

Third Edition

Amos Gilat
Vish Subramaniam
Department of Mechanical Engineering

The Ohio State University

WILEY

Publisher:
Acquisition Editor:
Editorial Assistant:
Cover Designer:
Associate Production Manager:

Don Fowley
Linda Ratts
Hope Ellis
Wendy Lai
Joyce Poh

Cover Image: The image on the cover shows a numerical simulation of an aluminum projectile penetrating a

composite plate. Courtesy of Dr. Kelly Camey, NASA Glenn Research Center, Cleveland, Ohio

This book was set in Times Roman by the authors. Printed and bound by R.R. Donnelley. The cover was printed by
R.R. Donnelley. This book is printed on acid free paper.

Founded in 1807, John Wiley & Sons, Inc. has been a valued source of knowledge and understanding for more than
200 years, helping people around the world meet their needs and fulfill their aspirations. Our company is built on a
foundation of principles that include responsibility to the communities we serve and where we live and work. In
2008, we launched a Corporate Citizenship Initiative, a global effort to address the environmental, social, economic,
and ethical challenges we face in our business. Among the issues we are addressing are carbon impact, paper
specifications and procurement, ethical conduct within our business and among our vendors, and community and
charitable support. For more information, please visit our website: www.wiley.com/go/citizenship.

Copyright © 2014, 2011 John Wiley & Sons, Inc. All rights reserved. No part of this publication may be
reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical,
photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 197 6 United
States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment
of the appropriate per-copy fee to the Copyright Clearance Center, Inc. 222 Rosewood Drive, Danvers, MA 01923,
website www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions
Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030-5774, (201)748-6011, fax (201)748-
6008, website http://www.wiley.com/go/ permissions.

Evaluation copies are provided to qualified academics and professionals for review purposes only, for use in their
courses during the next academic year. These copies are licensed and may not be sold or transferred to a third party.
Upon completion of the review period, please return the evaluation copy to Wiley. Return instructions and a free of

charge return mailing label are available at www.wiley.com/go/retumlabel. If you have chosen to adopt this
textbook for use in your course, please accept this book as your complimentary desk copy. Outside of the United
States, please contact your local sales representative.

Library of Congress Cataloging-in-Publication Data

Gilat, Amos.
Numerical methods for engineers and scientists : an introduction with applications using matlab I Amos Gilat, Vish

Subramaniam, Department of Mechanical Engineering, the Ohio State University. -- Third edition.
pages cm

Includes bibliographical references and index.
ISBN 978-1-118-55493-7 (cloth)
1. MATLAB. 2. Numerical analysis--Data processing. 3. Engineering mathematics. I. Subramaniam, Vish. II.

Title.
QA297.G49 2014
5 l 8.0285'53--dc23

2013016217

Printed in the United States of America
10 9 8 7 6 5 4 3 2 1

Preface

This textbook is intended for a first course in numerical methods for

students in engineering and science, typically taught in the second year

of college. The book covers the fundamentals of numerical methods

from an applied point of view. It explains the basic ideas behind the var

ious methods and shows their usefulness for solving problems in engi

neering and science.

In the past, a numerical methods course was essentially mathemati

cal, emphasizing numerical analysis and theory. More recently, due to

the availability of powerful desktop computers and computing software

that is both affordable and powerful, the content and nature of a first

course in numerical methods for engineering and science students are

changing. The emphasis is shifting more and more toward applications

and toward implementing numerical methods with ready-to-use tools.
In a typical course, students still learn the fundamentals of numerical

methods. In addition, however, they learn computer programming (or

improve their programming skills if they have already been introduced

to programming), and use advanced software as a tool for solving prob

lems. MATLAB is a good example of such software. It can be used by

students to write their own programs, and can be used as a tool for solv

ing problems using its built-in functions. One of the objectives of a

course in numerical methods is to prepare students in science and engi

neering for future courses in their areas of specialization (and their

future careers) where they will have to use computers for solving prob

lems.

Main objectives of the book

To teach the fundamentals of numerical methods, with
emphasis on the most essential methods.

To provide students with the opportunity to enhance their pro
gramming skills using the MATLAB environment to implement
algorithms.

To teach the use of MATLAB as a tool (using its built-in func
tions) for solving problems in science and engineering, and
for checking the results of any programs students write them
selves.

iii

iv Preface

Features/pedagogy of the book

•

•

•

•

•

•

This book is written in simple, clear, and direct language. Fre

quently, bullets and a list of steps, rather than lengthy text, are used
to list facts and details of a specific subject.

Numerous illustrations are used for explaining the principles of the

numerical methods.

Many of the examples and end-of-chapter problems involve realis

tic problems in science and engineering.

MATLAB is integrated within the text and in the examples. A light

colored background is used when MATLAB syntax is displayed.

Annotating comments that explain the commands are posted along

side the MATLAB syntax.

MATLAB's built-in functions that are associated with the numeri

cal methods are presented in detail.

• The homework problems at the end of the chapters are divided into

three groups:
(a) Problems to be solved by hand: Problems related to improving

understanding of numerical methods. In these problems the stu
dents are asked to answer questions related to the fundamentals of
numerical methods, and to carry out a few steps of the numerical
methods by hand.

(b) Problems to be programmed in MATLAB: Problems designed to

provide the opportunity to improve programming skills. In these
problems students are asked to use MATLAB to write computer
programs (script files and user-defined functions) implementing
various numerical methods.

(c) Problems in math, science, and engineering: Problems in science
and engineering that have to be solved by using numerical methods.
The objective is to train the students to use numerical methods for
solving problems they can expect to see in future courses or in prac
tice. Students are expected to use the programs that are presented in
the book, programs that they write, and the built-in functions in
MATLAB.

Organization of the book

Chapter 1: The first chapter gives a general introduction to numerical
methods and to the way that computers store numbers and carry out
numerical operations. It also includes a section on errors in numerical

solutions and a section on computers and programming.
Chapter 2: The second chapter presents a review of fundamental math
ematical concepts that are used in the following chapters that cover the
numerical methods. It is intended to be used as a reminder, or a
refresher, of concepts that the students are assumed (expected) to be

Brief Table of Contents

Preface iii

Chapter 1 Introduction 1

Chapter 2 Mathematical Background 23

Chapter 3 Solving Nonlinear Equations 57

Chapter 4 Solving a System of Linear Equations 99

Chapter 5 Eigenvalues and Eigenvectors 165

Chapter 6 Curve Fitting and Interpolation 193

Chapter 7 Fourier Methods 251

Chapter 8 Numerical Differentiation 303

Chapter 9 Numerical Integration 341

Chapter 1 o Ordinary Differential Equations: Initial-Value
Problems 385

Chapter 11 Ordinary Differential Equations: Boundary-Value
Problems 471

Appendix A Introductory MATLAB 509

Appendix B MATLAB Programs 547

Appendix c Derivation of the Real Discrete Fourier Transform
(DFT) 551

Index 555

ix

Preface v

familiar with from their first- and second-year mathematics courses.

Since many of these topics are associated with various numerical meth

ods, we feel that it is better to have the mathematical background gath

ered in one chapter (and easier to find when needed) rather than be

dispersed throughout the book. Several of the topics that are covered in

Chapter 2 and that are essential in the explanation of a numerical

method are repeated in other chapters where the numerical methods are

presented. Most instructors will probably choose not to cover Chapter 2
as one unit in the class, but will mention a topic when needed and refer

the students to the chapter.

Chapters 3 through 11: These nine chapters present the various numer

ical methods in an order that is typically followed in a first course on

numerical methods. These chapters follow the format explained next.

Organization of a typical chapter

An itemized list of the topics that are covered in the chapter is displayed

below the title of the chapter. The list is divided into core and

complementary topics. The core topics are the most essential topics

related to the subject of the chapter. The complementary topics include

more advanced topics. Obviously, a division of topics related to one

subject into core and complementary is subjective. The intent is to help

instructors in the design of their course when there is not enough time to

cover all the topics. In practicality, the division can be ignored in

courses where all the topics are covered.

The first section of the chapter provides a general background with

illustrative examples of situations in the sciences and engineering

where the methods described in the chapter are used. This section also

explains the basic ideas behind the specific class of numerical methods

that are described in the chapter. The following sections cover the core

topics of the chapter. Next, a special section discusses the built-in func

tions in MATLAB that implement the numerical methods described in

the chapter, and how they may be used to solve problems. The later sec

tions of the chapter cover the complementary topics.

The order of topics

It is probably impossible to write a text book where all the topics follow

an order that is agreed upon by all instructors. In the present book, the

main subjects are in an order that is typical in a first course in numerical

methods. Chapter 3 covers solution of nonlinear equations. It mostly

deals with the solution of a single equation, which is a simple applica

tion of numerical methods. The chapter also includes, as a complemen

tary topic, a section on the solution of a system of nonlinear equations.
Chapter 4 deals with the solution of a system of linear equations. Next,

Chapter 5 deals with eigenvalues and eigenvectors, and Chapter 6 cov

ers curve fitting and interpolation. Chapter 7, which is new in the 3rd

edition, covers an introduction to Fourier methods. Chapters 8 and 9

vi Preface

cover differentiation and integration, respectively. Finally, solution of

ordinary differential equations (ODE) is presented in the last two chap

ters. Chapter 10 deals with the solution of initial-value problems (first

order, systems, and higher-order) and Chapter 11 considers boundary

value problems.

The order of some of the topics is dictated by the subjects them

selves. For example, differentiation and integration need to be covered

before ordinary differential equations. It is possible, however, to cover

the other subjects in different order than presented in the book. The var

ious chapters and sections in the book are written in a self-contained

manner that make it easy for the instructor to cover the subjects in a dif

ferent order, if desired.

MATLAB programs

This book contains many MATLAB programs. The programs are

clearly identified as user-defined functions, or as script files. All the

programs are listed in Appendix B. The programs, or the scripts, are

written in a simple way that is easy to follow. The emphasis of these

programs is on the basics and on how to program an algorithm of a spe

cific numerical method. Obviously, the programs are not general, and

do not cover all possible circumstances when executed. The programs

are not written from the perspective of being shortest, fastest, or most

efficient. Rather, they are written such that they are easy to follow. It is

assumed that most of the students have only limited understanding of

MATLAB and programming, and presenting MATLAB in this manner

will advance their computing skills. More advanced users of MATLAB

are encouraged to write more sophisticated and efficient programs and

scripts, and compare their performance with the ones in the book.

Third edition

The main changes in the third edition are:

Fourier Methods: In response to many requests from professors that

use the book in their courses, a new chapter (Chapter 7) on Fourier

methods has been added to the book. The chapter covers Fourier series,

discrete Fourier series, Discrete Fourier Transform, and an introduction

to the Fast Fourier Transform (FF T) which are widely used in engineer

ing for processing digital data.

Eignvalues and Eignvectors: This topic which was part of Chapter 4
(Solving a System of Linear Equations) in the first two editions of the

book is now covered in a separate chapter.

MATLAB: The third edition of the book is updated to MATLAB

R2012b. All the programs use anonymous functions and function han
dles are used for passing functions into functions. Appendix A has been

updated to the current version of MATLAB.

Homework problems: About 50% of the problems have been added

or changed. Most of the Chapters have 40 or more problems.

Preface vii

Support material

The following is available on the instructor compamon site at

www.wiley.com/college/gilat):

(a) for faculty who have adopted the text for use in their course, a fully

worked solution manual, triple checked for accuracy.

(b) suggested course syllabi with suggested assignments to help

quickly integrate the text into your course.

(c) conversion guides from other major numerical methods titles to

show where each section of your current text is covered in this new

text, helping you quickly convert from old to new.

(d) electronic versions of all the figures and tables from the text, for

creating lecture slides and quizzes/exams based on images from the

book.

(e) m-files of all the programs in the text.

Many people have assisted during the preparation of the first two

editions of the book. We would like to thank the reviewers and users for

the many comments and suggestions they have made.
Lawrence K. Agbezuge, Rochester Institute of Technology
David Alciatore, Colorado State University
Salame Amr, Virginia State University
John R. Cotton, Virginia Polytechnic Institute and State University
David Dux, Purdue University
Venkat Ganesan, University of Texas-Austin
Michael R. Gustafson II, Duke University
Alain Kassab, University of Central Florida
Tribikram Kundu, University of Arizona
Ronald A. Mann, University of Louisville
Peter 0. Orono, Indiana University Purdue University Indianapolis
Charles Ritz, California State Polytechnic University-Pomona
Douglas E. Smith, University of Missouri-Columbia
Anatoliy Swishchuk, University of Calgary
Ronald F. Taylor, Wright State University
Brian Vick, Virginia Polytechnic Institute and State University
John Silzel, Bio/a University
James Guilkey, University of Utah

We would also like to thank Linda Ratts, acquisition editor, and

Renata Marchione, editorial assistant, from Wiley. Special thanks to

Professor Subramaniam's daughters, Sonya and Priya, for typing early

drafts of some chapters and for proofreading them.

Our intention was to write a book that is useful to students and

instructors alike. We would like to thank users of previous editions of

the book who have sent us compliments and suggestions. We would

appreciate any comments that will help to improve future editions.

Amos Gilat (gilat.l@osu.edu)

Vish Subramaniam (subramaniam.l@osu.edu)

Columbus, Ohio

June 2013

To Yaela, Taly, and Edan

To my parents, Dr. K. S. Venkateswaran & Seethalakshmy Venkateswaran,

and Deepa, Priya, and Sonya

Contents

Preface iii

Chapter 1 Introduction 1

1.1 Background 1

1.2 Representation of Numbers on a Computer 4

1.3 Errors in Numerical Solutions 10

1.3.1 Round-Off Errors 10

1.3.2 Truncation Errors 13

1.3.3 Total Error 14

1.4 Computers and Programming 15

1.5 Problems 18

Chapter 2 Mathematical Background 23

2.1 Background 23

2.2 Concepts from Pre-Calculus and Calculus 24

2.3 Vectors 28

2.3.1 Operations with Vectors 30

2.4 Matrices and Linear Algebra 32

2.4.1 Operations with Matrices 33

2.4.2 Special Matrices 35

2.4.3 Inverse of a Matrix 36

2.4.4 Properties of Matrices 37

2.4.5 Determinant of a Matrix 37

2. 4. 6 Cramer s Rule and Solution of a System of Simultaneous Linear Equations 38

2.4. 7 Norms 40

2.5 Ordinary Differential Equations (ODE) 41

2.6 Functions of Two or More Independent Variables 44

2. 6.1 Definition of the Partial Derivative 44

2.6.2 Chain Rule 45

2.6.3 The Jacobian 46

2.7 Taylor Series Expansion of Functions 47

2. 7.1 Taylor Series for a Function of One Variable 4 7

2. 7.2 Taylor Series for a Function of Two Variables 49

2.8 Inner Product and Orthogonality 50

2.9 Problems 51

xi

xii Contents

Chapter 3 Solving Nonlinear Equations 57

3.1 Background 57

3.2 Estimation of Errors in Numerical Solutions 59

3 .3 Bisection Method 61

3.4 Regula Falsi Method 64

3.5 Newton's Method 66

3.6 Secant Method 71

3.7 Fixed-Point Iteration Method 74

3.8 Use of MATLAB Built-In Functions for Solving Nonlinear Equations 77

3.8.1 The fzero Command 78

3.8.2 The roots Command 79

3.9 Equations with Multiple Solutions 79

3.10 Systems of Nonlinear Equations 81

3.10.1 Newton's Method for Solving a System of Nonlinear Equations 82

3.10.2 Fixed-Point Iteration Method for Solving a System of Nonlinear Equations 86

3.11 Problems 88

Chapter 4 Solving a System of Linear Equations 99

4.1 Background 99

4.1.1 Overview of Numerical Methods for Solving a System of Linear Algebraic Equations 100

4.2 Gauss Elimination Method 102

4.2.1 Potential Difficulties When Applying the Gauss Elimination Method 110

4.3 Gauss Elimination with Pivoting 112

4.4 Gauss-Jordan Elimination Method 115

4.5 LU Decomposition Method 118

4.5.1 LU Decomposition Using the Gauss Elimination Procedure 120

4.5.2 LU Decomposition Using Crout's Method 121

4.5.3 LU Decomposition with Pivoting 128

4.6 Inverse of a Matrix 128

4.6.1 Calculating the Inverse with the LU Decomposition Method 129

4.6.2 Calculating the Inverse Using the Gauss-Jordan Method 131

4. 7 Iterative Methods 132

4. 7.1 Jacobi Iterative Method 133

4. 7. 2 Gauss-Seidel Iterative Method 133

4.8 Use of MATLAB Built-In Functions for Solving a System of Linear Equations 136

4. 8.1 Solving a System of Equations Using MATLAB 's Left and Right Division 136
4.8.2 Solving a System of Equations Using MATLAB 's Inverse Operation 137

4.8.3 MATLAB's Built-In Function/or LU Decomposition 138

4.8.4 Additional MATLAB Built-In Functions 139

4.9 Tridiagonal Systems of Equations 141

Contents

4.10 Error, Residual, Norms, and Condition Number 146

4.10.1 Error and Residual 146

4.10.2 Norms and Condition Number 148

4.11 Ill-Conditioned Systems 153

4.12 Problems 155

Chapter 5 Eigenvalues and Eigenvectors 165

5 .1 Background 165

5.2 The Characteristic Equation 167

5.3 The Basic Power Method 167

5.4 The Inverse Power Method 172

5.5 The Shifted Power Method 173

5.6 The QR Factorization and Iteration Method 174

5.7 Use of MATLAB Built-In Functions for Determining Eigenvalues and
Eigenvectors 184

5.8 Problems 186

Chapter 6 Curve Fitting and Interpolation 193

6.1 Background 193

6.2 Curve Fitting with a Linear Equation 195

6.2.1 Measuring How Good Is a Fit 195

6.2.2 Linear Least-Squares Regression 197

xiii

6.3 Curve Fitting with Nonlinear Equation by Writing the Equation in a Linear Form 201

6.4 Curve Fitting with Quadratic and Higher-Order Polynomials 205

6.5 Interpolation Using a Single Polynomial 210

6.5.1 Lagrange Interpolating Polynomials 212

6.5.2 Newtons Interpolating Polynomials 216

6.6 Piecewise (Spline) Interpolation 223

6. 6.1 Linear Splines 223

6.6.2 Quadratic Splines 225

6.6.3 Cubic Splines 229

6.7 Use of MATLAB Built-In Functions for Curve Fitting and Interpolation 236

6.8 Curve Fitting with a Linear Combination of Nonlinear Functions 238

6.9 Problems 241

Chapter 7 Fourier Methods 251

7 .1 Background 251

7 .2 Approximating a Square Wave by a Series of Sine Functions 253

7.3 General (Infinite) Fourier Series 257

7.4 Complex Form of the Fourier Series 261

xiv

7.5 The Discrete Fourier Series and Discrete Fourier Transform 263

7.6 Complex Discrete Fourier Transform 268

7.7 Power (Energy) Spectrum 271

7.8 Aliasing and Nyquist Frequency 272

7.9 Alternative Forms of the Discrete Fourier Transform 278

Contents

7.10 Use of MATLAB Built-In Functions for Calculating Discrete Fourier Transform 278

7 .11 Leakage and Windowing 284

7.12 Bandwidth and Filters 286

7.13 The Fast Fourier Transform (FF T) 289

7.14 Problems 298

Chapter 8 Numerical Differentiation 303

8.1 Background 303

8.2 Finite Difference Approximation of the Derivative 305

8.3 Finite Difference Formulas Using Taylor Series Expansion 310

8.3.1 Finite Difference Formulas of First Derivative 310

8.3.2 Finite Difference Formulas for the Second Derivative 315

8.4 Summary of Finite Difference Formulas for Numerical Differentiation 317

8.5 Differentiation Formulas Using Lagrange Polynomials 319

8.6 Differentiation Using Curve Fitting 320

8.7 Use of MATLAB Built-In Functions for Numerical Differentiation 320

8.8 Richardson's Extrapolation 322

8.9 Error in Numerical Differentiation 325

8.10 Numerical Partial Differentiation 327

8.11 Problems 330

Chapter 9 Numerical Integration 341

9.1 Background 341

9.1.1 Overview of Approaches in Numerical Integration 342

9 .2 Rectangle and Midpoint Methods 344

9 .3 Trapezoidal Method 346

9.3.1 Composite Trapezoidal Method 347

9.4 Simpson's Methods 350

9.4.1 Simpson's 113 Method 350

9.4.2 Simpson's 318 Method 353

9 .5 Gauss Quadrature 355

9 .6 Evaluation of Multiple Integrals 360

9.7 Use of MATLAB Built-In Functions for Integration 362

9.8 Estimation of Error in Numerical Integration 364

9 .9 Richardson's Extrapolation 366

Contents xv

9 .10 Romberg Integration 369

9.11 Improper Integrals 372

9.11.1 Integrals with Singularities 372

9.11.2 Integrals with Unbounded Limits 373

9.12 Problems 374

Chapter 1 o Ordinary Differential Equations: Initial-Value

Problems 385

10.1 Background 385

10.2 Euler's Methods 390

10.2.1 Eulers Explicit Method 390

10.2.2 Analysis of Truncation Error in Euler s Explicit Method 394

10.2.3 Eulers Implicit Method 398

10.3 Modified Euler's Method 401

10.4 Midpoint Method 404

10.5 Runge-Kutta Methods 405

10.5.1 Second-Order Runge-Kutta Methods 406

10. 5. 2 Third-Order Runge-Kutta Methods 410

10.5.3 Fourth-Order Runge-Kutta Methods 411

10.6 Multistep Methods 417

10.6.1 Adams-Bashforth Method 418

10.6.2 Adams-Moulton Method 419

10. 7 Predictor-Corrector Methods 420

10.8 System of First-Order Ordinary Differential Equations 422

10.8.1 Solving a System of First-Order ODEs Using Eulers Explicit Method 424

10.8.2 Solving a System of First-Order ODEs Using Second-Order Runge-Kutta Method

(Modified Euler Version) 424

10.8.3 Solving a System of First-Order OD Es Using the Classical Fourth-Order Runge-Kutta

Method 431

10.9 Solving a Higher-Order Initial Value Problem 432

10.10 Use of MATLAB Built-In Functions for Solving Initial-Value Problems 437

JO.JO.I Solving a Single First-Order ODE Using MATLAB 438

10.10.2 Solving a System of First-Order ODEs Using MATLAB 444

10.11 Local Truncation Error in Second-Order Range-Kutta Method 447

10.12 Step Size for Desired Accuracy 448

10.13 Stability 452

10.14 Stiff Ordinary Differential Equations 454

10.15 Problems 457

xvi

Chapter 11 Ordinary Differential Equations: Boundary-Value

Problems 471

Il.I Background 471

Il.2 The Shooting Method 474

I I .3 Finite Difference Method 482

Contents

Il.4 Use of MATLAB Built-In Functions for Solving Boundary Value Problems 492

II.5 Error and Stability in Numerical Solution of Boundary Value Problems 497

I 1.6 Problems 499

Appendix A Introductory MATLAB 509

A. I Background 509

A.2 Starting with MATLAB 509

A.3 Arrays 514

A.4 Mathematical Operations with Arrays 519

A.5 Script Files 524

A.6 Plotting 526

A.7 User-Defined Functions and Function Files 528

A.8 Anonymous Functions 530

A.9 Function functions 532

A. I 0 Subfunctions 535

A. I I Programming in MATLAB 537
A.11.1 Relational and Logical Operators 537

A.11.2 Conditional Statements, if-else Structures 538

A.11.3 Loops 541

A.I2 Problems 542

Appendix B MATLAB Programs 547

Appendix c Derivation of the Real Discrete Fourier Transform

(DFT) 551

C. I Orthogonality of Sines and Cosines for Discrete Points 551

C.2 Determination of the Real DF T 553

Index 555

Chapter!

Introduction

Core Topics

Representation of numbers on a computer (1.2).

Errors in numerical solutions, round-off errors and
truncation errors (1.3).

Computers and programming (1.4).

m
F

Figure 1-1: Motion of a block on
a surface with friction.

1.1 BACKGROUND

Numerical methods are mathematical techniques used for solving math
ematical problems that cannot be solved or are difficult to solve analyti
cally. An analytical solution is an exact answer in the form of a

mathematical expression in terms of the variables associated with the
problem that is being solved. A numerical solution is an approximate
numerical value (a number) for the solution. Although numerical solu

tions are an approximation, they can be very accurate. In many numeri

cal methods, the calculations are executed in an iterative manner until a
desired accuracy is achieved.

For example, Fig. 1-1 shows a block of mass m being pulled by a
force F applied at an angle 8. By applying equations of equilibrium, the
relationship between the force and the angle is given by:

F = µmg (1.1)
cos8 + µsin8

where µ is the friction coefficient and g is the acceleration due to grav
ity. For a given value of F, the angle that is required for moving the
block can be determined by solving Eq. (1.1) for 8. Equation (1.1),
however, cannot be solved analytically for 8. Using numerical methods,
an approximate solution can be determined for specified accuracy. This
means that when the numerical solution for 8 is substituted back in Eq.
(1.1) , the value of F that is obtained from the expression on the right

hand side is not exactly equal to the given value of F, but is very close.
Numerical techniques for solving mathematical problems were

developed and used hundreds and even thousands of years ago. Imple
mentation of the numerical techniques was difficult since the calcula
tions had to be carried out by hand or by use of simple mechanical

1

2 Chapter 1 Introduction

computing devices, which limited the number of calculations that could

be carried out, as well as their speed and accuracy. Today numerical

methods are used with fast electronic digital computers that make it

possible to execute many tedious and repetitive calculations that pro

duce accurate (even though not exact) solutions in a very short time.

Solving a problem in science and engineering

The process of solving a problem in science and engineering is influ

enced by the tools (mathematical methods) that are available for solving

the problem. The process can be divided into the following steps:

Problem statement

The problem statement defines the problem. It gives a description of the

problem, lists the variables that are involved, and identifies the con

straints in the form of boundary and/or the initial conditions.

Formulation of the solution

Formulation of the solution consists of the model (physical law or laws)

that is used to represent the problem and the derivation of the governing

equations that need to be solved. Examples of such laws are Newton's

laws, conservations of mass, and the laws of thermodynamics. The

models that are used (chosen) to solve the problem need to be consistent

with the methods that are subsequently used for solving the equations.

If analytical methods are expected to be used for the solution, the gov

erning equations must be of a type that can be solved analytically. If

needed, the formulation has to be simplified, such that the equations

could be solved analytically. If numerical methods are used for the solu

tion, the models and the equations can be more complicated. Even then,

however, some limitations might exist. For example, if the formulation

is such that a numerical solution requires a long computing time, the

formulation might have to be simplified such that a solution is obtained

in a reasonable time. An example is weather forecasting. The problem

that is solved is large, and the numerical models that are used are very

complicated. The numerical simulation of the weather, however, cannot

outlast the period over which forecasting is needed.

Programming (of numerical solution)

If the problem is solved numerically, the numerical method that is used

for the solution has to be selected. For every type of mathematical prob

lem there are several (or many) numerical techniques that can be used.

The techniques differ in accuracy, length of calculations, and difficulty

in programming. Once a numerical method is selected, it is imple

mented in a computer program. The implementation consists of an
algorithm, which is a detailed plan that describes how to carry out the

numerical method, and a computer program, which is a list of com

mands that allows the computer to execute the algorithm to find the

solution.

1.1 Background 3

Interpretation of the solution

Since numerical solutions are an approximation (errors are addressed in
Section 1.4), and since the computer program that executes the numeri
cal method might have errors (or bugs), a numerical solution needs to

be examined closely. This can be done in several ways, depending on
the problem. For example, if the numerical method is used for solving a
nonlinear algebraic equation, the validity of the solution can be verified
by substituting the solution back in the equation. In more complicated

problems, like a solution of a differential equation, the numerical solu
tion can be compared with a known solution of a similar problem, or the

problem can be solved several times using different boundary (or ini
tial) conditions, and different numerical methods, and examining the

subsequent differences in the solutions.

An illustration of the first two steps in the solution process of a
problem is shown in Example 1-1.

Example 1-1: Problem formulation

Consider the following problem statement:
A pendulum of mass m is attached to a rigid rod of length L,

as shown in the figure. The pendulum is displaced from the
vertical position such that the angle between the rod and the x

axis is S0, and then the pendulum is released from rest. For

mulate the problem for determining the angle S as a function
of time, t, once the pendulum is released. In the formulation

include a damping force that is proportional to the velocity of

the pendulum.
Formulate the solution for two cases:

(a) S0 = 5°, and (b) S0 = 90°.

SOLUTION

Physical law

The physical law that is used for solving the problem is
Newton's second law of mechanics, according to which,
as the pendulum swings back and forth, the sum of the
forces that are acting on the mass is equal to the mass

times its acceleration.

L.F = m a (1.2)

I
I
\
\
\
\

\.
'

'

........ __ _

FREE BODY
DIAGRAM

x

'
1" y

MASS ACCELERATION
DIAGRAM

n man=mfPL
t

This can be visualized by drawing a free body diagram Newton's Second Law

and a mass acceleration diagram, which are shown on the
right. The constant c is the damping coefficient. It should be pointed out that the mass of the rod is
neglected in the present solution.

4 Chapter 1 Introduction

Governing equation

The governing equation is derived by applying Newton's second law in the tangential direction:

de . d2e
"f.F = -cL--mgsme = mL-

1 dt dt2 (1.3)

Equation (1.3), which is a second-order, nonlinear, ordinary differential equation, can be written in

the form:

d2e de .
mL-+ cL-+ mgsme = 0

dt2 dt
(1.4)

The initial conditions are that when the motion of the pendulum starts (t = 0), the pendulum is at

angle 90 and its velocity is zero (released from rest):

Method of solution

9(0) = 90 and - = 0 dB i
dt

I= 0
(1.5)

Equation (1.4) is a nonlinear equation and cannot be solved analytically. However, in part (a) the ini

tial displacement of the pendulum is 90 = 5°, and once the pendulum is released, the angle as the

pendulum oscillates will be less than 5°. For this case, Eq. (1.4) can be linearized by assuming that

sine::::: e. With this approximation, the equation that has to be solved is linear and can be solved ana

lytically:

a2e de mL-+cL-+mgS = 0
dt2 dt

(1.6)

with the initial conditions Eq. (1.5).

In part (b), the initial displacement of the pendulum is 90 = 90° and the equation has to be

solved numerically. An actual numerical solution for this problem is shown in Example 8-8.

6 0

1.2 REPRESENTATION OF NUMBERS ON A
COMPUTER

Decimal and binary representation

Numbers can be represented in various forms. The familiar decimal sys

tem (base 10) uses ten digits 0, 1, ... , 9. A number is written by a

sequence of digits that correspond to multiples of powers of 10. As

shown in Fig. 1-2, the first digit to the left of the decimal point corre-

7 2 4 • 3 I 2 5

Figure 1-2: Representation of the number 60,724.3125 in the decimal system (base 10).

1.2 Representation of Numbers on a Computer 5

Base
10

., 23

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 1

9 1

10 1

Base 2

22 21

0 0

0 1

0 1

1 0

1 0

1 1

1 1

0 0

0 0

0 1

20

1

0

1

0

1

0

1

0

1

0

sponds to 10°. The digit next to it on the left corresponds to 101 , the

next digit to the left to 102
, and so on. In the same way, the first digit to

the right of the decimal point corresponds to 10-1, the next digit to the

right to 10-2, and so on.

In general, however, a number can be represented using other bases.

A form that can be easily implemented in computers is the binary (base

2) system. In the binary system, a number is represented by using the

two digits O and 1. A number is then written as a sequence of zeros and

ones that correspond to multiples of powers of 2. The first digit to the

left of the decimal point corresponds to 2°. The digit next to it on the

left corresponds to 21, the next digit to the left to 22, and so on. In the

same way, the first digit to the right of the decimal point corresponds to

Figure 1-3: Representation of

r1, the next digit to the right to r2, and so on. The first ten digits

1, 2, 3, . . . , 10 in base 10 and their representation in base 2 are shown in

Fig. 1-3. The representation of the number 19.625 in the binary system

is shown in Fig. 1-4.

numbers in decimal and binary
forms.

1 1

24

+
1 0 0 1 1 1 0 1

1 x 24 + 0 x 23 + 0 x 22 + 1 x 21 + 1 x 2° + 1 x 2-1 + 0 x 2-2 + 1 x 2-3

1 x16 +Ox 8 + O x4 + 1x2 + 1x1+1x 0.5+Ox0.25 + 1 x 0.125 = 19.625

Figure 1-4: Representation of the number 19.625 in the binary system (base 2).

0 0

Another example is shown in Fig. 1-5, where the number

60,724.3125 is written in binary form.

0 0 0 0 0 0 0

1 x 215 + 1x214 + 1x213+0 x 212 + 1 x 211 + 1x210+0 x 29 + 1x28 +ox 2 7 + 0 x 26 + 1 x 25

+ 1x24 + 0 x 23 + 1x22 + 0 x 21+ox2° +Ox 2-l + 1x2-2 +Ox 2-3 + 1x2-4 = 60,724.3125

Figure 1-5: Representation of the number 60,724.3125 in the binary system (base 2).

6 Chapter 1 Introduction

Computers store and process numbers in binary (base 2) form. Each

binary digit (one or zero) is called a bit (for binary digit). Binary arith

metic is used by computers because modem transistors can be used as

extremely fast switches. Therefore, a network of these may be used to

represent strings of numbers with the "1" referring to the switch being

in the "on" position and "O" referring to the "off' position. Various

operations are then performed on these sequences of ones and zeros.

Floating point representation

To accommodate large and small numbers, real numbers are written in

floating point representation. Decimal floating point representation

(also called scientific notation) has the form:

d.ddddd d X lOP (1.7)

One digit is written to the left of the decimal point, and the rest of the

significant digits are written to the right of the decimal point. The num

ber O.dddddd is called the mantissa. Two examples are:

6519.23 written as 6.51923 x 10
3

0.00000391 written as 3.91 x 10-
6

The power of 10, p, represents the number's order of magnitude, pro

vided the preceding number is smaller than 5. Otherwise, the number is

said to be of the order of p + 1. Thus, the number 3.91 x 10-
6

is of the

order of 10-
6
, 0(10-

6
) , and the number 6.51923 x 10

3
is of the order of

10
4

(written as 0(10
4
)).

Binary floating point representation has the form:

1. bbbbbb x 2
bbb

(b is a decimal digit) (1.8)

In this form, the mantissa is . bbbbbb , and the power of 2 is called the

exponent. Both the mantissa and the exponent are written in a binary

form. The form in Eq. (1.8) is obtained by normalizing the number

(when it is written in the decimal form) with respect to the largest

power of 2 that is smaller than the number itself. For example, to write

the number 50 in binary floating point representation, the number is

divided (and multiplied) by 25 = 32 (which is the largest power of 2

that is smaller than 50):

50 5 5 B. fl . . fi IOI
50 = - x 2 = 1.5625 x 2 mary oatmg po mt orm: 1.1001 x 2

25

Two more examples are:

1344= 1344
x2

10
=1.3125x2

10
Binary floating point form: 1.0101 x 2

1010

2
10

0.3125=0.3�;5xr
2
=1.25xr

2
Binary floating point form: 1.01 x r10

2

1.2 Representation of Numbers on a Computer 7

1/
/o

Sign
1 bit

1/ 1/
/o /o

1 /
/o

Exponent + bias
11 bits

Storing a number in computer memory

Once in binary floating point representation, the number is stored in the
computer. The computer stores the values of the exponent and the man
tissa separately, while the leading 1 in front of the decimal point is not
stored. As already mentioned, a bit is a binary digit. The memory in the
computer is organized in bytes, where each byte is 8 bits. According to

the IEEE1-754 standard (1985), computers store numbers and carry out

calculations in single precision2 or in double precision. 3 In single pre
cision, the numbers are stored in a string of 32 bits (4 bytes), and in
double precision in a string of 64 bits (8 bytes). In both cases the first
bit stores the sign (0 corresponds to + and 1 corresponds to -) of the
number. The next 8 bits in single precision (11 bits in double precision)
are used for storing the exponent. The following 23 bits in single preci
sion (52 bits in double precision) are used for storing the mantissa. This
is illustrated for double precision in Fig. 1-6.

1/ 1 / 1 / 1 / 1 /
/o

I I
/o /o 10 10

Mantissa
52 bits

.

1/ 1/ 1/
I

10 /o /o

Figure 1-6: Storing in double precision a number written in binary floating point representation.

The value of the mantissa is entered as is in a binary form. The
value of the exponent is entered with a bias. A bias means that a con
stant is added to the value of the exponent. The bias is introduced in
order to avoid using one of the bits for the sign of the exponent (since
the exponent can be positive or negative). In binary notation, the largest
number that can be written with 11 bits is 2047 (when all 11 digits are
1). The bias that is used is 1023, which means that if, for example, the
exponent is 4, then the value that is stored is 4 + 1023 = 1027. Thus, the

1. IEEE stands for the Institute of Electrical and Electronics Engineers.

2. Precision refers to the number of significant digits of a real number that can be
stored on a computer. For example, the number 1/3 = 0.333333 ... can be represented
on a computer only in a chopped or rounded form with a finite number of binary dig
its, since the amount of memory where these bits are held is finite. The more digits
to the right-hand side of the decimal point that are stored, the more precise is the
representation of the real number on the computer.

3. This is somewhat of a misnomer. The precision in a double-precision number is not
really doubled compared to a single-precision number. Rather, the "double" in dou
ble precision refers to the fact that twice as many binary digits (64 versus 32) are
used to represent a real number than in the case of a single-precision representation.

8 Chapter 1 Introduction

smallest exponent that can be stored by the computer is -1023, and the

largest is 1024 (which will be stored as 2047). However, the smallest

and largest values of the exponent plus bias are reserved for zero and

infinity (Inf) or not-a-number (NaN) due to invalid mathematical

operation. The 11 bits for the exponent plus bias store values between

-1023 and 1024. If the exponent plus bias and mantissa are both zero,

then the number actually stored is 0. If the exponent plus bias is 2047

the number stored is Inf if the mantissa is zero, and it is NaN if the

mantissa is not zero. In single precision, 8 bits are allocated to the value

of the exponent and the bias is 127.

As an example, consider storing of the number 22.5 in double preci

sion according to the IEEE-754 standard. First, the number is normal-

ized:
22·524 = 1.40625 x 24. In double precision, the exponent with the

24
bias is 4 + 1023 = 1027, which is stored in binary form as 10000000011.
The mantissa is 0.40625, which is stored in binary form as

.01101000 000. The storage of the number is illustrated in Fig. 1-7.

Li+-������+�����������

Sign

1 bit
Exponent + bias

11 bits

Mantissa

52 bits

Figure 1-7: Storing the number 22.5 in double precision according to the IEEE-754 standard.

Additional notes

• The smallest positive number that can be expressed in double preci

sion 1s:

2-1022 ""2.2 x 10-308

This means that there is a (small) gap between zero and the smallest

number that can be stored on the computer. Attempts to define a

number in this gap causes an underflow error. (In the same way, the

closest negative number to zero is -2.2 x 10-308
.)

• The largest positive number that can be expressed in double preci

sion is approximately:

21024"" 1.8 x 10308

Attempts to define a larger number causes overflow error. (The same

applies to numbers smaller than -21024 .)

The range of numbers that can be represented in double precision is

shown in Fig. 1-8.

1.2 Representation of Numbers on a Computer 9

� -1.8x10308 � -2.2 x 10-308 �2.2X 10-308 �1.8X 10308

(-) I

Overflow

\ 0 I \ (+)

Range of numbers that

can be represented v
Underflow

Range of numbers that

can be represented Overflow

Figure 1-8: Range of numbers that can be represented in double precision.

>> eps
ans =

• Since a finite number of bits is used, not every number can be accu

rately written in binary form. In other words, only a finite number of

exact values in decimal format can be stored in binary form. For

example, the number 0.1 cannot be represented exactly in finite

binary format when single precision is used. To be written in binary

floating point representation, 0.1 is normalized: 0.1 = 1.6 x 2-4. The

exponent -4 (with a bias) can be stored exactly, but the mantissa 0.6
cannot be written exactly in a binary format that uses 23 bits. In

addition, irrational numbers cannot be represented exactly in any

format. This means that, in many cases, exact values are approxi

mated. The errors that are introduced are small in one step, but when

many operations are executed, the errors can grow to such an extent

that the final answer is affected. These errors, as well as other errors,

are discussed in the next section.

• The interval between numbers that can be represented depends on

their magnitude. In double precision, the smallest value of the man-

tissa that can be stored is 2-52 � 2.22 x 10-16• This is also the smallest

possible difference in the mantissa between two numbers. The mag

nitude of the real number that is associated with this mantissa, how

ever, depends on the exponent. For numbers of the order of 1, the

smallest difference between two numbers that can be represented in

double precision is then 2.22 x 10-16 . This value is also defined as

the machine epsilon in double precision. In MATLAB this value is

assigned to the predefined variable eps. As shown below, when the

name of the variable eps is typed (Command Window), the assigned

value is displayed.

2.220446049250313e-016

10 Chapter 1 Introduction

1.3 ERRORS IN NUMERICAL SOLUTIONS

Numerical solutions can be very accurate but in general are not exact.

Two kinds of errors are introduced when numerical methods are used

for solving a problem. One kind, which was mentioned in the previous

section, occurs because of the way that digital computers store numbers

and execute numerical operations. These errors are labeled round-off
errors. The second kind of errors is introduced by the numerical method

that is used for the solution. These errors are labeled truncation errors.
Numerical methods use approximations for solving problems. The

errors introduced by the approximations are the truncation errors.

Together, the two errors constitute the total error of the numerical solu

tion, which is the difference (can be defined in various ways) between

the true (exact) solution (which is usually unknown) and the approxi

mate numerical solution. Round-off, truncation, and total errors are dis

cussed in the following three subsections.

1.3.1 Round-Off Errors

Numbers are represented on a computer by a finite number of bits (see

Section 1.2). Consequently, real numbers that have a mantissa longer

than the number of bits that are available for representing them have to

be shortened. This requirement applies to irrational numbers that have

to be represented in a finite form in any system, to finite numbers that

are too long, and to finite numbers in decimal form that cannot be repre

sented exactly in binary form. A number can be shortened either by

chopping off, or discarding, the extra digits or by rounding. In chop

ping, the digits in the mantissa beyond the length that can be stored are

simply left out. In rounding, the last digit that is stored is rounded.

As a simple illustration, consider the number 2/3. (For simplicity,

decimal format is used in the illustration. In the computer, chopping and

rounding are done in the binary format.) In decimal form with four sig

nificant digits, 2/3 can be written as 0.6666 or as 0.6667. In the former

instance, the actual number has been chopped off, whereas in the latter

instance, the actual number has been rounded. Either way, such chop

ping and rounding of real numbers lead to errors in numerical computa

tions, especially when many operations are performed. This type of

numerical error (regardless of whether it is due to chopping or round

ing) is known as round-off error. Example 1-2 shows the difference

between chopping and rounding.

1.3 Errors in Numerical Solutions 11

Example 1-2: Round-off errors

Consider the two nearly equal numbers p = 9890.9 and q = 9887. l . Use decimal floating point rep

resentation (scientific notation) with three significant digits in the mantissa to calculate the differ

ence between the two numbers, (p - q) . Do the calculation first by using chopping and then by using

rounding.

SOLUTION

In decimal floating point representation, the two numbers are:

p = 9.8909 x 103
and q = 9.8871 x 103

If only three significant digits are allowed in the mantissa, the numbers have to be shortened. If

chopping is used, the numbers become:

p = 9.890 x 103
and q = 9.887 x 103

Using these values in the subtraction gives:

- q = 9.890 x 103 - 9.887 x 103
= 0.003 x 103

= 3
If rounding is used, the numbers become:

p = 9.891 x 103
and q = 9.887 x 103

(q is the same as before)

Using these values in the subtraction gives:

- q = 9.891 x 103 - 9.887 x 103
= 0.004 x 103

= 4
The true (exact) difference between the numbers is 3.8. These results show that, in the present prob

lem, rounding gives a value closer to the true answer.

The magnitude of round-off errors depends on the magnitude of the

numbers that are involved since, as explained in the previous section,

the interval between the numbers that can be represented on a computer

depends on their magnitude. Round-off errors are likely to occur when

the numbers that are involved in the calculations differ significantly in

their magnitude and when two numbers that are nearly identical are

subtracted from each other.

For example, consider the quadratic equation:

x2 - 100.000lx + 0.01 = 0 (1.9)

for which the exact solutions are x1 = 100 and x2 = 0.0001. The solu

tions can be calculated with the quadratic formula:

x =

-b+ Jb2-4ac and x =

-b- Jb2-4ac (1.lO) 1
2a 2 2a

Using MATLAB (Command Window) to calculate x1 and x2 gives:

>> format long

>> a = 1; b = -100.0001; c = 0.01;

>> RootDis = sqrt(bA2 - 4*a*c)
RootDis =

99.999899999999997

12

>> xl = (-b + RootDis)/(2*a)

xl =

100

>> x2 = (-b - RootDis)/(2*a)

x2 =

Chapter 1 Introduction

1.000000000033197e-004

The value that is calculated by MATLAB for x2 is not exact due to
round-off errors. The round-off error occurs in the numerator in the
expression for x

2
• Since b is negative, the numerator involves subtrac

tion of two numbers that are nearly equal.
In many cases, the form of the mathematical expressions that con

tain subtraction of two quantities that are nearly equal can be changed
to a different form that is less likely to cause round-off errors. In the
expression for x2 in Eq. (1.10), this can be done by multiplying the
expression by (-b + Jb2 -4ac)/(-b + Jb2 -4ac):

-b-Jb2-4ac (-b + Jb2-4ac) 2c x = = ---;::::=== 2 2a (-b+Jb2-4ac) -b+Jb2-4ac
(1.11)

Using Eq. (1.11) in MATLAB to calculate the value of x2 gives:

>> x2Mod = (2*c)/(-b+RootDis)

x2Mod =

1.000000000000000e-004

Now the calculated value for x2 is without an error. Another example
of round-off errors is shown in Example 1-3.

Example 1-3: Round-off errors

Consider the function:
f(x) = x(JX-Jx-1) (1.12)

(a) Use MATLAB to calculate the value of f(x) for the following three values of x:
x = 10, x = 1000 , and x = 100000 .

(b) Use the decimal format with six significant digits to calculate f(x) for the values of x in part
(a) . Compare the results with the values in part (a) .

(c) Change the form of f(x) by multiplying it by JX +�.Using the new form with numbers in
JX+ Jx-1

decimal format with six significant digits, calculate the value of f (x) for the three values of x.

Compare the results with the values in part (a) .

1.3 Errors in Numerical Solutions

SOLUTION

(a)

>> format long g
>> x = [10 1000 100000] ;
>> Fx = x.*(sqrt(x) - sqrt(x-1))
Fx =

13

1.6227766016838 15.8153431255776 158.114278298171

(b) Using decimal format with six significant digits in Eq. (1.12) gives the following values for

f(x):

/(10) = lO(JlO-Jl0-1) = 10(3.16228 -3) = 1.62280
This value agrees with the value from part (a) , when the latter is rounded to six significant digits.

/(1000) = lOOO(JlOOO-Jl000-1) = 1000(31.6228-31.6070) = 15.8

When rounded to six significant digits, the value in part (a) is 15.8153.

/(100000) = lOOOOO(JlOOOOO-Jl00000-1) = 100000(316.228-316.226) = 200

When rounded to six significant digits, the value in part (a) is 158.114.

The results show that the rounding error due to the use of six significant digits increases as x

increases and the relative difference between JX and Jx -1 decreases.

(c) Multiplying the right-hand side ofEq. (1.12) by JX + �
gives:

JX+ Jx-1

f(x) = x(JX-Jx-l)JX+�
=

x[x-(x-1)]
=

x (1.13)
JX+ Jx-1 JX+ Jx-1 JX+ Jx-1

Calculating f(x) using Eq. (1.13) for x = 10, x = 1000 , and x = 100000 gives:

/(10) =

10 lO
= 1.62278

J10 + Jl0-1 3.16228 + 3

/(1000) =

lOOO lOOO
= 15.8153

J1000 + J1000 1 31.6228 + 31.6070

/(100000) =

100000 lOOO
= 158.114

J100000 + J100000-1 316.228 + 316.226

Now the values of f(x) are the same as in part (a) .

1.3.2 Truncation Errors

Truncation errors occur when the numerical methods used for solving a

mathematical problem use an approximate mathematical procedure. A

simple example is the numerical evaluation of sin(x), which can be

done by using Taylor's series expansion (Taylor's series are reviewed in
Chapter 2):

. x3 x5 x? x9 xii
sm(x) = x--+---+---+ ...

3! 5! 7! 9! 11!
(1.14)

14 Chapter 1 Introduction

The value of sin(�) can be determined exactly with Eq. (1.14) if an

infinite number of terms are used. The value can be approximated by

using only a finite number of terms. The difference between the true

(exact) value and an approximate value is the truncation error, denoted

by E
TR

. For example, if only the first term is used:

sin(�) = � = 0.5235988 E
TR = 0.5 - 0.5235988 = -0.0235988

If two terms of the Taylor's series are used:

. (7t) 7t (7t/6)3
TR sm - = - - = 0.4996742 E = 0.5 - 0.4996742 = 0.0003258

6 6 3!
Another example of truncation error that is probably familiar to the

reader is the approximate calculation of derivatives. The value of the

derivative of a function f(x) at a point x1 can be approximated by the

expression:

df(x) I = f(x2)-f(x1)
dx X2-X1

x =x1

(1.15)

where x2 is a point near x 1 • The difference between the value of the

true derivative and the value that is calculated with Eq. (1.15) is called a

truncation error.

The truncation error is dependent on the specific numerical method

or algorithm used to solve a problem. Details on truncation errors are

discussed throughout the book as various numerical methods are pre

sented. The truncation error is independent of round-off error; it exists

even when the mathematical operations themselves are exact.

1.3.3 Total Error

Numerical solution is an approximation. It always includes round-off

errors and, depending on the numerical method, can also include trun

cation errors. Together, the round-off and truncation errors yield the

total numerical error that is included in the numerical solution. This

total error, also called the true error, is the difference between the true

(exact) solution and the numerical solution:

TrueError = TrueSolution - Numerica!Solution (1.16)

The absolute value of the ratio between the true error and the true solu

tion is called the true relative error:

TrueRelativeError = I TrueSolution - Numerica!Solution l (1.17)
TrueSolution

This quantity which is non dimensional and scale-independent indicates

how large the error is relative to the true solution.

The true error and the true relative error in Eqs. (1.16) and (1.17)
cannot actually be determined in problems that require numerical meth-

1.4 Computers and Programming 15

ods for their solution since the true solution is not known. These error

quantities can be useful for evaluating the accuracy of different numeri

cal methods. This is done by using the numerical method for solving

problems that can be solved analytically and evaluating the true errors.

Since the true errors cannot, in most cases, be calculated, other

means are used for estimating the accuracy of a numerical solution.

This depends on the specific method and is discussed in more detail in

later chapters. In some methods the numerical error can be bounded,

while in others an estimate of the order of magnitude of the error is

determined. In practical applications, numerical solutions can also be

compared to experimental results, but it is important to remember that

experimental data have errors and uncertainties as well.

1.4 COMPUTERS AND PROGRAMMING

As mentioned earlier in Section 1.1, the fundamentals of numerical

methods for solving mathematical problems that cannot be solved ana

lytically were developed and used many years ago. The introduction of

modem digital computers provided a means for applying these methods

more accurately, and to problems requiring a large number of repetitive

calculations. A computer can store a large quantity of numbers and can

execute mathematical operations with these numbers very quickly. To

carry out the calculations required for implementing a specific numeri

cal method, the computer has to be provided with a set of instructions,

called a computer program. Since binary format is used in the mathe

matical operations and for storing numbers, the instructions have to be

in this form, and require the use of what is called machine language. In

the early days of computers, computer programs were written in low

level computer languages (a language called assembler). Programming

in this way was tedious and prone to errors because it had to be very

detailed, and it was done in a form much different from the form used in

everyday mathematics.

Later on, operating systems were introduced. Operating systems

may be viewed as interfaces or layers enabling easier contact and com

munication between human users and the machine language of the com

puter. The instructions written in the language of the operating system

are converted by the system to machine language commands that are

executed by the computer. Examples of operating systems are Unix

(written in the programming language called C), developed by Bell

Laboratories in the 1970s, and DOS (Disk Operating System), used by

Microsoft Inc. Although operating systems simplify communication

with the computer, they are still relatively difficult to use, require long

codes, and are not written for the special needs of engineers and scien

tists.

Computer programs used by scientists and engineers are often writ

ten in programming languages that operate on top of the operating sys-

16 Chapter 1 Introduction

tern. These higher-level computer languages are easier to use and

enable the engineer or scientist to concentrate on problem solving rather

than on tedious programming. Computer languages that are often used

in science and engineering are Fortran, C, and C++. In general, for the

same task, computer programs that are written in high-level computer

languages are shorter (require less commands) than programs written in

lower-level languages. This book uses MATLAB, which is a high-level

language for technical computing. For example, multiplication of two

matrices in MATLAB is denoted by the regular multiplication opera

tion, while other languages require the writing of a loop with several

lines of code.

Algorithm

When a computer is used for obtaining a numerical solution to a prob

lem, the program carries out the operations associated with the specific

numerical method that is used. Some of the numerical methods are sim

ple to implement, but sometimes the numerical procedures are compli

cated and difficult to program.

Before a numerical method is programmed, it is helpful to plan out

all the steps that have to be followed in order to implement the numeri

cal method successfully. Such a plan is called an algorithm, which is

defined as step-by-step instructions on how to carry out the solution.

Algorithms can be written in various levels of detail. Since the focus of

this book is on numerical methods, the term algorithm is used here only

in the context of instructions for implementing the numerical methods.

As a simple example, consider an algorithm for the solution of the

quadratic equation:

ax2+ bx+c = 0 (1.18)

for which the solution in the case of real roots is given by the quadratic

formula:

- b+Jb2-4ac x = --'----! 2a
(1.19)

Algorithm for solving for the real roots of a quadratic equation

Given are the three constants of the quadratic equation a, b, and c.

1. Calculate the value of the discriminant D = b2 -4ac .

2. If D � 0, calculate the two roots using Eq. (1.19).

3. If D = 0, calculate the root x =

-b , and display the message:
2a

"The equation has a single root."

4. If D < 0, display the message: "The equation has no real roots."

Once the algorithm is devised, it can be implemented in a computer

program.

1.4 Computers and Programming 17

Computer programs

A computer program (code) is a set (list) of commands (operations) that
are to be executed by the computer. Different programming languages
use different syntax for the commands, but, in general, commands can

be grouped into several categories:
• Commands for input and output of data. These commands are used

for importing data into the computer, displaying on the monitor, or

storing numerical results in files.
• Commands for defining variables.
• Commands that execute mathematical operations. These include the

standard operations (addition, multiplication, power, etc.) and com
mands that calculate values of commonly used functions (trigono

metric, exponential, logarithmic, etc.).

• Commands that control the order in which commands are executed
and enable the computer to choose different groups of commands to

be executed under different circumstances. These commands are
typically associated with conditional statements that provide the
means for making decisions as to which commands to execute in
which order. Many languages have "if-else" commands for this pur

pose, but many other commands for this purpose exist.

• Commands that enable the computer to repeat sections of the pro
gram. In many languages these are called loops. These commands
are very useful in the programming of numerical methods, since

many methods use iterations for obtaining accurate solutions.

• Commands that create figures and graphical displays of the results.

A computer program can be written as one long list of commands,
but typically it is divided into smaller well-defined parts (subprograms).
The parts are self-contained programs that perform part of the overall
operations that have to be carried out. With this approach the various

parts can be written and tested independently. In many computer lan
guages, the subprograms are called subroutines and functions.

As already mentioned, in this book numerical methods are imple

mented by using MATLAB, which is a relatively new language for
technical computing. MATLAB is powerful and easy to use. It includes
many built-in functions that are very useful for solving problems in sci
ence and engineering.

It is assumed that the reader of this book has at least some knowl
edge of MATLAB and programming. For those who do not, an intro
duction to MATLAB is presented in the appendix. It includes a section

on conditional statements and loops, which are the basic building
blocks of programming. For a more comprehensive introduction to pro
gramming, the reader is referred to books on computer programming.
To help the reader follow the MATLAB programs listed in this book,

comments and explanations are posted next to the program listings.

18 Chapter 1 Introduction

1.5 PROBLEMS

Problems to be solved by hand
Solve the following problems by hand. When needed, use a calculator or write a MATLAB script file to
carry out the calculations.

1.1 Convert the binary number 1010100 to decimal format.

1.2 Convert the binary number 1101.001 to decimal format.

1.3 Convert the binary number 10110001110001.01010111 to decimal format.

1.4 Write the number 45.0 in the following forms (in part (c), follow the IEEE-754 standard):

(a) Binary form. (b) Base 2 floating point representation. (c) 32-bit single-precision string.

1.5 Write the number 66.25 in the following forms (in part (c), follow the IEEE-754 standard):

(a) Binary form. (b) Base 2 floating point representation. (c) 32-bit single-precision string.

1.6 Write the number -0.625 in the following forms (in part (c), follow the IEEE-754 standard):

(a) Binary form. (b) Base 2 floating point representation. (c) 32-bit single-precision string.

1.7 Write the number 0.06298828125 in the following forms (in part (c), follow the IEEE-754 standard):

(a) Binary form. (b) Base 2 floating point representation. (c) 32-bit single-precision string.

1.8 Write the number 38.8125 in the following forms (in part (c), follow the IEEE-754 standard):

(a) Binary form. (b) Base 2 floating point representation. (c) 64-bit double-precision string.

1.9 Write the number-30952.0 in the following forms (in part (c), follow the IEEE-754 standard):

(a) Binary form. (b) Base 2 floating point representation. (c) 64-bit double-precision string.

1.10 Write the number 0.197265625 in the following forms (in part (c), follow the IEEE-754 standard):

(a) Binary form. (b) Base 2 floating point representation. (c) 64-bit double-precision string.

1.11 Write the number 0.001220703125 in the following forms (in part (c), follow the IEEE-754 stan

dard):

(a) Binary form. (b) Base 2 floating point representation. (c) 64-bit double-precision string.

1.12 In single precision (IEEE-754 standard), 8 bits are used for storing the exponent (the bias is 127),

and 23 bits are used for storing the mantissa.

(a) What are the smallest and the largest positive numbers that can be stored in single precision?

(b) What is the smallest value of the mantissa that can be stored?

1.13 Suppose a new standard, the IDDD-643 standard, is developed for storing numbers in a string of 16
bits. The first bit is used for the sign of the number (0 if positive and 1 if negative). The next five bits store

the exponent plus the bias, and the remaining 10 bits store the mantissa. The bias is 15 and no bits are

reserved for any special purposes. What is the smallest exponent that can be stored?

1.5 Problems 19

1.14 Write the number 581 in the 16-bit IDDD-643 standard that was introduced in Problem 1.13.

1.15 Write the number 256.1875 in the 16-bit IDDD-643 standard that was introduced in Problem 1.13.

Apply chopping if necessary.

1.16 What is the number that is actually stored in Problem 1.15? What is the round-off error?

1.17 Write the number 0.2 in binary form with sufficient number of digits so that the true relative error is

less than 0.01.

1.18 Consider the function f(x) = 1 - cos(x)
sin(x)

(a) Use the decimal format with six significant digits (apply rounding at each step) to calculate (using a

calculator) f(x) for x = 0.007 .

(b) Use MATLAB (format long) to calculate the value of f(x). Consider this to be the true value, and

calculate the true relative error, due to rounding, in the value of f(x) that was obtained in part (a) .

(c) Multiply f(x) by
1 + cos(x)

to obtain a form of f(x) that is less prone to rounding errors. With the
1 + cos(x)

new form, use the decimal format with six significant digits (apply rounding at each step) to calculate

(using a calculator) f(x) for x = 0.007. Compare the value with the values in parts (a) and (b).

1.19 Consider the function f(x) = � - 2
. x

(a) Use the decimal format with six significant digits (apply rounding at each step) to calculate (using a

calculator) f(x) for x = 0.001 .

(b) Use MATLAB (format long) to calculate the value of f(x). Consider this to be the true value, and

calculate the true relative error due to rounding in the value of f(x) that was obtained in part (a) .

(c) Multiply f(x) by � + 2
to obtain a form of f(x) that is less prone to rounding errors. With the

J4 +x+ 2

new form, use the decimal format with six significant digits (apply rounding at each step) to calculate

(using a calculator) f(x) for x = 0.001. Compare the value with the values in parts (a) and (b).

1.20 Consider the function f(x) = ex
- 1

. x
(a) Use the decimal format with five significant digits (apply rounding) to calculate (using a calculator)

f(x) for x = 0.005.

(b) Use MATLAB (format long) to calculate the value of f(x). Consider this to be the true value, and

calculate the true relative error due to rounding in the value of f(x) that was obtained in part (a) .

1.21 The Taylor series expansion of cos(x) is given by:

x2 x4 x6 x& xlO cos (x) = 1 - -+ - - -+ - - -+ . . .
2! 4! 6! 8! 10!

(1.20)

Use the first three terms in Eq. (1.20) to calculate the value of cos(7t/4) . Use the decimal format with six

significant digits (apply rounding at each step). Calculate the truncation error.

20 Chapter 1 Introduction

1.22 Taylor series expansion of the function f(x) = ex is:

x2 x3 x4 xs f(x) = ex = 1 + x + - + - + - + - + ...
2! 3! 4! 5!

(1.21)

Use Eq. (1.21) to calculate the value of e-2 for the following cases. Use decimal numbers with six signifi

cant numbers (apply rounding at each step). In each case calculate also the true relative error. Use MAT

LAB with format long to calculate the true value of e-2•

(a) Use the first four terms. (b) Use the first six terms. (c) Use the first eight terms.

1.23 Use the first seven terms in Eq. (1.21) to calculate an estimated value of e. Do the calculation with

MATLAB (use format long to display the numbers). Determine the true relative error. For the exact

value of e, use exp (1) in MATLAB.

1.24 Develop an algorithm to determine whether or not a given integer is a prime number. Recall that a

prime number is an integer larger than 1 and which is divisible only by itself and by 1.

1.25 Develop an algorithm for adding all prime numbers between 0 and a given number.

1.26 Develop an algorithm for converting integers given in decimal form to binary form.

1.27 Develop an algorithm to implement the IDDD-643 standard introduced in Problem 1.13 to store any

base 10 decimal number in binary form. Apply chopping, if necessary.

1.28 Develop an algorithm to implement the IDDD-643 standard introduced in Problem 1.13 to store any

base 10 decimal number in binary form. Apply rounding down.

1.29 Develop an algorithm to implement the IDDD-643 standard introduced in Problem 1.13 to store any

base 10 decimal number in binary form. Apply rounding up.

1.30 Develop an algorithm to add two integers expressed in binary form. The rules for adding binary

numbers are: 0 + 0 � 0, 0 + 1 � 1 , 1 + 0 � 1 , and 1 + 1 � 0 carry 1. For example, 5 + 12 is:

1 1 (carried digits)

+00101
0 1100
100 0 1

1.31 Suppose chopping is used to store the number 84.48 in the IDDD-643 standard of problem 1.13.

What is the number actually stored in binary form? What is the equivalent decimal number that is stored?

What is the absolute error?

Problems to be programmed in MATLAB

Solve the following problems using the MATLAB environment. Do not use MATLAB s built-in functions for
changing the form of numbers.

1.32 Write a MATLAB program in a script file that determines whether or not a given integer is a prime

number by implementing the algorithm developed in Problem 1.24. The program should start by assigning

1.5 Problems 21

a value to a variable x. When the program is executed, a message should be displayed that states whether

or not the value assigned to x is a prime number. Execute the program with x = 79, x = 126 , and

x = 367.

1.33 Write a user-defined MATLAB function that adds all prime numbers between 0 and a given number

by implementing the algorithm developed in Problem 1.25. Name the function sp = sumprime (int),

where the input argument int is a number larger than 1, and the output argument s p is the sum of all the

prime numbers that are smaller than int. Use the function to calculate the sum of all the prime numbers

between O and 30.

1.34 Write a user-defined MATLAB function that converts integers written in binary form to decimal

form. Name the function d = binaTOint (b), where the input argument b is a vector with ls and Os that

represents the binary number to be converted and the output argument d is a number in decimal form. The

largest number that could be converted with the function should be a binary number with 20 1 s. If a larger

number is entered for b, the function should display an error message. Use the function to convert the fol

lowing numbers:

(a) 11010. (b) 10101100111. (c) 11100110001110101.

1.35 Write a user-defined MATLAB function that converts integers written in decimal form to binary

form. Name the function b = intTObina (d), where the input argument dis the integer to be converted

and the output argument b is a vector with 1 s and Os that represents the number in binary form. The largest

number that could be converted with the function should be a binary number with 20 1 s. If a larger number

is entered as d, the function should display an error message. Use the function to convert the following

numbers:

(a) 81. (b) 30952. (c) 1500000.

1.36 Write a user-defined MATLAB function that converts real numbers in decimal form to binary form.

Name the function b = deci TObina (d), where the input argument dis the number to be converted and

the output argument b is a 30-element-long vector with ls and Os that represents the number in binary

form. The first 15 elements of b store the digits to the left of the decimal point, and the last 15 elements of

b store the digits to the right of the decimal point. If more than 15 positions are required in the binary form

for the digits to the right of the decimal point, the digits should be chopped. If the number that is entered as

dis larger than can be stored in b, the function should display an error message. Use the deci TObina in

the Command Window to convert the numbers 85.321, 0.00671, and 3006.42.

1.37 Write a user-defined MATLAB function that adds two integers in binary form according to the algo

rithm of Problem 1.30. Name the function aplusb = addbin (a, b), where the input arguments a and b

are the numbers to be added in binary form (vectors with 1 s and Os that represent the binary numbers), and

the output argument a plus b is the result in binary form (a vector with 1 s and Os that represent the binary

number). The largest numbers that could be added with the function should be binary numbers with 15 ls.

Use the function in the Com mand Window to add 100111011and1100110.

1.38 Write a user-defined MATLAB function that adds two integers in decimal form. Name the function

c = adddec (a, b) , where the input arguments a and b are the numbers to be added in decimal form, and

the output argument c is the result in decimal form. The addition is done in the following way: First, the

22 Chapter 1 Introduction

numbers a and bare converted to binary form by using the user-defined function intTObina written in

Problem 1.35. Then, the converted two numbers are added using the user-defined function addbin writ

ten in Problem 1.37. Finally, the result is converted to decimal form by using the user-defined function

binaTOint written in Problem 1.34. The three user-defined functions intTObina, addbin, and

binaTOint can be written as subfunctions inside adddec. The numbers that are being added with the

function cannot be larger than 65,535 each. If a larger number is entered, an error message is displayed.

Use the function in the Command Window to add 60,000 and 12,087.

1.39 Write a user-defined MATLAB function that implements the IDDD-643 standard of problem 1.13.

Name the function n = iddd643 (num), where the input argument num is any real number, and the out

put argument n is a 16-element-long vector with ls and Os. Use chopping if necessary. Use iddd643 for

determining n for the following numbers:

(a) 81. (b) 256.1875.

1.40 Write a user-defined MATLAB function that determines the binary floating point representation of a

number written in decimal form. Name the function b = decTObinfloat (num), where the input argu

ment num is a real number, and the output argument bis a two-element vector in which the first element is

the mantissa and the second element is the value of the exponent. Use the function to determine the binary

floating point representation of 55.6, 2143.75, and 0.00843.

1.41 The value of n can be calculated with the series:

7t = 4 f (-l)n-l_l _ = 4(1-!+!-!+!-_!_+ ...)
n = 1 2n - 1 3 5 7 9 11 (1.22)

Write a MATLAB program in a script file that calculates the value of n by using n terms of the series and

calculates the corresponding true relative error. (For the true value of n, use the predefined MATLAB vari

able pi.) Use the program to calculate n and the true relative error for:

(a) n = 10 . (b) n = 20. (c) n = 40 .

1.42 The Taylor's series expansion for sinx is:

. x3 x5 x7
L

oo (-lf (2n+ 1)
smx = x - - + - - - + = x

3! 5! 7! n=0(2n+l)!
where x is in radians. Write a user-defined function that determines sinx using Taylor's series expansion.

For function name and arguments, use y= sin Taylor (x) , where the input argument x is the angle in

degrees and the output argument y is the value for sinx. Inside the user-defined function, use a loop for

adding the terms of the Taylor's series. If an is the nth term in the series, then the sum Sn of then terms is

Sn = Sn-l +an. In each pass, calculate the estimated error E given by E = I Sn -Sn-1 1 . Stop adding terms
sn-1

when Es;; 0.000001. Use sinTaylor for calculating:

(a) sin65°. (b) sin195°.

Compare the values calculated using sinTaylor with the values obtained by using MATLAB's built-in

s ind function.

Chapter2

Mathematical Background

Core Topics

Concepts from calculus (2.2).

Vectors (2.3).

Matrices and linear algebra (2.4).

Ordinary differential equations (ODEs) (2.5).

Functions of two or more independent variables,

partial differentiation (2.6)

Taylor series (2.7)
Inner product and orthogonality (2.8)

2.1 BACKGROUND

The present book focuses on the numerical methods used for calculat

ing approximated solutions to problems that cannot be solved (or are

difficult to solve) analytically. It is assumed that the reader has knowl

edge of calculus, linear algebra, and differential equations. This chapter

has two objectives. One is to present, as a reference, some background

useful for analysis of numerical methods. The second objective is to

review some fundamental concepts and terms from calculus that are

useful in the derivation of the numerical methods themselves. The chap

ter also defines many of the mathematical terms and the notation used

in the rest of the book.

It should be emphasized that the topics that are presented in this

section are meant as a review, and so are not covered thoroughly. This

section is by no means a substitute for a text in calculus where the sub

jects are covered more rigorously. For each topic, the objective is to

have a basic definition with a short explanation. This will serve as a

reminder of concepts with which the reader is assumed to be familiar. If

needed, the reader may use this information as the basis for seeking for

a reference text on linear algebra and calculus that has a more rigorous

exposition of the topic.

Some of the topics explained in this chapter are repeated in other

chapters where the numerical methods are presented. A typical chapter

starts with a section that explains the analytical background and the rea
sons the corresponding numerical method is needed. This repetition is

necessary in order to have a complete presentation of the numerical

method.

This chapter is organized as follows. Some fundamental concepts

from pre-calculus and calculus are covered in Section 2.2. Vectors as

23

24

x j{x) y

Independent Dependent
variable .._ __ __, variable

Figure 2-1: A function.

Chapter 2 Mathematical Background

well as the ideas of linear independence and linear dependence are dis
cussed in Section 2.3. This is followed by a review of matrices and
introductory linear algebra in Section 2.4. Ordinary differential equa

tions are briefly discussed in Section 2.5. Functions with two or more
independent variables and partial differentiation are reviewed in Section
2.6. Taylor series expansion for a function of a single variable and for a
function of two variables is described in Section 2.7. Finally, inner

product and orthogonality is reviewed in Section 2.8.

2.2 CONCEPTS FROM PRE-CALCULUS AND
CALCULUS

Function

A function written as y = f(x) associates a unique number y (depen
dent variable) with each value of x (independent variable) (Fig. 2-1).
The span of values that x can have from its minimum to its maximum
value is called the domain, and the span of the corresponding values of
y is called the range. The domain and range of the variables are also
called intervals. When the interval includes the endpoints (the first and

last values of the variable), then it is called a closed interval; when the
endpoints are not included, the interval is called an open interval. If the
endpoints of the interval of x are a and b, then the closed interval of x is

written as [a, b] , and the open interval as (a, b) . A function can have

more than one independent variable. For example, the function

T = f(x, y, z) has three independent variables, where one unique num

ber Tis associated with each set of values x, y, and z.

Limit of a function

If a function f(x) comes arbitrarily close to a single number L as x
approaches a number a from either the right side or the left side, then

the limit of f(x) is said to approach Las x approaches a. Symbolically,

the limit is expressed by:

limf(x) = f(a) = L (2.1)
x --ta

The formal definition states that if f(x) is a function defined on an open

interval containing a and L is a real number, then for each number E > 0,

there exists a number o > 0 such that if 0 < [x-a[< o then f(x)-L[< E.

Since o can be chosen to be arbitrarily small, f(x) can be made to
approach the limit Las closely as desired. Equation (2.1) by the way it
is written implies that the limit exists. This is not always the case and

sometimes functions do not have limits at certain points. However,

those that do have limits cannot have two different limits as x � a . In
other words, if the limit of a function exists, then it is unique.

2.2 Concepts from Pre-Calculus and Calculus 25

y

a c b

Figure 2-2: Intermediate value
theorem.

fix)

True
derivative

a x x x x

x

Point x approaches point a

Figure 2-3: Derivative of a
function.

Continuity of a function
A function f(x) is said to be continuous at x = a if the following

three conditions are satisfied:

(1) f(a) exists, (2) lim f(x) exists, and (3) lim f(x) = f(a)
x�a x�a

A function is continuous on an open interval (a, b) if it is continuous at

each point in the interval. A function that is continuous on the entire

real axis (-oo, oo) is said to be everywhere continuous.
Numerically, continuity means that small variations in the indepen

dent variable give small variations in the dependent variable.

Intermediate value theorem
The intermediate value theorem is a useful theorem about the behavior

of a function in a closed interval. Formally, it states that if f(x) is con

tinuous on the closed interval [a, b] and Mis any number between f(a)
and f(b), then there exists at least one number c in [a, b] such that

f(c) = M (Fig. 2-2). Note that this theorem tells you that at least one c
exists, but it does not provide a method for finding this value of c. Such

a theorem is called an existence theorem. The intermediate value theo

rem implies that the graph of a continuous function cannot have a verti

cal jump.

Derivatives of a function
The ordinary derivative, first derivative, or, simply, derivative of a func-

tion y = f(x) at a point x = a in the domain of f(x) is denoted by <!1!., dx
y', qf_, or f'(a), and is defined as: dx

<!J!.I = f'(a) =
lim f(x)-f(a) (2.2) dx x�a x-a

x=a

Equation (2.2) defines an ordinary derivative because the function f(x)
is a function of a single independent variable. Note that the quantity

f (x f :::: £(a) represents the slope of the secant line connecting the points

(a, f(a)) and (x, f(x)). In the limit as x �a , it can be seen from Fig. 2-
3 that the limit is the tangent line at the point (a, f(a)). Therefore, the

derivative of the function f(x) at the point x = a is the slope of the

tangent to the curve y = f(x) at that point. A function must be continu

ous before it can be differentiable. A function that is continuous and dif

ferentiable over a certain interval is said to be smooth.
There are two important ways to interpret the first derivative of a

function. One is as mentioned before, as the slope of the tangent to the

curve described by y = f(x) at a point. This first interpretation is espe

cially useful in finding the maximum or minimum of the curve

y = f(x) since the slope (and hence the first derivative) must be zero at

26

y

a c

Figure 2-4: Mean value theorem
for derivatives.

Chapter 2 Mathematical Background

those points. The second interpretation of the derivative is as the rate of

change of the function y = f(x) with respect to x. In other words, dy
dx

represents how fast y changes as x is changed.
Higher-order derivatives may be obtained by successive application

of the definition (2.2) to each derivative. In other words, the second
2

derivative <!._x is obtained by differentiating the first derivative once,
dx2

that is,
d (� . Similarly, the third derivative is the first derivative of dx

the second derivative or d 3 Y = !!.... (d 2 YJ , and so on.
dx3 dx dx2

Chain rule for ordinary differentiation
The chain rule is useful for differentiating functions whose arguments
themselves are functions. For instance, if y = f(u), where u = g(x) ,
then y = f(g(x)) is also differentiable and the following chain rule
holds:

cJ1:.
= (

cJ1:.)
(

du)
dx du dx

Mean value theorem for derivatives

(2.3)

The mean value theorem is very useful in numerical analysis when find
ing bounds for the order of magnitude of numerical error for different
methods. Formally, it states that if f(x) is a continuous function on the
closed interval [a, b] and differentiable on the open interval (a, b) , then
there exists a number c within the interval, c E (a, b) , such that:

f'(c) = cJJ:.I = f(b)-[(a)
dx x=c

b-a (2.4)

Simply stated, the mean value theorem for derivatives states, as illus
trated in Fig. 2-4, that within the interval there exists a point c such that
the value of the derivative of f(x) is exactly equal to the slope of the
secant line joining the endpoints (a, f(a)), and (b, f(b)).
Integral of a function
There are two types of integrals of a function of one variable, the indef
inite integral and the definite integral. The indefinite integral is the
opposite or inverse of the derivative and is therefore also referred to as
the antiderivative. For instance, if g(x) is the derivative of f(x), that is,

if g(x) = �'then the antiderivative or indefinite integral of g(x) is dx
f(x) and is written as:

2.2 Concepts from Pre-Calculus and Calculus 27

x
j c1 x2c2 x3 X; c; X;+1 xNcNj
X1=a XN+1 =b

Figure 2-5: Definite integral
using a Riemann sum.

f(x) = J g(x)dx
A definite integral, I, is denoted by:

I= ff(x)dx

(2.5)

(2.6)

The definite integral is a number, and is defined on a closed interval

[a, b]. a and b are the lower and upper limits of integration, respec-

tively, and the function f(x) that is written next to the integral sign f is

called the integrand. A definite integral can be defined by using the Rie

mann sum. Consider a function f(x) that is defined and continuous on

[a, b] . The domain can be divided into n subintervals defined by

fl.x; = X;+ 1 -x; where i = 1, . . . , n. The Riemann sum for f(x) on
n [a, b] is defined as _Lf(c;)flx; where c; is a number in the subinterval

i= I

[x;, X;+ d. A definite integral cf(x)dx is defined as the limit of the Rie

mann sum when the length of all the subintervals of [a, b] approaches

zero:

(2.7)

It can be seen from Fig. 2-5 that the value of IJ(c;)fl.x; equals the
i= I

area under the curve specified by y = f(x). This interpretation of the

integral as the area under the curve is useful in developing approximate

methods for numerically integrating functions (see Chapter 9).

Fundamental theorem of calculus

The connection between differentiation and integration is expressed by

the fundamental theorem of calculus, which states that if a function

f (x) is continuous over the closed interval [a, b] and F (x) is an anti de

rivative of f(x) over [a, b], then

f f(x)dx = F(b)-F(a) (2.8)

Mean value theorem for integrals

One way of interpreting the definite integral of a monotonically increas
ing function f (x) over an interval [a, b] is as the area under the curve

y = f(x). It can be shown that the area under the curve is bounded by

the area of the lower rectangle f(a)(b-a) and the area of the upper

rectangle f (b) (b -a). The mean value theorem for integrals states that

28

y

f(b)

f(c)
/(a)

a c b

Figure 2-6: Mean value
theorem for an integral.

z

Figure 2-7: Vector V with
components V x• VY, and V z.

x

y

Chapter 2 Mathematical Background

somewhere between these two rectangles there exists a rectangle whose
area is exactly equal to the area under the curve (Fig. 2-6). Formally, the

theorem states that if f (x) is continuous over the closed interval [a, b] ,
then there exists a number c E [a, b] such that:

f f(x)dx = f(c)(b-a) (2.9)

Average value of a function

The value /(c) appearing in the mean value theorem for integrals, Eq.

(2.9), is called the average value of the function /(x) over the interval

[a, b]. Thus, the average value of f(x) over [a, b] is denoted (f) and

defined as:

i rb (f) =

(b-a)Ja
f(x)dx (2.10)

Second fundamental theorem of calculus

This theorem allows one to evaluate the derivative of a definite integral.

Formally, it states that if /(x) is continuous over an open interval con

taining the number a, then for every x in the interval,

(2.11)

where � is a dummy variable representing the coordinate along the
interval.

2.3 VECTORS

Vectors are quantities (mathematical or physical) that have two attri
butes: magnitude and direction. In contrast, objects with a single attri
bute, such as magnitude, are called scalars. Examples of scalars are

mass, length, and volume. Examples of vectors are force, momentum,
and acceleration. One way to denote a quantity that is a vector is by

writing a letter with a small arrow (or a short line) above the letter, V.
(In many books names of vectors are written in bold type.) The magni

tude of the vector is denoted by the letter itself, V, or is written as IV I. A
vector is usually defined with respect to a coordinate system. Once a

coordinate system has been chosen, a vector may be represented graph
ically in such a space by a directed line segment (i.e., line with an
arrow) (Fig. 2-7). Projections of the vector onto each of the coordinate

axes define the components of the vector. If V) is the x component

(i.e., projection of the vector on the x axis), VY) is they component, and

VJ is the z component, then the vector V can be written as:

(2.12)

2.3 Vectors

z

(0,0, 1)
A

k

x

Figure 2-8: Unit vectors.

29

where i ,) , and k are the unit vectors in the x, y, and z directions,

respectively. Unit vectors, shown in Fig. 2-8, are vectors that have a
specific direction and a magnitude of 1. In addition, a vector may be
written by listing the magnitudes of its components in a row or a col
umn:

V � [v, v, v J or V � [� (2.13)

Sometimes a vector is denoted by V0 where i = x, y, z or i = 1, 2, 3.
The magnitude of a vector in a three-dimensional Cartesian space is

its length, and is determined by:

lvl = Jv: + v: + v; (2.14)

The direction of the vector can be specified by the unit vector (a unit

vector in the direction of the vector). The unit vector, written as V, is

obtained by dividing Eq. (2.12) by the magnitude (length) given by Eq.
(2.14):

v
=

v
=

v)+vy)+v) t A, A

l�vl
= i +m;+nk

Jvz + vz + vz x y z

v v v

(2.15)

where I =
x

m = and n =
z

Jv2+ v2+ v2' Jv2+ v2+ v2' Jv2+ v2+ vz x y z x y z x y z

are called direction cosines and are equal to the cosine of the angles

between the vector and the x, y, and z coordinate axes, respectively.
In physical situations, vectors are restricted to at most three dimen

sions. The idea of vectors, however, is generalized in mathematics (lin
ear algebra) to dimensions beyond three. A vector then is a list (or a set)
of n numbers (elements or components) written in a row or a column,
where the name of the vector is written inside brackets:

[V]
V 1

[v1 V2 . • .
vn] or [V] =

V2 (2.16)

An element of a vector is referred to as V; where the subscript i denotes

the position of the element in the row or the column. When the compo

nents are written as a row, the vector is referred to as a row vector, and
when written as a column, the vector is called a column vector. In Eq.

(2.16) the row vector is called a (1 x n) vector, indicating that it has 1
row and n columns. The column vector in Eq. (2.16) is called an (n x 1)
vector.

30 Chapter 2 Mathematical Background

2.3. 1 Operations with Vectors

Two vectors are equal if they are of the same type (row or column) and

all the elements that are in the same position are equal to each other.

Some of the regular mathematical operations are defined for vectors

whereas others are not. For example, vectors can be added, subtracted,

and multiplied in certain ways but cannot be divided. There are also

operations that are unique to vectors. Basic operations are summarized

next.

Addition and subtraction of two vectors

Two vectors can be added or subtracted only if they are of the same type

(i.e., both row vectors or both column vectors) and of the same size

(i.e., the same number of components or elements). Given two (row or
--7 �

column) vectors V = [V;] = [V1, .. .,Vn]andU = [U;] = [U1, .. .,Un],

the sum of the two vectors is:

-7 --7
V+U = [V;+U;] = [V1+U1,V2+U2, .. .,Vn+Un

Similarly, for subtraction:

-7 --7
V-U = [V;-U;] = [V1-U1,V2-U2, ... ,Vn-Un

Multiplication of a vector by a scalar

(2.17)

(2.18)

When a vector is multiplied by a scalar, each element is multiplied by

the scalar. Given a vector V = [V;] = [V 1, V 2, .. ., V n] and scalar a, the

two can be multiplied to yield:

A similar property holds for the case where V is a column vector.

Transpose of a vector

(2.19)

The transpose operation turns a row vector into a column vector and

vice versa. For example, if V = [V1, V2, .. ., vn: is a (1 x n) row vector,

then the transpose of V, written as V T, is the following (n x 1) column

vector:

(2.20)

Multiplication of two vectors

There are different ways to multiply two vectors. Two of the ways that

produce physically meaningful results are the dot product and cross

product. The dot product results in a scalar quantity, whereas the cross

product results in a vector quantity.

2.3 Vectors

--+- --+- --+-

W = V XU

Figure 2-9: Cross product.

31

Dot or scalar product of two vectors

� �

The dot product of two vectors V = [V;] and U = [U;] is defined as:

(2.21)

The result of such a multiplication is a number or scalar. Sometimes the

dot product is written in the short-hand form:

(2.22)

where the repeated subscripts imply summation over all possible values
n

of that subscript, that is, V;U; = L V;U;.
i= I

The dot product can be given a geometric interpretation when the

two vectors are drawn in a coordinate system. It can be shown from

simple geometry and trigonometry that:

v • rJ = lrllrJlcose (2.23)

where lrl and lul are the magnitudes of the vectors (see Eq. (2.14))

and e is the angle formed by the two vectors.

Cross or vector product of two vectors

A cross, or a vector product, of two vectors is another vector. For two
� A A A � A A A ,

vectors V = Vxi +Vy}+ Vzk and U = Uxi +Uy}+ Uzk, defined ma

three-dimensional Cartesian coordinate system, the cross product

W = V ® rJ is defined by:
� � �

W = V® U =

= (VyUz- VzUy)f + (VzUx- VxUz)l + (VxUy- VyUx)k
(2.24)

As illustrated in Fig. 2-9, the vector W is perpendicular to the plane that

is formed by V and rJ, and the magnitude of W is given by:

lwl = lvllrJlsine

where 8 is the angle formed by the two vectors V and rJ .
Linear dependence and linear independence of a set of vectors

(2.25)

A set of vectors Pi, � , ... , V: is said to be linearly independent if

(2.26)

is satisfied if and only if a1 = a2 = . . . = an = 0 . Otherwise, the vec

tors are said to be linearly dependent. In other words, if any of the

numbers ai. a2, ... ,an is not identically zero, then the set of vectors is

linearly dependent. As an example, consider the column vectors

32

z

x y

Figure 2-10: Triangle inequality.

Chapter 2 Mathematical Background

V = [�], rJ = [j, and W = [�] · By inspection, it can be seen that V

and rJ are linearly independent. However because 2 V + 3 rJ - W = O ,

W is linearly dependent on V and rJ . Equation (2.26) is called a lin
ear combination of vectors. A vector is therefore linearly dependent on
a set of other vectors if it can be expressed as a linear combination of
these other vectors.

Triangle inequality

The addition of two vectors, V and rJ, can be represented geometri
cally (Fig 2-10) by a parallelogram whose two sides are the vectors that

are being added, and the resulting sum, (V + U), is the main diagonal,
as shown in Fig. 2-10. The triangle inequality refers to the fact that the
sum of the lengths of two sides of a triangle is always larger than or at
least equal to the length of the third side. It is written as:

1-V + rJI �I-VI+ 1-UI c2.21)

This property is useful for matrices as well.

2.4 MATRICES AND LINEAR ALGEBRA

A matrix is a rectangular array of numbers. The size of a matrix refers

to the number ofrows and columns it contains. An (m x n) matrix ("m

by n matrix") has m rows and n columns:

[a]
=

az1 azz · · · azn (2.28)

The name of a matrix is written with brackets. An element (or entry) of

a matrix is referred to as aiJ where the subscripts i and} denote the num

ber of the row and the number of the column where the element is posi

tioned.
Matrices are useful in the analysis of systems of linear equations

and in other applications. Matrices can be added, subtracted, multiplied,
and used in mathematical operations that are special for matrices.

Relationship between matrices and vectors

There is a close relationship between matrices and vectors. The matrix

may be thought of as being composed of row vectors, or, alternatively,
column vectors. On the other hand, a vector is a special case of a matrix.
A row vector is simply a matrix with one row and several columns, and
a column vector is simply a matrix with several rows and one column.

2.4 Matrices and Linear Algebra

l2-lj ll �l l3 �1 � � + -; �J = � �J

33

2.4. 1 Operations with Matrices

Mathematical operations performed with matrices fall in the general

area of mathematics known as linear algebra. As with vectors, only

certain mathematical operations are defined for matrices. These opera

tions include multiplication by a scalar, addition, subtraction, and multi

plication. As with vectors, division is not an allowed operation. Two

matrices are equal if they are of the same size and all the elements that

are in the same position in both matrices are equal.

Multiplication by a scalar

If [a] = [a;) is a matrix and a is a scalar, then a.[a] = [a.a;) is

obtained by multiplying every element or entry of the matrix by the

number a.

Addition and subtraction of two matrices

Two matrices can be added or subtracted only if they are of the same

size. The matrix [a] and the matrix [b] (both (n x m)) are added (or

subtracted) by adding (or subtracting) the corresponding elements of

the two matrices. The result [c] is a matrix of the same size where:

[ciJ] = [a;)+ [biJ] (2.29)

Figure 2-11: Addition of matrices. for addition, as illustrated in Fig. 2-11, and:

T 2 -1 0 l � 2 5 6 7
5 3 1 _ - -1 3 1 -
61 -4

01-49
7 - 2 9

Figure 2-12: Transpose of a
matrix.

for subtraction.

Transpose of a matrix

[ciJ] = [a;)- [biJ] (2.30)

The transpose operation of a matrix rearranges the matrix such that the

rows are switched into columns (or vice versa, the columns are

switched into rows) (Fig. 2-12). In other words, the position (row num

ber, column number) of each element in the matrix is switched around.

The transpose of [a] is written as [a{. For example, the element [a12]
T

becomes [a2i], and so on. In general:

Thus, the transpose of a (3 x 4) matrix such as [a] =

is the (4 x 3) matrix: [a{ =
a12 a12 a32
a13 a13 a33
a14 a14 a34

(2.31)

tall a12 a13 a14j
a11 a12 a13 a14
a31 a32 a33 a34

34

Figure 2-13: Multiplication
of matrices.

Chapter 2 Mathematical Background

Multiplication of matrices

The multiplication [c] = [a] [b] of a matrix [a] times a matrix [b] is

defined only when the number of columns of matrix [a] is equal to the

number of rows of the matrix [b]. There are no restrictions on the num

ber of rows of [a] or the number of columns of [b] . The result of the

multiplication is a matrix [c] that has the same number of rows as [a]

and the same number of columns as [b] . So, if matrix [a] is (m x q) and

matrix [b] is (q x n) , then the matrix [c] is (m x n) (Fig. 2-13). For

example, as shown in Eq. (2.32), if [a] is (3 x 4) and [b] is (4 x 2),

then [c] is (3 x 2) .

lCll C12

:

C21 C22

C31 C32

(2.32)

The elements of the matrix [c] are calculated by multiplying rows of

[a] by columns of [b]. Starting with the first row, the value of the ele

ment c11 is obtained by multiplying the first row of [a] by the first col-

umn of [b] in the following manner:

(2.33)

The value of the element c12 is obtained by multiplying the first row of

[a] by the second column of [b]:

(2.34)

In the second row of [c] , the value of the element c21 is obtained by

multiplying the second row of [a] by the first column of [b]:

(2.35)

The multiplication procedure continues until the value of the element

c32 is calculated. In general, the multiplication rule is given by:

(2.36)

A numerical example of multiplication is shown in Fig. 2-14.

2.4 Matrices and Linear Algebra

[2 -li [4 9 1 -31
: � -5 2 4 6 J

[(2 . 4 +-1 . -5) (2 . 9 + -1 . 2) (2 . 1 +-1 . 4) (2. -3 + -1 . 6)1
(8. 4 + 3. -5) (8. 9 + 3. 2) (8. 1+3. 4) (8. -3 + 3. 6)

(6·4+7·-5) (6·9+7·2) (6·1+7·4) (6·-3+7·6)

[13 16 -2 -12'.
17 78 20 -6

-11 68 34 24

35

Figure 2-14: Numerical example of multiplication of matrices.

2.4.2 Special Matrices

Matrices with special structures or properties arise when numerical

methods are used for solving problems. The following is a list of such

matrices, with a short description of each.

Square matrix

A matrix that has the same number of columns as rows is called a

square matrix. In such matrices, entries or elements along the diagonal

of the matrix, a;; , i.e., a 11, a22, and so on, are known as the diagonal

elements and all other entries are the off-diagonal elements. In a square

matrix, the entries (or elements) above the diagonal, that is, [aiJ] for

j > i, are called the superdiagonal entries or above-diagonal entries.

The entries below the diagonal, that is, [a iJ] for i > j, are called the

subdiagonal entries or below-diagonal entries.

Diagonal matrix

A square matrix with diagonal elements that are nonzero and off-diago

nal elements that are all zeros is called a diagonal matrix and is denoted

by [D].

Upper triangular matrix

A square matrix whose subdiagonal entries are all zero is called an

upper triangular matrix and is denoted by [U] .

Lower triangular matrix

A square matrix whose superdiagonal entries are all zero is called a

lower triangular matrix and is denoted by [L] .

Identity matrix

The identity matrix [I] is a square matrix whose diagonal elements are

all 1 s and whose off-diagonal entries are all Os. The identity matrix is

the analog of the number 1 for matrices. Any matrix that is multiplied

by the identity matrix remains unchanged:

36 Chapter 2 Mathematical Background

[a][I]
=

[a]

Zero matrix

The zero matrix is a matrix whose entries are all zero.

Symmetric matrix

(2.37)

A symmetric matrix is a square matrix in which [au]
=

[a1J. For a

symmetric matrix, the transpose of the matrix is equal to the matrix

itself:

T [a]
=

[a] (2.38)

2.4.3 Inverse of a Matrix

Division is an operation that is not defined for matrices. However, an

operation that is defined and serves an equivalent purpose is the inverse
of a matrix. A square matrix [a] is invertible provided there exists a

square matrix [b] of the same size such that [a] [b]
=

[I] , where [I] is

the identity matrix. The matrix [b] is called the inverse of [a] and writ-

ten as [ar
1• Thus:

[a][ar
1

=
[ar

1[a]
=

[J] (2.39)

Example 2-1 illustrates the property expressed by Eq. (2.39).

Example 2-1: Inverse of a matrix.

Show that the matrix [b]
= 0.4 O.l 0.2 is the inverse of the matrix [a]

= 5.6 -1.6 0.4 .
f 0.1 0.2 0 : r-1.2 3.2 -0.81

SOLUTION
0.2 0.1 0.8 -0.4 -0.6 1.4

To show that the matrix [b] is the inverse of the matrix [a] , the two matrices are multiplied. r-1.2 3.2 -0.8! rO.l 0.2 O J [a][b]
= 5.6 -1.6 0.4 0.4 0.1 0.2 =

-0.4 -0.6 1.4 0.2 0.1 0.8 [(1.2. 0.1 + 3.2. 0.4 +-0.8. 0.2) (1.2. 0.2 + 3.2. 0.1 +-0.8. 0.1) (1.2. 0 + 3.2. 0.2 +-0.8. 0.8)]
(5.6. 0.1 +-1.6. 0.4 + 0.4. 0.2) (5.6. 0.2 +-1.6. 0.1+0.4. 0.1) (5.6. 0 +-1.6. 0.2 + 0.4. 0.8)

(-0.4 . 0.1 + -0.6 . 0.4 + 1.4 . 0.2) (-0.4 . 0.2 + -0.6 . 0.1 + 1.4 . 0.1) (-0.4 . 0 + -0.6 . 0.2 + 1.4 . 0.8) ll o oj
0 1 0
0 0 1

2.4 Matrices and Linear Algebra

2.4.4 Properties of Matrices

The following are general properties of matrices:

• [a]+[b] = [b]+[a]
• ([a]+ [b]) + [c] = [a]+ ([b] + [c])
• a.([a] + [b]) = a.[a] + a.[b], where a. is a scalar

• (a.+ j3)[a] = a.[a] + j3[a], where a. and 13 are scalars

The properties above apply to subtraction as well.

37

• If [a] and [b] are square matrices, then in general [a][b] *" [b][a]
(unless one is the inverse of the other). If either [a] or [b] is not

square, and the product [a] [b] exists, then the product [b] [a] is not

defined and does not exist. In other words, when matrices are

involved, the order of multiplication is important.

• ([a]+ [b])[c] = [a][c] + [b][c], with the order of multiplication

being important.

• [a]([b] + [c]) = [a][b] + [a][c].
• a.([a][b]) = (a.[a])[b] = [a](a.[b]), where a. is a scalar.

• If [a] and [b] are matrices for which [a] [b] is defined and exists,

then ([a][b]/ = [b]T[af. Note that the order of multiplication is

changed.

F
. rT • or any matrix [a], ([a]) = [a].

• For an invertible matrix [a], ([ar1f1
= [a] .

• If [a] and [b] are two square, invertible matrices of the same size.

then ([a][b])-1 = [br1[ar1.

2.4.5 Determinant of a Matrix

The determinant that is defined for square matrices is a useful quantity

that features prominently in finding the inverse of a matrix and provides

useful information regarding whether or not solutions exist for a set of

simultaneous equations. The determinant of a matrix is often difficult to

compute if the size of a matrix is larger than (3 x 3) or (4 x 4).

The determinant is a number. It is the sum of all possible products

formed by taking one element from each row and each column and

attaching the proper sign. The proper sign of each term is found by writ

ing the individual terms in each product and counting the number of

interchanges necessary to put the subscripts into the order 1, 2, ... , n. If

the number of such required interchanges is even, then the sign is + and

if the number of interchanges is odd, the sign is - . Formally, the deter

minant of a matrix [alnxn is denoted by det(a) or lal and is defined as:

38 Chapter 2 Mathematical Background

det(A) = IAI = ""'(-1 /a1 1
· a2 1

· ... an 1
·

L..J ' 1 ' 2 ' n
l

(2.40)

where the sum is taken over all n! permutations of degree n and k is the
number of interchanges required to put the second subscripts in the
order 1, 2, 3, ... , n. Use ofEq. (2.40) is illustrated for n = 1, n = 2, and

n = 3.

Forn = 1,the matrixis(lxl), [a]= [a1 J,and the determinant is:

det(a) = a11

For n = 2, the matrix is (2 x 2), [a] = [a11 a12l, and the determinant is:
az1 az J

0 I
det(a) = (-1) a11a22+(-1) a12a21 = a11a22 -a12a21

For n � 3, the matrix is (3 x 3)' [a] � r::: :� :::1, and the determi-

l�31 a32 a3 �J
nant is:

0 I I

det(A) = (-1) alla22a33 + (-1) alla23a32 + (-1) a12a21a33

2 2 3
+ (-1) a12a23a31 + (-1) a13a21a32 + (-1) a13a22a31

= all (a2za33 -az3a32) -a12(a21 a33 -az3a31) + a13(a21 a32 -azza31)
It can be seen that evaluation of a determinant for large matrices is
impractical both by hand and by computer because of the large number
of operations required to consider the n! permutations.

2.4.6 Cramer's Rule and Solution of a System of
Simultaneous Linear Equations

A set of n simultaneous linear equations with n unknowns x1, x2, ... , xn
is given by:

allxl + a12X2 + ... + a1nxn = b1

az1X1 + azzXz + · · · + aznxn = bz

... + ... + ... + ...

The system can be written compactly by using matrices:

all a12 · · · aln X1 b1

az1 azz · · · azn Xz bz

...

an! an2 · · · ann xn bn

(2.41)

(2.42)

2.4 Matrices and Linear Algebra 39

Equation (2.42) can also be written as:

[a][x] = [b] (2.43)

where [a] is the matrix of coefficients, [x] is the vector of n unknowns,

and [b] is the vector containing the right-hand sides of each equation.

Cramer's rule states that the solution to Eq. (2.41), if it exists, is given

by:

_ det(a'1) . _

x1 - d
for ; - 1, 2, ... , n

et(a)
(2.44)

where a'1 is the matrix formed by replacing thejth column of the matrix

[a] with the column vector [b] containing the right-hand sides of the

original system (2.42). It is apparent from Eq. (2.44) that solutions to

(2.42) can exist only if det(a) *" 0. The only way that det(a) can be

zero is either if two or more columns or rows of [a] are identical or one

or more columns (or rows) of [a] are linearly dependent on other col

umns (or rows).

Example 2-2: Solving a system of linear equations using Cramer's rule.

Find the solution of the following system of equations using Cramer's rule.

2x+ 3y-z = 5

4x+4y- 3z = 3
- 2x+ 3y-z = 1

SOLUTION
Step 1: Write the system of equations in a matrix form [a][x] = [b] . [! ! =�] [;l = [�l

-2 3 -1 :J ;j
Step 2: Calculate the determinant of the matrix of coefficients.

det(A) = 2[(4x-1)-(-3x3)]- 3[(4x-1)-(-3x-2)]- 1[(4x3)-(4x-2)]
= 2(5)- 3(-10)- 1(20) = 10+30- 20 = 20

(2.45)

(2.46)

Step 3: Apply Eq. (2.44) to find x, y, and z. To find x, the modified matrix a'x is created by replacing

its first column with [b] .

x =

[[5 3 -l:J det 3 4 -3
1 3 -l

=
(5. 5)-(3. 0)-(1·5)

=
1

20 20
In the same way, to find y, the modified matrix a'Y is created by replacing its second column with

[b].

40 Chapter 2 Mathematical Background

y
=

de{[_� � J) = (20 0)- (5 -10)- (I 102= 2
20 20

Finally, to determine the value of z, the modified matrix a'z is created by replacing its third column

with [b].

z =
[l2 3 5j) de

t 4 4 3
-2 3 1

= (2·-5)-(3·10)-(5·20) = 3
20 20

To check the answer, the matrix of coefficients [a] is multiplied by the solution:

l! ! =�1 r�1 = l ! : : = ! l = r�1
-23-1 �J - 2+ 6-3J ;j

The right-hand side is equal to [b], which confirms that the solution is correct.

2.4.7 Norms
In Section 2.3, vectors were identified as having a magnitude usually

specified by Eq. (2.14). From Euclidean geometry, this magnitude can

be seen to be a measure of the length of a vector (not to be confused

with the size or number of elements it contains). The magnitude of the

vector is useful in comparing vectors so that one may determine that

one vector is larger than another. Such an equivalent measure for the

"magnitude" of a matrix is also useful in comparing different matrices;

it is called the Norm and denoted as ll[a]ll . There is no unique way to

measure the "magnitude" or norm of a matrix. Several definitions of

norms are presented in Section 4.9. The norm basically assigns a real

number to a matrix (or vector).

A norm must satisfy certain properties since it is a quantity for a

matrix that is analogous to the magnitude or length of a vector. These

are:

(1) ll[a]ll � 0 and ll[a]ll = 0 if and only if [a] = [O] (i.e., if [a] is the

zero matrix).

(2) For all numbers a, llu[a]ll = lul ll[a]ll .
(3) For any two matrices (or vectors) [a] and [b], the following must

be satisfied: ll[a] + [b]ll � ll[a]ll + ll[b]ll .
Condition (1) states that the "magnitude" of a matrix or vector as mea

sured by the norm must be a positive quantity just as any length that is

used to measure the magnitude of a vector. Condition (2) states that for

matrices, too, just like vectors, ll[a]ll and 11[-a]ll would have the same

"magnitude." This is easy to see in the case of vectors, since the length

2.5 Ordinary Differential Equations (ODE) 41

of the vector does not change simply because its direction is reversed.
Condition (3) is just the triangle inequality and is easily visualized with
Euclidean geometry for vectors. The various vector and matrix norms

are discussed further in Section 4.10.

2.5 ORDINARY DIFFERENTIAL EQUATIONS (ODE)

An ordinary differential equation (ODE) is an equation that contains
one dependent variable, one independent variable, and ordinary deriva
tives of the dependent variable. If x is the independent variable and y is

2
the dependent variable, an ODE has terms that contain x, y, <.!1!. , <!....J:., dx dx2

... , dny. ODEs can be linear or nonlinear. An ODE is linear if its
dxn

dependence on y and its derivatives is linear. Any linear ODE can be
written in the following standard or canonical form:

dn dn-1 d2 d an+ 1 (x)� + an(x)� + ... + a3(x)� + a2(x)� + a1 (x)y = r(x) (2.47)
dxn dxn-1 dx2 dx

Note that the coefficients in Eq. (2.47) are all functions only of the inde
pendent variable x. Examples of linear OD Es are:

dy
= lOx dx

dx d2x c-+kx = -m-

dt dt2
where m, k, and c are constants.

Homogeneous I nonhomogeneous ODE
An ODE can be homogeneous or nonhomogeneous. When written in
the standard form (Eq. (2.47)), the ODE is homogeneous if on the right

hand side r(x) = 0. Otherwise, if r(x) * 0, then the ODE is said to be
nonhomogeneous.
Order of an ODE
The order of an ODE is determined by the order of the highest deriva
tive that appears in the equation. The order of an ODE can convey
important information. When an ODE is solved, arbitrary constants or

integration constants appear in the solution. The number of such con
stants that must be determined is equal to the order of the ODE. For
example, the solution to a second-order ODE has two undetermined
constants. This means that two constraints must be specified in order to

determine these two undetermined constants. When the independent
variable is position and the constraints are specified at two different
positions, the constraints are called boundary conditions. When the
independent variable is time and the constraints are specified at a single

instant of time, the constraints are called initial conditions.

42 Chapter 2 Mathematical Background

Nonlinear ODE
An ODE is nonlinear if the coefficients in Eq. (2.47) are functions of y
or its derivatives, if the right-hand side r is itself a nonlinear function of

y, or if the linear term a1 (x)y is replaced with a nonlinear function of y.
The following ODEs are all examples of nonlinear ODEs:

d2 �+ siny = 4
dl

d2 y�+3y=8
dt2

2 (dy\�+y = 9
di) dt2

d2 -1'. + 8y = tany
dt2

Analytical solutions to some important linear ODEs
Certain first- and second-order linear ODEs recur in many branches of

science and engineering. Because of their pervasiveness, the solutions

to these OD Es are given here as a reminder. The general solution to a

linear, nonhomogeneous ODE is the sum of the homogeneous solution
and the particular solution. The homogeneous solution is the solution

to the homogeneous ODE (i.e., ODE with r(x) in Eq. (2.47) set to

zero), and the particular solution is a solution that when substituted

into the ODE satisfies the right-hand side (i.e., yields r(x)). It is only

after the general solution is obtained that the constraints (i.e., boundary

or initial conditions) must be substituted to solve for the undetermined

constants.

General solution to a nonhomogeneous linear first-order ODE
The general solution to a nonhomogeneous, linear, first-order ODE of

the form:

<f1:. + P(x)y = Q(x) dx
(2.48)

is obtained by multiplying both sides of the equation by the following

integrating factor:

f P(x)dx
µ(x) = e (2.49)

When this is done, Eq. (2.48) can be written in the following integrable

form:

!!..(yµ) = Q(x)µ(x) dx (2.50)

Since P(x) and Q(x) are known functions, Eq. (2.50) can be integrated

by multiplying both sides by dx and integrating:

2.5 Ordinary Differential Equations (ODE)

y(x)µ(x) = J Q(x)µ(x)dx + C1

Dividing through by µ(x) gives:

y(x) = -1- JQ(x)µ(x)dx + �
µ(x) µ(x)

43

(2.51)

(2.52)

The integration constant C 1 must be determined from a constraint,

which is problem-dependent.

General solution to a homogeneous second-order linear ODE with
constant coefficients

A homogeneous, second-order, linear ODE with constant coefficients

can be written in the form:

d2 d �+b�+cy = 0
dx2 dx

(2.53)

where b and c are constants. The general solution to this equation is

obtained by substituting y = esx. The resulting equation is called the

characteristic equation:

s2 + bs + c = 0

The solution to Eq. (2.54) is obtained from the quadratic formula:

-b ±)b2 -4c s = --"'----

2

The general solution to Eq. (2.53) is therefore:

-bx/2 [�Jb2-4c -�Jb2-4c]
y(x) = e C1e2 + C2e 2

(2.54)

(2.55)

(2.56)

where C 1 and C2 are integration constants that are determined from the

problem-dependent constraints (i.e., boundary or initial conditions).

There are two important special cases in Eq. (2.56). In the first, the

discriminant is positive, that is, b2
> 4c, and the solution remains as

shown in Eq. (2.56). In the second case, the discriminant is negative,

that is, b2
< 4c, and the solution becomes:

-bx/2[ix)b2 -4c _ix)b2 -4c]
y(x) = e C1e2 + C2e 2 (2.57)

where i = ,,µ_. By using Euler's formula, eiz = cos(z) + isin(z), Eq.

(2.57) can be written in another, perhaps more familiar, form:

(2.58)

44 Chapter 2 Mathematical Background

which can be combined to yield:

y(x)= e-bx12[(C1+C2)cos(xJ4c
2
- b

2) + (C1-C2)isin(xJ4c
2
- b

2)] (2.59)

Since C1 and C2 are arbitrary constants, (C1 + C2) and (C1 - C2) are

also arbitrary constants. Therefore, Eq. (2.58) can be written as:

-bx/2[. (�) (�)] y(x)= e D1sm x
2 +D2cos x

2
(2.60)

where D1 = i(C1 - C2) and D2 = C1+C2.
Additional details on methods for analytical solutions are available

in many calculus books and books on differential equations. Many

ODEs that arise in practical applications, however, cannot be solved

analytically and instead require the use of numerical methods for their

solution.

2.6 FUNCTIONS OF TWO OR MORE INDEPENDENT
VARIABLES

A function has one dependent variable but can have one, two, or more
2 2

independent variables. For example, the function z = f(x, y) = �2 + �
(equation of an elliptic paraboloid) has two independent variables x and

y and one dependent variable z. The function associates a unique num

ber z (dependent variable) with each combination of values of x and y

(independent variables). This section reviews several topics that are

related to differentiation of functions with two or more independent

variables.

2.6.1 Definition of the Partial Derivative

For a function z = f(x, y), the first partial derivative of /with respect

to x is denoted £l or f x and is defined by:
ax

£[= lim f(x + Lix, y)- f(x, y)
ax L1x---+0 Lix

(2.61)

provided, of course, that the limit exists. Similarly, the partial derivative

of/with respect toy is denoted by £l. or f
Y

and is defined by:
By

£l. = lim f(x, Y + Liy) - f(x, y) (2.62)
By L1y---+o Liy

again provided that the limit exists. In practice, the definitions in Eqs.

(2.61) and (2.62) imply that if z = f(x, y), then f x is determined by

differentiating the function with respect to x and treating y as a constant.

2.6 Functions of Two or More Independent Variables 45

In the same way, f Y is determined by differentiating the function with

respect to y and treating x as a constant.

Partial derivatives of higher order
It is possible to take the second-, third-, and higher-order partial deriva

tives of a function of several variables (providing that they exist). For

example, the function f(x, y) of two variables has two first partial

derivatives f x and f Y . Each of the first partial derivatives has two par-

2
tial derivatives. f x can be differentiated w.r.t x to give f xx = £...1., or

ax2
2

w.r.t y to give fxy = fl. In the same way, f Y can be differentiated 8y8x
. - 82[. - .tL w.r.t y to give f YY - , or w.r.t x to give f yx - . The second

8y2 8x8y
partial derivatives f xy and f yx are called mixed partial derivatives of

f(x, y). If the function f(x, y) and both its second mixed partial deriva

tives are continuous, then it can be shown that the order of differentia-
2 2

tion does not matter, that is, ll
=

ll .
8x8y 8y8x

2.6.2 Chain Rule

The total differential of a function of two variables, for example,

f(x, y), is given by:

df = ?l.ax + ?l.ay 8x 8y (2.63)

Equation (2.63) holds whether or not x and y are independent of each

other. All that is required is that the partial derivatives in Eq. (2.63) be

continuous. Note that Eq. (2.63) can easily be generalized to a function

of more than two variables.

There are several ways in which the function f(x, y) can depend on

its arguments x and y. First, both x and y can be dependent on a single

independent variable such as t. In other words, f(x, y) = f(x(t), y(t)).
Second, x and y themselves may be dependent on two other independent

variables, say, u and v: f(x, y) = f(x(u, v) , y(u, v)) . Third, x may be the

independent variable and y may depend on x: f(x, y) = f(x, y(x)) .
Fourth, the function f depends on three variables x, y, and z, but z

depends on both x and y, which are independent of each other. Diff eren

tiation of these cases is considered next.

(1) If x and y each depend on a single variable t, then f(x, y) may be

considered to be a function of the single independent variable t. In

this case, the total derivative of/with respect tot can be determined

simply by:

46 Chapter 2 Mathematical Background

<!f_ = i}[_ dx + i}[_ <Jx.
dt Bxdt Bydt

(2.64)

(2) If x and y each depend on two other independent variables u and v,
then the partial derivative of /with respect to v but holding u con-

stant, that is, i}[_I
, is obtained by:

av u

i}[_I
= i}[_Bx

l
+ i}[_f}j:_

I av ax av ayav
u u u

(2.65)

Usually, the fact that u is held constant while differentiating par
tially with respect to v is implicitly understood, and the subscript u

is dropped from Eq. (2.65):

?i = ?i ax+ ?10:. (2.66)
av axav ayav

(3) If y depends on x, the function f (x, y) is really a function of x, and
the total derivative of /with respect to x can be defined:

<!f_ = ?i + ?10:. (2.67)
dx ax ayax

(4) If /is a function of x, y, and z, and if z in turn depends on x and y
which are independent, then the partial derivative of /with respect
to x is:

or simply:

?i = i}[_ + i}[_ az
dx ax azax

(2.68)

(2.69)

where the term ?i does not appear because it is multiplied by 0:. ,
� fu

which is zero since x and y are independent variables.
In the same way, the partial derivative of/with respect toy is:

2.6.3 The Jacobian

?[= i}[_ + i}[_Bz
dy By BzBy

(2.70)

The Jacobian is a quantity that arises when solving systems of nonlinear

simultaneous equations. If f1(x,y)= a and f2(x,y) = b are two simul

taneous equations that need to be solved for x and y, where a and b are
constants, then the Jacobian matrix is defined as:

2. 7 Taylor Series Expansion of Functions 47

(2.71)

ax oy
The Jacobian determinant or simply the Jacobian, J(f1, f 2), is just

the determinant of the Jacobian matrix:

J(f 1, f ,) � d•{[�: �:]] � (8£1)(8�')-(8�1)(8£')
This can be easily generalized to a system of n equations:

J(fl, f 2• ... , f n) = det

Of1 Of1 --OX1 OX2
of 2 of 2 --OX1 OX 2

...
of n of n --OX1 OX2

Of1
oxn Of2
oxn

... ...
ofn
oxn

2.7 TAYLOR SERIES EXPANSION OF FUNCTIONS

(2.72)

(2.73)

Taylor series expansion of a function is a way to find the value of a

function near a known point, that is, a point where the value of the func

tion is known. The function is represented by a sum of terms of a con

vergent series. In some cases (if the function is a polynomial), the

Taylor series can give the exact value of the function. In most cases,

however, a sum of an infinite number of terms is required for the exact

value. If only a few terms are used, the value of the function that is

obtained from the Taylor series is an approximation. Taylor series

expansion of functions is used extensively in numerical methods.

2. 7.1 Taylor Series for a Function of One Variable

Given a function f(x) that is differentiable (n + 1) times in an interval

containing a point x = x0, Taylor's theorem states that for each x in the

interval, there exists a value x = � between x and x = x0 such that:

f(x) = f(x)+ (x-x)<ff_I + (x-xo)2 d 2 f I + (x-xo)3 a1
0 0 dx 2 ! d x2 3 ! d x3

x=xo

n
x=xo x=x(2

.

74)
+ ... +(x-xo)dnf l +R(x) n! dxn n

X = x0

where Rn, called the remainder, is given by:

48 Chapter 2 Mathematical Background

R - o � (x-x)n+ldn+I F
I n (n + 1) ! d xn + I x = C,

(2.75)

The proof of this theorem may be found in any textbook on calculus.
Note that for n = 1, Taylor's theorem reduces to:

f(x) = f(x0) + (x-x0)r!f.. I dx x= C,
or r!f.. I = f(x)-f(xo)

(2.76)
dx x= C, (x-xo)

which is the mean value theorem for derivatives (Eq. (2.4)) given in
Section 2.2.

The value of the remainder, Rn, cannot be actually calculated since
the value of� is not known. When the Taylor series is used for approx
imating the value of the function at x, two or more terms are used. The
accuracy of the approximation depends on how many terms of the Tay
lor series are used and on the closeness of point x to point x0 . The accu
racy increases as x is closer to x0 and as the number of terms increases.
This is illustrated in Example 2-3 where the Taylor series is used for
approximating the function y = sin(x).

Example 2-3: Approximation of a function with Taylor series expansion.

Approximate the function y = sin(x) by using Taylor series expansion about x = 0, using two,
four, and six terms.

(a) In each case, calculate the approximate value of the function at x = �,and at x = :!! .
12 2

(b) Using MATLAB, plot the function and the three approximations for 0::; x::; n.

SOLUTION

The first five derivatives of the function y = sin(x) are:

y' = cos(x), y" = -sin(x), yC3) = -cos(x), yC4) = sin(x), and y(5) = cos(x)
At x = 0, the values of these derivatives are:

y' = 1 , y" = 0, yC3) = -1, yC4) = O , and yC5) = 1
Substituting this information and y(O) = sin(O) = 0 in Eq. (2.74) gives:

x3 x5
y(x) = 0 + x + 0- - + 0 + - (2.77)

3! 5!

(a) For x = �.the exact value of thefunction is y = sin(�) = !(,}6+,/2) = 0.2588190451
12 12 4

The approximate values using two, four, and six terms of the Taylor series expansion are:

Using two terms in Eq. (2.77) gives: y(x) = x = � = 0.2617993878
12

Using four terms in Eq. (2.77) gives: y(x) = x -x3 = � - (n/l2)3 = 0.2588088133
3! 12 3!

Using six terms in Eq. (2.77) gives: y(x) = x-x3 + x5 = � - (n/l2)3 + (n/l2)5 = 0.2588190618
3! 5! 12 3! 5!

2. 7 Taylor Series Expansion of Functions

For x = � 'the exact value of the function is y = sin(�) = 1

Using two terms in Eq. (2. 77) gives:

Using four terms in Eq. (2.77) gives:

y(x) = x = � = 1.570796327
2

y(x) = x-x3
= � -(n/2)3

= 0.9248322293 3! 2 3!
x3 x5 7t (n/2)3 (n/2)5 Using six terms in Eq. (2. 77) gives: y(x) = x --+ - = - - + = 1.004524856
3! 5! 2 3! 5!

49

(b) Using a MATLAB program, listed in the following script file, the function and the three approx

imations were calculated for the domain 0 ::;; x ::;; n . The program also plots the results.

x = linspace(O,pi,40);

y = sin(x);

y2 = x;

y4 = x - x.A3/factorial(3);

y6 = x - x.A3/factorial(3) + x.A5/factorial(5);

plot(x,y,'r' ,x,y2, 'k--' ,x,y4,'k-.' ,x,y6, 'r--')

axis([0,4,-2,2])

legend('Exact' ,'Two terms' ,'Four terms' ,'Six terms')

xlabel ('x') ; ylabel ('y')

The plot produced by the program is shown on the right. The

results from both parts show, as expected, that the approxima

tion of the function with the Taylor series is more accurate

when more terms are used and when the point at which the

value of the function is desired is close to the point about

which the function is expanded.

2 �-�--�,--�--
,,

»:��--·_ ...
-I

-Exact
- ·Twoterms
· - Four terms
- •Six terms

2
x

' --

'

'

\

\

3

2.7.2 Taylor Series for a Function of Two Variables

4

Taylor's expansion for a function of two variables is done in the same

way as for a function with one independent variable, except that the dif

ferentiation involves partial derivatives. Taylor's formula for the expan

sion of f(x, y) about a point (x0, y0) is given by:

f(x,y) = f(xo,Yo)+..!..[cx-xo)S[I +(y-yo)S[I]+ 1! ox By
xo, Yo xo, Yo

1 [2(/ F l f)2 F l 282 F l] - (x-x0) � + 2(x-xo)(Y-Yo)..:::.....L.. + (y-Yo) � + 2! 8x2 axay 8y2
�h �h �h

+ + 1 [� n! ()k()n-k an r I]
... n! L.. k!(n-k)!

X-Xo y-yO f)xkf)yn-k
k = 0

xo, Yo

(2.78)

50 Chapter 2 Mathematical Background

2.8 INNER PRODUCT AND ORTHOGONALITY

The properties of orthogonal functions play a vital role in the determi

nation of the coefficients of a Fourier series. This section starts with a

review on inner product (dot product) of vectors which is probably a

familiar topic to the reader. Then, the concept of inner product is

extended to functions with emphasis on the inner product of the sine

and cosine functions.

The inner product of two objects (vectors or functions) is given the

symbol (a[p) where the a and p are the object whose inner product is

being taken. Orthogonality means that the inner product is equal to

zero:

(a[p) = 0 (2.79)

Inner product of two vectors

h . d � � � � T e inner pro uct, (V I U) , (dot product V • U) of two vectors

V = Vxi +Vy}+� k and U = U) +Uy}+� k is a scalar given by:

� � � � 1�11�1 (v I u) = v. u = v u cose = VXUX+ VYUY+ vzuz (2.80)

where lvl and II/I are the magnitudes of the vectors (see Eq. (2.14))
and 8 is the angle between the two vectors.

The vectors are orthogonal to each other if (V I U) = 0 (i.e. the

angle between them is 7t/2) and parallel if (V I U) = 1 .

Inner product of sine and cosine functions

For sine and cosine functions the inner product over the interval [-n,n]
is given by (fork and m integers):

k-:F.m
(sin(kx)[sin(mx)) = [, sin(kx)sin(mx)dx = {:

k=m

(cos(kx)[cos(mx)) = r7t cos(kx)cos(mx)dx = {:
(sin(kx)[cos(mx)) = r7t sin(kx)cos(mx)dx = 0 for both k =m and k '# m

k-:F.m

k=m

(2.81)

(2.82)

(2.83)

Thus, sinkx and sinmx are orthogonal to each other for k not equal to

m but not orthogonal for k = m. Similarly, coskx and cosmx are

orthogonal to each other for k not equal to m but not orthogonal for

k = m . Finally, sinkx and cosmx are orthogonal to each other regard

less of whether or not k and m are equal to each other (as long as they

are both integers).

2.9 Problems 51

The inner product for sine and cosine functions over an arbitrary

domain [a,b] is given by (fork and m integers):

< . (7tkx) I . (7tmx) > J b . (7tkx\ . (7tmx) d {O
sm T sm\T =

a
sm\TJ sm\T x =

L

(7tkx) (7tmx\ J b (7tkx\ (7tmx\ {O (cos T lcos\TJ) =
a

cos\T) cos\T) dx =
L

where L = (b-a)/2.

2.9 PROBLEMS
Problems to be solved by hand

k-:;:.m
k=m

k-Fm
k=m

(2.84)

(2.85)

(2.86)

Solve the following problems by hand. When needed, use a calculator, or write a MATLAB script file to
carry out the calculations.

2.1 Apply the intermediate value theorem to show that the polynomial f(x) = -x2 + lOx -24 has a root
in the interval [3, 5].

2.2 Apply the intermediate value theorem to show that the function f(x) = cosx -x2 has a root in the
interval [O, 7t/2].

2.3 Apply the intermediate value theorem to show that the polynomial f(x) = x3 -2.5x2 -x + 2.5 has a

root in the interval [-1.5, -0.5] .

2.4 Use the formal definition of the derivative (Eq. (2.2)) and associated terminology to show that the

derivative of tanx is sec2 x .

2.5 Use the definition of the derivative (Eq. (2.2)) to show that:

(a) .E...(u(x)v(x)) = udv
+ vdu. dx dx dx (b)

du dv v--u-
.E...(u(x)) = dx dx . dx v(x) v2

2.6 Use the formal definition of the derivative (Eq. (2.2)) and associated terminology to show that the

derivative of eX2 is 2xeX2•

2.7 Use the chain rule (Eq. (2.3)) to find the second derivative of f(x) = sin(ex). (Hint: define

u(x) = ex and then apply the chain rule.)

2.8 As a highway patrol officer, you are participating in a speed trap. A car passes your patrol car which
you clock at 5 5 mph. One and a half minutes later, your partner in another patrol car situated two miles
away from you, clocks the same car at 50 mph. Using the mean value theorem for derivatives (Eq. (2.4)),
show that the car must have exceeded the speed limit of 55 mph at some point during the one and a half
minutes it traveled between the two patrol cars.

52 Chapter 2 Mathematical Background

2.9 Coughing causes the windpipe in the throat to contract, forcing the flowing air to pass with increased
velocity. Suppose the velocity, v, of the flowing air during the cough is given by:

v = C(R-r)r2
where C is a constant, and R is the normal radius of the windpipe (i.e., when not coughing) which is also a
constant, and r is the variable radius of the windpipe during the cough. Find the radius of the windpipe that
produces the largest velocity of airflow during the cough.

2.10 Using the mean value theorem for integrals, find the average value of the function f(x) = sin2x in

the interval [O, 7t]. Show that the product of this average value times the width of the interval is equal to

the area under the curve.

2.11 Use the second fundamental theorem of calculus along with the chain rule to find ![f:
x

sint dt] .

2.12 Use the second fundamental theorem of calculus along with the chain rule to find !!.... [J 1 sec2 t dt] .
dx xz

2.13 Given the following system of equations,

5x- 10y =O

10x-5y = 15
determine the unknowns x andy using Cramer's rule.

2.14 Given the following system of equations,

3a.-2J3+5y = 14

a.-J3=-1

2a. + 4y = 14

determine the unknowns a, J3, and y using Cramer's rule.

2.15 The temperature distribution in a solid is given by T(x, t) = e -t sinx. The heat flux in the x direction

is given by qx = -k oT. Using the definition of the partial derivative (Eq. (2.62)), find the heat flux qx at
ox

the point x = 1 and the instant t = 1.

2.16 The velocity distribution in a flow is given by u(z, t) = e -z sint , where u is the x-component of the

velocity, z is the coordinate perpendicular to x, and tis time. The shear stress 'tzx is given by 'tzx = µ ou ,
oz

where µ is the coefficient of dynamic viscosity. Using the definition of the partial derivative (Eq. (2.62)),
find the shear stress 't zx at the point z = 1 and the instant t = 1 .

2.17 Given the function f(x, y, z) = (sinx)(cosy)lnz, find the total derivative with respect to x, <Ji.. at the
dx

point (1, 2, 3).

2.18 Given the function u (x, y) = x2 y -y2, where x = sint and y = e1 , find du when t = O .
dt

2.9 Problems

2 0 0 3
2.19 Find the determinant of the following matrix: 1 1 1 0

5 1 1 9
1 1 0 0

53

2.20 Determine the order of the following ODEs and whether they are linear or nonlinear, and homoge

neous or non homogeneous:

(a) <!J!. = - ye C l - x) + 0 . 5y . dx
d20 cd0 v · (b) - + -- + 2.sm0 = 0 , where c, m, g, andL are constants.
dt2 mdt L

d2T hc P ECTssP 4 4 - h k (c) ---(T-Ts)---(T -T s) - O,w ereh0P, ,A0 E,crss,andTsare constants.
dx2 kAc kAc

2.21 When transforming from Cartesian coordinates (x, y) to polar coordinates (r, 0) , the following rela

tions hold: x(r, 0) = rcos0 and y(r, 0) = rsin0. Find the Jacobian matrix [J] = r�; ��1 · What is the

£!'. �
ar a0

Jacobian determinant?

2.22 Write the Taylor's series expansion of the function f(x) = sin(ax) about x = 0, where a* 0 1s a

known constant.

2.23 Write the Taylor's series expansion of the function f(x, y) = sinxcosy about the point (2, 2).

Problems to be programmed in MATLAB
Solve the following problems using the MATLAB environment. Do not use MATLAB s built-in functions
that execute the operations that are being asked in the problems.

2.24 Write a MATLAB program in a script file that evaluates the derivative of the function f(x) = x3cosx
at the point x = 3 by using Eq. (2.2). The value of the derivative is calculated sixteen times by using
a = 3 and sixteen values of x, x = 2.6, 2.65, .. ., 2.95, 3.05, .. ., 3.35, 3.4. The program should also plot the
values of the derivative versus x.

2.25 Write a user-defined MATLAB function that evaluates the definite integral of a function f(x) by

using the Riemann sum (see Eq. (2.7)). For function name and arguments, use I=Rie

mannSum (Fun, a, b). Fun is a name for the function that calculates the value of f(x) for a given value

of x. It is a dummy name for the function that is imported into Riemann Sum. a and bare the limits of
integration, and I is the value of the integral. The Riemann sum is calculated by dividing the integration

interval [a, b] into ten subintervals. Use Riemann Sum for evaluating the definite integral J 01 xexdx .

Compare the result with the exact value of the integral, 1.

54 Chapter 2 Mathematical Background

2.26 Write a user-defined MATLAB function that carries out multiplication of two matrices

[c] = [a][b] . For function name and arguments, use C = MatrixMul t (A, B). The input arguments A

and B are the matrices to be multiplied. The output argument C is the result. Do not use the matrix multipli

cation of MATLAB. The function MatrixMul t should first check if the two matrices can be multiplied,

and if not, the output C should be the message "The matrices cannot be multiplied since the number of

rows in [b] is not equal to the number of columns in [a]." Use MatrixMul t to carry out the multiplica

tion that is illustrated in Fig. 2.14.

2.27 Write a user-defined MATLAB function that determines the cross product of two vectors

W = � 0 U. For the function name and arguments, use W =Cross (V, U). The input arguments V and U

are the vectors to be multiplied. The output argument Wis the result (three-element vector).

(a) Use Cross to determine the cross product of the vectors v = i + 2j + 3k and u = 3i + 2j + k.

(b) Use Cross to determine the cross product of the vectors v = - 2i + j- 3k and u = i + j + k.

:;7. � -7

2.28 Write a user-defined MATLAB function that determines the dot product of two vectors w = V • U.
For function name and arguments, use W = DotPro (V, U). The input arguments V and U are the vectors

to be multiplied. The output argument Wis the result (a scalar).

(a) Use Dot Pro to determine the cross product of the vectors v = i + 2j + 3k and u = 3i + 2j + k.

(b) Use Dot Pro to determine the cross product of the vectors v = - 2i + j- 3k and u = i + j + k.

2.29 Write a user-defined MATLAB function to unfurl an m x n matrix into a vector of size 1 x m · n. The

vector consists of the matrix rows in order. For example, if the matrix is: l::� ::: :::l , then the vector is:

a31 a32 a3�J
[a11 a12 a13 a21 a22 a23 a31 a32 a33] . For the function name and arguments, use v=unfurl (A), where the

input argument A is a matrix of any size, and the output argument v is the vector.

Use the function (in the Command Window) to unfurl the matrix:

[-; -� � 160 �41
- 1 2 11 0 3 7 J

2.30 Write a user-defined MATLAB function that determines the transpose of any size m x n matrix. Do

not use the MATLAB built-in command for the transpose. For the function name and arguments, use

At=transp (A), where the input argument A is a matrix of any size, and the output argument At is the

transpose of A. [2 1 4 -2'
Use the function (in the Command Window) to determine the transpose of the matrix: -3 4 2 -1 .

3 5 -2 1

2.31 Write a user-defined MATLAB function that calculates the determinant of a square (n x n) matrix,

where n can be 2, 3, or 4. For function name and arguments, use D =Determinant (A). The input argu

ment A is the matrix whose determinant is calculated. The function Determinant should first check if

2.9 Problems 55

the matrix is square. If it is not, the output D should be the message "The matrix must be square."
Use Determinant to calculate the determinant of the following two matrices:

(a) � � �l (b) ! 1L�1 ii
13 14 15 16

Problems in math, science, and engineering
Solve the following problems using the MATLAB environment.

2.32 One important application involving the total differential of a function of several variables is estima
tion of uncertainty.
(a) The electrical power P dissipated by a resistance R is related to the voltage V and resistance by

P = V2 IR. Write the total differential dP in terms of the differentials dV and dR, using Eq. (2.63).
(b) dP is interpreted as the uncertainty in the power, dV as the uncertainty in the voltage, and dR as the

uncertainty in the resistance. Using the answer of part (a) , determine the maximum percent uncertainty
in the power P for V = 400 V with an uncertainty of2%, and R = 1000 n with an uncertainty of3%.

2.33 The dimensions of a rectangular box are measured to be 10 cm x 20 cm x 15 cm, and the error in
measuring each length is ±1 mm. What is the error in the total volume of the box if the error in measuring
each length is the differential corresponding to that coordinate?

2.34 An aircraft begins its descent at a distance x = L
(x = 0 is the spot at which the plane touches down) and an
altitude of H. Suppose a cubic polynomial of the following
form is used to describe the landing:

y = ax3 + bx2 + ex+ d
where y is the altitude and x is the horizontal distance to the
aircraft. The aircraft begins its descent from a level position,
and lands at a level position.
(a) Solve for the coefficients a, b, c, and d.

y

-- __ _,,
,¥

/
/

/

L

,¥.,/

H

x

(b) If the aircraft maintains a constant forward speed (dx
= u = constant) and the magnitude of the ver

dt

tical acceleration (rf....l.) is not to exceed a constant A, show that 6H u2 �A .
dt2 L2

(c) If A = 0.3 ft/s2, H = 15000 ft, and u = 200 mph, how far from the airport should the pilot begin the
descent?

2.35 Rope with a length of 10 m is to be used to enclose a square area
with side x and a circular area with radius r. How much rope should be
used for the square and how much for the circle if the total area enclosed
by the two shapes is to be a minimum. Plot the total area enclosed by the
two shapes as a function of x, with x varying from 0.5 m to 5 m, and
show graphically that the area reaches a minimum at x = 1.4 m.

56 Chapter 2 Mathematical Background

2.36 An artery that branches from another more major artery has

a resistance for blood flow that is given by:

R = K(L-Hcot8+Hcsc8)
flow 4 4 D d

where R flow is the resistance to blood flow from the major to the

branching artery along path ABC (see diagram), dis the diameter

of the smaller, branching artery, D is the diameter of the major

c

l" L1
A---------L1�------ _J

B

L

artery, 8 is the angle that the branching vessel makes with the horizontal, or axis, of the major artery, andL

and Hare the distances shown in the figure.

(a) Find the angle 8 that minimizes the flow resistance in terms of d and D.
(b) If 8 = 45°, and D = 5 mm, what is the value of dthat minimizes the resistance to blood flow?

2.37 Solve the ODE d 2T
_

hcP
(T-T8)=0 for T(x), given that hc=40W/m2/K, P=0.016m,

dx2 kAc
k = 240W/m/K, Ac = 1.6 x 10-5m2, and T8 = 293K, with T(x = 0) = 473K, and T(x = 0.1) = 293K.

Plot T(x) using MATLAB.

2.38 Solve the ODE r:!1!. = -ye(l-x) + 0.5 y with y(x = 0) = 1 . Use MATLAB to make a plot of y(x) dx
versus x for O ::;; x ::;; 1 .

2.39 Solve the system oflinear equations in Problem 2.14 for unknowns a, J3, and y using MATLAB.

2.40 Approximate the function y = cos(x) by using Taylor series expansion about x = 0, using three,

five, and seven terms.

(a) In each case calculate the approximated value of the function and the true relative error at x = n/3

and at x = (2n)/3.

(b) Using MATLAB, plot the function and the three approximations for 0::;; x::;; n .

2.41 There are mechanical, electrical, and chemical systems that are described by the same mathematics

as second-order, forced, damped harmonic motion. The resulting differential equation obtained after apply

ing a force balance or conservation of momentum is of the form:

d2x dx . m- + y- + kx = A0 sm(wt)
dt2 dt

where x is the displacement, t is time, m is the mass, y is the damping coefficient, k is the restoring force

(spring) constant, A0 is the amplitude of the driving force, and co is the frequency of the driving force.

(a) Determine the order of the ODE. Is it linear, nonlinear, homogeneous or non homogeneous?

(b) Find the homogeneous solution of the ODE by hand.

(c) Find the particular solution of the ODE by hand. Find x(t) after a long time (t � oo). This is some

times called the "steady state" response, even though it is actually time varying.

(d) Using MATLAB, plot the maximum amplitude of x(t) from the steady state response as a function of

the excitation frequency co (0::;; w::;; 5 rad/s) for A0 = 1 N, k = 1 N/m, and m = 1 kg, for three values

of y: y = 0.5, y = 1.0, and y = 2.0 N-s/m (three plots on the same figure). Discuss the results. What

happens at w = ,Jkim when y = 0?

Chapter3

Solving Nonlinear Equations

Core Topics

Estimation of errors in numerical solutions (3.2).

Bisection method (3.3).

Use of MATLAB built-in Functions for solving non

linear equations (3.8).

Complementarv Topics

Equations with multiple roots (3.9).
Regula falsi method (3.4).

Newton's method (3.5).
System of nonlinear equations (3.10).

Secant method (3.6).

Fixed-point iteration method (3. 7).

y y

0 x

No solution

3.1 BACKGROUND

Equations need to be solved in all areas of science and engineering. An

equation of one variable can be written in the form:

f(x) = 0 (3.1)

A solution to the equation (also called a root of the equation) is a

numerical value of x that satisfies the equation. Graphically, as shown in

Fig. 3-1, the solution is the point where the function /(x) crosses or

touches the x-axis. An equation might have no solution or can have one

or several (possibly many) roots.

When the equation is simple, the value of x can be determined ana

lytically. This is the case when x can be written explicitly by applying

mathematical operations, or when a known formula (such as the for-

y y

Solution

x x x

One solution One solution Several solutions

Figure 3-1: Illustration of equations with no, one, or several solutions.

57

58

Figure 3-2: Segment of a circle.

2

e
3

Figure 3-3: A plot of
/ (8) = 8-4.5(8-sin8).

4

Chapter 3 Solving Nonlinear Equations

mula for solving a quadratic equation) can be used to determine the

exact value of x. In many situations, however, it is impossible to deter

mine the root of an equation analytically. For example, the area of a

segment As of a circle with radius r (shaded area in Fig. 3-2) is given

by:

As = !r2(8 -sine)
2

(3.2)

To determine the angle e if As and r are given, Eq. (3.2) has to be

solved for e. Obviously, e cannot be written explicitly in terms of As
and r, and the equation cannot be solved analytically.

A numerical solution of an equation f(x) = 0 is a value of x that

satisfies the equation approximately. This means that when x is substi

tuted in the equation, the value of f(x) is close to zero, but not exactly

zero. For example, to determine the angle e for a circle with r = 3 m

and As = 8 mz, Eq. (3.2) can be written in the form:

/ (8) = 8-4.5(8-sin8) = 0 (3.3)

A plot of /(8) (Fig. 3-3) shows that the solution is between 2 and 3.
Substituting e = 2.4 rad in Eq. (3.3) gives /(8) = 0.2396, and the solu

tion e = 2.43 rad gives /(8) = 0.003683. Obviously, the latter is a more

accurate, but not an exact, solution. It is possible to determine values of

e that give values of /(8) that are closer to zero, but it is impossible to

determine a numerical value of e for which /(8) is exactly zero. When

solving an equation numerically, one has to select the desired accuracy

of the solution.

Overview of approaches in solving equations numerically
The process of solving an equation numerically is different from the

procedure used to find an analytical solution. An analytical solution is

obtained by deriving an expression that has an exact numerical value. A

numerical solution is obtained in a process that starts by finding an

approximate solution and is followed by a numerical procedure in

which a better (more accurate) solution is determined. An initial numer-

ical solution of an equation f(x) = 0 can be estimated by plotting f(x)

versus x and looking for the point where the graph crosses the x-axis. It

is also possible to write and execute a computer program that looks for

a domain that contains a solution. Such a program looks for a solution

by evaluating f(x) at different values of x. It starts at one value of x and

then changes the value of x in small increments. A change in the sign of

f(x) indicates that there is a root within the last increment. In most

cases, when the equation that is solved is related to an application in sci

ence or engineering, the range of x that includes the solution can be esti

mated and used in the initial plot of f(x), or for a numerical search of a

small domain that contains a solution. When an equation has more than

3.2 Estimation of Errors in Numerical Solutions 59

j(x)

j(x)

j(x)

a

-t---+---:F�. .
I

l
b

lfSt mti;:rva
I Actual I solution 1

a\ i
'

b
Second l interval

I
Actual I
solution I

a\1
b

Third interval

Figure 3-4: Illustration of a
bracketing method.

f(x)

f(x)

f(x)

Actual
solution

\

I
I
I

Ac�! I Second solution I estimate \:

I
I
I

Actual I Th" d solution I !f
\:

estimate

x

x

Figure 3-5: Illustration of an
open method.

x

x

x

one root, a numerical solution is obtained one root at a time.
The methods used for solving equations numerically can be divided

into two groups: bracketing methods and open methods. In bracketing
methods, illustrated in Fig. 3-4, an interval that includes the solution is
identified. By definition, the endpoints of the interval are the upper
bound and lower bound of the solution. Then, by using a numerical
scheme, the size of the interval is successively reduced until the dis
tance between the endpoints is less than the desired accuracy of the
solution. In open methods, illustrated in Fig. 3-5, an initial estimate
(one point) for the solution is assumed. The value of this initial guess

for the solution should be close to the actual solution. Then, by using a
numerical scheme, better (more accurate) values for the solution are
calculated. Bracketing methods always converge to the solution. Open
methods are usually more efficient but sometimes might not yield the
solution.

As mentioned previously, since numerical solutions are generally
not exact, there is a need for estimating the error. Several options are
presented in Section 3.2. Sections 3.3 through 3.7 describe four numeri
cal methods for finding a root of a single equation. Two bracketing
methods, the bisection method and the regula falsi method, are pre
sented in Sections 3.3 and 3.4, respectively. Three open methods, New
ton's method, secant method, and fixed-point iteration, are introduced
in the following three sections. Section 3.8 describes how to use MAT
LAB's built-in functions for obtaining numerical solutions, and Section
3.9 discusses how to deal with equations that have multiple roots. The

last section in this chapter (3 .10) deals with numerical methods for solv

ing systems of nonlinear equations. The need to solve such systems
arises in many problems in science and engineering and when numeri
cal methods are used for solving ordinary differential equations (see
Section 11.3).

3.2 ESTIMATION OF ERRORS IN NUMERICAL
SOLUTIONS

Since numerical solutions are not exact, some criterion has to be applied
in order to determine whether an estimated solution is accurate enough.
Several measures can be used to estimate the accuracy of an approxi
mate solution. The decision as to which measure to use depends on the
application and has to be made by the person solving the equation.

Let xrs be the true (exact) solution such that f(xrs) = 0, and let

xNs be a numerically approximated solution such that f(xNs) = E

(where E is a small number). Four measures that can be considered for
estimating the error are:

60 Chapter 3 Solving Nonlinear Equations

True error: The true error is the difference between the true solution,

xrs• and a numerical solution, xNs:
TrueError = Xrs-XNs (3.4)

Unfortunately, however, the true error cannot be calculated because

the true solution is generally not known.

Tolerance in f(x): Instead of considering the error in the solution, it is

possible to consider the deviation of f(xNs) from zero (the value of

f(x) at xrs is obviously zero). The tolerance in f(x) is defined as the

absolute value of the difference between f(xrs) and f(xNs):

Tolerancelnf = I f(xrs) -f(xNs)I = IO- i>I = li>I (3.5)

The tolerance in f(x) then is the absolute value of the function at xNs·
Tolerance in the solution: A tolerance is the maximum amount by

which the true solution can deviate from an approximate numerical

solution. A tolerance is useful for estimating the error when bracket

ing methods are used for determining the numerical solution. In this

case, if it is known that the solution is within the domain [a, b] , then

the numerical solution can be taken as the midpoint between a and b:

a+b
XNS =

--2
(3.6)

plus or minus a tolerance that is equal to half the distance between a
andb:

Tolerance = I b �a l (3.7)

Relative error: If x NS is an estimated numerical solution, then the

True Relative Error is given by:

TrueRelativeError = IX rs -x NS I Xrs (3.8)

This True Relative Error cannot be calculated since the true solution

Xrs is not known. Instead, it is possible to calculate an Estimated

Relative Error when two numerical estimates for the solution are

known. This is the case when numerical solutions are calculated itera

tively, where in each new iteration a more accurate solution is calcu-

lated. If x<;j) is the estimated numerical solution in the last iteration

and x<;;s- l) is the estimated numerical solution in the preceding itera

tion, then an Estimated Relative Error can be defined by: lx(n) - x(n- 1) 1
EstimatedRelativeError =

NS
(n-��

XNS
(3.9)

When the estimated numerical solutions are close to the true solution,

3.3 Bisection Method

j(x)

First

I iteration

I
I

b

First I True
estimate � I/solution

X
I � . I •

a XNsq b
I

True
I Second

Second

I
solution ")._ I / estima�

iteration1------+1 , e--1 -
Q f XNS2 b

Third

I
I Third

True. I / estimate

I
solut!on�I X

iterationt------+----11----•
Q XNS3b

Figure 3-7: Bisection method.

61

it is anticipated that the difference x�] - x�s- l) is small compared to

the value of x�] , and the Estimated Relative Error is approximately

the same as the True Relative Error.

3.3 BISECTION METHOD

The bisection method is a bracketing method for finding a numerical

solution of an equation of the form f(x) = 0 when it is known that

within a given interval [a, b], f(x) is continuous and the equation has a

solution. When this is the case, f(x) will have opposite signs at the end

points of the interval. As shown in Fig. 3-6, if f(x) is continuous and

y

a
True
Solution

x

f{b) < 0

y
f{b) > 0

b

Figure 3-6: Solution of f(x) = C between x =a and x = b.

x

has a solution between the points x = a and x = b , then either

f(a) > 0 and f(b) < 0 or f(a) < 0 and f(b) > 0. In other words, if there

is a solution between x =a and x = b, then f(a)f(b) < 0 .
The process of finding a solution with the bisection method is illus

trated in Fig. 3-7. It starts by finding points a and b that define an inter

val where a solution exists. Such an interval is found either by plotting

f(x) and observing a zero crossing, or by examining the function for

sign change. The midpoint of the interval xNsl is then taken as the first

estimate for the numerical solution. The true solution is either in the

section between points a and x NS 1 or in the section between points x NS 1
and b. If the numerical solution is not accurate enough, a new interval

that contains the true solution is defined. The new interval is the half of

the original interval that contains the true solution, and its midpoint is

taken as the new (second) estimate of the numerical solution. The pro

cess continues until the numerical solution is accurate enough accord

ing to a criterion that is selected.

The procedure (or algorithm) for finding a numerical solution with

the bisection method is summarized as follows:

Algorithm for the bisection method

1. Choose the first interval by finding points a and b such that a solu

tion exists between them. This means that f(a) and f(b) have dif

ferent signs such that f(a)f(b) < 0. The points can be determined

by examining the plot of f(x) versus x.

62 Chapter 3 Solving Nonlinear Equations

2. Calculate the first estimate of the numerical solution xNsl by:

_(a + b)
XNSl -

-2-

3. Determine whether the true solution is between a and xNSI• or

between xNsi and b. This is done by checking the sign of the prod

uct f(a) · f(xNsi) :

If f(a) · f(xNsi) < 0, the true solution is between a and xNsi·
If f(a) · f(xNsi) > 0, the true solution is between xNsi and b.

4. Select the subinterval that contains the true solution (a to x NSI, or

xNsi to b) as the new interval [a, b], and go back to step 2.

Steps 2 through 4 are repeated until a specified tolerance or error

bound is attained.

When should the bisection process be stopped?

Ideally, the bisection process should be stopped when the true solution

is obtained. This means that the value of xNs is such that f(xNs) = 0. In

reality, as discussed in Section 3.1, this true solution generally cannot

be found computationally. In practice, therefore, the process is stopped

when the estimated error, according to one of the measures listed in

Section 3.2, is smaller than some predetermined value. The choice of

termination criteria may depend on the problem that is actually solved.

A MATLAB program written in a script file that determines a

numerical solution by applying the bisection method is shown in the

solution of the following example. (Rewriting this program in a form of

a user-defined function is assigned as a homework problem.)

Example 3-1: Solution of a nonlinear equation using the bisection method.

Write a MATLAB program, in a script file, that determines the solution of the equation

8 -4.5 (x - sinx) = 0 by using the bisection method. The solution should have a tolerance of less than

0.001 rad. Create a table that displays the values of a, b, xNs• f(xNs), and the tolerance for each

iteration of the bisection process.

SOLUTION

To find the approximate location of the solution, a plot of the

function f(x) = 8-4.S(x- sinx) is made by using the fplot
command of MATLAB. The plot (Fig. 3-8), shows that the

solution is between x =
2 and x = 3. The initial interval is cho

sen as a =
2 and b = 3 .

A MATLAB program that solves the problem is as follows.

[Program 3-1: Script file. Bisection method.

clear all

F =@ (x) 8-4.S*(x-sin(x));

10 �------�

5
0

�-5

2
x

3 4

Figure 3-8: A plot of the function
f(x) = 8 -4.S(x - sinx).

[Definej{x) as an anonymous function.]

3.3 Bisection Method 63

a = 2; b = 3; imax = 20; tel = 0.001;

Fa = F(a); Fb = F(b);

------+ Assign initial values to a and b, define
max number of iterations and tolerance.

if Fa*Fb > 0 Stop the program ifthe
function has the same
sign at points a and b.

disp('Error:The function has the same sign at points a andb. ')
else

disp ('iteration

for i = l:imax

a b (xNS) Solution f(xNS) Tolerance')

end

end

xNS = (a + b)/2;

toli = (b - a)/2;

FxNS = F(xNS);

fprintf('%3i %11.6f %11.6f %11.6f

if FxNS = = 0

[Calculate the numerical solution of the iteration, xNS.)
[Calculate the current tolerance.]

[Calculate the value ofj(xNS) of the iteration.]
%11.6f %11.6f\n', i, a, b, xNS , FxNS , toli)

fprintf ('An exact solution x =%11. 6f was found' ,�) Stop the program if the true

break

end

if toli < tel

break

end

if i = = imax

'"" solution, f(x) = 0, is found.

Stop the iterations ifthe tolerance of the iter
ation is smaller than the desired tolerance.

fprintf ('Solution was not obtained in %i iteraticns' ,imax)
break

Stop the iterations if
the solution was not
obtained and the num
ber of the iteration
reaches imax. end

if F(a)*FxNS < 0

b = xNS;

else

a = xNS;

end

Determine whether the true solution is
,_ between a and xNS, or between xNS and b,

and select a and b for the next iteration.

When the program is executed, the display in the Command Window is:

iteration a b (xNS) Solution f (xNS) Tolerance

1 2.000000 3.000000 2.500000 -0.556875 0.500000

2 2.000000 2.500000 2.250000 1 .376329 0.250000

3 2.250000 2.500000 2.375000 0.434083 0.125000

4 2.375000 2.500000 2.437500 -0.055709 0.062500

5 2.375000 2.437500 2.406250 0.190661 0.031250

6 2.406250 2.437500 2.421875 0.067838 0.015625

7 2.421875 2.437500 2.429688 0.006154 0.007813

8 2.429688 2.437500 2.433594 -0.024755 0.003906

9 2.429688 2.433594 2.431641 -0.009295 0.001953

10 2.429688 2.431641 2.430664 -0.001569 0. 000977

The value of the function The last tolerance (satisfies

at the numerical solution. the prescribed tolerance).

The output shows that the solution with the desired tolerance is obtained in the 1 oth iteration.

64 Chapter 3 Solving Nonlinear Equations

Additional notes on the bisection method
• The method always converges to an answer, provided a root was

trapped in the interval [a, b] to begin with.

• The method may fail when the function is tangent to the axis and

does not cross the x-axis at f(x) = 0.

• The method converges slowly relative to other methods.

3.4 REGULA FALSI METHOD

The regula falsi method (also called false position and linear interpola
tion methods) is a bracketing method for finding a numerical solution of

an equation of the form f(x) = 0 when it is known that, within a given

interval [a, b], f(x) is continuous and the equation has a solution. As

illustrated in Fig. 3-9, the solution starts by finding an initial interval

[a1, bi] that brackets the solution. The values of the function at the end

points are /(a1) and /(b1). The endpoints are then connected by a

straight line, and the first estimate of the numerical solution, xNs1, is the

point where the straight line crosses the x-axis. This is in contrast to the
bisection method, where the midpoint of the interval was taken as the

solution. For the second iteration a new interval, [a2, b2] is defined. The

fix)

a,

\ b,
Actual b2

fia,)
solution b3

Figure 3-9: Regula Falsi method.

new interval is a subsection of the first interval that contains the solu

tion. It is either [a1, xNsil (a1 is assigned to a2, and xNsI to b2) or

[xNSl• bi] (xNst is assigned to a2, and b1 to b2). The endpoints of the

second interval are next connected with a straight line, and the point
where this new line crosses the x-axis is the second estimate of the solu

tion, xNsz. For the third iteration, a new subinterval [a3, b3] is selected,

and the iterations continue in the same way until the numerical solution

is deemed accurate enough.

For a given interval [a, b], the equation of a straight line that con

nects point (b, f(b)) to point (a, f(a)) is given by:

y =

f (b)-f (a)(x-b) + f(b) (3.10)
b-a

3.4 Regula Falsi Method 65

The point x NS where the line intersects the x-axis is determined by sub

stituting y = 0 in Eq. (3.10), and solving the equation for x :

x =

af (b)-bf (a)
(3.11) NS f (b) - f (a)

The procedure (or algorithm) for finding a solution with the regula falsi
method is almost the same as that for the bisection method.

Algorithm for the regula falsi method

1. Choose the first interval by finding points a and b such that a solu

tion exists between them. This means that f(a) and f(b) have

different signs such that f(a)f(b) < 0. The points can be deter

mined by looking at a plot of f(x) versus x.

2. Calculate the first estimate of the numerical solution xNsi by using

Eq. (3.11).

3. Determine whether the actual solution is between a and xNsi or

between xNsi and b. This is done by checking the sign of the prod

uct f(a) · f(xNsi):
If f(a) · f(xNsi) < 0, the solution is between a and xNsi·
If f(a) · f(xNsi) > 0, the solution is between xNsi and b.

4. Select the subinterval that contains the solution (a to xNs1, or xNsi
to b) as the new interval [a, b] , and go back to step 2.

Steps 2 through 4 are repeated until a specified tolerance or error bound

is attained.

When should the iterations be stopped?

The iterations are stopped when the estimated error, according to one of
the measures listed in Section 3 .2, is smaller than some predetermined
value.

Additional notes on the regula falsi method
• The method always converges to an answer, provided a root is ini

tially trapped in the interval [a, b] .

• Frequently, as in the case shown in Fig. 3-9, the function in the inter

val [a, b] is either concave up or concave down. In this case, one of
the endpoints of the interval stays the same in all the iterations, while
the other endpoint advances toward the root. In other words, the
numerical solution advances toward the root only from one side. The
convergence toward the solution could be faster ifthe other endpoint

would also "move" toward the root. Several modifications have been
introduced to the regula falsi method that make the subinterval in
successive iterations approach the root from both sides (see Problem
3.18).

66 Chapter 3 Solving Nonlinear Equations

3.5 NEWTON'S METHOD

Newton's method (also called the Newton-Raphson method) is a

scheme for finding a numerical solution of an equation of the form

f(x) = 0 where f(x) is continuous and differentiable and the equation is

known to have a solution near a given point. The method is illustrated

in Fig. 3.10.

Figure 3-10: Newton's method.

The solution process starts by choosing point x1 as the first estimate of

the solution. The second estimate x2 is obtained by taking the tangent

line to f(x) at the point (x1, f(x1)) and finding the intersection point

of the tangent line with the x-axis. The next estimate x3 is the intersec

tion of the tangent line to f(x) at the point (x2, f(x2)) with the x-axis,

and so on. Mathematically, for the first iteration, the slope, f '(x1), of

the tangent at point (x1, f(x1)) is given by:

f , (x1) =
f(x1) - 0 (3.12)

X1 -X2

Solving Eq. (3.12) for x2 gives:

f(x1)
X2 = Xi-

--

j '(x1)
(3.13)

Equation 3 .13 can be generalized for determining the "next" solution

X;+ 1 from the present solution x;:

(3.14)

Equation (3.14) is the general iteration formula for Newton's method. It

is called an iteration formula because the solution is found by repeated

application ofEq. (3.14) for each successive value of i.

Newton's method can also be derived by using Taylor series. Taylor

series expansion of f(x) about x1 is given by:

f(x) = f(x1)+(x-x1) f '(x1)+fi(x-x1)
2
f"(x1)+... (3.15)

3.5 Newton's Method 67

If x2 is a solution of the equation f(x) = 0 and x1 is a point near x2,
then:

f(x2) = 0 = f(xi)+(x2-xi) f '(xi)+ ;!(x2-xi)
2
f"(xi)+ . . . (3.16)

By considering only the first two terms of the series, an approximate
solution can be determined by solving Eq. (3.16) for x2:

f(xi)
Xz = Xi -f '(xi)

(3.17)

The result is the same as Eq. (3.13). In the next iteration the Taylor
expansion is written about point x2, and an approximate solution x3 is

calculated. The general formula is the same as that given in Eq. (3.14).

Algorithm for Newton's method

1. Choose a point xi as an initial guess of the solution.

2. For i = 1, 2, . . . , until the error is smaller than a specified value, cal
culate X;+i by using Eq. (3.14).

When are the iterations stopped?

Ideally, the iterations should be stopped when an exact solution is

obtained. This means that the value of x is such that f(x) = 0. Gener

ally, as discussed in Section 3.1, this exact solution cannot be found
computationally. In practice therefore, the iterations are stopped when
an estimated error is smaller than some predetermined value. A toler
ance in the solution, as in the bisection method, cannot be calculated
since bounds are not known. Two error estimates that are typically used
with Newton's method are:
Estimated relative error: The iterations are stopped when the esti
mated relative error (Eq. (3.9)) is smaller than a specified value E:

(3.18)

Tolerance in f(x): The iterations are stopped when the absolute

value of f(x;) is smaller than some number 8:

I /Cx;)J :s; o (3.19)

The programming of Newton's method is very simple. A MATLAB
user-defined function (called NewtonRoot) that finds the root of
f(x) = 0 is listed in Fig. 3-11. The program consists of one loop in which
the next solution Xi is calculated from the present solution Xest using
Eq. (3.14). The looping stops if the error is small enough according to Eq.
(3.18). To avoid the situation where the looping continues indefinitely
(either because the solution does not converge or because of a program
ming error), the number of passes in the loop is limited to imax. The func

tions f(x) and f '(x) (that appear in Eq. (3.14)) have to be supplied as

68 Chapter 3 Solving Nonlinear Equations

separate user-defined functions. They are entered in the arguments of

NewtonRoot as function handles.

[Program 3-2: User-defined function. Newton's method.]

function Xs = NewtonRoot(Fun,FunDer,Xest,Err,imax)

% NewtonRoot finds the :coot of Fun= 0 near the point Xest using Newton's nethod.

% Input variables:

% Fun Name of a user-defined function that calculates Fun for a given x.

% FunDer Name of a user-defined function that calculates the derivative

% of Fun for a given x .

% Xest Initial estimate of the solution.

% Err Maximum error.

% imax Maximum number of iterations

% Output variable:

% Xs Solution

for i = l:imax

end

i f i

Xi = Xest - Fun(Xest)/FunDer(Xest);

if abs((Xi - Xest)/Xest) <Err

Xs = Xi;

break

end

Xe st = Xi;

= = imax

[Eq. (3.14). J
[Eq. (3.18). J

fprintf('Solution was not cbtained in %i iterations. \n' ,imax)

Xs =('No answer ');

end

Figure 3-11: MATLAB function file for solving equation using the Newton's method.

Example 3-2 shows how Eq. (3.14) is used, and how to use the user

defined function NewtonRoot to solve a specific problem.

Example 3-2: Solution of equation using Newton's method.

Find the solution of the equation 8-4.5(x- sinx) = 0 (the same equation as in Example 3-1) by

using Newton's method in the following two ways:

(a) Using a nonprogrammable calculator, calculate the first two iterations on paper using six signifi

cant figures.
(b) Use MATLAB with the function NewtonRoot that is listed in Fig. 3-11. Use 0.0001 for the

maximum relative error and 10 for the maximum number of iterations.

In both parts, use x = 2 as the initial guess of the solution.

3.5 Newton's Method

SOLUTION

In the present problem, f(x) = 8 - 4.5(x-sinx) and f '(x) = -4.5(1 -cosx) .

(a) To start the iterations, f(x) and f '(x) are substituted in Eq. (3.14):

8 - 4.5(x; -sinx;)
X;+J = X;-

-4.5(1-cosx;)
In the first iteration, i = 1 and x1 = 2, and Eq. (3.20) gives:

x2 = 2- 8- 4.5(2-sin(2))_ 2.48517
-4.5(1 -cos(2))

For the second iteration, i = 2 and x2 = 2.48517, and Eq. (3.20) gives:

x3 = 2.48517_8- 4.5(2.48517-sin(2.48517))_ 2.43099
-4.5(1-cos(2.48517))

69

(3.20)

(3.21)

(3.22)

(b) To solve the equation with MATLAB using the function NewtonRoot, the user must create

user-defined functions for f(x) and f '(x). The two functions, called FunExample2 and

FunDerExample2, are:

function y = FunExample2(x)

y = 8 - 4.S*(x - sin(x));

and

function y = FunDerExample2(x)

y = -4.5 + 4.S*cos(x);

Once the functions are created and saved, the NewtonRoot function can be used in the Command

Window: The user-defined functions are entered as function handles.
>> format long

>> xSolution = NewtonRoot(@FunExample2,@FunDerExample2,2,0.0001,10)

xSolution =

2.430465741723630

A comparison of the results from parts a and b shows that the first four digits of the solution (2.430)
are obtained in the second iteration. (In part b, the solution process stops in the fourth iteration; see

Problem 3.19.) This shows, as was mentioned before, that Newton's method usually converges fast.

In Example 3-1 (bisection method), the first four digits are obtained only after 10 bisections.

Notes on Newton's method

• The method, when successful, works well and converges fast. When

it does not converge, it is usually because the starting point is not

close enough to the solution. Convergence problems typically occur

when the value of f '(x) is close to zero in the vicinity of the solu

tion (where f(x) =
0). It is possible to show that Newton's method

converges if the function f(x) and its first and second derivatives

f '(x) and f "(x) are all continuous, if f '(x) is not zero at the solu

tion, and if the starting value x1 is near the actual solution. Illustra

tions of two cases where Newton's method does not converge (i.e.,

diverges) are shown in Fig. 3-12.

70 Chapter 3 Solving Nonlinear Equations

y y

f(X:;;,z) ___ _

y=J(x)I
x

x

Figure 3-12: Cases where Newton's method diverges.

• A function f '(x), which is the derivative of the function f(x), has
to be substituted in the iteration formula, Eq. (3.14). In many cases,
it is simple to write the derivative, but sometimes it can be difficult
to determine. When an expression for the derivative is not available,
it might be possible to determine the slope numerically or to find a
solution by using the secant method (Section 3.6), which is some
what similar to Newton's method but does not require an expression
for the derivative.
Next, Example 3-3 illustrates the effect that the starting point can

have on a numerical solution with Newton's method.

Example 3-3: Convergence of Newton's method.

Find the solution of the equation ! - 2 = 0 by using Newton's method. For the starting point (initial
x

estimate of the solution) use:
(a) x= 1.4, (b) x= 1, and (c) x= 0.4

SOLUTION

The equation can easily be solved analytically, and the exact solution is x = 0.5.

For a numerical solution with Newton's method the function, f(x) = !- 2, and its derivative,
x

f '(x) = _ _!_,are substituted in Eq. (3.14):
x2

(3.23)

(a) When the starting point for the iterations is x1 = 1.4, the next two iterations, using Eq. (3.23),
are:

x2 = 2(x1 - xi)= 2(1.4 - 1.42) = -1.12 and x3 = 2(x2 - x�) = 2 [(-1.12) - (-1.12)2] = -4.7488

These results indicate that Newton's method diverges. This case is illustrated in Fig. 3-13a.

3.6 Secant Method 71

(b) When the starting point for the iterations is x = 1, the next two iterations, using Eq. (3.23), are:

x2 = 2(x1-xt) = 2(1-12) = 0 and x3 = 2(x2-xD = 2(0-02) = 0

From these results it looks like the solution converges to x = O, which is not a solution. At x = O, the
function is actually not defined (it is a singular point). A solution is obtained from Eq. (3.23) because
the equation was simplified. This case is illustrated in Fig. 3-13b.

(c) When the starting point for the iterations is x = 0.4, the next two iterations, using Eq. (3.23), are:

x2 = 2(x1 -xi) = 2(0.4-0.42) = 0.48 and x3 = 2(x2 -xD = 2(0.48 -0.482) = 0.4992

In this case, Newton's method converges to the correct solution. This case is illustrated in Fig. 3-13c.
This example also shows that if the starting point is close enough to the true solution, Newton's
method converges.

-6 -5x3-4

y y

l 0.6

-4 -3 -2 X2 0.5

0.4
-1

0.3

�
0.2

0.1

-4
x

0

-5 -0.1

(a) (b) (c)
Figure 3-13: Solution with Newton's method using different starting points.

y

Solution

\

3.6 SECANT METHOD

The secant method is a scheme for finding a numerical solution of an

equation of the form f(x) = 0. The method uses two points in the neigh

borhood of the solution to determine a new estimate for the solution
(Fig. 3-14). The two points (marked as x1 and x2 in the figure) are used
to define a straight line (secant line), and the point where the line inter
sects the x-axis (marked as x3 in the figure) is the new estimate for the

solution. As shown, the two points can be on one side of the solution

x x

(a) (b)

Figure 3-14: The secant method.

72

Figure 3-15: Secant method.

Chapter 3 Solving Nonlinear Equations

(Fig.3-14a) or the solution can be between the two points (Fig. 3-14b).
The slope of the secant line is given by:

(3.24)

which can be solved for x3 :

(3.25)

Once point x3 is determined, it is used together with point x2 to calcu

late the next estimate of the solution, x4• Equation (3.25) can be gener

alized to an iteration formula in which a new estimate of the solution

xi+ 1 is determined from the previous two solutions x; and xi-I.

f(x.)(x._1-x.)
X·+ I = X· -

l l l

' ' f(xi-1)-f(x;)
(3.26)

Figure 3-15 illustrates the iteration process with the secant method.

Relationship to Newton's method

Examination of the secant method shows that when the two points that
define the secant line are close to each other, the method is actually an

approximated form of Newton's method. This can be seen by rewriting
Eq. (3.26) in the form:

f(x;)
X·+1 = x.------

1 ' f(xi-1)-f(xi)

(xi-I -x;)

(3.27)

This equation is almost identical to Eq. (3.14) of Newton's method. In
Eq. (3.27), the denominator of the second term on the right-hand side of

the equation is an approximation of the value of the derivative of f(x)

at xi. In Eq. (3.14), the denominator is actually the derivative f'(x). In

the secant method (unlike Newton's method), it is not necessary to

know the analytical form of f'(x).

Programming of the secant method is very similar to that of New

ton's method. Figure 3-16 lists a MATLAB user-defined function

(called SecantRoot) that finds the root of f(x) = 0. The program con

sists of one loop in which the next solution Xi is calculated from the previ
ous two solutions, Xb and Xa, using Eq. (3.26). The looping stops if the

error is small enough according to Eq. (3.18). The function f(x) (that is

used in Eq. (3.26)) has to be supplied as a separate user-defined function.

Its name is typed in the argument of SecantRoot as a function handle.

3.6 Secant Method 73

[Program 3-3: User-defined function. Secant method.]

function Xs = SecantRoot(Fun,Xa ,Xb,Err ,imax)

% SecantRoot finds the root of Fun = 0 using the secant method.

% Input variables:

% Fun Nane of a user-defined function that calculates Fun for a given x.

% a, b Two points in the neighborhood. of the root (on either side or the

% same side of the

% Err Maximum error .

% imax Maximum number

% Output variable:

% Xs Solution

for i = l:imax

FunXb = Fun(Xb) ;

root) .

of iterations

Xi = Xb - FunXb*(Xa-Xb) /(Fun(Xa) -FunXb) ;

if abs((Xi - Xb) /Xb) <Err

end

end

Xs = Xi;

break

Xa = Xb;

Xb = Xi;

if i - - imax

fprintf('Solution was not obtained in %i itera

tions . \n' , imax)

Xs = ('No answer') ;

end

(Eq. (3.26). J
[Eq. (3.18). I

Figure 3-16: MATLAB function file for solving equation using the secant method.

As an example, the function from Examples 3-1and3-2 is solved with

the SecantRoot user-defined function. The two starting points are taken

as a = 2 and b = 3 .

>> format long

>> xSolution = Secant-

Root (@FunExample2, 2, 3, 0. 0001, 10)

xSolution =

2.430465726588755

The user-defined function SecantRoot is also used in the solution of

Example 3-4.

74

y

Chapter 3 Solving Nonlinear Equations

3.7 FIXED-POINT ITERATION METHOD

Fixed-point iteration is a method for solving an equation of the form

f(x) = 0. The method is carried out by rewriting the equation in the

form:

x = g(x) (3.28)

Obviously, when x is the solution of f(x) = 0, the left side and the right
side of Eq. (3.28) are equal. This is illustrated graphically by plotting

y = x and y = g(x), as shown in Fig. 3-17. The point of intersection of

the two plots, called the fixed point, is the solution. The numerical
value of the solution is determined by an iterative process. It starts by
taking a value of x near the fixed point as the first guess for the solution

and substituting it in g(x). The value of g(x) that is obtained is the new

(second) estimate for the solution. The second value is then substituted

x back in g(x), which then gives the third estimate of the solution. The
�+---�--�����---

iteration formula is thus given by:

Figure 3-17: Fixed-point
iteration method.

X;+ I = g(x;) (3.29)

The function g(x) is called the iteration function.
• When the method works, the values of x that are obtained are succes

sive iterations that progressively converge toward the solution. Two
such cases are illustrated graphically in Fig. 3-18. The solution pro
cess starts by choosing point x1 on the x-axis and drawing a vertical

line that intersects the curve y = g(x) at point g(x1). Since

x2 = g(x1), a horizontal line is drawn from point (x1, g(x1)) toward

the line y = x. The intersection point gives the location of x2 . From

x2 a vertical line is drawn toward the curve y = g(x). The intersec

tion point is now (x2, g(x2)), and g(x2) is also the value of x3. From

point (x2, g(x2)) a horizontal line is drawn again toward y = x, and

Figure 3-18: Convergence of the fixed-point iteration method.

3.7 Fixed-Point Iteration Method 75

the intersection point gives the location of x3 • As the process contin

ues the intersection points converge toward the fixed point, or the

true solution xrs.

• It is possible, however, that the iterations will not converge toward

the fixed point, but rather diverge away. This is shown in Fig. 3-19.

The figure shows that even though the starting point is close to the
solution, the subsequent points are moving farther away from the

solution.

y

x

Figure 3-19: Divergence of the fixed-point iteration method.

• Sometimes, the form f(x) = 0 does not lend itself to deriving an

iteration formula of the form x = g(x) . In such a case, one can

always add and subtract x to f (x) to obtain x + f (x) - x = O. The

last equation can be rewritten in the form that can be used in the

fixed-point iteration method:

x = x+ f(x) = g(x)

Choosing the appropriate iteration function g(x)

For a given equation f(x) = 0, the iteration function is not unique since

it is possible to change the equation into the form x = g(x) in different

ways. This means that several iteration functions g(x) can be written

for the same equation. A g(x) that should be used in Eq. (3.29) for the

iteration process is one for which the iterations converge toward the

solution. There might be more than one form that can be used, or it may
be that none of the forms are appropriate so that the fixed-point iteration

method cannot be used to solve the equation. In cases where there are

multiple solutions, one iteration function may yield one root, while a
different function yields other roots. Actually, it is possible to determine

ahead of time if the iterations converge or diverge for a specific g(x) .

76

f(x)=x:Jxl2>+ 1.2x-5
15 �-------�

x

Figure 3-20: A plot of
f(x) = xexl2 + l.2x - 5.

Chapter 3 Solving Nonlinear Equations

The fixed-point iteration method converges if, in the neighborhood

of the fixed point, the derivative of g(x) has an absolute value that is

smaller than 1 (also called Lipschitz continuous):

lg'(x)I < i (3.30)

As an example, consider the equation:

xe0.5x + l.2x - 5 = 0 (3.31)

A plot of the function f(x) = xe0.5x + l.2x- 5 (see Fig. 3-20) shows that

the equation has a solution between x = 1 and x = 2 .
Equation (3 .31) can be rewritten in the form x = g(x) in different

ways. Three possibilities are discussed next.

Case a: 5 - xe0.5x x= --- (3.32)
1.2

5 - xe0.5x
In this case, g(x) = and g'(x) = -(e0.5x + 0.5xe0.5x)/1.2.

1.2
The values of g'(x) at points x = 1 and x = 2, which are in the neigh-

borhood of the solution, are:

Case b:

In this case,

g'(l) = -(e0·5·1+0.5 · le0·5·1)/1.2 = -2.0609

g'(2) = -(e0.5 ·2 + 0.5 · 2e0·5 ·2)/1.2 = -4.5305

5 x= ---

e0.5x + 1.2

5 g(x) =
e0.5x + 1.2

-5e0.5x
and g'(x) = ----

2(e0.5x + 1.2)2

(3.33)

The values of g'(x) at points x = 1 and x = 2, which are in the neigh

borhood of the solution, are:

Case c:

In this case,

-5e0.5 ·I
g'(l) = = -0.5079

2(e0.5· I+ 1.2)2

-5e0.5. 2 g'(2) = = -0.4426
2(e0.5·2+ 1.2)2

5 - l.2x x=
e0.5x

g(x) = 5 - l.2x
e0.5x

and g'(x) = -3.7 + 0.6x
_ e0.5x

(3.34)

The values of g'(x) at points x = 1 and x = 2, which are in the neigh

borhood of the solution, are:

g'(l) = -3.7+0.6 · 1 = -1.8802
e0.5 ·I

g'(2) = -3·7 + 0·6. 2 = -0.9197
e0.5 ·2

These results show that the iteration function g(x) from Case b is the

3.8 Use of MATLAB Built-In Functions for Solving Nonlinear Equations 77

one that should be used since, in this case, lg'(l)I < 1 and lg'(2)1<1 .

Substituting g(x) from Case bin Eq. (3.29) gives:

5
X;+ I = (3.35)

e0.5x; + 1.2

Starting with x1 = 1, the first few iterations are:

x =
5

= 1.7552 x =
5

= 1.3869 2
e0.5 . 1 + 1.2 3

e0.5. 1.7552 + 1.2

5 x = = 1.5622
4 e0.5 . 1.3869 + 1.2

x =
5

= 1.4776
5 e0.5 . 1.5622 + 1.2

x =
5

= 1.5182 x =
5

= 1.4986 6
e0.5. 1.4 776 + 1.2 7 e0.5. 1.5182 + 1.2

As expected, the values calculated in the iterations are converging

toward the actual solution, which is x = 1.5050.
On the contrary, if the function g(x) from Case a is used in the iter

ation, the first few iterations are:

5 1 0 5·1
x =

- e ·
= 2.7927 2 1.2

5 - 2. 7927 e0.5 . 2.7927
X3 = = -5.2364

1.2

5 _ (-5.2364)e0.5 · (-5.23 64) x = = 4.4849
4 1.2

5 - 4.4849e0.5. 4.484 9
X5 = = -31.0262

1.2

In this case, the iterations give values that diverge from the solution.

When should the iterations be stopped?

The true error (the difference between the true solution and the esti

mated solution) cannot be calculated since the true solution in general is

not known. As with Newton's method, the iterations can be stopped either

when the relative error or the tolerance in f(x) is smaller than some pre

determined value (Eqs. (3.18) or (3.19)).

3.8 USE OF MATLAB BUil T-IN FUNCTIONS FOR
SOLVING NONLINEAR EQUATIONS

MATLAB has two built-in functions for solving equations with one

variable. The f zero command can be used to find a root of any equa

tion, and the roots command can be used for finding the roots of a

polynomial.

78 Chapter 3 Solving Nonlinear Equations

3.8.1 The £zero Command

The fzero command can be used to solve an equation (in the form

f(x) = 0) with one variable. The user needs to know approximately

where the solution is, or if there are multiple solutions, which one is

desired. The form of the command is:

x =£zero (function,xO)

Solution The function to

be solved.

• x is the solution, which is a scalar.

A value of x near to where the

function crosses the axis.

• function is the function whose root is desired. It can be entered in

three different ways:

1. The simplest way is to enter the mathematical expression as a

string.

2. The function is first written as a user-defined function, and then

the function handle is entered.

3. The function is written as an anonymous function, and then its

name (which is the name of the handle) is entered.

• The function has to be written in a standard form. For example, if the

function to be solved is xe -x = 0.2, it has to be written as

f(x) = xe-x-0.2 = 0. If this function is entered into the fzero
command as a string, it is typed as 'x*exp (-x) -0. 2'.

• When a function is entered as a string, it cannot include predefined

variables. For example, if the function to be entered is

f(x) = xe-x -0.2 , it is not possible to first define b=O. 2 and then

enter 'x*exp (-x) -b'.

• x 0 can be a scalar or a two-element vector. If it is entered as a scalar,

it has to be a value of x near the point where the function crosses the

x-axis. If x 0 is entered as a vector, the two elements have to be

points on opposite sides of the solution such that /(xO(l)) has a dif

ferent sign than f(x0(2)). When a function has more than one solu

tion, each solution can be determined separately by using the f zero
function and entering values for x 0 that are near each of the solu

tions.

Usage of the fzero command is illustrated next for solving the equa

tion in Examples 3-1 and 3-2. The function f(x) = 8 - 4.5(x- sinx) is
first defined as an anonymous function named FUN. Then the name

FUN is entered as an input argument in the function fzero.

>> format long

3.9 Equations with Multiple Solutions 79

30�-------�

20

10
'><'
� o·i----

x

Figure 3-21: A plot ofEq. (3.36).

>>FUN=@ (x) 8-4.S*(x-sin(x))

FUN = [f(x) is written as an anonymous function.]
@(x)8-4.5*(x-sin(x))

>> sol=fzero(FUN,2)

sol =

2.430465741723630

3.8.2 The roots Command

The name FUN of the anonymous
function is entered in fzero.

The roots command can be used to find the roots of a polynomial.

The form of the command is:

r = roots(p)

r is a column vector with

the roots of the polynomial.
p is a row vector with the coef

ficients of the polynomial.

3.9 EQUATIONS WITH MULTIPLE SOLUTIONS

Many nonlinear equations of the form f(x) = O have multiple solutions

or roots. As an example, consider the following equation:

f(x) = cos(x)cosh(x) + 1 (3.36)

A plot of this function using MATLAB is shown in Fig. 3-21 over the

interval [O, 5]. As can be seen, the function has zero crossings between

x = 1 and x = 2, and between x = 4 and x = 5 . Existence of multiple

roots is typical of nonlinear equations. A general strategy for finding the

roots in the interval [O, 5] is:

• Determine the approximate location of the roots by defining smaller

intervals over which the roots exist. This can be done by plotting the

function (as shown in Fig. 3-21) or by evaluating the function over a

set of successive points and looking for sign changes of the function.

• Apply any of the methods described in Sections 3.3 through 3.7 over

a restricted subinterval. For example, the first root that is contained

within the interval [1, 2] can be found by the bisection method or a

similar method with a= 1 and b = 2. Alternatively, a starting value

or initial guess can be used with Newton's method or fixed-point

iteration method to determine the root. The fzero MATLAB built

in function can also be used to find the root. The process can then be

repeated over the next interval [4, 5] to find the next root.

The next example presents the solution of the function in Eq. (3.36) in a

practical situation.

80 Chapter 3 Solving Nonlinear Equations

Example 3-4: Solution of equation with multiple roots.

The natural frequencies, con, of free vibration of a cantilever

beam are determined from the roots of the equation:

(3.37)

where L is the length of the beam, and the frequency con is

given by:

co = (k L)z J EI n n
pAL4

in which E is the elastic modulus, I is the moment of inertia, A is the cross-sectional area, and p is the

density per unit length.

(a)Determine the value of the first root by defining smaller intervals over which the roots exist and

using the secant method.

(b)Write a MATLAB program in a script file that determines the value of knL for the first four

roots.

SOLUTION

Equation (3.37) is identical to Eq. (3.36), and a plot that

shows the location of the first two roots is presented in Fig. 3-
21. The location of the next two roots is shown in the figure

on the right where the function is plotted over the interval

[7, 11.2] . It shows that the third root is around 8 and the fourth

root is near 11.
(a) The value of the first root is determined by using the

SecantRoot user-defined function that is listed in Fig. 3-16.

0.5

0

-0.5

8 9 10 11
(knL)

First, however, a user-defined function for the function f(knL) in Eq. (3.37) is written (the function

name is FunExample3):

function y = FunExample3(x)

y = cos(x)*cosh(x) + 1;

The first root is between 1 and 2. To find its solution numerically, the user-defined function Secan

tRoot (listed in Fig. 3.16) is used with a = 1, b = 2, Err = 0.0001, and imax = 10:

>> FirstSolution = SecantRoot(@FunExample3,1,2,0.0001,10)

FirstSolution =
[�-f-or_m_a_t_l_o_n_g_i_s-us_e_d_m_MA'.�-TL- A�B�.

1.875104064602412

(b) Next, a MATLAB program that automatically finds the four roots is written. The program evalu

ates the function over a set of successive intervals and looks for sign changes. It starts at knL = 0

and uses an increment of 0.2 up to a value of knL = 11.2. If a change in sign is detected, the root

within that interval is determined by using MATLAB's built-in fzero function.

clear all

F = @ (x) cos(x)*cosh(x)+l;

Inc = 0.2;

3.10 Systems of Nonlinear Equations 81

i = 1;

KnLa = 0;

KnLb = KnLa + Inc;
while KnLb <= 11.2

[Define the left point of the first increment.]
[Define the right point of the first increment.]

if F(KnLa)*F(KnLb) < 0 [Check for a sign change in the value of the function.]

Determine the root within the interval if a sign
change was detected.

:Roots (i) = fzero (F, [KnLa,Knib]) ;
i = i + 1;

end
KnLa = KnLb;
KnLb = KnLa + Inc;

end
Roots

[Define the left point of the next increment.]
[Define the right point of the next increment.]

When the program is executed, the display in the Command Window is:

Roots =

1.875104068711961 4.694091132974175 7.854757438237613 10.995540734875467

These are the values of the first four roots.

6

4

;>, 2

0

-2

-�6 -4 -2 0 2 4 6
x

Figure 3-22: A plot of Eq. (3.38)
and Eq. (3.39).

3.10 SYSTEMS OF NONLINEAR EQUATIONS
A system of nonlinear equations consists of two, or more, nonlinear

equations that have to be solved simultaneously. For example, Fig. 3-22

shows a catenary (hanging cable) curve given by the equation

y = �(ex12
+ e(-x)12) and an ellipse specified by the equation

2 2
:!... + .!'.: = 1. The point of intersection between the two curves is given
52 32
by the solution of the following system of nonlinear equations:

f () _ 1 (x/2
+ (-x)/2) _ O 1 x, y - y - 2: e e -

2 2 f2(x,y) = 9x +25y -225 = 0

(3.38)

(3.39)

Analysis of many problems in science and engineering requires

solution of systems of nonlinear equations. In addition, as shown in

Chapter 11, one of the popular numerical methods for solving nonlinear

ordinary differential equations (the finite difference method) requires

the solution of a system of nonlinear algebraic equations.

In this section, two methods for solving systems of nonlinear equa

tions are presented. The Newton method (also called the N ewton-Raph

son method), suitable for solving small systems, is described in Section
3.10.1. The fixed-point iteration method, which can also be used for

solving large systems, is discussed in Section 3.10.2.

82 Chapter 3 Solving Nonlinear Equations

3.10.1 Newton's Method for Solving a System of Nonlinear
Equations

Newton's method for solving a system of nonlinear equations is an

extension of the method used for solving a single equation (Section

3.5). The method is first derived in detail for the solution of a system of

two nonlinear equations. Subsequently, a general formulation is pre

sented for the case of a system of n nonlinear equations.

Solving a system of two nonlinear equations

A system of two equations with two unknowns x and y can be written

as:

f1(x,y) = 0

f2(x, y) = 0
(3.40)

The solution process starts by choosing an estimated solution x1 and

y1• If x2 and y2 are the true (unknown) solutions of the system and are

sufficiently close to x1 and y1, then the values of /1 and f 2 at x2 and

y2 can be expressed using a Taylor series expansion of the functions

f1(x,y) and f2(x,y) about (x1,y1) (see Section 2.7.2):

Since x2 and y2 are close to x1 and y1, approximate values for

f1(x2,y2) and f2(x2,Ji) can be calculated by neglecting the higher

order terms. Also, since f 1 (x2, Yi) = 0 and f i(x2, Yi) = 0, Eqs. (3 .41)

and (3.42) can be rewritten as:

8/1 1 8/1 1 - Llx+- Lly=-f1(X1,Y1) ox By
X1,Y1 X1,Y1

(3.43)

(3.44)

where L'.lx = x2 -x1 and L'.ly = y2 -y1• Since all the terms in Eqs. (3.43)

and (3.44) are known, except the unknowns L'.lx and L'.ly , these equa

tions are a system of two linear equations. The system can be solved by

using Cramer's rule (see Section 2.4.6):

8/2 1 8/1 1 - f 1 (x1, Y1) oy + f 2Cx1, Y1) oy
LlX = X1, Y1 X1, Y1 (3 .45)

JC f 1(X1, Y1), f2(X1, Y1))

3.10 Systems of Nonlinear Equations 83

(3.46)

where

J(f1, f 2) = det
l0fx1 0�11
of 2 °f 2
--

ox oy

(3.47)

is the Jacobian (see Section 2.6.3). Once Lix and Liy are known, the val

ues of x2 and y2 are calculated by:

X2 = X1 + L1x

Y2 = Y1 + Liy
(3.48)

Obviously, the values of x2 and y2 that are obtained are not the true

solution since the higher-order terms in Eqs. (3.41) and (3.42) were

neglected. Nevertheless, these values are expected to be closer to the

true solution than x1 and y1•
The solution process continues by using x2 and y2 as the new esti

mates for the solution and using Eqs. (3.43) and (3.44) to determine

new Lix and Liy that give x3 and y3• The iterations continue until two

successive answers differ by an amount smaller than a desired value.

An application of Newton's method is illustrated in Example 3-5

where the intersection point between the catenary curve and the ellipse

in Fig. 3-22 is determined.

Example 3-5: Solution of a system of nonlinear equations using Newton's method.

The equations of the catenary curve and the ellipse, which are

shown in the figure, are given by:

f 1 x/2 (-x)/2
1(x,y)=y - 2(e +e)=0

2 2 f2(x,y) = 9x +25y - 225 = 0

(3.49)

(3.50)

Use Newton's method to determine the point of intersection

of the curves that resides in the first quadrant of the coordi

nate system.

SOLUTION

6
4

0

-2

-i6 -4 -2 0 2 4 6
x

Equations (3.49) and (3.50) are a system of two nonlinear equations. The points of intersection are

given by the solution of the system. The solution with Newton's method is obtained by using Eqs.

(3.43) and (3.44). In the present problem, the partial derivatives in the equations are given by:

of! = _!(ex/2 - e(-x)/2
) and

of
I 1 (3.51)

ox 4 oy

84 Chapter 3 Solving Nonlinear Equations

The Jacobian is given by:

8/1 8/11
J(f 1, f 2) = det Bx By

8/2 Bf 2 --
ax By

8/2 - = 50y
By

and 18x

[1
(

x/2 (-x)/2)
l

- d t-- e -e 1 - 1(x/2 (-x)/2)50 18 - e 4 --- e -e y- x 4
18x 50y

Substituting Eqs. (3.51}--(3.53) in Eqs. (3.45) and (3.46) gives the solution for �x and �Y.

(3.52)

(3.53)

The problem is solved in the MATLAB program that is listed below. The order of operations in the

program 1s:

• The solution is initiated by the initial guess, xi = 2.5, Y; = 2.0.
• The iterations start. �Y and �x are determined by substituting x; and Y; in Eqs. (3.45) and

(3.46).

• X;+ 1 = xi+ L\x, and Yi+ 1 = Y; + L\y are determined.
• If the estimated relative error (Eq. (3.9)) for both variables is smaller than 0.001, the iterations

stop. Otherwise, the values of X;+ 1 and Y;+ 1 are assigned to x; and Y;, respectively, and the next

iteration starts.

The program also displays the solution and the error at each iteration.

% Solutio n of Chapter 3 Example 5

Fl=@ (x,y) y - 0.5*(exp(x/2) + exp(-x/2));

F2 = @ (x,y) 9*xA2 + 25*yA2 - 225;

Flx =@ (x) -(exp(x/2) - exp(-x/2))/4;

F2x = @ (x) lB*x;

F2y = @ (y) 50*y;

Jaccb = @ (x,y) -(exp(x/2) - exp(-x/2))/4*50*y - lB*x;

xi = 2 .5; yi = 2; Err = 0.001;

for i = 1:5

Jae= Jacob(xi,yi);

Delx = (-Fl(xi,yi)*F2y(yi) + F2(xi,yi))/Jac;

[Assign the initial estimate of the solution. J
[Start the iterations. J

Dely = (-F2(xi,yi)*Flx(xi) + Fl(xi,yi)*F2x(xi))/Jac;
Calculate & and �y with

Eqs. (3.45) and (3.46).

xipl = xi + Delx;

yipl = yi + Dely;

Errx = abs((xipl - xi)/xi);

Erry = abs((yipl - yi)/yi);

Calculate X;+ 1 and Y;+ 1. J

fprintf('i =%2.0f x = %-7 .4f y = %-7 .4f Error in x = %-7 .4f Error in y = %-
7 • 4£\n I ,i ,xipl f yipl ,Errx ,Erry)

if Errx < Err & Erry < Err

break
else

end

e nd

xi = xipl; yi = yipl; If the error is not small enough, assign x; + 1 to x;, and y; + 1 to y i .

3.10 Systems of Nonlinear Equations 85

When the program is executed, the display in the Command Window is:

i = 1 x= 3.1388 y = 2.4001 Error in x = 0.25551 Error in y = 0.20003

i = 2 x= 3.0339 y = 2.3855 Error in x = 0.03340 Error in y = 0.00607

i = 3 x= 3.0312 y = 2.3859 Error in x = 0.00091 Error in y = 0.00016

These results show that the values converge quickly to the solution.

Solving a system ofn nonlinear equations

Newton's method can easily be generalized to the case of a system of n

nonlinear equations. With n unknowns, x1, x2, ... , xn , a system of n

simultaneous nonlinear equations has the form:

f1(X1, X2, ... , Xn) = Q

(3.54)

f n(x1, X2, ... , xn) = 0

The value of the functions at the next approximation of the solution,

x1, i+ 1, x2, i+ 1, ... , xn, i+ 1, is then obtained using a Taylor series expan

sion about the current value of the approximation of the solution,

x1, i
• x2, i

• . • . , xn, i
. Following the same procedure that led to Eqs. (3.43)

and (3.44) results in the following system of n linear equations for the

unknowns Ax1, Ax2, ... , Axn:

8/1 8/1 8/1 --

8x1 8x2 8xn Ax1 -/1 8/2 8/2 8/2 -- Ax2 -!2 (3.55) 8x1 8x2 8xn

8fn 8fn 8fn
Axn -Jn

--

8x1 8x2 8xn

(The determinant of the matrix of the partial derivatives of the functions

on the left-hand side of the equation is called the Jacobian, Section

2.6.3.) Once the system in Eq. (3.55) is solved, the new approximate

solution is obtained from:

Xl,i+ I = x1,i+Ax1
X2,i+l = x2,i + Ax2

(3.56)

xn,i+I = xn,i+Axn

As with Newton's method for a single nonlinear equation, conver

gence is not guaranteed. Newton's iterative procedure for solving a sys-

86 Chapter 3 Solving Nonlinear Equations

tern of nonlinear equations will likely converge provided the following

three conditions are met:

(i) The functions f 1, /2, ... , f n and their derivatives must be continu

ous and bounded near the solution (root).

(ii) The Jacobian must be nonzero, that is, J(f 1, f 2, ... , f n) * 0, near

the solution.

(iii) The initial estimate (guess) of the solution must be sufficiently

close to the true solution.

Newton's method for solving a system of n nonlinear equations is

summarized in the following algorithm:

Algorithm for Newton's method for solving a system of nonlinear
equations

Given a system of n nonlinear equations,

1. Estimate (guess) an initial solution, x 1, i• x2, i• . . . , xn,; .

2. Calculate the Jacobian and the value of the f s on the right-hand

side of Eq. (3.55).

3. Solve Eq. (3.55) for Lix1, Lix2, . . • , Lixn.

4. Calculate a new estimate of the solution, x1, ;+ 1, x2, ;+ 1, . . • , xn, ;+ 1,
using Eq. (3.56).

5. Calculate the error. If the new solution is not accurate enough,

assign the values Of X1, ;+ l• X2, ;+I• . .. , Xn, ;+ 1 to X1, i• X2, i• . . . , Xn,;, and

start a new iteration beginning with Step 2.

Additional comments on Newton's method for solving a system of
nonlinear equations

• The method, when successful, converges fast. When it does not con

verge, it is usually because the initial guess is not close enough to the

solution.

• The partial derivatives (the elements of the Jacobian matrix) have to

be determined. This can be done analytically or numerically (numer

ical differentiation is covered in Chapter 8). However, for a large

system of equations, the determination of the Jacobian might be dif

ficult.

• When the system of equations consists of more than three equations,

the solution of Eq. (3.55) has to be done numerically. Methods for

solving systems of linear equations are described in Chapter 4.

3.10.2 Fixed-Point Iteration Method for Solving a System of
Nonlinear Equations

The fixed-point iteration method discussed in Section 3.7 for solving a

single nonlinear equation can be extended to the case of a system of

nonlinear equations. A system of n nonlinear equations with the

3.10 Systems of Nonlinear Equations

Unknowns, X1, X2, ... , Xn, has the form:

f1(X1, X2, ... , xn) = 0
f 2(X1, X2, ... , xn) = 0

f n(X1, X2, ... , xn) = 0
The system can be rewritten in the form:

X1 = g1(X1, X2, ... , xn)
X2 = g2(x1, X2, · · ., xn)

87

(3.57)

(3.58)

where the gs are the iteration functions. The solution process starts by

guessing a solution, x1, 1, x2, 1, • • . , xn, 1, which is substituted on the right

hand side of Eqs. (3.58). The values that are calculated by Eqs. (3.58)
are the new (second) estimate of the solution, x1,2,x2,;+1, ... ,xn,i+I·
The new estimate is substituted back on the right-hand side of Eqs.

(3.58) to give a new solution, and so on. When the method works, the

new estimates of the solution converge toward the true solution. In this

case, the process is continued until the desired accuracy is achieved. For

example, the estimated relative error is calculated for each of the vari

ables, and the iterations are stopped when the largest relative error is

smaller than a specified value.

Convergence of the method depends on the form of the iteration

functions. For a given problem there are many possible forms of itera

tion functions since rewriting Eqs. (3.57) in the form of Eqs. (3.58) is

not unique. In general, several forms might be appropriate for one solu

tion, or in the case where several solutions exist, different iteration

functions need to be used to find the multiple solutions. When using the

fixed-point iteration method, one can try various forms of iteration

functions, or it may be possible in some cases to determine ahead of

time if the solution will converge for a specific choice of gs.

The fixed-point iteration method applied to a set of simultaneous

nonlinear equations will converge under the following sufficient (but

not necessary) conditions:

(i) g1, ... , gn, og1, ... , og1, og2, ... , og2, ... , ogn
are continuous in the

OX1 axn OX1 axn oxn
neighborhood of the solution.

88 Chapter 3 Solving Nonlinear Equations

(ii)

lag11+1ag11+ ... +1ag11:::; 1
axl 8x2 axn
lag2I + 1ag2I + ... + 1ag2I:::; 1
ax] ax2 axn

(iii) The initial guess, x1 1, x2 1, • • ., xn 1, is sufficiently close to the solu-, ' '

ti on.

3.11 PROBLEMS

Problems to be solved by hand
Solve the following problems by hand. When needed, use a calculator, or write a MATLAB script file to

carry out the calculations. If using MATLAB, do not use built-in functions for solving nonlinear equations.

3.1 The tolerance, tol, of the solution in the bisection method is given by tol = !(bn - an) , where an and
2 bn are the endpoints of the interval after the nth iteration. The number of iterations n that are required for

obtaining a solution with a tolerance that is equal to or smaller than a specified tolerance can be determined
before the solution is calculated. Show that n is given by:

> _lo_..g_,,_(b_-_a"-) -_lo_..g_,,_(t_o_.,l)
n_

log2
where a and bare the endpoints of the starting interval and to! is a user-specified tolerance.

3.2 Determine the root of f (x) = x - 2cx by:

(a) Using the bisection method. Start with a= 0 and b = 1, and carry out the first three iterations.
(b) Using the secant method. Start with the two points, x1 = 0 and x2 = 1, and carry out the first three iter

ations.
(c) Using Newton's method. Start at x1 = 1 and carry out the first three iterations.

3.3 The location i of the centroid of an arc of a circle is given by:

_ rsma x = -
a

Determine the angle a for which x = 3 r .
4

First, derive the equation that must be solved and then determine the root using
the following methods:

(a) Use the bisection method. Start with a= 0.5 and b = 1.5, and carry
out the first four iterations.

(b) Use the secant method. Start with the two points a1 = 0.5 and
a2 = 1.5 , and carry out the first four iterations.

3.11 Problems

3.4 The lateral surface area, S, of a cone is given by:

S = nrJr2 + h2
where r is the radius of the base and h is the height. Determine the radius of a

cone that has a surface area of 1800 m2 and a height of 25 m. Solve by using

the fixed-point iteration method with r = Sl(nJr2 + h2) as the iteration func
tion. Start with r = 17 m and calculate the first four iterations.

3.5 Determine the fourth root of 200 by finding the numerical solution of
the equation x4- 200 = 0. Use Newton's method. Start at x = 8 and carry
out the first five iterations.

3.6 Determine the positive root of the polynomial x3 + 0.6x2 + 5 .6 -4.8 .

89

(a) Plot the polynomial and choose a point near the root for the first estimate of the solution. Using New
ton's method, determine the approximate solution in the first four iterations.

(b) From the plot in part (a) , choose two points near the root to start the solution process with the secant
method. Determine the approximate solution in the first four iterations.

3.7 The equation 1.2x3 + 2x2 - 20x- 10 = 0 has a root between x = -4 and x = -5. Use these values
for the initial two points and calculate the next four estimates for the solution using the secant method.

3.8 Find the root of the equation Jx + x2 = 7 using Newton's method. Start at x = 7 and carry out the
first five iterations.

3.9 The equation x3 -x - ex - 2 = 0 has a root between x = 2 and x = 3 .
(a) Write four different iteration functions for solving the equation using the fixed-point iteration method.
(b) Determine which g(x) from part (a) could be used according to the condition in Eq. (3.30).

(c) Carry out the first five iterations using the g(x) determined in part (b), starting with x = 2.

3.10 The equation f(x) = x2 - 5x113 + 1 = 0 has a root between x = 2 and x = 2.5. To find the root by
using the fixed-point iteration method, the equation has to be written in the form x = g(x). Derive two pos
sible forms for g(x) - one by solving for x from the first term of the equation, and the next by solving for
x from the second term of the equation.
(a) Determine which form should be used according to the condition in Eq. (3.30).

(b) Carry out the first five iterations using both forms of g(x) to confirm your determination in part (a) .

3.11 The equation f(x) = 2x3-4x2-4x- 20 = Ohas a rootbetween x= 3and x= 4.Find the rootby
using the fixed-point iteration method. Determine the appropriate form of g(x) according to Eq. (3.30).

Start the iterations with x = 2.5 and carry out the first five iterations.

3.12 Determine the positive root of the equation cosx - 0.8x2 = 0 by using the fixed-point iteration
method. Carry out the first five iterations.

90

3.13 Solve the following system of nonlinear equations:

-2x3 + 3 y2 + 42 = 0

5 x2 + 3 y3 -69 = 0

Chapter 3 Solving Nonlinear Equations

(a) Use Newton's method. Start at x = 1, y = 1, and carry out the first five iterations.

Y
-_ (- 5x2

3
+ 69) 113

and (b) Use the fixed-point iteration method. Use the iteration functions

x = (3 Y2
2
+ 42) 113

• Start at x = 1, y = 1 , and carry out the first five iterations.

3.14 Solve the following system of nonlinear equations:

x2+2x+2y2-26 = 0

2x3-y2+4y-19 = 0

(a) Use Newton's method. Start at x = 1, y = 1, and carry out the first five iterations.

(b) Use the fixed-point iteration method. Start at x = 1, y = 1 , and carry out the first five iterations.

Problems to be programmed in MATLAB
Solve the following problems using the MATLAB environment. Do not use MATLAB s built-in functions for

solving nonlinear equations.

3.15 In the program of Example 3-1 the iterations are executed in the for-end loop. In the loop, the anon

ymous function Fis used twice (once in the command FxNS = F (xNS) and once in the command if

F (a) *FxNS < o). Rewrite the program such that the anonymous function Fis used inside the loop only

once. Execute the new program and show that the output is the same as in the example.

3.16 Write a MATLAB user-defined function that solves for a root of a nonlinear equation f(x) = 0 using

the bisection method. Name the function Xs = BisectionRoot(Fun, a, b). The output argument Xs is

the solution. The input argument Fun is a name for the function that calculates f(x) for a given x (it is a

dummy name for the function that is imported into BisectionRoot); a and b are two points that

bracket the root. The iterations should stop when the tolerance in f(x) (Eq. (3.5)) is smaller than 0.000001.

The program should check if points a and b are on opposite sides of the solution. If not, the program

should stop and display an error message. Use BisectionRoot to solve Problem 3.2.

3.17 Determining the square root of a number p, JP, is the same as finding a solution to the equation

f(x) = x2 - p = 0. Write a MATLAB user-defined function that determines the square root of a positive

number by solving the equation using Newton's method. Name the function xs = SquareRoot(p). The out

put argument Xs is the answer, and the input argument p is the number whose square root is determined.

The program should include the following features:

• It should check if the number is positive. If not, the program should stop and display an error message.

• The starting value of x for the iterations should be x = p.

• The iterations should stop when the estimated relative error (Eq. (3.9)) is smaller than 1 x 10-6 .

• The number of iterations should be limited to 20. If a solution is not obtained in 20 iterations, the pro

gram should stop and display an error message.

Use the function SquareRoot to determine the square root of (a) 729, (b) 1500, and (c) -72.

3.11 Problems 91

3.18 Determining the natural logarithm of a number p, lnp, is the same as finding a solution to the equa

tion f(x) =ex - p = 0. Write a MATLAB user-defined function that determines the natural logarithm of a

number by solving the equation using the bisection method. Name the function x = Ln(p). The output argu

ment xis the value of lnp, and the input argument pis the number whose natural logarithm is determined.
The program should include the following features:

• The starting values of a and b (see Section 3.3) are a = e0 and b = p, respectively, if b > e1, and

a = -1/ p and b = e0 , respectively, if b < e1 •

• The iterations should stop when the tolerance (Eq. (3.7)) is smaller than 1 x 10-6•

• The number of iterations should be limited to 100. If a solution is not obtained in 100 iterations, the

function stops and displays an error message.

• If zero or a negative number is entered for p, the program stops and displays an error message.

Use the function Ln to determine the natural logarithm of (a) 510, (b) 1.35, (c) 1, and (c) -7 .

3.19 A new method for solving a nonlinear equation f(x) = 0 is proposed. The method is similar to the

bisection method. The solution starts by finding an interval [a, b] that brackets the solution. The first esti

mate of the solution is the midpoint between x = a and x = b. Then the interval [a, b] is divided into four

equal sections. The section that contains the root is taken as the new interval for the next iteration.
Write a MATLAB user-defined function that solves a nonlinear equation with the proposed new

method. Name the function Xs = QuadSecRoot(Fun, a, b), where the output argument Xs is the solu

tion. The input argument Fun is a name for the function that calculates f(x) for a given x (it is a dummy
name for the function that is imported into QuadSecRoot), a and bare two points that bracket the root.

The iterations should stop when the tolerance, Eq. (3.7), is smaller than 10-6xNs (xNs is the current esti

mate of the solution, Eq. (3.6)).

Use the user-defined QuadSecRoot function to solve the equations in Problems 3.2 and 3.3. For the

initial values of a and b, take the values that are listed in part (a) of the problems.

3.20 Write a MATLAB user-defined function that solves a nonlinear equation f(x) = 0 with the regula

falsi method. Name the function Xs = RegulaRoot(Fun, a, b, ErrMax), where the output argument

Xs is the solution. The input argument Fun is a name for the function that calculates f(x) for a given x (it
is a dummy name for the function that is imported into RegulaRoot), a and bare two points that bracket
the root, and ErrMax the maximum error according to Eq. (3.9).

The program should include the following features:
• Check if points a and b are on opposite sides of the solution. If not, the program should stop and dis

play an error message.

• The number of iterations should be limited to 100 (to avoid an infinite loop). If a solution with the
required accuracy is not obtained in 100 iterations, the program should stop and display an error mes
sage.

Use the function RegulaRoot to solve the equation in Problem 3.3 (use a = 0.1, b = 1.4).

3.21 A new method for solving a nonlinear equation f(x) = 0 is proposed. The method is a combination

of the bisection and the regula falsi methods. The solution starts by defining an interval [a, b] that brackets

the solution. Then estimated numerical solutions are determined once with the bisection method and once

92 Chapter 3 Solving Nonlinear Equations

with the regula falsi method. (The first iteration uses the bisection method.) Write a MATLAB user-defined

function that solves a nonlinear equation f(x) = 0 with this new method. Name the function Xs = BiRe

gRoot(Fun, a, b, ErrMax) , where the output argument Xs is the solution. The input argument Fun is a

name for the function that calculates f(x) for a given x (it is a dummy name for the function that is

imported into BiRegRoot) , a and bare two points that bracket the root, and ErrMax is the maximum

error according to Eq. (3.9).
The program should include the following features:

• Check if points a and b are on opposite sides of the solution. If not, the program should stop and dis

play an error message.

• The number of iterations should be limited to 100 (to avoid an infinite loop). If a solution with the

required accuracy is not obtained in 100 iterations, the program should stop and display an error mes

sage.

Use the function RegulaRoot to solve the equation in Problem 3.3 (use a = 0.1 , b = 1.4). For

ErrMax use 0.00001.

3.22 Modify the function NewtonRoot that is listed in Fig. 3-11, such that the input will have three

arguments. Name the function Xs = NewtonSol(Fun, FunDer, Xe st). The output argument Xs is the

solution, and the input arguments Fun, FunDer, and Xest are the same as in NewtonRoot. The itera

tions should stop when the estimated relative error (Eq. (3.9)) is smaller than I0-6• The number of itera

tions should be limited to 100 (to avoid an infinite loop). If a solution with the required accuracy is not

obtained in 100 iterations, the program should stop and display an error message. Use the function New
tonSol to solve the equation that is solved in Example 3-2.

3.23 Modify the function NewtonRoot that is listed in Fig. 3-11, such that the output will have three

arguments. Name the function [Xs, FXs, iact] = NewtonRootMod(Fun, FunDer, Xe st, Err, imax).
The first output argument is the solution, the second is the value of the function at the solution, and the

third is the actual number of iterations that are performed to obtain the solution. Use the function

NewtonRootMod to solve the equation that is solved in Example 3-2.

3.24 Steffensen's method is a scheme for finding a numerical solution of an equation of the form

f(x) = 0 that is similar to Newton's method but does not require the derivative of f(x). The solution pro

cess starts by choosing a point x;, near the solution, as the first estimate of the solution. The next estimates

of the solution X;+ 1 are calculated by:

f(x;)1
X;+ I = X;-

f(x; + f(x;))- f(x;)
Write a MATLAB user-defined function that solves a nonlinear equation with Steffensen's method. Name

the function Xs = SteffensenRoot(Fun, Xest), where the output argument Xs is the numerical solu

tion. The input argument Fun is a name for the function that calculates f(x) for a given x (it is a dummy

name for the function that is imported into SteffensenRoot), and Xest is the initial estimate of the

solution. The iterations should stop when the estimated relative error (Eq. (3.9)) is smaller than 10-6. The

number of iterations should be limited to 100 (to avoid an infinite loop). If a solution with the required

accuracy is not obtained in 100 iterations, the program should stop and display an error message.

Use the function SteffensenRoot to solve Problems 3.2 and 3.3.

3.11 Problems 93

3.25 Write a user-defined MATLAB function that solves for all the real roots in a specified domain of a

nonlinear function /(x) = 0 using the bisection method. Name the function R=BisecAll

Roots (fun, a, b, TolMax). The output argument R is a vector whose elements are the values of the

roots. The input argument Fun is a name for a function that calculates /(x) for a given x. (It is a dummy

name for the function that is imported into BisecAllRoots.) The arguments a and b define the domain,

and TolMax is the maximum tolerance that is used by the bisection method when the value of each root is

calculated. Use the following algorithm:

1. Divide the domain [a, b] into 10 equal subintervals oflength h such that h = (b -a)/ 10 .

2. Check for a sign change of /(x) at the endpoints of each subinterval.

3. If a sign change is identified in a subinterval, use the bisection method for determining the root in that

subinterval.

4. Divide the domain [a, b] into 100 equal subintervals oflength h such that h = (b-a)/100.

5. Repeat step 2. If a sign change is identified in a subinterval, check if it contains a root that was already

obtained. If not, use the bisection method for determining the root in that subinterval.

6. If no new roots have been identified, stop the program.

7. If one or more new roots have been identified, repeat steps 4-6, wherein each repetition the number of

subintervals is multiplied by 10.

Use the function BisecAllRoots, with TolMax value of0.0001, to find all the roots of the equa

tion x4 -5.5x3 -7.2x2 + 43x + 36 = 0.

3.26 Examine the differences between the True Relative Error, Eq. (3.8), and the Estimated Relative

Error, Eq. (3.9), by numerically solving the equation /(x) = 0.5e(2+x)_40= 0. The exact solution of the

equation is x = ln(80)-2 . Write a MATLAB program in a script file that solves the equation by using

Newton's method. Start the iterations at x = 4, and execute 11 iterations. In each iteration, calculate the

True Relative Error (TRE) and the Estimated Relative Error (ERE). Display the results in a four-column

table (create a 2-dimensional array), with the number of iterations in the first column, the estimated numer

ical solution in the second, and TRE and ERE in the third and fourth columns, respectively.

Problems in math, science, and engineering
Solve the following problems using the MATLAB environment. As stated, use the MATLAB programs that

are presented in the chapter, programs developed in previously solved problems, or MATLAB s built-in

functions.

3.27 When calculating the payment of a mortgage, the relationship between the loan amount, Loan, the

monthly payment, MPay, the duration of the loan in months Months, and the annual interest rate, Rate, is

given by the equation (annuity equation):

MPay =

12 [1

�oan . R�te :
(l

+
R�;e)Months

Determine the rate of a 20 years, $300,000 loan ifthe monthly payment is $1684.57.

(a) Use the user-defined function SteffensenRoot from Problem 3.24.

(b) Use MATLAB's built-in function fzero.

94 Chapter 3 Solving Nonlinear Equations

3.28 The operation of Resistance Temperature Detector (RTD) is based on the fact that the electrical resis

tance of the detector material changes with temperature. For Nickel which is sometimes used in such

detectors, the resistance, RT, at temperature T (°C) as a function of temperature is given by:

RT = R0(I+AT+BT2+CT4+DT6)

where R0 is the resistance of the detector at 0°C and A = 5.485 x 10-3, B = 6.65 x 10-6 ,

C = 2.805 x 10-11, and D = -2 x 10-17 are constants. Consider a detector with R0 = 1000 and determine

the temperature when its resistance is 300 n .
(a) Use the user-defined function NewtonSol given in Problem 3.22.
(b) Use MATLAB's built-in fzero function.

3.29 A quarterback throws a pass to his wide receiver

running a route. The quarterback releases the ball at a

height of hQ . The wide receiver is supposed to catch the

ball straight down the field 60 ft away at a height of h R .

The equation that describes the motion of the football is

the familiar equation of projectile motion from physics:

Ix2g 1 y = xtan(S) -- + hQ 2 v; cos2(8)

y
Vo

60 ft

where x and y are the horizontal and vertical distance, respectively, g = 32.2 ft/s2 is the acceleration due to

gravity, v 0 is the initial velocity of the football as it leaves the quarterback's hand, and e is the angle the

football makes with the horizontal just as it leaves the quarterback's throwing hand. For v 0 = 50 ft/s,

x = 60 ft, hQ = 6.5 ft, and hR = 7 ft, find the angle eat which the quarterback must launch the ball.

(a) Use the user-defined function BisectionRoot that was developed in Problem 3.16.
(b) Use MATLAB built-in function fzero.

3.30 The van der Waals equation gives a relationship between the pressure P (in atm.), volume V (in L),

and temperature T (in K) for a real gas:

p = nRT _n2a
V-nb V2

where n is the number of moles, R = 0.08206 (L atm)/(mole K) is the gas constant, and a (in L 2 atm/

mole2) and b (in L/mole) are material constants.

Consider 1.5 moles of nitrogen (a = 1.39 L2atm/mole2, b = 0.03913 L/mole) at 25°C stored in a

pressure vessel. Determine the volume of the vessel if the pressure is 13.5 atm.

(a) Use the user-defined function BisectionRoot given in Problem 3.16.
(b) Use the user-defined function SecantRoot given in Program 3-3. Use 0.0001 for Err.
(c) Use MATLAB's built-in fzero function.

3.11 Problems

3.31 The force F acting between a particle with a charge q and a round
disk with a radius R and a charge Q is given by the equation:

F = �(1- z)
2c:o Jz2 + R2

where c:0 = 0.885 x 10-12 C2/(Nm2) is the permittivity constant and z is

the distance to the particle. Determine the distance z if F = 0.3 N,

Q = 9.4 x 10-6 C, and q = 2.4 x 10-s C, and R = 0.1 m.
(a) Use the user-defined function BisectionRoot that was developed

in Problem 3.16 with a starting interval of [0.1, 0.2].
(b) Use the user-defined function SteffensenRoot from Problem 3.24.
(c) Use MATLAB's built-in function fzero.

95

3.32 A simply supported I-beam is loaded with a distributed
load, as shown. The deflection, y, of the center line of the beam
as a function of the position, x, is given by the equation: Jt21PU1l1{' ,x

where L = 4 m is the length, E = 70 GPa is the elastic modu

lus, I = 52.9 x 10-6 m4 is the moment of inertia, and

�--�--- L __ _,

Wo = 20 kN/m.
Find the position x where the deflection of the beam is maximum, and determine the deflection at

this point. (The maximum deflection is at the point where <!1:. = 0 .) dx
(a) Use the user-defined function Newton Sol given in Problem 3.22.
(b) Use the user-defined function SecantRoot given in Program 3-3. Use 0.0001 for Err, 1.5 for Xa.

and 2.5 for Xb.
(c) Use MATLAB's built-in fzero function.

3.33 According to Archimedes' principle, the buoyancy force acting
on an object that is partially immersed in a fluid is equal to the weight
that is displaced by the portion of the object that is submerged.

A spherical float with a mass of m 1 = 70 kg and a diameter of 90 cm

is placed in the ocean (density of sea water is approximately p = 1030
kg/m3. The height, h, of the portion of the float that is above water can
be determined by solving an equation that equates the mass of the float
to the mass of the water that is displaced by the portion of the float that
is submerged:

T7
h

(3.59)

where, for a sphere of radius r, the volume of a cap of depth dis given by:
1 2 V = -nd (3r-d) cap 3

Write Eq. (3.59) in terms of h and solve for h.

96 Chapter 3 Solving Nonlinear Equations

(a) Use the user-defined function NewtonRoot given in Program 3-2. Use 0.0001 for Err, and 0.8 for

Xe st.
(b) Use MATLAB's built-in fzero function.

3.34 An ice cream drum is made of a waffle cone filled with ice cream
such that the ice cream above the cone forms a spherical cap. The volume
of the ice cream is given by:

(r2h r2H H3) v = 7t - + - +-
3 2 6

Determine H if V = 1/3 U.S. pint (1 U.S pint= 28.875 in\ h = 4 in.,

r = 1.1 in. h

(a) Use the user-defined function NewtonSol given in Problem 3.22.

(b) Use the user-defined function SteffensenRoot from Problem
3.24.

(c) Use MATLAB's built-in fzero function.

3.35 A bandpass filter passes signals with frequencies that are
within a certain range. In this filter the ratio of the magnitudes of

the voltages is given by

RV = IVo l =
©RC

Vi J(l - ©2 LC)2 + (©RC)2

where ffi is the frequency of the input signal. Given R = 1000 Q,

L = 11 mH, and C = 8 µF, determine the frequency range that corresponds to RV ;?: 0.87 .

(a) Use the user-defined function BisectionRoot that was developed in Problem 3.16.

(b) Use the user-defined function SteffensenRoot from Problem 3.24.

(c) Use MATLAB's built-in function fzero.

3.36 Determining the value of 65I17 is the same as calculating the root of the function f (x) = 17 x - 65 .

Determine the root, to accuracy of five decimal points, with the bisection method. Use the user-defined
function BisectionRoot from problem 3.16. Compare the result with the value calculated with a calcu
lator.

3.37 The power output of a solar cell varies with the voltage it puts out. The voltage V mp at which the out

put power is maximum is given by the equation:

(qVmp!k8T)(qVme) (qV0c!k8T)
e 1 + = e

ksT

where V oc is the open circuit voltage, Tis the temperature in Kelvin, q = 1.6022 x 10-19 C is the charge on

an electron, and ks= 1.3806 x 10-2
3

J/k is Boltzmann's constant. For V oc = 0.5V and room temperature

(T = 297 K), determine the voltage V mp at which the power output of the solar cell is a maximum.

(a) Write a program in a script file that uses the fixed-point iteration method to find the root. For starting

point, use V mp = 0.5 V. To terminate the iterations, use Eq. (3.18) with E = 0.001 .

(b) Use MATLAB's fzero built-in function.

3.11 Problems

3.38 The volume V of a torus-shaped water tube is given by:

V = �n2(r1 + r2)(r2 -r1)2

where r1 and r2 are the inside and outside radii, respectively, as shown in

the figure. Determine r1 if V = 2500 in2 and r2 = 18 in.

(a) Use the user-defined function Newton Sol given in Problem 3.22.
(b) Use the user-defined function SteffensenRoot from Problem 3.24.
(c) Use MATLAB's built-in fzero function.

97

•
3.39 A simplified model of the suspension of a car consists of

a mass, m, a spring with stiffness, k, and a dashpot with damp

ing coefficient, c, as shown in the figure. A bumpy road can be

modeled by a sinusoidal up-and-down motion of the wheel

y = Y sin(ffit). From the solution of the equation of motion for

this model, the steady-state up-and-down motion of the car

(mass) is given by x = X sin(ffit - qi). The ratio between ampli

tude X and amplitude Y is given by:

-

..--

-m-

---.-

� s�(rot-+)

X_
y 2

(k-mffi2)+(ffic)

f\A �sffi(rot)
Assuming m = 2500 kg, k = 300 kN/m, and c = 36 x 103 N-s/m, determine the frequency ffi

XI Y = 0.4 . Rewrite the equation such that it is in the form of a polynomial in ffi and solve.

(a) Use the user-defined function BisectionRoot that was developed in Problem 3.16.

for which

(b) Use MATLAB's built-in fzero function.

3.40 A coating on a panel surface is cured by radiant energy from

a heater. The temperature of the coating is determined by radiative

and convective heat transfer processes. If the radiation is treated as

diffuse and gray, the following nonlinear system of simultaneous

equations determine the unknowns J h, Th, Jc, Tc:
-8 4 5.67 X 10 Tc+ 17.41Tc-Jc = 5188.18

Jc-0.71Jh+7.46Tc = 2352.71
-8 4 5.67x10 Th+l.865Th-Jh=2250

Jh-0.71Jc+7.46Th = 11093

Ambient at
298K

-coating
�----�-panel

where J h and Jc are the radiosities of the heater and coating surfaces, respectively, and Th and Tc are the

respective temperatures.

(a) Show that the following iteration functions can be used for solving the nonlinear system of equations

with the fixed-point iteration method:

= [Jc-17.41Tc + 5188.18] 1/4
Tc -8

5.67 x 10

_ [2250+Jh-l.865Th] 114
Th -

5.67 x 10
-8

(b) Solve the nonlinear system of equations with the fixed-point iteration method using the iteration func-

98 Chapter 3 Solving Nonlinear Equations

tions from part (a). Use the following initial values: Th = Tc = 298 K, Jc = 3000 W/m2, and

Jh = 5000 W/m2. Carry out 100 iterations, and plot the respective values to observe their conver

gence. The final answers should be Tc = 481 K, Jc = 6222 W/m2, Th = 671 K, Jh = 10504 W/m2.

3.41 If a basketball is dropped from a helicopter, its velocity as a function

of time v(t) can be modeled by the equation:

v(t) = � (1 - e - Jpg2C::A 1)
where g = 9.81 m/s2 is the gravitation of the Earth, Cd = 0.5 is the drag

coefficient, p = 1.2 kg/m3 is the density of air, m is the mass of the basket

ball in kg, and A = 7tr2 is the projected area of the ball (r = 0.117 m is the

radius). Note that initially the velocity increases rapidly, but then due to the

resistance of the air, the velocity increases more gradually. Eventually the

velocity approaches a limit that is called the terminal velocity. Determine

the mass of the ball if at t = 5 s the velocity of the ball was measured to be

19.5 mis.

0
!
v

(a) Use the user-defined function SecantRoot given in Program 3-3. Use 0.0001 for Err.
(b) MATLAB's built-in fzero function.

Chapter4

Solving a System of Linear

Equations

Core Topics

Gauss elimination method (4.2).

Gauss elimination with pivoting (4.3).

Gauss-Jordan elimination method (4.4).

LU decomposition method (4.5).

Use of MATLAB's built-in functions for solving a

system of linear equations (4.8).

Complementarv Topics

Tridiagonal systems of equations (4.9).

Error, residual, norms, and condition number (4.10).

Ill-conditioned systems (4.11).
Inverse of a matrix (4.6)

Iterative methods (Jacobi, Gauss-Seidel) (4.7).

3Q

8
4Q 2Q

Figure 4-1: Electrical circuit.

4.1 BACKGROUND

Systems of linear equations that have to be solved simultaneously arise

in problems that include several (possibly many) variables that are

dependent on each other. Such problems occur not only in engineering

and science, which are the focus of this book, but in virtually any disci

pline (business, statistics, economics, etc.). A system of two (or three)

equations with two (or three) unknowns can be solved manually by sub

stitution or other mathematical methods (e.g., Cramer's rule, Section

2.4.6). Solving a system in this way is practically impossible as the

number of equations (and unknowns) increases beyond three.

An example of a problem in electrical engineering that requires a

solution of a system of equations is shown in Fig. 4-1. Using Kirch

hoff's law, the currents i1, i2, i3, and i4 can be determined by solving

the following system of four equations:

9i1 -4i2-2i3 = 24

-4i1+17i2-6i3-3i4 = -16

- 2i1 -6i2 + 14i3 -6i4 = 0
(4.1)

-3i2-6i3+1li4 = 18

99

100

4000N

Chapter 4 Solving a System of Linear Equations

Obviously, more complicated circuits may require the solution of a sys

tem with a larger number of equations. Another example that requires a

solution of a system of equations is calculating the force in members of

a truss. The forces in the eight members of the truss shown in Fig. 4-2
are determined from the solution of the following system of eight equa

tions (equilibrium equations of pins A, B, C, and D):

0.9231FAC = 1690 -FA8-0.3846FAC = 3625

FAB-0.7809Fsc = 0 0.6247Fsc-FBD = 0

Fco+0.8575F0E = 0 F80-0.5145F0E-FDF = 0 (4.2)

0.3846F CE -0.3846F AC-0.7809F BC -F CD = 0

0.9231FAc+0.6247Fsc-0.9231FcE = 0

!+------ 20m -------+l There are applications, for example, in finite element and finite differ-

ence analysis, where the system of equations that has to be solved con
Figure 4-2: Eight-member truss. tains thousands (or even millions) of simultaneous equations.

au au ... a1nl [x1 :�
��.! ��� ::: ��� �� =

an! an2 .. · ann Xn bn

Figure 4-3: A system of n

linear algebraic equations.

au a12 a13 a14 X1 b1
0 a12 a13 a14 X2 b2
0 0 a33 G34 X3 b3

0 0 0 a44 X4 b4

Figure 4-4: A system of four
equations in upper triangular
form.

4. 1. 1 Overview of Numerical Methods for Solving a System
of Linear Algebraic Equations

The general form of a system of n linear algebraic equations is:

a11X1 + a12X2 + ... + a1nXn = b1
a21X1 + a22X2 + ... + a2nxn = h2

(4.3)

an1X1 + an2X2 + ... + annxn = bn
The matrix form of the equations is shown in Fig. 4-3. Two types of

numerical methods, direct and iterative, are used for solving systems of

linear algebraic equations. In direct methods, the solution is calculated

by performing arithmetic operations with the equations. In iterative

methods, an initial approximate solution is assumed and then used in an

iterative process for obtaining successively more accurate solutions.

Direct methods

In direct methods, the system of equations that is initially given in the

general form, Eqs. (4.3), is manipulated to an equivalent system of

equations that can be easily solved. Three systems of equations that can

be easily solved are the upper triangular, lower triangular, and diago
nal forms.

The upper triangular form is shown in Eqs. (4.4), and is written in

a matrix form for a system of four equations in Fig. 4-4.

a11X1 + aux2 + a13X3 + ... + a1nxn = h1
a12X2 + a23X3 + · · · + a2nXn = h2

a33X3 + · · · + a3nXn = b3
(4.4)

annxn = bn
The system in this form has all zero coefficients below the diagonal and

4.1 Background

IQll 0 0 0 1 X11 [bll a21 a22 0 0 X2 b1
a31 a32 a33 0 X3 b3

G41 G42 G43 G44 X4 b4

Figure 4-5: A system of four
equations in lower triangular
form.

101

is solved by a procedure called back substitution. It starts with the last

equation, which is solved for xn. The value of xn is then substituted in

the next-to-the-last equation, which is solved for xn _ 1. The process

continues in the same manner all the way up to the first equation. In the

case of four equations, the solution is given by:

b
X - 4

4 - - ,
G44

X2 = b1 -(G23X3 + a24X4) ' and
a22

- b1 -(a12x2 + a13x3 + a14X4)
X1 -

all
For a system of n equations in upper triangular form, a general formula

for the solution using back substitution is:

b xn
=

___!!_ ann

X; =

a;;

(4.5)

i = n-I,n-2, ... , 1

In Section 4.2 the upper triangular form and back substitution are used

in the Gauss elimination method.

The lower triangular form is shown in Eqs. (4.6), and is written in

matrix form for a system of four equations in Fig. 4-5.

QllXI
a21 X1 + a22X2
a31X1 + a32X2 + a33X3

(4.6)

The system in this form has zero coefficients above the diagonal. A sys

tem in lower triangular form is solved in the same way as the upper tri

angular form but in an opposite order. The procedure is called forward
substitution. It starts with the first equation, which is solved for x1• The

value of x1 is then substituted in the second equation, which is solved

for x2 . The process continues in the same manner all the way down to

the last equation. In the case of four equations, the solution is given by:

--
_b1 b1-a21X1 - b3-(a31X1+a32x2)

and X1 X2
=

X3 - '
all a22 a33

b4 -(a41X1 + a42X2 + a43X3)
X4

=
(4.7)

a44

For a system of n equations in lower triangular form, a general formula

for the solution using forward substitution is:

102

Figure 4-6: A system of four
equations in diagonal form.

au a12 a13 a14 X1 b1

a11 a12 a13 a14 X2 b2

a31 a32 a33 a34 X3 b3

a41 a42 a43 a44 X4 b4

Figure 4-7: Matrix form of a
system of four equations.

Chapter 4 Solving a System of Linear Equations

(4.8)

i = 2, 3, . . . , n

In Section 4.5 the lower triangular form is used together with the upper

triangular form in the LU decomposition method for solving a system of

equations.

The diagonal form of a system of linear equations is shown in Eqs.

(4.9), and is written in matrix form for a system of four equations in

Fig. 4-6.

(4.9)

A system in diagonal form has nonzero coefficients along the diagonal

and zeros everywhere else. Obviously, a system in this form can be eas

ily solved. A similar form is used in the Gauss-Jordan method, which is

presented in Section 4.4.

From the three forms of simultaneous linear equations (upper trian

gular, lower triangular, diagonal) it might appear that changing a given

system of equations to the diagonal form is the best choice because the

diagonal system is the easiest to solve. In reality, however, the total

number of operations required for solving a system is smaller when

other methods are used.

Three direct methods for solving systems of equations-Gauss

elimination (Sections 4.2 and 4.3), Gauss-Jordan (Section 4.4), and LU
decomposition (Section 4.5)-and two indirect (iterative) methods

Jacobi and Gauss-Seidel (Section 4.7)-are described in this chapter.

4.2 GAUSS ELIMINATION METHOD

The Gauss elimination method is a procedure for solving a system of

linear equations. In this procedure, a system of equations that is given in

a general form is manipulated to be in upper triangular form, which is

then solved by using back substitution (see Section 4.1.1). For a set of

four equations with four unknowns the general form is given by:

a11x1 + a12x2 + a13X3 + ai4X4 = h1
a21X1 + a12X2 + a23X3 + a24X4 = h2
a31X1 + a32X2 + a33X3 + a34X4 = h3
a41x1 + a42X2 + a43X3 + a44X4 = b4

(4.lOa)
(4.lOb)
(4.lOc)
(4.lOd)

(4.10)

The matrix form of the system is shown in Fig. 4-7. In the Gauss elimi-

4.2 Gauss Elimination Method

a11 a12 a13 a14 Xi
0 a'ii a'23 a'i4 X2
Q Q a'33 a'34 X3
0 0 0 a'44 x4

Figure 4-8: Matrix form of
the equivalent system.

a 11 a12 a13 a14 X1
0 a'ii a'23 a'i4 Xi

a31 a31 a33 a34 X3

a41 a4i a43 a44 X4

b1

b' i

b3

b4

Figure 4-9: Matrix form of the
system after eliminating aii·

103

nation method, the system of equations is manipulated into an equiva

lent system of equations that has the form:

a11x1 + a12x2 + a13x3 + a14x4 = b1
a2ixi + a23X3 + a24X4 = h2

a)3x3 + a)4x4 = b)
a44X4 = b4

(4.lla)
(4.llb)
(4.llc)

(4.lld)

(4.11)

The first equation in the equivalent system, (4.lla), is the same as

(4.lOa). In the second equation, (4.llb), the variable x1 is eliminated.

In the third equation, (4.llc), the variables x1 and xi are eliminated. In

the fourth equation, (4. lld), the variables x1, xi, and x3 are elimi

nated. The matrix form of the equivalent system is shown in Fig. 4-8.
The system of equations (4.11) is in upper triangular form, which can be

easily solved by using back substitution.

In general, various mathematical manipulations can be used for

converting a system of equations from the general form displayed in

Eqs. (4.10) to the upper triangular form in Eqs. (4.11). One in particu

lar, the Gauss elimination method, is described next. The procedure can

be easily programmed in a computer code.

Gauss elimination procedure (forward elimination)

The Gauss elimination procedure is first illustrated for a system of four

equations with four unknowns. The starting point is the set of equations

that is given by Eqs. (4.10). Converting the system of equations to the

form given in Eqs. (4.11) is done in steps.

Step 1: In the first step, the first equation is unchanged, and the terms

that include the variable x1 in all the other equations are eliminated.

This is done one equation at a time by using the first equation, which is

called the pivot equation. The coefficient a11 is called the pivot coeffi

cient, or the pivot element. To eliminate the term ai1x1 in Eq. (4.lOb),

the pivot equation, Eq. (4.lOa), is multiplied by mi1 = ai1A'au , and

then the equation is subtracted from Eq. (4.lOb):

b' i

It should be emphasized here that the pivot equation, Eq. (4.lOa), itself
is not changed. The matrix form of the equations after this operation is

shown in Fig. 4-9.
Next, the term a31x1 in Eq. (4.lOc) is eliminated. The pivot equa

tion, Eq. (4.lOa), is multiplied by m31 = a311fa11 and then is subtracted

104

au a12 a13 a14 x, h,

0 a'22 a'23 a'24 Xz b' 2

0 a'32 a'33 a'34 X3 b' 3

a41 a42 a43 a44 X4 b4

Figure 4-10: Matrix form of the
system after eliminating a31•

au a12 a13 a,4 x, h,

0 a'22 a'23 a'24 Xz b' 2

0 a'32 a'33 a'34 X3 b' 3

0 a'42 a'43 a'44 X4 b' 4

Figure 4-11: Matrix form of the
system after eliminating a41•

au a12 a13 a,4 X1

0 a'zz a'23 a'z4 X2

0 0 a
"

33 a
"

34 X3

0 a'4z a'43 a'44 X4

Figure 4-12: Matrix form of the
system after eliminating a32•

Chapter 4 Solving a System of Linear Equations

from Eq. (4.lOc):

b' 3

The matrix form of the equations after this operation is shown in Fig. 4-

10.

Next, the term a41x1 in Eq. (4.lOd) is eliminated. The pivot equa-

tion, Eq. (4.lOa), is multiplied by m41 = a4111a11 and then is subtracted

from Eq. (4.lOd):

a41X1 + a42X2 + a43X3 + a44X4 = h4

a' 44 b' 4

This is the end of Step 1. The system of equations now has the follow

ing form:

aux1 + a12x2 + a13x3 + a14X4 = h1
0 + ai2x2 + ai3X3 + ai4X4 = bi
0 + a32x2 + a33x3 + a34x4 = h3
0 + a42x2 + a43x3 + a44X4 = h4

(4.12a)
(4.12b)

(4.12c)

(4.12d)

(4.12)

The matrix form of the equations after this operation is shown in Fig. 4-

11. Note that the result of the elimination operation is to reduce the first

column entries, except a11 (the pivot element), to zero.

Step 2: In this step, Eqs. (4.12a) and (4.12b) are not changed, and the

terms that include the variable x2 in Eqs. (4.12c) and (4.12d) are elimi

nated. In this step, Eq. (4.12b) is the pivot equation, and the coefficient

a'22 is the pivot coefficient. To eliminate the term a'32x2 in Eq. (4.12c),

the pivot equation, Eq. (4.12b), is multiplied by m32= a'32/a'22 and

then is subtracted from Eq. (4.12c):

a" 33 a" 34 b" 3

4.2 Gauss Elimination Method

au a12 a13 a14 X1 bl
0 a'zz a'23 a'z4 Xz b'2

0 0 a"33 a"34 X3 b" 3

0 0 a"43 a"44 X4 b"4

Figure 4-13: Matrix form of the
system after eliminating a42•

a11 au a13 a14 X1 bl
0 a'zz a'23 a'z4 Xz b' 2

0 0 a"33 a"34 X3 b" 3

0 0 0 a"' 44 X4 b"' 4

Figure 4-14: Matrix form of the
system after eliminating a43•

105

The matrix form of the equations after this operation is shown in Fig. 4-

12.

Next, the term a'42x2 in Eq. (4.12d) is eliminated. The pivot equa-

tion, Eq. (4.12b), is multiplied by m42 = a'42/a'22 and then is subtracted

from Eq. (4.12d):

a'4zX2 + a'43X3 + a'44X4 = b'4

a" 43

This is the end of Step 2. The system of equations now has the follow

ing form:

a11x1 + a12x2 + a13x3 + a14x4 = b1
0 +a2,2x2 + a2,3x3 + a2,4x4 = b2,
0 + 0 + a'.bx3 + a)4x4 = b'3

0 + 0 + a'.'3x3 + a'44x4 = b"4

(4.13a)
(4.13b)

(4.13c)

(4.13d)

(4.13)

The matrix form of the equations at the end of Step 2 is shown in Fig. 4-

13.

Step 3: In this step, Eqs. (4.13a), (4.13b), and (4.13c) are not changed,

and the term that includes the variable x3 in Eq. (4.13d) is eliminated.

In this step, Eq. (4.13c) is the pivot equation, and the coefficient a"33 is

the pivo coeffic·e . To eliminate the term a"43x3 in Eq. (4.13d), the

pivot equation is multiplied by m43 = a"43;1a'' 3 and then is subtracted

from Eq. (4.13d):

(" ") - b" b" a 44 -m43a 34 X4 - 4 -m43 3

a"'44 b"'4
This is the end of Step 3. The system of equations is now in an upper tri

angular form:

a11x1 + a12X2 + a13x3 + a14X4 = b1
0 +a2,2x2 + a2,3x3 + a2,4x4 = b2,
0 + 0 + a'.J3x3 + a)4x4 = b'3

0 + 0 + 0 + a��X4 = b'4'

(4.14a)
(4.14b)

(4.14c)

(4.14d)

(4.14)

The matrix form of the equations is shown in Fig. 4-14. Once trans

formed to upper triangular form, the equations can be easily solved by

using back substitution. The three steps of the Gauss elimination pro

cess are illustrated together in Fig. 4-15.

106

all a12 a13 a14 X1
a2I a22 a23 a24 x2
a31 a32 a33 a34 X3
a41 a42 a43 a44 X4

Initial set of equations.

0
0

0 a"33 a"34
0)JI' a"' l"l\3 44

Step 3.

Chapter 4 Solving a System of Linear Equations

W. ' ' ')l"jJ a 32 a 33 a 34
>./_ ' ' ' 7"1.1 a 42 a 43 a 44

Step 1.

0 a'22 a'23 a'24
0 0 a"33 a"34
0 0 0 a"'44

Equations in upper triangular form.

all a12 a13 a14
0 a'22 a'23 a'24
0 w " " Y'i2 a 33 a 34
0 >.!/ a" a" � 43 44

Step 2.

tNot
element

Figure 4-15: Gauss elimination procedure.

Example 4-1 shows a manual application of the Gauss elimination

method for solving a system of four equations.

Example 4-1: Solving a set of four equations using Gauss elimination.

Solve the following system of four equations using the Gauss elimination method.

4x1-2x2- 3x3+6x4 = 12

SOLUTION

- 6x1 + 7 x2 + 6.5x3 - 6x4 = -6.5
x1 + 7.5x2 + 6.25x3 + 5.5x4 = 1 6

- 12x1 + 22x2 + 15.5x3 -x4 = 17

The solution follows the steps presented in the previous pages.

Step 1: The first equation is the pivot equation, and 4 is the pivot coefficient.

Multiply the pivot equation by m21 = (-6)/ 4 = -1.5 and subtract it from the second equation:

- 6x1+7x2 + 6.5x3 - 6x4 = -6.5
(-1.5)(4x1 -2x2- 3x3 +6x4) = (-6/4) · 12

Ox1 + 4x2 + 2x3 + 3x4 = 1 1.5
Multiply the pivot equation by m31 = (1I4) = 0.25 and subtract it from the third equation:

X1 + 7.5x2 + 6.25x3 + 5.5X4 = 1 6
(0.25)(4x1-2x2- 3x3+6x4) = (l/4)·12

Ox1 + 8x2 + 7x3 + 4x4 = 1 3

Multiply the pivot equation by m41=(-12)/4 = -3 and subtract it from the fourth equation:

- 12x1+22x2+15.5x3-x4 = 17
(-3)(4x1 -2x2 - 3x3 + 6x4) = -3 · 12

4.2 Gauss Elimination Method

At the end of Step 1, the four equations have the form: 4x1 - 2x2 - 3x3 + 6x4 = 12

4x2 + 2x3 + 3x4 = 11.5

8x2 + 7 x3 + 4x4 = 13

16x2 + 6.5x3 + 17x4 = 53

Step 2: The second equation is the pivot equation, and 4 is the pivot coefficient.

Multiply the pivot equation by m32 = 8/ 4 = 2 and subtract it from the third equation:

8x2 + 7 x3 + 4x4 = 13

2(4x2 + 2x3 + 3x4) = 2 · 11.5

Ox2 + 3x3 - 2x4 = -10

Multiply the pivot equation by m42 = 16/4 = 4 and subtract it from the fourth equation:

16x2+6.5x3+17x4 = 53

4(4x2 + 2x3 + 3x4) = 4 · 11.5

Ox2 - l.5x3 + 5x4 = 7

At the end of Step 2, the four equations have the form: 4x1- 2x2- 3x3+6x4 = 12

4x2 + 2x3 + 3x4 = 11.5

3x3 - 2x4 = -10

- l.5x3 + 5x4 = 7

Step 3: The third equation is the pivot equation, and 3 is the pivot coefficient.

Multiply the pivot equation by m43 = (-1.5)/ 3 = -0.5 and subtract it from the fourth equation:

- l.5x3 + 5x4 = 7

-0.5(3x3 - 2x4) = -0.5 · -10

Ox3 + 4x4 = 2

At the end of Step 3, the four equations have the form: 4x1 - 2x2 - 3x3 + 6x4 = 12

4x2 + 2x3 + 3x4 = 11.5

3x3 - 2x4 = -10

4x4 = 2

107

Once the equations are in this form, the solution can be determined by back substitution. The value

of x4 is determined by solving the fourth equation:

X4 = 2/4 = 0.5

Next, x4 is substituted in the third equation, which is solved for x3 :

x =

- 10 + 2x4
=

- 10 + 2 · 0.5
=

_ 3 3
3 3

Next, x4 and x3 are substituted in the second equation, which is solved for x2:

X =

ll.5- 2X3- 3X4
=

11.5-(2·-3)-(3· 0.5)
= 4 2

4 4

Lastly, x4, x3 and x2 are substituted in the first equation, which is solved for x1 :

12 + 2x2 + 3x3 - 6x4
__ 12 + 2 · 4 + 3 · -3 -(6 · 0.5) __ 2 X1 =

4 4

108 Chapter 4 Solving a System of Linear Equations

The extension of the Gauss elimination procedure to a system with

n number of equations is straightforward. The elimination procedure

starts with the first row as the pivot row and continues row after row

down to one row before the last. At each step, the pivot row is used to

eliminate the terms that are below the pivot element in all the rows that

are below. Once the original system of equations is changed to upper

triangular form, back substitution is used for determining the solution.

When the Gauss elimination method is programmed, it is conve

nient and more efficient to create one matrix that includes the matrix of

coefficients [a] and the right-hand-side vector [b]. This is done by

appending the vector [b] to the matrix [a], as shown in Example 4-2,

where the Gauss elimination method is programmed in MATLAB.

Example 4-2: MATLAB user-defined function for solving a system of equations using

Gauss elimination.

Write a user-defined MATLAB function for solving a system of linear equations, [a][x] = [b], using

the Gauss elimination method. For function name and arguments, use x =Gauss (a, b), where a is

the matrix of coefficients, b is the right-hand-side column vector of constants, and x is a column

vector of the solution.

Use the user-defined function Gauss to

(a) Solve the system of equations of Example 4-1.

(b) Solve the system ofEqs. (4.1).

SOLUTION
The following user-defined MATLAB function solves a system of linear equations. The program

starts by appending the column vector [b] to the matrix [a]. The new augmented matrix, named in

the program ab, has the form:

all a12 a13 ..
· aln b1

a21 a22 a23 · · · a2n b2

a31 a32 a33 ..
· a3n b3

Next, the Gauss elimination procedure is applied (forward elimination). The matrix is changed such

that all the elements below the diagonal of a are zero:

all a12 a13 ..
· aln b1

0 a22 a23 .. · a2n b2

0 0 a33

0 0 0 ... ann bn

At the end of the program, back substitution is used to solve for the unknowns, and the results are

assigned to the column vector x.

4.2 Gauss Elimination Method

[Program 4-1: User-defined function. Gauss elimination.]
function x = Gauss(a,b)

109

% The function solves a system of linear equations [a] [x] = [b] using the Gauss

% elimination method.
% Input variables:
% a The matrix of coefficients.

% b Right-hand-side column vector of constants.
% Output variable:
% x A column vector with the solution.

ab = [a,b]; [Append the column vector [b] to the matrix [a]. J
[R, C] = size(ab);

for j = l:R - 1
for i = j + l:R

[Pivot element.]
I

I I
ab(i,j:C) = ab(i,j:C)- ab(i,j)/ab(j,j)*ab(j,j:C);

end
end
x = zeros(R,1);

x(R) = ab(R,C)/ab(R,R);

for i = R - 1:-1:1

._ ________ ·---r---'• I I
I The multiplier miJ · I I Pivot equation.]

x(i) = (ab(i,C) - ab(i,i + l:R)*x(i + l:R))/ab(i,i);

end

-

-
-

-

Gauss elimination

- procedure (forward

elimination).

--{ Back substitution. J

The user-defined function Gauss is next used in the Command Window, first to solve the system of

equations of Example 4-1, and then to solve the system ofEqs. (4.1).

>> A=[4 -2 -3 6; -6 7 6.5 -6; 1 7.5 6.25 5.5; -12 22 15.5 -1);

>> B = [12; -6.5; 16; 17];

>> sola = Gauss(A,B)

sola =

2.0000
4.0000

-3.0000
0.5000

-

1----i� Solution for part (a) .]

-
>> c = [9 -4 -2 0; -4 17 -6 -3; -2 -6 14 -6; 0 -3 -6 11];

>> D = [24; -16; 0; 18];

>> solb = Gauss(C,D)

solb =

4.0343
1.6545
2.8452
3.6395

-

1----i[Solution for part (b). J

-

110 Chapter 4 Solving a System of Linear Equations

4.2.1 Potential Difficulties When Applying the Gauss
Elimination Method

The pivot element is zero

Since the pivot row is divided by the pivot element, a problem will arise

during the execution of the Gauss elimination procedure if the value of

the pivot element is equal to zero. As shown in the next section, this sit

uation can be corrected by changing the order of the rows. In a proce

dure called pivoting, the pivot row that has the zero pivot element is

exchanged with another row that has a nonzero pivot element.

The pivot element is small relative to the other terms in the pivot row

Significant errors due to rounding can occur when the pivot element is

small relative to other elements in the pivot row. This is illustrated by

the following example.

Consider the following system of simultaneous equations for the

unknowns x 1 and x2:

0.0003x1 + 12.34x2 = 12.343
(4.15)

0.432lxl + X2 = 5.321

The exact solution of the system is x1 = 10 and x2 = 1.

The error due to rounding is illustrated by solving the system using

Gaussian elimination on a machine with limited precision so that only

four significant figures are retained with rounding. When the first equa

tion of Eqs. (4.15) is entered, the constant on the right-hand side is

rounded to 12.34.

The solution starts by using the first equation as the pivot equation

and au= 0.0003 as the pivot coefficient. In the first step, the pivot

equation is multiplied by m21= 0.4321/0.0003 = 1440. With four signifi

cant figures and rounding, this operation gives:

(1440)(0.0003x1 + 12.34x2) = 1440 · 12.34

or:

0.4320x 1 + 17770x2 = 17770

The result is next subtracted from the second equation in Eqs. (4.15):

0.4321x1 + x2 = 5.321

0.4320x1 + 17770x2 = 17770

0.0001x1 - 17770x2 = -17760

After this operation, the system is:

0.0003x1 + 12.34x2 = 12.34

0.0001x1 - 17770x2 = -17760

Note that the a21 element is not zero but a very small number. Next, the

value of x2 is calculated from the second equation:

x =
-17760

= 0.9994 2
-17770

Then x2 is substituted in the first equation, which is solved for x 1:

4.2 Gauss Elimination Method

x = 12.34 - (12.34 . 0.9994) = 12.34 - 12.33 = � = 33.33
I 0.0003 0.0003 0.0003

111

The solution that is obtained for x 1 is obviously incorrect. The incorrect

value is obtained because the magnitude of all is small when compared
to the magnitude of a12. Consequently, a relatively small error (due to

round-off arising from the finite precision of a computing machine) in
the value of x2 can lead to a large error in the value of x1•

The problem can be easily remedied by exchanging the order of the
two equations in Eqs. (4.15):

0.432lx1 +x2 = 5.321
(4.16)

0.0003x1 + 12.34x2 = 12.343

Now, as the first equation is used as the pivot equation, the pivot coeffi

cient is all= 0.4321. In the first step, the pivot equation is multiplied by

m21 = 0.0003/0.4321 = 0.0006943. With four significant figures and

rounding this operation gives:

(Q.QQQ6943)(0.4321xl + X2) = 0.0006943 · 5.321
or:

0.0003x1 + 0.0006943x2 = 0.003694
The result is next subtracted from the second equation in Eqs. (4.16):

0.0003x1 + 12.34x2 = 12.34

0.0003x1 + 0.0006943x2 = 0.003694

12.34x2 = 12.34
After this operation, the system is:

0.432lx1 + x2 = 5.321

Ox1 + 12.34x2 = 12.34

Next, the value of x2 is calculated from the second equation:

x = 12.34 = 1 2
12.34

Then x2 is substituted in the first equation that is solved for x1:

x = 5.321 - 1 = 10
I 0.4321

The solution that is obtained now is the exact solution.
In general, a more accurate solution is obtained when the equations

are arranged (and rearranged every time a new pivot equation is used)
such that the pivot equation has the largest possible pivot element. This
is explained in more detail in the next section.

Round-off errors can also be significant when solving large systems
of equations even when all the coefficients in the pivot row are of the

same order of magnitude. This can be caused by a large number of oper
ations (multiplication, division, addition, and subtraction) associated
with large systems.

112

After the first step, the second

equation has a pivot element that

is equal to zero.

a11 a12 a13 a14 X1

Q Q a'23 a'24 X2

Q a'32 a'33 a'34 X3

Q a'42 a'43 a'44 X4

Using pivoting, the second

equation is exchanged with

the third equation.

a11 a12 a13 a14 x1

Q a'32 a'33 a'34 X2

b' 4

Figure 4-16: Illustration of
pivoting.

Chapter 4 Solving a System of Linear Equations

4.3 GAUSS ELIMINATION WITH PIVOTING

In the Gauss elimination procedure, the pivot equation is divided by the

pivot coefficient. This, however, cannot be done if the pivot coefficient

is zero. For example, for the following system of three equations:

Ox1 + 2x2 + 3x3 = 46
4x1 - 3x2 + 2x3 = 16

2x1 + 4x2 - 3x3 = 12

the procedure starts by taking the first equation as the pivot equation

and the coefficient of x1, which is 0, as the pivot coefficient. To elimi

nate the term 4x1 in the second equation, the pivot equation is supposed

to be multiplied by 4/0 and then subtracted from the second equation.

Obviously, this is not possible when the pivot element is equal to zero.

The division by zero can be avoided if the order in which the equations

are written is changed such that in the first equation the first coefficient

is not zero. For example, in the system above, this can be done by

exchanging the first two equations.

In the general Gauss elimination procedure, an equation (or a row)

can be used as the pivot equation (pivot row) only if the pivot coeffi

cient (pivot element) is not zero. If the pivot element is zero, the equa

tion (i.e., the row) is exchanged with one of the equations (rows) that

are below, which has a nonzero pivot coefficient. This exchange of

rows, illustrated in Fig. 4-16, is called pivoting.

Additional comments about pivoting
• If during the Gauss elimination procedure a pivot equation has a

pivot element that is equal to zero, then if the system of equations

that is being solved has a solution, an equation with a nonzero ele

ment in the pivot position can always be found.

• The numerical calculations are less prone to error and will have

fewer round-off errors (see Section 4.2.1) if the pivot element has a

larger numerical absolute value compared to the other elements in

the same row. Consequently, among all the equations that can be

exchanged to be the pivot equation, it is better to select the equation

whose pivot element has the largest absolute numerical value. More

over, it is good to employ pivoting for the purpose of having a pivot

equation with the pivot element that has a largest absolute numerical

value at all times (even when pivoting is not necessary).

The addition of pivoting to the programming of the Gauss elimination

method is shown in the next example. The addition of pivoting every

time a new pivot equation is used, such that the pivot row will have the
largest absolute pivot element, is assigned as an exercise in Problem

4.21.

4.3 Gauss Elimination with Pivoting 113

Example 4-3: MATLAB user-defined function for solving a system of equations using

Gauss elimination with pivoting.

Write a user-defined MATLAB function for solving a system of linear

equations [a][x] = [b] using the Gauss elimination method with piv

oting. Name the function x = GaussPivot (a, b), where a is the

matrix of coefficients, b is the right-hand-side column vector of con

stants, and x is a column vector of the solution. Use the function to

determine the forces in the loaded eight-member truss that is shown

in the figure (same as in Fig. 4-2).

SOLUTION

The forces in the eight truss members are determined from the set of

eight equations, Eqs. (4.2). The equations are derived by drawing free l-20m -l

body diagrams of pins A, B, C, and D and applying equations of equilibrium. The equations are

rewritten here in a matrix form (intentionally, the equations are written in an order that requires piv-

oting):

0 0.9231 0 0 0 0 0 0
FAB

1690

-1 -0.3846 0 0 0 0 0 0 FAc 3625

0 0 0 0 1 0 0.8575 0 FBc 0

1 0 -0.7809 0 0 0 0 0 FBD 0 (4.17)
0 -0.3846 -0.7809 0 -1 0.3846 0 0 Fen 0

0 0.9231 0.6247 0 0 -0.9231 0 0 FcE
0

0 0 0.6247 -1 0 0 0 0 FnE
0

0 0 0 1 0 0 -0.5145 -1
FnF

0

The function Gauss Pivot is created by modifying the function Gauss listed in the solution of

Example 4-2.

[Program 4-2: User-defined function. Gauss elimination with pivoting.

function x = GaussPivot(a,b)

% The function solves a system of linear equations ax = b using the Gauss

% elimination method with pivoting.

% Input variables:

% a The matrix of coefficients.

% b Right-hand-side column vector of constants.

% Output variable:

% x A column vector with the solution.

ab = [a,b];

[R, C] = size(ab);

for j = l:R - 1

% Pivoting section starts

if ab(j,j) = = 0 Check if the pivot element is zero.]

114

for k = j + l:R

end

end

if ab(k,j) - = 0

abTemp = ab(j,:);

ab(j,:) = ab(k,:);

ab (k,:) = abTemp;

break

end

% Pivoting section ends

for i = j + l:R

Chapter 4 Solving a System of Linear Equations

- I
If pivoting is required, search in the rows

1 below for a row with nonzero pivot element.

H Switch the row that has a zero pivot element l
with the row that has a nonzero pivot element.

Stop searching for a row with a nonzero pivot element.]

ab(i,j:C) = ab(i,j:C) - ab(i,j)/ab(j,j)*ab(j,j:C);

end

end

x = zeros(R,1);

x(R) = ab(R,C)/ab(R,R);

for i = R - 1:-1:1

x(i) = (ab(i,C) - ab(i,i + l:R)*x(i + l:R))/ab(i,i);

end

The user-defined function Gaus sPi vot is next used in a script file program to solve the system of
equations Eq. (4.17).

% Example 4-3

a=[O 0.9231 0 0 0 0 0 0; -1 -0.3846 0 0 0 0 0 0; 0 0 0 0 1 0 0.8575 0; 1 0 -0.7809 0 0 0 0 0
0 -0.3846 -0.7809 0 -1 0.3846 0 0; 0 0.9231 0.6247 0 0 -0.9231 0 0
0 0 0.6247 -1 0 0 0 0; 0 0 0 1 0 0 -0.5145 -1];

b = [1690;3625;0;0;0;0;0;0];
Forces= GaussPivot(a,b)

When the script file is executed, the following solution is displayed in the Command Window.

Forces =
-4. 3291e+003 -

1.8308e+003
-5.5438e+003
-3.4632e+003

2.8862e+003
-1.9209e+003
-3.3659e+003
-1. 7315e+003 _

>>

-

FAB
FAC
Fsc
FBD
Fen
FcE
FDE
FDF

4.4 Gauss-Jordan Elimination Method 115

a11 a12 a13 a14 X1 b1

a21 a22 a23 a24 X2 b2
G31 G32 G33 G34 X3 b3
G41 G42 G43 G44 X4 b4

Figure 4-17: Matrix form of a
system of four equations.

Figure 4-18: Matrix form of the
equivalent system after applying
the Gauss-Jordan method.

4.4 GAUSS-JORDAN ELIMINATION METHOD

The Gauss-Jordan elimination method is a procedure for solving a sys

tem of linear equations, [a][x] = [b]. In this procedure, a system of

equations that is given in a general form is manipulated into an equiva

lent system of equations in diagonal form (see Section 4.1.1) with nor

malized elements along the diagonal. This means that when the

diagonal form of the matrix of the coefficients, [a] , is reduced to the

identity matrix, the new vector [b'] is the solution. The starting point of

the procedure is a system of equations given in a general form (the illus

tration that follows is for a system of four equations):

a11X1 + a12X2 + G13X3 + a14X4 = b1
a21 X1 + a22X2 + a23X3 + a24X4 = b2
G31 XI+ G32X2 + G33X3 + G34X4 = b3
G41 X1 + G42X2 + G43X3 + G44X4 = b4

(4.18a)
(4.18b)
(4.18c)
(4.18d)

(4.18)

The matrix form of the system is shown in Fig. 4-17. In the Gauss-Jor

dan elimination method, the system of equations is manipulated to have

the following diagonal form:

x1+0+0+0 = b'1
0 + X2 + 0 + 0 = b' 2
0 + 0 + X3 + 0 = b' 3
0 + 0 + 0 + X4 = b' 4

(4.19a)
(4.19b)
(4.19c)
(4.19d)

(4.19)

The matrix form of the equivalent system is shown in Fig. 4-18. The

terms on the right-hand side of the equations (column [b']) are the solu

tion. In matrix form, the matrix of the coefficients is transformed into

an identity matrix.

Gauss-Jordan elimination procedure

The Gauss-Jordan elimination procedure for transforming the system

of equations from the form in Eqs. (4.18) to the form in Eqs. (4.19) is

the same as the Gauss elimination procedure (see Section 4.2), except

for the following two differences:

• The pivot equation is normalized by dividing all the terms in the

equation by the pivot coefficient. This makes the pivot coefficient

equal to 1.

• The pivot equation is used to eliminate the off-diagonal terms in

ALL the other equations. This means that the elimination process is

applied to the equations (rows) that are above and below the pivot

equation. (In the Gaussian elimination method, only elements that
are below the pivot element are eliminated.)

When the Gauss-Jordan procedure is programmed, it is convenient

and more efficient to create a single matrix that includes the matrix of

coefficients [a] and the vector [b] . This is done by appending the vec-

116 Chapter 4 Solving a System of Linear Equations

tor [b] to the matrix [a] . The augmented matrix at the starting point of

the procedure is shown (for a system of four equations) in Fig. 4-l9a.

At the end of the procedure, shown in Fig. 4-l9b, the elements of [a]

are replaced by an identity matrix, and the column [b'] is the solution.

au a12 a13 a14 b1
Gauss-Jordan procedure

1 0 0 0 b' I

a21 a22 a23 a24 b2 0 1 0 0 b' 2
• a31 a32 a33 a34 b3 0 0 1 0 b' 3

a41 a42 a43 a44 b4 0 0 0 1 b'4

(a) (b)

Figure 4-19: Schematic illustration of the Gauss-Jordan method.

The Gauss-Jordan method can also be used for solving several sys

tems of equations [a][x] = [b] that have the same coefficients [a] but

different right-hand-side vectors [b]. This is done by augmenting the

matrix [a] to include all of the vectors [b]. In Section 4.6.2 the method

is used in this way for calculating the inverse of a matrix.

The Gauss-Jordan elimination method is demonstrated in Example

4-4 where it is used to solve the set of equations solved in Example 4-1.

Example 4-4: Solving a set of four equations using Gauss-Jordan elimination.

Solve the following set of four equations using the Gauss-Jordan elimination method.

4x1 - 2x2 - 3x3 + 6x4 = 12

SOLUTION

- 6x1 + 7x2 + 6.5x3 - 6x4 = -6.5

X1 + 7.5Xz + 6.25x3 + 5.5X4 = 16

- 12x1 + 22x2 + 15.5x3 - x4 = 17

The solution is carried out by using the matrix form of the equations. In matrix form, the system is:

[_: �2

�� :6i ;:
:

- r-��5.
1 7.5 6.25 5.5 X3 16

-12 22 15.5 -1 X4 17

For the numerical procedure, a new matrix is created by augmenting the coefficient matrix to include

the right-hand side of the equation:

[_: �2

�.� :6 -��51
1 7.5 6.25 5.5 16

-12 22 15.5 -1 17

The first pivoting row is the first row, and the first element in this row is the pivot element. The row

is normalized by dividing it by the pivot element:

4.4 Gauss-Jordan Elimination Method

4 -2 -3 6 12 l l -0.5 -0.75 15 3
1

- -

4 4 4 4 4
-6 7 6.5 -6 -6.5

-6 7

1 7.5 6.25 5.5 16
1 7.5

-12 22 15.5 -1 17
-12 22

Next, all the first elements in rows 2, 3, and 4 are eliminated:

l l -0.5 -0.75 1.5 3
1

-6 7 6.5 -6 -6.5_ -(-6) [1 -0.5 -0.75 1.5 3]

1 7.5 6.25 5.5 16_ -(1) [l -0.5 -0.75 1.5 3]
-12 22 15.5 -1 17_ -(-12)[1 -0.5 -0.75 1.5 3]

6.5 -6 -6.5
6.25 5.5 16
15.5 -1 17

ll -0.5 -0.75 1.5 3
1

= 0 4 2 3 11.5
0 8 7 4 13
0 16 6.5 17 53

117

The next pivot row is the second row, with the second element as the pivot element. The row is nor
malized by dividing it by the pivot element:

1 -0.5 -0.75

0 4 2
- -

4 4
0 8 7
0 16 6.5

1.5
3
-

4
4

17

3
11.5
4
13
53

[1 -0.5 -0.75

- 0 1 0.5
0 8 7
0 16 6.5

Next, all the second elements in rows 1, 3, and 4 are eliminated:

[1 -0.5 -0.75 1.5 3

J

...._ -(-0.5) [o 1 o.5 o.75 2.875]
0 1 0.5 0.75 2.875 =

o 8 7 4 13_ -(8) [o 1 o.5 o.75 2.875]
0 16 6.5 17 53_ -(16)[0 1 0.5 0.752.875]

1.5
0.75 2 �75

]

4
17

13
53

[l 0 -0.5 1.875 4.4375
]

0 1 0.5 0.75 2.875
0 0 3 -2 -10
0 0 -1.5 5 7

The next pivot row is the third row, with the third element as the pivot element. The row is normal
ized by dividing it by the pivot element:

1 0 -0.5 1.875 4.4375
-0.5 1.875

0 1 0.5 0.75 2.875
= 0 1 0.5 0.75 2.875
[I 0 4.4375

1

0 0 3 -2 -10
0 0 1 -0.667 -3.333 -

3 3 3
0 0 -1.5 5 7

0 0 -1.5

Next, all the third elements in rows 1, 2, and 4 are eliminated:

l
1 o -0.5 1.875 4.4375

1
...._ -(-0.5) [o o 1 -0.667 -3.333]

o 1 o.5 o.75 2.875_ -(0.5) [o o 1 -0.667 -3.333]
0 0 1 -0.667 -3.333
0 0 -1.5 5 7_ -(-1.5)[0 0 1 -0.667 -3.333]

5 7

[1 0 0 1.5417 2.7708
1

= 0 1 0 1.0833 4.5417
0 0 1 -0.667 -3.333
0 0 0 4 2

The next pivot row is the fourth row, with the fourth element as the pivot element. The row is nor
malized by dividing it by the pivot element:

118 Chapter4 Solving a System of Linear Equations

1 0 0 1.5417 2.7708

= l� 0 0 1.5417 2 7708 �
0 1 0 1.0833 4.5417 1 0 1.0833 4.5417
0 0 1 -0.667 -3.333 0 1 -0.667 -3.333

0 0 0 4 2 0 0 1 0.5 -
4 4

Next, all the fourth elements in rows 1, 2, and 3 are eliminated: ll 0 0
0 1 0
0 0 1
0 0 0

The solution is:

1.5417 2 77081
1.0833 4.5417
-0.667 -3.333

1 0.5

--

--

--

-(1.5417)[0 0 0 1 0.5]
-(1.0833) [o o o 1 o.5]
-(-0.667) [o o o 1 o.5]

l� 0 0 o �
1 0 0 4
0 1 0 -3
0 0 1 0.5

mi = r�\1
The Gauss-Jordan elimination method with pivoting

It is possible that the equations are written in such an order that during

the elimination procedure a pivot equation has a pivot element that is

equal to zero. Obviously, in this case it is impossible to normalize the

pivot row (divide by the pivot element). As with the Gauss elimination

method, the problem can be corrected by using pivoting. This is left as

an exercise in Problem 4.22.

4.5 LU DECOMPOSITION METHOD

Background

The Gauss elimination method consists of two parts. The first part is the

elimination procedure in which a system of linear equations that is

given in a general form, [a][x]
=

[b], is transformed into an equivalent

system of equations [a'][x]
=

[b'] in which the matrix of coefficients

[a'] is upper triangular. In the second part, the equivalent system is

solved by using back substitution. The elimination procedure requires

many mathematical operations and significantly more computing time

than the back substitution calculations. During the elimination proce

dure, the matrix of coefficients [a] and the vector [b] are both

changed. This means that ifthere is a need to solve systems of equations

that have the same left-hand-side terms (same coefficient matrix [a])

but different right-hand-side constants (different vectors [b]), the elim

ination procedure has to be carried out for each [b] again. Ideally, it

would be better if the operations on the matrix of coefficients [a] were

4.5 LU Decomposition Method 119

dissociated from those on the vector of constants [b] . In this way, the

elimination procedure with [a] is done only once and then is used for
solving systems of equations with different vectors [b] .

One option for solving various systems of equations [a][x] = [b]
that have the same coefficient matrices [a] but different constant vec
tors [b] is to first calculate the inverse of the matrix [a] . Once the

inverse matrix [ar1 is known, the solution can be calculated by:

[x] = [ar1[b]
Calculating the inverse of a matrix, however, requires many mathemati
cal operations, and is computationally inefficient. A more efficient
method of solution for this case is the LU decomposition method.

In the LU decomposition method, the operations with the matrix

[a] are done without using, or changing, the vector [b] , which is used
only in the substitution part of the solution. The LU decomposition
method can be used for solving a single system of linear equations, but
it is especially advantageous for solving systems that have the same

coefficient matrices [a] but different constant vectors [b] .

The LU decomposition method

The LU decomposition method is a method for solving a system of lin

ear equations [a] [x] = [b] . In this method the matrix of coefficients [a]
is decomposed (factored) into a product of two matrices [L] and [U]:

[a] = [L][U] (4.20)

where the matrix [L] is a lower triangular matrix and [U] is an upper

triangular matrix. With this decomposition, the system of equations to
be solved has the form:

[L][U][x] = [b]

To solve this equation, the product [U][x] is defined as:

[U][x] = [y]

and is substituted in Eq. (4.21) to give:

[L][y] = [b]

(4.21)

(4.22)

(4.23)

Now, the solution [x] is obtained in two steps. First, Eq. (4.23) is

solved for [y]. Then, the solution [y] is substituted in Eq. (4.22), and
that equation is solved for [x].

Since the matrix [L] is a lower triangular matrix, the solution [y] in
Eq. (4.23) is obtained by using the forward substitution method. Once

[y] is known and is substituted in Eq. (4.22), this equation is solved by

using back substitution, since [U] is an upper triangular matrix.

For a given matrix [a] several methods can be used to determine
the corresponding [L] and [U]. Two of the methods, one related to the
Gauss elimination method and another called Crout's method, are
described next.

120 Chapter 4 Solving a System of Linear Equations

4.5.1 LU Decomposition Using the Gauss Elimination
Procedure

When the Gauss elimination procedure is applied to a matrix [a], the

elements of the matrices [L] and [U] are actually calculated. The upper

triangular matrix [U] is the matrix of coefficients [a] that is obtained at

the end of the procedure, as shown in Figs. 4-8 and 4-14. The lower tri

angular matrix [L] is not written explicitly during the procedure, but

the elements that make up the matrix are actually calculated along the

way. The elements of [L] on the diagonal are all 1, and the elements

below the diagonal are the multipliers m;1 that multiply the pivot equa-

tion when it is used to eliminate the elements below the pivot coeffi

cient (see the Gauss elimination procedure in Section 4.2). For the case

of a system of four equations, the matrix of coefficients [a] is (4 x 4) ,

and the decomposition has the form:

all a 12 a13 a14 1 0 0 0 all a12 a13 a14

a11 a12 a13 a14 m21 1 0 0 0 a'
22 a'

23 a'
24

(4.24)
a31 a31 a33 a34 m31 m32 1 0 0 0 a"33 a"34

a41 a42 a43 a44 m41 m42 m43 1 0 0 0 a"'
44

A numerical example illustrating LU decomposition is given next. It

uses the information in the solution of Example 4- 1, where a system of

four equations is solved by using the Gauss elimination method. The

matrix [a] can be written from the given set of equations in the problem

statement, and the matrix [U] can be written from the set of equations at

the end of step 3 (page 107). The matrix [L] can be written by using the

multipliers that are calculated in the solution. The decomposition has

the form:

I 4 -2

-3

6
1 -6 7 6.5 -6

1 7.5 6.25 5.5

-12 22 15.5 -1

(4.25) I��� ! � �11� r� J2

-3

4 -0.5 1 0 0 0 4

The decomposition in Eq. (4.25) can be verified by using MATLAB:

>> L = [l,0,0,0;-1.5,1,0,0;0.25,2,l,0;-3,4,-0.5,l]
L =

1.0000 0 0 0
-1. 5000 1.0000 0 0

0.2500 2.0000 1.0000 0
-3.0000 4.0000 -0.5000 1.0000

>> u = [4,-2,-3,6;0,4,2,3;0,0,3,-2;0,0,0,4]

4.5 LU Decomposition Method 121

all a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

u =

4 -2 -3 6

0 4 2 3

0 0 3 -2

0 0 0 4

>> L*U Multiplication of the matrices L and U

ans = verifies that the answer is the matrix [a].

4.0000 -2.0000 -3.0000 6.0000

-6.0000 7.0000 6.5000 -6.0000

1.0000 7.5000 6.2500 5.5000

-12.0000 22.0000 15.5000 -1. 0000

Lll

L21

L31

L41

4.5.2 LU Decomposition Using Crout's Method

In this method the matrix [a] is decomposed into the product [L] [U] ,

where the diagonal elements of the matrix [U] are all 1 s. It turns out

that in this case, the elements of both matrices can be determined using

formulas that can be easily programmed. This is illustrated for a system

of four equations. In Crout's method, the LU decomposition has the

form:

all a12 a13 a14 Lll 0 0 0 1 U12 U13 U14
a11 a12 a13 a14 L11 L12 0 0 0 1 U23 U24 (4.26)
a31 a32 a33 a34 L31 L32 L33 0 0 0 1 U34
a41 a42 a43 a44 L41 L42 L43 L44 0 0 0 1

Executing the matrix multiplication on the right-hand side of the equa-

tion gives:

(Lu U 12) (Lu U13) (Lu U14)

(L21U12+ L12) (L21U13 + L12 U 23) (L21U14 + L12 U 24) (4.27)
(L31U12 + L32) (L31U13 + L32 U 23 + L33) (L31 U14+ L32U24 + L33U34)

(L41 U12+L42) (L41 U13+ L42U23 + L43) (L41U14+ L42 U 24 + L43 U 34 + L44)

The elements of the matrices [L] and [U] can be determined by solving

Eq. (4.27). The solution is obtained by equating the corresponding ele

ments of the matrices on both sides of the equation. Looking at Eq.

(4.27), one can observe that the elements of the matrices [L] and [U]
can be easily determined row after row from the known elements of [a]
and the elements of [L] and [U] that are already calculated. Starting

with the first row, the value of Lll is calculated from Lll =all. Once Lll
is known, the values of U 12, U 13, and U 14 are calculated by:

U
_

a12
12 - -

Lll
and U

_

a14
14 - -

Lll
(4.28)

122 Chapter 4 Solving a System of Linear Equations

Moving on to the second row, the value of L21 is calculated from

L21 = a21 and the value of L22 is calculated from:

(4.29)

With the values of L21 and L22 known, the values of U 23 and U 24 are

determined from:

and

In the third row:

a24 -L21 U14
U24 = ---L22

(4.30)

L31=a31, L31 =a32-L31U12• and LJ3=a33-L31U13-L32U23(4.3l)

Once the values of L31 , L32 , and L33 are known, the value of U 34 is cal

culated by:

_ a34 -L31 U14 -L32U24 u 34 - -"---'------'---

L33
(4.32)

In the fourth row, the values of L41 , L42 , L43 , and L44 are calculated by:

L41 = a41, L42 = a42 -L41U12• L43 = a43 -L41U13 -L42 U 23 , and

L44 = G44-L41U14-L42U24-L43U34 (4.33)

A procedure for determining the elements of the matrices [L] and

[U] can be written by following the calculations in Eqs. (4.28) through

(4.33). If [a] is an (n x n) matrix, the elements of [L] and [U] are

given by:

Step 1: Calculating the first column of [L]:

for i = 1, 2, .. ., n

Step 2: Substituting 1 s in the diagonal of [U] :

for i = 1, 2, .. ., n

(4.34)

(4.35)

Step 3: Calculating the elements in the first row of [U] (except U11
which was already calculated):

for j = 2, 3, .. ., n
al. u = =.!l. lj L 11

(4.36)

Step 4: Calculating the rest of the elements row after row (i is the row

number and} is the column number). The elements of [L] are calcu

lated first because they are used for calculating the elements of [U] :

for i = 2, 3, .. ., n

for j = 2, 3, .. ., i

for j = (i + 1), (i + 2), . . ., n

(4.37)

(4.38)

4.5 LU Decomposition Method 123

Examples 4-5 and 4-6 show how the LU decomposition with Crout's

method is used for solving systems of equations. In Example 4-5 the

calculations are done manually, and in Example 4-6 the decomposition

is done with a user-defined MATLAB program.

Example 4-5: Solving a set of four equations using LU decomposition with Crout's

method.

Solve the following set of four equations (the same as in Example 4- 1) using LU decomposition with

Crout's method.

SOLUTION

4x1 - 2x2 - 3x3 + 6x4 = 12

- 6x1 + 7x2 + 6.5x3 - 6x4 = -6.5

x1 + 7.5x2 + 6.25x3 + 5.5x4 = 16

- 12x1 + 22x2 + 15.5x3 - x4 = 17

First, the equations are written in matrix form:

[_: �
2

�� :

6

1 :�1 = 1
-

��

5

1 7.5 6.25 5.5 X3 16

-12 22 15.5 -1 X4 17

(4.39)

Next, the matrix of coefficients [a] is decomposed into the product [L][U], as shown in Eq. (4.27).

The decomposition is done by following the steps listed on the previous page:

Step 1: Calculating the first column of [L]:

for i = 1, 2, 3, 4 Lil = an: L11 = 4, L21 = -6, L31 = 1, L41 = -12

Step 2: Substituting 1 s in the diagonal of [U] :

for i = 1,2,3,4 uii = 1: U11 = 1, U22 = 1, U33 = 1, U44 = 1.

Step 3: Calculating the elements in the first row of [U] (except U 11 which was already calculated):

for j = 2, 3, 4 U . = ::U. U = a12
= -2 = -0 5 I; L

. 12
L 4 . '

11 II

U - a14 - 6 - 1 5 14 - - - - - .
L11 4

a13 -3 u = - = - = -0.75 13
L 4

'
II

Step 4: Calculating the rest of the elements row after row, starting with the second row (i is the row

number andj is the column number). In the present problem there are four rows, so i starts at 2 and

ends with 4. For each value of i (each row), the elements of Lare calculated first, and the elements of

Uare calculated subsequently. The general form of the equations is (Eqs. (4.37) and (4.38)):
for i = 2, 3, 4,

(4.40)

for j = (i + 1), (i + 2), ... , n (4.41)

124

Starting with the second row, i = 2 ,
k=I

Chapter 4 Solving a System of Linear Equations

for j = 2: L22 = a22 - ll 2kUk2 = a22 -L21 U12 = 7 -(-6 · -0.5) = 4
k= l

k=l

for j = 3, 4:
a23 - ll 2kUk3

u23 = __

k _=_I
___ = a

23-(L21 U13)
=

6.5 -(-6 · -0.75)
= 0.5

L21 L12 4

Next, for the third row, i = 3,
k=l

for j = 2,3: L32 = a32- ll3kUk2= a32-L31U12 = 7.5-(1 ·-0.5) = 8
k=I

k=2

L33 = G33- li 3kUk3= G33-(L31U13+ L32U23) = 6.25-(1·-0.75+8· 0.5) = 3
k=I

For the last row, i = 4,
k=l

for j = 2, 3, 4: L42 = a42 - ll 4kUk2 = a42-L41 U12 = 22-(-12 · -0.5) = 16
k = l

k=2

L43 = G43- li 4kUk3= G43-(L41U13+ L42U23) = 15.5-(-12 ·-0.75+ 16· 0.5) = -1.5
k=l

k=4
L44=a44 -ll 4kUk4=a44-(L41 U14+L42U24+L43U34)=- 1-(-12 ·1.5 + 16· 0.75 + -1.5 · -0.6667)= 4

k=I
Writing the matrices [L] and [U] in a matrix form,

L = 1-� � � � and u = 1� -�
.5 -

� :�
5

0�;5 1
1 8 3 0 0 0 1 -0.6

1
667

-12 16 -1.5 4 0 0 0

To verify that the two matrices are correct, they are multiplied by using MATLAB:

>> L = [4 0 0 O; -6, 4 0 0; 1 8 3 0; -12 16 -1.5 4];
>> u = [l -0.5 -0.75 1.5; 0 1 0.5 0.75; 0 0 1 -0.6667; 0 0 0 l];

>> L*U

ans =

4.0000 -2.0000 -3.0000 6.0000
-6.0000 7.0000 6.5000 -6.0000 This matrix is the same as the matrix of coeffi-

1.0000 7.5000 6.2500 5.4999 cients in Eq. (4.39) (except for round-off errors).

-12.0000 22.0000 15.5000 -1. 0000

4.5 LU Decomposition Method 125

Once the decomposition is complete, a solution is obtained by using Eqs. (4.22) and (4.23). First, the

matrix [L] and the vector [b] are used in Eq. (4.23), [L][y] = [b], to solve for [y]:

_: � � �11;21 1-��51 1 8 3 0 Y3 16

-12 16 -1.5 4 Y4 17

Using forward substitution, the solution is:

Y1 = � = 3, Yi =

- 6.5
4

+ 6Y1
= 2.875,

17 + 12yl - 16Ji + 1.5y3
Y4 = = 0.5

4

Y3 =

16 - Y1 - 8Ji
= -3.333, and

3

(4.42)

Next, the matrix [U] and the vector [y] are used in Eq. (4.22), [U][x] = [y], to solve for [x]:

1
1 -0.5 -0.75 1 5

1
x

i
0 1 0.5 0.�5 X2
0 0 1 -0.6667 X3
0 0 0 1 X4

3

2.875
-3.333

0.5
Using back substitution, the solution is:

x4 = Oi5 = 0.5 , x3 = - 3.333 + 0.6667 x4 = -3, x2 = 2.875 - 0.5x3 - 0. 75x4 = 4, and

x1 = 3 + 0.5x2 + 0.75x3 - 1.5x4 = 2

(4.43)

Example 4-6: MATLAB user-defined function for solving a system of equations using

LU decomposition with Crout's method.

Determine the currents i1, i2, i3, and i4 in the circuit shown in the

figure (same as in Fig. 4-1).Write the system of equations that has to

be solved in the form [a] [i] = [b] . Solve the system by using the LU
decomposition method, and use Crout's method for doing the
decomposition.

SOLUTION

The currents are determined from the set of four equations, Eq. (4.1).
The equations are derived by using Kirchhoff's law. In matrix form,

[a][i] = [b], the equations are:

19
-4 -2 0

l
i1

1 1
24

-417-6-3 �2
=

-16

-2 -6 14 -6 l3 0

0 -3 -6 11 i4 18

(4.44)

30

8
40 20

To solve the system of equations, three user-defined functions are created. The functions are as fol
lows:

126 Chapter 4 Solving a System of Linear Equations

[L U] = LUdecompCrout (A) This function decomposes the matrix A into lower triangular and
upper triangular matrices Land U, respectively.

y = Fo rw ardS ub (L, b) This function solves a system of equations that is given in lower triangu
lar form.

x = BackwardSub (L, b) This function solves a system of equations that is given in upper triangu
lar form.

Listing of the user-defined function LUdecompCrout:

(Program 4-3: User-defined function. LU decomposition using Crout's method.

function [L, U] = LUdecompCrout(A)

% The function decomposes the matrix A into a lower triangular matrix L

% and an upper triangular matrix U, using Crout's method, such that A= LU.

% Input variables:

% A The matrix of coefficients.

% b Right-hand-side column vector of constants.

% Output variable:

% L Lower triangular matrix.

% U Upper triangular matrix.

[R, C]=size(A);

for i=l:R

L(i,l)=A(i,1);

U(i,i)=l;

[Eq. (4.34). J
[Eq. (4.35). J

Steps 1 and 2 (page 122).

end

for j=2:R

U(l,j)=A(l,j)/L(l,1);

end

[Eq. (4.36). J Step 3 (page 122).

for i=2:R

for j=2:i

L(i,j)=A(i,j)-L(i,l:j-l)*U(l:j-1,j); [Eq. (4.37). I
end

for j=i + l:R

U(i,j)=(A(i,j)-L(i,l:i-l)*U(l:i-1,j))/L(i,i); [Eq.(4.38).J
end

end

Listing of the user-defined function ForwardSub:

(Program 4-4: User-defined function. Forward substitution.)

function y = ForwardSub(a,b)

% The function solves a system of linear equations ax = b

Step 4 (page 122).

% where a is lower triangular matrix by using forward substitution.
% Input variables:

% a The matrix of coefficients.

% b A column vector of constants.

% Output variable:

4.5 LU Decomposition Method

% y A column vector with the solution.

n=length(b);

y(l,l)=b(l)/a(l,1);

for i=2:n

y(i,l)=(b(i)-a(i,l:i-l)*y(l:i-1,1)) ./a(i,i);

end

Listing of the user-defined function BackwardSub:

[Program 4-5: User-defined function. Back substitution.

function y = BackwardSub(a,b)

% The function solves a system of linear equations ax = b

% where a is an upper triangular matrix by using back substitution.

% Input variables:

% a The matrix of coefficients.

% b A column vector of constants.

% Output variable:

% y A column vector with the solution.

n=length(b);

y(n,l)=b(n)/a(n,n);

for i=n-1:-1:1

y(i,l)=(b(i)-a(i,i+l:n)*y(i+l:n,1)) ./a(i,i);

end

127

The functions are then used in a MATLAB computer program (script file) that is used for solving the

problem by following these steps:

• The matrix of coefficients [a] is decomposed into upper [U] and lower [L] triangular matrices

(using the LUdecompCrout function).

• The matrix [L] and the vector [b] are used in Eq. (4.23), [L][y] = [b], to solve for [y], (using

the ForwardSub function).

• The solution [y] and the matrix [U] are used in Eq. (4.22), [U][i] = [y], to solve for [i] (using

the BackwardSub function).

Script file:

[Program 4-6: Script file. Solving a system with Crout's LU decomposition. J

% This script file solves a system of equations by using

% the Crout's LU decomposition method.

a = [9 -4 -2 0; -4 17 -6 -3; -2 -6 14 -6; 0 -3 -6 11];

b = [24; -16; 0; 18];

[L, U]=LUdecompCrout(a);

y=ForwardSub(L,b);

i=BackwardSub(U,y)

When the script file is executed, the following solution is displayed in the Command Window:

128

i =

4.0343

1.6545

2.8452

3.6395

Chapter 4 Solving a System of Linear Equations

The script file can be easily modified for solving the systems of equations [a] [i] = [b] for the same matrix

[a], but different values of [b] . The LU decomposition is done once, and only the last two steps have

to be executed for each [b] .

4.5.3 LU Decomposition with Pivoting

Decomposition of a matrix [a] into the matrices [L] and [U] means

that [a]= [L][U]. In the presentation of Gauss and Crout's decomposi

tion methods in the previous two subsections, it is assumed that it is

possible to carry out all the calculations without pivoting. In reality, as

was discussed in Section 4.3, pivoting may be required for a successful

execution of the Gauss elimination procedure. Pivoting might also be

needed with Crout's method. If pivoting is used, then the matrices [L]

and [U] that are obtained are not the decomposition of the original

matrix [a]. The product [L][U] gives a matrix with rows that have the

same elements as [a] , but due to the pivoting, the rows are in a different

order. When pivoting is used in the decomposition procedure, the

changes that are made have to be recorded and stored. This is done by

creating a matrix [P], called a permutation matrix, such that:

[P][a] = [L][U] (4.45)

If the matrices [L] and [U] are used for solving a system of equa

tions [a][x] = [b] (by using Eqs. (4.23) and (4.22)), then the order of the

rows of [b] have to be changed such that it is consistent with the pivot

ing. This is done by multiplying [b] by the permutation matrix, [P][b].

Use of the permutation matrix is shown in Section 4.8.3, where the

decomposition is done with MATLAB 's built-in function.

4.6 INVERSE OF A MATRIX

The inverse of a square matrix [a] is the matrix [ar
1

such that the

product of the two matrices gives the identity matrix [/].

-I -I
[a][a] = [a] [a] = [/] (4.46)

The process of calculating the inverse of a matrix is essentially the same

as the process of solving a system of linear equations. This is illustrated

for the case of a (4 x 4) matrix. If [a] is a given matrix and [x] is the

unknown inverse of [a] , then:

4.6 Inverse of a Matrix

all a12 a13 a14 xll X12 X13 X14

a11 a12 a13 a14 X21 X22 X23 X24

a31 a32 a33 a34 X31 X32 X33 X34

a41 a42 a43 a44 X41 X42 X43 X44

1 0 0 01 = 0 1 0 0

0 0 1 0

0 0 0 1

129

(4.47)

Equation (4.47) can be rewritten as four separate systems of equations,

where in each system one column of the matrix [x] is the unknown:

all a12 a13 a14 xll
a11 a12 a13 a14 x21
a31 a32 a33 a34 X31
a41 a42 a43 a44 X41

all a12 a13 a14 X13
a11 a12 a13 a14 x23
a31 a32 a33 a34 X33
a41 a42 a43 a44 X43

[�]
all a12 a13 a14 x12
a11 a12 a13 a14 X22
a31 a31 a33 a34 X32
a41 a42 a43 a44 X42

all a12 a13 a14 X14
a11 a12 a13 a14 X24
a31 a31 a33 a34 X34
a41 a42 a43 a44 x44

0

0

0

1

(4.48)

Solving the four systems of equations in Eqs. (4.48) gives the four col

umns of the inverse of [a] . The systems of equations can be solved by

using any of the methods that have been introduced earlier in this chap

ter (or other methods). Two of the methods, the LU decomposition

method and the Gauss-Jordan elimination method, are described in

more detail next.

4.6.1 Calculating the Inverse with the LU Decomposition
Method

The LU decomposition method is especially suitable for calculating the

inverse of a matrix. As shown in Eqs. (4.48), the matrix of coefficients

in all four systems of equations is the same. Consequently, the LU

decomposition of the matrix [A] is calculated only once. Then, each of

the systems is solved by first using Eq. (4.23) (forward substitution) and

then Eq. (4.22) (back substitution). This is illustrated, by using MAT

LAB, in Example 4-7.

130 Chapter 4 Solving a System of Linear Equations

Example 4-7: Determining the inverse of a matrix using the LU decomposition

method.

Determine the inverse of the matrix [a] by using the LU decomposition method.

0.2 -5 3 0.4 0

-0.5 1 7 -2 0.3
[a] = 0.6 2 -4 3 0.1

3 0.8 2 -0.4 3

0.5 3 2 0.4 1

(4.49)

Do the calculations by writing a MATLAB user-defined function. Name the function invA =

InverseLU (A), where A is the matrix to be inverted, and invA is the inverse. In the function, use

the functions LUdecompCrout, ForwardSub, and BackwardSub that were written in Exam

ple 4-6.

SOLUTION

If the inverse of [a] is [x] ([x] = [ar1), then [a][x] =[I], which are the following five sets of five

systems of equations that have to be solved. In each set of equations, one column of the inverse is

calculated. �0�5 -15
� �i 0�31 ���1 - b 1�0�5 -t � �i 0�3 1���1

-
1� �0�5 -15

� �i 0�311���1
-1�

0.6 2 -4 3 0.1 X31 - Q ' 0.6 2 -4 3 0.1 X32 - 0 ' 0.6 2 -4 3 0.1 X33 - 1
3 0.8 2 -0.4 3 X41 Q 3 0.8 2 -0.4 3 X42 0 3 0.8 2 -0.4 3 X43 Q

0.5 3 2 0.4 1 X51 0 0.5 3 2 0.4 1 X52 0 0.5 3 2 0.4 1 X53 Q

1�0�5 -15
� �i 0�3

0.6 2 -4 3 0.1
3 0.8 2 -0.4 3

0.5 3 2 0.4 1

x14 1011 0.2 -5 3 0.4 o lx15l lo� X24 0 -0.5 1 7 -2 0.3 X25 Q
X34 = Q ' 0.6 2 -4 3 0.1 X35 = 0
X44 1 3 0.8 2 -0.4 3 X45 0
X54 Q 0.5 3 2 0.4 1 X55 1

(4.50)

The solution is obtained with the user-defined function InverseLU that is listed below. The func

tion can be used for calculating the inverse of any sized square matrix.

The function executes the following operations:

• The matrix [a] is decomposed into matrices [L] and [U] by applying Crout's method. This is

done by using the function LUdecompCrout that was written in Example 4-6.
• Each system of equations in Eqs. (4.50) is solved by using Eqs. (4.23) and (4.22). This is done by

first using the function ForwardSub and subsequently the function BackwardSub (see

Example 4-6).

[Program 4-7: User-defined function. Inverse of a matrix. J
function invA = InverseLU(A)

% The function calculates the inverse of a matrix

% Input variables:

% A The matrix to be inverted.

% Output variable:

% invA The inverse of A.

4.6 Inverse of a Matrix

[nR nC] = size(A);

I=eye(nR);

131

[L U]= LUdecompCrout(A);

for j=l:nC

[Create an identity matrix of the same size as [A]. J
[Decomposition of [A] into [L] and [U].]

In each pass of the loop, one set of the equa
- tions in Eqs. (4.50) is solved. Each solution is

one column in the inverse of the matrix.

y=ForwardSub(L,I(:,j));

invA(:,j)=BackwardSub(U,y);

end

The function is then used in the Command Window for solving the problem.

>> F=[0.2 -5 3 0.4 0; -0.5 1 7 -2 0.3; 0.6 2 -4 3 0.1; 3 0.8 2 -0.4 3; 0.5 3 2 0.4 l] ;

>> invF = InverseLU(F)

invF =

-0.7079 2.5314

-0.1934 0.3101

0.0217 0.3655

0.2734 -0.1299

0.7815 -2.8751

>> invF*F

ans =

1.0000 -0.0000

0.0000 1.0000

0 -0.0000

-0.0000 0.0000

-0.0000 0.0000

all a12 a13 a14 1 0 0 0

az1 azz az3 a24 0 1 0 0

a31 a32 a33 a34 0 0 1 0

a41 a42 a43 a44 0 0 0 1

(a)

Figure 4-20:

2.4312 0.9666 -3.9023

0.2795 0.0577 -0.2941

0.2861 0.0506 -0.2899 The solution [F]-1 .
0.1316 -0.1410 0.4489

-2.6789 -0.7011 4.2338

0.0000 -0.0000 -0.0000
[Checkif[F][F]-1 = [I].)

0.0000 -0.0 0

1.0000 -0.0000 -0.0000

-0.0000 1.0000 -0.0000

-0.0000 -0.0000 1.0000

4.6.2 Calculating the Inverse Using the Gauss-Jordan

Method

The Gauss-Jordan method is easily adapted for calculating the inverse

of a square (n x n) matrix [a] . This is done by first appending an iden

tity matrix [I] of the same size as the matrix [a] to [a] itself. This is

shown schematically for a (4 x 4) matrix in Fig. 4-20a. Then, the

Gauss-Jordan procedure is applied such that the elements of the matrix

[a] (the left half of the augmented matrix) are converted to ls along the

diagonal and Os elsewhere. During this process, the terms of the identity

matrix in Fig. 4-20a (the right half of the augmented matrix) are

changed and become the elements [a'] in Fig. 4-20b, which constitute

the inverse of [a] .

1 0 0 0 a'
)) a'

12 a'
13 a'

14
Gauss-Jordan procedure

0 1 0 0 a'
21 a'

zz a'
z3 a'

z4

... 0 0 1 0 a'
31 a'

32 a'
33 a'

34

0 0 0 1 a'
41 a'

42 a'
43 a'

44

(b)

Calculating the inverse with the Gauss-Jordan method.

132

a11x1 + a12X2 + a13X3 + a14X4 = b1
az1X1 + az2X2 + az3X3 + az4X4 = bz
a31X1 + a32X2 + a33X3 + a34X4 = b3
a41X1 + a42X2 + a43X3 + G44X4 = b4

(a)

Chapter 4 Solving a System of Linear Equations

4.7 ITERATIVE METHODS

A system of linear equations can also be solved by using an iterative

approach. The process, in principle, is the same as in the fixed-point

iteration method used for solving a single nonlinear equation (see Sec

tion 3.7). In an iterative process for solving a system of equations, the

equations are written in an explicit form in which each unknown is writ

ten in terms of the other unknown. The explicit form for a system of

four equations is illustrated in Fig. 4-21.

Writing the equations

in an explicit form.

•

X1 = [b1-(a12xz+a13x3+a14X4)]/a11
Xz =

[b2 -(a21X1 + Gz3X3 + Gz4X4)]/ a22
X3 =

[b3 -(a31X1 + G32X2 + a34X4)]/ G33
X4 = [b4 -(a21X1 + G4zX2 + a43X3)]/ G44

(b)

Figure 4-21: Standard (a) and explicit (b) forms of a system of four equations.

The solution process starts by assuming initial values for the

unknowns (first estimated solution). In the first iteration, the first

assumed solution is substituted on the right-hand side of the equations,

and the new values that are calculated for the unknowns are the second

estimated solution. In the second iteration, the second solution is substi

tuted back in the equations to give new values for the unknowns, which

are the third estimated solution. The iterations continue in the same

manner, and when the method does work, the solutions that are obtained

as successive iterations converge toward the actual solution. For a sys

tem with n equations, the explicit equations for the [x;] unknowns are:

i = 1, 2, ... , n (4.51)

Condition for convergence

For a system of n equations [a][x] = [b], a sufficient condition for con

vergence is that in each row of the matrix of coefficients [a] the abso

lute value of the diagonal element is greater than the sum of the

absolute values of the off-diagonal elements.

j=n

la;;I > L laul (4.52)
j = l,}*i

This condition is sufficient but not necessary for convergence when the
iteration method is used. When condition (4.52) is satisfied, the matrix

[a] is classified as diagonally dominant, and the iteration process con

verges toward the solution. The solution, however, might converge even

when Eq. (4.52) is not satisfied.

4. 7 Iterative Methods 133

Two specific iterative methods for executing the iterations, the
Jacobi and Gauss-Seidel methods, are presented next. The difference
between the two methods is in the way that the new calculated values of

the unknowns are used. In the Jacobi method, the estimated values of
the unknowns that are used on the right-hand side of Eq. (4.51) are
updated all at once at the end of each iteration. In the Gauss-Seidel
method, the value of each unknown is updated (and used in the calcula

tion of the new estimate of the rest of the unknowns in the same itera
tion) when a new estimate for this unknown is calculated.

4. 7. 1 Jacobi Iterative Method

In the Jacobi method, an initial (first) value is assumed for each of the

unknowns, x�1>, x�1), .. ., x�1). If no information is available regarding the

approximate values of the unknown, the initial value of all the
unknowns can be assumed to be zero. The second estimate of the solu-

tion x�2), x�2), .. ., x�2) is calculated by substituting the first estimate in

the right-hand side ofEqs. (4.51):

(2) 1 [j=n (l)l
X; = - b;- " aijxj

a . .t...J
ll j = l,j'1'i

i = 1, 2, .. ., n (4.53)

In general, the (k + 1) th estimate of the solution is calculated from the

(k) th estimate by:

X(.k+I)
=

J_[b.- I·=n
a . . x(k)l

'
a..

'
lj ; ll j= l,j'1'i

i = 1, 2, ... , n (4.54)

The iterations continue until the differences between the values that are
obtained in successive iterations are small. The iterations can be
stopped when the absolute value of the estimated relative error (see
Section 3.2) of all the unknowns is smaller than some predetermined
value:

(k+ 1) - (k) X; X1 <E
(k) X;

i = 1, 2, ... , n

4. 7. 2 Gauss-Seidel Iterative Method

(4.55)

In the Gauss-Seidel method, initial (first) values are assumed for the
unknowns x2, x3, .. ., xn (all of the unknowns except x1). If no informa

tion is available regarding the approximate value of the unknowns, the
initial value of all the unknowns can be assumed to be zero. The first
assumed values of the unknowns are substituted in Eq. (4.51) with

i = 1 to calculate the value of x
1
. Next, Eq. (4.51) with i = 2 is used

for calculating a new value for x
2
• This is followed by using Eq. (4.51)

134 Chapter 4 Solving a System of Linear Equations

with i = 3 for calculating a new value for x3• The process continues

until i = n, which is the end of the first iteration. Then, the second iter

ation starts with i = 1 where a new value for x1 is calculated, and so

on. In the Gauss-Seidel method, the current values of the unknowns are

used for calculating the new value of the next unknown. In other words,

as a new value of an unknown is calculated, it is immediately used for

the next application of Eq. (4.51). (In the Jacobi method, the values of

the unknowns obtained in one iteration are used as a complete set for

calculating the new values of the unknowns in the next iteration. The

values of the unknowns are not updated in the middle of the iteration.)

Applying Eq. (4.51) to the Gauss-Seidel method gives the iteration

formula:

(k+ I) - 1 [b �n
(k)l

X1 -;;- i - L a;1XJ
II j = 2

(k+I) - 1 [(j � I
(k+I) � (k))] .

X; -
a;;

b;- �
aiJxJ +

1 b 1
auxJ z=2,3, ... ,n-1(4.56)

(k+I) = _1 [b _J=
L

n-
1

. (k+I)]
Xn n anJX J a nn j = 1

Notice that the values of the unknowns in the k + 1 iteration, x�k + 1), are

calculated by using the values x)k+ I) obtained in the k + 1 iteration for

j < i and using the values x)k) for j > i. The criterion for stopping the

iterations is the same as in the Jacobi method, Eq. (4.55). The Gauss

Seidel method converges faster than the Jacobi method and requires less

computer memory when programmed. The method is illustrated for a

system of four equations in Example 4-8.

Example 4-8: Solving a set of four linear equations using Gauss-Seidel method.

Solve the following set of four linear equations using the Gauss-Seidel iteration method.

9x1 -2x2 + 3x3 + 2x4 = 54.5
2x1+ 8x2 -2x3 + 3x4 = -14

-3x1 + 2x2 + llx3 -4x4 = 12.5
-2x1 + 3x2 + 2x3 + 10x4 = -21

SOLUTION
First, the equations are written in an explicit form (see Fig. 4.21):

x1 = [54.5 -(-2x2 + 3x3 + 2x4)]/9
x2 = [- 14-(2x1-2x3+ 3x4)]/8
x3 = [12.5 -(-3x1 +2x2-4x4)]/1 1
x4 = [-21 -(-2x1 + 3x2+2x3)]/10

(4.57)

4. 7 Iterative Methods 135

As a starting point, the initial value of all the unknowns, xi1), x�1), x�1), and x�1), is assumed to be

zero. The first two iterations are calculated manually, and then a MATLAB program is used for cal

culating the values of the unknowns in seven iterations.

Manual calculation of the first two iterations:

The second estimate of the solution (k = 2) is calculated in the first iteration by using Eqs. (4.57).

The values that are substituted for x; in the right-hand side of the equations are the most recent

known values. This means that when the first equation is used to calculate xi2), all the x; values are

zero. Then, when the second equation is used to calculate x�2), the new value xi2) is substituted for

x
1
, but the older values x�1) and x�1) are substituted for x

3
and x4, and so on:

xi2) = [54.5 -(-2·0+3·0+2·0)]/9 = 6.056

x�2) = [- 14 -(2 · 6.056 -(2 · 0) + 3 · 0)]/8 = -3.264

x�2) = [12.5 -(-3·6.056+2·-3.264 -(4·0))]/11=3.381

x�2) = [- 21 -(-2 · 6.056 + 3 · -3.264 + 2 · 3.381)]/10 = -0.5860

The third estimate of the solution (k = 3) is calculated in the second iteration:

xi3) = [54.5 -(-2 · -3.264 + 3 · 3.381+2 · -0.5860)]/9 = 4.333

x�3) = [- 14 -(2·4.333 -(2·3.381)+3 ·-0.5860)]/8 = -1.768

x�3) = [12.5 -(-3·4.333+2·-1.768 -(4·-0.5860))]/11=2.427

x�3) = [- 21 -(-2·4.333+3 ·-1.768+2·2.427)]/10 = -1.188

MATLAB program that calculates the first seven iterations:

The following is a MATLAB program in a script file that calculates the first seven iterations of the

solution by using Eqs. (4.57):

[Program 4-8: Script file. Gauss-Seidel iteration.]

k = 1; xl = 0; x2 = 0; x3 = 0; x4 = 0;

disp(' k xl x2 x3

fprintf(' %2.0f %-8.5£ %-8.5£ %-8.5£

for k = 2 : 8

x1=(54.5-(-2*x2+3*x3+2*x4))/9;

x2=(-14-(2*xl-2*x3+3*x4))/8;

x3=(12.5-(-3*xl+2*x2-4*x4))/11;

x4=(-21-(-2*xl+3*x2+2*x3))/10;

x4')

%-8.5£ \n', k, xl, x2, x3, x4)

fprintf(' %2.0f %-8.5£ %-8.5£ %-8.5£ %-8.5£ \n', k, xl, x2, x3, x4)

end

When the program is executed, the following results are displayed in the Command Window.

k

1

2

3

xl

0.00000

6.05556

4.33336

x2

0.00000

-3.26389

-1.76827

x3

0.00000

3.38131

2.42661

x4

0.00000

-0.58598

-1.18817

136 Chapter4 Solving a System of Linear Equations

4 5.11778 -1. 97723 2.45956 -0.97519
5 5.01303 -2.02267 2.51670 -0.99393
6 4.98805 -1. 99511 2.49806 -1.00347
7 5.00250 -1.99981 2.49939 -0.99943
8 5.00012 -2.00040 2.50031 -0.99992

The results show that the solution converges toward the exact solution, which is

X1 = 5, X2 = -2, X3 = 2.5, and X4 = -1.

4.8 USE OF MATLAB BUil T-IN FUNCTIONS FOR
SOLVING A SYSTEM OF LINEAR EQUATIONS

MATLAB has mathematical operations and built-in functions that can

be used for solving a system of linear equations and for carrying out

other matrix operations that are described in this chapter.

4.8.1 Solving a System of Equations Using MATLAB's Left
and Right Division

Left division \ : Left division can be used to solve a system of n equa

tions written in matrix form [a][x] = [b], where [a] is the (n x n)
matrix of coefficients, [x] is an (n x 1) column vector of the unknowns,

and [b] is an (n x 1) column vector of constants.

(x = a\b)
For example, the solution of the system of equations in Examples 4-1
and 4-2 is calculated by (Command Window):

>> a=[4 -2 -3 6; -6 7 6.5 -6; 1 7.5 6.25 5.5; -12 22 15.5 -1];

>> b=[12; -6.5; 16; 17];

>> x=a\b

x =

2.0000

4.0000

-3.0000

0.5000

Right division I : Right division is used to solve a system of n equations

written in matrix form [x][a] = [b], where [a] is the (n x n) matrix of

coefficients, [x] is a (1 x n) row vector of the unknowns, and [b] is a

(1 x n) row vector of constants.

(x=b/a)
For example, the solution of the system of equations in Examples 4-1
and 4-2 is calculated by (Command Window):

4.8 Use of MATLAB Built-In Functions for Solving a System of Linear Equations 137

>> a=[4 -6 1 -12; -2 7 7.5 22; -3 6.5 6.25 15.5; 6 -6 5.5 -1];

>> b=[12 -6.5 16 17);

>> x=b/a

x =

2.0000 4.0000 -3.0000 0.5000

Notice that the matrix [a] used in the right division calculation is the

transpose of the matrix used in the left division calculation.

4.8.2 Solving a System of Equations Using MATLAB's
Inverse Operation

In matrix form, the system of equations [a][x] = [b] can be solved for

[x]. Multiplying both sides from the left by [ar1 (the inverse of [a])

gives:

-] -]
[a] [a][x] = [a] [b] (4.58)

Since [ar1[a] = [I] (identity matrix), and [J][x] = [x], Eq. (4.58)

reduces to:

[x] = [ar1[b] (4.59)

In MATLAB, the inverse of a matrix [a] can be calculated either by

raising the matrix to the power of -1 or by using the in v (a) function.

Once the inverse is calculated, the solution is obtained by multiplying

the vector [b] by the inverse. This is demonstrated for the solution of

the system in Examples 4-1 and 4-2.

>> a=[4 -2 -3 6; -6 7 6.5 -6; 1 7.5 6.25 5.5; -12 22 15.5 -1);

>> b=[l2; -6.5; 16; 17];

>> x=a"-l*b

x =

2.0000

4.0000

-3.0000

0.5000

[The same result is obtained by typing >> x = inv(a)*b. J

138 Chapter 4 Solving a System of Linear Equations

4.8.3 MATLAB's Built-In Function for LU Decomposition

MATLAB has a built-in function, called l u, that decomposes a matrix

[a] into the product [L][U], such that [a] = [L][U] where [L] is a

lower triangular matrix and [U] is an upper triangular matrix. One form

of the function is:

[L,U,P] =

L is a lower triangular matrix.

U is an upper triangular matrix.

P is a permutation matrix.

a is the matrix to

be decomposed.

MATLAB uses partial pivoting when determining the factorization.

Consequently, the matrices [L] and [U] that are determined by MAT

LAB are the factorization of a matrix with rows that may be in a differ

ent order than in [a] . The permutation matrix [P] (a matrix with ls and

Os) contains the information about the pivoting. Multiplying [a] by the

matrix [P] gives the matrix whose decomposition is given by [L] and

[U] (see Section 4.5.3):

[L][U] = [P][a] (4.60)

The matrix [P][a] has the same rows as [a] but in a different order. If

MATLAB does not use partial pivoting when the function l u is used,

then the permutation matrix [P] is the identity matrix.

If the matrices [L] and [U] that are determined by the l u function

are subsequently used for solving a system of equations [a][x] = [b]

(by using Eqs. (4.23) and (4.22)), then the vector [b] has to be multi

plied by the permutation matrix [P]. This pivots the rows in [b] to be

consistent with the pivoting in [a]. The following shows a MATLAB

solution of the system of equations from Examples 4-1 and 4-2 using

the function l u.

>> a=[4 -2 -3 6; -6 7 6.5 -6; 1 7.5 6.25 5.5; -12 22 15.5 -1];

>> b=[12; -6.5; 16; 17];

>> [L, U, P]=lu(a)

L =

1.0000

-0.0833

-0.3333

0.5000

u =

-12.0000

0

0

0

0

1.0000

0.5714

-0.4286

22.0000

9.3333

0

0

[Decomposition of [a] using MATLAB 's l u function.]

0 0

0 0

1.0000 0

-0.9250 1.0000

15.5000 -1.0000

7.5417 5.4167

-2.1429 2.5714

0 -0.800

4.8 Use of MATLAB Built-In Functions for Solving a System of Linear Equations 139

Function

inv (A)

p =
Multiplying [P][a] gives the pivoted [a]

0 0 0 1 >>P*a

0 0 1 0 ans=

1 0 0 0
-12.0000 22.0000 15.5000 -1.0000

1.0000 7.5000 6.2500 5.5000
0 1 0 0 Solve for y in 4.0000 -2.0000 -3.0000 6.0000

>> y=L\(P*b) Eq. (4.23). -6.0000 7.0000 6.5000 -6.0000

y =

17.0000

17.4167

7.7143

-0.4000

>> x=U\y

x =

2.0000

4.0000

-3.0000

0.5000

Vector [b] is multiplied by the permutation matrix.

Solve for x in Eq. (4.22).]

4.8.4 Additional MATLAB Built-In Functions

MATLAB has many built-in functions that can be useful in the analysis

of systems of equations. Several of these functions are presented in

Table 4-1. Note that the operations that are related to some of the func

tions in the table are discussed in Section 4.9.

Table 4-1: Built-in MATLAB functions for matrix operations and analysis.

Description Example

Inverse of a matrix. >> A=[-3 1 0.6; 0.2 -4 3; 0.1 0.5 2];

A is a square matrix. Returns the inverse >> Ain=inv(A)
of A. Ain =

-0.3310 -0.0592 0.1882

-0.0035 -0 .2111 0.3178

0.0174 0.0557 0.4111

140 Chapter 4 Solving a System of Linear Equations

Table 4-1: Built-in MATLAB functions for matrix operations and analysis. (Continued)

Function

d=det (A)

Description

Determinant of a matrix

A is a square matrix, d is the determi

nant of A.

n=norm (A) Vector and matrix norm

A is a vector or a matrix, n is its norm.

n=norm (A, p) WhenA is a vector:

norm (A, p) returns:

c=cond (A)

c=cond (A,p)

sum (abs (A . "p) " (1 Ip) .

p=inf The infinity norm (see Eq.

(4.70)).

norm (A) Returns the Euclidean 2-

norm (see Eq. (4.72)), same as

norm (A, 2).

When A is a matrix:

norm (A, p) returns:

p= 1 The 1-norm (largest column sum

of A (see Eq. (4.74)).

p=2 The largest singular value, same as

norm (A) (see Eq. (4.75)). This is not

the Euclidean norm (see Eq. (4.76)).

p=inf The infinity norm (see Eq.

(4.73)).

Condition number (see Eq. (4.86))

A is a square matrix, c is the condition

number of A.

cond (A) The same as p=2.

p=l The 1-norm condition number.

p=2 The 2-norm condition number.

p=inf The infinity norm condition

number.

Example

>> A=[-3 1 0.6; 0.2 -4 3; 0.1 0.5 2];

>> d=det(A)

d =

28.7000

>> A=[2 0 7 -9];

>> n=norm(A,l)

n =

18

>> n=norm(A,inf)

n =

9

>> n=norm(A,2)

n =

11.5758

>> A=[l 3 -2; 0 -1 4; 5 2 3];

>> n=norm(A,l)

n =

9

>> n=norm(A,2)

n =

6.4818

>> n=norm(A,inf)

n =

10

>> a=[9 -2 3 2; 2 8 -2 3; -3 2 11 -4;

-2 3 2 10);

>> cond(a,inf)

ans =

3.8039 I
See the end of

I Example 4-10.

4.9 Tridiagonal Systems of Equations 141

A11 A12 0 0 0 x1

A11 A12 A13 0 0 X2
0 A32 A33 A34 0 X3

0 0 A43 A44 A45 X4

Figure 4-22: Tridiagonal system
of five equations.

4.9 TRIDIAGONAL SYSTEMS OF EQUATIONS

Tridiagonal systems of linear equations have a matrix of coefficients
with zero as their entries except along the diagonal, above-diagonal,
and below-diagonal elements. A tridiagonal system of n equations in
matrix form is shown in Eq. (4.61) and is illustrated for a system of five
equations in Fig. 4-22.

A11 A12 0 0

A11 A12 A13 0

0 A31 A33 A34

0 0 0 0

0 0 0 0

0 0 0 0

0

0

0

An-2,n-3

0

0

0

0

0

An-2, n-2

0

0

0

An-2, n-1
An-I, n-2 An-1, n-1

0 An, n-1

0

0

0

0

An-1,n
An,n

Xn-2

Xn- 1

xn

B1

B2

B3

(4.61)

Bn-2

Bn- 1

Bn

The matrix of coefficients of tridiagonal systems has many elements
that are zero (especially when the system contains a large number of
equations). The system can be solved with the standard methods

(Gauss, Gauss-Jordan, LU decomposition), but then a large number of
zero elements are stored and a large number of needless operations
(with zeros) are executed. To save computer memory and computing
time, special numerical methods have been developed for solving tridi
agonal systems of equations. One of these methods, the Thomas algo

rithm, is described in this section.
Many applications in engineering and science require the solution

of tridiagonal systems of equations. Some numerical methods for solv

ing differential equations also involve the solution of such systems.

Thomas algorithm for solving tridiagonal systems

The Thomas algorithm is a procedure for solving tridiagonal systems of
equations. The method of solution in the Thomas algorithm is similar to

the Gaussian elimination method in which the system is first changed to
upper triangular form and then solved using back substitution. The
Thomas algorithm, however, is much more efficient because only the
nonzero elements of the matrix of coefficients are stored, and only the

necessary operations are executed. (Unnecessary operations on the zero
elements are eliminated.)

The Thomas algorithm starts by assigning the nonzero elements of

the tridiagonal matrix of coefficients [A] to three vectors. The diagonal

elements A;; are assigned to vector d (d stands for diagonal) such that

d; = A;;. The above diagonal elements A;, ;+J are assigned to vector a (a

stands for above diagonal) such that a; = A; ;+I• and the below diagonal

elements A;_1 ; are assigned to vector b (b stands for below diagonal),

142 Chapter 4 Solving a System of Linear Equations

such that b; = A;-i,;. With the nonzero elements in the matrix of coeffi

cients stored as vectors, the system of equations has the form:

d 1 a 1 0 0 0 0 0 0 X I B 1

b2 d2 a2 0 0 0 0 0 Xz B2

0 b3 d3 a3 0 0 0 0 X3 B3

(4.62)

0 0 0 0 bn-2 dn-2 an-2 0 xn-2 Bn-2

0 0 0 0 0 bn-1 dn-1 an-I Xn- 1 Bn- 1

0 0 0 0 0 0 bn dn xn Bn

It should be emphasized here that in Eq. (4.62) the matrix of coeffi

cients is displayed as a matrix (with the Os), but in the Thomas algo
rithm only the vectors b, d, and a are stored.

Next, the first row is normalized by dividing the row by d 1. This

makes the element d 1 (to be used as the pivot element) equal to 1:

1 a' I 0 0 0 0 0 0 X 1 B' I

bz dz az 0 0 0 0 0 Xz Bz

0 b3 d3 a3 0 0 0 0 X3 B3

(4.63)

0 0 0 0 bn-2 dn-2 an-2 0 xn-2 Bn-2

0 0 0 0 0 bn-1 dn-1 an-I Xn- 1 Bn- 1

0 0 0 0 0 0 bn dn xn Bn

where a' 1 = a 1/d 1 andB' 1 = B 1/d1.

Now the element b2 is eliminated. The first row (the pivot row) is

multiplied by b2 and then is subtracted from the second row:

1 a' I 0 0 0 0 0 0 X 1 B' I

0 d'2 a2 0 0 0 0 0 Xz B'2

0 b3 d3 a3 0 0 0 0 X3 B3

(4.64)

0 0 0 0 bn-2 dn-2 an-2 0 xn-2 Bn-2

0 0 0 0 0 bn-1 dn-1 an-I Xn- 1 Bn- 1

0 0 0 0 0 0 bn dn xn Bn

whered'2 = d2- b2a' 1,andB'2 = B2-B 1b2.

4.9 Tridiagonal Systems of Equations 143

The operations performed with the first and second row are

repeated with the second and third rows. The second row is normalized

by dividing the row by d' 2. This makes the element d' 2 (to be used as

the pivot element) equal to 1. The second row is then used to eliminate

b3 in the third row.

This process continues row after row until the system of equations

is transformed to be upper triangular with 1 s along the diagonal:

1 a' 1 0 0 0 0 0 0 X1 B' I

0 1 a' 2 0 0 0 0 0 X2 B" 2

0 0 1 a' 3 0 0 0 0 X3 B" 3

(4.65)

0 0 0 0 0 1 a'n- 2 0 Xn-2 B" n-2
0 0 0 0 0 0 1 a'n-1 Xn-1 B" n-1
0 0 0 0 0 0 0 1 xn B" n

Once the matrix of coefficients is in upper triangular form, the values of

the unknowns are calculated by using back substitution.

In mathematical form, the Thomas algorithm can be summarized in

the following steps:

Step 1: Define the vectors b = [O, b2, b3, .. ., bn] , d = [d1, d2, .. ., dn],

a = [a1, a2, • • ., an_1], and B = [B1, B 2, .. ., Bnl·

Step 2: Calculate: a1 =

a1 and B1 =

Bi.
d1 d1

Step 3: For i = 2, 3, .. ., n - 1, calculate:

B -b B 1 Step 4: Calculate: Bn =

n n n -
dn -bnan -1

Step 5: Calculate the solution using back substitution:

xn = Bn and fori = n - l,n - 2,n - 3, .. .,2, 1, X; = B;-a;X;+1

A solution of a tridiagonal system of equations, usmg a user

defined MATLAB function, is shown in Example 4-9.

144 Chapter 4 Solving a System of Linear Equations

Example 4-9: Solving a tridiagonal system of equations using the Thomas algorithm.

Six springs with different spring constants ki and

unstretched lengths Li are attached to each other

in series. The endpoint B is then displaced such

that the distance between points A and B is

L = 1.5 m. Determine the positions x1, x2, . • . , xs
of the endpoints of the springs.

The spring constants and the unstretched lengths

of the springs are:

spnng 1 2 3 4 5 6

k (kN/m) 8 9 15 12 10 18

L (m) 0.18 0.22 0.26 0.19 0.15 0.30

SOLUTION

The force, F, in a spring is given by:

F = ko

X5

L

where k is the spring constant and 8 is the extension of the spring beyond its unstretched length.

Since the springs are connected in series, the force in all of the springs is the same. Consequently, it

is possible to write five equations that equate the force in every two adjacent springs. For example,

the condition that the force in the first spring is equal to the force in the second spring gives:

k1(x1 -L1) = k2[(x2-x1)-L2]

Similarly, four additional equations can be written:

k2[(x2-x1)-L2] = k3[(x3-x2)-L3]

k3[(x3 -x2)-L3] = k4[(x4 -x3)-L4]

k4[(x4 -x3)-L4] = ks[(xs -x4) -Ls]

ks[(xs-x4)-Ls] = k6[(L-xs)-L6]

The five equations form a system that is tridiagonal. In matrix form the system is:

0 0 0

-k2 k2 + k3 -k3 0 0 x2 k2L2 - k3L3

0 -k3 k3 + k4 -k4 0 X3 k3L3 - k4L4 (4.66)

0 0 -k4 k4 +ks -ks x4 k4L4 - ksLs

0 0 0 -ks ks + k6 xs ksLs + k6L - k6L6

The system of equations (4.66) is solved with a user-defined MATLAB function Tridiagonal,
which is listed next.

(Program 4-9: User-defined function. Solving a tridiagonal system of equations. J

function x = Tridiagonal(A,B)

% The function solves a tridiagonal system of linear equations [a] [x]=[b]

% using the Thomas algorithm.

% Input variables:

4.9 Tridiagonal Systems of Equations

% A The matrix of coefficients.

% B Right-hand-side column vector of constants.

% Output variable:

% x A column vector with the solution.

[nR, nC]=size(A);

for i=l:nR

d(i)=A(i,i);

end

for i=l:nR-1

Define the vector d with the elements of the diagonal.

ad(i)=A(i,i+l);

end

Define the vector ad with the above diagonal elements.

for i=2:nR

bd(i)=A(i,i-1);

end

Define the vector bd with the below diagonal elements.

ad(l)=ad(l)/d(l);

B(l)=B(l)/d(l);

for i=2:nR-1

ad(i)=ad(i)/(d(i)-bd(i)*ad(i-1));

B(i)=(B(i)-bd(i)*B(i-1))/(d(i)-bd(i)*ad(i-1));

end

B(nR)=(B(nR)-bd(nR)*B(nR-1))/(d(nR)-bd(nR)*ad(nR - 1));

x(nR,l)=B(nR);

for i=nR-1:-1:1

x(i,l)=B(i)-ad(i)*x(i+l);

end

�
[Step4. J

�

145

Step 1.

The user-defined function Tridiagonal is next used in a script file program to solve the system in

Eq. (4.66).

% Example 4-9

kl=8000; k2=9000; k3=15000; k4=12000; k5=10000; k6=18000;

L=l.5; Ll=0.18; L2=0.22; L3=0.26; L4=0.19; L5=0.15; L6=0.30;

a=[kl + k2, -k2, 0, 0, O; -k2, k2+k3, -k3, 0, 0; 0, -k3, k3+k4, -k4, 0
0, 0, -k4, k4+k5, -k5; 0, 0, 0, -k5, k5+k6];

b=[kl*Ll-k2*L2; k2*L2-k3*L3; k3*L3-k4*L4; k4*L4-k5*L5; k5*L5+k6*L-k6*L6];

Xs=Tridiagonal(a,b)

When the script file is executed, the following solution is displayed in the Command Window.

Xs =
0.2262

- XI

0.4872
X2

0.7718
X3

0.9926
X4

1.1795
X5

-

>>

146 Chapter 4 Solving a System of Linear Equations

4.10 ERROR, RESIDUAL, NORMS, AND CONDITION
NUMBER

A numerical solution of a system of equations is seldom an exact solu
tion. Even though direct methods (Gauss, Gauss-Jordan, LU decompo
sition) can be exact, they are still susceptible to round-off errors when

implemented on a computer. This is especially true with large systems
and with ill-conditioned systems (see Section 4.11). Solutions that are
obtained with iterative methods are approximate by nature. This section
describes measures that can be used for quantifying the accuracy, or

estimating the magnitude of the error, of a numerical solution.

4.10.1 Error and Residual

If [x NS] is a computed approximate numerical solution of a system of n

equations [a][x] = [b] and [xrsl is the true (exact) solution, then the

true error is the vector:

(4.67)

The true error, however, cannot in general be calculated because the
true solution is not known.

An alternative measure of the accuracy of a solution is the residual

[r] , which is defined by:

[r] = [a][xrsl-[a][xNs] = [b]-[a][xNs] (4.68)

In words, [r] measures how well the system of equations is satisfied

when [x NS] is substituted for [x]. (This is equivalent to the tolerance in

f(x) when the solution of a single equation is considered. See Eq. (3.5)
in Section 3.2.) The vector [r] has n elements, and if the numerical solu

tion is close to the true solution, then all the elements of [r] are small. It

should be remembered that [r] does not really indicate how small the

error is in the solution [x]. [r] only shows how well the right-hand side

of the equations is satisfied when [xNs] is substituted for [x] in the orig

inal equations. This depends on the magnitude of the elements of the

matrix [a]. As shown next in Example 4-10, it is possible to have an
approximate numerical solution that has a large true error but gives a
small residual.

A more accurate estimate of the error in a numerical solution can be

obtained by using quantities that measure the size, or magnitude, of
vectors and matrices. For numbers, it is easy to determine which one is
large or small by comparing their absolute values. It is more difficult to

measure the magnitude (size) of vectors and matrices. This is done by a

quantity called norm, which is introduced next.

4.10 Error, Residual, Norms, and Condition Number 147

Example 4-10: Error and residual.

The true (exact) solution of the system of equations:

l.02x1 + 0.98x2 = 2

0.98x1 + l.02x2 = 2

is x1 = X2 = 1 .

Calculate the true error and the residual for the following two approximate solutions:

(a) XI= 1.02, X2 = 1.02 .

(b) X l = 2 , X2 = 0 .

SOLUTION

In matrix form, the given system of equations is [a][x] = [b], where [a]= li.o2 0-981 and [b]= 12
2
� .

lo.98 1.02J l �
The true solution is [xrs1 = rn.

The true error and the residual are given by Eqs. (4.67) and (4.68), respectively. Applying these

equations to the two approximate solutions gives:

(a) In this case [xNs1 = [1 ·021 . Consequently, the error and residual are:
1.02J

[e] = [xrs1-[xNs1 = [l] - [t .02] = [-o.o2l and
1 1.02 -o.02J

[r] = [b] -[a][xNs] = [b]-[a][xNs] = f2l _ li.02 0.981 [t .021
l2J lo.98 1.02J 1.02J

In this case, both the error and the residual are small.

[-0.041
-0.04j

(b) In this case, [xNs1 = [�] . Consequently, the error and residual are:

[e] = [Xrs]-[XNs] = rn -[�] = [-
1

1] and

[r] = [b]-[a][xNs1 = [b]-[a][xNs1= 121 _ li.02 0.981 121 = [-0.041 l2J lo.98 1.02J loJ o.o4 J
In this case, the error is large but the residual is small.

This example shows that a small residual does not necessarily guarantee a small error. Whether or

not a small residual implies a small error depends on the "magnitude" of the matrix [a].

148 Chapter 4 Solving a System of Linear Equations

4.10.2 Norms and Condition Number

A norm is a real number assigned to a matrix or vector that satisfies the

following four properties:

(i) The norm of a vector or matrix denoted by ll[a]ll is a positive quan

tity. It is equal to zero only if the object [a] itself is zero. In other words,

ll[a]ll � 0 and ll[a]ll = 0 only if [a]= 0. This statement means that all

vectors or matrices except for the zero vector or zero matrix have a pos

itive magnitude.

(ii) For all numbers a, lla[a]ll = lal ll[a]ll . This statement means that the

two objects [a] and [-a] have the same "magnitude" and that the mag

nitude of [1 Oa] is 10 times the magnitude of [a].
(iii) For matrices and vectors, ll[a][xJll :s; ll[a]ll ll[x]ll , which means that

the norm of a product of two matrices is equal to or smaller than the

product of the norms of each matrix.

(iv) For any two vectors or matrices [a] and [b],
ll[a + b]ll :s; ll[a]ll + ll[b]ll (4.69)

This statement is known as the triangle inequality because for vectors

[a] and [b] it states that the sum of the lengths of two sides of a triangle

can never be smaller than the length of the third side.

Any norm of a vector or a matrix must satisfy the four properties

listed above in order to qualify as a legitimate measure of its "magni

tude." Different ways of calculating norms for vectors and matrices are

described next.

Vector norms

For a given vector [v] of n elements, the infinity norm written as llvlLxi
is defined by:

llvll00 = maxlv;I
1 :s; i :s; n

(4.70)

In words, llvll00 is a number equal to the element v; with the largest

absolute value.

The 1-norm written as llvll 1 is defined by:

n

llvll1 = Llv;I (4.71)
i =I

In words, llvll 1 is the sum of the absolute values of the elements of the

vector.

The Euclidean 2-norm written as llvll2 is defined by:

llvll2 = (� vfr (4.72)

In words, II vii 2 is the square root of the sum of the square of the ele-

4.10 Error, Residual, Norms, and Condition Number

ments. It is also called the magnitude of the vector [v].
Matrix norms

The matrix infinity norm is given by:

149

(4.73)

In words, the absolute values of the elements in each row of the matrix

are added. The value of the largest sum is assigned to llalL,,.
The matrix 1-norm is calculated by:

(4.74)

It is similar to the infinity norm, except that the summation of the abso

lute values of the elements is done for each column, and the value of the

largest sum is assigned to llall 1.
The 2-norm of a matrix is evaluated as the spectral norm:

ll[a]ll = max(ll[a][v]ll) 2 II[v 111
(4.75)

where [v] is an eigenvector of the matrix [a] corresponding to an

eigenvalue 'A. (Eigenvalues and eigenvectors are covered in Chapter 5.)

The 2-norm of a matrix is calculated by MATLAB using a technique

called singular value decomposition, where the matrix [a] is factored

into [a]= [u][d][v], where [u] and [v] are orthogonal matrices (special

matrices with the property [ur1
= [uf), and where [d] is a diagonal

matrix. The largest value of the diagonal elements of [d] is used as the

2-norm of the matrix [a] .
The Euclidean norm for an m x n matrix [a]

from the 2-norm of a matrix) is given by:

(which is different

(m n) 112
ll[a]llEuclidean = LL ab

i � lj � I

(4.76)

Using norms to determine bounds on the error of numerical solutions

From Eqs. (4.67) and (4.68), the residual can be written in terms of the

error [e] as:

[r] = [a][xr81- [a][xNs] = [a]([xr81 - [xNsD = [a][e] (4.77)

If the matrix [a] is invertible (otherwise the system of equations does

not have a solution), the error can be expressed as:

[e] = [ar1[r] (4.78)

Applying property (iii) of the matrix norm to Eq. (4.78) gives:

150 Chapter 4 Solving a System of Linear Equations

From Eq. (4.77), the residual [r1 is:

[r1 = [a][e1
Applying property (iii) of the matrix norm to Eq. (4.80) gives:

ll[r111 = ll[a][e111 S ll[a1ll ll[e111
The last equation can be rewritten as:

lli:JJ1 s 11 [e 111 ll[a111

(4.79)

(4.80)

(4.81)

(4.82)

Equations (4.79) and (4.82) can be combined and written in the form:

ll[r111 s ll[e111 =II [ar1[r111 s ll[ar1ll ll[r111 (4.83)
ll[a111

To use Eq. (4.83), two new quantities are defined. One is the rela
tive error defined by II [e 1 II I II [x rs 1 II , and the second is the relative resid-

ual defined by ll[r1ll/ ll[b111. For an approximate numerical solution, the
residual can be calculated from Eq. (4.68). With the residual known,
Eq. (4.83) can be used for obtaining an upper bound and a lower bound
on the relative error in terms of the relative residual. This is done by
dividing Eq. (4.83) by ll[xrs1ll , and rewriting the equation in the form:

1 llbll ll[r111 < ll[e111 < ll[ar1ll ll[b111 ll[r111 (4 84)
ll[a111 ll[xrs1ll ll[b111 - ll[xrs1ll - ll[xrs1ll ll[b111

.

Since [a][xrs1 = [b1 , property (iii) of matrix norms gives:

ll[b1ll S II [a111 li[xrs1ll or -11 ll[b1ll
ll

S II [a111, and this means that II [a111 can be
[xrs1

substituted for -11 ll[b1ll
ll

in the right-hand side of Eq. (4.84). Similarly,
[xrs1

since [xrs1 = [ar1[b1, property (iii) of matrix norms gives

ll[xrs1ll s ll[ar1ll ll[b1ll or -
II

1
_11

s
-11 ll[b1ll

ll
' and this means that

1
-

1
1
_II [a1 1 [xrs1 [a1 1

can be substituted for -11 ll[b1ll
ll

in the left-hand side of Eq. (4.84). With [xrs1
these substitutions, Eq. (4.84) becomes:

1 ll[r111 < ll[e111 < II [ar1ll II [a111 II [r111 (4.85)
11 [a 11111 [a r1ll II [b 111 - ll[xrs1ll - II [b 111

Equation (4.85) is the main result of this section. It provides a means for
bounding the error in a numerical solution of a system of equations.

Equation (4.85) states that the true relative error, II
II [e 111

II (which is not
[xrs1

4.10 Error, Residual, Norms, and Condition Number 151

known), is bounded between
ii II

times the relative residual,
II [a]ll [ar1

1
1/ f�11

1
1
1 (lower bound), and II [ar1ll 1 1 [a]ll times the relative residual (upper

bound). The relative residual can be calculated from the approximate

numerical solution so that the true relative error can be bounded if the

quantity II [a]ll 11 [ar1ll (called condition number) can be calculated.

Condition number

The number ll[a]llll [ar1ll is called the condition number of the matrix

[a]. It is written as:

Cond[a] = ll[a]llll [ar1ll (4.86)

• The condition number of the identity matrix is 1. The condition

number of any other matrix is 1 or greater.

• If the condition number is approximately 1, then the true relative

error is of the same order of magnitude as the relative residual.

• If the condition number is much larger than 1, then a small relative

residual does not necessarily imply a small true relative error.

• For a given matrix, the value of the condition number depends on the

matrix norm that is used.

• The inverse of a matrix has to be known in order to calculate the
condition number of the matrix.

Example 4-11 illustrates the calculation of error, residual, norms, and

condition number.

Example 4-11: Calculating error, residual , norm and condition number.

Consider the following set of four equations (the same that was solved in Example 4-8).

9x1 - 2x2 + 3x3 + 2x4 = 54.5

2x1 + 8x2 - 2x3 + 3x4 = -14

-3x1 + 2x2 + llx3 - 4x4 = 12.5

- 2x1 + 3x2 + 2x3 + 10x4 = -21

The true solution of this system is x
1
= 5, x2 = -2 , x3 = 2.5, and x4 = -1. When this system was

solved in Example 4-8 with the Gauss-Seidel iteration method, the numerical solution in the sixth

iteration was x1=4.98805, x2 = -1.99511, x3 = 2.49806, and x4 =-1.00347.
(a) Determine the true error,[e], and the residual, [r].
(b) Determine the infinity norms of the true solution, [xrsL the error, [e], the residual, [r], and the

vector [b].

(c) Determine the inverse of [a], the infinity norm of [a] and [ar1, and the condition number of the

matrix [a].
(d) Substitute the quantities from parts (b) and (c) in Eq. (4.85) and discuss the results.

152 Chapter 4 Solving a System of Linear Equations

SOLUTION

First, the equations are written in matrix form:

54.5
-14
12.5
-21

(a) The true solution is Xrs = l�2
•

' and the approximate numerical solution is XNs = r���::�:l: . 2.5 2.49806
-1 -1.00347

Th . th [e] - [x] [x] - r�2J r���::5
°:1. - r-���:1 e error 1s en: - rs - Ns - - - .

2.5 2.49806 0.0019
-1 -1.00347 0.0035

The residual is given by Eq. (4.77) [r] = [a][e]. It is calculated with MATLAB (Command Win

dow):

>> a=[9 -2 3 2; 2 8 -2 3; -3 2 11 -4; -2 3 2 10];

>> e=[0.0119; -0.0049; 0.0019; 0.0035];
>> r=a*e

r =
0.13009000000000

-0.00869000000000
-0.03817000000000

0.00001000000000

(b) The infinity norm of a vector is defined in Eq. (4.70): llvlL,,= maxlvil . Using this equation to cal-l :::; i:::; n
culate infinity norm of the true solution, the residual, and the vector [b] gives:

llxrsll = maxlxrs;I = max[l5I, l-21, 12.51, l-11] = 5 00
1:::;;:::;4

llell00 = maxleil = max[I0.01191, l-0.00491, I0.00191, I0.00351] = 0.0119
1:::; i:::; 4

llr ll00 = maxjr;I = max[I0.130091, l-0.008691, l-0.038171, I0.000011] = 0.13009
1:::; i:::; 4

llb ll00 = maxlbil = max[l54.5I, l-141, 112.51, l-211] = 54.5
1:::; i:::; 4

(c) The inverse of [a] is calculated by using MATLAB's inv function (Command Window):

>> aINV=inv(a)
aINV =

0.0910 0.0386 -0. 0116 -0.0344

-0.0206 0 .1194 0.0308 -0.0194

0.0349 -0.0200 0.0727 0.0281

0.0174 -0.0241 -0.0261 0.0933

n

The infinity norms of [a] and [ar1 are calculated by using Eq. (4.73), ll[a]ll00 = �«� L laiJI : l_i_n.
I 1=

4.11 Ill-Conditioned Systems

n

ll[a]IL'°= �q� L laiJl=max[l9 l+l-21+131+121,121+181+1-21+131, l-31+121+1111+l-41,191+1-21+131+121] l_z_4 j=I

ll[a]IL'° = max[16, 15, 20, 16] = 20
n

ll [ar1lloo = �q� L la;J11 = max[I0.0911 + I0.03861 + l-0.01161 + l-0.03441, l-0.02061 + I0.11941 + l_1_4 j=I

10.03081 + 1-0.01941, 10.03491 + 1-0.021 + 10.01211 + 10.02811, 10.01141 + 1-0.02411 + 1-0.02611 + 10.09331 l
ll [ar1lloo = max[0.1756, 0.1902, 0.1557, 0.1609] = 0.1902
The condition number of the matrix [a] is calculated by using Eq. (4.86):

Cond[a] = ll[a]llll [ar1ll = 20 · 0.1902 = 3.804
(d) Substituting all the variables calculated in parts (b) and (c) in Eq.(4.85) gives:

1 ll[r]ll < ll[e]ll < ll [ar1ll ll[a]ll ll[r]ll
ll[a]ll 11 [ar1ll ll[b]ll - ll[xTslll - ll[b]ll

1 0.13009 < ll[e]ll < 3 804 0.13009
3.804 54.5 - ll[xTslll - · 54.5

-1- 0.002387 �

ll[e]ll
� 3.804 · 0.002387, or 6.275 x 10-4 �

ll[e]ll
� 0.00908 3.804 ll[xTslll ll[xTslll

153

These results indicate that the magnitude of the true relative error is between 6.275 x 10-4 and

0.00908. In this problem, the magnitude of the true relative error can be calculated because the true

solution is known.

The magnitude of the true relative error is:

ll[e]ll = o.ol19 = 0.00238, which is within the bounds calculated by Eq. (4.85).
ll[xTslll 5

4.11 ILL-CONDITIONED SYSTEMS

An ill-conditioned system of equations is one in which small variations

in the coefficients cause large changes in the solution. The matrix of

coefficients of ill-conditioned systems generally has a condition number

that is significantly greater than 1. As an example, consider the system:

6xl - 2X2 = 10
1 l.5x1 - 3.85x2 = 17

The solution of this system is:

x = a12b2 - a22b1 = -2·17 -(-3.85·10) = 4.5 = 45 1 a12a21 - aua22 -2·11.5 -(6·-3.85) 0.1

x2 = a21b1 -a11b2 = 11.5 · 10-(6 · 17) = Q = 130
a12a21 - a11a22 -2·11.5 -(6·-3.85) 0.1

If a small change is made in the system by changing a22 to 3.84,

6xl - 2X2 = 10
1 l.5x1 - 3.84x2 = 17

(4.87)

(4.88)

154

then the solution is:

Chapter 4 Solving a System of Linear Equations

Xi = a12h2 -a12h1 = -2 · 17 - (-3.84 · 10) = 4.4 = 110
a12a21 -all a22 -2 · 11.5 - (6 · -3.84) 0.04

x2
= a11h1 -allb2 = 11.5 · 10-(6 · 17) =!l_ = 325

a12a21 -all a22 -2 · 11.5 - (6 · -3.84) 0.04
It can be observed that there is a very large difference between the solu

tions of the two systems. A careful examination of the solutions of Eqs.

(4.87) and (4.88) shows that the numerator of the equation for x2 in

both solutions is the same and that there is only a small difference in the

numerator of the equation for x1• At the same time, there is a large dif

ference (a factor of2.5) between the denominators of the two equations.

The denominators of both equations are the determinants of the matri

ces of coefficients [a] .
The fact that the system in Eqs. (4.87) is ill-conditioned is evident

from the value of the condition number. For this system:

[a] = [6 -2 l and [ar' = [38.5 -201
11.5 -3.85J 115 -6oJ

Using the infinity norm, Eq. (4.73), the condition number for the system

IS:

Cond[a] = ll[a]llll [ar'll = 15.35 · 175 = 2686.25

Using the I-norm, Eq. (4.74), the condition number for the system is:

Cond[a] = ll[a]llll [ar'll = 17.5·153.5 = 2686.25
Using the 2-norm, the condition number for the system is (the norms

were calculated with MATLAB built-in norm (a, 2) function):

Cond[a] = ll[a]llll [ar'll = 13.6774 · 136.774 = 1870.7

These results show that with any norm used, the condition number of

the matrix of coefficients of the system in Eqs. (4.87) is much larger

than 1. This means that the system is likely ill-conditioned.

When an ill-conditioned system of equations is being solved

numerically, there is a high probability that the solution obtained will

have a large error or that a solution will not be obtained at all. In gen

eral, it is difficult to quantify the value of the condition number that can

precisely identify an ill-conditioned system. This depends on the preci

sion of the computer used and other factors. Thus, in practice, one needs

to worry only about whether or not the condition number is much larger

than 1, and not about its exact value. Furthermore, it might not be possi

ble to calculate the determinant and the condition number for an ill-con

ditioned system anyway because the mathematical operations done in

these calculations are similar to the operations required in solving the

system.

4.12 Problems 155

4.12 PROBLEMS

Problems to be solved by hand
Solve the following problems by hand. When needed, use a calculator, or write a MATLAB script file to

carry out the calculations. If using MATLAB, do not use built-in functions for operations with matrices.

4.1 Solve the following system of equations using the Gauss elimination method:

2x I + X2 -X3 = l

X1 + 2X2 + X3 = 8

-X I +x2- x3 = -5

4.2 Given the system of equations [a][x l � [b] , where a � [J
l
-f -: l x � t:l and b � [� �6]

determine the solution using the Gauss elimination method.

4.3 Consider the following system of two linear equations:
0.0003x1 + l.566x2 = l.569

0.3454x1 -2.436x2 = 1.018
(a) Solve the system with the Gauss elimination method using rounding with four significant figures.

(b) Switch the order of the equations, and solve the system with the Gauss elimination method using

rounding with four significant figures.

Check the answers by substituting the solution back in the equations.

4.4 Solve the following system of equations using the Gauss elimination method.

2x I + X2 -X3 + 2x4 = 0

x1 -2x2 + x3 - 4x4 = 3
3xl -X2-2X3-X4 = -3

-x1 + 2x2 + x3 -2x4 = 13

4.5 Solve the following system of equations with the Gauss elimination method.

2x1 + x2 - x3 + 4x4 = 19

-x1 -2x2 + x3 + 2x4 = -3

2x1+4x2 + 2x3 + x4 = 25

-X I +x2- x3-2x4 = -5

4.6 Solve the following system of equations using the Gauss-Jordan method.

4x1+x2+2x3 = 21

2x1 -2x2 + 2x3 = 8

x1 -2x2 + 4x3 = 16

4.7 Solve the system of equations given in Problem 4.2 using the Gauss-Jordan method.

156 Chapter 4 Solving a System of Linear Equations

4.8 Given the system of equations [a][x] = [b], where a = t� �5 �
21 , x = t:�j, and b = l;!l, deter-

6 2 4J X3 3�J
mine the solution using the Gauss-Jordan method.

4.9 Solve the following system of equations with the Gauss-Jordan elimination method.

4x1 + 3x2 + 2x3 + x4 = 17
2x1 - x2 + 2x3 - 4x4 = 11

X1 + 2x2-2X3 - X4 = 8

- 2x1 + 4x2 + 5x3 - x4 = 15

4.10 Determine the LU decomposition of the matrix a = l2 4 61 3 5 1
6 -2 2

using the Gauss elimination procedure.

4.11 Determine the LU decomposition of the matrix a = [� �� �;l using Crout's method.

4 1 0 2�J
4.12 Solve the following system with LU decomposition using Crout's method.

4.13 Find the inverse of the matrix [10° �2 �l using the Gauss-Jordan method.

2 4 �J

4.14 Given the matrix a = r-ol � -�) , determine the inverse of [a] using the Gauss-Jordan method.

0.5 1 -2 J
4.15 Carry out the first three iterations of the solution of the following system of equations using the

Gauss-Seidel iterative method. For the first guess of the solution, take the value of all the unknowns to be

zero.

8x1 + 2x2 + 3x3 = 51

2x1+5x2+x3 = 23

-3x1+x2+6x3 = 2 0

4.12 Problems 157

4.16 Carry out the first three iterations of the solution of the following system of equations using the

Gauss-Seidel iterative method. For the first guess of the solution, take the value of all the unknowns to be

zero.

4 0 1 0 1 X1 32

2 5 -1 1 0 X2 19

1 0 3 -1 0 X3 14

0 1 0 4 -2 X4 -2

1 0 -1 0 5 X5 41

4.17 Find the condition number of the matrix in Problem 4.13 using the infinity norm.

4.18 Find the condition number of the matrix in Problem 4.14 using the infinity norm.

4.19 Find the condition number of the matrix in Problem 4.13 using the 1-norm.

4.20 Find the condition number of the matrix in Problem 4.14 using the I-norm.

Problems to be programmed in MATLAB
Solve the following problems using the MATLAB environment. Do not use MATLAB s built-in functions for

operations with matrices.

4.21 Modify the user-defined function GaussPivot in Program 4-2 (Example 4-3) such that in each

step of the elimination the pivot row is switched with the row that has a pivot element with the largest

absolute numerical value. For the function name and arguments use x = GaussPivotLarge (a,b),

where a is the matrix of coefficients, b is the right-hand-side column of constants, and x is the solution.

(a) Use the Gaus sPi votLarge function to solve the system of linear equations in Eq. (4.17).

(b) Use the Gaus sPi votLarge function to solve the system:

0 3 8 -5 -1 6 X1 34

3 12 -4 8 5 -2 X2 20

8 0 0 10 -3 7 X3 45

3 1 0 0 0 4 X4 36

0 0 4 -6 0 2 X5 60

3 0 5 0 0 -6 x6 28

4.22 Write a user-defined MATLAB function that solves a system of n linear equations, [a][x] = [b],

with the Gauss-Jordan method. The program should include pivoting in which the pivot row is switched

with the row that has a pivot element with the largest absolute numerical value. For the function name and

arguments use x = Gauss Jordan (a, b), where a is the matrix of coefficients, bis the right-hand-side

column of constants, and x is the solution.

(a) Use the GaussJordan function to solve the system:

158 Chapter 4 Solving a System of Linear Equations

2x1+x2+4x3- 2x4 = 19

-3x1+4x2+2x3- x4 = 1

3x1 + 5x2 - 2x3 + x4 = 8

-2x1 + 3x2 + 2x3 + 4x4 = 1 3

(b) Use the GaussJordan function to solve the system:

1 2 3 4 5 6 X1 91

1 -3 2 5 -4 6 X2 37

6 1 -2 4 3 5 X3 63

3 2 -1 4 5 6 X4 81

4 -2 -1 3 6 5 X5 69

5 -6 -3 4 -2 1 x6 -4

4.23 Write a user-defined MATLAB function that decomposes an n x n matrix [A] into a lower triangular

matrix [L] and an upper triangular matrix [U] (such that [A] = [L][U]) using the Gauss elimination

method (without pivoting). For the function name and arguments, use [L, UJ = LUdecompGauss (A),

where the input argument A is the matrix to be decomposed and the output arguments L and U are the cor
responding upper and lower triangular matrices. Use LUdecompGaus s to determine the LU decomposi
tion of the following matrix:

4 -1 3 2

-8 0 -3 -3.5

2 -3.5 1 0 3.75

-8 -4 1 -0.5

4.24 Write a user-defined MATLAB function that determines the inverse of a matrix using the Gauss-Jor
dan method. For the function name and arguments use Ainv =Inverse (A), where A is the matrix to be
inverted, and Ainv is the inverse of the matrix. Use the Inverse function to calculate the inverse of:

(a) The matrix r�l � -�1 . (b) The matrix 1-/ -1

2

�4 �21 .
1 -2 -4 -2

0.2 1 0.5
2 -4 1 -2

4.25 Write a user-defined MATLAB function that calculates the 1-norm of any matrix. For the function
name and arguments use N = OneNorm (A), where A is the matrix and N is the value of the norm. Use the
function for calculating the 1-norm of:

(a) The matrix A = l-1

2 �2 � l
0 1 -l.5J

4 -1 0 1 0

-1 4 -1 0 1
(b) The matrix B = o -1 4 -1 o

1 0 -1 4 -1

0 1 0 -1 4

4.12 Problems 159

4.26 Write a user-defined MATLAB function that calculates the infinity norm of any matrix. For the func

tion name and arguments use N = Infini tyNorm (A), where A is the matrix, and N is the value of the

norm. Use the function for calculating the infinity norm of:

(a) The matrix A = r-12 !2 � l.
o 1 -l.5J

4 -1 0 1 0
-1 4 -1 0 1

(b) The matrix B = o -1 4 -1 o
1 0 -1 4 -1
0 1 0 -1 4

4.27 Write a user-defined MATLAB function that calculates the condition number of an (n x n) matrix by

using the 1-norm. For the function name and arguments use c = CondNumb _One (A), where A is the

matrix and c is the value of the condition number. Within the function, use the user-defined functions

Inverse from Problem 4.24 and OneNorm from Problem 4.25. Use the function CondNumb One for

calculating the condition number of the matrices in Problem 4.25.

4.28 Write a user-defined MATLAB function that calculates the condition number of an (n x n) matrix by

using the infinity norm. For the function name and arguments use c = CondNumb _Inf (A), where A is

the matrix and c is the value of the condition number. Within the function, use the user-defined functions

Inverse from Problem 4.24 and Infini tyNorm from Problem 4.26. Use the function

CondNumb _Inf for calculating the condition number of the matrices in Problem 4.25.

Problems in math, science, and engineering
Solve the following problems using the MATLAB environment. As stated, use the MATLAB programs that
are presented in the chapter, programs developed in previously solved problems, or MATLAB s built-in
functions.

4.29 In a Cartesian coordinate system the equation of a circle with its

center at point (a, b) and radius r is:

(x-a)2+(y-b)2 = r2

Given three points, (-1,3.2), (-8,4), and (-6.5,-9.3), determine the

equation of the circle that passes through the points.

Solve the problem by deriving a system of three linear equations (substi

tute the points in the equation) and solve the system.
(a) Use the user-defined function Gauss Pi votLarge developed in Problem 4.21.

(b) Solve the system of equations using MATLAB's left division operation.

4.30 In a 3D Cartesian coordinate system the equation of a plane is:

ax+ by+cz = d

Y'

Given three points, (2, -3, -2) , (5, 2, 1), and (-1, 5, 4), determine the equation of the plane that passes

through the points.

160 Chapter 4 Solving a System of Linear Equations

4.31 Three masses, m1 = 2 kg, m2 = 3 kg, and m3 = 1.5 kg, are attached to

springs, k1 = 30 Nim, k2 = 25 Nim, k3 = 20 Nim, and k4 = 15 Nim, as k,
shown. Initially the masses are positioned such that the springs are in their nat-
ural length (not stretched or compressed); then the masses are slowly released
and move downward to an equilibrium position as shown. The equilibrium
equations of the three masses are:

(k1 + k1 + k3)u1 -k3u2 = m1g

-k3u1 + (k3 + k4)u2 -k4u3 = m2g

-k4u2 + k4u3 = m3g

where u1, u2, and u3 are the relative displacement of each mass as shown. Determine the displacement of

the three masses. (g = 9.81 ml s2)

4.32 The axial force F; in each of the 13-member pin

connected truss, shown in the figure, can be calculated
by solving the following system of 13 equations:

F2+0.707 F1 = 0, F3-0.707 F1-2000 = 0

0.7071 F1+F4+6229 = 0 , -F2 + 0.659F5 + F6 = 0

-F4-0.753F5-600 = 0, - F3-0.659F5+F7 = 0

0.753F5 + F8 = 0 , - F6 + 0.659F9 + F10 = 0

-F8-0.753F9-800 = 0, -F7-0.659F9+F11 = 0

0.753F9+F12-2429 = 0 , - F10+0.707 F13 = 0

-F12 -0.7071 F13 -600 = 0

2000N

(a) Solve the system of equations using the user-defined function Gauss Pi votLarge developed in
Problem 4.21.

(b) Solve the system of equations using Gauss-Seidel iteration. Does the solution converge for a starting
(guess) vector whose elements are all zero?

(c) Solve the system of equations using MATLAB 's left division operation.

4.33 A particular dessert consists of 2 lb of bananas, 3 lb of strawberries, 3 lb of cherries, and 4 lb of fro
zen yogurt. If the cost of the entire batch of this dessert is to be no more than $20 (in order to yield an

acceptable profit), what must the cost of each ingredient be (per pound) if the strawberries cost twice as
much as the cherries, and the cherries cost $1 per pound less than the frozen yogurt, and the frozen yogurt
costs as much as half a pound of cherries and 4 pounds of bananas? (Hint: Set up a system of four equa
tions where the unknowns are the cost (per pound) of the bananas (x1), the cost (per pound) of the straw

berries (x2), the cost (per pound) of the cherries (x3), the cost (per pound) of the frozen yogurt (x4), and

use the fact that all the ingredient costs have to add up to $20.)

4.12 Problems 161

4.34 A particular chemical substance is produced from three different ingredients A, B, and C, each of

which have be dissolved in water first before they react to form the desired substance. Suppose that a solu-

tion containing ingredient A at a concentration of 2 g/cm3 is combined with a solution containing ingredi

ent B at a concentration of 3.6 g/cm3 and with a solution containing ingredient C at a concentration of 6.3

g/cm3 to form 25.4 g of the substance. If the concentrations of A, B, and C in these solutions are changed to

4 g/cm3, 4.3 g/cm3, and 5.4 g/cm3, respectively (while the volumes remain the same), then 27.7 g of the

substance is produced. Finally, if the concentrations are changed to 7.2, 5.5, and 2.3 g/cm3, respectively,

then 28.3 g of the chemical is produced. Find the volumes (in cubic centimeters) of the solutions contain

ing A, B, and C.

4.35 Mass spectrometry of a sample gives a series of peaks that represent various masses of ions of con

stituents within the sample. For each peak, the height of the peak l; is influenced by the amounts of the

various constituents:

where CiJ is the contribution of ions of species i to the height of peak}, and n j is the amount of ions or con

centration of species}. The coefficients Cij for each peak are given by:

Peak Species
identity

CH4 C2H4 CzH6 C3H6 C3H8

1 2 0.5 0 2. 4 0.2

2 18 4 0.3 0.2 0.1

3 18 10 0 15

4 12 0 1

5 10 2

6 10

If a sample produces a mass spectrum with peak heights, 11 = 30.5 , 12= 71.5, 13 = 354.8 , 14 = 180 ,

l 5 = 100 , and l 6 = 36. 9 , determine the concentrations of the different species in the sample.

4.36 The axial force F; in each of the 21 member pin connected truss,

shown in the figure, can be calculated by solving the following system

of 21 equations:

-FI -0.342 F 3 = 0 '

F5 + 0.342 F3 = 0 ,

-F5 - 0.7071F7 = 0 ,

0.94 F3 + F4 -54000 = 0

F6- F2 -0.94 F3 = 0

F8 + 0.707F7- F4 = 0

0.707 F9+0.707 F5-0.5Fu- F12 =O

-F6-0.707 F7+0.7071 F9+0.866Fu = 0

-F10-0.707 F9+2000 = 0 , -F8-0.707 F9 = 0

F 10 + 0.5F u -0.5F 13 - F 14 = 0 , -0.866F u -0.866F 13 -5000 = 0

162 Chapter 4 Solving a System of Linear Equations

F 12+0.5F13 -0.5F 15 -F 16 = 0 , 0.866F 13 + 0.866F 15 -6000 = 0

F16+0.5F17 =0 , F14+
0.5F15-0.5F17 =0, -0.866F15-0.866F17 = 0

(a) Solve the system of equations using the user-defined function GaussJordan developed in Problem
4.22.

(b) Solve the system of equations using MATLAB 's left division operation.

4.37 A bridge is modeled by a rigid horizontal bar supported
by three elastic vertical columns as shown. A force

P = 40 kN applied to the rigid bar at a distance d from the
end of the bar represents a car on the bridge. The forces in
columns F AB, Fen, and F GF can be determined from the

solution of the following system of three equations:

F AB+ F CD+ F GF = -P, lOF AB+ 28F CD+ 40F GF = -d · P

12FABLAB-30FcnLcn+ 18FcFLGF = 0

�p
I "=

·-

lii
Lev

B

.r
1. ism

� �
D F

LGF

�I
- �

12m GI lOm

Once the force in each of the column is known, its elongation o can be determined with the formula

o =
FL , where E andA are the elastic modulus and the cross-sectional area of each of the columns.
EA

Write a MATLAB program in a script file that determines the forces in the three columns and their elonga-

tion for O ::;; d ::;; 50 m. The program displays the three forces as a function of din one plot, and the elonga
tion of the three columns as a function of din a second plot (two plots on the same page). Also given:

LAB = 12 m, Len = 8 m, LcF = lOm, E = 70 GPa, and A = 25 · 10
- 4 m2.

4.38 A food company manufactures the five types of 1.0 lb trail mix packages that have the following
composition and cost:

Mix Peanuts (lb) Raisins (lb) �lmonds (lb) Chocolate Dried Plums Total Cost of
Chips (lb) (lb) Ingredients ($)

A 0.2 0.2 0.2 0.2 0.2 1.44

B 0.35 0.15 0.35 0 0.15 1.16

c 0.1 0.3 0.1 0.1 0.4 1.38

D 0 0.3 0.1 0.4 0.2 1.78

E 0.15 0.3 0.2 0.35 0 1.61

Using the information in the table, determine the cost per pound of each of the ingredients. Write a system
of linear equations and solve by using the following methods.
(a) Use the user-defined function GaussJordan that was developed in Problem 4.22.
(b) Use MATLAB's built-in functions.

4.12 Problems

4.39 The currents, it> i2, i3, i4, i5, 1n the circuit that is

shown can be determined from the solution of the follow
ing system of equations. (Obtained by applying Kirch
hoff's law.)

9.5i1 -2.5i2 -2i4 = 12 '

-2.5i1 + lli2-3.5i3-5i5 = -16

-3.5i2+ 15.5i3-4i5 = 14 ' -2i1 +7i4-3i5 = 10

-5i2 -4i3 -3i4 + 12i5 = -30
Solve the system using the following methods.
(a) Use the user-defined function Gaus sJordan that

was developed in Problem 4.22.
(b) Use MATLAB's built-in functions.

163

3.sn

0 sn

40

30V

4.40 When balancing the following chemical reaction by conserving the number of atoms of each element
between reactants and products:

P214 + aP4 + bH20 !:; cPH41 + dH3P04

the unknown stoichiometric coefficients a, b, c, and dare given by the solution of the following system of
equations:

1-�4 �2 H 1�11�1 0 -1 0 4 d 0
Solve for the unknown stoichiometric coefficients using
(a) The user-defined function Gaus sJordan that was developed in Problem 4.22.
(b) MATLAB's left division operation.

4.41 A certain chemical engineering process application
(see figure) involves three chemical reactors A, B, and C.
At steady state, the concentrations of a particular species n

in each reactor has the values x A , x 8, and xe in units of

mg/m3. If the flow rates from reactor i (A, B, or C) to reac

torj (A, B, or C) is denoted as QiJ (units of m3/s), then the

mass flow rate of species n from reactor i to reactor j is
xiQiJ (units of mg/s). Since this chemical species is con-

served (i.e., neither produced nor destroyed) conservation of mass (of the species) for each reactor must

hold. For the process shown in the figure, QAB = 40 m3/s, QAc = 80 m3/s, Q8A = 60 m3/s,

Q8e = 20 m3/s, Qeout = 150 m3/s, mCin = 195 mg/s, and mAin = 1320mg/s. Write down the mass con

tinuity equations for each reactor and solve them to find the concentrations x A, x 8, and xe in each reactor.

164 Chapter 4 Solving a System of Linear Equations

4.42 When balancing the following chemical reaction by conserving the number of atoms of each element

between reactants and products:

(Cr(N2H4C0)6)4(Cr(CN)6)3 + aKMn04 + bH2S04 �

cK2Cr207 + dMnS04 + eC02 + fKN03 + gK2S04 + hH02
the unknown stoichiometric coefficients a through h are given by the solution of the following system of

equations:

0 0 2 00000 a 7

0 0 000100 b 66

0 -2 0 0 0 0 0 2 c 96

0 0 001000 d 42

-4 -4 7 4 2 3 4 1 e 24

-1 0 2 0 0 1 2 0 f 0

-1 0 0 1 0 0 0 0 g 0

0 -1 0 1 0 0 1 0 h 0

Solve for the unknown stoichiometric coefficients using

(a) The user-defined function Gaus sJordan that was developed in Problem 4.22.

(b) MATLAB's left division operation.

4.43 Traffic congestion is encountered at the intersections

shown in the figure. All the streets are one-way and in the

directions shown. In order for effective movement of traffic, it

is necessary that for every car that arrives at a given comer,

another car must leave so that the number of cars arriving per

unit time must equal the number of cars leaving per unit time.

Traffic engineers gather the following information:

• 600 cars per hour come down Amsterdam Ave. to intersec

tion #1 and 300 cars per hour enter intersection #1 on 10sth

St.

_____.I t .__I _ ___.I t I.____
- @ Amsterdam Ave.(D -

�ti ltC
- @ Columbus Ave. @ -

I t I I t I

• 650 cars per hour leave intersection #2 along Amsterdam Ave. and 50 cars per hour leave intersection

#2 along 107th St.

• 350 cars per hour come up Columbus Ave. to intersection #3 and 50 cars per hour enter intersection #3

along 107th St.

• 400 cars per hour leave intersection #4 along Columbus Ave. and 300 cars per hour enter intersection #4

from 108th St.

Find n1 , n2, n3, and n4, where n1 denotes the number of cars traveling per hour along Amsterdam Ave.

from intersection #1 to intersection #2, n2 denotes the number of cars traveling per hour along 107th St.

from intersection #3 to intersection #2, n3 denotes the number of cars traveling per hour along Columbus

Ave. from intersection #3 to intersection #4, and n4 denotes the number of cars traveling per hour along

108th St. from intersection #1 to intersection #4.

Chapters

Eigenvalues and Eigenvectors

Core Topics

The characteristic Equation (5.2)

Basic power method (5.3).

Inverse power method (5.4).

5.1

Shifted power method (5.5).

QR factorization and iteration method (5.6).

Use of MATLAB's built-in functions for determining

eigenvalues and eigenvectors (5.7).

BACKGROUND

For a given (n x n) matrix [a] , the number 'A is an eigenvalue 1 of the

matrix if:

[a][u] = 'A[u] (5.1)

The vector [u] is a column vector with n elements called the eigenvec

tor, associated with the eigenvalue 'A .
Equation (5.1) can be viewed in a more general way. The multipli

cation [a] [u] is a mathematical operation and can be thought of as the

matrix [a] operating on the operand [u]. With this terminology, Eq.

(5 .1) can be read as " [a] operates on [u] to yield 'A times [u] ," and Eq.

(5.1) can be generalized to any mathematical operation as:

Lu = 'Au (5.2)

where L is an operator that can represent multiplication by a matrix, dif

ferentiation, integration, and so on, u is a vector or function, and 'A is a

scalar constant. For example, if L represents second differentiation with

respect to x, y is a function of x, and k is a constant, then Eq. (5.2) can

have the form:

(5.3)

Equation (5.2) is a general statement of an eigenvalue problem,

where 'A is called the eigenvalue associated with the operator L, and u is

1. The word eigenvalue is derived from the German word eigenwert, which means
"proper or characteristic value."

165

166 Chapter 5 Eigenvalues and Eigenvectors

the eigenvector or eigenfunction corresponding to the eigenvalue 'A and
the operator L.

Eigenvalues and eigenvectors arise in numerical methods and have
special importance in science and engineering. For example, in the
study of vibrations, the eigenvalues represent the natural frequencies of
a system or component, and the eigenvectors represent the modes of
these vibrations. It is important to identify these natural frequencies
because when the system or component is subjected to periodic external
loads (forces) at or near these frequencies, resonance can cause the
response (motion) of the structure to be amplified, potentially leading to
failure of the component. In mechanics of materials, the principal
stresses are the eigenvalues of the stress matrix, and the principal direc
tions are the directions of the associated eigenvectors. In quantum
mechanics, eigenvalues are especially important. In Heisenberg's for
mulation of quantum mechanics, there exists an operator L correspond
ing to every observable quantity (i.e., any quantity that can be measured
or inferred experimentally such as position, velocity, or energy). This
operator L operates on an operand '¥ called the wave function, and if the
result is proportional to the wave function-, if L'I' = c'I' ,-then the
value of the observable, c, is the eigenvalue and is said to be certain
(i.e., can be known very precisely). In other words, the eigenvalues c

corresponding to the observable are those values of the observable that
have a nonzero probability of occurring (and therefore being observed).
Examples of such operators from quantum mechanics are
ih B'I'

=
E'I', where ih .£() is the energy operator andE is the energy;

27t Bt 21tBt
h-7

-7 h h-7
. h d7' -i-V'I' = p'I', w ere -i-V() is t e momentum operator an p is

27t 27t

the linear momentum, where i = H and his Planck's constant. The
eigenvectors, also known as eigenstates, represent one of many states in
which an object or a system may exist corresponding to a particular
eigenvalue.

There is a link between eigenvalue problems involving differential
equations and eigenvalue problems involving matrices (5.1), which are
the focus in this section. Numerical solution of eigenvalue problems
involving ordinary differential equations (ODEs) results in systems of
simultaneous equations of the form (5.1). In other words, numerical
determination of the eigenvalues in a problem involving an ODE
reduces to finding the eigenvalues of an associated matrix [a] , resulting
in a problem of the form (5.1).

Beyond the physical importance of eigenvalues in science and engi
neering, the eigenvalues of a matrix can also provide useful information
about its properties in numerical calculations involving that matrix.
Section 4. 7 showed that the Jacobi and Gauss-Seidel iterative methods
can be written in the form of:

5.2 The Characteristic Equation

x(k+ l) = b'. - [a] x(k)
l I l

167

It turns out that whether or not these iterative methods converge to a
solution depends on the eigenvalues of the matrix [a]. Moreover, how
quickly the iterations converge depends on the magnitudes of the eigen
values of [a].

5.2 THE CHARACTERISTIC EQUATION

Determination of the eigenvalues of a matrix from Eq. (5 .1) is accom
plished by rewriting it in the form:

[a-AI][u] = 0 (5 .4)

where [/] is the identity matrix with the same dimensions as [a]. When
written in this homogeneous form, it can be seen that if the matrix

[a -AI] is nonsingular (i.e., if it has an inverse), then multiplying both

sides of Eq. (5 .4) by [a -AI r
1

yields the trivial solution [u] = 0 . On

the other hand, if [a -'AI] is singular, that is, if it does not have an

inverse, then a nontrivial solution for [u] is possible. Another way of
stating this criterion is based on Cramer's rule (see Chapter 2): the

matrix [a -AI] is singular if its determinant is zero:

det[a-'AJ] = 0 (5 .5)

Equation (5 .5) is called the characteristic equation. For a given matrix
[a], it yields a polynomial equation for 'A, whose roots are the eigen

values. Once the eigenvalues are known, the eigenvectors can be deter
mined. This is done by substituting the eigenvalues (one at a time) in

Eq. (5 .1) and solving the equation for [u]. For a small matrix [a]

((2 x 2) or (3 x 3)), the eigenvalues can be determined directly by cal

culating the determinant and solving for the roots of the characteristic
equation. This is shown in Example 5-1 where the eigenvalue problem
approach is used for calculating the principal moments of inertia and
the directions of the principal axes of an asymmetric cross-sectional
area.

Determining the eigenvalues of larger matrices is more difficult.
Various numerical methods for solving eigenvalue problems have been
developed. Two of them, the power method and the QR factorization
method, are described next.

5.3 THE BASIC POWER METHOD

The power method is an iterative procedure for determining the largest
real eigenvalue and the corresponding eigenvector of a matrix. Consider

an (n x n) matrix [a] that has n distinct real eigenvalues 'A 1, 'A2, . • . ,'A n

and n associated eigenvectors [u]1, [uh, ... , [u]n. The eigenvalues are

168 Chapter 5 Eigenvalues and Eigenvectors

Example 5-1: Principal moments of inertia.

Determine the principal moments of inertia and the orientation of the
principal axes of inertia for the cross-sectional area shown.

The moment of inertia Ix, IY , and the product of inertia Ixy are:

y
l

r-1-°
mm

3mm
r______, Ix = 10228.5 mm4, IY = 1307.34 mm4, and Ixy = -2880 mm4

SOLUTION
0 '+----+--+-x

In matrix form, the two-dimensional moment of inertia matrix is
given by:

[Ix -Ixyj finer = -J J xy y
[10228.5 2880 l

2880 1307.3�
(5.6)

The principal moments of inertia and the orientation of the principal

axes of inertia can be calculated by solving the following eigenvalue problem:

[Ilner][u] = A.[u]

21mm

...______..___, J
.....__ _ ___. 3mm

�Om�l

(5.7)
where the eigenvalues A. are the principal moments of inertia and the associated eigenvectors [u]
are unit vectors in the direction of the principal axes of inertia. The eigenvalues are determined by
calculating the determinant in Eq. (5.5):

(5.8)

deJ< 10228.5 -A.) 2880 J = o
l 2880 (1307.34 -A.)

(5.9)

The polynomial equation for A. is:

(10228.5-A.)(1307.34-A.)- 2880
2

= 0 or A.
2
- 11535.84A.+5077727.19 = 0 (5.10)

The solutions of the quadratic polynomial equation are the eigenvalues A.
1

= 11077.46 mm4 and

A.2 = 458.38 mm4, which are the principal moments of inertia.

The eigenvectors that correspond to each eigenvalue are calculated by substituting the eigenvalues in

Eq. (5.7). For the first eigenvector uC1>:

[10228.5 2880 l f uP� = 11077.46 [up� or
2880 1307.3� lu� I� u� I�

[-848.96 2880] f uP� _ lol
2880 -9770.12 lu�1� LoJ

(5.11)

The two equations in Eqs. (5.11) give u�1) = 0.29478up>. By using the additional condition that the

eigenvector in this problem is a unit vector, (u\1))
2
+ (u�1>)

2
= 1, the eigenvector associated with the

first eigenvalue, A.
1

= 11077,is determined to beuC1> = 0.95919i+0.28275j.

For the second eigenvector uC2>:

[10228.5 2880 l f uF� = 458.38 f uF� or
2880 1301.3� �F� lu�2�

19770.12 2880 l f u\2�
l 2880 848.96j lu�2� [�] (5.12)

5.3 The Basic Power Method 169

The two equations in Eqs. (5.12) give u�2) = -3.3924uF). By using the additional condition that the

eigenvector is a unit vector, (u\2))2 + (u�2))2
= 1, the eigenvector associated with the second eigen

value, A.2 = 458.38, is determined to be uC1) = - 0.28275i + 0.95919 j.

numbered from the largest to the smallest such that

l"-11 > l"-21 > · · · > l"-nl (5.13)

Since the eigenvectors are linearly independent, they are a set of basis

vectors. This means that any vector, belonging to the same space (i.e.,

group) as the eigenvectors, can be written as a linear combination of the

basis vectors. Suppose that [x] is a column vector in the same space as

the eigenvectors. Then any vector [x] in the same space as the eigen

vectors [u]i, [uh, ... , [u]n can be expressed as a linear combination of

the eigenvectors:

[x] = c1[u]1 + c2[u]i + ... + cn[u]n (5.14)

where the ci';eO are scalar constants. Let [x]1 = [x]. Multiplying Eq.

(5.14) by [a] yields:

[a][x]i = c1[a][u]1 +c2[a][u]i + ... +cn[a][u]n = A.1c1[xh (5.15)

(5.16)

(5.16)

(5.17)

(5.18)

Recall that A.1 is the largest eigenvalue (see Eq. (5.13)), which means

170 Chapter 5 Eigenvalues and Eigenvectors

that A; < 1 for all i > 1 . Thus, when k is sufficiently large, all the terms
'A1

on the right-hand side ofEq. (5.18) that contain (";r can be neglected
'A1

relative to the term [u] 1 so that:

(5.19)

Equation (5.19) shows that the vector [xh that is obtained from Eq.

(5.18) is [u]1 (the eigenvector). When the power method is imple

mented, the vector [x h is normalized at each step by dividing the ele

ments of the vector by the value of the largest element (see Eq. (5.14)
through Eq. (5.18)). This makes the largest element of the vector equal
to 1. It is because of this scaling at each step that the power method
yields the eigenvalue and associated eigenvector simultaneously.

A numerical procedure for determining the largest eigenvalue of a

(n x n) matrix [a] with the power method is given in the following
algorithm.

Algorithm for the power method

1. Start with a column eigenvector [x]; oflength n. The vector can be

any nonzero vector.

2. Multiply the vector [x]; by the matrix [a]. The result is a column

vector [x];+1, [x];+i =
[a][x];.

3. Normalize the resulting vector [xL+ 1• This is done by factoring out

the largest element in the vector. The result of this operation is a
multiplicative factor (scalar) times a normalized vector. The nor
malized vector has the value 1 for the element that used to be the
largest, while the absolute values of the rest of the elements are less
than 1.

4. Assign the normalized vector (without the multiplicative factor) to

[x]; and go back to 1.
The iterations continue in this manner until the difference between the

vector [x]; and the normalized vector [x]; + 1 is less than some specified

tolerance. The difference can be measured in different ways. One possi
bility is to use the infinity norm (see Section 4.10.2):

ll[x];+ 1 - [x];jl00::::; Tolerance (5.20)

The last multiplicative factor is the largest eigenvalue, and the normal

ized vector is the associated eigenvector.
Example 5-2 illustrates how the power method works.

5.3 The Basic Power Method 171

Example 5-2: Using the power method to determine the largest eigenvalue of a matrix.

Determine the largest eigenvalue of the following matrix:

[4 2 -2] -2 8 1 2 4 -4
Use the power method and start with the vector x = [1, 1, 1{.
SOLUTION

(5.21)

Starting with i = 1 , x 1 = [1, 1, 1 { . With the power method, the vector [x h is first calculated by

[x]z = [a][x]i (Step 2) and is then normalized (Step 3):

[x], = [a][x]1 =

[-: ! � [� =

[� - [0.57141 - 7 1 0.2857 (5.22)

For i = 2, the normalized vector [x]z (without the multiplicative factor) is multiplied by [a]. This

results in [x h , which is then normalized:

[4 2 -2] [0.5714] - [3.71431 - [0.52]
[xh = [a][x]z = -2 8 1 1 - 7.1429 - 7.1429 1 2 4 -4 0.2857 4 0.56

The next three iterations are:

i = 3:

i = 4:

i = 5:

[x]4 = [a][xh = r-� � -121 [0.:21 = r�:��l = 7.52 [0.3�361 2 4 _J 0.56J 2.8J 0.3723J
[4 2 -2: [0.3936] [2.8298] [0.373 ll

[x]5 = [a][x]4 = -2 8 1 1 = 7.5851 = 7.5851 1 2 4 -4 0.3723 3.2979 0.4348
[4 2 -2: [0.3731] [x]6 = [a][x]5 = -2 8 1 1 2 4 -4 0.4348

l2.6227j [0.34111
= 7.6886 = 7.6886 1 3.0070 0.3911

After three more iterations, the results are:

i = 8 [4 2 -2J [0.32721 r2.51971 r0.32551 [x]9 = [a][x]g = -2 8 1 1 = 7.7401 = 7.7401 1 2 4 -4 0.3946 3.0760 0.3974

(5.23)

(5.24)

(5.25)

(5.26)

(5.27)

The results show that the differences between the vector [x;] and the normalized vector [x;+ i] are

getting smaller. The value of the multiplicative factor (7. 7401) is an estimate of the largest eigen
value. As shown in Section 5.5, a value of 7.7504 is obtained for the eigenvalue by MATLAB's
built-in function eig.

172 Chapter 5 Eigenvalues and Eigenvectors

Convergence of the power method

The power method generally converges very slowly, unless the starting

vector [x] is close to the eigenvector [u] 1 . It can be seen from Eq.

(5.18) that the ratio of the two largest eigenvalues determines how

quickly the power method converges to an answer. A problem can arise

when the starting vector [x] is such that the value of c1 in Eq. (5.14) is

zero. This means that [x] has no components in the direction of the cor

responding eigenvector [u] 1 • Theoretically, the power method in this

case will fail. In practice, however, the method can still converge (very

slowly) because the accumulation of round-off errors during the

repeated multiplication with the matrix [a] will produce components in

the direction of [u] 1 •

When can the power method be used?

The power method can be used under the following conditions:

• Only the largest eigenvalue is desired.

• The largest eigenvalue cannot be a repeated root of the characteristic

equation. In other words, there cannot be other eigenvalues with the

same magnitude as the largest eigenvalue.

• The largest eigenvalue must be real. This is also implied from the

bullet above, because if the largest eigenvalue is complex, then the

complex conjugate is also an eigenvalue, which means that there are

two eigenvalues with the same magnitude.

Additional note on the power method

The matrix for which the eigenvalue is determined cannot be modified

in any manner (i.e., the matrix cannot be changed to an upper triangular

form, lower triangular form, etc.) before finding the largest eigenvalue.

Modifying the matrix and then applying the power method will result in

a different matrix with different eigenvalues than the original matrix.

5.4 THE INVERSE POWER METHOD

The inverse power method can be used to determine the smallest eigen

value. This is done by applying the power method to the inverse of the

given matrix [a] (i.e., [ar1). This works because the eigenvalues of

the inverse matrix [a r1 are the reciprocals of the eigenvalues of [a].

Starting from [a][x] = A.[x], multiplying both sides from the left by
-] .

[a] gives:

[ar1[a][x] = [ar1
A-[x] = A.[ar1[x]

Since [ar1 [a] = [I], Eq. (5.28) reduces to:

[x] = A.[ar1 [x] or [ar1 [x] =
[2

(5.28)

(5.29)

5.5 The Shifted Power Method 173

This shows that 1/A. is the eigenvalue of the inverse matrix [ar
1
•

Thus, the power method can be applied for finding the largest eigen-

value of [ar
1
, and the result will be the largest value of 1/A. , which

corresponds to the smallest value of A. for the matrix [a]. Applying the

power method to the inverse of [a] is called the inverse power method.
The procedure of applying the inverse power method is in principle

the same as the power method. A starting vector [x]; is multiplied by

[art to give [x];+ 1, which is then normalized and multiplied again:

[x];+ 1 = [ar
1
[x]; (5.30)

Obviously, the inverse matrix [art has to be calculated before iter

ations with Eq. (5.30) can be carried out. Numerical methods for calcu

lating an inverse of a matrix are described in Section 4.6. In practice,

however, calculating the inverse of a matrix is computationally ineffi

cient and not desirable. To avoid the need for calculating the inverse of

[a], Eq. (5.30) can be rewritten as:

[a][x];+1 = [x]; (5.31)

Now, for a given [x];, Eq. (5.31) is solved for [x];+ 1 . This can best be

done by using the LU decomposition method (Section 4.5).
Thus far, the power method has been used for finding the largest

and smallest eigenvalues of a matrix. In some instances, it is necessary

to find all the eigenvalues. The next two sections describe two numeri

cal methods, the shifted power method, and the QR factorization

method, which can be used for finding all eigenvalues.

5.5 THE SHIFTED POWER METHOD

Once the largest or the smallest eigenvalue is known, the shifted power

method can be used for finding the other eigenvalues. The shifted

power method uses an important property of matrices and their eigen-

values. Given [a][x] = A.[x] , if A.1 is the largest (or smallest) eigen

value obtained by using the power method (or the inverse power

method), then the eigenvalues of a new shifted matrix formed by

[a -A.11] are 0, A.2 -At, A.3 -At, A.4 -A.1, ... , "-n- "-i. This can be seen eas-

ily because the eigenvalues of [a -A.11] are found from:

[a-A.11][x] = a[x] (5.32)

where the a 's are the eigenvalues of the shifted matrix [a-A-11]. But

[a][x] = A.[x] so that Eq. (5.32) becomes:

(A.-A.1)[x] = a[x] (5.33)

where A. = A.1, A.2, A.3, ... , "-n. Therefore, the eigenvalues of the shifted

174 Chapter 5 Eigenvalues and Eigenvectors

matrix are a = 0, A2 -Ai, A3 -A1, A4 -Ai, ... , An -Ai . The eigenvectors

of the shifted matrix [a -Ai I] are the same as the eigenvectors of the

original matrix [a]. Now, if the basic power method is applied to the

shifted matrix [a -Ai I] (after it is applied to [a] to determine A 1), then

the largest eigenvalue of the shifted matrix, a.k, can be determined.

Then, the eigenvalue Ak can be determined since a.k = Ak -Ai . All the

other eigenvalues can be determined by repeating this process k -2

times, where at each time the shifted matrix is [a -AJ], where Ak is the

eigenvalue obtained from the previous shift.
The shifted power method is a tedious and inefficient process. A

preferred method for finding all the eigenvalues of a matrix is the QR
factorization method, which is described in the next section.

5.6 THE QR FACTORIZATION AND ITERATION
METHOD

The QR factorization and iteration method is a popular means for find
ing all the eigenvalues of a matrix. The method is based on the fact that
similar matrices (see definition below) have the same eigenvalues and
associated eigenvectors, and the fact that the eigenvalues of an upper
triangular matrix are the elements along the diagonal. To find the eigen

values (all real) of a matrix [a], the strategy of the QR factorization

method is to eventually transform the matrix into a similar matrix that is
upper triangular. In actuality, this is not done in one step, but, as

described later in the section, it is an iterative process.
The QR factorization method finds all the eigenvalues of a matrix

but cannot find the corresponding eigenvectors. If the eigenvalues of
the given matrix are all real, the QR factorization method eventually
factors the given matrix into an orthogonal matrix and an upper triangu
lar matrix. If the eigenvalues are complex (not covered in this book),

the matrix is factored into an orthogonal matrix and a (2 x 2) block

diagonal matrix (i.e., a matrix whose diagonal elements themselves are

(2 x 2) block matrices).

Similar matrices

Two square matrices [a] and [b] are similar if:

[a] = [c]-
i
[b][c] (5.34)

where [c] is an invertible matrix. The operation in Eq. (5.34) is called

a similarity transformation. Similar matrices have the same eigenval
ues and associated eigenvectors.

The QR factorization and iteration procedure

The QR factorization procedure starts with the matrix [a]i whose

5.6 The QR Factorization and Iteration Method 175

eigenvalues are to be determined. The matrix is factored into two matri

ces [Qh and [R]1:

(5.35)

where [Q]1 is an orthogonal matrix and [R]1 is an upper triangular

matrix. (An orthogonal matrix is a matrix whose inverse is the same as

its transpose, [Qr
1

= [Q{, i.e., [Q{ [Q] = [Qr
1
[Q] = [I]).

The matrix [Rh is then multiplied from the right by [Q]1 to give

the matrix [a]z
[a]z = [R]1[Qh (5.36)

Since from Eq. (5.35) [Rh = [Q]f [a]1, Eq. (5.36) reduces to:

[a]z = [Q]f [a]1[Q]i (5.37)

This means (see Eq. (5.34)) that the matrices [a]1 and [a]z are similar,

thus having the same eigenvalues. This completes the first iteration in

the QR factorization and iteration procedure.

The second iteration starts by factoring the matrix [a]z into [Q]z
(orthogonal) and [R]z (upper triangular) such that [a]z = [Q]z[R]z,
and then calculating [ah by [ah = [Rh[Qh. Again, since

[Rh = [Q]�[a]1, the matrix [ah is given by [ah = [Q]�[Rh[Q]z.
The matrices [ah and [a]z are similar, thus having the same eigenval-

ues (which are the same as the eigenvalues of [ah).
The iterations continue until the sequence of matrices generated,

[a] 1, [ah, [ah , ... , results in an upper triangular matrix of the form:

/.,,1 XX X

0 A,2 XX

0 0 t.,,3 X

0 0 0 A,4

where the eigenvalues of the given matrix [a]1 appear along the diago

nal. The eigenvalues /.,,1, /.,,2 , A,3, ... , are not in any particular order.

In each iteration of the QR method, factoring a matrix [a] into an

orthogonal matrix [Q] and an upper triangular matrix [R], such that

[a] = [Q][R], is done in steps by using a special matrix [H] called the

Householder matrix.

The Householder matrix [H]

The (n x n) Householder matrix [H] has the form:

2 T [H] = [/]-
T

[v][v]
[v] [v]

(5.38)

176 Chapter 5 Eigenvalues and Eigenvectors

where[/] is the (n x n) identity matrix and [v] is an n-element column

vector given by:

[v] = [c] + llcll2[e] (5.39)

In Eq. (5.39) [e] and [c] are n-element column vectors and llcll2 is the

Euclidean norm (length) of [c] :

(5.40)

Note that [v{[v] is a scalar (number) and [v][v{ is an (n x n) matrix.

The vectors [c] and [e] are described in detail in the next section.

The Householder matrix has special properties. First, it is symmet-

ric. Second, it is orthogonal. Thus, [Hr1
= [H]r = [H]. This means

that [H][a][H] yields a matrix that is similar to [a] .

Factoring a matrix [a] into an orthogonal matrix [Q] and an upper

triangular matrix [R]

Factoring an (n x n) matrix [a] into an orthogonal matrix [Q] and an

upper triangular matrix [R], such that [a] = [Q][R], is done in (n - 1)

steps.

Step 1: The vector [c], which has n elements, is defined as the first col

umn of the matrix [a]:

[c] =

a21 (5.41)

The vector [e] is defined as the following column vector of length n:

±1

0
[e] = 0 (5.42)

0

The first element of [e] is +1 ifthe first element of [c] (which is a11) is

positive and is -1 if the first element of [c] is negative. The rest of the

elements are zeros.

Once the vectors [c] and [e] are defined, the (n x n) Householder

matrix [H](I) can be constructed by using Eqs. (5.38)-(5.40). Using

[H](I), the matrix [a] is factored into [Q](1)[R](1) where:

[Q](I) = [H](I) (5.43)

5.6 The QR Factorization and Iteration Method 177

Figure 5-1: The matrix [R](l)
after Step J.

R(2) R(2) R(2) R(2) R(2) 11 12 13 14 15

0 Rg> R�;> R��) R��)

0

0

0

Figure 5-2: The matrix [R](2)
after Step 1.

and

(5.44)

The matrix [Q]CI) is orthogonal because it is a Householder matrix, and

[R](l) is a matrix with zeros in the elements of the first column that are

below the (1, 1) element. The matrix [R](I) is illustrated in Fig. 5-1 for

the case of a (5 x 5) matrix.

Step 2: The vector [c] , which has n elements, is defined as the second

column of the [R](l) matrix with its first entry set to 0:

0

R(I)
22

[c] = R(I) 32
(5.45)

R(I) n2
The vector [e] is defined as the following column vector of length n:

0

±1
[e] = 0

0

(5.46)

The second element of [e] is +1 if the second element of [c] in Eq.

(5.45) (which is R��)) is positive and is -1 ifthe second element of [c]
is negative. The rest of the elements are zeros.

Once the vectors [c] and [e] are identified, the next (n x n) House-

holder matrix [H]C2> can be constructed by using Eqs. (5.38)-(5.40).

Next, by using [H](2), the matrix [a] is factored into [Q]C2)[R]C2),
where:

(5.47)

and

(5.48)

The matrix [Q]C2> is orthogonal and [R]C2> is a matrix with zeros as the

elements of the first and second columns that are below the diagonal

elements in these columns. The matrix [R](2) is illustrated in Fig. 5-2

for the case of a (5 x 5) matrix.

178

R(3) R(3) R(3) R(3) R(3)
11 12 13 14 15

0

0

0

0

R(3) R(3) R(3) R(3)
22 23 24 25

0

0

0

R(3) R(3) R(3)
33 34 35

0

0

R(3) R(3)
44 45

R(3) RC3)
54 55

Figure 5-3: The matrix [R]C3)

after Step 3.

Chapter 5 Eigenvalues and Eigenvectors

Step 3: Moving to the third column of [a], the vector [c], which has n

elements, is defined as:

0
0

R(2)
[c] =

33 (5.49)
R(2)

34

R(2)
n3

The vector [e] is defined as the following column vector of length n:

0
0

[e] = ±1
0

0

(5.50)

The third element of [e] is +1 ifthe third element of [c] (which is R�;))

is positive and is -1 if the third element of [c] is negative. The rest of

the elements are zeros.

Once the vectors [c] and [e] are identified, the next (n x n) House-

holder matrix [H]C3) can be constructed by using Eqs. (5.38)-(5.40).

Next, by using [H]C3), the matrix [a] is factored into [Q]C3)[R]C3),

where:

(5.51)

and

(5.52)

The matrix [Q]C3) is orthogonal and [R]C3) is a matrix with zeros as the

elements of the first, second, and third columns that are below the diag-

onal elements in these columns. The matrix [R]C3) is illustrated in Fig.

5-3 for the case of a (5 x 5) matrix.

Steps 4 through (n-1): The factoring of matrix [a] into orthogonal and

upper triangular matrices continues in the same way as in Steps 1

through 3. In a general Step i, the vector [c] has zeros in elements 1
through i - 1 , and in elements i through n, it has the values of the ele-

ments R�:-l) through R�i;-l) of the matrix [R](i-
l) that was calculated

in the previous step. The vector [e] has + 1 for the ith element if the ith

5.6 The QR Factorization and Iteration Method 179

element of [c] is positive and has -1 if the ith element of [c] 1s nega

tive. The rest of its elements are zeros.

Once the vectors [c] and [e] are identified, the next (n x n) House-

holder matrix [H](i) can be constructed by using Eqs. (5.38)-(5.40).

Next, by using [H](i), the matrix [a] is factored into [Q](i)[R](i) ,
where:

(5.53)

and

(5.54)

The matrix [Q](i) is orthogonal and [R{1) is a matrix with zeros in the

elements of the first through the ith columns that are below the diagonal

elements in these columns.

After the last step (Step n - 1), the matrix [R](n-I) is upper triangu

lar. The matrices [Qin-I) and [R](n-l) obtained in the last step are the

orthogonal and upper triangular matrices that the matrix [a] is factored

into in the iterative process.

[a] = [Q](n-l)[R](n-1) (5.55)

Example 5-3 shows a hand calculation of QR factorization of a matrix.

Example 5-3: QR factorization of a matrix.

Factor the following matrix [a] into an orthogonal matrix [Q] and an upper triangular matrix [R]:

[6 -7 21
[a] = 4 -5 2

1 -1 1

(5.56)

SOLUTION

The solution follows the steps listed in pages 176-179. Since the matrix [a] is (3 x 3), the factoriza

tion requires only two steps.

Step 1: The vector [c] is defined as the first column of the matrix [a]:

The vector [e] is defined as the following three-element column vector:

[e] = [�]

180 Chapter 5 Eigenvalues and Eigenvectors

Using Eq. (5.40), the Euclidean norm, llcll2, of [c] is:

llcll2= Jcr + cI + c1 =J62 + 42 + 12 = 12801

Using Eq. (5.39), the vector [v] is:

[v] = [c] + llcll,[
e
] = lj +7.2801 l�J =

r
13-�801]

Next, the products [v] T [v] and [v] [v] T
are calculated:

[v{[v] = [13.2801 4 1] r
13-�801 = 193.3611

T

r
l3.28011

r
176.3611 53.1204 13.28011

[v][v] = 4 [13.2801 4 i] = 53.1204 16 4

1 13.2801 4 1

The Householder matrix [H](l) is then:

2

r
l 0 0:

2

r
l76.3611 53.1204 13.28011

r
-0.8242 -0.5494 -0.13741

[H](l)= [/]-
v T

[v][vf = 0 1 0 -
1933611 53.1204 16 4 = -0.5494 0.8345 -0.0414 [] [v]

0 0 1 13.2801 4 1 -0.1374 -0.0414 0.9897

Once the Housholder matrix [H](l) is constructed, [a] can be factored into [Q](1)[R](l), where:

and

r
-0.8242 -0.5494 -0.1374:

[Q](l) = [H](l) = -0.5494 0.8345 -0.0414

-0.1374 -0.0414 0.9897

r
-0.8242 -0.5494 -0.13741 t6 -7 21

r
-7.2801 8.6537 -2.88461

[R](I) = [H](l)[a] = -0.5494 0.8345 -0.0414 4 -5 2 = 0 -0.2851 0.5288

-0.1374 -0.0414 0.9897 1 -1 1 0 0.1787 0.6322

This completes the first step.

Step 2: The vector [c] , which has three elements, is now defined as:

[c] = rRg: = [-0.�851
]

l R��) 0.1787

The vector [e] is defined as the following three-element column vector:

[
e
] =
r�:

5.6 The QR Factorization and Iteration Method

Using Eq. (5.40), the Euclidean norm, llcll2
, of [c] is:

Jlcll2= Jcr +cl+ c� = Jo2 + (-0.2851)2 + 0.1787
2 = 0.3365

Using Eq. (5.39), the vector [v] is:

[v] = [c] + JlcJJi[e] = r-0.�8511 + 0.3365 r�li
0.1787 0

= r-0.�21)
0.1787J

Next, the products [vf [v] and [v][vf are calculated:

[v{[v] = [o -0.6215 0.1787] r-0.�215] = 0.4183

0.1787

[v][vf = '-0.�215] [o -0.6215 0.1787] = I� 0.3�64 -o.�111] lo.1181 l� 0.1111 o.0319

The Householder matrix [H](2) is then:

[H](2)=[/]- ; [v][v{= [� � �- 04
�

8
)� 0.3�64 -0 �111] = [� -0.�474 0.5�11]

[v] [v]
O O J l� 0.1111 0.0319 0 0.5311 0.8473

Once the Housholder matrix [H]C2) is constructed, [a] can be factored into [Q](2)[R](2), where:

[Q](2) = [Q](I)[H](2) = -0.5494 0.8345 -0.0414 0 -0.8474 0.5311 = -0.5494 -0.7291 0.4082 l-0.8242 -0.5494 -0.13741 ll 0 0

J r
-0.8242 0.3927 -0.40821

and
-0.1374 -0.0414 0.9897 0 0.5311 0.8473 -0.1374 0.5607 0.8166

[1 0 0

J r
-7.2801 8.6537 -2.88461 r-7.2801 8.6537 -2.88461 [R](2)=[H](2)[R](1)= O -0.8474 0.5311 0 -0.2851 0.5288 = 0 0.3365 -0.1123

0 0.5311 0.8473 0 0.1787 0.6322 0 0 0.8165

This completes the factorization, which means that:

l6 -7 21 _ r-0.8242 0.3927 -0.40821 r-7.2801 8.6537 -2.88461 [a] = [Q](2)[R](2) or 4 -5 2 - -0.5494 -0.7291 0.4082 0 0.3365 -0.1123

1 -1 1 -0.1374 0.5607 0.8166 0 0 0.8165

181

The results can be verified by using MATLAB. First, it is verified that the matrix [Q]C2) is orthogo

nal. This is done by calculating the inverse of [Qi2) with MATLAB's built-in function, inv, and

verifying that it is equal to the transpose of [Q]C2). Then the multiplication [Q](2)[Ri2) is done with

MATLAB, and the result is compared with [a].

>> Q2=[-0.8242 0.3927 -0.4082; -0.5494 -0.7291 0.4084; -0.1374 0.5607 0.8166];
>> R2=[-7.2801 8.6537 -2.8846; 0 0.3365 -0.1123; 0 0 0.8165];
>> invQ2=inv(Q2)

182

invQ2 =
-0.8242

0.3924
-0.4081

>> a=Q2*R2
a =

6.0003
3.9997
1.0003

-0.5494
-0.7290

0.4081

-7.0002
-4.9997
-1.0003

-0.1372
0.5607
0.8165

2.0001
2.0001
1.0001

Chapter 5 Eigenvalues and Eigenvectors

The results (other than errors due to rounding) verify the factorization.

The QR factorization and iteration method for finding the eigenval

ues of a matrix is summarized in the following algorithm:

Algorithm for finding the eigenvalues with the QR factorization and
iteration method

Given a (n x n) matrix [a]1 whose eigenvalues are to be determined.

I. Factor [a]1 into an orthogonal matrix [Qh and an upper triangular

matrix [R]1, such that [a]1 = [Q]1 [R]1• This is done in n - 1 steps,

as described in pages 176-179 (Step 1).

2. Calculate [a]z by [a]z = [Rh [Q]1•

3. Repeat the first two steps to obtain a sequence of matrices [ah ,

[ah, [a]4, .•. , until the last matrix in the sequence is upper trian

gular. The elements along the diagonal are then the eigenvalues.

Example 5-4 shows implementation of the QR factorization method in

MATLAB.

Example 5-4: Calculating eigenvalues using the QR factorization and iteration

method.

The three-dimensional state of stress at a point inside a loaded structure is given by:

cr u = r ;� :2o4 -::1 MP a

-25 68 80
Determine the principal stresses at this point by determining the eigenvalues of the stress matrix,

using the QR factorization method.

SOLUTION

The problem is solved with MATLAB. First, a user-defined function named QRFactorization

is written. Then, the function is used in a MATLAB program written in a script file for determining
the eigenvalues using the QR factorization and iteration method.

The user-defined MATLAB function QRFactorization, which is listed below, uses the House

holder matrix construct in the procedure that is described in pages 176-179 to calculate the QR fac

torization of a square matrix.

5.6 The QR Factorization and Iteration Method

[Program 5-1: User-defined function, QR factorization of a matrix.

function [Q R] = QRFactorization(R)

183

% The function factors a matrix [A] into an orthogonal matrix [Q] and an

upper-triangular matrix [R] .

% Input variables:

% A The (square) matrix to be factored.

% Output variables:

% Q Orthogonal matrix.

% R Upper-triangular matrix.

nmatrix=size(R);

n=nmatrix(l);

I=eye(n);

Q=I;

for j=l:n-1

c=R (: , j) ;

c(l:j-1)=0;

e(l:n,1)=0;

end

if c(j) > 0

e (j) =1;

else

e(j)=-1;

end

clength=sqrt(c'*c);

v=c+clength*e;

H=I-2/(v'*v)*v*v';

Q=Q*H;

R=H*R;

}-{ Define the vector [c]. J

Define the vector [e].

[Eq. (5.40). J
[Generate the vector [v], Eq. (5.39).

(Construct the Householder matrix [H], Eq. (5.38). J

The determination of the eigenvalues follows the procedure in the algorithm.

A=[45 30 -25; 30 -24 68; -25 68 80]

for i=l:40

[q R]=QRFactorization(A);

A=R*q;

end

A

e=diag(A)

The program repeats the QR factorization 40 times and then displays (in the Command Window) the

last matrix [A] that is obtained. The diagonal elements of the matrix are the eigenvalues of the orig

inal matrix [A] .

184 Chapter 5 Eigenvalues and Eigenvectors

A=
45 30 -25
30 -24 68

-25 68 80
A=

114. 9545 0.0000 0.0000
0.0000 -70.1526 -1.5563
0.0000 -1.5563 56.1981

e =
114.9545
-70.1526

56.1981

The results show that after 40 iterations, the matrix [A] is nearly upper triangular. Actually, in this

case, QR factorization results in a diagonal matrix because the original matrix [cr] is symmetric.

5.7 USE OF M ATLAB BUILT-IN FUNCTIONS FOR
DETERMINING EIGENVALUES AND
EIGENVECTORS

MATLAB has built-in functions that determine the eigenvalues and

eigenvectors of a matrix, and a built-in function that performs QR fac

torization.

The eigenvalues and eigenvectors of a matrix can be determined

with the built-in function eig. If only the eigenvalues are desired, the

function has the form:

d =

d is a vector with the eigen

values of A.

A is the matrix whose eigen

values are to be determined.

For determining the eigenvalues and the eigenvectors, the built-in func

tion has the following form:

_y,D] =

V is a matrix whose columns are

the eigenvectors of A. D is a

diagonal matrix whose diagonal

elements are the eigenvalues.

eig(�

A is the matrix whose eigen

values and eigenvectors are

to be determined.

With this notation, A*V=V*D. For example, if A = 4 _5 2, the eigen-
[6 -7 2]
1 -1 1

values together with the eigenvectors can be determined by typing:

>> A=[6 -7 2; 4 -5 2; 1 -1 1];

5. 7 Use of MATLAB Built-In Functions for Determining Eigenvalues and Eigenvectors 185

>> lambdas=eig(A)

lambdas =

-1.0000

2.0000

1.0000

[Use eig to determine only the eigenvalues. J
[lambdas is a vector with the eigenvalues.

>> [eVectors eValues]=eig(A)

eVectors =

Use eig to determine the eigenvalues

and the eigenvectors.

0.7071

0.7071

0.0000

eValues =

-1.0000

0

0

0.8018

0.5345

0.2673

0

2.0000

0

0.5774

0.5774

0.5774

0

0

1.0000

[Each column is an eigenvector. J

The eigenvalues are the elements

of the diagonal.

MATLAB also has a built-in function to perform QR factorization

of matrices. The function is called qr and its simplest format is:

Q is an orthogonal matrix, and

R is an upper-triangular matrix

such that A=Q*R.

=

A is the matrix that is factored.

As an example, the matrix that was factored in Example 5-3 is factored

below by using the function qr.

>> A=[6 -7 2; 4 -5 2; 1 -1 l];
��������������������

>> [Q R] =qr (A) [Use MATLAB's built-in function qr to factor the matrix A. J
Q =

-0.8242 0.3925 -0.4082 [Q is an orthogonal matrix. J

-0.5494 -0.7290 0.4082

-0.1374 0.5608 0.8165

R = R is an upper triangular matrix. J

-7.2801 8.6537 -2.8846

0 0.3365 -0.1122

0 0 0.8165

186 Chapter 5 Eigenvalues and Eigenvectors

5.8 PROBLEMS

Problems to be solved by hand
Solve the following problems by hand When needed, use a calculator, or write a MATLAB script file to
carry out the calculations. If using MATLAB, do not use built-in functions for operations with matrices.

5.1 Show that the eigenvalues of the n x n identity matrix are the number 1 repeated n times.

5.2 Show that the eigenvalues of the following matrix are 3, -1, 1.

[! � �l
0 0 ;j

5.3 Find the eigenvalues of the following matrix by solving for the roots of the characteristic equation.

r\o �3 �) 0 2 6J
5.4 The moment of inertia Ix, Iy, and the product of inertia Ixy of the

cross-sectional area shown in the figure are:

I = 5286 mm4 I = 4331 mm4 and I = 2914 mm4
x ' y ' xy

The principal moments of inertia are the eigenvalues of the matrix [5286 2914j d h . . 1 . h d" . f h . , an t e pnnc1pa axes are m t e 1rect1on o t e eigen-
2914 4331

vectors. Determine the principal moments of inertia by solving the char
acteristic equation. Determine the orientation of the principal axes of
inertia (unit vectors in the directions of the eigenvectors).

r
24mm

l

I y
20mm

0 x

+4mm
L_3mm
w
2mm

�

W2mm

5.5 Determine the principal moments of inertia of the cross-sectional area in Problem 5.4 by using the

QR factorization and iteration method. Carry out the first four iterations.

5.6 The structure of an BeC12 molecule may be idealized as three

masses connected by two springs, where the masses are the beryllium
and chlorine atoms, and the springs represent the chemical bond
between the beryllium and chlorine atoms.The equation of motion for
each atom (mass) may be written as:

2
d X1

mc1-- = - kx1 + kx2 dt2
2

d X2 m8e-- = - 2kx2 + kx1 + kx3
dt2
2

d X3
mc1-- = kx2 - kx3

dt2

5.8 Problems 187

where k is the restoring force spring constant representing the Be-Cl bonds. Since the molecule is free to

vibrate, normal mode (i.e., along the axis) vibrations can be examined by substituting x j = A jeirot
, where

A j is the amplitude of the jth mass, i = ,J-1 , ro is the frequency, and tis time. This results in the following

system of equations:

(5.57)

(a) Rewrite the system of equations in Eq. (5.57) as an eigenvalue problem, and show that the quantity ro2
is the eigenvalue.

(b) Write the characteristic equation and solve for the different frequencies ro when k = 1.81 x 102 kg/

s2, mc1 = 35.45 x 1.6605 x 10-27 kg, and mse = 9.01 x 1.6605 x 10-27 kg.

(c) Find the wavelengths /... = 2nc (where c = 3 x 108 mis is the speed of light in vacuum) that corre
w

spond to the frequencies from part (b). Express the answers in units of microns or µm (where 1 µm = 10-6 m) .

(d) Determine the eigenvectors corresponding to the eigenvalues found in part (c) . From the eigenvectors,

deduce the relative motion of the atoms (i.e., are they moving toward or away from each other?)

5.7 Apply the power method to find the largest eigenvalue of the matrix from Problem 5.2 starting with the

vector [1 1 lf

5.8 The three-dimensional state of stress at a point is given by the stress tensor:

(jij = r�� �� -1�81 ksi -18 12 14
The principal stresses and the principal directions at the point are given by the eigenvalues and the eigen

vectors. Use the power method for determining the value of the largest principal stress. Start with a column

vector of ls, and carry out the first three iterations.

5.9 Apply the inverse power method to find the smallest eigenvalue of the matrix from Problem 5 .3

starting with the vector [1 1 lf The inverse of the matrix in Problem 5.3 is:

[0��15 -�. 5 -1�751
-0.05 0.5 0.75

188 Chapter 5 Eigenvalues and Eigenvectors

Problems to be programmed in MATLAB
Solve the following problems using the MATLAB environment. Do not use MATLAB s built-in functions for

operations with matrices.

5.10 Write a user-defined MATLAB function that determines the largest eigenvalue of an (n x n) matrix

by using the power method. For the function name and argument use e = MaxEig (A), where A is the

matrix and e is the value of the largest eigenvalue. Use the function MaxEig for calculating the largest

eigenvalue of the matrix of Problem 5.8. Check the answer by using MATLAB's built-in function for find

ing the eigenvalues of a matrix.

5.11 Write a user-defined MATLAB function that determines the smallest eigenvalue of an (n x n) matrix

by using the inverse power method. For the function name and argument use e = MinEig (A), where A is

the matrix and e is the value of the smallest eigenvalue. Inside MinEig MATLAB's built-in function inv
for calculating the inverse of the matrix A. Use the function MinEig for calculating the smallest eigen

value of the matrix of Problem 5.8. Check the answer by using MATLAB's built-in function for finding the

eigenvalues of a matrix.

5.12 Write a user-defined MATLAB function that determines all the eigenvalues of an (n x n) matrix by

using the QR factorization and iteration method. For the function name and argument use

e=AllEig (A), where A is the matrix and e is a vector whose elements are the eigenvalues. Use the func

tion AllEig for calculating the eigenvalues of the matrix of Problem 5.8. Check the answer by using

MATLAB 's built-in function for finding the eigenvalues of a matrix.

Problems in math, science, and engineering
Solve the following problems using the MATLAB environment. As stated, use the MATLAB programs that

are presented in the chapter, programs developed in previously solved problems, or MATLAB s built-in

functions.

5.13 Write a user-defined MATLAB function that determines the principal stresses and the directions of

the principal stresses for a given three-dimensional state of stress. For the function name and arguments,

use [Ps Pd] = PrinplStre (S), where Sis a (3 x 3) matrix with the values of the stress tensor, Psis

a column vector with the values of the principal stresses, and Pd is a (3 x 3) matrix in which each row lists

a unit vector in a principal direction. Use MATLAB built-in functions.

Use the function for determining the principal stresses and principal directions for the state of stress

given in Problem 5.8: crij = [;� �� -
1�8: ksi.

- 18 12 14

5.8 Problems

5.14 The structure of the C2H2 (acetylene) molecule may be ide

alized as four masses connected by two springs (see discussion in
Problem 5.6). By applying the equation of motion, the following
system of equations can be written for the amplitudes of vibration
of each atom:

keH 2
-- (J)

keH 0 0

mH mH
keH (keH+ kec) - ro2 kee 0

A1 [� me me me Ai

0
kee (keH + kec) - ro2 keH A3

me me me A4

0 0
keH keH 2

- -(J)

mH mH

189

� � � �

where ro is the frequency, keH = 5.92 x 10
2 kg/s2 and kee = 15.8 x 10

2 kg/s2 are the restoring force spring

constants representing the C-H and C-C bonds, respectively, and mH = lamu and me = 12amu are the

masses of the atoms (1 amu = 1.6605 x 10-
27 kg).

(a) Determine the eigenvalues ro (frequencies) and the corresponding wavelengths A. =

2nc (where
OJ

c = 3 x 10
8 mis is the speed oflight).

(b) Determine the eigenvectors corresponding to the eigenvalues found in part (a) . From the eigenvectors,

deduce the relative motion of the atoms (i.e., are they moving toward or away from each other?).

5.15 The relationship between two populations, N 1 and N 2, is described by the following system of

OD Es:

dN1 dt = 2N1 -3N2

dN2 dt = N1 -2N2

which can be rewritten in the following matrix form:

dN11
dt

dN2
dt

where [N] = [N1l and [A] = 12 -31 .
N2j lt -2J

or d[N]
= [A][N]

dt

(a) Find the eigenvalues of [A] and the corresponding eigenvectors, using MATLAB's built-in function

eig.

(b) Interpret the physical meaning of the eigenvalues and the eigenvectors of [A] .

190 Chapter 5

5.16 Mass-spring-damper models are used to study the dynamic

response of buildings and multilevel structures to earthquakes. Shown in

the figure is a simple mass-spring (ignoring damping) model of a three

storey building undergoing horizontal motion. By applying equilibrium

equations, the following equations of motion for undamped free vibration

are obtained:

2
d X3

m3 -- = k1x2 - k3x3
dt

2

Eigenvalues and Eigenvectors

The normal modes of vibration can be studied by letting x 1 = A 1e
irot

, where A 1 is the amplitude of the jth

mass, i = � , m is the frequency in radians per second, and t is time. This results in the following eigen

value problem where m2 are the eigenvalues:

(k1 + k1 - m2)
m1

k2
m1

k2
m1

(k2 + k3
- m2)

m2

k3

m3

�: [�]
k3

m1

(k3
_ m2)

m3

Write a MATLAB program in a script file that uses the built-in function eig to calculate the eigenvalues

and eigenvectors of the model. Normalize the amplitudes using the magnitude of the displacement of the

fourth floor (A3). Execute the program with m1 = 10000 kg, m2 = 9000 kg, m3 = 8000 kg, and

k1 = k2 = k3 = 3 x 106 Nim. For each eigenvalue, plot the amplitude of each floor (horizontal axis) ver

sus the floor number (vertical axis).

5.17 A football conference has six teams. The outcome of the games is recorded in a binary fashion. For

example, ifteam 1 defeats teams 5 and 6, then the equation x1 = x5 + x6 is written to indicate these results.

At the end of the season, the wins and loses are tabulated in this fashion to produce the following ranking

matrix:

X1
0 0 01 0 0

XI
X2 1 0 1 0 1 1

X2
X3 0 1 0 0 1 0 X3

X4 1 1 0 0 1 0 X4

X5 1 1 1 0 0 1 X5

x6 1 0 0 0 1 0 x6

(a) Find the eigenvalues and the corresponding eigenvectors of [A], using MATLAB's built-in function

eig.

5.8 Problems 191

(b) Find the eigenvector from part (a) whose entries are all real and of the same sign (it does not matter

if they are all negative or all positive), and rank the teams from best (i.e., with most win) to worst (i.e., with

fewest wins) based on the indices of the teams corresponding to the largest to the smallest entries in that

eigenvector.

5.18 Suppose there are N web sites that are linked to each other. One (overly simplified) method to assess

the importance of a particular web site i is as follows. If web site j links (or points) to web site i, a quantity

[au] can be set to 1 whereas if} does not link to website k, than [a1k] is set to 0. Thus, if [x2] stands for the

importance of web site 2, and web sites 1 and 4 point to web site 2, then x2 = x1 + x4 , and so on. Consider

four web sites, larry.com, bill.com, steve.com, and mark.com linked as shown in the directed graph below.

Let x1 be the importance oflarry, x2 be the importance of bill, x3 be the importance of steve, and

x4 be the importance of mark. The above directed graph2 when converted to a set of equations using the

scheme described before results in the following equations:

xi = x2 + x3 + x4, x2 = xi + x3 , x3 = xi + x2 , and x4 = x2 + x3 , which can be written as:

I�� : � :
2

1 = 1:�1 = [
A

][x]
1 1 0 0 X3 X3
0 1 1 0 X4 X4

(a) Find the eigenvalues and the corresponding eigenvectors of [
A

], using MATLAB's built-in function

eig.

(b) Find the eigenvector from part (a) whose entries are all real and of the same sign (it does not matter if

they are all negative or all positive), and rank the web sites in descending order of importance based on

the indices of the web sites corresponding to the largest to the smallest entries in that eigenvector.

2. A much more sophisticated variant of this na1ve example is used by the popular Google search engine. These ideas predate the
Internet and involve a branch of mathematics known as ranking theory or theory of paired comparisons. For example, see T.H.
Wei, The Algebraic Foundations of Ranking Theory, Cambridge University Press, London, 1952; and M.G. Kendall, "Further
contributions to the theory of paired comparisons", Biometrics 11, p. 43, 1955.

Chapter6

Curve Fitting and Interpolation

Core Topics

Curve fitting with a linear equation (6.2).

Newton's polynomials (6.5.2).

Piecewise (spline) interpolation (6.6).

Curve fitting with nonlinear equation by writing the

equation in linear form (6.3).

Curve fitting with quadratic and higher order poly

nomials (6.4).

Interpolation using a single polynomial (6.5).

Lagrange polynomials (6.5.1).

Use of MATLAB built-in functions for curve fitting

and interpolation (6.7).
Complementarv Topics

Curve fitting with linear combination of nonlinear

functions (6.8).

6.1 BACKGROUND

Many scientific and engineering observations are made by conducting
experiments in which physical quantities are measured and recorded.
The experimental records are typically referred to as data points. For
example, the strength of many metals depends on the size of the grains.
Testing specimens with different grain sizes yields a discrete set of
numbers (d- average grain diameter, cr

y
- yield strength) as shown in

Table 6-1.

Table 6-1: Strength-grain size data.

d(mm) 0.005 0.009 0.016 0.025 0.040 0.062 0.085 0.110

cr
y

(MPa) 205 150 135 97 89 80 70 67

Sometimes measurements are made and recorded continuously with
analog devices, but in most cases, especially in recent years with the
wide use of computers, the measured quantities are digitized and stored
as a set of discrete points.

Once the data is known, scientists and engineers can use it in differ
ent ways. Often the data is used for developing, or evaluating, mathe
matical formulas (equations) that represent the data. This is done by
curve fitting in which a specific form of an equation is assumed, or pro
vided by a guiding theory, and then the parameters of the equation are
determined such that the equation best fits the data points. Sometimes
the data points are used for estimating the expected values between the

193

194

�
� 200

"'
"'

;; 150
I;/)

-0 � 100

so ����������
0 0.02 0.04 0.06 0.08 0.1 0.12

Grain Size (mm)

Figure 6-1: Curve fitting.

"2' 25

� 20
'-'

� 15
Q.)

� 10

5
Ou--���������

0 2 3
Strain

4

Figure 6-2: Interpolation.

5

Chapter 6 Curve Fitting and Interpolation

known points, a procedure called interpolation, or for predicting how

the data might extend beyond the range over which it was measured, a

procedure called extrapolation.

Curve fitting

Curve fitting is a procedure in which a mathematical formula (equation)

is used to best fit a given set of data points. The objective is to find a

function that fits the data points overall. This means that the function

does not have to give the exact value at any single point, but fits the

data well overall. For example, Fig. 6-1 shows the data points from

Table 6-1 and a curve that shows the best fit of a power function

(cr = Cdm) to the data points. It can be observed that the curve fits the

general trend of the data but does not match any of the data points

exactly. Curve fitting is typically used when the values of the data

points have some error, or scatter. Generally, all experimental measure

ments have built-in errors or uncertainties, and requiring a curve fit to

go through every data point is not beneficial. The procedure is also used

for determining the validity of proposed equations used to represent the

data and for determining the values of parameters (coefficients) in the

equations. Curve fitting can be carried out with many types of functions

and with polynomials of various orders.

Interpolation

Interpolation is a procedure for estimating a value between known val

ues of data points. It is done by first determining a polynomial that

gives the exact value at the data points, and then using the polynomial

for calculating values between the points. When a small number of

points is involved, a single polynomial might be sufficient for interpola

tion over the whole domain of the data points. Often, however, when a

large number of points are involved, different polynomials are used in

the intervals between the points in a process that is called spline inter

polation. For example, Fig. 6-2 shows a plot of the stress-strain rela

tionship for rubber. The red markers show experimental points that

were measured very accurately, and the solid curve was obtained by

using spline interpolation. It can be observed that the curve passes

through the points precisely and gives a good estimate of values

between the points.

The next three sections cover curve fitting. Section 6.2 describes

how to curve-fit a set of data points with a linear function using least

squares regression analysis. In Section 6.3 data points are curve fit with

nonlinear functions by rewriting the functions in a linear form. In Sec

tion 6.4 curve fitting is carried out with second and higher-order poly

nomials. Interpolation is covered in the next two sections. Section 6.5
shows how to find the equation of a single polynomial that passes

through a given set of data points (Lagrange and Newton's polynomi

als), and Section 6.6 covers piecewise (spline) interpolation in which

6.2 Curve Fitting with a Linear Equation 195

y

x

Figure 6-3: Two data points.

y

•

x

Figure 6-4: Many data points.

different polynomials are used for interpolation in the intervals between

the data points. Section 6. 7 describes the tools that MATLAB has for

curve fitting and interpolation. In Section 6.8 curve fitting is done in a

more general way by using a linear combination of nonlinear functions.

6.2 CURVE FITTING WITH A LINEAR EQUATION

Curve fitting using a linear equation (first degree polynomial) is the

process by which an equation of the form:

(6.1)

is used to best fit given data points. This is done by determining the

constants a1 and a0 that give the smallest error when the data points are

substituted in Eq. (6.1). If the data comprise only two points, the con

stants can be determined such that Eq. (6.1) gives the exact values at the

points. Graphically, as shown in Fig. 6-3, it means that the straight line

that corresponds to Eq. (6.1) passes through the two points.

When the data consists of more than two points, obviously, a

straight line cannot pass through all of the points. In this case, the con

stants a1 and a0 are determined such that the line has the best fit overall,

as illustrated in Fig. 6-4.
The process of obtaining the constants that give the best fit first

requires a definition of best fit (Section 6.2.1) and a mathematical pro

cedure for deriving the value of the constants (Section 6.2.2).

6.2. 1 Measuring How Good Is a Fit

A criterion that measures how good a fit is between given data points

and an approximating linear function is a formula that calculates a num

ber that quantifies the overall agreement between the points and the

function. Such a criterion is needed for two reasons. First, it can be used

to compare two different functions that are used for fitting the same

data points. Second, and even more important, the criterion itself is used

for determining the coefficients of the function that give the best fit.

This is shown in Section 6.2.2.
The fit between given data points and an approximating linear func

tion is determined by first calculating the error, also called the residual,

which is the difference between a data point and the value of the

approximating function, at each point. Subsequently, the residuals are

used for calculating a total error for all the points. Figure 6-5 shows a

general case of a linear function (straight line) that is used for curve fit

ting n points. The residual r; at a point, (x;, y;), is the difference between

the value Yi of the data point and the value of the function f (x;) used to

approximate the data points:

ri =
Yi - f (x;) (6.2)

196

y

y

x

Figure 6-6: Fit with no error
according to Eq. (6.3).

x

Figure 6-7: Two fits with the same
error according to Eq. (6.4).

Chapter 6 Curve Fitting and Interpolation

y

j{x,) 1-----�--�

f{x2) 1-------,�

f{x1) ,___.,

x

Figure 6-5: Curve-fitting points with a linear equation.

A criterion that measures how well the approximating function fits
the given data can be obtained by calculating a total error E in terms of
the residuals. The overall error can be calculated in different ways. One

simple way is to add the residuals of all the points:
n n

E = Lr;= L[Y;-(a1x;+a0)]
i = 1 i = 1

(6.3)

The error that is calculated in this way does not provide a good measure
of the overall fit. This is because a bad fit with positive residuals and
negative residuals (both can be large) can sum up to give a zero (or very

close to zero) error, implying a good fit. A situation like this is shown in
Fig. 6-6, where E according to Eq. (6.3) is zero since r1 =-r4 and

r2 =-r3.
Another possibility is to make the overall error E equal to the sum

of the absolute values of the residuals:
n n

E = Lhl = LIY;-(a1x;+ ao)I
i = 1 i = 1

(6.4)

With this definition, the total error is always a positive number since the

residuals cannot cancel each other. A smaller E in Eq. (6.4) indicates a
better fit. This measure can be used to evaluate or compare proposed
fits, but it cannot be used for determining the constants of the function

that give the best fit. This is because the measure is not unique, which
means that for the same set of points there can be several functions that
give the same total error. This is shown in Fig. 6-7 where total error E

according to Eq. (6.4) is the same for the two approximating lines.
A definition for the overall error E that gives a good measure of the

total error and can also be used for determining a unique linear function

that has the best fit (i.e., smallest total error) is obtained by making E

equal to the sum of the squares of the residuals:

n n

E = Lr[= L[Y;-(a1x;+ao)]2
i = 1 i = 1

(6.5)

6.2 Curve Fitting with a Linear Equation 197

With this definition, the overall error is always a positive number (posi

tive and negative residuals do not cancel each other). In addition, larger

residuals have a relatively larger effect (weight) on the total error. As

already mentioned, Eq. (6.5) can be used to calculate the coefficients a1
and a0 in the linear function y = a1x + a0 that give the smallest total

error. This is done by using a procedure called linear least-squares

regression, which is presented in the next section.

6.2.2 Linear Least-Squares Regression

Linear least-squares regression is a procedure in which the coefficients

a1 and a0 of a linear function y = a1x + a0 are determined such that the

function has the best fit to a given set of data points. The best fit is

defined as the smallest possible total error that is calculated by adding

the squares of the residuals according to Eq. (6.5).

For a given set of n data points (x;, Y;), the overall error calculated

by Eq. (6.5) is:

n

E = L[Y;-(a1x;+a0)]2
i =I

(6.6)

Since all the values x; and Y; are known, E in Eq. (6.6) is a nonlinear

function of the two variables a1 and a0• The function E has a minimum

at the values of a 1 and a0 where the partial derivatives of E with respect

to each variable is equal to zero. Taking the partial derivatives and set

ting them equal to zero gives:

(6.7)

(6.8)

Equations (6.7) and (6.8) are a system of two linear equations for the

unknowns a 1 and a0, and can be rewritten in the form:

na0 + (�x;)a1 = � Y; (6.9)

(6.10)

The solution of the system is:

(6.11)

198 Chapter 6 Curve Fitting and Interpolation

(6.12)

Since Eqs. (6.11) and (6.12) contain summations that are the same, it is
convenient to calculate the summations first and then to substitute them
in the equations. To do this the summations are defined by:

n

S =

" x
x L..J ,, i =

1
(6.13)

With these definitions, the equations for the coefficients a1 and a0 are:

(6.14)

Equations (6.14) give the values of a1 and a0 in the equation

y = a1x + a0 that has the best fit ton data points (xi, yJ. Example 6-1
shows how to use Eqs. (6.11) and (6.12) for fitting a linear equation to a
set of data points.

Example 6-1: Determination of absolute zero temperature.

According to Charles's law for an ideal gas, at constant volume, a lin
ear relationship exists between the pressure, p, and temperature, T. In
the experiment shown in the figure, a fixed volume of gas in a sealed

container is submerged in ice water (T = 0°C). The temperature of

the gas is then increased in ten increments up to T = 100° C by heat
ing the water, and the pressure of the gas is measured at each temper
ature. The data from the experiment is:

T (0C) 0 10 20 30 40 50 60
p (atm.) 0.94 0.96 1.0 1.05 1.07 1.09 1.14

T (OC)

p (atm.)

70 80
1.17 1.21

90
1.24

100
1.28

Extrapolate the data to determine the absolute zero temperature, T0.
This can be done using the following steps:
(a) Make a plot of the data (p versus 1).

T

u
HOTPLATE

(b) Use linear least-squares regression to determine a linear function in the form p = a1 T + a0 that

best fits the data points. First calculate the coefficients by hand using only the four data points:

0, 30, 70, and 100 °C. Then write a user-defined MATLAB function that calculates the coeffi
cients of the linear function for any number of data points and use it with all the data points to
determine the coefficients.

6.2 Curve Fitting with a Linear Equation 199

(c) Plot the function, and extend the line (extrapolate) until it crosses the horizontal (1) axis. This

point is an estimate of the absolute zero temperature, T 0. Determine the value of T 0 from the

function.

SOLUTION

(a) A plot (p versus 1) of the data is created by MATLAB (Command Window):

>> T=O:lO:lOO;
u�-�---�---�

p=[0.94 0.96 1.0 1.05 1.07 1.09 1.14 1.17 1.211.2 4 1.28]; '�

>> plot(T,p,'*r')

The plot that is obtained is shown on the right (axes titles

were added using the Plot Editor). The plot shows, as

expected, a nearly linear relationship between the pressure

and the temperature.

(b) Hand calculation ofleast-squares regression

of the four data points:

(0, 0.94), (30, 1.05), (70, 1.17), (100, 1.28)

*

* *
*

*

*
*

*

0 ·90�-2� 0 -___._,40----'-60-----=s .,,...o -�1 oo
Temperature (C)

The coefficients a1 and a0 of the equation p = a 1 T + a0 that best fits the data points are determined

by using Eqs. (6.14). The summations, Eqs. (6.13), are calculated first.

4

Sx= LX;=0+30+70+100=200
i = I

4
sxx = Lx; = 02+302+102 + 1002 = 15800

i =
1

4

4

Sy= LY;= 0.94+1.05+1.17+1.28 = 4.44
i = I

sxy = L X;Y; = 0. 0.94 + 30. 1.05 + 70. 1.17 + 100. 1.28 = 241.4
i = I

Substituting the Ss in Eqs. (6.14) gives:

a =
nSxy-SxSy = 4. 241.4-(200 · 4.44) = 0_003345 I nSXX-(Sx)2 4·15800-2002

a =SxxSy-SxySx = 15800·4.44-(241.4·200) = 0_9428 O nS xx -(S x)2 4 · 15800 -2002
From this calculation, the equation that best fits the data is: p = 0.003345 T + 0.9428.
Next, the problem is solved by writing a MATLAB user-defined function that calculates the coeffi

cients of the linear function for any number of data points. The inputs to the function are two vectors

with the coordinates of the data points. The outputs are the coefficients a1 and a0 of the linear equa

tion, which are calculated with Eqs. (6.14).

[Program 6-1: User-defined function. Linear least-squares regression. J

function [al,aO] = LinearReqression(x, y)

% LinearRegression calculates the coefficients al and aO of the linear

% equation y = al*x + aO that best fits n data points.

% Input variables:

% x A vector with the coordinates x of the data points.

% y A vector with the coordinates y of the data points.

% Output variables:

200

% al

% aO

The coefficient al.

The coefficient aO.

nx=lenqth(x);

ny=lenqth(y);

Chapter 6 Curve Fitting and Interpolation

if nx - = ny Check if the vectors x and y have the same number of elements.

disp('ERROR: The number of elements in x must be the same as in y. ')

al='Error';

aO='Error';

else

Sx=sum(x);

Sy=sum(y);

Sxy=sum(x.*y);

Sxx=sum(x."2);

al=(nx*Sxy-Sx*Sy)/(nx*Sxx-Sx"2);

a0=(Sxx*Sy-Sxy*Sx)/(nx*Sxx-Sx"2);

end

If yes, MATLAB displays an error message

and the constants are not calculated.

Calculate the summation terms in Eqs. (6.13).

Calculate the coefficients a1 and a0 in Eqs. (6.14).

The user-defined function LinearRegression is next used in Command Window for determin

ing the best fit line to the given points in the problem.

>> T=O:lO:lOO;

>> p=[0.94 0.96 1.0 1.05 1.07 1.09 1.14 1.17 1.21 1.24 1.28];

>> [al, aO]=LinearReqression(T,p)

al =

0.0034

aO =

0.9336

The equation that best fit the data is:

� p = 0.0034T + 0.9336

(c) The solution is done in the following script file that plots the function, the points, and calculates

the value of T 0 from the function.

T=O:lO:lOO;

p=[0.94 0.96 1.0 1.05 1.07 1.09 1.14 1.17 1.211.2 4 1.28];
Tplot=[-300 100];

pplot=0.0034*Tplot+0.9336;

plot(T,p, '*r' ,'markersize' ,12)

hold on

plot(Tplot,pplot, 'k')

xlabel('Temperature (C) ','fontsize' ,20)

ylabel('Pressure (atm)' ,'fontsize' ,20)

T0=-0.9336/0.0034

1.2
� 1
ii $ 0.8
� 0.6
£ 0.4

0.2

-o'-�00 -250 -200 -150 -100 -50 0 50 100
Temperature (C)

When this script file is executed, the figure shown on the right is displayed, and the value of the calculated
absolute zero temperate is displayed in the Command Window, as shown below.

TO =

-274.5882

This result is close to the handbook value of-273.15 °C.

6.3 Curve Fitting with Nonlinear Equation by Writing the Equation in a Linear Form 201

IO

5

6.3 CURVE FITTING WITH NONLINEAR EQUATION BY
WRITING THE EQUATION IN A LINEAR FORM

Many situations in science and engineering show that the relationship

between the quantities that are being considered is not linear. For exam

ple, Fig. 6-8 shows a plot of data points that were measured in an exper

iment with an RC circuit. In this experiment, the voltage across the

resistor is measured as a function of time, starting when the switch is

closed.

Nonlinear function

10 20 30 t (s)

Figure 6-8: Curve-fitting points with linear equation.

The data points from the experiment are listed in Example 6-2. It is

obvious from the plot that curve fitting the data points with a nonlinear

function gives a much better fit than curve fitting with a linear function.

There are many kinds of nonlinear functions. This section shows

curve fitting with nonlinear functions that can be written in a form for

which the linear least-squares regression method can be used for deter

mining the coefficients that give the best fit. Examples of nonlinear

functions used for curve fitting in the present section are:

y = bxm (power function)

y = bemx or y = blomx (exponential function)

y =
1 (reciprocal function)
mx+b

Polynomials of second, or higher, degree are also nonlinear func

tions. Curve fitting with such polynomials is covered separately in Sec

tion 6.4.

Writing a nonlinear equation in linear form

In order to be able to use linear regression, the form of a nonlinear equa

tion of two variables is changed such that the new form is linear with

terms that contain the original variables. For example, the power func

tion y = bxm can be put into linear form by taking the natural logarithm

(ln) of both sides:

ln(y) = ln(bxm) = mln(x) + ln(b) (6.15)

202

Nonlinear
equation

y = bxm

Y = bemx

Y = bIQmx

1 y= --

mx+b

mx y= -

b+x

Chapter 6 Curve Fitting and Interpolation

This equation is linear for ln(y) in terms ln(x). The equation is in the

form Y = a1X + a0 where Y = ln(y), a1 = m, X = ln(x), and

a0 = ln(b):

ln(y) = mln(x) + ln(b)

����
Y = a1 X + a0

This means that linear least-squares regression can be used for curve fit

ting an equation of the form y = bxm to a set of data points xi, Y;- This

is done by calculating a1 and a0 using Eqs. (6.11) and (6.12) [or (6.13)

and (6.14)] while substituting ln(y;) for Y; and ln(x;) for x;. Once a1

and a0 are known, the constants b and m in the exponential equation are

calculated by:

m = a and b = e(ao) I (6.16)

Many other nonlinear equations can be transformed into linear form

in a similar way. Table 6-2 lists several such equations.

Table 6-2: Transforming nonlinear equations to linear form.

Linear form

ln(y) = mln(x) + ln(b)

ln(y) = mx+ ln(b)

log(y) = mx+log(b)

1 - = mx+b
y

1 b 1 1 - = -
-+-y m x m

Relationship to
Y = a1X+a0

Y = ln(y), X = ln(x)

a1 = m, a0 = ln(b)

Y = ln(y), x = x

a1 = m, a0 = ln(b)

Y = log(y), x = x

a1 = m,

1
y = -

'
y

a1 = m,

1
y = -

'

a1

y
b

-

-m
'

a0 = log(b)

x = x

a0 = b

1 x = -
x

1 ao = -m

Values for
linear Plot where data
least- points appear to fit a
squares straight line
regression

ln(x;) and y vs. x plot on logarith-

ln(y;) mic y and x axes.

ln(y) vs. ln(x) plot on

linear x and y axes.

X
;

and y vs. x plot on logarith-

ln(y;) mic y and linear x axes.

ln(y) vs. x plot on lin-

ear x and y axes.

x; and y vs. x plot on logarith-

log(y;) mic y and linear x axes.

log(y) vs. x plot on lin-

ear x and y axes.

X
;

and 1 I y vs. x plot on linear

lly; x andy axes.

llx; and lly vs. llx plot on

lly; linear x and y axes.

6.3 Curve Fitting with Nonlinear Equation by Writing the Equation in a Linear Form 203

The script file for
making the plots is:

tx=2:2:30;
vexp=[9.7 8.1 6.6 5.1 4.4 3.7
2.8 2.4 2.0 1.6 1.4 1.1 0.85
0.69 0.6);
vexpLOG=log(vexp)
subplot(l,2,1)
semilogy(tx,vexp,'or')
subplot(l,2,2)
plot(tx,vexpLOG,'or')

How to choose an appropriate nonlinear function for curve fitting

A plot of the given data points can give an indication as to the relation

ship between the quantities. Whether the relationship is linear or nonlin

ear can be determined by plotting the points in a figure with linear axes.

If in such a plot the points appear to line up along a straight line, then

the relationship between the plotted quantities is linear.

A plot with linear axes in which the data points appear to line up

along a curve indicates a nonlinear relationship between the plotted

quantities. The question then is which nonlinear function to use for the

curve fitting. Many times in engineering and science there is knowledge

from a guiding theory of the physical phenomena and the form of the

mathematical equation associated with the data points. For example, the

process of charging a capacitor shown in Fig. 6-8 is modeled with an

exponential function. If there is no knowledge of a possible form of the

equation, choosing the most appropriate nonlinear function to curve-fit

given data may be more difficult.

For given data points it is possible to foresee, to some extent, if a

proposed nonlinear function has a potential for providing a good fit.

This is done by plotting the data points in a specific way and examining

whether the points appear to fit a straight line. For the functions listed in

Table 6-2 this is shown in the fifth (last) column of the table. For power

and exponential functions, this can be done by plotting the data using

different combinations of linear and logarithmic axes. For all functions

it can be done by plotting the transformed values of the data points in

plots with linear axes.

For example, as was mentioned before, the data points from the

experiment that are shown in Fig. 6-8 are expected to fit an exponential

function. This means that a plot of the voltage vR versus time ton a plot

with a logarithmic vertical axis (for vR) and linear horizontal axis (fort)

should reveal that the data points will be fit by a straight line. Another

option is to make a plot of ln(vR) vs. ton linear vertical and horizontal

axes, which is also expected to show that the points line up along a

straight line. Both of these plots are shown in Fig. 6-9. The figures con-

Hf �-----�-�

10-' �--�--�-�
0 10 20 30

Time (s)

(a)

3 �--------�

-1 �--�--�--�
0 10 20

Time (s)

(b)

30

Figure 6-9: (a) A plot of vR vs. t in a plot with a logarithmic vertical axis and linear
horizontal axis. (b) A plot of ln(vR) vs.tin a plot with linear vertical and horizontal axes.

204 Chapter 6 Curve Fitting and Interpolation

firm that the data from the capacitor charging experiment can be curve
fit with an exponential function. The actual curve fitting is shown in
Example 6-2.

Other considerations when choosing a nonlinear function for curve
fitting are as follows:
• Exponential functions cannot pass through the origin.

• Exponential functions can only fit data with all positive ys, or all
negative ys.

• Logarithmic functions cannot include x = 0 or negative values of x.

• For power function y = 0 when x = 0.

• The reciprocal equation cannot include y = 0.

Example 6-2: Curve fitting with a nonlinear function by writing the equation in a

linear form.

An experiment with an RC circuit is used for determining the
capacitance of an unknown capacitor. In the circuit, shown on the

right and in Fig. 6-8, a 5-MQ resistor is connected in series to the
unknown capacitor C and a battery. The experiment starts by clos
ing the switch and measuring the voltages, vR, across the resistor

every 2 seconds for 30 seconds. The data measured in the experi-
ment is:

t (s) 2 4 6 8 10 12 14 16 18

vR (V) 9.7 8.1 6.6 5.1 4.4 3.7 2.8 2.4 2.0

t (s) 20 22 24 26 28 30

VR (V) 1.6 1.4 1.1 0.85 0.69 0.6

R (5 MO)

T

Theoretically, the voltage across the resistor as a function of time is given by the exponential func
tion:

VR = ve(-t!(RC)) (6.17)

Determine the capacitance of the capacitor by curve fitting the exponential function to the data.

SOLUTION

It was shown in Fig. 6-9 that, as expected, an exponential function can fit the data well. The problem

is solved by first determining the constants b and m in the exponential function v = bem1 that give
the best fit of the function to the data. This is done by changing the equation to have a linear form

and then using linear least-squares regression.

The linear least-squares regression is applied by using the user-defined function LinearRegres
sion that was developed in the solution of Example 6-1. The inputs to the function are the values t;

and ln((v7)J Once band mare known, the value of C is determined by equating the coefficients in

the exponent of e:

.=.!.. = m solving for C gives: C = .=.!..
RC Rm

The calculations are done by executing the following MATLAB program (script file):

(6.18)

6.4 Curve Fitting with Quadratic and Higher-Order Polynomials 205

[Program 6-2: Script file. Curve fitting with a nonlinear function.

texp=2 : 2 : 3 O ; Enter the experimental data.]
vexp=[9.7 8.1 6.6 5.1 4.4 3.7 2.8 2.4 2.0 1.6 1.4 1.1 0.85 0.69 0.6);
vexpLOG=log(vexp);

R=SE6;

[Calculate ln(yJ of the data points (to be used in the linear regression. J

[al,aO]=LinearRegression(texp,

b=exp(aO)

Calculate coefficients a1 and a0 with the user-defined

vexpLOG) function LinearRegression in Example 6-1.

Calculate b, since a0 = ln(b) (see Table 6-2). J
Calculate C using Eq. (6.18). J C=-1/(R*al)

t=0:0.5:30;

v=b*exp(al*t); [al ism in the equation v = bemt.
plot(t,v,texp,vexp,'ro')

When the program is executed, the following values are displayed in the Command Window. In

addition, the following plot of the data points and the curve-fitting function is displayed in the Figure

Window (axes title were added interactively).

al =

-0.1002

aO =

2. 4776

b =

11. 9131

c =

1. 9968e-006 The capacitance is approximately 2 µF. J

12 ���������
10

4
2

10 20
Time (s)

30

6.4 CURVE FITTING WITH QUADRATIC AND HIGHER·
ORDER POLYNOMIALS

Background

Polynomials are functions that have the form:

f(x) = anxn +an_ 1x»- l + ... + a1x + a0 (6.19)

The coefficients am an-I• ... , a1, a0 are real numbers, and n, which is a

nonnegative integer, is the degree, or order, of the polynomial. A plot of

the polynomial is a curve. A first-order polynomial is a linear function,

and its plot is a straight line. Higher-order polynomials are nonlinear

functions, and their plots are curves. A quadratic (second-order) poly

nomial is a curve that is either concave up or down (parabola). A third

order polynomial has an inflection point such that the curve can be con

cave up (or down) in one region, and concave down (or up) in another.

In general, as the order of a polynomial increases, its curve can have

more "bends."

A given set of n data points can be curve-fit with polynomials of

different order up to an order of (n - 1). As shown later in this section,

the coefficients of a polynomial can be determined such that the poly

nomial best fits the data by minimizing the error in a least squares

206

12

;:... 6

4

2

2

12

10

8

;:... 6

4

2

0
0 2

Figure 6-10:

4 6 8
x

4 6 8
x

Chapter 6 Curve Fitting and Interpolation

sense. Figure 6-10 shows curve fitting with polynomials of different

order for the same set of 11 data points. The plots in the figure show

that as the order of the polynomial increases the curve passes closer to

the points. It is actually possible to have a polynomial that passes

exactly through all of the points (at every point the value of the polyno

mial is equal to the value of the point). For n points the polynomial that

12

10

8

;:... 6 ;:... 6

4 4

2 2

10 12 2 4 6 8 10 12 2 4 6 8 10 12
x x

12 12

10 10 I 0th degree polynomial

8 8

;:... 6 ;:... 6

4 4

2 2

10 12
0

0 2 4 6 8 10 12
0

0 2 4 6 8 10 12
x x

Curve fitting of the same set of data points with polynomials for different degrees.

passes through all of the points is one of order (n - 1). In Fig. 6-10 it is

the tenth degree polynomial (since there are 11 points).

Figure 6-10 shows that the same set of data points can be curve fit

with polynomials of different order. The question as to which of the

polynomials gives the best fit does not have a simple answer. It depends

on the type and source of data, the engineering or science application

associated with the data, and the purpose of the curve fitting. For exam

ple, if the data points themselves are not accurate (there is possibly a

large error when the quantity is measured), it does not make a lot of

sense to use a higher-order polynomial that follows the points closely.

On the other hand, if the values of the data points are very accurate and

the curve fitting is used for representing the data, curve fitting with a

higher-order polynomial might be more appropriate. However, as

explained in the important note that follows, use of higher-order poly

nomials for curve fitting is not recommended.

Important note

As already mentioned, for any number of data points, n, it is possible to

derive a polynomial (order of (n - 1)) that passes exactly through all the

points. However, when many points are involved, this polynomial is of

a high degree. Although the high-order polynomial gives the exact val

ues at all of the data points, often the polynomial deviates significantly

6.4 Curve Fitting with Quadratic and Higher-Order Polynomials 207

between some of the points. This can be seen in the plot with the tenth

order polynomial in Fig. 6-10, where between the first two points and

between the last two points the curve of the polynomial wanders away

and does not follow the general trend of the data points. This means that

even though the high-order polynomial gives the exact values at all the

data points, it cannot be used reliably for interpolation or extrapolation.

Appropriate methods for interpolation are described in Sections 6.5 and

6.6.

Polynomial regression

Polynomial regression is a procedure for determining the coefficients of

a polynomial of a second degree, or higher, such that the polynomial

best fits a given set of data points. As in linear regression, the derivation

of the equations that are used for determining the coefficients is based

on minimizing the total error.

If the polynomial, of order m, that is used for the curve fitting is:

f(x) = amxm+am-lxm-I+ ... +a1x+ao (6.20)

then, for a given set of n data points (x;, y;) (m is smaller than n - 1), the

total error is given by:

n

E = L[Y;-(amxf'+am_1x;n-1 + ... +a1x;+a0)]
2

i =I
(6.21)

Since all the values xi and Y; of the data points are known, E in Eq.

(6.21) is a nonlinear function of the m + 1 variables (the coefficients a0
through am). The function E has a minimum at the values of a0 through

am where the partial derivatives of E with respect to each of the vari

ables is equal to zero. Taking the partial derivatives of E in Eq. (6.21)
and setting them to zero gives a set of m + 1 linear equations for the

coefficients. To simplify the presentation here, the derivation for the

case of m = 2 (quadratic polynomial) is shown in detail. In this case

Eq. (6.21) is:
n

E = L [Yi -(a2x[+ a1xi + a0)]
2

i =I
(6.22)

Taking the partial derivatives with respect to a0, a1, and a2, and setting

them equal to zero gives:

n

8E
= -2L(Y;-a2xl'-a1x;-ao)x; = 0

8a1 i= 1

(6.23)

(6.24)

208 Chapter 6 Curve Fitting and Interpolation

(6.25)

Equations (6.23) through (6.25) are a system of three linear equations

for the unknowns a0, a1, and a2 , which can be rewritten in the form:

(6.26)

(6.27)

(6.28)

The solution of the system of equations (6.26}-(6.28) gives the values

of the coefficients a0, a1, and a2 of the polynomial

y = a2x'f + a1x; + a0 that best fits then data points (x;. y;).

The coefficients for higher-order polynomials are derived in the

same way. For an mth order polynomial, Eqs. (6.26)-(6.28) are

extended to a set of m + 1 linear equations for the m + 1 coefficients.

The equations for a fourth order polynomial are shown in Example 6-3.

Example 6-3: Using polynomial regression for curve fitting of stress-strain curve.

A tension test is conducted for determining the stress-strain

behavior of rubber. The data points from the test are shown in 40 0 t
the figure, and their values are given below. Determine the '2' 0

� 30 0

fourth order polynomial that best fits the data points. Make a 0
"'

plot of the data points and the curve that corresponds to the
"' 20 0 II.) !::: 0

polynomial.
r/J

10 0

00000
°

Strain e 0 0.4 0.8 1.2 1.6 2.0 2.4 0 0

2 3 4 5 6
Stress cr (MPa) 0 3.0 4.5 5.8 5.9 5.8 6.2 Strain

Strain e 2.8 3.2 3.6 4.0 4.4 4.8 5.2 5.6 6.0

Stress cr (MPa) 7.4 9.6 15.6 20.7 26.7 31.1 35.6 39.3 41.5

SOLUTION

A polynomial of the fourth order can be written as:

f(x) = a4x4
+ a3x3 + a2x2 + a1x + a0 (6.29)

Curve fitting of 16 data points with this polynomial is done by polynomial regression. The values of

the five coefficients a0, a1, a2 , a3 , and a4 are obtained by solving a system of five linear equations.

The five equations can be written by extending Eqs. (6.26}-(6.28).

(6.30)

6.4 Curve Fitting with Quadratic and Higher-Order Polynomials 209

(tx;lao + (txf)a1 + (txi)a2 + (txi)a3 + (txjla4 = tX;Y;
1=1 J 1=1 1=1 1=1 1=1) 1-I

(6.31)

(txf)ao + (tx;)a1 + (txi)a2 + (txi)a3 + (txf)a4 = tx[y;
1=1 1=1 1=1 1=1 1=1 1-l

(6.32)

(tx;)ao + (tx;)a1 + (txi)a2 + (txf)a3 + (tx7)a4 = txfy;
1=! 1=1 1=1 1=! 1=1 1-l

(6.33)

(txi)ao + (txi)a1 + (txf)a2 + (tx7)a3 + (txf)a4 = tx/y;
1=! 1=! 1=! 1=1 1=! 1-J

(6.34)

The calculations and the plot are done with MATLAB in a script file that is listed below. The com

puter program follows these steps:

Step 1: Create vectors x and y with the data points.

Step 2: Create a vector xsum in which the elements are the summation terms of the powers of x;.
n

For example, the fourth element is: xsum(4) = Lxi
i = 1

Step 3: Set up the system of five linear equations (Eqs. (6.30)-(6.34)) in the form [a][p] = [b],
where [a] is the matrix with the summation terms of the powers of x;o [p] is the vector of the

unknowns (the coefficients of the polynomial), and [b] is a vector of the summation terms on the

right-hand side of Eqs. (6.30)-(6.34).

Step 4: Solve the system of five linear equations [a][p] = [b] (Eqs. (6.30)-(6.34)) for p, by using

MATLAB 's left division. The solution is a vector with the coefficients of the fourth order polyno

mial that best fits the data.

Step 5: Plot the data points and the curve-fitting polynomial.

[Program 6-3: Script file. Curve fitting using polynomial regression.

clear all l As�ign the experimental data l
x=O : 0 . 4 : 6 ; pomts to vectors x and y.

y=[O 3 4.5 5.8 5.9 5.8 6.2 7.4 9.6 15.6 20.7 26.7 31.1 35.6 39.3 41.5];
n=lenqth(x);

m=4;

for i=1:2*m

xsum(i)=sum(x.A(i));

end

% Beginning of Step 3

a(l,l)=n;

b(l,l)=sum(y);

for j=2:m + 1

a(l,j)=xsum(j-1);

end

l n is the number of data points. l mis the order of the polynomial.

Define a vector with the summation terms of the powers of X;. J

-

-

I I Assign the first row of the matrix [a] and the first n element of the column vector [b].

210

for i = 2:m + 1
for j = 1 :m + 1

Chapter 6 Curve Fitting and Interpolation

a (i , j) = xsum (j + i - 2) ;
end

Create rows 2 through 5 of the matrix [a] and elements 2

through 5 of the column vector [b].

b(i,1)= sum(x.A(i - 1) .*y) ;
end
% Step 4

P = (a\b) I

for i = l:m + 1
[Solve the system [a][p] = [b] for [p]. Transpose the solution such that [p] is a row vector. J

Pcoef (i) = p (m + 2 - i) ; Create a new vector for the coefficients of the polynomial, to be used in
MATLAB's polyval built-in function (see note at the end of the example).

end
epsilon = o : o . 1 : 6; [Define a vector of strain to be used for plotting the polynomial.]
stressfi t = polyval (Pcoef, epsilon) ; [Stress calculated by the polynomial.]
plot(x,y, 're' ,epsilon,stressfit, 'k', 'line�w_i_· d�th�'_,_2_) �������������
xlabel ('Strain' , 'fontsize' , 20) [Plot the data points and the curve-fitting polynomial.]
ylabel('Stress (MPa) ','fontsize' ,20)

When the program is executed, the solution [p] is displayed

in the Command Window. In addition, the plot of the data
points and the curve-fitting polynomial is displayed in the

Figure Window.

so----------

p =
-0.2746 12.8780 -10.1927 3.1185 -0.2644

The curve-fitting polynomial is: 2 3 4 5 6
Strain

f(x)=(-0.2644)x4+3.l185x3 -10.1927 x2+12.878x- 0.2746

Note: In MATLAB a polynomial is represented by a vector whose elements are the polynomial's coefficients.
The first element in the vector is the coefficient of the highest order term in the polynomial, and the last ele
ment in the vector is the coefficient a0 •

6.5 INTERPOLATION USING A SINGLE POLYNOMIAL

Interpolation is a procedure in which a mathematical formula is used to
represent a given set of data points, such that the formula gives the
exact value at all the data points and an estimated value between the
points. This section shows how this is done by using a single polyno
mial, regardless of the number of points. As was mentioned in the pre
vious section, for any number of points n there is a polynomial of order

n - 1 that passes through all of the points. For two points the polyno
mial is of first order (a straight line connecting the points). For three

points the polynomial is of second order (a parabola that connects the
points), and so on. This is illustrated in Fig. 6-11 which shows how first,

second, third, and fourth-order polynomials connect two, three, four,
and five points, respectively.

6.5 Interpolation Using a Single Polynomial 211

15

10
"'

5

0
0

15

10
"'

5

0
0

15
1st degree polynomial

y=0.667x+ 1.333 10
"'

5 y=-O. l 67x2+ 3x-0.833
2nd degree polynomial

0
5 10 15 0 5 10 15

x x

15
y=0.0365x3-0.979x2+5. l 5x-2.39 y=-0.0103x4+o.3x3-2.86x2+10.19x-5.62

10
;>..

5
3rd degree polynomial

5 10 15 5 10 15
x x

Figure 6-11: Various order polynomials.

Once the polynomial is determined, it can be used for estimating
the y values between the known points simply by substituting for the x

coordinate in the polynomial. Interpolation with a single polynomial
gives good results for a small number of points. For a large number of
points the order of the polynomial is high, and although the polynomial
passes through all the points, it might deviate significantly between the
points. This was shown in Fig. 6-10 for a polynomial of tenth degree
and is shown later in Fig. 6-17, where a 15th-order polynomial is used
for interpolation of a set of 16 data points. Consequently, interpolation
with a single polynomial might not be appropriate for a large number of
points. For a large number of points, better interpolation can be done by
using piecewise (spline) interpolation (covered in Section 6.6) in which
different lower-order polynomials are used for interpolation between
different points of the same set of data points.

For a given set of n points, only one (unique) polynomial of order m
(m = n - 1) passes exactly through all of the points. The polynomial,
however, can be written in different mathematical forms. This section
shows how to derive three forms of polynomials (standard, Lagrange,
and Newton's). The different forms are suitable for use in different cir
cumstances.

The standard form of an mth-order polynomial is:

(6.35)

The coefficients in this form are determined by solving a system of
m + 1 linear equations. The equations are obtained by writing the poly

nomial explicitly for each point (substituting each point in the polyno
mial). For example, the five points (n = 5) in the fourth degree (m = 4)

212 Chapter 6 Curve Fitting and Interpolation

polynomial plot in Fig. 6-11 are: (1,2), (4,6), (7,4), (10,8), and

(13, 10). Writing Eq. (6.35) for each of the points gives the following

system of five equations for the unknowns a0, a1, a2, a3, and a4:

a4 l
4 + a31

3
+ a212

+ a 11 + a0 = 2
a444 + a34

3
+ a242

+ a14 + a0 = 6

a4 7
4 + a3 7

3
+ a2 7

2
+ a1 7 + a0 = 4

a4104 + a310
3

+ a2102
+ a110 + a0 = 8

a4134 + a31V + a2132
+ a113 + a0 = 10

(6.36)

The solution of this system of equations gives the values of the coeffi
cients. A MATLAB solution ofEqs. (6.36) is:

>> a= [l 1 1 1 1; 4A4 4A3 4A2 4 1; 7A4 7A3 7A2 7 1; 10A4 10A3
10A2 10 1; 13A4 13A3 13A2 13 l]

a =

1

256

2401

10000

28561

>>b=[2;

>>A= a\b

A =

-0.0103

0.3004

-2.8580

10.1893

-5.6214

1

64

343

1000

2197

6; 4; 8; 10]

1

16

49

100

169

1

4

7

10

13

1

1

1

1

1

The polynomial that corresponds to these coefficients is:

y=- 0.0103x4
+ 0.3x3 - 2.86x2

+ 10.19x- 5.62
(see Fig. 6-11).

In practice, solving the system of equations, especially for higher-order
polynomials, is not efficient, and frequently the matrix of the coeffi
cients is ill conditioned (see Section 4.11).

It is possible to write the polynomial in other forms that may be
easier to use. Two such forms, the Lagrange and Newton forms, are
described in the next two subsections.

6.5. 1 Lagrange Interpolating Polynomials

Lagrange interpolating polynomials are a particular form of polynomi
als that can be written to fit a given set of data points by using the val
ues at the points. The polynomials can be written right away and do not
require any preliminary calculations for determining coefficients.

6.5 Interpolation Using a Single Polynomial 213

Figure 6-12: First-order
Lagrange polynomial.

Figure 6-13: Second-order
Lagrange polynomial.

For two points, (x1, y1), and (x2, y2), the first-order Lagrange poly

nomial that passes through the points (Fig. 6-12) has the form:

f(x) = y = a1(X -X2)+ a2(X -X1)

Substituting the two points in Eq. (6.37) gives:

(6.37)

and

(6.38)

Yi= a1(x2-x2)+ a2(x2-x1) or a2 =

(x2
�xi)

(6.39)

Substituting the coefficients a1 and a2 back in Eq. (6.37) gives:

!(
) (x -x2) (x -x1) x = Yi + Yi (x1 -x2) (x2 -x1)

(6.40)

Equation (6.40) is a linear function of x (an equation of a straight line
that connects the two points). It is easy to see that if x = x1 is substituted

in Eq. (6.40), the value of the polynomial is y1, and if x = x2 is substi

tuted, the value of the polynomial is Yi· Substituting a value of x
between the points gives an interpolated value of y. Equation (6.40) can

also be rewritten in the standard form f(x) = a1x + a0:

f(x) =

(Yi -Y1) x + X
2 Yi -xi Yi

(x2-x1) (x2-x1)
(6.4 1)

For three points, (x1, y1), (x2, y2), and (x3, y3), the second-order

Lagrange polynomial that passes through the points (Fig. 6-13) has the
form:

Once the coefficients are determined such that the polynomial passes
through the three points, the polynomial is:

!()
=

(x-x2)(x-x3) (x-x1)(x-x3) (x-x1)(x-x2) (6 43) x Yi+ Ji+ Y3 · (x1-x2)(x1-x3) (x2-x1)(x2-x3) (x3-x1)(x3-x2)

Equation (6.43) is a quadratic function of x. When the coordinate x1,
x2, or x3 of one of the three given points is substituted in Eq. (6.43), the

value of the polynomial is equal to y1, Ji, or y3, respectively. This is

because the coefficient in front of the corresponding y; is equal to 1 and

the coefficient of the other two terms is equal to zero.

Following the format of the polynomials in Eqs. (6.41) and (6.43),
the general formula of an n -1 order Lagrange polynomial that passes

through n points (x1, y1), (x2, Ji), ... , (xn, Yn) is:

214 Chapter 6 Curve Fitting and Interpolation

f(

)
(x-x2)(x-x3) ... (x-xn) (x-x1)(x-x3) ... (x-xn)

x = Y1+ Yz-+ (x1-x2)(x1-x3) ... (x1-xn) (x2-x1)(x2-x3) ... (x2-xn)

(x-x1)(x-x2) ... (x-xi-I)(x-xi+ 1) ... (x-xn)
(6.44) ... + Y;+ ... +

(xi-x1)(x;-x2) ... (x;-X; _ 1)(x;-X; + 1) ... (x;-xn)

(x-x1)(x-x2) ... (x-xn_ 1)
(xn-x1)(xn-x2) ... (xn-xn-1) Y

n

On the right-hand side of Eq. (6.44) the numerator of the ith term does

not contain (x-x;), and the denominator does not contain (Jj-x;). Con

sequently, when the coordinate x; of one of then points is substituted in

Eq. (6.44), the value of the polynomial is equal to Y;· Equation (6.44)

can be written in a compact form using summation and product notation

as:

(6.45)

n (x -x)
where L;(x) = IJ _ i are called the Lagrange functions. This

1 = /x; x1)
}'# i

form can easily be implemented in a computer program, as shown in

Example 6-4.

Additional notes about Lagrange polynomials

• The spacing between the data points does not have to be equal.

• For a given set of points, the whole expression of the interpolation

polynomial has to be calculated for every value of x. In other words,

the interpolation calculations for each value of x are independent of

others. This is different from other forms (e.g., Eq. (6.35)) where

once the coefficients of the polynomial are determined, they can be

used for calculating different values of x.

• If an interpolated value is calculated for a given set of data points,

and then the data set is enlarged to include additional points, all the

terms of the Lagrange polynomial have to be calculated again. As

shown in Section 6.5.2, this is different from Newton's polynomials

where only the new terms have to be calculated if more data points

are added.

Application of a Lagrange polynomial is shown in Example 6-4.

6.5 Interpolation Using a Single Polynomial

Example 6-4: Lagrange interpolating polynomial.

The set of the following five data points is given:

x 1 2 4 5 7
y 52 5 -5 -40 10

(a) Determine the fourth-order polynomial in the Lagrange form that passes through the points.

(b) Use the polynomial obtained in part (a) to determine the interpolated value for x= 3.

215

(c) Develop a MATLAB user-defined function that interpolates using a Lagrange polynomial. The

input to the function are the coordinates of the given data points and the x coordinate at the point at

which the interpolated value of y is to be calculated. The output from the function is the interpolated

value of y at x = 3 .

SOLUTION

(a) Following the form of Eq. (6.44), the Lagrange polynomial for the five given points is:

f(x)= (x-2)(x-4)(x-5)(x-7)52 + (x- l)(x-4)(x-5)(x-7)5 + (x- l)(x-2)(x-5)(x-7)(-5) +

(1-2)(1-4)(1-5)(1-7) (2-1)(2-4)(2 -5)(2-7) (4-1)(4-2)(4-5)(4-7)
(x - l)(x-2)(x-4)(x-7) (-40) + (x- l)(x-2)(x-4)(x-5) 10 (5-1)(5-2)(5-4)(5-7) (7-1)(7-2)(7-4)(7-5)

(b) The interpolated value for x= 3 is obtained by substituting the x in the polynomial:

f(3)= (3 -2)(3 -4)(3 -5)(3 -7)52 + (3 -1)(3 -4)(3 -5)(3 -7)5 + (3 -1)(3 -2)(3-5)(3 -7) (-5) +
(1-2)(1-4)(1-5)(1-7) (2-1)(2-4)(2-5)(2-7) (4-1)(4-2)(4-5)(4-7)

(3 -1)(3 -2)(3 -4)(3 -7)(-40) + (3 -1)(3 -2)(3 -4)(3 -5) 10 (5-1)(5-2)(5-4)(5-7) (7-1)(7-2)(7-4)(7-5)

f (3) = -5.778 + 2.667 -4.444 + 13.333 + 0.222 = 6
(c) The MATLAB user-defined function for interpolation using Lagrange polynomials is named

Yint=LagrangeINT (x, y, Xint). x and y are vectors with the coordinates of the given data

points, and Xint is the coordinate of the point at whichy is to be interpolated.
• The program first calculates the product terms in the Lagrange functions in Eq. (6.45). The terms

are assigned to a variable (vector) named L.

L. = nn (x-x) where x = Xint
1 (x.-x.) j = l I J

j#i
• The program next calculates the value of the polynomial at x = xi n t.

n f(x) = LY;L;
i = l

[Program 6-4: User-defined function. Interpolation using a Lagrange polynomial.

function Yint = LagrangeINT(x,y,Xint)

% LagrangeINT fits a Lagrange polynomial to a set of given points and

% uses the polynomial to determine the interpolated value of a point.

% Input variables:

216 Chapter 6 Curve Fitting and Interpolation

% x A vector with the x coordinates of the given points.

% y A vector with the y coordinates of the given points.

% Xint The x coordinate of the point at which y is to be interpolated.

% Output variable:

% Yint The interpolated value of Xint.

n = length (x) ;
for i = 1 :n

L(i) =1;
for j = l:n

The length of the vector x gives the number ofterms in the polynomial.]

if j -= i H Calculate the product terms L;.]
L(i)= L(i)*(Xint-x(j))/(x(i)-x(j));

end
end

end
Yint = sum(y . *L);

n
Calculate the value of the polynomial f (x) = LY ;L;.

������ i=l

The Lagrange (x, y, Xint) function is then used in the Command Window for calculating the

interpolated value of x = 3.

>> x = [l 2 4 5 7];
>> y = [52 5 -5 -40 10] ;
>> Yinterpolated= LagrangeINT(x,y,3)

Yinterpolated =

6.0000

6.5.2 Newton's Interpolating Polynomials

Newton's interpolating polynomials are a popular means of exactly fit

ting a given set of data points. The general form of an n - 1 order New

ton's polynomial that passes through n points is:

(6.46)

The special feature of this form of the polynomial is that the coeffi

cients a1 through an can be determined using a simple mathematical

procedure. (Determination of the coefficients does not require a solu

tion of a system of n equations.) Once the coefficients are known, the

polynomial can be used for calculating an interpolated value at any x.

Newton's interpolating polynomials have additional desirable fea

tures that make them a popular choice. The data points do not have to

be in descending or ascending order, or in any order. Moreover, after the

n coefficients of an n - 1 order Newton's interpolating polynomial are

determined for n given points, more points can be added to the data set
and only the new additional coefficients have to be determined.

6.5 Interpolation Using a Single Polynomial 217

y

Yz

f(x)

Y1

j{x)=a1+az(x-x1)

X1

A
I
I
I
I

I I

I I

I I

1£ I

------+----IB
I I
I I
I I

x Xz

Figure 6-14: First-order
Newton's polynomial.

y
f{x)=a1+a2(x-x1)

+a3(x-x1)(x-x2)
y3 �������-

f(x)
Yz �----•

Y1

Figure 6-15: Second-order
Newton's polynomial.

x

x

First-order Newton's polynomial

For two given points, (x1, y1) and (x2, y2) , the first-order Newton's

polynomial has the form:

(6.47)

As shown in Fig. 6-14, it is an equation of a straight line that passes

through the points. The coefficients a1 and a2 can be calculated by

considering the similar triangles in Fig. 6-14.

DE =AB
or

CE CB'

f(x) -Y1
= Y

2-Yi

Solving Eq. (6.48) for f(x) gives:

X-Xl Xz-X1

f(x) = Y1 + Yz -
y1

(x -xi)
Xz-XI

(6.48)

(6.49)

Comparing Eq. (6.49) with Eq. (6.47) gives the values of the coeffi

cients a1 and a2 in terms of the coordinates of the points:

a1 = y1 , and Y2-Y1
az = --

Xz -XI
(6.50)

Notice that the coefficient a2 is the slope of the line that connects the

two points. As shown in Chapter 8, a2 is the two-point forward differ

ence approximation for the first derivative at (x1, y1).

Second-order Newton's polynomial

For three given points, (x1, y1), (x2, y2) , and (x3, y3), the second-order

Newton's polynomial has the form:

f(x) = a1 +a2(x-x1)+a3(x-x1) (x-x2) (6.51)

As shown in Fig. 6-15, it is an equation of a parabola that passes

through the three points. The coefficients a1, a2, and a3 can be deter

mined by substituting the three points in Eq. (6.51). Substituting x = x1

and f(x1) = y1 gives: a1 = y1• Substituting the second point, x = x2 and

f(x2) = y2, (and a1 =Yi) in Eq. (6.51) gives:

(6.52)

Substituting the third point, x = x3 and f(x3) = y3 (as well as

a1 =Yi and a2 = Yz -Yi
) in Eq. (6.51) gives:

Xz -Xi

(6.53)

218 Chapter 6 Curve Fitting and Interpolation

Equation (6.53) can be solved for a3 and rearranged to give (after some

algebra):

Y3-Y2 Y2-Y1
-- - --

X3-X2 X2-X1
a3 = -----

(x3 -xi)
(6.54)

The coefficients a1, and a2 are the same in the first-order and sec

ond-order polynomials. This means that if two points are given and a

first-order Newton's polynomial is fit to pass through those points, and

then a third point is added, the polynomial can be changed to be of sec

ond-order and pass through the three points by only determining the

value of one additional coefficient.

Third-order Newton's polynomial

For four given points, (x1, y1), (x2, Ji), (x3, y3) and (x4, y4), the third

order Newton's polynomial that passes through the four points has the

form:

f(x) = y =a1+ a2(x-x1)+a3(x-x1) (x-x2)+ a4(x-x1) (x-x2) (x-x3) (6.55)

The formulas for the coefficients a1, a2, and a3 are the same as for the

second order polynomial. The formula for the coefficient a4 can be

obtained by substituting (x4, y 4), in Eq. (6.5 5) and solving for a4, which

gives:

(y4-y3 Y3-Y2) (y3-Y2 Y2-Y1)
X4 -X3 X3 -X2 X3 -X2 X2 -XI

(x4-x2) (x3-x1)
a4 = -------------

(x4 -X1)

A general form of Newton's polynomial and its coefficients

(6.56)

A careful examination of the equations for the coefficients a2 (Eq.

(6.52)), a3, (Eq. (6.54)) and a4, (Eq. (6.56)) shows that the expressions

follow a certain pattern. The pattern can be clarified by defining so

called divided differences.

For two points, (x1, y1), and (x2, Yi) , the first divided difference,

written as f [x2, xi], is defined as the slope of the line connecting the

two points:

(6.57)

The first divided difference is equal to the coefficient a2•

For three points (x1, y1), (x2, y2), and (x3, y3) the second divided dif

ference, written as f [x3, x2, xi], is defined as the difference between the

first divided differences of points (x3, y3), and (x2, Ji), and points

(x2, y2), and (x1, y1) divided by (x3 -x1):

6.5 Interpolation Using a Single Polynomial 219

(6.58)

The second divided difference is thus equal to the coefficient a3 •
For four points (x1, y1), (x2, Ji), (x3, y3), and (x4, y4) the third

divided difference, written as f [x4, x3, x2, xi], is defined as the differ

ence between the second divided differences of points (x2, y2), (x3, y3)
and (x4, y4), and points (x1, y1), (x2, y2), and (x3, y3) divided by (x4 -x1):

f [x4, x3, x2] -f [x3, x2, xi]
f[x4,X3,x2,xil =

----'-----....;;;;_X4-X1

f [x4, X3] -f [x3, X2] f [x3, X2] -f [x2, xi]

(X4 -X1) (6.59)

Y4-Y3 Y3-Yi Y3-Y2 Yi-Yi
X4 -X3 X3 -X2 X3 -X2 X2 -X1

(x4 -x2) (x3 -x1)
------------ = a4

(X4-X1)

The third divided difference is thus equal to the coefficient a4•
The next (fourth) divided difference (when five data points are

given) is:

If more data points are given, the procedure for calculating higher dif

ferences continues in the same manner. In general, when n data points

are given, the procedure starts by calculating (n - 1) first divided differ

ences. Then, (n - 2) second divided differences are calculated from the

first divided differences. This is followed by calculating (n -3) third

divided differences from the second divided differences. The process

ends when one nth divided difference is calculated from two (n - 1)
divided differences to give the coefficient an.

The procedure for finding the coefficients by using divided differ

ences can be followed in a divided difference table. Such a table for the

case of five data points is shown in Fig. 6-16.
In general terms, for n given data points,

(x1, y1), (x2, Ji), ... , (xn, Yn) , the first divided differences between two

points (x;, y;), and (xp y1) are given by:

(6.61)

220

a1

I
XI Yi

�

/ X2 Y2
�

/ X3 Y3 "
X4 Y4 <
X5 Y5 /

Data Points

Chapter 6 Curve Fitting and Interpolation

a2

I a3

a4 f[x2,xi] � I / f[x3,x2,xi]� I
f[x3,x2] � / f [x4,x3,x2,xi] �

/ f[X4,X3,X2] � /
f [x4, X3] � / f [x5, X4, X3, X2]

f [X5, X4]

/" f [X5, X4, X3]

First divided

difference

Second divided

difference

Third divided

difference

Figure 6-16: Table of divided differences for five data points.

a5

I
f [x5, X4, X3, X2, xi]

Fourth divided

difference

The kth divided difference for second and higher divided differences up

to the (n -1) difference is given by:

With these definitions, the (n -1) order Newton's polynomial, Eq.

(6.46) is given by:

f(x)= y = y1+ f [x2, x1](x-x1)+ f [x3, x2, x1](x-x1)(x-x2)+ ... + f [xn, xn-l• .. ., x2, x1](x -x1)(x-x2) ... (x-xn_1)

y (6.63)

Notes about Newton's polynomials

• The spacings between the data points do not have to be the same.

• For a given set of n points, once the coefficients a1 through an are

determined, they can be used for interpolation at any point between

the data points.

After the coefficients a1 through an are determined (for a given set of n

points), additional data points can be added (they do not have to be in

order), and only the additional coefficients have to be determined.

Example 6-5 shows application of Newton's interpolating polyno

mials.

6.5 Interpolation Using a Single Polynomial 221

Example 6-5: Newton's interpolating polynomial.
The set of the following five data points is given:

x 1 2 4 5 7
y 52 5 -5 -40 10
(a) Determine the fourth-order polynomial in Newton's form that passes through the points. Calcu
late the coefficients by using a divided difference table.
(b) Use the polynomial obtained in part (a) to determine the interpolated value for x= 3.
(c) Write a MATLAB user-defined function that interpolates using Newton's polynomial. The input

to the function should be the coordinates of the given data points and the x coordinate of the point at

which y is to be interpolated. The output from the function is they value of the interpolated point.

SOLUTION
(a) Newton's polynomial for the given points has the form:

f(x) = y =a1+ a2(x-1)+a3(x-1)(x-2)+ a4(x-1)(x-2)(x- 4) + a5(x-1)(x-2)(x- 4)(x -5)
The coefficients can be determined by the following divided difference table: :• :� (a1 � 52

I a
2 � -47 a3 � 1 4 a4 � -6

I
5
2-_

5
1
2

� -47 � \
2 5 -5-(-47) = 1 4 � ""'

-5-5 = _5
/ 4-1

-10-1 4 = -6 "'
5-1

4
_

5
/ 4-2 � - 35-(-5) = -10 / ""' - 40-(-5) = -35 / 5-2 "" 20-(-10) = 6

7-2

6-(-6) = 2 / 7-1

5

7

I 5- 4 "" / -40"' / 25 ��-;5) = 20

10-(-40) = 25 / 7-5
10

With the coefficients determined, the polynomial is:

f(x) = y = 52 - 47(x-1)+ 1 4(x-1)(x-2)- 6(x -1)(x -2)(x - 4) + 2(x-1)(x-2)(x- 4)(x -5)

(b) The interpolated value for x= 3 is obtained by substituting for x in the polynomial:

/(3) = y = 52- 47(3 -1)+ 1 4(3 -1)(3 -2)- 6(3 -1)(3 -2)(3 - 4) + 2(3 -1)(3 -2)(3 - 4)(3 -5) = 6

(c) The MATLAB user-defined function for Newton's interpolation is named Yint=Newton
s INT (x, y, Xin t) . x and y are vectors with the coordinates of the given data points, and Xin t is

the coordinate of the point at which y is to be interpolated.
• The program starts by calculating the first divided differences, which are then used for calculating

the higher divided differences. The values are assigned to a table named di vDI F.

• The coefficients of the polynomial (first row of the table) are then assigned to a vector named a.

222

• The known polynomial is used for interpolation.

Chapter 6 Curve Fitting and Interpolation

(Program 6-5: User-defined function. Interpolation using Newton's polynomial. J

function Yint = NewtonsINT(x,y,Xint)
% NewtonsINT fits a Newtons polynomial to a set of given points and

% uses the polynomial to determines the interpolated value of a point.

% Input variables:

% x A vector with the x coordinates of the given points.

% y A vector with the y coordinates of the given points.

% Xint The x coordinate of the point to be interpolated.

% Output variable:

% Yint The interpolated value of Xint.

n = length (x) ;
a (l)= y (l);

[The length of the vector x gives the number ofcoefficients (and terms) of the polynomial.]
[The first coefficient a 1 . J

for i = l:n - 1

divDIF(i,l)=(y(i+l)-y(i))/(x(i+ 1)-x(i));

-
_J Calculate the finite divided differences. They l

[are assigned to the first column of di vD IF. end -
for j = 2 :n - 1

for i = l:n - j

divDIF(i,j)=(divDIF(i+l,j-l) -divDIF(i,j-1))/(x(j+i)-x(i));

end

Calculate the second and
higher divided differences
(up to an order of (n - 1)).
The values are assigned in
columns to di vDIF.

end
for j = 2 :n

a(j) = divDIF(l,j - 1);

end
Yint =a (1);
xn = 1;
for k = 2:n

xn = xn* (Xint - x (k - 1)) ;
Yint = Yint + a (k) *xn;

end

-

-

-

----1 Assign the coefficients a2 through an. to vector a.

-

-

Calculate the interpolated value ofXint. The first
- term in the polynomial is a 1 • The following terms

are added by using a loop.

The Newtons INT (x, y, Xint) Function is then used in the Command Window for calculating

the interpolated value of x = 3.

>> x = [l 2 4 5 7];

>> y = [52 5 -5 -40 10) ;
>> Yinterpolated = NewtonsINT(x,y,3)

Yinterpolated =
6

6.6 Piecewise (Spline) Interpolation 223

6.6 PIECEWISE (SPLINE) INTERPOLATION

When a set of n data points is given and a single polynomial is used for
interpolation between the points, the polynomial gives the exact values

35 �-
------�� at the points (passes through the points) and yields estimated (interpo

lated) values between the points. When the number of points is small
such that the order of the polynomial is low, typically the interpolated
values are reasonably accurate. However, as already mentioned in Sec
tion 6.4, large errors might occur when a high-order polynomial is used
for interpolation involving a large number of points. This is shown in

30

25

20
>..

IS

10

Fig. 6-17 where a polynomial of 15th order is used for interpolation
10 IS

x with a set of 16 data points. It is clear from the figure that near the ends
Figure 6-17: Fitting 16 data points the polynomial deviates significantly from the trend of the data, and
with a 15th order polynomial. thus cannot be reliably used for interpolation.

When a large number of points is involved, a better interpolation
can be obtained by using many low-order polynomials instead of a sin
gle high-order polynomial. Each low-order polynomial is valid in one
interval between two or several points. Typically, all of the polynomials
are of the same order, but the coefficients are different in each interval.
When first-order polynomials are used, the data points are connected
with straight lines. For second-order (quadratic), and third-order (cubic)
polynomials, the points are connected by curves. Interpolation in this
way is called piecewise, or spline, interpolation. The data points where
the polynomials from two adjacent intervals meet are called knots. The
name "spline" comes from a draftsman's spline, which is a thin flexible
rod used to physically interpolate over discrete points marked by pegs.

The three types of spline interpolation are linear, quadratic, and
cubic.

6.6.1 Linear Splines

With linear splines, interpolation is carried out by using a first-order
polynomial (linear function) between the points (the points are con
nected with straight lines), as shown in Fig. 6-18. Using the Lagrange
form, the equation of the straight line that connects the first two points
is given by:

f
()

(x-x2) (x-x1)
1 x = Y1 + Y2 (x1-x2) (xz-x1)

(6.64)

For n given points, there are n -1 intervals. The interpolation in inter
val i, which is between points x; and X;+ 1 (x; :<:::; x :<:::; X;+ 1), is done by

using the equation of the straight line that connects point (x;, y;) with
point (x;+ 1, Y;+ 1):

!() - (x-x;+1) (x-x;) fior ;X - y;+ Yi+l i=l,2, . . . ,n-1
(x;-X;+i) (x;+1-x;)

(6.65)

224

y

Chapter 6 Curve Fitting and Interpolation

fi(x)

(xi> yK) Ji (x) fn-1(x)
, (xn, Yn) ; I ' I (x;+v Yi+1) 1

I I ' II I I '
I I '
I I '
I I ' (xn-1, Yn-1)
I I I I I I I I I I I I I I I I I

I I L___J L__J
n-

1 interval 1st 2nd i th interval
interval interval

Figure 6-18: Linear splines.

x

It is obvious that linear splines give continuous interpolation since the

two adjacent polynomials have the same value at a common knot. There

is, however, a discontinuity in the slope of the linear splines at the

knots.

Interpolation with linear splines is easy to calculate and program,

and gives good results when the data points are closely spaced. Exam

ple 6-6 shows a numerical application of linear splines by hand and by

using a user-defined MATLB function.

Example 6-6: Linear splines.

The set of the following four data points is given:

x 8 11 15 18

y 5 9 10 8

(a) Determine the linear splines that fit the data.

(b) Determine the interpolated value for x= 12.7 .
(c) Write a MATLAB user-defined function for interpolation with linear splines. The inputs to the

function are the coordinates of the given data points and the x coordinate of the point at which y is to

be interpolated. The output from the function is the interpolated y value at the given point. Use the

function for determining the interpolated value of y for x = 12. 7 .

SOLUTION

(a) There are four points and thus three splines. Using Eq. (6.65) the equations of the splines are:

f1(x)= (x-x2)
Y1 + (x-x1)

Y2 = (x-11)5+ (x-8)9 = 2-(x-ll) +�(x-8) for 8�x$;1l
(x1-x2) (x2-x1) (8-11) (11-8) -3 2

f2(x)= (x-x3)
Y2+(x-x2) y3= (x-15)9+ (x-11) 10=_2._(x-15) +10(x-ll) for ll�x�l5

(x2-x3) (x3-x2) (11-15) (15-11) -4 4

f3(x)= (x-x4) y3+(x-x3) y4= (x-l8) 10+ (x-l5)8=10(x-18) +�(x-15) for 15�x$;l8
(x3-x4) (x4-x3) (15-18) (18-15) -3 3

(b) The interpolated value of y for x = 12. 7 is obtained by substituting the value of x in the equation

for f 2(x) above:

6.6 Piecewise (Spline) Interpolation

/2(12.7) = 1-(12.7 -15) +
10(12.7 -11) = 9.425

-4 4

225

(c) The MATLAB user-defined function for linear spline interpolation is named Yint=Linear-

Spline (x, y, Xint). x and y are vectors with the coordinates of the given data points, and Xint

is the coordinate of the point at whichy is to be interpolated.

[Program 6-6: User-defined function. Linear splines.]

function Yint = LinearSpline (x, y, Xint)

% LinearSpline calculates interpolation using linear splines.

% Input variables:

% x A vector with the coordinates x of the data points.

% y A vector with the coordinates y of the data points.

% Xint The x coordinate of the interpolated point.

% Output variable:

% Yint The y value of the interpolated point.

n = length (x) ;

for i = 2 :n

[The length of the vector x gives the number of terms in the data. J

if Xint < x (i)

break

end

Find the interval that includes Xint.

end [Calculate Yint with Eq. (6.65).)

Yint=(Xint-x(i))*y(i-1)/(x(i-l)-x(i))+(Xint-x(i-l))*y(i)/(x(i)-x(i-1));

The LinearSpline (x, y, Xint) function is then used in the Command Window for calculating

the interpolated value of x= 12.7.

>> x = [8 11 15 18];

>> y = [5 9 10 8] ;

>> Yint = LinearSpline(x,y,12.7)

Yint =

9.4250

6.6.2 Quadratic Splines

In quadratic splines, second-order polynomials are used for interpola

tion in the intervals between the points (Fig. 6-19). For n given points

there are n -1 intervals, and using the standard form, the equation of

the polynomial in the ith interval, between points xi and xi+ 1, is given

by:

(6.66)

Overall, there are n -1 equations, and since each equation has three

coefficients, a total of 3 (n -1) = 3 n -3 coefficients have to be deter

mined. The coefficients are determined by applying the following con

ditions:

226 Chapter 6 Curve Fitting and Interpolation

y

1st interval 2nd interval i th interval n-1 interval

Figure 6-19: Quadratic splines.

1. Each polynomial f;(x) must pass through the endpoints of the

interval, (x;. y;) and (x;+ 1, Y;+ 1), which means that f;(x;) = Y; and

f;(X;+ 1) = Y;+ I :

a; x[+ b; X; + C; = Y; for i = 1, 2, ... , n -1

a; x[+1+b; X;+1+c;=Y;+I for i=l,2, .. .,n-1

(6.67)

(6.68)

Since there are n -1 intervals, these conditions give

2(n-1) = 2n-2 equations.
2. At the interior knots, the slopes (first derivative) of the polynomials

from adjacent intervals are equal. This means that as the curve that
passes through an interior knot switches from one polynomial to
another, the slope is continuous. In general, the first derivative of
the ith polynomial is:

f'(x) = � = 2a;x + b; (6.69)

For n points, the first interior point is i = 2 , and the last is

i = n -1. Equating the successive first derivatives at all of the inte
rior points gives:

(6.70)

Since there are n -2 interior points, this condition gives n -2
equations.

Together, the two conditions give 3n - 4 equations. However, the
n -1 polynomials have 3n -3 coefficients so that one more equation

(condition) is needed in order to solve for all of the coefficients. An
additional condition that is commonly applied is that the second deriva
tive at either the first point or the last point is zero. Consider the first
choice:

6.6 Piecewise (Spline) Interpolation 227

3. The second derivative at the first point, (x1, y1), is zero. The poly

nomial in the first interval (between the first and the second points)

IS:

(6.71)

The second derivative of the polynomial is f 1"(x) = 2a1, and

equating it to zero means that a1 = 0. This condition actually

means that a straight line connects the first two points (the slope is

constant).

A note on quadratic and cubic splines

Quadratic splines have a continuous first derivative at the interior points

(knots), and for n given points they require the solution of a linear sys

tem of 3n - 4 equations for the coefficients of the polynomials. As is

shown in the next section, cubic splines have continuous first and sec

ond derivatives at the interior points, and can be written in a form that

requires the solution of a linear system of only n - 2 equations for the

coefficients.

Example 6-7 shows an application of quadratic splines for interpo

lation of a given set of five points.

Example 6-7: Quadratic splines.

The set of the following five data points is given:

x 8 11 15 18 22
y 5 9 10 8 7

(a) Determine the quadratic splines that fit the data.

(b) Determine the interpolated value of y for x= 12.7.
(c) Make a plot of the data points and the interpolating polynomials.

SOLUTION

(a) There are five points (n = 5) and thus four splines (i = 1, . . . , 4). The quadratic equation for the

ith spline is:

f;(x) = a;x
2 + b;x + c;

There are four polynomials, and since each polynomial has three coefficients, a total of 12 coeffi

cients have to be determined. The coefficients are a1, b1, c1, a2, b2, c2, a3, b3, c3, a4, b4, and c4. The

coefficient a1 is set equal to zero (see condition 3). The other 11 coefficients are determined from a

linear system of 11 equations.

Eight equations are obtained from the condition that the polynomial in each interval passes

through the endpoints, Eqs. (6.67) and (6.68):

i = 1 /1(x) = a1xr+b1x1 +c1 =b18+c1 = 5

f1(x) = a1xi+b1x2+c1 = b1 ll+c1 = 9

i = 2 f2(x) = a2xi+b2x2+c2 = a2 ll2+b2 ll +c2 = 9

f 2(x) = a2XJ + b2X3 + C2 = a2 152 + b2 15 + C2 = 10

228 Chapter 6 Curve Fitting and Interpolation

i = 3 f 3(x) = a3x1 + b3x3 + c3 = a3 152 + b3 15 + c3 = 10

/3(x) = a3xi+b3x4+c3 = a3 182+b3 18+c3 = 8

i = 4 fix) = a4xi + b4x4 + c4 = a4 182 + b4 18 + c4 = 8

/4(x) = a4x�+b4x5+c4 = a4 222+b4 22+c4 = 7

Three equations are obtained from the condition that at the interior knots the slopes (first deriva

tive) of the polynomials from adjacent intervals are equal, Eq. (6.70).

i = 2 2a1x2+b1 = 2a2x2+b2 � b1 = 2a211+b2 or: b1-2a211-b2 = 0

i = 3 2a2x3+b2 = 2a3x3+b3 � 2a215+b2 = 2a315+b3 or: 2a215+b2-2a315-b3 = 0

i = 4 2a3x4+b3 = 2a4x4+b4 � 2a318+b3 = 2a418+b4 or: 2a318+b3-2a418-b4 = 0

The system of 11 linear equations can be written in a matrix form:

8 1 0 0 0 0 0 0 0 0 0 h1 5
11 1 0 0 0 0 0 0 0 0 0 C1 9
0 0 ll2 11 1 0 0 0 0 0 0 a2 9
0 0 152 15 1 0 0 0 0 0 0 h2 10
0 0 0 0 0 152 15 1 0 0 0 C2 10

0 0 0 0 0 182 18 1 0 0 0 a3 8 (6.72)

0 0 0 0 0 0 0 0 182 18 1 b3 8

0 0 0 0 0 0 0 0 222 22 1 C3 7

1 0 -22 -1 0 0 0 0 0 0 0 a4 0

0 0 30 1 0 -30 -1 0 0 0 0 b4 0

0 0 0 0 0 36 1 0 -36 -1 0 C4 0

The system in Eq. (6.72) is solved with MATLAB:

>>A= [8 1 0 0 0 0 0 0 0 0 0; 11 1 0 0 0 0 0 0 0 0 0; 0 0 11A2 11 1 0 0 0 0 0 0
0 0 15A2 15 1 0 0 0 0 0 0; 0 0 0 0 0 15A2 15 1 0 0 0; 0 0 0 0 0 18A2 18 1 0 0 0
0 0 0 0 0 0 0 0 18A2 18 1; 0 0 0 0 0 0 0 0 22A2 22 1; 1 0 -22 -1 0 0 0 0 0 0 0
0 0 30 1 0 -30 -1 0 0 0 0; 0 0 0 0 0 36 1 0 -36 -1 0];

>> B= [5; 9; 9; 10; 10; 8; 8; 7; 0; 0; 0];
>> coefficients = (A\B) '

coefficients =
1.3333 -5.6667 -0.2708

t t t

7.2917 -38.4375 0.0556 -2.5000 35.0000 0.0625 -2.7500

t t t t t t t

With the coefficients known, the polynomials are:

37.2500

t

f1(x) = l. 3 3 3x-5.6667 for 8::;;x::;;11, f2(x)=(-0.2708)x2+7.2917x- 38.4375 for 11::;;x::;;15

f3(x)=0.0556x2-2.5x+ 35 for 15::;; x::;; 18, f 4(x)=0.0625x2-2.75x+ 37.25 for 18::;; x::;; 22

(b) The interpolated value ofy for x= 12.7 is calculated by substituting the value of x inf i(x):

f 2(12.7) = (-0.2708). 12.72 + 7.2917 . 12.7 - 38.4375 = 10.4898

6.6 Piecewise (Spline) Interpolation 229

(c) The plot on the right shows the data points

and the polynomials. The plot clearly shows

that the first spline is a straight line (constant

slope).

6.6.3 Cubic Splines

10 12 14 16 18 20 22
x

In cubic splines, third-order polynomials are used for interpolation in

the intervals between the points. For n given points there are n - 1 inter

vals, and since each third-order polynomial has four coefficients the

determination of all of the coefficients may require a large number of

calculations. As was explained earlier in this chapter, polynomials can

be written in different forms (standard, Lagrange, Newton) and theoret

ically any of these forms can be used for cubic splines. Practically, how

ever, the amount of calculations that have to be executed for

determining all the coefficients varies greatly with the form of the poly

nomial that is used. The presentation that follows shows two derivations

of cubic splines. The first uses the standard form of the polynomials,

and the second uses a variation of the Lagrange form. The derivation

with the standard form is easier to follow, understand, and use (it is sim

ilar to the derivation of the quadratic splines), but it requires the solu

tion of a system of 4n - 4 linear equations. The derivation that is based

on the Lagrange form is more sophisticated, but requires the solution of

a system of only n - 2 linear equations.

Cubic splines with standard form polynomials

For n given points, as shown in Fig. 6-20, there are n - 1 intervals, and

using the standard form, the equation of the polynomial in the ith inter

val, between points x; and X;+ 1 is given by:

(6.73)

Overall, there are n - 1 equations, and since each equation has four

coefficients, a total of 4(n - 1) = 4n - 4 coefficients have to be deter

mined. The coefficients are found by applying the following conditions:

1. Each polynomial f;(x) must pass through the endpoints of the

interval, (x;, Y;) and (x;+ 1, Y;+ 1), which means that f;(x;) = Y, and

flx;+ 1) = Y;+ 1:

(6.74)

230

y

Chapter 6 Curve Fitting and Interpolation

fi(x) = a1x3+b1x2+c1x+d1
I I I I

I st interval 2nd interval i th interval n-1 interval

Figure 6-20: Cubic splines.

(x11> Yn)

x

Since there are n -1 intervals, this condition gives
2(n -1) = 2n -2 equations.

2. At the interior knots, the slopes (first derivatives) of the polynomi
als from the adjacent intervals are equal. This means that as the
curve that passes through an interior knot switches from one poly
nomial to another, the slope must be continuous. The first deriva
tive of the ith polynomial is:

df. I .'(x) = -1 = 3a.x2 + 2b.x + c. z d x z , z (6.76)

For n points the first interior point is i = 2, and the last is
i = n -1. Equating the first derivatives at each interior point gives:

3a;_1x[+2b;_1x;+c;_1=3a;x[+2b;x;+c; for i = 2,3, . . . ,n-1 (6.77)

Since there are n -2 interior points, this condition gives n -2 addi
tional equations.

3. At the interior knots, the second derivatives of the polynomials
from adjacent intervals must be equal. This means that as the curve
that passes through an interior knot switches from one polynomial
to another, the rate of change of the slope (curvature) must be con
tinuous. The second derivative of the polynomial in the ith interval
is:

d2J.
I -"(x) = -1 = 6a.x + 2b z dx2 z z (6.78)

For n points, the first interior point is i = 2, and the last is
i = n -1. Equating the second derivatives at each interior point

gives:

(6.79)

6.6 Piecewise (Spline) Interpolation 231

f(x)
f; (x)

(x;+z, Yi+2)

: '
I
I
I
I x I

(a)

f'(x) 1;:1(x)

(x;-i,
J;�I(x)

x

(b) (x;+z, f '(x;+2))

(c)

Figure 6-21: Third-order
polynomial (a) and its first (b)
and second (c) derivatives.

Since there are n - 2 interior points, this condition gives n - 2 addi

tional equations.

Together, the three conditions give 4n - 6 equations. However, the

n - 1 polynomials have 4n - 4 coefficients, and two more equations

(conditions) are needed in order to solve for the coefficients. The addi

tional conditions are usually taken to be that the second derivative is

zero at the first point and at the last point. This gives two additional

equations:

(6.80)

Cubic splines with the second derivatives at the endpoints set equal to

zero are called natural cubic splines. Applying all the conditions gives

a system of 4n - 4 linear equations for the 4n - 4 coefficients. The sys

tem can be solved using one of the methods from Chapter 4.

Cubic splines based on Lagrange form polynomials

The derivation of cubic splines using the Lagrange form starts with the

second derivative of the polynomial. Figure 6-21 shows spline interpo

lation with cubic polynomials in (a) , the first derivatives of the polyno

mials in (b), and their second derivatives in (c). The figure shows an ith

interval with the adjacent i - 1 and i + 1 intervals. The second deriva

tive of a third-order polynomial is a linear function. This means that

within each spline the second derivative is a linear function of x (see

Fig. 6-21c). For the ith interval, this linear function can be written in the

Lagrange form:

(6.81)

where the values of the second derivative of the third-ordered polyno

mial at the endpoints (knots) of the ith interval are f;"(x;) and

f;"(x;+1). The third order polynomial in interval i can be determined

by integrating Eq. (6.81) twice. The resulting expression contains two

constants of integration. These two constants can be determined from

the condition that the values of the polynomial at the knots are known:

f;(x;) = Y; and f;(X;+ 1) = Y;+ 1

Once the constants of integration are determined, the equation of the

third-order polynomial in interval i is given by:

232 Chapter 6 Curve Fitting and Interpolation

f ()
=

f;"(xi) (_)3 + f/'(xi+ 1) (_)3 · X X·+ l X X X·
' 6(x;+1-x;) ' 6(x;+1-x;) '

+ [Y; f;"(x;)(x;+1-x;)J c) - X;+1-X
X;+1-X; 6

and i = 1, 2, ... , n - 1

(6.82)

For each interval Eq. (6.82) contains two unknowns, f;"(x;) and

f;"(x;+ 1). These are the values of the second derivative at the end

points of the interval. Equations that relate the values of the second

derivatives at the n -2 interior points can be derived by requiring con

tinuity of the first derivatives of polynomials from adjacent intervals at

the interior knots:

//(x;+1)
=

!!+1(x;+1) for i = 1,2, ... ,n-2 (6.83)

This condition is applied by using Eq. (6.82) to write the expressions

for f;(x) and /;+ 1 (x), differentiating the expressions, and substituting

the derivatives in Eq. (6.83). These operations give (after some algebra)

the following equations:

(x;+ 1 -x;)f"(x;)
+ 2(x;+ 2 -x;)f"(x;+ 1)

+ (x;+ 2 -X;+ 1)/"(x;+ 2)

= 6[Yi+2 -Y;+ 1_Y;+1 -Y;J
Xi+2-Xi+I Xi+l-Xi

for i = 1,2, ... ,n-2

(6.84)

This is a system of n -2 linear equations that contains n unknowns.

How is the polynomial in each interval determined?

• For n given data points there are n - 1 intervals. The cubic polyno

mial in each interval is given by Eq. (6.82), (total of n - 1 polynomi

als).

• The n - 1 polynomials contain n coefficients /"(x1), through

f" (xn). These are the values of the second derivatives of the poly

nomials at the data points. The second derivative at the interior knots

is taken to be continuous. This means that at the interior knots, the

second derivatives of the polynomials from adjacent intervals are

equal. Consequently, for n data points there are n values (the value of

the second derivative at each point) that have to be determined.

• Equations (6.84) give a system of n -2 linear equations for the n

unknown coefficients /"(x1) through f"(xn)· To solve for the coef

ficients, two additional relations are required. Most commonly, the

second derivative at the endpoints of the data (the first and last

6.6 Piecewise (Spline) Interpolation

points) is set to zero (natural cubic splines):

f"(x1) = 0 and f"(xn) = 0

233

(6.85)

With these conditions, the linear system of Eqs. (6.84) can be solved,

and the coefficients can be substituted in the equations for the poly

nomials (Eqs. (6.82)). Cubic splines with the second derivatives at

the endpoints set equal to zero are called natural cubic splines.

Simplified form of the equations

The form of Eqs. (6.82) and (6.84) can be simplified by defining h; as

the length of the ith interval (the intervals do not have to be of the same

length):

h; = X;+J -X; (6.86)

and defining a; as the second derivative of the polynomial at point x;:
(6.87)

With these definitions, the equation of the polynomial in the ith interval

1s:

f.(x) = .!!.i._(x. -x)3 + a;+1(x-x.)3
I 6h. i+J 6h. I

I l

+ [t - a
�
h}x;+ I -x) + [Y�

+ I -a;�1h;J(x-x;)
I I

and i = 1, 2, ... , n - 1

(6.88)

and the system of linear equations that has to be solved for the a; s 1s

given by:

- [Yi+2 -Y;+ I Y;+ I
-Y;J h;a;+2(h;+h;+1)a;+1 +h;+1a;+2 - 6 h;+i -

h; (6.89)

for i = 1,2, ... ,n-2

To carry out cubic spline interpolation, Eq. (6.89) is used for writing a

system of n -2 equations with n -2 unknowns, a2 through an_ 1•
(Remember that with natural cubic splines a1 and an are equal to zero.)

Equations (6.89) result in a tridiagonal system of equations that can be

solved efficiently using the Thomas algorithm (see Chapter 4). Once the

system of equations is solved, the cubic polynomials for each interval

can be written using Eq. (6.88). Example 6-8 shows a solution of the

problem that is solved in Example 6-7 with cubic splines.

Note on using cubic splines in MATLAB

Cubic splines are available as a built-in function within MATLAB.

However, the option labeled ' cubic ' (also called 'pc hip ') is not
the method of cubic splines. Rather, the option labeled 'spline' is

the appropriate option to use for cubic splines. Even when using the

option 'spline', the user is cautioned that it is not the natural splines

234 Chapter 6 Curve Fitting and Interpolation

described in this chapter. The cubic splines available in MATLAB
under the option 'spline' use the not-a-knot conditions at the end
points, that is, at the first and last data points. The not-a-knot condition

refers to the fact that the third derivatives are continuous at the second
point and at the second to last point.

Example 6-8: Cubic splines.

The set of the following five data points is given:

x 8 11 15 18 22
y 5 9 10 8 7

(a) Determine the natural cubic splines that fit the data.
(b) Determine the interpolated value of y for x= 12.7.

(c) Plot of the data points and the interpolating polynomials.

SOLUTION
(a) There are five points (n = 5), and thus four splines (i = 1, .. ., 4). The cubic equation in the ith
spline is:

a. a·+1 [Y· ah.] [Y.+1 a·+1h·J f;(x) =
6� (x;+1-x)

3
+ �

h.(x-x;)
3
+ t.--t;2 (x;+1-x)+ T.-T (x-x;) for i=l,. .. 4

l l l l

where h; = X;+ 1 -x;. The four equations contain five unknown coefficients a1, a2, a3, a4, and a5. For

natural cubic splines the coefficients a1 and a5 are set to be equal to zero. The other three coeffi

cients are determined from a linear system of three equations given by Eq. (6.89).

The values ofthe h;s are: h1 = x2-x1 = 11-8 = 3, h2 = x3-x2 = 15-11 = 4

i = 1

i = 2

i = 3

h3 = X4 -X3 = 18 -15 = 3, h4 = X5 -X4 = 22 -18 = 4

h1a1 + 2(h1 + h1)a2 + h1a3 = 6 [Y3 -Y2
_ Y2 -Y1]

h1 h1 [10-9 9-5] 3
· 0 + 2(3 + 4)a2 + 4a3 = 6 -

4
- - -3- ---.. 14a2 + 4a3 = -6.5

The system of three linear equations can be written in a matrix form:

l�4 1: � l r::l l=�:�l
o 3

1� l�� 2.5J
The system in Eq. (6.90) is solved with MATLAB:

>>A= [14 4 0; 4 14 3; 0 3 14];
>> B = [-6.5; -5.5; 2.5];

(6.90)

6.6 Piecewise (Spline) Interpolation

>> coefficients = (A\B) '
coefficients =

-0.3665 -0.3421 0.2519

' ' '

With the coefficients known, the polynomials are (from Eq. (6.88)):

a1 3 a1 3 [Y1 a1h1J [Yi a1h1J
i = 1 /1(x) = -(x2-x) +-(x-x1) + --- (x2-x)+ --- (x-x1)

6h1 6h1 h1 6 h1 6

fi(x) = _Q_(ll -x)3 + -0.3665(x- 8)3 + [� _

0 · 3J (ll -x) + [�
_

-0.3665 · 3J (x- 8)
6·3 6·3 3 6 3 6

f1(x) = (-0.0 2 0 36)(x- 8)3+1.667(11-x)+3.183(x- 8) for 8:<S;x:<S;ll

a2 3 a3 3 [Yi a1h2J [Y3 a3h2J
i = 2 f2(x) = -(x3-x) +-(x-x2) + --- (x3-x)+ --- (x-x2)

6h2 6h2 h2 6 h2 6

235

f (x) = -0.3665(15 -x)3 + -0.342l (x-ll)3 + [� _ -0.3665 · 4] (15 _x) + [10 _ -0.3421·4J (x-ll) 2 6·4 6·4 4 6 4 6

f2(x) = (-0.0152 7)(15-x)3+(-0.0142 7)(x-11)3+2.494(15-x)+2.72 8(x-11) for ll :<S;x:<S;15
. a3 a4 [Y3 a3h3J [y 4 a4h3J

1 = 3 f3(x) = -(x4-x)3+-(x-x3)3+ --- (x4-x)+ --- (x-x3)
6h3 6h3 h3 6 h3 6

f (x) = -0.3421(18_x)3+0.2 519(x-l 5)3+[10 --0.3421 ·3] (l 8-x)+[�- 0.2 519·3J (x-l 5) 3 6·3 6·3 3 6 3 6
f3(x) = (-0.019)(18-x)3+0.014(x-15)3+3.50 4(18-x)+2.540 7(x-15) for 15:<S;x:<S;18

(b) The interpolated value ofy for x= 12.7 is calculated by substituting the value of x in /2(x):

f2(x) = (-0.0152 7)(15 -12.7)3 + (-0.0142 7)(12.7 -11)3 + 2.494(15 -12.7) + 2.72 8(12.7 -11)

f2(x) = 10.11
(c) The plot on the right shows the data points

and the polynomial.

10 12 14 16 18 20 22
x

236 Chapter 6 Curve Fitting and Interpolation

6.7 USE OF MATLAB BUILT-IN FUNCTIONS FOR

CURVE FITTING AND INTERPOLATION

MATLAB has built-in functions for curve fitting and interpolation. In
addition, MATLAB has an interactive tool for curve fitting, called the
basic fitting interface. This section describes how to use the functions
polyfi t (for curve fitting) and interpl (for interpolation). Polyno
mials can be easily used and mathematically manipulated with
MATLAB.

The polyf it command

The poly fit command can be used for curve fitting a given set of n

points with polynomials of various degrees and for determining the
polynomial of order n - 1 that passes through all the points. The form
of the command is:

p is a vector of the
coefficients of the
polynomial that best
fits the data.

x and y are vectors with
the horizontal and verti
cal coordinates of the

data points, respectively.

The interpl command

m is the degree of
the polynomial.

The interpl (the last character is the number one) command exe
cutes one-dimensional interpolation at one point. The format of the

command is:

J;ryi=interpl(x,!,xi, 'method')]

� 7 ""'
yi is the x and y are vectors with the indepen- Method of

interpolated dent variable and dependent variable interpolation,

value of the data points, respectively. typed as a

(dependent xi is the value of x at whichy is to be string

variable). interpolated. (optional).

• The vector x must be monotonic (the elements must be in ascending
or descending order).

• xi can be a scalar (interpolation at one point) or a vector (interpola
tion at several points). yi is a scalar or a vector with the correspond
ing interpolated values at the point(s) xi.

• MATLAB can interpolate using one of several methods that can be
specified. These methods include:

'nearest' returns the value of the data point that is nearest
to the interpolated point.

'linear' uses linear spline interpolation.

6.7 Use of MATLAB Built-In Functions for Curve Fitting and Interpolation 237

12

10

;>, 8

6

4
5 10 15 20 25

x

Figure 6-22: Interpolation using

'spline'

'pchip'

uses cubic spline interpolation with "not-a-knot"

conditions where the third derivatives at the sec

ond and second to last points are continuous.

This is not the natural spline presented in this

chapter.

also called ' cubic ' , uses piecewise cubic Her

mite interpolation.

• When the 'nearest' and the 'linear' methods are used, the

value(s) of xi must be within the domain of x. If the ' spline ' or

the 'pchip' methods are used, xi can have values outside the

domain of x and the function interpl performs extrapolation.

• The ' spline ' method can give large errors if the input data points

are nonuniform such that some points are much closer together than

others.

Specification of the method is optional. If no method is specified, the

default is 'linear' .
Two examples of using MATLAB's built-in functions for curve fit

ting and interpolation are shown. First, the polyfi t function is used

for determining the fourth order polynomial that curve-fits the data

points in Example 6-3:

>> x = 0: 0. 4: 6;

>> y = [O 3 4.5 5.8 5.9 5.8 6.2 7.4 9.6 15.6 20.7 26.7 31.1
35.6 39.3 41.5];

>> p =polyfit(x,y,4)

p =

-0.2644 3.1185 -10.1927 12.8780 -0.2746

The polynomial that corresponds to these coefficients is:
f(x)=(-0.2644)x4+3.l185x3-10.1927x2+12.878x-0.2746.

In the second example, the interpl command is used for the interpo

lation in Example 6-8:

>>

>>

>>

>>

>>

x = [8 11 15 18 22]; �
Assign the data points to x and y. J

y = [5 9 10 8 7]; �--------�

xint=8:0.1:22;
[�Vi- e-c t_o _r _w-it -h-po_ m_ t_s_fu_ r_m _t _erp

-
ol-a -ti o- n�.J

yint=interpl(x,y,xint, 'pchip'); Calculate the interpolated

plot (x,y' '*' ,xint,yint) _
v

_
a

_
lu

_
e

_
s· ------�

[Create a plot with the data points and interpolated values. J

MATLAB's interpl function. The resulting plot is shown in Fig. 6-22.

238 Chapter 6 Curve Fitting and Interpolation

MATLAB also has an interactive tool for curve fitting and interpo

lation, called the basic fitting interface. To activate the interface, the

user first has to make a plot of the data points and then in the Figure

Window select Basic Fitting in the Tools menu. (A detailed description

of the basic fitting interface is available in MATLAB, An Introduction

with Applications, Fourth Edition, by Amos Gilat, Wiley, 2011.)

6.8 CURVE FITTING WITH A LINEAR COMBINATION
OF NONLINEAR FUNCTIONS

The method of least squares that was applied for curve fitting with a lin

ear function in Section 6.2, and with quadratic and higher-order polyno

mials in Section 6.4, can be generalized in terms of curve fitting with a

linear combination of nonlinear functions. A linear combination of m

nonlinear functions can be written as:
m

F(x) = Cif1(x) + C2f2(x) + C3f3(x) + ... + Cmf m(x) = L cj f/x;) (6.91)
j= I

where /1, f2, .. ., f m are prescribed functions, and C1, C2, .. ., Cm are

unknown coefficients. Using least-squares regression, Eq. (6.91) is used

to fit a given set of n points (x1, y1), (x2, Ji), .. ., (xn, Yn) by minimizing

the total error that is given by the sum of the squares of the residuals:

E � �[Y;-�CJ;(x;)r (6.92)

The function E in Eq. (6.92) has a minimum for those values of the

coefficients C1, C2, .. ., Cm where the partial derivative of E with respect

to each of the coefficients is equal to zero:

BE
- = 0 for k = 1, 2, .. ., m (6.93) Bck

Substituting Eq. (6.92) into Eq. (6.93) gives:

g�, � ,�2[y,-1�CJ;(x;)Jh�.(�CJ;(x;))] � O

fork = 1, 2, .. ., m (6.94)

Since the coefficients C 1, C2, .. ., Cm are independent of each other,

B� (f cj f /x;)) = f k(x;)
k j = 1

and Eq. (6.94) becomes:

BE
= -i:2[y;-f cjf/x;)]ft(x;) = O Bck i=l j=l

(6.95)

(6.96)

6.8 Curve Fitting with a Linear Combination of Nonlinear Functions 239

The last equation can be rewritten in the form:

n m
n

LLC1f/x;)fk(x;) = LY;fk(x;) fork= 1,2, ... ,m (6.97)
i=lj=I i=l

In Eq. (6.97), x; , Y; , and ft(x;) are all known quantities, and the

C1, C2, ... ,Cm are the unknowns. The set ofEqs. (6.97) is a system of m

linear equations for the unknown coefficients C1, C2, ... , Cm.
The functions fix) can be any functions. For example, if

F(x)= C1/1(x)+C2/2(x) such that /1(x) = 1 and /2(x) = x, then

Eqs. (6.97) reduce to Eqs. (6.9) and (6.10). If the functions ft(x) are

chosen such that F(x) is quadratic (i.e., /1 (x) = 1, f2(x) = x, and

f 3(x) = x2), then Eqs. (6.97) reduce to Eqs. (6.23)-(6.25). In general,

the functions f k(x) are chosen because there is a guiding theory that

predicts the trend of the data. Example 6-9 shows how the method is

used for curve fitting data points with nonlinear approximating func

tions.

Example 6-9: Curve fitting with linear combination of nonlinear functions.

The following data is obtained from wind-tunnel tests, for the variation of the ratio of the tangential

velocity of a vortex to the free stream flow velocity y = V 91 V oc versus the ratio of the distance from

the vortex core to the chord of an aircraft wing, x = RIC :

x 0.6 0.8 0.85 0.95 1.0 1.1 1.2 1.3 1.45 1.6 1.8

y 0.08 0.06 0.07 0.07 0.07 0.06 0.06 0.06 0.05 0.05 0.04

A B -
2x2

Theory predicts that the relationship between x and y should be of the form y = -+ _e _
. Find the

values of A and B using the least-squares method to fit the above data.

SOLUTION

x x

In the notation of Eq. (6.91) the approximating function is F(x) = C1/1 (x) + C2f2(x) with

1 e-2x2 . .
F(x)= y, C1 =A, C2 = B, f1(x) = -, and f2(x) = -. The equat10n has two terms, which

x x
means that m = 2 , and since there are 11 data points, n = 11 . Substituting this information in Eq.

(6.97) gives the following system of two linear equations for A and B.

11 11 _2x2 11

LA .!. .!. + LB � .!. = L Y; .!. for k = 1
; =I X;X; ; =I X; X; ; =I X;

II 22 II 22 22 II 22
� 1 e - x; � e - x; e - x; _ � e - x; L.JA--+ L.JB-- - L.JY;-
; = 1 X; X; i = I X; X; i = 1 X;

These two equations can be rewritten as:

for k = 2

240 Chapter 6 Curve Fitting and Interpolation

11 e-2xf 11 e-4xf 11 -2x2
AL-2 +BL:-2 =LY;�

i = I X; i = I X; i = I X;

The system can be written in a matrix form:

t \ t e-2:t

i=lxi i=l X;

[AB� 11 -2x7 11 -4x+
L:�L:�
i= I X; i= I X;

11 l
LY;-

i= I X;

11 -2xf " e ' � Y;--
i= 1 X;

The system is solved by using MATLAB. The following MATLAB program in a script file solves

the system and then makes a plot of the data points and the curve-fitted function.

x = [0.6 0.8 0.85 0.95 1.0 1.1 1.2 1.3 1.45 1.6 1.8];

y = [0.08 0.06 0.07 0.07 0.07 0.06 0.06 0.06 0.05 0.05 0.04];

a (1 , 1) = sum (1. Ix . ""2) ;

a(l,2) = sum(exp(-2*x.""2) ./x.""2);

a(2,1) = a(l,2);

a(2,2) = sum(exp(-4*x.""2) ./x.""2);

b(l,1) = sum(y./x);

b(2,l) = sum((y.*exp(-2*x.""2)) ./x);

AB= a\b

xfit = 0.6:0.02:1.8;

yfit = AB(l) ./xfit + AB(2)*exp(-2*xfit."2) ./xfit;

plot(x,y,'o' ,xfit,yfit)

When the program is executed, the solution for the coefficients is displayed in the Command Win

dow (the two elements of the vector AB), and a plot with the data points and the curve-fitted function

is created.

Command Window:

AB =
0.0743

-0.0597

0.07

;;._ 0.06

0.05

o.oil
.5

0

1.5 2
x

6.9 Problems 241

6.9 PROBLEMS

Problems to be solved by hand
Solve the following problems by hand. When needed, use a calculator, or write a MATLAB script file to

carry out calculations. If using MATLAB, do not use built-in functions for curve fitting and interpolation.

6.1 The following data is given:

x 1 3 4 6 9 12 14

y 2 4 5 6 7 9 11

(a) Use linear least-squares regression to determine the coefficients m and b in the function y = mx + b

that best fit the data.

(b) Use Eq. (6.5) to determine the overall error.

6.2 The following data is given:

x -7

y 20

-4 -1

14 5

0 2 5 7

3 -2 -10 -15

(a) Use linear least-squares regression to determine the coefficients m and b in the function y = mx + b

that best fit the data.

(b) Use Eq. (6.5) to determine the overall error.

6.3 The following data give the approximate population of China for selected years from 1900 until

2010:

Year 1900 1950 1970 1980 1990 2000 2010

Population 400 557 825 981 1135 1266 1370
(millions)

Assume that the population growth can be modeled with an exponential function p = bemx , where x is the

year and p is the population in millions. Write the equation in a linear form (Section 6.3), and use linear

least-squares regression to determine the constants band m for which the function best fits the data. Use the

equation to estimate the population in the year 1985.

6.4 The following data is given:

x

y

0.2 0.5

3 2

1 2 3

1.4 1 0.6

Determine the coefficients m and b in the function y = -1- that best fit the data. Write the equation in
mx + b

a linear form (Section 6.3), and use linear least-squares regression to determine the value of the coeffi-

cients.

242 Chapter 6 Curve Fitting and Interpolation

6.5 The following data is given:

x
y

-2 -1
1.5 3.2

0 1 2
4.5 3.4 2

Determine the coefficients a and b in the function y = _a _ that best fit the data. (Write the function in
x2 + b

a linear form (Section 6.3), and use linear least-squares regression to determine the value of the coeffi
cients.) Once the coefficients are determined make a plot that shows the function and the data points.

6.6 The following data is given:

x
y

1 2
0.8 1.9

3 5 8
2.2 3 3.5

Determine the coefficients m and bin the function y = [mfx + b] 112 that best fit the data. Write the equa
tion in a linear form (Section 6.3), and use linear least-squares regression to determine the value of the
coefficients.

6.7 To measure g (the acceleration due to gravity), the following experi
ment is carried out. A ball is dropped from the top of a 100-m-tall building.
As the object is falling down, the time t when it passes sensors mounted on
the building wall is recorded. The data measured in the experiment is given
in the table.

h (m) 100 80 60 40 20 0
t (s) 0 2.02 2.86 3.50 4.04 4.51

In terms of the coordinates shown in the figure, the position of the ball h as a

function of the time tis given by h = h0 - !gt2 , where h0 = 100 m is the
2

initial position of the ball. Use linear regression to best fit the equation to the
data and determine the experimental value of g.

•

EEi EEi
I
I

EEi EEi .,.

EEi EEi •
I

EEi EEi .,.

EEi EEi f
EEi EEi

i1

6.8 Water solubility in jet fuel , W8, as a function of temperature, T, can be modeled by an exponential

function of the form W s = bemT . The following are values of water solubility measured at different tem
peratures. Using linear regression, determine the constants m and b that best fit the data. Use the equation
to estimate the water solubility at a temperature of 10° C. Make a plot that shows the function and the data
points.

T(°C) -40 -20 0 20 40

W8 (%wt.) 0.0012 0.002 0.0032 0.006 0.0118

6.9 Problems 243

6.9 In an electrophoretic fiber-making process, the diameter of the fiber, d, is related to the current flow,
I. The following are measured during production:

J(nA) 300 300 350 400 400 500 500 650 650

d(µm) 22 26 27 30 34 33 33.5 37 42

The relationship between the current and the diameter can be modeled with an equation of the form

d = a+ bJi . Use the data to determine the constants a and b that best fit the data.

6.10 Determine the coefficients of the polynomial y = a2x2 + a1x + a0 that best fit the data given in Prob

lem 6.5.

6.11 Using the method in Section 6.8, determine the coefficients of the equation y = ax+ bl x2 that best

fit the following data:

x 0.8 1.6 2.4 3.2 4.0

y 6 3.6 4.1 5.1 6.2

6.12 Using the method in Section 6.8, determine the coefficients of the equation y = Aexl2 + BJX + Cx2
that best fit the following data:

x 0.4 1.0 1.6 2.2 2.8

y 5.1 7.1 8 8.1 7.8

6.13 The power generated by a windmill varies with the wind speed. In an experiment, the following five

measurements were obtained:

Wind Speed (mph) 14 22 30 38 46

Electric Power (W) 320 490 540 500 480

Determine the fourth-order polynomial in the Lagrange form that passes through the points. Use the poly
nomial to calculate the power at a wind speed of 26 mph.

6.14 Determine the fourth-order Newton's interpolating polynomial that passes through the data points
given in Problem 6.13. Use the polynomial to calculate the power at a wind speed of26 mph.

6.15 The following data is given:

x 1 2.2 3.4 4.8 6 7

y 2 2.8 3 3.2 4 5

(a) Write the polynomial in Lagrange form that passes through the points; then use it to calculate the inter

polated value of y at x = 5.4 .

(b) Write the polynomial in Newton's form that passes through the points; then use it to calculate the inter
polated value of y at x = 5.4 .

244 Chapter 6 Curve Fitting and Interpolation

6.16 Use linear splines interpolation with the data in Problem 6.13 to calculate the power at the following
wind speeds.
(a) 24 mph (b) 35 mph.

6.17 Use quadratic splines interpolation with the data in Problem 6.13 to calculate the power at the fol
lowing wind speeds.
(a) 24 mph (b) 35 mph.

6.18 Use natural cubic splines interpolation (based on Lagrange-form polynomials [Eqs. (6.86}-{6.89)])
with the data in Problem 6.13; to calculate the power at the following wind speeds.

(a) 24 mph (b) 35 mph.

Problems to be programmed in MATLAB
Solve the following problems using MATLAB environment. Do not use MATLAB s built-in functions for
curve fitting and interpolation.

6.19 Modify the MATLAB user-defined function LinearRegression in Program 6-1. In addition to
determining the constants a1 and a0 , the modified function should also calculate the overall error E

according to Eq. (6.6). Name the function [a, Er] = LinReg (x, y). The input arguments x and y are
vectors with the coordinates of the data points. The output argument a is a two-element vector with the val

ues of the constants a1 and a0. The output argument Er is the value of the overall error.

(a) Use the function to solve Example 6-1.

(b) Use the function to solve Problem 6.2.

6.20 Write a MATLAB user-defined function that determines the best fit of an exponential function of the

form y = bemx to a given set of data points. Name the function [b rn] = ExpoFi t (x, y), where the
input arguments x and y are vectors with the coordinates of the data points, and the output arguments b

and rn are the values of the coefficients. The function Expo Fit should use the approach that is described
in Section 6.3 for determining the value of the coefficients. Use the function to solve Problem 6.8.

6.21 Write a MATLAB user-defined function that determines the best fit of a power function of the form

y = bxm to a given set of data points. Name the function [b rn] = PowerFi t (x, y), where the input
arguments x and y are vectors with the coordinates of the data points, and the output arguments b and rn

are the values of the coefficients. The function Power Fit should use the approach that is described in

Section 6.3 for determining the value of the coefficients. Use the function to solve Problem 6.3.

6.22 Write a MATLAB user-defined function that determines the coefficients of a quadratic polynomial,

/(x) = a2x2 + a1x + a0, that best fits a given set of data points. Name the function a= QuadFi t (x, y),

where the input arguments x and y are vectors with the coordinates of the data points, and the output argu
ment a is a three-element vector with the values of the coefficients a2, a1 and a0•

(a) Use the function to find the quadratic polynomial that best fits the data in Example 6-2.
(b) Write a program in a script file that plots the data points and the curve of the quadratic polynomial that

best fits the data.

6.9 Problems 245

6.23 Write a MATLAB user-defined function that determines the coefficients of a cubic polynomial,

f(x) = a3x
3

+ a2x
2

+ a1x + a0, that best fits a given set of data points. The function should also calculate

the overall error E according to Eq. (6.21). Name the function [a, Er] = CubicPolyFi t (x, y), where
the input arguments x and y are vectors with the coordinates of the data points, and the output argument a
is a four-element vector with the values of the coefficients a3, a2, a1, and a0• The output argument Er is
the value of the overall error.
(a) Use CubicPolyFi t to determine the cubic polynomial that best fits the data in Example 6-3.
(b) Write a program in a script file that plots the data points and the curve of the cubic polynomial that best

fits the data.

6.24 Write a MATLAB user-defined function for interpolation with natural cubic splines. Name the func
tion Yint = CubicSplines (x, y, xint), where the input arguments x and y are vectors with the
coordinates of the data points, and xint is the x coordinate of the interpolated point. The output argument
Yint is they value of the interpolated point.
(a) Use the function with the data in Example 6-8 for calculating the interpolated value at x = 12.7.
(b) Use the function with the data in Problem 6.39 for calculating the enthalpy per unit mass at

T = 14000 K and at T = 24000 K.

6.25 Write a MATLAB user-defined function for spline interpolation that uses third-order Lagrange poly
nomials. Name the function Yint = CubicLagSplines (x, y, xint), where the input arguments x
and y are vectors with the coordinates of the data points, and xint is the x coordinate of the interpolated
point. The output argument Yint is they value of the interpolated point. The function uses the following
scheme for the interpolation. If xint is in the first interval of the data points, the function uses a second
order polynomial that passes through the first three data points. If xint is in the last interval of the data
points, the function uses a second-order polynomial that passes through the last three data points. If xi n t
is in any other interval, lets say interval i between point x; and point X;+l• the function uses a third-order
polynomial for the interpolation. The third-order polynomial is written such that it passes through the data
points: x;_1, xi> X;+I• and X;+2•

(a) Use the CubicLagSplines function with the data in Problem 6.13 to calculate the power at wind
speeds of 26 mph and 42 mph.

(b) Use the CubicLagSplines function with the data in Example 6-3 to calculate the stress at strains
of 0.2 and 3.

6.26 A linear combination of three functions that is used for curve fitting has the form (see Section 6.8):

F(x) = C1/1(x) + C2fi(x) + C3 /3(x)

Write a MATLAB user-defined function that determines the coefficients C1, C2, and C3 that best fits a

given set of data points. Name the function C = NonLinCombFit (Fl, F2, F3, x, y), where the input argu

ments Fl, F2, and F3 are handles of the three functions (user-defined or anonymous) f1(x), f2(x), and

f 3 (x) , and x and y are vectors with the coordinates of the data points. The output argument C is a three

element row vector with the values of the coefficients C 1 , C 2 , and C 3 .

Use NonLinCombFi t to solve Problem 6.40 (a) . Write a program in a script file that uses NonLinComb

Fi t and plots the data points and the curve of F(x) that best fits the data.

246 Chapter 6 Curve Fitting and Interpolation

Problems in math, science, and engineering
Solve the following problems using the MATLAB environment. As stated, use the MATLAB programs that
are presented in the chapter, programs developed in previously solved problems, or MATLAB s built-in

functions.

6.27 The resistance R of a tungsten wire as a function of temperature can be modeled with the equation

R = R0[1 + a(T-T0)], where R0 is the resistance corresponding to temperature T0, and a is the tempera

ture coefficient of resistance. Determine R0 and a such that the equation will best fit the following data.

Use T0 = 20°C.

T(OC) 20 100 180 260 340

R(O.) 500 676 870 1060 1205

(a) Use the user-defined function LinReg developed in Problem 6.19.
(b) Use MATLAB's built-in function polyfi t.

420 500

1410 1565

6.28 Bacteria growth rate can be modeled with the equation lnNt -lnN 0 = µ(t -t 0), where µ is the

growth rate constant, and N1 and N0 are the numbers of bacteria at times t and t 0, respectively. Determine

µ and N 0 such that the equation will best fit the following data. Use t 0 = 0 .

t (h) 0 2 4 6

N (cells/ml) 35 1990 70,800 2,810,000

(a) Use the user-defined function LinReg developed in Problem 6.19.
(b) Use MATLAB's built-in function polyfi t.

8

141,250,000

6.29 The amount of water in air measured at various temperatures at 100% humidity is displayed in the

following table:

T (°C) 0 10 20 30 40 50

m
water (g!Kg of air) 5 8 15 28 51 94

(a) Determines the coefficients of an exponential function of the form mwater = bemT that best fits the

data. Use the function to estimate the amount of water at 35 ° C. If available, use the user-defined function

Expo Fit developed in Problem 6.20. In one figure, plot the exponential function and the data points.

(b) Use MATLAB's built-in function polyfi t to determine the coefficients of a second-order polyno

mial that best fits the data. Use the polynomial to estimate the amount of water at 35 ° C. In one figure, plot

the polynomial and the data points.

6.9 Problems 247

6.30 In a uniaxial tension test, a dog-bone-shaped specimen is pulled in a machine. During the test, the
force applied to the specimen, F, and the length of a gage section, L, are measured. The true stress, cr 1, and

the true strain, E1 , are defined by:

cr =

F !:.. and E = ln!:..
t Ao Lo t Lo

where A0 and L0 are the initial cross-sectional area and gage length, respectively. The true stress-strain

curve in the region beyond the yield stress is often modeled by:

cr1 = KE'('

The following are values of F and L measured in an experiment. Use the approach from Section 6.3 for
determining the values of the coefficients K and m that best fit the data. The initial cross-sectional area and

gage length are A0 = 1.25 x 10--4m2, and L0 = 0.0125 m.

F(kN) 24.6 29.3 31.5 33.3 34.8 35.7 36.6 37.5 38.8 39.6 40.4

L(mm) 12.58 12.82 12.91 12.95 13.05 13.21 13.35 13.49 14.08 14.21 14.48

6.31 The percent of households that own at least one computer in selected years from 1981 to 2010,

according to the U.S. census bureau, is listed in the following table:

Year 1981 1984 1989 1993 1997 2000 2001 2003 2004 2010

Household with computer[%] 0.5 8.2 15 22.9 36.6 51 56.3 61.8 65 76.7

The data can be modeled with a function in the form H c = CI (1 +A e-Bx) (logistic equation), where H c

is percent of households that own at least one computer, C is a maximum value for H c , A and B are con

stants, andx is the number of years after 1981. By using the method described in Section 6.3 and assuming

that C = 90 , determine the constants A and B such that the function best fit the data. Use the function to
estimate the percent of ownership in 2008 and in 2013. In one figure, plot the function and the data points.

6.32 Use MATLAB's built-in functions to determine the coefficients of the third-order polynomial,

H c = a3x3 + a2x2 + a1 x + a0 (where x is the number of years after 1981) that best fits the data in Problem

6.31. Use the polynomial to estimate the percent of computer ownership in 2008 and in 2013. In one fig
ure, plot the polynomial and the data points.

6.33 The following data was obtained when the stopping distance d of a car on a wet road was measured
as a function of the speed v when the brakes were applied:

v (mi/h) 12.5 25 37.5 50 62.5 75

d (ft) 20 59 118 197 299 420

Determine the coefficients of a quadratic polynomial d = a2 v2 + a1 v + a0 that best fits the data. Make a

plot that show the data points (asterisk marker) and polynomial (solid line).
(a) Use the user-defined function QuadFi t developed in Problem 6.22.

(b) Use MATLAB's built-in function polyfi t.

248 Chapter 6 Curve Fitting and Interpolation

6.34 Measurements of thermal conductivity, k CW Im K), of silicon at various temperatures, T (K), are:

T (°K) 50 100 150 200 400 600 800 1000

k (WlmK) 28 9. 1 4.0 2.7 1. 1 0.6 0.4 0.3

The data is to be fitted with a function of the form k = f(T). Determine which of the nonlinear equations

that are listed in Table 6-2 can best fit the data and determine its coefficients. Make a plot that shows the

data points (asterisk marker) and the equation (solid line).

6.35 Thermistors are resistors that are used for measuring temperature. The relationship between temper

ature and resistance is given by the Steinhart-Hart equation:

l = C1 + C2ln(R) + C3ln
3
(R)

T + 273.15
where Tis the temperature in degrees Celsius, R is the thermistor resistance in n, and C 1 , C 2 , and C 3 , are

constants. In an experiment for characterizing a thermistor, the following data was measured:

T (C) 360 320 305 298 295 290 284 282 279 276

R (Q) 950 3 100 4950 6960 9020 10930 13 100 14950 17200 18950

Determine the constants C 1 , C 2 , and C 3 such that the Steinhart-Hart equation will best fit the data.

6.36 A hot-wire anemometer is a device for measuring flow velocity, by mea

suring the cooling effect of the flow on the resistance of a hot wire. The follow

ing data are obtained in calibration tests:

u (ft/s) 4.72 12.49 20.03 28.33 37.47 4 1.43 48.38 55.06

V(Volt) 7. 18 7.3 7.37 7.42 7.47 7.5 7.53 7.55

u (ft/s) 66.77 59.16 54.45 47.2 1 42.75 32.71 25.43 8. 18

V(Volt) 7.58 7.56 7.55 7.53 7.51 7.47 7.44 7.28

Determine the coefficients of the exponential function u = Ae8v that best fit

the data.

(a) Use the user-defined function Expo Fit developed in Problem 6.20.
(b) Use MATLAB built-in functions.

In each part make a plot that shows the data points (asterisk marker) and the equation (solid line).

6.37 The data given is to be curve-fitted with the equation y = axemx. Transform the equation to a linear

form and determine the constants a and m by using linear least-square regression. (Hint: substitute

v = ln(ylx) and u = x .) Make a plot that shows the points (circle markers) and the equation (solid line).

x 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

y 0 2.40 3.00 2.55 2.24 1.72 1. 18 0.82 0.56 0.42 0.25

6.9 Problems 249

6.38 The yield stress of many metals, cr Y, varies with the size of the grains. Often, the relationship

between the grain size, d, and the yield stress is modeled with the Hall-Petch equation:

cry = cr0 + kdH)
The following are results from measurements of average grain size and yield stress:

d(mm) 0.0018 0.0025 0.004 0.007 0.016 0.060 0.25
cry (MPa) 530 450 380 300 230 155 115

(a) Determine the constants cr0 and k such that the Hall-Petch equation will best fit the data. Plot the data

points (circle markers) and the Hall-Petch equation as a solid line. Use the Hall-Petch equation to esti
mate the yield stress of a specimen with a grain size of 0.003 mm.

(b) Use the user-defined function QuadFi t from Problem 6.22 to find the quadratic function that best fits

the data. Plot the data points (circle markers) and the quadratic equation as a solid line. Use the qua

dratic equation to estimate the yield stress of a specimen with a grain size of 0.003 mm.

6.39 Values of enthalpy per unit mass, h, of an equilibrium Argon plasma (Ar, Ar+, A++, A+++ ions and

electrons) versus temperature are:

T x 103(K) 5 7.5 10 12.5 15 17.5 20 22.5 25 27.5 30

h (MJ/kg) 3.3 7.5 41.8 51.8 61 101.1 132.9 145.5 171.4 225.8 260.9

Write a program in a script file that uses interpolation to calculate h at temperatures ranging from 5000
K to 30000 K in increments of 500 K. The program should generate a plot that shows the interpolated

points, and the data points from the table (use an asterisk marker).

(a) For interpolation use the user-defined function CubicSplines from Problem 6.24.
(b) For interpolation use MATLAB's built-in function interpl with the spline option.

6.40 The following are measurements of the rate coefficient, k, for the reaction CH4 + 0 � CH3 +OH at

different temperatures, T:

T(K)
20 3 k x 10 (m /s)

595 623
2.12 3.12

761 849 989
14.4 30.6 80.3

1076 1146 1202 1382 1445 1562
131 186 240 489 604 868

(a) Use the method of least-squares to best fit a function of the form ln(k) = C + bln(T)-Q to the data. T
Determine the constants C, b, and D by curve fitting a linear combination of the functions f 1 (T) = 1,

f2(T) = ln(T), and /3(T) = -l to the given data (Section 6.8). T
(b) Usually, the rate coefficient is expressed in the form of an Arrhenius equation k = AT b e-E/(RT)'

where A and b are constants, R = 8.314 J/mole/K is the universal gas constant, and Ea is the activation

energy for the reaction. Having determined the constants C, b, and Din part (a) , deduce the values of A
(m3/s) and Ea (J/mole) in the Arrhenius expression.

250 Chapter 6 Curve Fitting and Interpolation

6.41 The following measurements were recorded in a study on the growth of trees.

Age (year) 5 10 15 20 25 30 35

Height (m) 5.2 7.8 9 10 10.6 10.9 11.2

The data is used for deriving an equation H = H(Age) that can predict the height of the trees as a function

of their age. Determine which of the nonlinear equations that are listed in Table 6-2 can best fit the data and

determine its coefficients. Make a plot that shows the data points (asterisk marker) and the equation (solid

line).

6.42 The following data present ocean water salinity at different depths:

Depth (m) 0 100 200 300 400 500 600 700 800 900 1100 1400 2000 3000

Salinity (ppt) 35.5 35.35 35.06 34.65 34.48 34.39 34.34 34.32 34.33 34.36 34.45 34.58 34.73 34.79

(a) Use interpolation to estimate the water salinity at depths of 250 m, 750 m, and 1800 m by using the

user-defined function CubicSplines developed in Problem 6.24.
(b) Use interpolation to estimate the water salinity at depths of 250 m, 750 m, and 1800 m by using the

user-defined function CubicLagSplines developed in Problem 6.25.
(c) Use MATLAB to create a vector with values of depth ranging from 0 to 3000 m with spacing of 10 m.

Then use the MATLAB's built-defined function interpl with the option spline to calculate corre

sponding interpolated values of salinity. Make a plot that shows the data points and interpolated points.

6.43 The following data present the power of a diesel engine at different engine speeds:

Engine Speed (rpm) 1200 1500 2000 2500 3000 3250 3500 3750 4000 4400

Engine Power (hp) 65 130 185 225 255 266 275 272 260 230

(a) Estimate the engine power at speeds of 2300 rpm and 3650 rpm by using the user-defined function

CubicSplines developed in Problem 6.24.
(b) Estimate the engine power at speeds of 2300 rpm and 3650 rpm by using the user-defined function

CubicLagSplines developed in Problem 6.25.
(c) Use MATLAB to create a vector with values of engine speeds ranging from 1200 to 4400 rpm with

spacing of 10 rpm. Use the MATLAB's built-defined function interpl with the option spline to

calculate corresponding interpolated values of engine power. Make a plot that shows the data points

and interpolated points.

Chapter7

Fourier Methods

Core Topics Aliasing and Nyquist Frequency (7.8)

Approximating a Square Wave by a Series of sine

functions (7.2).
Alternative Forms of the Discrete Fourier Trans

form (7.9).

General (Infinite) Fourier Series (7.3).

Complex Form of the Fourier Series (7.4).

The Discrete Fourier Series and Discrete Fourier

Transform (7.5).

Complex Discrete Fourier Transform (7.6).

Power (Energy) Spectrum (7.7)

Use of MATLAB Built-In Functions for Calculating

Fast Fourier Transform (7 .10).

Leakage and Windowing (7 .11).

Bandwidth and Filters (7 .12).
Complementarv Topics

The Fast Fourier Transform (FFT) (7.13).

7.1 BACKGROUND

Fourier methods are mathematical methods that use sinusoidal func

tions to represent and approximate other functions. They are widely

used in applied mathematics, the basic sciences, and in many applica

tions in engineering and medicine. These functions that are represented

by simpler sinusoidal functions may be discrete or continuous, e.g.

intensity of an image versus position, intensity of sound versus time, or

intensity of light versus time or position. The methods are named after

Jean Baptiste Joseph Fourier, a French mathematician and scientist,

who lived in the late 18th to the early 19th century. Fourier was a stu-

dent of Joseph-Louis Lagrange1, and was briefly at the Ecole Normale

Superieur and later at the Ecole Polytechnique established by Napoleon

Bonaparte2. Fourier was interested in (among other subjects) the propa

gation of heat and presented a paper to the French Academy in 1807

which included the representation of temperature distributions in solids

in terms of combinations of sinusoidal functions. This work also

included the claim that any piecewise continuous and periodic function

1. Born Giuseppe Lodovico (Luigi) Lagrangia, Lagrange was a famous mathematician
and member of the French Academy of Sciences which later became part of the
Institut de France.

2. Fourier himself mentored several later-to-be-well-known mathematicians Johann
Peter Gustav Lejeune Dirichlet, Giovanni Plana, and Claude-Louis Navier.

251

252

1.s ��-�-�-�-�

� 0.5
w

"

.� 0

f-o.s

-1

-1.so��-�4-�6-�-�10
nme(ms)

Figure 7-1: Pure sound wave in
time domain.

200 400 600 800 1000
Frequency (Hz)

Figure 7-2: Pure sound wave in
frequency domain.

�

� 0
:a.
E <(

-1

Chapter 7 Fourier Methods

could be represented by a sum of several properly chosen sinusoidal

functions. Unfortunately, it was rejected by his own advisor, Lagrange,

who had earlier shown that such an approach could not be used to repre

sent functions with comers such as piecewise continuous triangle waves

or square waves. Although Fourier had the support of other mathemati

cians and scientists like Pierre Simon de Laplace, the Academy rejected

Fourier's paper and declined to publish it until some 15 years later after

Lagrange died3. In some sense, both Lagrange and Fourier were correct.

Lagrange was correct in that no function with discontinuities can be

represented everywhere by a set of continuous functions. However,

Fourier was correct in that a function with discontinuities can be recon

structed by a set of continuous functions exactly almost everywhere,

except in the vicinity of the discontinuities. Moreover, Fourier's

approach for approximating a function with discontinuities becomes

applicable to many problems in science and engineering.

Consider the sound produced by a tuning fork which generates a

pure sound, i.e., sound at a particular frequency. The sound produced by

such a fork can be recorded and displayed in a plot of voltage versus

time, Fig. 7-1. As can be seen, the sound wave shown is a sine wave

oscillating in time with a frequency of about 554 Hz, which corresponds

to D flat on a piano. Figure 7-1 shows what is known as a time-domain

plot. Using the methods described in this chapter, the frequency spec

trum (Fourier transform) of this pure tone is the plot shown in Fig. 7-2
which is a sharp solitary peak centered at 554 Hz. Figure 7-2 shows

what is known as a frequency domain plot. A musical instrument like a

piano, however, produces a sum of several pure tones that evolves in

time as the D flat note is struck and the sound dies down. In the time

domain, the signal might appear as shown in Fig. 7-3, with a corre

sponding frequency spectrum shown in Fig. 7-4. Note the appearance in

Fig. 7-4 of several other pure tones at frequencies near twice, three

times, four times, and five times the original frequency of� 554 Hz,

respectively. These higher frequencies are called overtones of the fun-

�0.8
� El 0.6
:a.
� 0.4

0.2

-2�-�-�-�-�-� 0 2 4 6 8 10
time(ms)

1000 2000 3000 4000 5000
Frequency (Hz)

Figure 7-3: Sound wave in frequency domain. Figure 7-4: Sound wave in frequency domain.

3. Fortunately, Fourier was busy assisting Napoleon with his Egypt expedition during
this time.

7.2 Approximating a Square Wave by a Series of sine functions 253

damental frequency of 554 Hz. It can also be seen from Fig. 7-3 that

the sound or signal evolves in time and that it is not a pure tone (i.e., it

comprises these time-evolving sine waves in addition to the fundamen

tal pure tone). Both of these as well as other reasons described later in

this chapter give rise to the spectrum shown in Fig. 7-4, resulting in sev

eral peaks of finite thickness.

It is important to point out that in the aforementioned example of a

musical note, the quantity of interest, i.e., intensity of sound or equiva

lent voltage, varies with time. In many applications involving image

processing, the interest is in intensity versus position or distance, such

as in the case of a photographic image. In this case, the dependent vari

able is the intensity of the signal which may be the intensity of light

which varies with position (x,y,z) which are the independent variables.

For a photographic image, the equivalent of the time domain would be

the spatial domain and the correspondingfrequency domain would be

the spatial frequency domain.

In the example of the musical note, the original signal (Fig. 7-3)
does not even resemble a sine wave. However, Fig 7-4 reveals that sev

eral pure tones or sine waves of unique frequencies with corresponding

amplitudes can be added together to approximate the original signal

shown in Fig. 7-3. This raises the question of how any periodic function

that may not be a sinusoidal function could be represented as a linear

combination of sinusoidal functions of specific frequencies, i.e., pure

tones, and leads us to the question originally debated by Lagrange and

his pupil, Jean-Baptiste Joseph Fourier. This is addressed in the next

section where a square wave is approximated by an infinite series of

sme waves.

General infinite Fourier series is introduced in Section 7.3, and its

complex form is presented in the following section. Both are used for

expressing functions that are given in analytical form in terms of Fou

rier series. Sections 7.5 and 7.6 deal with the Discrete Fourier Trans

form (DPT) that is applicable when functions are specified at a finite

number of points. The power (energy) spectrum is introduced in Section

7.7 and aliasing and Nyquist frequency in Section 7.8. A lternative

forms of the DPT are presented in Section 7.9. Section 7.10 describes

how to use MATLA B's built-in functions for calculating the DPT. The

two sections that follow cover leakage, bandwidth, and filters, and Sec

tion 7.13 explains the general strategy behind the Fast Fourier Trans

form, or FFT, which is an efficient computational method to calculate

the discrete Fourier transform.

7.2 APPROXIMATING A SQUARE WAVE BY A SERIES
OF SINE FUNCTIONS

Fourier series are introduced here first by showing how a periodic func

tion that has a discontinuity, and/or a discontinuity in its first derivative,

254

1�---·

0.5

" 0

-0.5

_ ,

-1�
-4

I
I
I
I
I
I
I I

L ___ J

-2

I
I
I
I
I
I
I

L __ _

6

Figure 7-5: Square wave.

Chapter 7 Fourier Methods

can be represented by an infinite series of sinusoidal functions. Specifi
cally, a series consisting of an infinite number of sine terms is shown to
represent a square wave function. The coefficients of the series are

determined by applying the method of least squares (introduced in
Chapter 6) such that the series best fits the function. In general, sine and
cosine terms may be needed for approximating an arbitrary function.

Consider a periodic square wave with amplitude that varies between

-1 and1, Fig. 7-5. The wave can be expressed by the function:

{-1
y(x) = 1 -1t<x<O

(7.1)
0 <x<7t

Suppose that the function is approximated by a series consisting of a
linear combination of an infinite number of sine functions sinx, sin2x,

sin3x, and so on. Such a series can be expressed by:

y(x) = L Aksinkx (7.2)
k=O

where k = 0, 1, 2, 3, . . . is an integer and Ak are the amplitudes or coef

ficients that have to be determined so that the series in Eq. (7.2) best fits

the square wave. Note that y(x) in Eq. (7.1) is a discontinuous func
tion, but the right- hand side ofEq. (7.2) which approximates y(x) com
prises a set of continuous (sine) functions. The best fit between the
square wave and its approximation by Eq. (7.2) is determined by apply
ing the method of least squares (Chapter 6). In this method, the
unknown coefficients Ak are determined by minimizing the error

which is given by applying Eq. (6.92):

E � [y(x)- t., A,sinkx r (7.3)

The function E has a minimum at the values of the coefficients Am (mis

a specific value of k) where the partial derivatives of E with respect to
each coefficient are equal to zero. Taking the partial derivatives and set

ting them equal to zero gives:

aE
= 2 [y(x)- f Aksinkx] sinmx = 0 (7.4)

aAm k= o

where y(x) is given by Eq. (7.1). Equation (7.4) follows from the fact

that the coefficients are independent of each other for each value of k.
Simplifying Eq. (7.4) gives:

00

y(x)sinmx = L Aksinkxsinmx
k=O

(7.5)

Note that Eq. (7.5) is simply Eq. (7.2) multiplied by sinmx. To deter

mine the coefficient Ak, Eq. (7.5) is integrated over the interval from

-7t to 7t since that is the interval over which the function y(x) is
defined (see Eq. (7.1)):

7.2 Approximating a Square Wave by a Series of sine functions

J
n

J
n ro

y(x)sinmxdx = L (Aksinkxsinmx)dx -n -n k=O
ro

J
n ro

J
n

= L Aksinkxsinmxdx = L Ak sinkxsinmxdx
k=O � k=O �

255

(7.6)

An important property of sines of different frequencies, i.e., different

values of k, is that they are orthogonal to each other. It is relatively easy

to show by integration that rn sinmxsinkxdx = 0 as long as k is not

equal to m and that they are both integers. Therefore, the right-hand side

of Eq. (7.6) vanishes unless k = m . Consequently, rn sinkxsinmxdx

can be integrated to yield:

J
n

sinkxsinmxdx = { O
-n 7t

k-Fm
k=m

(7.7)

Equation (7.7) shows that the functions sinkx and sinmx are orthogo

nal when k * m . (A more general and detailed discussion on orthogo

nality is presented in Section 2.8.) Applying Eq. (7.7) to Eq. (7.6)
results in:

(7.8)

where k has been replaced by m. Note that application ofEq. (7.7) to Eq.

(7.6) causes every term on the right-hand side of Eq. (7.6) to be zero

except for that term for which k = m . Now, Eq. (7.8) can be solved for

Am:
lJ

n
Am = - y(x)sinmxdx

7t -n (7.9)

Note that A0 = 0. Substituting for y(x) from Eq. (7.1) gives:

Am = - - smmxdx + - smmxdx = -[1- cosmn] 1 Jo . 1 J
n

. 2
7t -n 7t o mn

Thus,

Substituting Eq. (7.11) into Eq. (7.2) yields:

ro 2 y(x) = " - [1 - (-1)k] sinkx
L..t kn k =I

which is the infinite series:

y(x) = i sinx + ...±._ sin3x + ...±._ sin5x +...±..sin 7 x + ... = i !-si_n�[(�2_n_-_1)�x�]
7t 3n Sn 7n 1tn=l 2n- 1

m-FO (7.10)

(7.11)

(7.12)

(7.13)

Equation (7.12) (or (7.13)) is called the Fourier series4 or Fourier
approximation of the function y(x) given by Eq. (7.1). Figure 7-6
shows plots (colored lines) of the multi-term evaluation of Eq. (7.13)

256

n=l

Q) 0.5

� 0
c.

�-0.5

-1

n=6

Chapter 7 Fourier Methods

0.S

>- 0

-05

-I

n=50

-l� -4 -2

Figure 7-6: Fourier approximation of a square wave.

for n = 1 , n = 3 , n = 6 , and n = 50 , giving successive approxima

tions for the square wave given by Eq. (7 .1).

The terms of the Fourier series in Eq. (7.13) can be presented in the

domain of the independent variable x (spatial or time domain) or in the

frequency domain. (The frequency in cycles per second, or Hertz, is 1/
period if x is time, and is spatial frequency, or wave number (2 7t/ wave

length), if xis spatial coordinate.) The first four terms in the x domain

are shown in Fig. 7-7. Each term is a sine wave with different wave

lengths and amplitudes. The same four terms are shown in the fre

quency domain in Fig. 7-8. The figure shows a stem plot where the hor

izontal axis is frequency and the vertical axis is the amplitude. In the

spatial frequency domain, each term of the Fourier series is represented

by a point.

1.4

1.2

Q)
"Cl

.€ 0.8

l 0.6

0.4

0.2

0

First term

Second term

Third term Fourth
term

-1.5�-�-��-�-�-�
-6 -4 -2 0 2 4 6

0 0.2 0.4 0.6 0.8 1 1.2 1.4
Spatial Frequency

x

Figure 7-7: The first four terms in the x domain. Figure 7-8: The first four terms in the
frequency domain.

Figure 7-6 shows that as n increases, that is as more and more terms

on the right-hand side of Eq. (7.13) are included, the resulting sum

approximates the square wave better and better. However, also note that

the approximation is very good along the flat portions of the square

wave but not near the discontinuities. In fact, a distinct undershoot and

overshoot can be observed in the vicinity of the discontinuities. Thus,

Lagrange and his pupil Fourier were both correct since a periodic, dis

continuous function can be exactly represented (in the limit that is) by a

4. It should be noted that although Fourier is credited with expressions such as Eq.

(7.13), the equation l(n-x) = f sinnx was derived earlier in the mid-18th
2

n =I n

century by Euler.

7.3 General (Infinite) Fourier Series 257

Fourier series almost everywhere except in the vicinity of the disconti

nuities themselves. It turns out that the ripples that are observed near the

discontinuities (i.e., comers) never disappear, even as more and more

terms in the Fourier series are used to approximate the square wave.

This is known as the Gibbs-Wilbraham phenomenon5.

Gibbs-Wilbraham Phenomenon

In the 21st century, it is taken for granted that y can be calculated from

Eq. (7.12) using a hand-held calculator. However, at the time of Fourier,

there were no electronic calculators to compute the sums in Eq. (7.12).

By the late 19th century, however, there were several mechanical

machines which could compute sums of series such as Eq. (7.12). The

most famous of these was the Harmonic Analyzer devised by Michel-

son and Stratton6. Through an ingenious design involving 80 springs

and 80 gears, the machine could compute the sum of a Fourier series

including up to 80 terms. Michelson and Stratton found that in the case

of functions with discontinuities such as a square wave, there was rip

pling at the comers that just did not seem to go away. Michelson and

Stratton believed the ripples were due to the mechanical imperfections

of their machine (despite previous history, see footnote 5), and it was J.
Willard Gibbs who was credited with pointing out that the observations

of Michelson and Stratton were real and not entirely a mechanical arti

fact of their machine. It was the mathematician Boch er, who coined the

phenomena of overshoot and undershoot as "Gibbs's Phenomenon" as it

has now come to be known.

7.3 GENERAL (INFINITE) FOURIER SERIES

A general Fourier series that approximates a function f(x) that is

defined over the interval [a ,b] consists of infinite number of sine and

cosine terms in the form:

where L = (b -a)/2 and k is an integer. The coefficients

are given by:

lJ b . (rr.kx) Ak = - f(x)sm - dx
L a L

k'C:.0

(7.14)

(7.15)

5. In fact, Wilbraham had actually discovered the "Gibbs Phenomenon" in 1848 well
before Gibbs did in 1899. See E. Hewitt and R. E. Hewitt, "The Gibbs-Wilbraham
Phenomenon: An Episode in Fourier Analysis", Archive for History of Exact Sci
ences, Vol. 21, pp. 129-160, 1979.

6. A. A. Michelson, and S. W. Stratton, "A New Harmonic Analyzer'', American Jour
nal of Science, Ser. 4, Vol. 5, No. 25, pp. 1-14, January 1898.

258 Chapter 7 Fourier Methods

1
J b (rtkx) Bk = - f(x)cos - dx

L a L

1 f b B0 = - f(x)dx
2L a

k�l (7.16)

(7.17)

Fourier analysis assumes that the function f(x) is periodic such that

(b -a) is the length of the interval over which f(x) is periodic. The

Fourier series converges to f(x) at all the points where f(x) is continu

ous. At points of discontinuity, the Fourier series approaches the aver

age of the two limits from left and right sides. Thus, if f(a) "* f(b), the

Fourier series approaches [f(a) + f(b)]/2 at the ends of the interval.

The sine and cosine terms of the Fourier series that approximate f(x)
are obviously periodic. Each periodic function (term) is identified by its

amplitude and frequency. The amplitudes are the coefficients Ak and

Bk , and the corresponding frequencies are k I (b -a) . This means that

once the Fourier series is determined, it can be represented (displayed)

in the frequency domain (i.e., a plot of the values of the coefficients as a

function of k or the frequency k/(b-a)).

The coefficients Ak, Bk, and B0 are determined by using the prop

erties of orthogonality (see Section 2.8). Applying orthogonality means

taking the inner product of f(x) and sin(n7x) , that is, multiplying

both sides ofEq. (7.14) by sin(n7x)dx and integrating from x = a to

x = b. Taking the inner product of f(x) and sin(n7x) gives:

f b f(x)sin(nmx)dx = J b f [Aksin(nkx) sin(nmx) +Bk cos(nkx) sin(nmx)Jdx (7.18)
a L a L L L L k=O

In the same way, taking the inner product of f(x) and cos(n7x) gives:

f b f(x)cos(nmx)dx = J b f [Aksin(nkx) cos(nmx) +Bk cos(nkx) cos(nmx)Jdx
a L a L L L L k=O

(7.19)

Applying the orthogonality relations then yields the expressions for the

coefficients Ak, Bk, and B0 given in Eqs. (7.15)-(7.17).

Examples 7-1 and 7-2 illustrate how to express the Fourier series of

functions defined over a prescribed interval.

7.3 General (Infinite) Fourier Series

Example 7-1: Fourier series of a square wave.

Expand the nonsymmetric periodic function given below and

shown in the figure on the right, in a Fourier series:

{-1
f(x) =

2

SOLUTION

-l<x<O
O<x<l

(7.20)

259

0

-1

-�3 -2 _,

In this problem a = -1 and b = 1 such that L = (1 -(-1))/2 = 1. The general form of the Fourier

series of f(x) is given by:

f(x) = ! [Aksin(7tkx) +Bk cos(7tkx)]
k=O L L

The coefficients Ak and Bk are determined by using Eqs. (7 .15)-(7 .17):

Thus,

Bm = J
1
ycos(7tmx)dx = J

0
(-l)cos(7tmx)dx+f\2)cos(7tmx)dx = 0 for m:t=O

-1 -1 0
1f

0 1 f
I 1 1 B0=- (-l)dx+- (2)dx=- -+l=-2 -1 2 0 2 2

Am= J
1
ysin(7tmx)dx = J

0
(-l)sin(7tmx)dx+f \2)sin(7tmx)dx

-1 -1 0

= -1 [1- cos(m7t)] + �[1- cos(m7t)] = 2....[1-(-lrl form =t= 0 m7t m7t m7t

1 00 [3
J f(x) = 2 + L k7t[l -(-l)k]sin(7tkx)

k=I

(7.21)

(7.22)

(7.23)

(7.24)

(7.25)

The following figure shows plots of the multi-term evaluation of Eq. (7.25) for k = 1, k = 3,
k = 6 , and k = 50, giving successive approximations for f(x) given by Eq. (7.20). The Gibbs

Wilbraham phenomenon is noticeable in the plot for k = 50.

k= 1

-2 -1 0 1
x

' 3 4

k=3

-!3 -2 -1 0 1
x

2 3 4 -33 _, -1

k=6

0 1 ' 2 3 4

k=50

-1

-33 -2 -1 0 , 2 3 4
x

260 Chapter 7 Fourier Methods

Example 7-2: Fourier series of a sawtooth wave.

The periodic sawtooth wave, shown in the figure on the right, is

given by the function:

f(x)= {� O<x<l
l<x<2

Expand the periodic function in a Fourier series.

(7.26)

0

-o . s���������
-4 -3 -2 -1 0 1 2 3 4

x

SOLUTION

In this problem, a = 0 and b = 2 such that L = (2 - 0)/2 = 1. The general form of the Fourier

series of f(x) is given by:

f(x) = :t [Aksin(nkx) +Bk cos(nkx)]
k=O L L

The coefficients Ak and Bk are determined by using Eqs. (7.15)-(7.17):

Ak = J:f(x)sin(nkx)dx = J ;xsin(nkx)dx

Integrating by parts,

f
l . 1 l f

l COS (kn) 1 . I Ak = xsm(nkx)dx = --[xcos(nkx)]0 + xcos(nkx)dx = - +-sm(knx)l0 0 kn 0 kn kn

Integrating by parts,

= cos (kn) = -(-1)k
= (-1)k + l

kn kn kn

Bo = !J2f(x)dx = !J lxdx = x2 1 1 - -
20 20 40 4

Bk = s:f(x)cos(nkx)dx = s:xcos(nkx)dx

f
l 1 l 1

f
I 1 l Bk = xcos(nkx)dx = -xsin(nkx)!0-- sin(nkx)dx = -cos(nkx)l0 0 kn kn 0 k2n2

= cos(nk)- 1 = (-l)k - 1
k2n2 k2n2

Therefore, the Fourier series reduces to:

1 oo

[
(-1)k + I (-1)k - 1

J f(x) = - + " sin(nkx) + cos(nkx)
4 L.i nk k2n2

k =I

(7.27)

(7.28)

(7.29)

(7.30)

(7.31)

(7.32)

(7.33)

The following figure shows plots of the multi-term evaluation of Eq. (7.33) for k = 1, k = 3,
k = 6, and k = 50, giving successive approximations for y given by Eq. (7.26). Again, the Gibbs

Wilbraham phenomenon is noticeable in the plot for k = 50 .

7.4 Complex Form of the Fourier Series 261

k=l k=3 k= so

15 �-----�

--0.s ��-�-�� -4 -2
-os ��-��-�

-4 -2

As discussed before, the terms of the Fourier series can be displayed in the x domain and in the fre

quency domain. As an example, the first five sine and cosine terms are considered. The values of the

coefficients Ak and Bk for k = 0,1,2,3,4 are displayed in the following table

k 0 1 2 3 4

Ak 0 lln -1/(27t) 1/(37t) -1/(47t)
Bk 1/4 - 2/n2 0 -2/(9n2) 0

The terms of the Fourier series are displayed in Figs. 7-9 and 7-10. The Fourier series approximation

that is obtained by adding these terms together with the original function is displayed in Fig. 7-11.

Figure 7-12 displays the terms of the Fourier series in the frequency domain.

-2 0 2 4
x

Figure 7-9: First four sine terms.

1.s �--------�
Fourier

y(x) Transform

1 \

>- 0.5

-0.5 �-�--�-�-�
-4 -2 0

x
2 4

k=O 0.3
f--L----------1

0.2

0.1

>- 0f+-h....._......++-<�_,_.,._,<n-+�<-+++......."""'

-0.1

-0.2

-4 -2 0
x

2 4

Figure 7-10: First five cosine terms.

0.4 �---------�

�
:::>

·"'
ii
E

<(

0.2

-0.2

2
k

3 4

Figure 7-11: Fourier approximation with k = 4. Figure 7-12: First five terms in the frequency
domain.

7.4 COMPLEX FORM OF THE FOURIER SERIES

Recall from Section 7.3, the general form of a Fourier series representa

tion of a function f(x) defined over the interval [a, b] is:

(7.34)

262 Chapter 7 Fourier Methods

where the index of summation has been replaced by n, and the coeffi

cients are given by:

An = .!.J b f(x) sin(nnx) dx n � 0 (7.35)
L a L

1 f b (1tnX) Bn = - /(x)cos - dx
L a L

1 f b B0 = - f(x)dx
2L a

n�l (7.36)

(7.37)

and L = (b- a)/2. By using Euler's formula, e;e = cose + isin8

where i = � , sine and cos e can be expressed as

cos8 = (eie + e-ie)/2 and sine = (e;e _ e-i0)/(2 i). Substituting for

cosine and sine in Eq. (7.34) yields:

f(x) = I [An[e(ittnx)/L _ �(-ittnx)ILJ + Bn[
e(ittnx)/L + e(-ittnx)ILJJ (7.38)

n = 0 21 2

Collecting like terms gives:

J(x) =

n
�[(�;+��)e(ittnx)IL+(�n-�;)e(-ittnx)ILJ (7.39)

The second term on the right in Eq. (7.39) can be rewritten by defining

m = -n , so that Eq. (7.39) becomes:

J(x) =

n
�J(�;+�n)e(ittnx)IL]+

m
t
_
J(B2m_ A

2
-
i
m)e(ittmx)ILJ

Next, setting m = n and recognizing that the coefficients can be rede

fined as a single complex coefficient Cn,
00 1

f(x) = L [Cne
(ittnx)IL] +

L [Cne
(ittnx)IL] +Co

n=l n=-oo
which just reduces to:

n = --oo

(7.40)

Equation (7.40) is the complex form of the infinite Fourier series of

f(x). Since sine and cosine are orthogonal functions, it is reasonable to

expect that the exponentials in Eq. (7.40) must exhibit orthogonality as

well. Indeed, it is fairly easy to show that the following property holds:

b
ittnx _ittkx {b a f eLe Ldx= -

a 0

k = n

k-:F=m
(7.41)

where k and n are both integers. Applying the property of orthogonality

(Eq. (7.41) to Eq. (7.40)) means to multiply both sides of Eq. (7.40) by

eC-ittkx)IL and integrating both sides over x from a to b. This yields:

7.5 The Discrete Fourier Series and Discrete Fourier transform

f: f(x)e _in{x dx = f:
L
�J Cnein;x]e _in{x}dx

=
! [f cnein;xe_in;x dx] =

! cn[fein;xe_in;x dx] n=-oo a n=-oo a

263

(7.42)

Now, from the orthogonality property, Eq. (7.41), the right-hand side of

Eq. (7.42) is zero unless k = n. Thus,

b innx Lf(x)e-L dx = Cn(b-a)
from which the coefficients C n can be evaluated:

l b _innx Cn =
- f f(x)e L dx 2L a

(7.43)

Thus, Eq. (7.40) with the coefficients given by Eq. (7.43) are an equiva

lent complex representation of the Fourier series given by Eqs. (7.14}

(7.17).

7.5 THE DISCRETE FOURIER SERIES AND DISCRETE
FOURIER TRANSFORM

So far the infinite Fourier series has been used to approximate functions

that were given in analytical form. In many practical applications, how

ever, functions are specified as a finite number of points. This is the

case when data are recorded in experiments with digital data acquisition

systems or when the functions are the outcome of the application of

numerical methods. This section deals with Fourier series of functions

that are specified at a finite number of equally spaced points. The

requirement that the data must be equally spaced is consistent with

modem methods of data acquisition where measurement of a variable is

done by sampling at a regular (equally spaced) interval. The Fourier

series of such functions has a finite number of sine and cosine terms and

consequently are called Discrete Fourier Series (DPS).

Consider a function f(t) that is given by 2N + 1 points over an

interval [O, 't] with f(O) = f('t). Let the points be evenly spaced such

that the spacing between two points is M = 't/(2N):

O!._ � l!_ (2N - 1)'t 't '2N' 2N' 2N' ... , 2N '

If each of these points is labeled as t1 = O, t =!... t = � 2 2N' 3 2N'
...

'

t =
(2N-l)'t 2N 2N '

then f. = (j- l)'t
1 2N '

where

j = 1, 2, 3, ... , 2N + 1. The last point t2N + 1 is discarded since

/(0) = f('t).

264 Chapter 7 Fourier Methods

A discrete Fourier series that approximates the value of the function

f(t1) consists of a finite number of sine and cosine terms in the form:

(7.44)

The coefficients Ak and Bk are determined by multiplying both sides of

. (2rtmq (2rtmt � .
Eq. (7.44) by sm �) and by cos �) ,respectively, and then

applying the orthogonality conditions and solving for the coefficients.

The outcome of this derivation, whose details are given in Appendix C,

yields the following expressions for the coefficients:

k = 1, 2, ... , N - 1

(7.45)

k = 1, 2, ... , N - 1

where t1 = U;�)T._ Note that in general there are a total of 2N coeffi

cients; N - I Ak coefficients (since A0 = AN = 0) and N + 1 Bk coef

ficients. Also, the summation over} goes from j = 1 to j = 2N. This

means that the last point that is used for the determination of the coeffi

cients is (T.-M, f(T.-M)). In other words, the last point (T., /(T.))

where /(0) = /(T.) is not used. This is because in the derivation of

Fourier series approximation of f(t) over the interval [a,b] , it is

assumed that /(t) is periodic with f(a) = f(b).
If the independent variable, t, is time (in seconds), then Eq. (7.44)

may be written as:

f(t) = k [Aksin(2rtvkt) + Bkcos(2rtvkt)] (7.46)

where vk = k!T. is the frequency and T. is the range or total interval

length [a, b] over which f(t) is defined. It should be noted that vk is

Hertzian frequency measured in Hertz (Hz). The angular or circular fre

quency m is related to the Hertzian frequency by m = 2rtv. As dis

cussed in Sections 7.2 and 7.3, Eq. (7.45) may be thought of as

7.5 The Discrete Fourier Series and Discrete Fourier transform 265

transforming the function f(t) defined in the time domain into a fre

quency domain where the function is represented by the amplitudes Ak

(or Av) and Bk (or Bv). The coefficients Ak and Bk are known as the

real Discrete Fourier Transform (DFT) of the function f(t). It con

verts an already sampled (digitized) signal from the time domain to the

frequency domain. Equation (7.44) is the inverse Discrete Fourier

Transform. It can be used to reconstruct f(t) from the frequency com

ponents.

If f(O) does not equal f('t), then it is typical to replace f(O) and

f('t) with [f(O) + f('t)]/2. In this case, the coefficients A0, Ak, and

AN in Eq. (7.44) are the same as in Eq. (7.45), but the constants B0,
Bk , and B N are given by:

B = _l {[(Q2+ � f(t.)+W }
o 2N 2 � 1 2 j=2

1 {HQ) ZN (2 rc kt) Ff-rl}
Bk= NT+

j
�f(t1)cos "7 +� k = 1,2, ... ,N-1 (7.47)

1 { rro•
ZN (2 nNt) rr,,.') } BN = - � + '1 f(t.)cos � +L..l!.L

2N 2 � 1 't 2 j=2
It is interesting to note that the formulae for Bk are effectively those for

numerically integrating the function using the trapezoidal rule dis

cussed in Chapter 9.
A MATLAB user-defined function (called DFT) that calculates the

Discrete Fourier Transform of a function f(t) given by a finite number

of points according to Eq. (7.45) is listed in Fig. 7-13. The input argu

ments of D FT are two vectors (t, f) with the values of the independent

and dependents variables, respectively, of the points. (The vectors are

assumed to have an even number (2N) of elements with values from

t = 0 to t = 't -lit.) The output arguments are three vectors [kp Ak
Bk] that contain the index k and the coefficients Ak and Bk , respec

tively (these vectors have N elements).

[Program 7-1: User-defined function. Real Discrete Fourier Transform. J
function [kp Ak Bk] = DFT(t,f)

% DFT detemti.nes the real discrete Fourier transfcmn of a

% function given by a finite mmi:ler of points by usinq Eq. (7 . 45) .

% Input variables:

% t A vector with the values of the irrlependent variable.

% f A vector with the values of the dependent variable.

% Output variable:

% kp A vector with the values of k .

% Ak A vector with the values of the constants A.

% Bk A vector with the values of the constants B.

266

N=lenqth(f)/2;

dt=(t(2*N)-t(l))/(2*N-1);

kp=[O:N];

Ak(l)=O; Ak(N+l)=O;

Bk(l)=sum(f(1:2*N))/(2*N);

for k=2:N

Ak(k)=O; Bk(k)=O;

Chapter 7 Fourier Methods

for j=1:2*N

Ak(k)=Ak(k)+f(j)*sin(pi*(k-l)*t(j)/(dt*N));

Bk(k)=Bk(k)+f(j)*cos(pi*(k-l)*t(j)/(dt*N));

end

Ak(k)=Ak(k)/N;

Bk(k)=Bk(k)/N;

end

Bk(N+l)=O;

for j=1:2*N

Bk(N+l)=Bk(N+l)+f(j)*cos(pi*N*t(j)/(dt*N));

end

Bk(N+l)=Bk(N+l)/(2*N);

Figure 7-13: MATLAB user-defined function for real Discrete Fourier Transform.

The calculation of the DFT by using Eq. (7.45) requires a large

number of operations and when the number of points is large it is

impractical to use. A faster method for calculating DFT (Fast Fourier

Transform) is presented in Section 7.13.

Discrete Fourier Transform of a sampled sine wave

i.s .---�---� r==='=� A pplication of the DFT is illustrated first by considering a simple sine

wave f(t) = sin(27t(200)t) which has a frequency of 200 Hz. Figure

7-14 shows one period (-r = 0.005 s) of the wave (black line) from

t = 0 to t = 0.005 s, and a digitized record of one period of the wave

(colored circle markers) sampled at 50µ s intervals (sampling frequency

of 20,000 Hz). The sampled data consists of 2N = 100 points from

t = 0 to t = 0.005 - 0.000050 s. (The point at t = 0.005 is not used in

the DFT.) The DFT is done by using the sampled data from Fig. 7.14 in

the user-define function DFT listed in Fig. 7-13. The following is a list

of a MATLAB program (script file) that samples the sine wave, plots

Fig. 7-14, executes the DFT, and displays the transformation.

--0.5

_,

2 3
Time(ms]

-f(t}
0 f(t}Sam led

Figure 7-14: Sampled sine wave.

[Program 7-2: Script file. Discrete Fourier Transform of a sine wave.]
N=SO; Frq=200; tau=0.005;

dt=tau/(2*N); [Sampling interval. J
F=@ (t) sin(2*pi*Frq*t);

7.5 The Discrete Fourier Series and Discrete Fourier transform

tr[0:2*N-l]*dt;

f=F(t);

tp-linspace(O,tau,200);

fpF(tp);

plot(t p*lOOO,fp,'k' ,t *lOOO,f,'oc')

[kp Ak Bk] = DFT(f,t) ;

figure

stem(kp,Ak, 'oc')

figure

plot(kp,Bk,'oc')

267

[Sampling the sine wave. J

[Calling the user-defined function OFT.

The DFT (the coefficients Ak and Bk) is displayed for each value of k

in Fig. 7-15. The figure shows that all the coefficients are equal to zero

(or numerically very small numbers) except A 1 (k = 1) which has a

value of 1. Substituting A 1 = 1 , k = 1 , and -c = 0.005 s in the inverse

DFT, Eq. (7.44) gives back the original sine wave:

f(t) = sin(lnt l = sin(2rr(200)t) O.OOY

1.s�--------�-� 1.5�--------�-�

0.5

10 20 30
k

40 50

0.5

0 10 20 30
k

Figure 7-15: The Discrete Fourier Transform of a sine wave.

Example 7-3: Real Discrete Fourier Transform.

Consider the periodic function given by:

f(x) = sin(2rrvt) + 0.5sin(2rr(4v)t)

+ 0.8cos(2rr(2v)t) + 0.4cos(2rr(12v)t)

40 50

(7.48)

where v = 200 Hz that is shown in the figure. Sample the

function from t = 0 to t = 0.005 s by using sampling fre

quency of20,000 Hz (sampling increments of50µ s). Use the

sampled data to determine the DFT of the function. Display

the DFT coefficients as function of frequency. -3�-o�--- s�---,�o�
Time [ms]

268 Chapter 7 Fourier Methods

SOLUTION

In this problem, the interval is T = 0.005 s and the spacing between the sampled points 1s

M = 50 x lQ-6 s. This results in 100 sampled points (2N = 100) for the DFT. The following MAT

LAB program uses the user-defined function DFT listed in Fig. 7-9 for calculating the DFT. The pro

gram first creates a set of sampled points from t = O to t = 0.005 - 0.000050 s. (The point at

t = 0.005 is not used in the DFT.) Then, the DFT is carried out and the results are displayed.

nu = 200;

F=@ (t) sin(2*pi*nu*t)+0.5*sin(2*pi*4*nu*t)+0.8*cos(2*pi*2*nu*t)
+0.4*cos(2*pi*l2*nu*t);

fS=20000; dt=l/fS; tau=O. 005; Sampling frequency, sampling spacing, and interval length.]
tp = linspace(O,tau,200);
yp=F(tp);

[Vectors for plotting one period of the function. J

t=O:dt:tau-dt;
y=Fun(t);

(Sampling the function. J

plot(tp*lOOO,yp, 'k' ,t*lOOO,y,'oc')

[kp Ak Bk] = DFT(y,t);

Plotting the function and the sampled points. J
[Calculating the DFT. J

fk=kp/tau; [Vectors with values of frequency. J
figure;
stem(fk,Ak, 'oc' ,'markersize' ,15) [Plotting the coefficients A k versus frequency.

figure
stem(fk,Bk, 'oc', 'markersize' ,15) [Plotting the coefficients Bk versus frequency.

When the program is executed, the following three figures are produced. The left figure shows the

function from t = 0 to t = 0.005 s and the sampled points. The other two figures display the DFT of

the function. The figures show that the DFT consists of two Ak peaks (A1 = 1 with frequency of

200 Hz, and A4 = 0.5 with frequency of 400 Hz) and two Bk peaks (B2 = 0.8 with frequency of

400 Hz and B12 = 0.4 with frequency of 2400 Hz).

-1

-2

2 3
Time[ms]

-flt)
o f(t)Sam led

.. �

1.2

0.8

0.6

0.4

0.2

-0·2o 2000 4000 6000 8000 10000
Frequency {Hz)

0.8

0.6

0.4
"'�

0.2

2000 4000 6000 8000 10000
Frequency (Hz)

7.6 COMPLEX DISCRETE FOURIER TRANSFORM

The expressions of the DFT and inverse DFT can be written in a com

plex form by using Euler's formula (e;e = cose + isine) in Eq. (7.44).

By following the same steps as in Section 7.4 a discrete Fourier series

that approximates the value of the function f(t) specified at a discrete

set of points over an interval T can be written as:

N
f(t) = L Cke2nivkt (7.49)

k�-N

7.6 Complex Discrete Fourier Transform

. Ak+iBk
where vk = kh 1s the frequency and Ck = 2i

269

Using the expressions for the coefficients Ak and Bk in Eq. (7.45), the

coefficients Ck can be written as:

(7.50)

k = 1, 2, ... , N - 1

where t j = (j ;�)'t with j = 1, 2, ... , 2N . Equation (7.50) is the com

plex DFTofthefunction f(t). Note that there are 2N + 1 coefficients

in Eq. (7.49), but only N + 1 expressions in Eq. (7.50) to evaluate

them. The expressions in Eq. (7.50) give Ck for positive values of k.

C _k carries similar information but is the complex conjugate of Ck. C _k
may be easily evaluated from Eq. (7.50) by substituting -k fork. Thus,

there are actually 2N + 1 expressions for 2N + 1 coefficients. The com

plex Discrete Fourier Transform given by Eq. (7.50) is usually split into

real and imaginary parts. Equation (7.49) is the inverse complex DFT.

The inverse DFT is performed in those situations where the frequency

spectrum (i.e., Cd are known and the function f(t) must be recon

structed. In the case where the inverse DFT is used to reconstruct the

function f(t), both Ck and its complex conjugates are required.

A MATLAB user-defined function (called DFTCmplx) that deter

mines the complex DFT of a function f(t) given by a finite number of

points according to Eq. (7 .50) is listed in Fig. 7-16. The input argu

ments of o FTCmp 1 x are two vectors (T, F) with the values of the inde

pendent and dependents variables, respectively, of the points. (The

vectors are assumed to have an even number (2N) of elements with val

ues from t = 0 to t = 't - M .) The output arguments are two vectors

[Ck fk] that contain the complex values of the coefficients C0
through C N and the corresponding frequencies. (The coefficients C _N

are not calculated by DFTCmplx but can be obtained from the complex

conjugates of C N .)

A n example of calculating the complex DFT is shown next where it

is applied to the function that was transformed in Example 7-3.

270 Chapter 7 Fourier Methods

Program 7-3: User-defined function. Complex Discrete Fourier Transform.]
function [Ck, fk] = DFTCmplx(T,F}

% DFTCmplx debmnines the o::nplex Disaete Fourier Transfoz:m of a

% functicn given by a finite m.mber of points by using Eq. (7. 50) •

% Input variables:

% T A vector with the values of the independent variable.

% F A vector with the values of the depeOOent variable.

% Output variable:

% Ck A vector with the values of the complex coef ficients.

% fk A vector with the corresponding values of frequencies.

N=length(F}/2;

dt=(T(2*N}-T(l}}/(2*N-1};

fk=[O:N]/(dt*2*N};

Ck(l}=sum(F(1:2*N}}/(2*N};

for k=2:N

CkI(k}=O; CkR(k}=O;

for j=1:2*N

CkI(k}=CkI(k}+F(j}*sin(pi*(k-l}*T(j}/(dt*N}};

CkR(k}=CkR(k}+F(j}*cos(pi*(k-l}*T(j}/(dt*N}};

end

Ck(k}=(CkR(k}-CkI(k}*i}/(2*N};

end

Ck(N+l}=O;

for j=1:2*N

Ck(N+l}=Ck(N+l}+F(j)*cos(pi*N*T(j}/(dt*N}};

end

Ck(N+l}=Ck(N+l}/(4*N};

Figure 7-16: MATLAB user-defined function for complex Discrete Fourier Transform.

Example 7-4: Complex Discrete Fourier Transform.

Consider the periodic function given by:

f(x) = sin(2nvt) + 0.5sin(2n(4v)t)

+ 0.8cos(2n(2v)t) + 0.4cos(2n(12v)t)

where v = 200 Hz that is shown in the figure. Sample
the function from t = 0 to t = 0.005 s by using sam
pling frequency of 20,000 Hz (sampling increments of

50µ s). Calculate the complex OFT of the sampled data.

Display the results in two plots that show the real and
imaginary parts of the complex coefficients as a func
tion of the corresponding frequencies.

-3������������
0 5 10

Time[ms]

7.7 Power (Energy) Spectrum 271

SOLUTION

The following program, written in a script file, uses the user-defined function DFTCmplx listed in

Fig. 7-16 to solve the problem. The program first creates a set of sampled points from t = 0 to

t = 0.005 -0.000050 s. (The point at t = 0.005 s is not used in the DFT.) Then, the complex DFT is
carried out and the results are displayed in two figures.

nu = 200;

Fun = @ (t) sin(2*pi*Frq*t)+0.5*sin(2*pi*4*Frq*t)+0.8*ccs(2*pi*2*Frq*t)
+0.4*ccs(2*pi*l2*Frq*t);

fS = 20000; dts = 1/fS; tau = 0. 005; [Sampling frequency, sampling spacing, and interval length. J
tp = linspace(O,tau,200);
yp = Fun (tp) ; Vectors for plotting the plotting the function. J
ts = O:dts:tau-dts;
ys = Fun (ts) ; [Sampling the function. J
plct(tp*lOOO,yp, 'k' ,ts*lOOO,ys,'cc')

[C fr] = DFTCmplx(ts,ys); [Calculating the DFT. J
figure;
stem(fr,real(C) ,'cc' ,'markersize' ,12,'LineWidth' ,1)

figure
stem(fr,imag(C) ,'cc', 'markersize' ,12, 'linewidth' ,1)

When the program is executed, the following three figures are produced. The left figure shows the
function from t = O to t = 0.005 s and the sampled points. The other two figures display the real

and imaginary parts of the complex coefficients C0 through C N versus frequency. (The coefficients

C _N are the complex conjugates of C N.)

-Htl
O f(t) Sampled

-1

-2

-]�-�-����-� 0 2 3
Time[ms]

0.5

0.4

--,. 03

� 02

0.1

-0.10

r
2000 4000 6000 8000 1 0000

Frequency (Hz}

0.2 ��-�-�-�-�

0.1

--,. -0.1
u

:g -0.2

-0.3

-0.4

--0.S 0 2000 4000 6000 8000 10000
Frequency {Hz)

The nonzero complex coefficients are C1 = 0-0.5i, C2 = 0.4+0i, C4 = 0-0.25i, and

C 12 = 0.2 + Oi . The corresponding frequencies are 200, 400, 800, and 2400 Hz.

7.7 POWER (ENERGY) SPECTRUM

The power spectrum (also known as the spectral power, energy spec
trum, and spectral energy) shows the distribution of the power of a sig-

nal versus frequency 7.
In the discrete complex formulation of the DFT, Eq. (7.50), the

power of each frequency component of the signal is defined by:

Pk = ..!.1ci (7.51)
N

where Ck is the !Ch coefficient of the DFT of f(t). Often, the power is

plotted in a normalized form where 1Ckl
2

is divided by its maximum

272 Chapter 7 Fourier Methods

value over all values of k.
The need for a power or energy spectrum can also be understood if

one recalls from Section 7.5 that the DFT (which consists of sines and

cosines of different frequencies and amplitudes that together form a

given, time-varying, periodic signal) may also be expressed in complex

form (Eq. (7.50)). Rather than dealing with the sines and cosines or the

complex coefficients for positive and negative frequencies separately,

the power spectrum provides a convenient way to depict the DFT in a

single plot of amplitude versus frequency.

When the DFT is calculated by Eq. (7.50), the coefficients are com

plex numbers in the form Ck = ReCk + ImCki. The associated power is

then

(7.52)

If the Fourier transform is done by using Eq. (7.45), the power is given

by

(7.53)

7.8 ALIASING AND NYQUIST FREQUENCY

Aliasing refers to an error (distortion) that occurs when a discrete Fou

rier series is used for approximating a continuous periodic function. The

magnitude of the distortion depends on the number of points (discrete

points of the function) used for the discrete Fourier series relative to the

number of periods in the interval over which the function is specified.

The source of aliasing can be understood by examining the relationship

between the discrete Fourier series and the infinite Fourier series.

Consider a (periodic) function f(t) over the interval i- with

f (0) = f (i-) . The infinite Fourier series approximation of the function

7. Although the terms "power spectrum" and "spectral power density" are widely used,
from physical considerations it is correct to refer to "energy" rather than "power" in
the definition of this term. It can be shown from Poynting's theorem in electromag
netic theory that the energy carried by a propagating electromagnetic wave (e.g.,
radio signal) say in the x-direction is related to a sum of terms involving the square

of the magnitude of the electric field E
Y

and magnetic induction B z. For a propa-

gating wave these fields can be written as E = E e2rtivt and B = B e2rtivt
' y 0 z 0 .

Thus the magnitudes of these fields (which are real numbers) are:

IEi= (Eoe21tivt)(E� e-2rtivt) = EoE� = E� and 1Bzl1=(Boe2"ivt)(B� e-21tivt)
= B0B� = B�, where the starred quantities represent the complex conjugates.

Comparing these expressions with Eq. (7.51), it is evident that E0 and B0 are the

Fourier transforms of E
Y

and B z. This suggests that the square of the amplitude of

the Fourier transform is related to the amount of energy in the propagating wave.
Since this quantity is typically a function of frequency, the sum of the squares of the
Fourier coefficients is related to the energy spectrum. In contrast, the power is the
time rate of change of the energy.

7.8 Aliasing and Nyquist Frequency 273

is given by Eq. (7.14):

f(t) = ,%J Aksin(2�kt) + Bkcos(2�kt)J (7.54)

On the other hand, if the function is represented by 2N equally spaced
points, the discrete Fourier series approximation of the function at a
point ti is given by Eq. (7.44):

N [(2rtkt) (2rtkt)] f(ti) = � Cksin 7 +Dkcos 7
Equation (7.54) evaluated at a point ti yields:

� [. (2nkt) (2nkt)] f(ti) =
k
� Aksm 7 + Bkcos 7

Equating Eq. (7.55) and (7.55a) yields:

(7.55)

(7.55a)

(7.56)

By applying the orthogonality relations (given in Appendix C), the fol

lowing equations can be obtained between the coefficients Bk and Dk:

Similarly:

00

Dk = Bk+ L (BzNm-k + BzNm+k)
m = 1

00

Do= Ba+ L BzNm
m= I

00

ck = Ak + L (-A2Nm-k + AzNm+k)
m= 1

k�l (7.57)

(7.58)

k�l (7.59)

This result has profound implications in signal processing and alludes
to a phenomenon called aliasing. If an original function or signal is rep

resented by the infinite continuous Fourier series and a measuring
instrument (say such as an oscilloscope) is used to sample or measure
the original signal at discrete but equally spaced instants of time, vari
ous frequencies present in the original signal are added together in the

sampled signal due to the act of sampling itself! This is the phenome
non of aliasing, and once the sampling has been done, its effect cannot
be undone from the samples alone.

Aliasing may be familiar to readers who may have watched old

western movies with the stagecoach wagon wheels seeming to rotate

backwards at certain speeds. The same effect is also seen in newer mov
ies where helicopter rotors appear to rotate backward. The effect may
be further understood with the following illustrative example.

Suppose there is a disk spinning in the anticlockwise direction at a
rate of one revolution per minute (60 s). Suppose also that there is a fea-

274 Chapter 7 Fourier Methods

ture on this disk (say a bolt at the rim) and by observing the angular

position of this bolt as a function of time the angular speed of the disk is

measured. Suppose measurements are performed at intervals of 15 s

starting with the bolt at 12 o'clock. After 15 s, the bolt is at 9 o'clock,

then at 6 o'clock, then 3 o'clock, and then again at 12 o'clock. The out

come of the measurement is that the disk rotates in the counter clock

wise direction completing one revolution in 60 s. Suppose now that a

second set of measurements is performed at intervals of 45 s starting

with the bolt at 12 o'clock. After 45 s, the bolt is at 3 o'clock, then at 6
o'clock, then at 9 o'clock, and then again at 12 o'clock. The outcome of

the second measurement is that the disk rotates in the clockwise direc

tion completing one revolution in 4 x 45 = 180 s.

When the rotation of the disk is sampled at too slow a speed com

pared to the speed at which the disk is rotating, the conclusion from the

observations is incorrect. On the other hand, when the data is sampled

at a sufficiently fast speed, the measurements are reliable. In lieu of

speed, it is more relevant to refer to frequency since the angular speed

(radians per second) may be converted to a frequency (cycles per sec

ond) using the factor of 2n . Aliasing can therefore be described as dis

tortion of observed or measured data when the sampling frequency is

too low compared to a critical value called the Nyquist frequency,

which is discussed next.

Nyquist frequency

The Nyquist frequency, v Nyquist is defined as twice the highest fre

quency that exists within a time-varying, periodic signal:

(7.60)

The basis for the Nyquist frequency is a practical guideline for exact

reconstruction of a signal by sampling that was described by Harry

Nyquist8 in 1928 and proved by Claude Shannon9 in 1949. The Nyquist

Shannon Theorem (as it is now known) states that if a bandwidth-lim-

ited10 analog signal S(t) with a maximum frequency vH Hz is uni

formly sampled at a rate of vs samples/s, then S(t) can be reconstructed

without distortion, from the samples, provided that the sampling fre

quency vs � 2 v H = v Nyquist . This is also called the Nyquist criterion. In

other words, the sampling frequency has to be at least twice as large as

the highest frequency contained within the signal. This Nyquist crite-

8. H. Nyquist, "Certain Topics in Telegraph Transmission Theory'', Transac
tions of the A.l.E.E., pp. 617-644, Feb. 1928.

9. C.E. Shannon, "Communication in the Presence of Noise," Proceedings of
the IRE, vol. 37, no 1, pp. 10 - 21, Jan 1949.

10.Bandwidth is discussed in Section 7.12. For present purposes, it is defined
as the difference between the highest and lowest frequencies in a signal.

7.8 Aliasing and Nyquist Frequency 275

rion is intuitively easy to understand by considering a sine or cosine
wave. To capture such a wave correctly, one would need to at least keep
track of the successive peaks and valleys so that for each period of the

wave there are at least two samples (peak and trough). In other words, if
a wave oscillates at one cycle per second (v = 1 Hz), then at least two
points are needed to correctly represent it as a sine or cosine wave,
which corresponds to samples every half a period or twice the fre

quency. Hence, if a signal contains multiple frequencies, the sampling
frequency must exceed at least twice the highest frequency contained
within the signal. Clearly, a more accurate reconstruction of the original

continuous signal is expected with smaller sampling interval (or higher

sampling frequency). Example 7-5 illustrates the use of the Nyquist cri
terion and what happens when it is either deliberately or inadvertently
disregarded. When the sampling frequency is less than the Nyquist fre

quency, the signal is said to be undersampled. However, it must be
pointed out that there are practical situations involving bandpass-fil
tered signals where the Nyquist criterion may be deliberately violated in

order to increase computational speed and decrease memory require

ments 11.

Example 7-5: Aliasing effects.

Consider the periodic function given by:

f(t) = 0.3 + sin(2nvt) + 0.2cos(2n(9v)t)

where v = 80 Hz that is shown in the figure. Sample the func

tion from t = O to t = 0.05 s. Use the sampled data to deter

mine the real DFT of the function and then use the inverse real
DFT to reconstruct the function. Plot the original, the sampled,

and the reconstructed functions. Solve the problem using sam

pling frequencies of (a) 1600 Hz, (b) 1200 Hz, and (c) 120 Hz.

SOLUTION

O.Ql 0.02 0.03 0.04 0.05
Time[sJ

The following program, written in a script file, solves part (a) of the problem. The program first sam
ples the function with a sampling frequency of 1600 Hz. Then, the DFT is carried out by using the
user-defined function OFT listed in Fig. 7-13. This is followed by the inverse DFT according to Eq.

(7.44). The results are displayed in two figures. One figure shows the constants Ak and Bk, and the

other figure shows the original function, the sampled points, and the inverse DFT.

nu = 80;
Fun =@ (t) 0.3+sin(2*pi*nu*t)+0.2*cos(2*pi*9*nu*t);
tau = 0.05;
tp = linspace(O,tau,800);
fp = Fun (tp); [Data for plotting the function.

11.H. P. E. Stem, "Bandpass Sampling - An Opportunity to Stress the Impor
tance of In-depth Understanding", American Journal of Engineering Educa
tion, Vol. 1, No. 1, pp.43-46, 2010.

276

fS = 1600; dts = l/fS;

ts=O:dts:tau-dts;

ys = Fun (ts);
N=length (ys)/2

[kp Ak Bk] = DFT (ys,ts);

stem (kp,Ak, 'oc ' , 'markersize ' ,15, 'linewidth ' ,1)

hold on

stem (kp,Bk, 'dk' , 'markersize ' ,15, 'linewidth ' ,1)

hold off

legend ('A_ k ' , 'B _ k ')

pi2tau=2*pi/tau;

Chapter 7 Fourier Methods

[Sampling parameters. J

[Sampling the function.]
[N is half the number of sampled points.]

[Calculating the DFT. J

kL=length (kp);

tf=linspace (O,tau,400);

for j=l:length (tf)

[Time vector to be used for the inverse DFT.]

fI (j)=O; [Determining the inverse DFT using Eq. (7.44). J
for k=l:kL

fI (j)=fI (j)+Ak (k)*sin (pi2tau* (k-l)*tf (j))+Bk (k)*cos (pi2tau* (k
l)*tf (j));

end
end

figure

plot (tp,fp, 'k ' ,ts,fs, 'oc ' ,tf,fI, '--c ', 'markersize ' ,15, 'LineWidth ' ,1)

legend ('f (t) ', 'Sampled f (t) ', 'Inverse DFT of f (t) ')

When the program is executed, the value of 40 (variable Nin the program), which is half of the num

ber of sampled points, is displayed in the Command Window, and the following two figures are dis

played. The left figure shows the constants Ak and Bk, and the figure on the right shows the

function, the digitized points, and the inverse OFT of the function. The left figure shows that all the

coefficients are zero except A4 = 1 (corresponding frequency of kh: = 410.05 = 80 Hz),

B0 = 0.3, and B36 = 0.2 (corresponding frequency of kh: = 36/0.05 = 720 Hz). If these con

stants are substituted in the formula for the inverse OFT (Eq. (7.44)), the original function in the

problem statement is obtained. This is also confirmed in the figure on the right in which the plot of

the inverse DFT that was obtained numerically (colored line) is essentially identical to the plot of

f(t) (black line).

""
"'

:..
<C

0.5

10 15 20 25 30 35 40
k

15

� 0.5

0.005 O.Ql O.Ql 5 0.02 O.Q25 O.Q3 0.035 0.04 0.045 0.05

Time[s]

7.8 Aliasing and Nyquist Frequency 277

Part (b) of the problem is solved by executing the program from part (a) but changing the sampling

frequency to 1200 Hz (fS=1200). When the program is executed, the value of 30 (variable Nin the

program), which is half of the number of sampled points, is displayed in the Command Window, and

the following two figures, as in part (a) , are created. The left figure shows that all the coefficients are

zero except A4 = 1 (corresponding frequency of kh = 4/0.05 = 80 Hz), B0 = 0.3, and

B24 = 0.2 (corresponding frequency of kh: = 24/0.05 = 480 Hz). If these constants are substi

tuted in the formula for the inverse DFT (Eq. (7.44)), the function that is obtained is

f(t) = 0.3 + sin(2n(80)t) + 0.2cos(2n(480)t). The equation is not exactly the same as the original

function. The sine term is the same, but the cosine term has the incorrect frequency of 480 Hz (720

Hz in the original equation). This is also confirmed in the figure on the right in which the plot of the

inverse DFT that was obtained numerically (colored line) is different than the plot of the original

f(t) (black line). The figure shows that the sine part of the function is the same as in the original

function, but that the oscillations associated with the cosine term are different. The distortion is due

to the fact that the sampling frequency (1200 Hz) is less than the Nyquist frequency which is 1440

Hz (twice the frequency of the cosine term) .

...
00

:..
<

0.5

0�o�MO�•o$0G•1�s ����'"'
k

Part (c) of the problem is solved by executing the program from part (a) but changing the sampling

frequency to 120 Hz (fS=l20). When the program is executed, the value of 3 (variable Nin the pro

gram), which is half of the number of sampled points, is displayed in the Command Window, and the

following two figures, as in parts (a) and (b), are created. The left figure shows that all the coeffi

cients are zero except A2 = -1 (corresponding frequency of kh: = 210.05 = 40 Hz) and

B0 = 0.5 . If these constants are substituted in the formula for the inverse DFT (Eq. (7.44)), the

function f(t) = 0.5 - sin(2n(40)t) is obtained. The inverse DFT, which is displayed by the dashed

color line in the figure below, gives a result which is very different than the original function. The

cosine term is not present at all and the sine term has a negative amplitude and lower frequency. The

distortion is due to the fact that the sampling frequency (120 Hz) is very low even in comparison to

the frequency of the original sine wave.

1.5
� ' 1.5

0.5
...

� 0.5
00 0 �

<
:.. �

-0.5
-1 ,

-1.5 0 0.5 1.5 2.5
k

O.Ql 0.02 0.03 0.04 0.05
Time[s]

278 Chapter 7 Fourier Methods

7.9 ALTERNATIVE FORMS OF THE DISCRETE
FOURIER TRANSFORM

The reader may encounter different forms in which the DFT and inverse
DFT are written. These variations typically arise from indices starting at
O instead of 1, or from taking N sampling points instead of 2N, etc. The
form used by MATLAB is:

N 2iti(k-l)(i-1)
l N 2iti(k-l)(i-1)

Fk = Lf(tj)e N and f(tj) = N LFke N (7.61)
j=I k=I

where F k is the DFT, f (t j) is the inverse DFT, t j = (j �l)< , and

j = 1, 2, ... , N with N presumed to be an even number. This form is
discussed further in Section 7.10.

Another form of the DPT/inverse DFT pair is:
N/2 2itikj

and f(tj) = L Fke N

k=-�+I 2

(7.62)

where k = - !!... + 1, - !!... + 2, .. ., !!... in the first summation for F k, while
2 2 2

j = _ !!.. + 1, _ !!.. + 2, ... , !!.. in the second summation for f(t1.). 2 2 2
A third form ofDFT/inverse DFT is:

lN-1 _2itikj N-1 2itiki
Fk = NL f(tj)e N and f(tj) = L Fke N

j=O k=O
(7.63)

where j = 0, 1, .. ., N - 1 and k = 0, 1, .. ., N - 1 . The various forms
of the DFT may have different scaling factors in front of the summation
and may have a negative sign in the argument of the exponent in the
DFT or in the inverse DFT. Regardless of the specific form of the DFT
and its inverse, all will exhibit the same basic properties.

7.10 USE OF MATLAB BUILT-IN FUNCTIONS FOR
CALCULATING DISCRETE FOURIER TRANSFORM

MATLAB uses the complex formulation of the DFT. The transform and
the inverse transform are defined by:

Nm 2iti(k-l)(j-1)
l Nm 2iti(k-l)(j-1)

Fk = L f(tj)e Nm and f(tj) =
NL Fke Nm (7.64)

j=l mk=I

The vectors f (t j) and F k are both oflength Nm, where Nm is the num
ber of data points. Note: In the previous sections, the number of points
used in the DFT was denoted by 2N (N is half the number of points). In
MATLAB documentation, the character N is used to denote the num
ber of points. This section follows the MATLAB notation but to avoid

7.10 Use of MATLAB Built-In Functions for Calculating Discrete Fourier Transform 279

confusion with the notation in the previous sections in this chapter, the
number of points that are used by MATLAB for the DFT is denoted by

Nm.

MATLAB has a built-in function, called fft, for calculating one
dimensional DFTs using an FFT algorithm. The fft function trans
forms time-based (or position-based) data to frequency data.

F = fft(f)

F is a vector with the coefficients F k

in Eq. (7.64) multiplied by Nm.

f is a vector with the values

of sampled data points whose
DFT is to be determined.

The vector f has Nm elements and MATLAB assumes that the data is

sampled at a constant frequency of vs such that the spacing between the

points is M = llvs and the length (duration) of the data, 't, is

't = N mM . The range of the data in the vector f ts

[f(O), f(M), f(2M), ... , f((N m-2)M), f((N m - l)M)]. It should be

reiterated here (see Section 7.5) that the DFT analysis assumes that the

domain of the function f(t) is [O, 't] with /(0) = f('t) and that the

last point that is used for determining the coefficients is f ('t -M) (one

point before the end point of the domain).
The ff t function can be executed with an even or odd number of

points. Regardless of whether Nm is even or odd, the output argument F

is a vector with Nm values for the coefficients Fk consistent with Eq.

(7.64). The coefficients Fk correspond to the coefficients Ck of the

complex DFT given in Eq. (7 .50), but arranged in a different order as
explained next.

Even number of points

If Nm is even, the elements of the vector Fin terms of Fk and Ck are:

(7.65)

For example, if Nm = 8 the vector Fis:

8[F1, F2, F2, F4, F5, F6, F7, F8] = 8[C0, C1, C2, C3, C--4, C_3, C_2, C_i]

Odd number of points

If Nm is odd, the elements of the vector F in terms of F k and Ck are:

... , FN -1• \m (7.66)

C_2,

280 Chapter 7 Fourier Methods

For example, if Nm = 7 the vector F is:

7[F1, F2, F2, F4, F5, F6, F7] = 7[C0 , C1 , C2 , C3 , C_3 , C_2 , C_i]

Application of the fft function is illustrated in the following script

file, where the discrete Fourier transform is applied to one period of the

function f(t) = 0.4 + 0.7sin(2n(50)t) by using a sampling frequency of

400 Hz.

[Program 7-4: Script file. Applying MATLAB's fft to a sine wave. J
nu = 50;

tau = l/mi

%Siqnal frequency

%Period length

Fun =@ (t) 0.4+0.7*sin(2*pi*nu*t);

f S = 400; %Sampling Freq

dt = 1/fS %Smtpling interval

t = O:dt:tau-dt; %Time vector

y = Fun(t); [Sampling the function. J
N=lenqth(y)

F=fft(y)/ N

%Number of points
[�f_ft_o_f -th_e _fun_c_ti -on_a_n _d _d_iv-id-in_g_ b_y_ t -he_ n_u_m_b -er_o_f_p_om-. -ts� . J

fplot(Fun,[0,tau] ,'k')

hold on

plot(t,y,'oc' ,'markersize' ,1 2)

1.s,-----------;====o
-fft)

When the file is executed, the original function and the sampled points

are displayed as shown in Fig. 7-17, and following is displayed in the

Command Window.

g 0.5

0.005 O.ol
t(s)

o flt) sam led

O.olS 0.02

Figure 7-17: Sampling of a sine
function.

tau =
0.0 200

dt =
0.0025

N =
8

[Period length. J

Sampling spacing. J
[Number of points.

[Output from fft.
F =

Columns [CJ

MATLAB has a command named fftshift that when applied to the

array in Eq. (7.65) or (7.66) reorders the coefficients such that the zero

frequency component, C0, is at the center of the spectrum. For even

number of points the new order is:

7.10 Use of MATLAB Built-In Functions for Calculating Discrete Fourier Transform 281

For odd number of points the new order is:

N[C(-Nm+l)/2' C(-Nm+3)12' ... , C_1, Co, C1, ... , C(Nm-1)12] (7.68)

Thus, for the previous examples with Nm = 8 and Nm = 7 the new

order after fftshift is applied are:

8[C--4, C_3, C_2, C_1, C0, C1, C2, C3] and 7[C_3 , C_2 , C_1 , C0 , C1 , C2 , C3] , respectively.

This order is useful when the data is used for plotting the DFT with the

zero-frequency component in the middle of the spectrum (see Example

7-6). MATLAB has a command named ifftshift that when applied

to the array in Eq. (7.67) or (7.68) changes the coefficients back to the

order in Eq. (7.65) and (7.66), respectively.

MATLAB does not have a built-in function for calculating the

power (energy) spectrum. (A lthough there is a built-in function called

power, this function does not calculate the power spectrum of a Fou

rier transform.) The power (energy) spectrum can be calculated accord

ing to Eq. (7.51) and (7.52), where the magnitudes of the coefficients of

the DFT (FFT) are squared and normalized by dividing by the square of

the magnitude of the largest coefficient. The square of the magnitudes

of complex numbers may be calculated using the MATLAB functions

abs or conj. Given a complex number C = a+ bi , the absolute

value of C is obtained by:

ICI = Ja2 + b2 (7.69)

Therefore, the command abs (c) in MATLAB would yield the real

number given by Eq. (7.69). The power would then involve the square

of the absolute value. A lternatively, the command C *conj (C) yields

C2
= a2 + b2, which is the square of what is calculated by Eq. (7.69).

Example 7.6 provides an example for calculating the power spectrum.

Example 7-6: Fourier transform using MATLAB.

Consider the periodic function given by:

f(t) = 0.3 + sin(2nvt) + 0.5sin(2n(5v)t)

+ 0.7 cos(2n(3v)t) + 0.4cos(2n(8v)t)

where v = 100 Hz that is shown in the figure. Digitize the

function from t = 0 to t = 0.01 s by using a sampling

frequency of 2000 Hz. Use the digitized data to determine

the complex discrete Fourier transform of the function using

MATLAB's fft function.

(a) Plot of the real and imaginary part of the complex Fou

rier coefficients versus frequency.

(b) Plot of the power spectrum versus frequency.

-1

5 10
Time(ms)

15 20

282

SOLUTION

The figure on the right shows the original function and the sampled

points used for the DFT. The following program, written in a script

file, solves the problem. The program creates a set of sampled points

which are used by MATLAB's fft function for calculating the DFT

and then the power spectrum. The results are displayed in three fig

ures. Next, the output of fft is rearranged by using the function fft

shift, and the results are displayed again.

nu = 100;

Chapter 7 Fourier Methods

-1

-'i) 0.002 0.004 0.006

Time{s)

-f(t)
Of(t)

f =@ (t) 0.3+sin(2*pi*nu*t)+0.5*sin(2*pi*5*nu*t)+0.7*cos(2*pi*3*nu*t)+
0.4*cos(2*pi*B*nu*t);

fS = 2000 %Sampling Frequency

dt = 1/fS %Sampling spacing

tau = 0.01 %Interval length

t = O:dt:tau-dt; %Time vector

y = f(t);

N = length(y);

fK = (O:N-l)*(fS/N);

Sampling the function. J

Frequency vector for plotting the results. J
F = fft(y)/N;

power=F.*conj(F)/N;
powerNor=power/max(power);

[Apply the fft function and divide by the number of points. J

[Calculate the normalized power spectrum. J

stem(fK,real(F),'ko','markersize',14)

figure, stem(fK,imag(F) ,'kc' ,'markersize' ,14)

figure, stem(fK,powerNor,'ko' ,'markersize' ,14)
,.-�.,..-....,.--�-..,..,,.--,--�---,-,.......,.��--,--��---,----,-��-----

CO= ff ts hi ft (F) ; [Reorder the coefficients with the zero frequency in the center.

powerO=CO.*conj(CO)/N;

powerNorO=powerO/max(powerO);

fKO=(-N/2:N/2-l)*(fS/N);

stem(fKO,real(CO),'ko','markersize' ,14)

[Calculate the normalized power spectrum. J

Frequency vector for plotting the reordered results.

figure, stem(fKO,imag(CO), 'ko', 'markersize' ,14)

figure, stem(fKO,powerNorO,'ko' ,'markersize' ,14)

When the program is executed, the DFT coefficients calculated by MATLAB's function fft are

assigned to the variable F (vector) and are displayed in the Command Window.

F =
Columns 1 through 4

0.3000 + O.OOOOi -0.0000 - 0.5000i -0.0000 + O.OOOOi 0.3500 - O.OOOOi
Columns 5 through 8
-0.0000 + O.OOOOi -0.0000 - 0.2500i 0.0000 - O.OOOOi 0.0000 - O.OOOOi
Columns 9 through 12

0.2000 + O.OOOOi -0.0000 - O.OOOOi 0.0000 + O.OOOOi -0.0000 + O.OOOOi
Columns 13 through 16

0.2000 - O.OOOOi 0.0000 + O.OOOOi 0.0000 + O.OOOOi -0.0000 + 0.2500i
Columns 17 through 20
-0.0000 - O.OOOOi 0.3500 + O.OOOOi -0.0000 - O.OOOOi -0.0000 + 0.5000i

The vector has twenty elements (as the number of points). Since the number of points is even, the

order of the elements follows Eq. (7 .65). In the present problem only nine elements, F (1) , F (2) ,

F (4) , F (6) , F (9) , F (13) , F (1 6) , F (1 8) , and F (2 0) are non zero, and they correspond to the

7.10 Use of MATLAB Built-In Functions for Calculating Discrete Fourier Transform 283

following complex coefficients: C0 = 0.3, C1 = 0-0.5i, C3 = 0.35+0i, C5 = 0-0.25i ,

C8 = 0.2 + Oi , C_8 = 0.2 -Oi , C_5 = 0 + 0.25i , C_3 = 0.35 -Oi , and C_1 = 0 + 0.5i, respec

tively. Plots of the real and imaginary parts of the Fk coefficients and the power spectrum versus the

index k are displayed in the following three figures.

0.4 �--------� 0.6

03

-:.. 0.2
"'

J 0.1

--0.10 10
Index k

15

0
0.4

0.2
...,,.
"' 0 :f'
s

-0.2

-0.4

0.8

r 1
';ij0.6
g

l � 0.4
�
Ir

0.2

10 15 20 20
lndexk

Next, the coefficients in the vector Fare rearranged by applying the function fftshi ft (the output
is assigned to the vector CO). Since there are an even number of points, the coefficients are now
ordered according to Eq. (7.67). To make plots of the rearranged data, a vector of corresponding fre

quencies, fKO, is defined by (-N/2 :N/2-1) * (fS/N) (recall that vk = kh = (kvs)/Nm). This

vector has 20 elements (same as CO) with values of-1000, -900, ... , 0, ... , 900. Plots of the real and

imaginary parts of the Ck coefficients and the power spectrum versus frequency are displayed in the

following three figures. The information in the new figures is the same as before except that the data
is rearranged such that the zero frequency coefficient is in the center. The negative frequencies corre
spond to negative values of k. Consequently, only half of the power spectrum (which is symmetric) is
useful in practice.

0.4 �-�-�-�-�

0.3

--'"" 0.2
It

J 0.1

.6

.4

.2

.2

-0 .4

0
0.8

r
l

i
�0.6

� ¥ 0 4

Ir 0.2

-500 0 500 1000 -1000 -500 0 500
Frequency(Hz)

1000 -1 -500 0 500
Frequency (Hz)

1 000
Frequerx:y(Hz)

A lthough MATLAB 's FFT algorithm is fast and robust, it is possi
ble to accelerate the computational speed by specifying the number of
data points that is a power of 2 (see the discussion regarding the general
FFT algorithm in Section 7.13). This is done by specifying the number
of points as an optional input argument in the fft function.

F is a vector with
the coefficients of

the complex DPT
off.

f is a vector with the
values of sampled data

points whose DPT is to
be determined.

n is the number of
points to be used for

the discrete Pourier
transform.

This allows the DPT (FFT) of a vector, f of length m (not necessarily
equal to n), to be calculated. When n < m , the remaining m -n values

284

0.8

m-o.6
0

�- 0.4

10 15 20 25 30
Sample Number I

Figure 7-18: Hamming and
Blackman windows.

Chapter 7 Fourier Methods

off are truncated. When m < n , the vector f is padded with trailing

zeros to length n. For a given m, the MATLAB built-in function

nextpow2 can be used as n=nextpow2 (m) for determining the

value of n that is the smallest integer power of 2 that is greater than or

equal tom.

The inverse DPT is calculated in MATLAB by the built-in function

if ft. Example 7.8 illustrates the use of these built-in functions.

7.11 LEAKAGE AND WINDOWING

The DPT presumes that the signal is periodic, that is that the signal

values at the endpoints of the interval over which it is being analyzed

are equal. When this is not true (e.g., because of the way the experiment

was performed), the DPT (and FFT) power spectrum appears smeared.

In other words, the DPT of a nonperiodic monochromatic (single-fre

quency) wave will appear to have some width. This smearing or width

of a spectral line (which should be sharp) is known as leakage. Example

7-7 shows the effect of leakage for the function in Example 7-6, if the

interval is deliberately chosen so that the function is nonperiodic. Note

that this is very possible in practice since one may not know the fre

quency content of a signal and therefore not know for how long (i.e.,

how many periods) the signal must be recorded. The problem of leak

age can be handled in practice using a technique called windowing, that

is, application of what are known as windows. Windows are analytical

functions which are shaped such that they are zero (or small) at the end

points of the interval over which the signal is recorded, with some spe

cial shape in between (depending on the type of window). When the

original signal is multiplied by the window, the width of the spectral

lines in the power (energy) spectrum is narrowed, thereby reducing

leakage. A multiplicative weighting factor must also be applied so that

the correct magnitude of the power is obtained in the FFT. Two exam

ples of windows are the Hamming and Blackman windows:

Hamming window:

Hi= 0.54-0.46cos(�i) , where i = 0,1,2,. . .,M

Blackman window:

(2m) (4m) h .
Bi = 0.42 -0.5 cos

M
+ 0.08 cos

M
, w ere 1 = 0,1,2,. . .,M

Figure 7-18 shows a plot of both windows for M = 30. A s can be seen

from the figure, the Blackman window has a greater windowing effect

compared to the Hamming window (which does not completely go to

zero at the endpoints). Windows can reduce but not eliminate leakage
completely. In effect, they only change the shape of the spectral line by

reducing leakage. Many different windows have been proposed in the

literature, each with its own relative advantages and disadvantages.

Some are more effective for specific types of signals (e.g., random or

7.11 Leakage and Windowing 285

sinusoidal), while others improve the frequency resolution, enabling the

exact frequency of a peak in the power (energy) spectrum to be

detected. The choice of a window depends on the specific application

and is somewhat of an art form in that different windows must be

explored and their effects on the power spectrum examined carefully.

Example 7-7: Leakage effects.

Consider the periodic function given by:

f(t) = 0.3 + sin(27tvt) + 0.5sin(27t(5v)t)

+ 0.7 cos(27t(3v)t) + 0.4cos(27t(8v)t)

where v = 400 Hz that is shown in the figure.

_ ,
(a) Sample the function from t = 0 to t = 0.05 s by

using a sampling frequency of 10000 Hz. Use the sam

pled data to determine the DFT of the function using

MATLAB's fft function. Plot the normalized power

spectrum of the transformation.

- 20�-�,o--�2 0---3�0 --�40--�so
Time[ms]

(b) Repeat part (a) using the sampled data from t = 0 to

SOLUTION

t = 0.0487 s.

(a) For an interval from t = 0 to t = 0.05 s, the function is peri

odic such that /(0) = /(0.05). With sampling frequency of 10,000 ?

Hz, the spacing between sampled points is fit = 0.1 ms. The figure

on the right shows the last 5 ms of the original function and the last _,

51 sampled points used for the DFT. The following program, written -�,

in a script file, uses MATLAB's fft function for the transforma-

46 47 48
Time[ms]

-f(t)
-f{t)Sam led

49 so

tion. The program first creates the sampled data points. Then, the DFT is carried out and the power

spectrum is calculated and displayed.

nu=400;

Fun =@ (t) 0.3+sin(2*pi*nu*t)+0.5*sin(2*pi*5*nu*t)+0.7*cos(2*pi*3*nu*t)+
0.4*cos(2*pi*8*nu*t);

fS = 10000; dt = 1/fS; tau = O. 05; Sampling frequency, sampling spacing, and interval length. J
t = O:dt:tau-dt;

y = Fun(t);

N = lenqth(y);

F = fft(y)/N;

FO = fftshift(F);

power = FO.*conj(FO)/N;

powerNor = power/max(power);

fK = (-N/2:N/2-l)*(fS/N);

stem(fK,powerNor,'k')

[Sampling the function. J

[ffi of the function and dividing by the number of points. J
[Reorder the coefficients with the zero frequency in the center. J

[Calculate the normalized power spectrum. J

Frequency vector for plotting the power spectrum. J

286 Chapter 7 Fourier Methods

When the program is executed, the power spectrum is displayed. The figure, shown below, accu

rately shows the frequencies of the four components of the function. The DFT gives accurate results

because the sampled data is periodic.

(b) In this part, the sampling frequency is the same as in part (a) but since the sampling interval is

from t = O to t = 0.0487 s the sampled interval does not correspond to a periodic signal,

f(O) * /(0.0487). The figure below on the left shows the last 5 ms of the original function and the

last 38 sampled points used for the DFT. Notice that

there is a large gap between the last sampled point and

the end point of the function. The DFT is done by using

the MATLAB program from part (a) with setting the

interval length to 0.04487 s. The power spectrum that is

displayed when the program is executed is shown

below on the right. Here, the power spectrum appears

smeared. The correct frequency spectrum is shown but

instead of having one sharp peak for each frequency,

there is a "width" associated with each peak. This phe

0.8

�
�0.6
E
0
z
�0.4
�
�

0.2

-5 0 0
Frequency (Hz)

5000

nomenon is called leakage and it is due to the fact that the function is not periodic over the interval

from t = O to t = 0.0487 s.

_,

46 47 48
Time [ms]

-f(t)
o f(t) Sam led

49 50

'C

il

0.

� 0.
E
0

1

8

6

z
�o. 4
�
�

0. 2

-5 000 0
Frequency (Hz)

7.12 BANDWIDTH AND FILTERS

Bandwidth

5 000

The bandwidth of a signal is roughly defined as the difference between

the highest and lowest frequencies that make up the signal, usually mea

sured in Hz. It is widely used in different fields and therefore can have

different meanings depending on the context. For instance, in communi

cations, the bandwidth is the difference between the lowest cutoff fre

quency and highest cutoff frequency. As an example, suppose the range

of frequencies over which an antenna operates is 1 GHz to 1.1 GHz.

Then it is said that the antenna has a bandwidth of 0.1 GHz or 100

MHz. In another instance such as data transmission, the bandwidth

specifies how much data can be transmitted in a given amount of time,

e.g., a bandwidth of 100 Megabits per second means that 108 bits can

be transmitted per second. As these applications indicate, there is no

7.12 Bandwidth and Filters 287

universally agreed upon precise definition for bandwidth. However, in

the context of this chapter on Fourier methods, the definition of band

width as a frequency range is apt. The DFT (and FFT) essentially con

sider 2N (or N) data points and convert them into N (or N 12)

frequencies. The highest of these frequencies is determined by the sam

pling frequency or sampling rate and the lowest frequency is controlled

by the range, that is, extent of interval or time interval that includes sev

eral periods of the signal. A s mentioned earlier, the difference between

these highest and lowest frequencies is the bandwidth. Ideally, one can

think of the bandwidth as the range of frequencies beyond which the

signal or function being recorded is zero. In practice, the signal is not

really zero outside these minimum and maximum frequencies, but the

power or energy may be small (i.e., below some threshold). Bandwidth

is an important concept in radio communications such as amplitude

modulation (A M) and frequency modulation (FM). Example 7-8 illus

trates a simplified example of filtering.

Example 7-8: Filtering a signal.

The signal shown in the figure on the right corresponds to the

function:

f(t) = sin(2nv0t) + 0.5sin(2nvbt)- l.5cos(2nvct)

where v a = 200 Hz, vb = 500 Hz, v c = 50 Hz. Sample the

function from t = 0 to t = 1 s by using a sampling frequency

of 5,000 Hz. Use the sampled data to determine the DFT of the

function using MATLAB's fft function. Plot the normalized

power spectrum of the transformation with the zero-frequency

O.D1 0.02 0.03
Tlme(s)

0.04 0.05

component is at the center of the spectrum. Filter out the 50 Hz and 500 Hz components of the signal

and calculate the inverse DFT using MATLAB's if ft function and display the result.

SOLUTION

The following MATLAB program written in a script file solves the problem. The program follows

the steps listed in the problem statement. The filtering is done (see the for loop in the program) by

assigning a value of zero to all the DFT coefficients that correspond to a frequency lower than 100
Hz or higher than 400 Hz.

fa = 200; fb = 500; fc = 50;

Fun =@ (t) sin(2*pi*fa*t)+0.5*sin(2*pi*fb*t)-l.5*cos(2*pi*fc*t);

fS = 5000; dt = l/fS; tau = 1; [Sampling frequency, sampling spacing, and interval length. J
t = O:dt:tau-dt;

y = Fun(t);

N = lenqth(y);

F = fft(y)/N;

FO = fftshift(F)

%Number of points

power = FO.*conj(FO)/N;

powerNor = power/max(power);

fK = (-N/2:N/2-l)*(fS/N);

[Sampling the function. J

[ffi of the function and dividing by the number of points. J
[Reorder the coefficients with the zero frequency in the center. J

[Calculate the normalized power spectrum. J

Frequency vector for plotting the power spectrum. J

288

figure, plot(fK,powerNor,'k')

for k = l:N

end

if abs(fK(k))<= 100 I abs(fK(k))>= 400

FOfltr(k) = O+Oi;

else

FOfltr(k) = FO(k);

end

FOi = ifftshift(FOfltr)*N;

finv = ifft(FOi);

figure, plot(t(1:251) ,finv(1:251))

Chapter 7 Fourier Methods

Filtering out freguencies that are lower
than 100 Hz and higher than 400 Hz.

Reorder the coefficients back to the original order.

[Inverse DFT using MATLAB's ifft function. J

When the program is executed two figures as displayed. The first, shown on the left below, is the

power spectrum. The figure accurately shows the frequencies of the three components of the func

tion. The second figure, shown on the right below, show the first 5 ms of the signal that is obtained

by the inverse OFT after the filtering. The figure shows a sine wave with a frequency of 200 Hz (the

first term of the function in the problem statement).

Power Spectrum

0.8

0.5

0.6

g 0
0.4

0.2
-0.5

I I
-2�00 -2000 -1500 -1000 -500 0 500 1000 1500 2000 2500

_,.___.u.___._.___._---'u.....___...___._.__.___._.___.___.._.
o o.oi 0.02 o.o3 o.a4 a.as

Frequency (Hz) Time(s)

Filters

One of the more useful applications of DFTs and FFTs is in enhancing

the characteristics of signals by either reducing or eliminating unwanted

noise or other interfering signals. This is usually done by using the con

cept of filtering. Once an FFT of a signal is calculated, the frequency

spectrum can be manipulated by simply removing frequencies. For

example, if the signal of interest comprises frequencies below 900 Hz,
then the contributions of frequencies above 900 Hz will be neglected.

This is an example of a lowpass filter (low-pass means the filter allows

low frequencies to pass through and blocks frequencies above a cutoff).

Similarly, high-pass filters allow higher frequencies to pass through the

filter while blocking frequencies lower than a cutoff frequency. These

are examples of cut-off filters. In an analogous manner, band-pass fil

ters allow signals with frequencies between a specific low value and

specific high value to pass through, and block those frequencies above

the higher limit and those below the lower limit. In this manner, many

such filters can be designed and developed. Once the spectrum in the

7.13 The Fast Fourier Transform (FFT) 289

frequency domain is filtered free of unwanted frequencies or high-fre

quency noise, the inverse DFT (or FFT) then produces a sanitized sig

nal. Example 7.8 provides an illustration of a simplified filter and the

process of reconstructing an original signal devoid of unwanted fre

quencies.

7.13 THE FAST FOURIER TRANSFORM (FFT)

The Fast Fourier Transform or FFT is a practical (because it is fast)

means of calculating the DFT when the number of samples, N, becomes

large as it often does in applications. While there are several methods of

programming, the basic algorithm was rediscovered by Cooley and

Tukey in 196512. The history of the method goes as far as Gauss in the

19th century13. In this section, the basic strategy for reducing the num

ber of computations in the calculation of the DFT is outlined. The

reader should be forewarned though that there are many variants of the

basic FFT algorithm. Most popular are the Cooley Tukey and Sande

Tukey approaches, but others that take advantage of specific machine

architectures also exist. The goal here is to introduce the general

approach of reducing the number of computations. Thus, the presenta

tion follows a more intuitive approach.

Number of computations

In the description of the DFT in Section 7.5, no attention was paid to the

number of mathematical operations that must be done on a signal sam

pled over some interval. One question that naturally arises is how is the

sampling increment or sampling frequency selected? Another way to

ask this question is what is the least number of sample points needed in

order to detect whether or not a signal is oscillating?

As discussed in Section 7.8, the Nyquist criterion states that the

sampling frequency has to be at least twice as large as the highest fre

quency contained within the signal. Consider a sine wave with a fre

quency of 5 kHz that is recorded with sampling frequency of 10 kHz. A

10 ms long record of this signal consists of 100 points. Calculating the

DFT of this signal of single frequency would require at least

50 x 100 = 5000 calculations, actually closer to 10000 or 1002 opera

tions. It is easy to see therefore that with many more points (imagine a

signal containing frequencies of GHz) and several frequencies, the

number of operations can become huge and impractical. In fact for

N = 106 , a CPU with a clock speed of 1 MHz would take from 1.5 to 2

12.J. W. Cooley and J. W. Tukey, Math. Comp., Vol. 19, p. 297, 1965.

13.Michael T. Heideman, Don H. Johnson, and C. Sidney Burrus, "Gauss and the His
tory of the FastFourier Transform", Archive for History of Exact Sciences, Springer,
34(3), pp.265-277, September 1985.

290 Chapter 7 Fourier Methods

3, (-1) Im [W] 6, (-2) Im [W]

2, (-2) 0, 4, (-4)
-----+-------

Re [W]

1, (-3)

a
b

Figure 7-19: Rotation operator in the complex plane.

weeks to calculate the DFT! The question then becomes is there a way

to reduce the number of calculations? This is where the Fast Fourier

Transform (FFT) algorithm comes in.

A general strategy for calculating the DFT: Fast Fourier Transform

For ease of understanding the general idea behind the fast Fourier trans

form (FFT), let us consider the form of the DFT as expressed in Eq.

(7.63):

(7.70)

Recall that in this form of the DFT, there are N (an even number)

equally spaced points with j = 0, 1, ... , N - 1 and k = 0, 1, ... , N - 1 .

A further simplification can be accomplished by introducing the rota

tion operator, W, defined as:

2iti

W = e N (7.71)

Note that for a given N, the value of Wis fixed. The characteristics of

the rotation operator Wj can be visualized in the complex plane (where

the x-axis denotes the real part of Wj and the y-axis denotes the imagi

nary part of Wj) for a specific value of N. For N = 4 Fig. 7-18a shows

the values of W-
4
,W-

3
, . . • ,W

3
,W

4
in the complex plane, and Fig. 7-18b

shows the values of w-8,W-7, • • • ,W7,W
8

in the complex plane for

N = 8. As can be seen in these figures, the successive values of Wj for

j = 0, 1, 2, . . . appear on the unit circle running in the clockwise

direction, while the successive values of Wj for j = 0, -1, -2, . . .

appear on the unit circle running in the counter-clockwise direction.

With the definition of the rotation operator, Eq. (7.70) for the DFT
becomes:

(7.72)

7.13 The Fast Fourier Transform (FFT) 291

which can also be rewritten as:

N [F] = [R][f] or NFk = RkJ f i (7.73)

where [F] is the N x 1 column vector of values containing F k, [/] is

the N x 1 column vector of values containing f 1 , and [R] is the N x N

matrix of values containing w
kJ . The properties of the rotation operator

W displayed in Figs. 7-18a and b suggest that many of the entries of the

matrix [R] are repetitive and need not be calculated more than once.

The general FFT algorithm takes advantage of this fact as well as other

shortcuts as detailed next.

Repeated values of w1

For a given k, the summation in Eq.(7.72) contains terms that are

powers of w1, wherej ranges from 0 to N - 1. From Fig. 7-18a and 7-

18b, it can be seen that certain powers of Ware equal to each other. For

example, for N = 4 , W
4

= w-4
= w0

= 1 , and for N = 8 ,

w8
= w-8

= w0
= 1 , and W

4
= w-4

= -1 . This suggests that some of

the entries in [R] are repeated and need not be calculated. In other

words, we do not have to compute all the N2 terms in [R] since W

raised to powers greater than N, can be related to powers of W ranging

from 0 to N - 1 (i.e., powers of W less than N).

Separate summation of even and odd terms

In the summation of Eq. (7.72),j is the index corresponding to the

columns of [R], while k is the index corresponding to the rows of [R] .

Therefore, the even columns of [R] (starting with the first column

labeled as j = 0) have even values ofj which means that those entries

of the matrix will contain even powers of W such as w0 , W2 , W
4

,

W
6

, and so on. In contrast, the odd columns of [R] (corresponding to

the odd values of j) will contain entries that have all the powers of W

ranging from 1 to N - 1 . This suggests that the number of multiplica

tions in Eq. (7.72) may be further reduced if the even and odd values of

j are considered separately. In other words, the matrix [R] is divided

such that one part contains all the even columns of [R] and the other

part contains all the odd columns:

!!._1 !!._1 N-1 2 2
NFk = IJ(t) W

kj
= IJ<t2p)W2kp+ IJ<t2q+1)Wk(2q+l) (7.74)

j=O p=O q=O
where the first sum on the right hand side of Eq. (7.74) is obtained by

setting j = 2p so that p = 0, 1, ... , � - 1 corresponds to

292 Chapter 7 Fourier Methods

j = 0, 2, 4, . . . , N - 2, and the second sum on the right-hand side of Eq.

(7.74) is obtained by setting j = 2q + 1 so that q = 0, 1, ... , !i _ 1 cor-
2

responds to j = 1, 3, 5, . . . , N - 1. Since the index k does not depend on
summations over q, the term W k can be factored out of the second
summation in the right-hand side of Eq. (7.74):

!!._1 !!._1 N-1 2 2
NF

k
= L f(t j)Wkj

= L !Ct2p)W2kp
+ w k L !Ct2q+1)W2kq

j=O p=O q=O
(7.75)

where [Pk
] and [Q

k
] are matrices consisting of the odd and even col

umns of [R], respectively, and [f Pk] and [f Qk] are column vectors

consisting of the odd and even rows of [f] , respectively. Wk is an
N x N diagonal matrix given by:

w0 0 0 0 0 0

0 WI 0 0 0 0

[W] = 0 0 w2
0 0 0 (7.76)

0 0 0 0 WN-2
0

0 0 0 0 0 WN-1

Note that a sum involving N terms was split into two sums involving
N 12 terms each. Moreover, the factors W2kp and W2kq ([Pk] and
[Q

k
]) are identical since 2p and 2q are even numbers regardless of the

values of p and q. This should further reduce the number of multiplica
tions because of duplicity.

The number of multiplicative operations can be further reduced by
applying the strategy of spliting the summations into even and odd
terms again. This is done by splitting the two sums [Pd[f Pk] and
[Qk][f Qk] in Eq. (7.75) into even and odd sums again. However, this
time it is further assumed that N 12 is also divisible by 2. This is tanta
mount to assuming that N (the total number of samples) is not only even
but is a power of 2, i.e., N = 2n . Therefore, as was done before,

!!._ 1 !!._ 1 !!._ 1 2 4 4

L � L + L and
!!._1 t!'._1 !!._1 2 4 4

L � L + L
p=O r=O s=O q=O r=O s=O

Applying the splitting to the [Pd[f Pk] and [Qk][f Qk] term on the right-

7.13 The Fast Fourier Transform (FFT)

hand side of Eq. (7.75) yields

!!._1 !!._1 N-1 4 4
NFk = LJ(t j)Wkj

= LJ(t4r)W4kr
+ L/(t2(2s+l))W2k(2s+I)

j=O r=O s=O

293

N N
+ wk [\=i1

f(t)W4kr
+ \=i

1
f(t)W2k(2s+ I)-

(7.77) L..J 4r+ I L..J 2(2s+ l)+ I
r=O s=O

Factoring W2k
from the last term of Eq. (7.77) yields:

!!._1 !!__) N-1 4 4
NFk = Lf(t)Wkj

= Lf(t4r)W4kr
+ w2kLf(t4s+2)W4ks

j=O r=O s=O

(7.78)

where [Pekl and [P0d are matrices consisting of the even and odd col

umns of [Pd, respectively, and [f P,k] and [f P0k] are column vectors

consisting of the even and odd rows of [f Pk], respectively. In the same

way [Qekl and [Q0k] are matrices consisting of the even and odd col-

umns of [Qk] , respectively, and[/ Q,k] and [/ Q0k] are column vectors

consisting of the even and odd rows of [f Qk]. W2k
is a N x N diagonal

matrix given by:

WO 0 0 0

o w2 o o

o o w4 o

0

0

0

0

0

0

0 0 0 0 W2N-4 0

0 0 0 0 Q W2N-2

(7.79)

Note that the sums involving N 12 terms were split into two sums
· 1 · h M h

J:: 4kr
d

4ks
mvo vmg NI 4 terms eac . oreover, t e iactors W an W
([Pekl, [P0d, [Qekl, and [Q0k]) are identical since 4r and 4s are even

numbers regardless of the values of r ands. This should further reduce

294 Chapter 7 Fourier Methods

the number of multiplications because of duplicity.
The procedure outlined above is repeated until the summations can

not be split further and such that matrices [Pekl, [P0k], [Qekl, and

[Q0k] are identical and all their entries are w0 = 1 . The reduction in

the number of multiplications and repetitive calculations becomes note
worthy when N is large and millions of data points are involved because

for arbitrary N the number of multiplications is reduced from N2
to

Niog2N . The strategy described here, Eq. (7.78), represents that out-

lined by Danielson and Lanczos14 in their lemma in 1942 (well before
the advent of modem computers!). The usefulness of the Danielson
Lanczos lemma is that it can be applied recursively as long as N is a
power of 2. If the number of given data points is not a power of 2, it can
always be increased by adding zeros to fill the entries until the next
power of 2 is reached. The approach outlined here is known as decima
tion in time and forms the basis of the popular Cooley-Tukey FFT algo
rithm. The following example illustrates the use of Eq. (7.78) in
calculating the DFT.

Example 7-9: Application of FFT algorithm.

Implement the FFT algorithm described by Eq. (7. 78) for N = 4.

SOLUTION

For the case of four equally spaced sampling points, i.e., N = 4, the value of the exponential

e(-21ti)IN is fixed at e(-1ti)l2. Writing out the DFT summation in Eq. (7.72) for N = 4 yields:

NFo
= f(to)WO+ f(t1)WO+ f(t2)WO+ f(t3)WO

NF1 = f(to)W0+ f(t1)W1 + f(t2)W2+ f(t3)W3

NF2 = f(to)WO+ f(t1)W2+ f(t2)W4+ f(t3)W6

NF3 = f(to)Wo+ f(t1)W3+ f(t2)W6+ f(t3)W9

which represents 16 (N2) multiplication and 12 (N(N - 1)) addition operations. Although w0 = 1 , it

has been left as is in the above equations because of the manipulations that are to come as part of
computing the Fourier transform quickly. These DFT equations can be rewritten in matrix form as:

Fo wo wo wo wo f(to)

N F1 wo w1 w2 w3 f(t1)

F2 wo w2 W4 W6 f(t2)

F3 wo W3 W6 W9 f(t3)

[R]

14.G.C. Danielson and C. Lanczos, Journal of the Franklin Institute, pp. 233, 365, 435,
(1942).

7.13 The Fast Fourier Transform (FFT) 295

From Fig. 7-18a, it can be seen that W4 = wo, W6 = W2, and W9 = W1. The DFT equations can

then be written as:

Fo wo wo wo wo f(to)

N
F1 wo WI wz W3 f(t1)
Fz wo wz wo w2 f(t2)
F3 wo W3 wz wi f(t3)

[R]

Next, applying Eq. (7.75) by separating the even and odd columns of [R] yields:

Fo wo wo wo wo

N
F1 = w0 w2 [!Cto)l

+

w1 W3 [!Ct1�
F2 w0 w0 f(t2)j W2 W2 f(t3�
F3 wo w2 W3 w1

Factoring out Wk from the second term on the right hand side of Eq. (7.81) gives:

(7.80)

(7.81)

(7.82)

Note that since w-2 = W2, the two [W] matrices in Eq. (7.82) are identical. Since N = 4 = 22 is a

power of 2, the procedure can be applied again as prescribed by Eq. (7.75). Thus, the two terms on

the right-hand side of Eq. (7.82) are separated into even and odd columns. For the first term:

wo wl lwl wo

w0 w2 f (to) _ w0 w2
wo wo �(IJ - wo [r(t,

l] +
wo [tu,�

wo w2 wo w2

Factoring W2k from the second term on the right hand side of Eq. (7.83) gives:

;: �I ��::�J = 1;:1 [rCto)] + [T :, J.
wo W2 wo 0 0 0 W6

In the same way, for the second term in Eq. (7.82):

(7.83)

(7.84)

(7.85)

296 Chapter 7 Fourier Methods

Factoring W2k from the second term on the right-hand side of Eq. (7.85) gives:

w0 w0 0

:: [!Ct1)] + �
wo 0

0

0 W6 w-4
Substituting Eqs. (7.84) and (7.86) back in Eq. (7.82) gives:

F o wo wo 0 0 0 wo
N ;� :: [r(to)] + � :2 ;0 � :: [r(t2)]

F 3 W0 0 0 0 w2 wo

w0 0 0 0

+ o w1 o o

o o w2 o

0 0 0 W3

Carrying out the multiplications in Eq. (7.87) gives:

(7.86)

(7.87)

Fo = .!.[wof(to) + wowo f(t2) + wowo f(t1) + wowowo /(t3)] = .!.uCto) + /Ct2) + f(t1) + /(t3)]
N N

F1 = .!.[wo f(to) + w2wo f(t2) + w1 wo f(t1) + w1 w2 wo /(t3)] = .!.[/(to)- f(t2)- if(t1) + i/(!3)]
N N

F1 = .!.[w0 !Uo) + W4W0 IU2) + w2 w0 f(t1) + w2 W4W0 /(t3)] = .!.uUo) + f(t2)- IU1)- f(t3)]
N N

F3 = .!.[wo f(to) + W6Wo f(t2) + W3 wo f(t1) + W3 W6Wo /(t3)] = .!_[f(to)- f(t2) + if(t1)- if(t3)]
N N

Bit manipulation

In addition to using the strategy outlined by Danielson and Lanczos 11, it
is possible to further accelerate computation of the DFT. Since N is a
power of 2 and computers use binary mathematics to represent and
manipulate numbers, additional speed-up may be obtained using what is
called bit manipulation. Bit manipulation refers to the fact that the indi
cesj and k which appear in the definition of the DFT (Eq. (7.70)) can be
written in binary form:

(7.88)

where b1, . . . A are either 0 or1, and r = log2N. If the indexj in Eq.

(7.70) for the DFT is kept in the same order ask, the values of j will
appear scrambled (i.e., out of order) which can be advantageous in
speeding up many FFT algorithms. In other words,j can also be written
in the following binary form:

7.13 The Fast Fourier Transform (FFT) 297

(7.89)

For example, if N = 8, then r = 3 which yields k = 2
2 b3 + 2b2 + b1

and j = b3 + 2b2 + 22b1. The values of k (the index of the DFT) and

corresponding values of j are summarized in the following table for

N = 8:

k b1 b2 b3 j

0 0 0 0 0

1 1 0 0 4

2 0 1 0 2

3 1 1 0 6 (7.90)

4 0 0 1 1

5 1 0 1 5

6 0 1 3

7 1 1 1 7

Referring back to Eq. (7.70), which can be rewritten for N = 8 as:

8Fk = tf(tj)W
kj

= pek+ W
2k

pok+ W
k
[Qek+ W

2kQok] (7.91)
j
=O / I J \. .

multiplies multiplies multiplies multiplies

fo.f 4 f2.f6 !1.fs /3,/7

It can be seen from this example that the scrambled order of j in Eq.

(7 .90) matches the order in which the matrices Pe, P 0, Qe, and Q0
multiply the data f(tj), i.e., in the order of j = 0,4,2,6,1,5,3,7. This

scrambled ordering of j also arranges f(tj) in the neatly ordered even

and odd forms in which the matrices [P] and [Q] are segregated. This

suggests that if the input data originally m the order

[f(to), f(t1), f(t2), f(t3), f(t4), f(t5), f(t6), f(t7)] is scrambled into

[f(to), f(t4), f(t2), f(t6), f(t1), f(t5), f(t3), f(t7)] and then Eq. (7.78)

is used to calculate the sum in Eq. (7.70) for the DFT, substantial reduc

tion in the number of operations can result. Thus, the strategy involves

scrambling the order of the data so that the sums in Eq. (7.78) can be

computed according to the Danielson-Lanczos lemma to speed up cal

culation of the DFT. This is the decimation in time strategy on which

the popular Cooley-Tukey FFT algorithm is based. It is important to

point out that we could easily have split the summation in Eq. (7.70) in
terms of k, and this would have led us to another popular FFT algorithm

attributed to Sande and Tukey, which is based on a decimation in fre

quency strategy. There exist other FFT algorithms that take advantage

of even more speedup based on machine-specific architecture, but their

298

7.14 PROBLEMS

Chapter 7 Fourier Methods

details are special topics and beyond the scope of this text.

In summary, the FFT is a fast means of computing the DPT. A con

tinuous time-varying signal may be sampled at even time intervals so as

to yield N (or 2N) data points. The FFT of such a sampled signal would

then yield N 12 (or N) frequencies. The FFT actually produces com

plex-valued coefficients of sinusoidal waves at these frequencies. The

real part of the FFT represents the amplitudes of the cosine waves and

the imaginary part represents the amplitudes of the sine waves. The

square of the magnitude of the complex-valued coefficients yields what

is known as the power or energy spectrum and is useful for identifying

the frequency content of a periodic signal. The FFT can also be

expressed equivalently with amplitudes and phases (remember that a

combination of sine and cosine waves of a given frequency can be writ

ten equivalently as a sine with the same frequency but with a phase

shift).

Problems to be solved by hand

Solve the following problems by hand. When needed, use a calculator, or write a MATLAB script

file to carry out the calculations. Use MATLAB to make plots.

7.1 Show the validity of the orthogonality condition given by Eq. (7.7):

J 1t

sinkxsinmxdx = { O k * m usmg
-1t 7t k = m

cos(A + B) = cosA cosB- sinA sinB and cos(A - B) =

the trigonometric

cos A cosB + sinA sinB .

7.2 Show the validity of the orthogonality condition given by Eq. (7.7):

identities

J b(cos knx cos mnx) dx = { O k * m
where L = b - a using the trigonometric identities

a L L L/2 k = m

cos(A + B) = cosAcosB- sinA sinB and cos(A- B) = cosAcosB + sinAsinB.

7.3 Expand y = sin(5x) where x E [-n,n] in an infmite Fourier series (Eq. (7.14)). Is it possi

ble to express this function as a Fourier series involving only cosine functions?

7.4 Expand y = sin(nx)cos(nx) where x E [0,2] in an infinite Fourier series (Eq. (7.14)).

7.5 Expand y = x where x E [0,3] in an infinite Fourier series (Eq. (7.14)). What is the

value predicted by the Fourier series for x = 3 ?

7.14 Problems

7 .6 The periodic triangular wave, shown in the figure on the right, is
given by the function:

f(x) =
{ x O<x<l

-x+2 l<x<2
Expand the periodic function in an infinite Fourier series. Make figures
that show plots of the multi-term evaluation of the Fourier series for

k = 1 , k = 3 , k = 6 , and k = 50 .

7.7 Given the following data:

t

y

0

0

(a) Find the real Discrete Fourier Transform of y.
(b) Write the expression for the inverse DFT.

1 2 3

3 2 0

299

--0.:>--������-�
� � � � 0 1 2 3 4

x

(c) Evaluate the inverse DFT at t = 0,1,2,3 and compare with the original data.

7.8 Given the following data:

t

y

0

0

(a) Find the real Discrete Fourier Transform of y.
(b) Write the expression for the inverse DFT.
(c) Find the power or energy spectrum for this data.

7.9 Given the following data:

t

y

0

0

(a) Find the real Discrete Fourier Transform of y.

1 2 3

1 1 0

1 2 3

1 2 3

(b) Write the inverse DFT and compare its predicted values at the same t values as the given data.
(c) Find the complex DFT.

(d) Find the power spectrum.

7.10 Apply the basic FFT algorithm, i.e., strategy of Danielson and Lanczos described in Section 7. 1 3 and

illustrated in Example 7-9 for N = 4, to the case where N = 8 . Verify your answer by multiplying
through and obtaining the original definition of the DFT according to Eq. (7.70).

7.11 The equation of motion yielding the displacement for a simple harmonic oscillator consisting of a

mass m and a spring of stiffness k is:

m rf!:l:. + ky = 0
dt2

The general solution to this ODE is y = A sin(mt)+ Bcos(wt) or y = Ceirot + De-irot , where

300 Chapter 7 Fourier Methods

oo = Jk/m . Show that the total energy E, given by the sum of the kinetic energy !m(r!l:.) 2 and potential
2 dt

energy �ky2 is proportional to the square of the amplitudes A and B or C and D.

Problems to be programmed in MATLAB

Solve the following problems using the MATLAB environment. Do not use MATLAB s built-in functions for
operations with matrices.

7.12 Write a MATLAB user-defined function that calculates the coefficients of the infinite Fourier series

using the general definition of the Fourier series (Eq. (7.14)) where the coefficients Ak and Bk are given

by Eqs. (7.15)-(7.17). Name the function [Ak, Bk] = FourierCoe(Fun, a, b, k). The output arguments

Ak and Bk are the Fourier coefficients Ak and Bk, respectively. The input argument Fun is a name for the

function that calculates f(x) for a given x (it is a dummy name for the function that is imported into Fou
rierCoe), a and b are the points that define the interval, and k is the index. The FourierCoe function

uses the MATLAB built-in function quad for the integration. Use the FourierCoe function to calcu

late Ak andBk for , k = 1, 5,and 10 with f(x) = x forO::o;x::o;l.

7.13 Write a MATLAB program (script file) that calculates the Fourier series of a function f(x). Use the

MATLAB built-in function quad to perform the integrations in Eqs. (7.15)-(7.17). Run this program for

the function f(x) = x defined over [0,1] for the values of k = 1,5, and 10 . For each value of k, plot

the Fourier series approximation of f(x) and f(x) over the interval from x = 0 to x = 5.

7.14 Write a MATLAB user-defined function that calculates the real Discrete Fourier Transform, accord
ing to Eqs. (7.45), of a function given by a finite number of points. Name the function Real_ DFT(t, f)
where the input arguments t and fare vectors with the values of the independent and dependent variables
of the data points, respectively. The program should have the following features.
(i) Check to make sure that the user has entered an even number, 2N, of values (where N is an integer),
and if not, must modify the input data by adding a zero entry at the end for f so that there are 2N values.
(ii) Check to make sure that the data points are equally spaced. If not, the program should output an error
message.

(iii) Display stem plots of Ak and Bk as a function of frequency vk = kh .
Execute this program for the following data:

t 0 0.25 0.5 0.75 1.0 1.25 1.5
fit) 0 0.25 0.5 0.75 1.0 1.25 1.5

1.75 2.0
1.75 2.0

7.15 Write a MATLAB user-defined function that calculates the inverse DFT according to Eq. (7.44)

when the real DFT is provided (the coefficients Ak and Bk from Eq. (7.45)). Name the function [t, f] =

InverseDFT(Ak, Bk, a, b). The input arguments Ak and Bk are the Fourier coefficients Ak and Bk,

respectively. The input argument a and b are the end points that define the interval. The output arguments
t and f are vectors with the values of the independent and dependent variables of the function. The pro
gram also displays a (continuous) plot of the function. Execute the program for the following data with

7.14 Problems

a = 0 and b = 1 and:

A = {O k
1

k ;z!: 1

k = 1

k#39

k = 39

301

7.16 Write a MATLAB user-defined function that calculates the complex Discrete Fourier Transform

(DFT), according to Eq. (7.50), of a function given by a finite number of points. Name the function

Complex_ DFT(t, f) where the input arguments t and fare vectors with the values of the independent and

dependent variables of the data points, respectively. The program should have the following features.

(i) Check to make sure that the user has entered even number, 2N, values (where N is an integer), and if

not, modify the input data by adding a zero entry at the end for f so that there are 2N values.

(ii) Check to make sure that the data points are equally spaced. If not, the program should output an error

message.

(iii) Display stem plots of Reck and Im Ck as a function of frequency vk = kh .

Execute this program for the following data:

(a)

t 0 0.25 0.5 0.75 1.0 1.25 1.5 1.75

j(t) 0 0.25 0.5 0.75 1.0 1.25 1.5 1.75

(b)

t 0 0.25 0.5 0.75 1.0 1.25 1.5 1.75

j(t) 0 0.4375 0.75 0.9375 1.0 0.9375 0.75 0.4375

2.0

2.0

2.0

2.0

7.17 Write a MATLAB user-defined function that samples a function that is given in an analytical form.

Name the function [t, f] = Sampling(Fun, tau, dt). The input argument Fun is a name for the function

that is being sampled (it is a dummy name for the function that is imported into Sampling), tau is the

time interval over which the continuous function is prescribed, where the starting time is 0 and the final

time equals the value tau, and dt is the spacing between the sampled points. The output arguments t and

f are vectors with the values of the independent and dependent variables of the sampled function, respec

tively.

Use Sampling to sample the following function over an interval of 10 ms and spacing of 10 µ s.

f(t) = 0.5 + sin(2nvt)e-io
5
ci-o.oos)

2
+ sin(4nvt)e-io

5
ci-o.oos)

2
+0.2sin(6nvt)e-io

4
ci-o.oos)

2

+ 0.1sin(8nvt)e-10
4
(t-o.oos)

2
+0.1 sin(10nvt)e-10

4
(t-o.oos)

2

where v = 554.365 Hz. Make a plot of the sampled points.

7.18 Write a MATLAB user-defined function that displays a plot of the normalized power (energy) spec

trum as a function of the frequency. Name the function EnergySpec(t, f). The input arguments t and f

are vectors with the values of the independent and dependent variables of a function that is given by a

finite number of data points, respectively. The function first uses MATLAB's built-in function fft to cal

culate the DFT and then calculates and plots the normalized power (energy) spectrum as a function of the

frequency.

Consider f(t) from Problem 7.17. Write a MATLAB program is a script file that samples f(t) using

302 Chapter 7 Fourier Methods

the user-defined function Sampling from Problem 7.17. Then, use EnergySpec to make the normalized

power (energy) spectrum plots. Execute the program for the following four cases:

(a) Interval of O.Ols, sampling interval of 1 x 10-
5 s.

(b) Interval of O.ls, sampling interval of 1 x 10-
5

s.

(c) Interval of ls, sampling interval of 1x10-
5 s.

(d) Interval of 2s, sampling interval of 1 x 10-
5

s.

The output plots should resemble closely the plot in Fig. 7-4.

7.19 Consider the function f(t) = sin(20nt). Write a MATLAB program is a script file that samples

f(t) using the user-defined function Sampling from Problem 7.17. Then, use EnergySpec from Prob

lem 7.18 to make the normalized power (energy) spectrum plots. Execute the program for the following

three cases:

(a) fE[0,1)

(b) t E [0,0.45)

(c) t E [0,0.25)

Use a sampling interval of 1 x 10-
3 s, and for each case make a plot of f(t). What can be noticed about the

frequency spectrum as the interval is changed? Identify the source of the problem by carefully examining

the plot of f(t) for each of the three intervals.

7.20 Consider the function f(t) = cos2(20nt) over the interval t E [0,1] . Using the user-defined func

tions Sampling from Problem 7.17 and EnergySpec from Problem 7.18 to analyze the frequency spec

trum of f(t). First find the Nyquist frequency, and then determine the frequency spectrum for sampling

intervals corresponding to:

(a) twice the Nyquist frequency.

(b) the Nyquist frequency.

(c) half the Nyquist frequency.

In each case make a plot of the sampled function and a power spectrum plot.

Chapters

Numerical Difierentiation

Core Topics Differentiation using curve fitting (8.6).

Finite difference approximation of the derivative

(8.2).

Use of MATLAB built-in functions for numerical dif

ferentiation (8.7).

Finite difference formulas using Taylor series

expansion (8.3).
Complementary Topics

Richardson's extrapolation (8.8).
Summary of finite difference formulas for numerical

differentiation (8.4).
Error in numerical differentiation (8.9).

Numerical partial differentiation (8.10).
Differentiation formulas using Lagrange polynomi

als (8.5).

1100
><

50

I
50

:> 0

� 20
l
';' 0

2 4
t (s)

2 4
t (s)

2 4
t (s)

6

6

6

Figure 8-1: Position, velocity,
and acceleration as a function
of time.

8.1 BACKGROUND

Differentiation gives a measure of the rate at which a quantity changes.

Rates of change of quantities appear in many disciplines, especially sci

ence and engineering. One of the more fundamental of these rates is the

relationship between position, velocity, and acceleration. If the position,

x of an object that is moving along a straight line is known as a function

of time, t, (the top curve in Fig. 8-1):

x = f(t) (8.1)

the object's velocity, v(t), is the derivative of the position with respect

to time (the middle curve in Fig. 8-1):

v = df(t)
(8.2)

dt

The velocity v is the slope of the position-time curve. Similarly, the

object's acceleration, a(t) , is the derivative of the velocity with respect

to time (the bottom curve in Fig. 8-1):

a= dv(t) (8.3)
dt

The acceleration a is the slope of the velocity-time curve.

Many models in physics and engineering are expressed in terms of

rates. In an electrical circuit, the current in a capacitor is related to the

time derivative of the voltage. In analyzing conduction of heat, the

amount of heat flow is determined from the derivative of the tempera-

303

304

j(x)

•

j(x)

I
IJ'(x;) is estimated
I as the slope of the
1 Jine that connects
I point x;_ 1 to
I pointx;+1
I

X;-1X; X;+J

(a)

I
I

x

I J\x;) is the slope
I of the tangent line
I to j(x) at x;
I
I x

X;

(b)

Figure 8-2: Numerical
differentiation using (a) finite
difference approximation and
(b) function approximation.

Chapter 8 Numerical Differentiation

ture. Differentiation is also used for finding the maximum and mini
mum values of functions.

The need for numerical differentiation

The function to be differentiated can be given as an analytical expres
sion or as a set of discrete points (tabulated data). When the function is
given as a simple mathematical expression, the derivative can be deter

mined analytically. When analytical differentiation of the expression is
difficult or not possible, numerical differentiation has to be used. When
the function is specified as a set of discrete points, differentiation is
done by using a numerical method.

Numerical differentiation also plays an important role in some of
the numerical methods used for solving differential equations, as shown
in Chapters 10 and 11.

Approaches to numerical differentiation

Numerical differentiation is carried out on data that are specified as a
set of discrete points. In many cases the data are measured or are
recorded in experiments, or they may be the result of large-scale numer
ical calculations. If there is a need to calculate the numerical derivative

of a function that is given in an analytical form, then the differentiation
is done by using discrete points of the function. This means that in all
cases numerical integration is done by using the values of points.

For a given set of points, two approaches can be used to calculate a

numerical approximation of the derivative at one of the points. One
approach is to use a finite difference approximation for the derivative.

A finite difference approximation of a derivative at a point x; is an

approximate calculation based on the value of points in the neighbor

hood of x;. This approach is illustrated in Fig. 8-2a where the deriva

tive at point xi is approximated by the slope of the line that connects

the point before x; with the point after x;. The accuracy of a finite dif

ference approximation depends on the accuracy of the data points, the
spacing between the points, and the specific formula used for the

approximation. The simplest formula approximates the derivative as the
slope of the line that connects two adjacent points. Finite difference
approximation is covered in Sections 8.2 and 8.3.

The second approach is to approximate the points with an analyti
cal expression that can be easily differentiated, and then to calculate the
derivative by differentiating the analytical expression. The approximate
analytical expression can be derived by using curve fitting. This

approach is illustrated in Fig. 8-2b, where the points are curve fitted by

f(x), and the derivative at point x; is obtained by analytically differen

tiating the approximating function and evaluating the result at the point
xi. This approach for numerical differentiation is described in Section

8.6.

8.2 Finite Difference Approximation of the Derivative 305

fix)

•

Figure 8-3: Numerical
differentiation of data with
scatter.

fix)

a x x x x
Point x approaches point a

Figure 8-4: Definition of
derivative.

x

Noise and scatter in the data points

When the data to be differentiated is obtained from experimental mea
surements, usually there is scatter in the data because of the experimen
tal errors or uncertainties in the measurement (e.g., electrical noise). A
set of data points that contains scatter is shown schematically in Fig. 8-
3. If this data set is differentiated using a two-point finite difference
approximation, which is the simplest form of finite difference approxi
mation (slope of the line that connects two adjacent points), then large

variations (positive and negative values) will be seen in the value of the
derivative from point to point. It is obvious from the data in the figure

that the value of y generally increases with increasing x, which means
that the derivative of y w.r.t x is positive. Better results can be obtained
by using higher-order formulas of finite difference approximation that
take into account the values from more than two points. For example,

(see the formulas in Section 8.4) there are four, five, and seven-point
finite difference formulas. As mentioned before, the differentiation can
also be done by curve fitting the data with an analytical function that is
then differentiated. In this case, the data is smoothed out before it is dif
ferentiated, eliminating the problem of wrongly amplified slopes
between successive points.

8.2 FINITE DIFFERENCE APPROXIMATION OF THE
DERIVATIVE

The derivative f'(x) of a function f(x) at the point x =a is defined by:

<!mJI = f'(a) = lim f(x)-[(a)
dx x--'>a x-a

x=a

(8.4)

Graphically, the definition is illustrated in Fig. 8-4. The derivative is the
value of the slope of the tangent line to the function at x = a . The
derivative is obtained by taking a point x near x = a and calculating the
slope of the line that connects the two points. The accuracy of calculat
ing the derivative in this way increases as point x is closer to point a. In
the limit as point x approaches point a, the derivative is the slope of the

line that is tangent to f(x) at x =a . In Calculus, application of the limit

condition in Eq. (8.4), which means that point x approaches point a, is
used for deriving rules of differentiation that give an analytic expression

for the derivative.
In finite difference approximations of the derivative, values of the

function at different points in the neighborhood of the point x=a are

used for estimating the slope. It should be remembered that the function

that is being differentiated is prescribed by a set of discrete points. Vari
ous finite difference approximation formulas exist. Three such formu
las, where the derivative is calculated from the values of two points, are
presented in this section.

306

f{x)

Chapter 8 Numerical Differentiation

Forward, backward, and central difference formulas for the first
derivative

The forward, backward, and central finite difference formulas are the

simplest finite difference approximations of the derivative. In these

approximations, illustrated in Fig. 8-5, the derivative at point (x;) is cal

culated from the values of two points. The derivative is estimated as the

value of the slope of the line that connects the two points.

• Forward difference is the slope of the line that connects points

(x;,f(x;)) and (xi+1,f(x;+1)):

r!i. I = J(x;+1)-J(x;)
dx X;+1-X;

x=x;

(8.5)

• Backward difference is the slope of the line that connects points

(x;_1,f(x;_1)) and (x;,f(x;)):

rjf_I = f(x;)-f(x;-1)
dx X;-Xi-1

x=xi

(8.6)

• Central difference is the slope of the line that connects points

(x;_1,f(x;_1)) and (x;+1,f(x;+1)) :

r!i. I = J(x;+ 1)-/ cx;-1)
dx X;+l -Xi-1

x=x;

Forward finite difference Backward finite difference
j{x)

Central finite difference

True derivative Approximated
denvative

Xi-I Xi Xi+!

j{x)

x

Figure 8-5: Finite difference approximation of derivative.

True
derivative

Xi-I Xi Xi+I

(8.7)

x

The first two examples show applications of the forward, backward,

and central finite difference formulas. Example 8-1 compares numerical

differentiation with analytical differentiation, and in Example 8-2 the

formulas are used for differentiation of discrete data.

8.2 Finite Difference Approximation of the Derivative 307

Example 8-1: Comparing numerical and analytical differentiation.

Consider the function f(x) = x3• Calculate its first derivative at point x = 3 numerically with the

forward, backward, and central finite difference formulas and using:

(a) Points x = 2, x = 3, and x = 4.
(b) Points x = 2.75, x = 3 , and x = 3.25.
Compare the results with the exact (analytical) derivative.

SOLUTION
Analytical differentiation: The derivative of the function is f'(x) = 3x2 , and the value of the deriv

ative at x = 3 is /'(3) = 3 · 32 = 27 .
Numerical differentiation
(a) The points used for numerical differentiation are:

x: 2 3 4
f(x): 8 27 64

Using Eqs. (8 .5) through (8.7), the derivatives using the forward, backward, and central finite differ

ence formulas are:

Forward finite difference: r]f_I = [(41-{(3) = 64-27 = 37 dx - 1 x=3
Backward finite difference: r]f_I = [(3)-5(2) = 27-8 = 19 dx 3- 1 x=3
Central finite difference:

137-27 I error= � · 100 = 37.04 %

119-27 I error= � · 100 = 29.63 %

�Ix=: [(4J=f(2) = 642-8 = 28 error= 128;727·1001=3.704 %

(b) The points used for numerical differentiation are:

x: 2.75 3 3.25
f(x): 2.753 33 3.253

Using Eqs. (8.5) through (8.7), the derivatives using the forward, backward, and central finite differ

ence formulas are:

Forward finite difference: r]f_I = /(3.25)-[(3) = 3.253-27 = 29.3125 dx 3.25-3 0.25 x=3
Backward finite difference: r]f_I = f(3i-f�2.75) = 27-2.753 = 24.8125 dx - · 5 0.25 x=3
Central finite difference: r]f_I = [(3.25i-;�2.75) = 3.253-2.753 = 21.0625

dx 3.2 - · 5 0.5 x=3

error= 129·31;;-271·lOO=8.565 %

error= 124·81;;-271·lOO=8.102 %

error= 127·06;;-271·lOO=0.2315 %

The results show that the central finite difference formula gives a more accurate approximation. This

will be discussed further in the next section. In addition, smaller separation between the points gives

a significantly more accurate approximation.

308 Chapter 8 Numerical Differentiation

Example 8-2: Damped vibrations.

In a vibration experiment, a block of mass m is attached

to a spring of stiffness k, and a dashpot with damping

coefficient c, as shown in the figure. To start the experi

ment the block is moved from the equilibrium position

and then released from rest. The position of the block as

a function of time is recorded at a frequency of 5 Hz (5

times a second). The recorded data for the first 10 s is

shown in the figure. The data points for 4 � t:::;; 8 s are

given in the table below.

(a) The velocity of the block is the derivative of the

position w.r.t. time. Use the central finite difference for

mula to calculate the velocity at time t = 5 and t = 6 s.

(b) Write a user-defined MATLAB function that calcu

lates the derivative of a function that is given by a set of

discrete points. Name the function dx=deriva
t i ve (x, y) where x and y are vectors with the coordinates of the points, and dx is a vector with

the value of the derivative c.!1!. at each point. The function should calculate the derivative at the first dx
and last points using the forward and backward finite difference formulas, respectively, and using

the central finite difference formula for all of the other points.

Use the given data points to calculate the velocity of the block for 4:::;; t:::;; 8 s. Calculate the accel

eration of the block by differentiating the velocity. Make a plot of the displacement, velocity, and

acceleration, versus time for 4:::;; t:::;; 8 s.

t (s) 4.0 4.2 4.4 4.6 4.8 5.0 5.2 5.4 5.6 5.8 6.0 6.2

x (cm) -5.87 -4.23 -2.55 -0.89 0.67 2.09 3.31 4.31 5.06 5.55 5.78 5.77

t (s) 6.8 7.0 7.2 7.4 7.6 7.8 8.0

x (cm) 4.46 3.72 2.88 2.00 1.10 0.23 -0.59

SOLUTION

(a) The velocity is calculated by using Eq. (8.7):

fort=5s: dx l =[(5.2d-{�4.8)=3.31- 0.67=6_ 6 cm/s dt 5. - . 0.4 x=5

fort= 6 s: dx l
=

[(6.2)- [(5.8)
=

5.77- 5.55
= 0 55 cm/s dt 6.2- 5.8 0.4 .

x=5

6.4 6.6

5.52 5.08

(b) The user-defined function dx=deri vati ve (x, y) that is listed next calculates the derivative

of a function that is given by a set of discrete points.

(Program 8-1: Function file. Derivative of a function given by points.]
function dx = derivative(x,y)
% derivative calculates the derivative of a function that is given by a set
% of points. The derivatives at the first and last points are calculated by
% using the forward and backward finite difference formula, respectively.
% The derivative at all the other points is calculated by the central

8.2 Finite Difference Approximation of the Derivative

% finite difference formula.
% Input variables:
% x A vector with the coordinates x of the data points.
% y A vector with the coordinates y of the data points.
% Output variable:
% dx A vector with the value of the derivative at each point.

n = length (x) ;

dx (l) = (y (2) - y (l))/ (x (2) - x (l));
for i = 2 :n - 1

dx (i) = Cy Ci + 1) - y Ci - 1)) I ex Ci + 1) - x Ci - 1));
end
dx (n) = (y (n) - y (n - l))/ (x (n) - x (n - 1));

309

The user-defined function derivative is used in the following script file. The program deter

mines the velocity (the derivative of the given data points) and the acceleration (the derivative of the

velocity) and then displays three plots.

t = 4:0.2:8;

x= [-5.87 -4.23 -2.55 -0.89 0.67 2.09 3.31 4.31 5.06 5.55 5.78 5.77 5.52 5.08 4.46
3.72 2.88 2.00 1.10 0.23 -0.59];
vel = derivative (t,x)
ace= derivative (t,vel);
subplot (3,1,1)
plot (t,x)
subplot (3,1,2)
plot (t,vel)
subplot (3,1,3)
plot (t,acc)

When the script file is executed, the following plots are displayed (the plots were formatted in the

Figure Window):

10 --------

� ·········· I=< * *•
� O •** **n
>(i�·
-104 5

1�
,.-.._ �····· "' *•

6
t (s)

7

l 0
•••••

>
······· �

-l0
4 5 6 7 8

t (s)
10 --------,.-.._

"'"'
1: o�•• •*** �
� *• •*
0$ •••••••••
-l0

4 5 6 7
t (s)

310 Chapter 8 Numerical Differentiation

8.3 FINITE DIFFERENCE FORMULAS USING TAYLOR
SERIES EXPANSION

The forward, backward, and central difference formulas, as well as

many other finite difference formulas for approximating derivatives,

can be derived by using Taylor series expansion. The formulas give an

estimate of the derivative at a point from the values of points in its

neighborhood. The number of points used in the calculation varies with

the formula, and the points can be ahead, behind, or on both sides of the

point at which the derivative is calculated. One advantage of using Tay

lor series expansion for deriving the formulas is that it also provides an

estimate for the truncation error in the approximation.

In this section, several finite difference formulas are derived.

Although the formulas can be derived for points that are not evenly

spaced, the derivation here is for points are equally spaced. Section

8.3.1 gives formulas for approximating the first derivative, and Section

8.3.2 deals with finite difference formulas for the second derivative.

The methods used for deriving the formulas can also be used for obtain

ing finite difference formulas for approximating higher-order deriva

tives. A summary of finite difference formulas for evaluating

derivatives up to the fourth derivative is presented in Section 8.4.

8.3.1 Finite Difference Formulas of First Derivative

Several formulas for approximating the first derivative at point x;
based on the values of the points near x; are derived by using the Taylor

series expansion. All the formulas derived in this section are for the

case where the points are equally spaced.

Two-point forward difference formula for first derivative

The value of a function at point X;+i can be approximated by a Taylor

series in terms of the value of the function and its derivatives at point

where h = X;+1-x; is the spacing between the points. By using two

term Taylor series expansion with a remainder (see Chapter 2), Eq. (8.8)

can be rewritten as:

l'"("f.'\ 2
/(x;+1) = f(x;)+ f'(x;)h+ �h

where � is a value of x between x; and X;+i.

Solving Eq. (8.9) for f '(x;) yields:

f'(x;) =

f(x;+1�-f(x;) f"(�)h
2!

(8.9)

(8.10)

8.3 Finite Difference Formulas Using Taylor Series Expansion 311

An approximate value of the derivative f'(x;) can now be calculated if

the second term on the right-hand side ofEq. (8.10) is ignored. Ignoring

this second term introduces a truncation (discretization) error. Since this

term is proportional to h, the truncation error is said to be on the order

of h (written as O(h)):

truncation error= _f"('E,)h = O(h)
2!

(8.11)

It should be pointed out here that the magnitude of the truncation error

is not really known since the value of f"('E,) is not known. Neverthe

less, Eq. (8.11) is valuable since it implies that smaller h gives a smaller

error. Moreover, as will be shown later in this chapter, it provides a

means for comparing the size of the error in different finite difference

formulas.

Using the notation ofEq. (8.11), the approximated value of the first

derivative is:

f'(x;) =
/(x;+1�-f(x;) +O(h) (8.12)

The approximation in Eq. (8.12) is the same as the forward difference

formula in Eq. (8.5).

Two-point backward difference formula for first derivative

The backward difference formula can also be derived by application of

Taylor series expansion. The value of the function at point x;_ 1 is

approximated by a Taylor series in terms of the value of the function

and its derivatives at point x;:

f(x) = f(x.)-f'(x.)h+f"(x;)h2 _f"'(x;)h3 +f (4)(x;)h 4+ ... (8.13) 1-l I I 2! 3! 4!

where h = x;-X;_1 . By using a two-term Taylor series expansion with

a remainder (see Chapter 2), Eq. (8.13) can be rewritten as:

f'"('f.\ 2 /(x;_1) = f(x;)-f'(x;)h+�h (8.14)

where C, is a value of x between x;_1 and x;. Solving Eq. (8.14) for

f'(x;) yields:

(8.15)

An approximate value of the derivative, f'(x;) , can be calculated if the

second term on the right-hand side ofEq. (8.15) is ignored. This yields:

f'(x;) =
f(x;)-:(x;-l) +O(h) (8.16)

The approximation in Eq. (8.16) is the same as the backward difference

formula in Eq. (8.6).

312 Chapter 8 Numerical Differentiation

Two-point central difference formula for first derivative
The central difference formula can be derived by using three terms in

the Taylor series expansion and a remainder. The value of the function

at point X;+i in terms of the value of the function and its derivatives at

point x; is given by:

(8.17)

where �1 is a value of x between x; and x;+i ·The value of the function

at point x;_ 1 in terms of the value of the function and its derivatives at

point x; is given by:

(8.18)

where �2 is a value of x between x;_1 and x;. In the last two equations,

the spacing of the intervals is taken to be equal so that

h = X;+1-x; = x;-X;_1. Subtracting Eq. (8.18) from Eq. (8.17) gives:

f(x.)-f(x.) = 2/'(x.)h +1"'(�1) h3 +1"'(�2) h3 (8.19) 1+1 1-l l 3! 3!

An estimate for the first derivative is obtained by solving Eq. (8.19) for

f '(x;) while neglecting the remainder terms, which introduces a trunca-

tion error, which is of the order of h2
:

(8.20)

The approximation in Eq. (8.20) is the same as the central difference

formula Eq. (8.7) for equally spaced intervals. A comparison of Eqs.

(8.12), (8.16), and (8.20) shows that in the forward and backward dif

ference approximation the truncation error is of the order of h, while in

the central difference approximation the truncation error is of the order

of h2. This indicates that the central difference approximation gives a

more accurate approximation of the derivative. This can be observed

schematically in Fig. 8-5, where the slope of the line that represents the

approximated derivative in the central difference approximation

appears to be closer to the slope of the tangent line than the lines from

the forward and backward approximations.

Three-point forward and backward difference formulas for the first
derivative
The forward and backward difference formulas, Eqs. (8.12) and (8.16),
give an estimate for the first derivative with a truncation error of O(h).
The forward difference formula evaluates the derivative at point x;
based on the values at that point and the point immediately to the right

of it X;+l ·The backward difference formula evaluates the derivative at

8.3 Finite Difference Formulas Using Taylor Series Expansion 313

point x; based on the values at that point and the one immediately to

the left of it, x;_1• Clearly, the forward difference formula can be useful

for evaluating the first derivative at the first point x1 and at all interior

points, while the backward difference formula is useful for evaluating

the first derivative at the last point and all interior points. The central

difference formula, Eq. (8.20), gives an estimate for the first derivative

with an error of O(h2
). The central difference formula evaluates the

first derivative at a given point x; by using the points x;_1 and X;+J ·

Consequently, for a function that is given by a discrete set of n points,

the central difference formula is useful only for interior points and not

for the endpoints (x1 or xn). An estimate for the first derivative at the

endpoints, with error of O(h2
), can be calculated with three-point for

ward and backward difference formulas, which are derived next.

The three-point forward difference formula calculates the deriva-

tive at point x; from the value at that point and the next two points,

X;+I and xi+2• It is assumed that the points are equally spaced such that

h=x;+2-x;+I =xi+1-x; . (The procedure can be applied to unequally

spaced points.) The derivation of the formula starts by using three terms

of the Taylor series expansion with a remainder, for writing the value of

the function at point x;+i and at point X;+2 in terms of the value of the

function and its derivatives at point x;:

f(x;+1) = f(x;)+ f'(x;)h+
f'��x;)

h2+
f";�f,1)

h3

f(x;+2) = f(x;)+ f'(x;)2h+
f'��;\2h)

2+
f"���2)

(2h)3

(8.21)

(8.22)

where f,1 is a value of x between x; and X;+1, and f,2 is a value of x

between x; and X;+2• Equations (8.21) and (8.22) are next combined

such that the terms with the second derivative vanish. This is done by

multiplying Eq. (8.21) by 4 and subtracting Eq. (8.22):

4f(x;+1)-f(x;+2) = 3f(x;)+2f'(x;)h+ 4
f';

!

(f,1)
h3 _r·;�f,2)

(2h)3 (8.23)

An estimate for the first derivative is obtained by solving Eq. (8.23) for

f'(x;) while neglecting the remainder terms, which introduces a trunca-

tion error of the order of h2:

(8.24)

Equation (8.24) is the three-point forward difference formula that esti

mates the first derivative at point x; from the value of the function at

that point and at the next two points, X;+i and X;+2, with an error of

O(h2
). The formula can be used for calculating the derivative at the

first point of a function that is given by a discrete set of n points.

314 Chapter 8 Numerical Differentiation

The three-point backward difference formula yields the derivative

at point x1 from the value of the function at that point and at the previ

ous two points, x1_1 and x1_2• The formula is derived in the same way

that Eq. (8.24) was derived. The three-term Taylor series expansion

with a remainder is written for the value of the function at point x1_ 1 ,

and at point x;_2 in terms of the value of the function and its derivatives

at point x1• The equations are then manipulated to obtain an equation

without the second derivative terms, which is then solved for f'(x).

The formula that is obtained is:

(8.25)

where h = x;-x1_1 = x1_1-x;_2 is the distance between the points.

Example 8-3 shows application of the three-point forward differ

ence formula for the first derivative.

Example 8-3: Comparing numerical and analytical differentiation.

Consider the function f(x) = x3 • Calculate the first derivative at point x = 3 numerically with the

three-point forward difference formula, using:

(a) Points x = 3, x = 4, and x = 5.

(b) Points x=3, x=3.25 ,and x=3.5 .

Compare the results with the exact value of the derivative, obtained analytically.

SOLUTION

Analytical differentiation: The derivative of the function is f'(x) = 3x2, and the value of the deriv

ative at x = 3 is f'(3) = 3. 3
2
= 27 .

Numerical differentiation

(a) The points used for numerical differentiation are:

x: 3 4 5
f(x): 27 64 125

Using Eq. (8.24), the derivative using the three-point forward difference formula is:

/'(3) = -3/(3)+;�(4)-/(5) = -3 · 27 +�· 64-125 = 25 error= 125;27 1 ·lOO=7.41 %

(b) The points used for numerical differentiation are:

x: 3 3.25 3.5

f(x): 27 3.253 3.53

Using Eq. (8.24), the derivative using the three points forward finite difference formula is:

/'(3) = -3 [(3)+4 [(3.25)-[(3.5) = -3. 27 +4. 3.253-3.53
= 26.875

2 ·0.25 0.5

error= 126·8��-27 1 ·100 = 0.46 %

8.3 Finite Difference Formulas Using Taylor Series Expansion 315

The results show that the three-point forward difference formula gives a much more accurate value

for the first derivative than the two-point forward finite difference formula in Example 8-1. For

h = 1 the error reduces from 37.04% to 7.4%, and for h = 0.25 the error reduces from 8.57% to

0.46%.

8.3.2 Finite Difference Formulas for the Second Derivative

The same approach used in Section 8.3.1 to develop finite difference

formulas for the first derivative can be used to develop expressions for

higher-order derivatives. In this section, expressions based on central

differences, one-sided forward differences, and one-sided backward dif

ferences are presented for approximating the second derivative at a

point x;.

Three-point central difference formula for the second derivative

Central difference formulas for the second derivative can be developed

using any number of points on either side of the point x;, where the sec

ond derivative is to be evaluated. The formulas are derived by writing

the Taylor series expansion with a remainder at points on either side of

xi in terms of the value of the function and its derivatives at point x;.

Then, the equations are combined in such a way that the terms contain

ing the first derivatives are eliminated. For example, for points xi+ 1,

and x;_1 the four-term Taylor series expansion with a remainder is:

(8.26)

(8.27)

where �1 is a value of x between xi and xi+I • and �2 is a value of x

between x; and xi-I. Adding Eq. (8.26) and Eq. (8.27) gives:

f(x)+f(x.)=2f (x)+2
f"(x1)

h2+f(4)(�1)
h4+f(4)(�2)

h4 (8.28) 1+1 1-1 I 2! 4! 4!

An estimate for the second derivative can be obtained by solving Eq.

(8.28) for f"(x;) while neglecting the remainder terms. This introduces

a truncation error of the order of h2
•

f"(xi) = f
(x;-1)-2/�;)+ f(xi+l) +O(h2

)
h

(8.29)

Equation (8.29) is the three-point central difference formula that pro

vides an estimate of the second derivative at point x; from the value of

the function at that point, at the previous point, x;_ 1, and at the next

point X;+J, with a truncation error of O(h2
).

The same procedure can be used to develop a higher-order (fourth-

316 Chapter 8 Numerical Differentiation

order) accurate formula involving the five points x;_2, x;_ 1, x;, X;+ 1 ,
and x;+2:

Three-point forward and backward difference formulas for the sec
ond derivative

The three-point forward difference formula that estimates the second
derivative at point x; from the value of that point and the next two
points, xi+1 and xi+2, is developed by multiplying Eq. (8.21) by 2 and
subtracting it from Eq. (8.22). The resulting equation is then solved for

f"(x;):

f"(x;) = f(xi)-2f(xi;1)+ f(xi+2) +O(h) h
(8.31)

The three-point backward difference formula that estimates the second
derivative at point x; from the value of that point and the previous two
points, xi-I and x;_2, is derived similarly. It is done by writing the
three-term Taylor series expansion with a remainder, for the value of the
function at point xi-I and at point x;_2, in terms of the value of the
function and its derivatives at point x;. The equations are then manipu
lated to obtain an equation without the terms that include the first deriv
ative, which is then solved for f"(x;) . The resulting formula is:

f"(x;) = f(xi-2)-2/�;-1)+ /(xi) +O(h) h
(8.32)

Formulas for higher-order derivatives can be derived by using the
same methods that are used here for the second derivative. A list of such
formulas is given in the next section. Example 8-3 shows application of
the three-point forward difference formula for the second derivative.

Example 8-4: Comparing numerical and analytical differentiation.

Consider the function f(x) = 2x. Calculate the second derivative at x = 2 numerically with the x
three-point central difference formula using:
(a) Points x = 1.8 , x = 2 , and x = 2.2 .
(b) Points x=l.9, x=2,and x=2.1.
Compare the results with the exact (analytical) derivative.
SOLUTION

8.4 Summary of Finite Difference Formulas for Numerical Differentiation

2x .
Analytical differentiation: The second derivative of the function f(x) = - 1s:

x
xl()2 x x

f"(x) =
2 [n 2] 2 · 2 ln(2)+2 · 2

x x2 x3
and the value of the derivative at x = 2 is /"(2) = 0.574617 .

Numerical differentiation

317

(a) The numerical differentiation is done by substituting the values of the points x = 1.8 , x = 2,
and x = 2.2 in Eq. (8.29). The operations are done with MATLAB, in the Command Window:

>> xa = [1.8 2 2.2];

>> ya= 2. "xa. /xa;
>> df = (ya(l) - 2*ya(2) + ya(3))/0.2"2

df =
0.57748177389232

(b) The numerical differentiation is done by substituting the values of the points x = 1.9, x = 2,
and x = 2.1 in Eq. (8.29). The operations are done with MATLAB, in the Command Window:

>> xb = [1.9 2 2.1];
>> yb = 2. "xb. /xb;
>> dfb = (yb(l) - 2*yb(2) + yb(3))/0.1"2

dfb =
0.57532441566441

Error in part (a) : error=

0.577482-0.574617. 100 = 0.4986 % 0.574617

Error in part (b): error=

0·575324-0·574617
· 100 = 0.1230 % 0.574617

The results show that the three-point central difference formula gives a quite accurate approximation

for the value of the second derivative.

Method

Two-point forward dif-
ference

Three-point forward
difference

Formula

8.4 SUMMARY OF FINITE DIFFERENCE FORMULAS
FOR NUMERICAL DIFFERENTIATION

Table 8-1 lists difference formulas, of various accuracy, that can be used

for numerical evaluation of first, second, third, and fourth derivatives.

The formulas can be used when the function that is being differentiated

is specified as a set of discrete points with the independent variable

equally spaced.

Table 8-1: Finite difference formulas.

First Derivative
Truncation
Error

f'(x;) =
f(x;+1�-f(x;) O(h)

f'(x;) =
-3f(x;)+4f��+1)-f(x;+2) O(h

2
)

318

Two-point backward
difference

Three-point backward
difference

Two-point central dif-
ference

Four-point central dif-
ference

Method

Three-point forward
difference

Four-point forward
difference

Three-point backward
difference

Four-point backward
difference

Three-point central
difference

Five-point central dif-
ference

Method

Four-point forward
difference

Five-point forward dif-
ference

Four-point backward
difference

Five-point backward
difference

Four-point central dif-
ference

Six-point central dif-
ference

Chapter 8 Numerical Differentiation

Table 8-1: Finite difference formulas.

f
'
(x;) =

f(x;)-:(x;_1)

f
'
(x;) =

f(x;-2)-4f��;-1)+3f(x;)

f
'
(x;) =

f(x;+1)

2

-:(x;_1)

f
'
(x) =

f(x;_2)- 8f(x;_1)+ 8f(x;+1)-f(xi+2)
I

12h

Second Derivative

Formula

f
"

(x;) =

f(x;)-2f(x;;1)+ f(xi+2)

h

f
"

(x;) =

2f(x;)-5f(x;+1)+:f(xi+2)-f(x;+3)

h

f
"

(x;) =

f(x;_2)-2f� ;-1)+ f(x;)

h

f
"

(x;) =

-f(xi-3) +4/(x;_2)
2
-5 f(x;_1) +2f(x;)

h

f
"

(x;) =

f(x;_1)-2f� ;)+ f(x;+1)

h

f
"

(x;) =

-f(x;-2) + 16f(x;_1)-30f(x;) + 16/(x;+i)-f(x;+2)

12h
2

Third Derivative

Formula

f
'"

(x;) =

-f(x;)+3f(x;+1)-
3
3f(xi+2)+ f(x;+3)

h

f
"'

(x;) =

-5f(x;) + 1 8/(x;+1)-24/(x;+2)+ 14f(x;+3)-3 f(x;+4)

2h
3

f
"'

(x;) =

-f(x;_3)+3f(x;-2�-3f(xi-J)+ f(x;)

h

f
"'

(x;) =

3 f(x;_4)-14f(x;_3) +24/(xi_2)-1 8/(x;_1)+ 5 f(x;)

2h
3

f
"'

(x;) =

-f(x;_2)+2f(x;_1)-2f(x;+1)+ f(x;+2)

2h
3

f
'"

(x;f=
f(x;_3)-8f(x;-2)+13 f(x;-1}--13f(x;+1)+8f(x;+2)-f (x;+3)

8h
3

O(h)

O(h
2
)

O(h
2
)

O(h
4
)

Truncation
Error

O(h)

O(h
2
)

O(h)

O(h
2
)

O(h
2
)

O(h
4
)

Truncation
Error

O(h)

O(h
2
)

O(h)

O(h
2
)

O(h
2
)

O(h
4
)

8.5 Differentiation Formulas Using Lagrange Polynomials 319

Method

Five-point forward dif-
ference

Six-point forward dif-
ference

Five-point backward
difference

Six-point backward
difference

Five-point central dif-
ference

Seven-point central
difference

Table 8-1: Finite difference formulas.

Fourth Derivative

Formula Truncation
Error

f
iv

(x;)
= f(x;)-4f(x;+1)+6f(x;;2)-4f(x;+3)+ f(x;+4) O(h)

h

f
iv
(x;)

=3 f(x;)---14/(x;+ i)+26 f(x;+2}-2
4
4f(x;+3)+1 If(x;+4)-2f(x;+s) O(h

2
)

h

f
iv

(x;)
= f(x;_4)-4f(x;_3)+6f�x;_2)-4f(x;_1)+ f(x;) O(h)

h

f
iv
(x,F

- 2f(x;_5)+1 If(x;_4)-24f(x;_3)+26f(x;_z)-14f(x;_1)+3f(x;) O(h
2
)

h
4

f
iv

(x;)
= f(x;_2)-4f(x;_1)+6f�;)-4f(x;+1)+ f(x;+2) O(h

2
)

h

f
i\x

;tf(x;_3)+1 2f(x;_2)-39 f(x;_1)+56f(x;J+39 f(xi+l)-+-l2f(x;+2}-f(xi+3) O(h
4
)

6h
4

8.5 DIFFERENTIATION FORMULAS USING LAGRANGE
POLYNOMIALS

The differentiation formulas can also be derived by using Lagrange

polynomials. For the first derivative, the two-point central, three-point

forward, and three-point backward difference formulas are obtained by

considering three points (x;,y;), (x;+ 1,Y;+1) , and (x;+z ,Y;+2) . The poly

nomial, in Lagrange form, that passes through the points is given by:

!(
)
_ (x-x;+1)(x-x;+2) (x-x;)(x-x;+2)

x - Y;+ Yi+I
(x1X;+1)(x1X;+2) (X;+1-X;)(X;+1-X;+2)

2 X -X;-Xi+I
+ Y;+2

(X;+z-X;)(X;+rX;+1)

(8.33)

(8.34)

The first derivative at either one of the three points is calculated by sub

stituting the corresponding value of x (x;, X;+ 1 or X;+2) in Eq. (8.34).

This gives the following three formulas for the first derivative at the

three points.

320

Figure 8-6: Numerical
differentiation using curve fitting.

Chapter 8 Numerical Differentiation

2X;+2 -X;-X;+l
+ Y;+2

(X;+2-X;)(X;+2-X;+ 1)

(8.35)

(8.36)

(8.37)

When the points are equally spaced, Eq. (8.35) reduces to the three

point forward difference formula (Eq. (8.24)), Eq. (8.36) reduces to the

two-point central difference formula (Eq. (8.20)), and Eq. (8.37)

reduces to the three-point backward difference formula (Eq. (8.25)).

Equation (8.34) has two other important features. It can be used

when the points are not spaced equally, and it can be used for calculat

ing the value of the first derivative at any point between x; and x;+2•
Other difference formulas with more points and for higher-order

derivatives can also be derived by using Lagrange polynomials. Use of

Lagrange polynomials to derive finite difference formulas is sometimes

easier than using the Taylor series. However, the Taylor series provides

an estimate of the truncation error.

8.6 DIFFERENTIATION USING CURVE FITTING

A different approach to differentiation of data specified by a set of dis

crete points is to first approximate with an analytical function that can

be easily differentiated. The approximate function is then differentiated

for calculating the derivative at any of the points (Fig. 8-6). Curve fit

ting is described in Chapter 6. For data that shows a nonlinear relation

ship, curve fitting is often done by using least squares with an

exponential function, a power function, low-order polynomial, or a

combination of a nonlinear functions, which are simple to differentiate.

This procedure may be preferred when the data contains scatter, or

noise, since the curved-fitted function smooths out the noise.

8.7 USE OF MATLAB BUILT-IN FUNCTIONS FOR
NUMERICAL DIFFERENTIATION

In general, it is recommended that the techniques described in this chap

ter be used to develop script files that perform the desired differentia

tion. MATLAB does not have built-in functions that perform numerical

8. 7 Use of MATLAB Built-In Functions for Numerical Differentiation 321

differentiation of an arbitrary function or discrete data. There is, how

ever, a built-in function called diff, which can be used to perform

numerical differentiation, and another built-in function called poly

der, which determines the derivative of polynomial.

The di ff command

The built-in function di ff calculates the differences between adjacent

elements of a vector. The simplest form of the command is:

d = diff (x)

d is a vector with the differences

between elements of x:

d=[(x2-x1), (x3-x2), ... , (xn-Xn-1)]

x is a vector:

The vector dis one element shorter than the vector x.

For a function represented by a discrete set of n points (x1,y1),
(x2,Ji), (x3,y3), ... , (xn,Yn), the first derivative with the two-point for

ward difference formula, Eq. (8.5), can be calculated using the di ff

command by entering di ff (y) • I di ff (x) . The result is a vector

whose elements are:

[(Yi-Y1>, (y3-Y2>, (YcY3>, ... , (yn-Yn-1)]
(x2-x1) (x3-x2) (xcx3) (xn-xn_1)

When the spacing between the points is the same such that

h = (x2-x1) = (x3-x2) = ... = (xn-xn_1) , then the first derivative

with the two-point forward difference formula, Eq. (8.12), can be calcu

lated using the di ff command by entering di ff (y) /h.

The di ff command has an additional optional input argument that

can be used for calculating higher-order derivatives. Its form is:

[d = diff (x,n)

where n is a number (integer) that specifies the number of times that

di ff is applied recursively. For example, di ff (x, 2) is the same as

di ff (di ff (x)). In other words, for an n-element vector x1, ... ,xn
di ff (x) calculates a vector with n-1 elements:

xi+1-x; for i=l, ... ,n- 1 (8.38)

and di ff (x, 2) gives the vector with n-2 elements:

((xi+2-x;+1)-(xi+1-x;))=x;-2X;+1+x;+2 for i= 1, ... ,n-1 (8.39)

The right-hand side of Eq. (8.39) is the same as the numerator of the

three-point forward difference formula for the second derivative at

x = x; , Eq. (8.31). Consequently, for a function represented by a dis

crete set of n points (x;,y;) , where the distance, h, between the points is

322 Chapter 8 Numerical Differentiation

the same, an estimate of the second derivative according to the three

point forward difference formula can be calculated with MATLAB by

entering diff (y, 2) /h"2.

Similarly, di ff (y, 3) yields the numerator of the third derivative

in the four-point forward difference formula (see Table 8-1). In general,

di ff (y, n) gives the numerator in the forward difference formula of

the nth derivative.

The polyder command

The built-in function polyder can calculate the derivative of a poly

nomial (it can also calculate the derivative of a product and quotient of

two polynomials). The simplest form of the command is:

/ dp = polyder (p4<
dp is a vector with the coefficients p is a vector with the coef-

of the polynomial that is the deriv- ficients of the polynomial

ative of the polynomial p. that is differentiated.

In MATLAB, polynomials are represented by a row vector in which

the elements are the coefficients of the polynomial in order from the

coefficient of the highest order term to the zeroth order term. If p is a

vector of length n, then dp will be a vector of length n-1. For exam

ple, to find the derivative of the polynomial f(x) = 4x3+5x+7 , define

a vector p = [4 0 5 7 J, and type df = polyder (p). The output will

be df = [12 0 5 J , representing 12x2 + 5 , which is the derivative of

f(x).

>> p = [4 0 5 7];

>> dp = polyder (p)

dp =

12 0 5

The polyder command can be useful for calculating the derivative

when a function represented by a set of discrete data points is approxi

mated by a curve-fitted polynomial.

8.8 RICHARDSON'S EXTRAPOLATION

Richardson's extrapolation is a method for calculating a more accurate

approximation of a derivative from two less accurate approximations of

that derivative.

In general terms, consider the value, D, of a derivative (unknown)

that is calculated by the difference formula:

D = D(h)+k2h
2+k4h

4 (8.40)

8.8 Richardson's Extrapolation 323

where D(h) is a function that approximates the value of the derivative

and k
2
h2 and k

4
h 4 are error terms in which the coefficients, k

2
and k

4 are independent of the spacing h. Using the same formula for calculat

ing the value of D but using a spacing of h/2 gives:

D = D(g) + k1(g) 2 + k
4
(g) 4

(8.41)

Equation (8.41) can be rewritten (after multiplying by 4) as:

(8.42)

Subtracting Eq. (8.40) from Eq. (8.42) eliminates the terms with h2 ,
and gives:

(h) 3h4 3D = 4D 2 -D(h)-k
4T (8.43)

Solving Eq. (8.43) for D yields a new approximation for the derivative:

D = K4n(g)-D(h))-k
4�

4
(8.44)

The error term in Eq. (8.44) is now O(h 4) . The value, D, of the deriva

tive can now be approximated by:

D = K4n(g)-D(h)) +o(h4) (8.45)

This means that an approximated value of D with error O(h 4) is

obtained from two lower-order approximations (D(h) and D(g)) that

were calculated with an error O(h2). Equation (8.45) can be used for

obtaining a more accurate approximation for any formula that calcu-

lates the derivative with an error O(h2). The formula is used for calcu

lating one approximation with a spacing of h and a second

approximation with a spacing of h/2 . The two approximations are then

substituted in Eq. (8.45), which gives a new estimate with an error of

O(h 4). The procedure is illustrated in Example 8-5.

Equation (8.45) can also be derived directly from a particular finite

difference formula. As an example, consider the two-point central dif

ference formula for the first derivative for points with equal spacing of

h, such that X;+l = x; +h and x;_1 = x;-h . Writing the five-term Tay

lor series expansion with a remainder for the value of the function at

point X;+l in terms of the value of the function and its derivatives at

point x; gives:

f(x. +h)=f(x.)+f'(x.)h+f"(x;) h1+f"'(x;) h3+f iv
(x;) h 4+f v

(�1) hs (8.46) I I I 2! 3! 4! 5!

324 Chapter 8 Numerical Differentiation

where �1 is a value of x between x; and x;+h . In the same manner, the

value of the function at point x;_1 is expressed in terms of the value of

the function and its derivatives at point x;:

f(x;-h)=f (x;)--f'(x;)h+f'��x;)
h2-f'';;x;)

h3 +f i:;x;) h 4_ f v;(2)
h5 (8.47)

where �2 is a value of x between x;-h and x; . Subtracting Eq. (8.47)

from Eq. (8.46) gives:

f(x;+h)-f(x;-h) = 2f'(x;)h+2f'';;x;)
h3 +f v;

!
�1)

h5 +f v;(2)
h5 (8.48)

Assuming that the fifth derivative is continuous in the interval

[x;_1,x;+il , the two remainder terms in Eq. (8.48) can be combined and

written as O(h5) . Then, solving Eq. (8.48) for f'(x;) gives:

(8.49)

which is the approximation for the first derivative with a spacing of h.
The derivation of Eqs. (8.46)-(8.49) can be repeated if the spacing

between the points is changed to h/2 . For this case the equation for the

value of the derivative is:

or

f'(x.) = f(x;+h/2)-f(x;-h/2) f"'(x;)(�)2
+O(h4)

I 2(h/2) 3! 2
(8.50)

(8.51)

Multiplying Eq. (8.51) by 4 gives:

4f'(x;) = 4 f(x;+h/2)� f(x;-hl2) _ f'';;x;\2 + O(h 4) (8.52)

Subtracting Eq. (8.49) from Eq. (8.52) and dividing the result by 3

yields an approximation for the first derivative with error O(h 4):

f'(x.)=![4 f(x;+h/2)-f(x;-h/2) f(x;+h)-f(x1h)J+o(h4) (8.53)
I 3 h 2h

. d . . l�l d "h Ftrst envatlve ca cu ate wit

two-point central difference for-

mula, Eq. (8.20), with error O(h2)
for points with spacing of h/2 .

1

F '. d
�

1 1 d .h irst envatlve ca cu ate wit

two-point central difference for-

mula, Eq. (8.20), with error O(h2)
for points with spacing of h.

Equation (8.53) is a special case ofEq. (8.45) where the derivatives

are calculated with the two-point central difference formula. Equation

8.9 Error in Numerical Differentiation 325

(8.45) can be used with any difference formula with an error O(h2).
Richardson's extrapolation method can also be used with approxi

mations that have errors of higher order. Two approximations with an

error 0(h 4)--one calculated from points with spacing of h and the other
from points with spacing of h/2 -can be used for calculating a more

accurate approximation with an error O(h6). The formula for this case
1s:

(8.54)

Application of Richardson's extrapolation is shown in Example 8-5.

Example 8-5: Using Richardson's extrapolation in differentiation.

Use Richardson's extrapolation with the results in Example 8-4 to calculate a more accurate approx

imation for the derivative of the function f(x) =
2x at the point x = 2 .
x

Compare the results with the exact (analytical) derivative.
SOLUTION

In Example 8-4 two approximations of the derivative of the function at x = 2 were calculated using

the central difference formula in which the error is O(h2). In one approximation h = 0.2 , and in the
other h = 0.1 . The results from Example 8-4 are:
for h = 0.2 , /"(2) = 0.577482 . The error in this approximation is 0.5016 %.

for h = 0.1 , /"(2) = 0.575324 . The error in this approximation is 0.126 %.

Richardson's extrapolation can be used by substituting these results in Eq. (8.45) (or Eq. (8.53)):

D = �(4D(�)-D(h))+o(h4) = �(4·0.575324-0.577481) = 0.574605

The error now is error=
0·574605-0·5746·100 = 0.00087 %

0.5746
This result shows that a much more accurate approximation is obtained by using Richardson's
extrapolation.

8.9 ERROR IN NUMERICAL DIFFERENTIATION

Throughout this chapter, expressions have been given for the truncation
error, also known as the discretization error. These expressions are gen
erated by the particular numerical scheme used for deriving a specific
finite difference formula to estimate the derivative. In each case, the
truncation error depends on h (the spacing between the points) raised to
some power. Clearly, the implication is that as h is made smaller and
smaller, the error could be made arbitrarily small. When the function to
be differentiated is specified as a set of discrete data points, the spacing
is fixed, and the truncation error cannot be reduced by reducing the size
of h. In this case, a smaller truncation error can be obtained by using a

326 Chapter 8 Numerical Differentiation

finite difference formula that has a higher-order truncation error.
When the function that is being differentiated is given by a mathe

matical expression, the spacing h for the points that are used in the finite
difference formulas can be defined by the user. It might appear then that
h can be made arbitrarily small and there is no limit to how small the
error can be made. This, however, is not true because the total error is
composed of two parts. One is the truncation error arising from the
numerical method (the specific finite difference formula) that is used.
The second part is a round-off error arising from the finite precision of
the particular computer used. Therefore, even if the truncation error can
be made vanishingly small by choosing smaller and smaller values of h,
the round-off error still remains, or can even grow as h is made smaller
and smaller. Example 8-6 illustrates this point.

Example 8-6: Comparing numerical and analytical differentiation.

Consider the function f(x) = e". Write an expression for the first derivative of the function at x = 0

using the two-point central difference formula in Eq. (8.20). Investigate the effect that the spacing, h,
between the points has on the truncation and round-off errors.

SOLUTION
The two-point central difference formula in Eq. (8.20) is:

f'(x.) =
f(xi+I)-f(x;-1) _2 Ll5J.h

2
I 2h 3!

where� is a value of x between x;_1 and X;+i

The points used for calculating the derivative of f(x) = e" at x = 0 are xi-I = -h and

Substituting these points in the formula gives:

h -h '"'(';-) 2
f'(O) = e -e

-2 �h
2h 3!

Xi+I = h.

(8.55)

When the computer calculates the values of eh and e-h, a round-off error is introduced, since the

computer has finite precision. Consequently, the terms eh and e-h in Eq. (8.55) are replaced by

eh+R1 and e-h+R2 where now eh and e-h are the exact values, and R1 and R2 are the round-off

errors:

(8.56)

In Eq. (8.56) the last term on the right-hand side is the truncation error. In this term, the value of

f'"(�) is not known, but it is bounded. This means that ash decreases the truncation error decreases.

The round-off error is (R1 -R2)/(2h). As h decreases the round

off error increases. The total error is the sum of the truncation
error and round-off error. Its behavior is shown schematically

in the figure on the right. As h decreases, the total error initially
decreases, but after a certain value (which depends on the pre
cision of the computer used) the total error increases as h
decreases further.

Total
Error

h

8.10 Numerical Partial Differentiation 327

Z=f{x,y)

f}[
ax

Figure 8-7: A function with two
independent variables.

8.10 NUMERICAL PARTIAL DIFFERENTIATION

All the numerical differentiation methods presented so far considered

functions with one independent variable. Most problems in engineering

or science involve functions of several independent variables since real

life applications are either two or three-dimensional, and in addition

may be a function of time. For example, the temperature distribution in

an object is a function of the three coordinates used to describe the

object: T(x,y,z), or T(r,8,z), or T(r,8,<j>). The temperature may also be

a function of time: T(x, y, z, t). If there is a need for evaluating the

amount of heat flow in a given direction, say z, the partial derivative in

the z direction is required: BT(x, y, z, t). Another example is the determi-
8z

nation of strains from displacements. If two-dimensional displacements

are measured on the surface of a structure, the strains are determined

from the partial derivatives of the displacements.

For a function of several independent variables, the partial deriva

tive of the function with respect to one of the variables represents the

rate of change of the value of the function with respect to this variable,

while all the other variables are kept constant (see Section 2.6). For a

function f(x,y) with two independent variables, the partial derivatives

with respect to x and y at the point (a, b) are defined as:

8f(x,y) I = lim f(x,b)-f(a,b)
ax x =a x--+a x-a y=b

8f(x,y) I = lim f(a,y)- f(a,b)
8y x=a y--+b y-b y=b

(8.57)

(8.58)

This means that the finite difference formulas that are used for approxi

mating the derivatives of functions with one independent variable can

be adopted for calculating partial derivatives. The formulas are applied

for one of the variables, while the other variables are kept constant. For

example, consider a function of two independent variables f(x,y)
specified as a set of discrete m · n points (x1,y1), (x1,y2), • • • , (xn,Ym).
The spacing between the points in each direction is constant such that

hx = X;+1-x; and hy = Y;+i-Y;· Figure 8-7 shows a case where n = 5

and m = 4 . An approximation for the partial derivative at point (xi, Y;)
with the two-point forward difference formula is: f}1_1 _

=
f(x;+I•Y;)-f(x;,Y;)

ax X-X; hX y= Y;

(8.59)

(8.60)

328 Chapter 8 Numerical Differentiation

In the same way, the two-point backward and central difference formu

las are:

Sf.

I
= f(x;,Y;)-f(xi-l>Y)

ax x=x; hx
y= Y;

Sf.

I
=/(x;+1,Y;)-f(x;_1,y;)

ax x=x; 2hx
y= Y;

The second partial derivatives with the three-point central differ

ence formula are:

a2f f(x;_1,y;)-2f(x;,y;)+ f(x;+1•Y;)
ax2 x=x1

y= Y;

Q:..f. = f(x;,Y;- 1)-2/(x;,y;)+ f(x;,Y;+1)
ay2 x=x; h2

y= Y; y

(8.63)

(8.64)

Similarly, all the finite difference formulas listed in Section 8.4 can be

adapted for calculating partial derivatives of different orders with

respect to one of the variables.

2
A second-order partial derivative can also be mixed ll . This

axay
2

derivative is carried out successively ll =_!!___(£1)=_!!___(£1). A
Bxay By Bx Bx By

finite difference formula for the mixed derivative can be obtained by

using the first-order finite difference formulas for partial derivatives.

For example, the second-order mixed four-point central finite difference

formula is obtained from Eqs. (8.62):
2

_ [/(x;+I• Y;+1)-f(xi-1• Y;+i)}-[f(xi+I• Y;-1}-f(xi-1• Y;-1)]
a x=x; 2hx·2hy

(8.65)
y= Y;

Application of finite difference formulas for numerical partial differen

tiation is shown in Example 8-7.

Example 8-7: Numerical partial differentiation.

The following two-dimensional data for the x component of velocity u as a function of the two coor

dinates x and y is measured from an experiment:

y = 1.0

y=2.0

y = 3.0

x = 1.0 x = 1.5 x = 2.0

163 205 250
228 291 361

265 350 448

x= 2.5

298
437

557

x = 3.0

349
517

676
(a) Using central difference approximations, calculate Bu/ox, Bu!(By), 82u!o/, and B2u!oxoy at the

point (2, 2).

8.10 Numerical Partial Differentiation

(b) Using a three-point forward difference approximation, calculate Bu/Bx at the point (2,2).

(c) Using a three-point forward difference approximation, calculate Bu/By at the point (2, 1) .
SOLUTION

(a) In this part xi= 2 , Y; = 2, xi-I= 1.5, xi+I = 2.5, Yi-I= 1, Yi+I = 3, hx = 0.5 , hy = 1

Using Eqs. (8.59) and (8.60), the partial derivatives Bf /Bx and Bu/By are:

Bu i =U(Xi+l•y;)-u(X;_l,y;) = u(2.5,2)-u(l.5,2) = 437-291= 146
ax x=x, 2hx 2 . 0.5 1

y=y,

Bu i =u(x;•Yi+ 1)-u(xi,Y; - 1) =u(2,3)-u(2, 1) =448-250 = 99
ay x = x, 2hy 2 . 1 2

y= Y1

The second partial derivative a2
u1ay2

is calculated with Eq. (8.64):

a2
u = u(x;,y;_ 1)-2u(x;,y;)+u(x;,Y;+ 1) = 250-(2 · 361)+448 = _24 2 2 2 ay x=x, hy 1

y= Y;

The second mixed derivative a2
u!axay is given by Eq. (8.65):

2
= [u(x;+1• Y;+1)-u(xi-I• Y;+1)Hu(x;+1• Yi-l}--u(xi-1• Y;-1)]

x=x1 2hx·2hy
y= Y1

=[u(2.5,3)-u(l.5,3)Hu(2.5, 1}--u(l.5, 1)] =[557-350 H298-205] = 57
2 . 0.5 . 2 . 1 2 . 0.5 . 2 . 1

329

(b) In this part xi= 2 , xi+I = 2.5 , xi+2
= 3.0 , Y; = 2 , and hx = 0.5 . The formula for the partial

derivative au/ax with the three-points forward finite difference formula can be written from the for

mula for the first derivative in Section 8.4.

Bu i
_

= -3u(x;,y;)+4u(xi+l•Yi)-u(x;+2,y;) =
ax x-x, 2hx

y= Y1

= -3u(2,2)+4u(2.5,2)-u(3.0,2) = -3 · 361+4·437-517= 148
2·0.5 2·0.5

(c) In this part Y; = 1 , Y;+i = 2 , Yi+2
= 3, xi= 2, and h

Y
= 1.0. The formula for the partial

derivative Bu/By with the three-points forward difference formula can be written from the formula

for the first derivative in Section 8.4.

Bu i = -3u(xi,Y;)+4u(x;,Y;+ 1)-u(xi,Yi+2) =
Byx=x1 2hy

y= Y1

= -3u(2, 1)+4u(2,2)-u(2,3) = -3 · 250+4 · 361-448 = 123
2·1 2·1

330 Chapter 8 Numerical Differentiation

8.11 PROBLEMS

Problems to be solved by hand
Solve the following problems by hand When needed, use a calculator, or write a MATLAB script file to

carry out the calculations. If using MATLAB, do not use built-in functions for differentiation.

8.1 Given the following data:

x

f(x)

1.1 1.2

0.6133 0.7822

find the first derivative f'(x) at the point x = 1.3.

(a) Use the three-point forward difference formula.

(b) Use the three-point backward difference formula.

(c) Use the two-point central difference formula.

8.2 Given the following data:

x

f(x)

0.6 0.7

5.2296 3.6155

1.3

0.9716

0.8

2.7531

find the second derivative f"(x) at the point x = 0.8 .
(a) Use the three-point forward difference formula.

(b) Use the three-point backward difference formula.

(c) Use the three-point central difference formula.

1.4 1.5

1.1814 1.4117

0.9 1.0

2.2717 2

8.3 The following data show estimates of the population of Liberia in selected years between 1960 and

2010:

Year 1960 1970 1980 1990

Population (millions) 1.1 1.4 1.9 2.1

Calculate the rate of growth of the population in millions per year for 2010.
(a) Use two-point backward difference formula.

(b) Use three-point backward difference formula.

2000 2010

2.8 4

(c) Using the slope in 2010 from part (b), apply the two-point central difference formula to extrapolate and

predict the population in the year 2020.

8.4 The following data is given for the stopping distance of a car on a wet road versus the speed at which

it begins braking.

v (mi/h) 12.5 25 37.5 50 62.5 75

d(ft) 20 59 118 197 299 420

(a) Calculate the rate of change of the stopping distance at a speed of 62.5 mph using (i) the two-point

backward difference formula, and (ii) the three-point backward difference formula.

8.11 Problems 331

(b) Calculate an estimate for the stopping distance at 75 mph by using the results from part (a) for the

slope and the two-point central difference formula applied at the speed of 62.5 mph. How does the esti

mate compares with tha data?

8.5 Given three unequally spaced points (x;,Y;), (x;+i•Y;+1), and (x;+z,Y;+2), use Taylor series expan

sion to develop a finite difference formula to evaluate the first derivative dy I dx at the point x = x; . Verify

that when the spacing between these points is equal, the three-point forward difference formula is obtained.

The answer should involve Y;, Y;+1, and Y;+z·

8.6 Using a four-term Taylor series expansion, derive a four-point backward difference formula for eval

uating the first derivative of a function given by a set of unequally spaced points. The formula should give

the derivative at point x = x; , in terms of x;, x;_ 1 , x;_2, x;_3, f(x;), f (x;_ 1), f(x;_2), and f(x;_3).

8.7 Derive a finite difference approximation formula for f"(x;)
using three points x;_1, x;, and x;+1, where the spacing is such that

X;-Xi-1 = 2h and X;+1-X; = h . �·

8.8 A particular finite difference formula for the first derivative of a function is:

f'(x;) = -f(x;+3)+9�hX;+1)-8f(x;)

2h h

where the points x;, x;+1, X;+z, and x;+3 are all equally spaced with step size h. What is the order of the

truncation or discretization error?

8.9 The following data show the number of female and male physicians in the U.S. for various years

(American Medical Association):

Year 1980 1990 2000 2002 2003 2006 2008

#males 413,395 511,227 618,182 638,182 646,493 665,647 677,807

#females 54,284 104,194 195,537 215,005 225,042 256,257 276,417

(a) Calculate the rate of change in the number of male and female physicians in 2006 by using the three

point backward difference formula for the derivative, with unequally spaced points, Eq. (8.37).

(b) Use the result from part (a) and the three-point central difference formula for the derivative with

unequally spaced points, Eq. (8.36), to calculate (predict) the number of male and female physicians in

2008.

8.10 Use the data from Problem 8.9 and the four-point backward difference formula that was derived in

Problem 8.6 for evaluating the first derivative of a function specified at unequally spaced points to calcu

late the following quantities.

(a) Evaluate the rate of change in the number of male and female physicians in 2008.
(b) Use the data from 2008, 2006, together with the slopes in 2008 from part (a) to estimate the year in

which the number of female and male physicians will be equal. Use the three-point central difference

formula for the derivative (Eq. (8.36)) of a function specified at unequally spaced points.

332 Chapter 8 Numerical Differentiation

8.11 Use Lagrange interpolation polynomials to find the finite difference formula for the second deriva
tive at the point x = x; using the unequally spaced points x;, X;+ 1, and X;+2. What is the second deriva

tive at x = X;+t and at x = X;+2 ?

8.12 Given the function f(x) = (x
2

+[x)cos(x) , find the value of the first derivative at x = 2.
sm(x)

(a) Use analytical differentiation by hand.

(b) Use the four-point central difference formula with x;_2 = 1.96 , x;_1 = 1.98 , X;+i = 2.02 , and

x;+2 = 2.04 . Write a MATLAB program in a script file to carry out the calculations.

8.13 For the function given in Problem 8.12, find the value of the second derivative at x = 2 .
(a) Use analytical differentiation by hand.

(b) Use the five-point central difference formula with x;_2 = 1.96 , x;_1 = 1.98 , x; = 2 , X;+t = 2.02 ,

and X;+2 = 2.04 . Write a MATLAB program in a script file to carry out the calculations.

8.14 The following data for the velocity component in the x-direction, u, are obtained as a function of the
two coordinates x and y:

x=O x=l x= 2 x=3 x=4

y=O 0 8 2 13 15

y=l 3 10 7 15 18

y= 2 14 14 8 22 22

y=3 7 12 9 16 17

y=4 5 10 7 9 14

a
2
u

Use the four-point central difference formula for ayax to evaluate this derivative at the point (2, 3) .

8.15 Use Lagrange polynomials to develop a difference formula for the second derivative of a function
that is specified by a discrete set of data points with unequal spacing. The formula determines the second

derivative at point (x;,y;) using points (x;_1,yi-I), (x;,Y;), and (x;+1,Y;+1).

8.16 Using Lagrange polynomials, develop a difference formula for the third derivative of a function that

is specified by a discrete set of data points. The formula determines the third derivative at point (x;,y;)

using points (x;_ 1, Y;-1), (x;, Y;), (x;+ 1, Y;+ 1), and (x;+2, Y;+2). The points are spaced such that

X;-X;-1 = X;+2-X;+1 = h and X;+1-X; = 2h .

Problems to be programmed in MATLAB

Solve the following problems using MATLAB environment.

8.17 Write a MATLAB user-defined function that determines the first derivative of a function that is
given by a set of discrete points with equal spacing. For the function name use yd = First
De riv (x, y) . The input arguments x and y are vectors with the coordinates of the points, and the output
argument yd is a vector with the values of the derivative at each point. At the first and last points, the func-

8.11 Problems 333

tion should calculate the derivative with the three-point forward and backward difference formulas, respec

tively. At all the other points FirstDeriv should use the two-point central difference formula. Use

FirstDeri v to calculate the derivative of the function that is given in Problem 8.1.

8.18 Write a MATLAB user-defined function that calculates the second derivative of a function that is

given by a set of discrete data points with equal spacing. For the function name and arguments use
ydd=SecDeriv (x, y), where the input arguments x and y are vectors with the coordinates of the

points, and ydd is a vector with the values of the second derivative at each point. For calculating the sec

ond derivative, the function Sec Der iv should use the finite difference formulas that have a truncation

error of O(h
2
). Use SecDeri v for calculating the second derivative of the function that is given by the

following set of points:

x -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

f (x) -3.632 --0.3935 1 0.6487 -1.282 -4.518 -8.611 -12.82 -15.91 -15.88 -9.402 9.017

8.19 Write a MATLAB user-defined function that determines the first and second derivatives of a func
tion that is given by a set of discrete points with equal spacing. For the function name use [yd, ydd] =

FrstScndDeriv (x, y). The input arguments x and y are vectors with the coordinates of the points,

and the output arguments yd and ydd are vectors with the values of the first and second derivatives,

respectively, at each point. For calculating both derivatives, the function should use the finite difference

formulas that have a truncation error of O(h2).
(a) Use the function FrstScndDeri v to calculate the derivatives of the function that is given by the

data in Problem 8.18.

(b) Modify the function (rename it FrstScndDeri vPt) such that it also creates three plots (one page in

a column). The top plot should be of the function, the second plot of the first derivative, and the third

of the second derivative. Apply the function FrstScndDeri vPt to the data in Problem 8.18.

8.20 Write a MATLAB user-defined function that determines the first derivative of a function that is

given in an analytical form. For the function name and arguments use dfx = DiffAnaly (Fun, xi).
Fun is a name for the function that is being differentiated. It is a dummy name for the function that is

imported into DiffAnaly. The actual function that is differentiated should be written as an anonymous

function, or as a user-defined function, that calculates the values of f(x) for given values of x. It is entered

as a function handle when DiffAnaly is used. xi is the value of x where the derivative is calculated. The

user-defined function should calculate the derivative by using the two-point central difference formula. In

the formula, the values of (x;+i) and (xi_1) should be taken to be 5% higher and 5% lower than the value

of (x), respectively.

(a) Use DiffAnaly to calculate the first derivative of f(x) = exlnx at x = 2.

(b) Use DiffAnaly to calculate the first derivative of the function from Problem 8.12 at x = 2.

8.21 Modify the MATLAB user-defined function in Problem 8.20 to include Richardson's extrapolation.
The function should calculate a first estimate for the derivative as described in Problem 8.20, and a second

estimate by taking the values of (xi+ 1) and (x;_ 1) to be 2.5% higher and 2.5% lower than the value of (x;),
respectively. The two estimates should then be used with Richardson's extrapolation for calculating the

derivative. For the function name and arguments use dfx=DiffRichardson (Fun, xi).

334 Chapter 8 Numerical Differentiation

(a) Use the function to calculate the derivative of f(x) = exlnx at x = 2 .
(b) Use the function to calculate the first derivative of the function that is given in Problem 8.12 at x = 2 .

8.22 Write a MATLAB user-defined function that calculates the second derivative of a function that is
given in an analytical form. For the function name and arguments use ddfx = DDiffAnaly (Fun, xi).
Fun is a name for the function that is being differentiated. It is a dummy name for the function that is
imported into DiffAnaly. The actual function that is differentiated should be written as an anonymous
function, or as a user-defined function, that calculates the values of f(x) for given values of x. It is entered
as a function handle when DiffAnaly is used. xi is the value of x where the second derivative is calcu
lated. The function should calculate the second derivative with the three-point central difference formula.
In the formula, the values of (x;+i) and (x;_1) should be taken to be 5% higher and 5% lower than the

value of (x;), respectively.

(a) Use the function to calculate the second derivative of f(x) = 2x/x at x = 2 .

(b) Use the function to calculate the second derivative of the function that is given in Problem 8.12 at
x=2.

8.23 Write a MATLAB user-defined function that evaluates the first derivative of a function that is given
by a set of discrete points with unequal spacing. For the function name use yd = FirstDeriv
U n e q (x, y) . The input arguments x and y are vectors with the coordinates of the points, and the output
argument yd is a vector with the values of the first derivative at each point. The differentiation is done by
using second-order Lagrange polynomials (Section 8.5). At the first and last points, the function should
calculate the derivative with Eqs. (8.35) and (8.37), respectively. At all the other points the function should
use Eq. (8.36). Use FirstDeri vUneq to calculate the derivative of the function that is given by the fol
lowing set of points:

x -1 -0.6 -0.3 0 0.5 0.8 1.6 2.5 2.8 3.2 3.5 4

f (x) -3.632 -0.8912 0.3808 1.0 0.6487 -0.3345 -5.287 -12.82 -14.92 -16.43 -15.88 -9.402

8.24 Write a MATLAB user-defined function that evaluates the second derivative of a function that is
given by a set of discrete data points with unequal spacing. For the function name use yd= SndDer iv
Uneq (x, y). The input arguments x and y are vectors with the coordinates of the points, and the output
argument yd is a vector with the values of the second derivative at each point. Use the following scheme
for the differentiation. Write a third-order Lagrange polynomial f(x) for four points (x;_1), (x;), (x;+i),

and (x;+2), and derive formulas for the second derivative of the polynomial at each of the four points.
SndDerivUneq uses the formula for f'' (x;_1) for calculating the second derivative at the first data

point, and the formula for f'' (x;+2) and f'' (x;+i) for calculating the second derivative at the last data

point and one point before the last, respectively. The formula for f "(x;) is used in all the points in
between. Use the function to calculate the second derivative of the function that is given by the following
set of points:

x -1 -0.6 -0.3 0 0.5 0.8 1.6 2.5 2.8 3.2 3.5 4

f (x) -3.632 -0.8912 0.3808 1.0 0.6487 -0.3345 -5.287 -12.82 -14.92 -16.43 -15.88 -9.402

8.11 Problems 335

8.25 Write a MATLAB user-defined function that evaluates the partial first derivatives ¥x and � of a

function f(x,y) that is specified by discrete tabulated points with equal spacing. Use two-point central dif

ference formulas at the interior points and one-sided three-point forward and backward difference formulas

at the endpoints. For the function name use [dfdx, dfdy] = ParDer (x, y, f). The input arguments x
and y are vectors with the values of the independent variables. f is a vector with the value off at each

point. The output arguments dfdx and dfdy are vectors with the values of the partial derivatives at each

point. Use Par Der to calculate the partial derivatives with respect to x andy of the function given in Prob

lem 8.14.
2 2

8.26 Write a MATLAB user-defined function that evaluates the partial second derivatives �J and �Yf
of a function f(x,y) that is specified by discrete tabulated points with equal spacing. Use three-point cen

tral difference formulas for the interior points and one-sided four-point forward and backward difference

formulas for the end points. For the function name use [dfdx2, dfdy2] = ParDerSnd (x, y, f). The

input arguments x and y are vectors with the values of the independent variables. f is a vector with the

value of/at each point. The output arguments dfdx2 and dfdy2 are vectors with the values of the partial

second derivatives at each point. Use ParDerSnd to calculate the partial second derivatives with respect

to x and y of the function given in Problem 8.14.

Problems in math, science, and engineering
Solve the following problems using MATLAB environment. As stated, use the MATLAB programs that are

presented in the chapter, programs developed in previously solved problems, or MATLAB s built-in func

tions.

8.27 The following data is obtained for the velocity of a vehicle during a crash test.:

t (ms) 0 10 20 30 40 50 60 70 80

v (mph) 30 29.5 28 23 10 5 2 0.5 0

If the vehicle weight is 2,400 lb, determine the instantaneous force F acting on the vehicle during the crash.

The force can be calculated by F = mdv , and the mass of the car m is 2400/32.2 slug.
dt

Note that 1 ms= 10-3 s and 1 mile= 5,280 ft.

(a) Solve by using the user-defined function FirstDeri v that was written in Problem 8.17.
(b) Solve by the using MATLAB built-in function di ff.

8.28 The distribution of the x-component of the velocity u of a fluid

near a flat surface is measured as a function of the distance y from the

surface:

Y (m) 0 0.002 0.004 0.006 0.008

u (mis) 0 0.005 0.008 0.017 0.022

The shear stress •
yx

in the fluid is described by Newton's equation:

OU
't = µ-yx oy

y u(y)

x

336 Chapter 8 Numerical Differentiation

where µ is the coefficient of dynamic viscosity. The viscosity can be thought of as a measure of the inter

nal friction within the fluid. Fluids that obey Newton's constitutive equation are called Newtonian fluids.

Calculate the shear stress at y = 0 using (i) the two-point forward, and (ii) the three-point forward approx-

imations for the derivative. Take µ = 0.00516 N-s/m2.

8.29 The refractive index n (how much the speed of light is reduced) of fused silica at different wave

lengths 'A is displayed in the table.

'A (µm) 0.2 0.25 0.3 0.36 0.45 0.6 1.0 1.6 2.2 3.37

n 1.551 1.507 1.488 1.475 1.466 1.458 1.450 1.443 1.435 1.410

Use the data to calculate the dispersion (spreading of light beam) defined by � at each wavelength.

(a) Use the user-defined function FirstDeri vUneq written in Problem 8.23.
(b) Use MATLAB's built-in function di ff.

8.30 A fin is an extended surface used to transfer heat from a base material (at x = 0) to an ambient. Heat

flows from the base material through the base of the fin, through its outer surface, and through the tip.

Measurement of the temperature distribution along a pin fin gives the following data:

x(cm) 0 1 2 3 4 5 6 7

T(K) 473 446.3 422.6 401.2 382 364.3 348.0 332.7

The fin has a length L = 10 cm, constant cross-sectional area of

1.6x 10-5 m2, and thermal conductivity k
= 240 W/m/K. The heat flux

(W /m2) is given by q x =
-kdT

dx
(a) Determine the heat flux at x = 0. Use the three-point forward differ-

ence formula for calculating the derivative.

(b) Determine the heat flux at x = L. Use the three-point backward dif

ference formula for calculating the derivative.

(c) Determine the amount of heat (in W) lost between x = 0 and x = L.

8 9 10

318.1 304.0 290.1

(The heat flow per unit time in Watts is the heat flux multiplied by the cross-sectional area of the fin.)

8.31 The altitude of the space shuttle during the first two minutes of its ascent is displayed in the follow

ing table (www.nasa.gov):

t (s) 0 10 20 30 40 50 60 70 80 90 100 110 120

h (m) -8 241 1,244 2,872 5,377 8,130 11,617 15,380 19,872 25,608 31,412 38,309 44,726

Assuming the shuttle is moving straight up, determine its velocity and acceleration at each point. Display

the results in three plots (h versus time, velocity versus time, and acceleration versus time).

(a) Solve by using the user-defined function FrstScndDeri vPt that was written in Problem 8.19.
(b) Solve by using the MATLAB built-in function di ff.

8.11 Problems 337

8.32 The position of an airplane at 5 s intervals as it accelerates on the runway is given in the following

table:

t (s) 0 5 10 15 20 25 30 35 40

d (ft) 0 20 53 295 827 1437 2234 3300 4658

Write a MATLAB program in a script file that first determines the airplane's velocity (v =
dh

) and the
dt

acceleration (a=
dv) at each point. Display the results in three plots (dversus time, velocity (in mph) ver-
dt

sus time, and acceleration (in ft/s2) versus time).

(a) Solve by using the user-defined function FirstDeri v that was written in Problem 8.17.

(b) Solve by using the MATLAB built-in function di ff.

8.33 Use the user-defined function FrstScndDeriv written in Problem 8.19 to calculate the velocity

and the acceleration of the airplane in Problem 8.32. Display the results in three plots (h versus time, veloc

ity versus time, and acceleration versus time).

8.34 The charge on the capacitor in the RC circuit shown at various

times after the switch is closed at time t = 0 is given in the following

table. The current, I, as a function of time is given by I(t) = <!f2. .
dt

Determine the current as a function of time by numerically differenti- Vo
ating the data.

(a) Use the user-defined function FirstDerivUneq that was writ

ten in Problem 8.23.

(b) Use the MATLAB built-in function di ff.
In both parts plot I versus t.

Qx106
(C) 0 340 584 759

t (ms) 0 50 100 150

Qx106
(C) 1169 1178 1184 1189

t (ms) 550 600 650 700

884 973 1038

200 250 300

1192 1194 1196

750 800 850

1084

350

1197

900

I(t)

R

1117 1140 1157

400 450 500

1198 1199

950 1000

8.35 The following data for mean velocity u near the wall in a fully developed turbulent pipe air flow was

measured [J. Laufer, "The Structure of Turbulence in Fully Developed Pipe Flow," U.S. National Advisory

Committee for Aeronautics (NACA), Technical Report 1174, 1954]:

y/R 0.0030 0.0034 0.0041 0.0051 0.0055 0.0061 0.0071 0.0075 0.0082

u/U 0.140 0.152 0.179 0.221 0.228 0.264 0.300 0.318 0.343

y is the distance from the wall, R = 4.86 in. is the radius of the pipe, and U = 9.8 ft/s. Use the data to calcu-

338 Chapter 8 Numerical Differentiation

late the shear stress 't defined by t =µdu= µQ d(u/U)_ µ = 3.8 x 10-7 lb-s/ft2 is the dynamic viscosity. Note dy Rd(y/R)
that 't will have units of lb/ft2.

(a) Use the user-defined function FirstDeri vUneq written in Problem 8.23.

(b) Use MATLAB's built-in function di ff.

8.36 A 30-ft-long uniform beam is simply supported

at the left end and clamped at the right end. The beam

is subjected to the triangular load shown. The deflec

tion of the beam is given by the differential equation:

d 2y = M(x)
dx2 EI

where y is the deflection, x is the coordinate measured

along the length of the beam, M(x) is the bending

moment, E = 29 x 106 psi is the elastic modulus, and

y

L

I = 720 in4 is its moment of inertia. The following data is obtained from measuring the deflection of the

beam versus position:

x (in) 0 24 48 72 96 120 144 168

y (in) 0 --0.111 -0.216 -0.309 -0.386 --0.441 --0.473 --0.479

x (in) 192 216 240 264 288 312 336 360

y (in) --0.458 --0.412 -0345 -0.263 -0.174 --0.090 -0.026 0

Using the data, determine the bending moment M(x) at each location x. Solve the problem by using the

user-defined function SecDeri v written in Problem 8.18. Make a plot of the bending moment diagram

8.37 A radar station is tracking the motion of an aircraft. The

recorded distance to the aircraft, r, and the angle e during a period

of 60 s is given in the following table. The magnitude of the instan

taneous velocity and acceleration of the aircraft can be calculated

by:

v = (dr)2 +(rd8)2
a= [d2r -r(d8)2]2 +[rd28 +2drd8]2

dt dt dt2 dt dt2 dt dt

y

r

e
x

Determine the magnitudes of the velocity and acceleration at the times given in the table. Plot the velocity

and acceleration versus time (two separate plots on the same page). Solve the problem by writing a pro

gram in a script file. The program evaluates the various derivatives that are required for calculating the

velocity and acceleration, and then makes the plots. For calculating the derivatives use

(a) the user-defined function FrstScndDeri v that was written in Problem 8.19;
(b) MATLAB's built-in function di ff.

t (s) 0 4 8 12 16 20 24 28

r(km) 18.803 18.861 18.946 19.042 19.148 19.260 19.376 19.495

8.11 Problems

8(rad) 0.7854 0.7792 0.7701 0.7594 0.7477

t (s) 32 36 40 44 48

r(km) 19.617 19.741 19.865 19.990 20.115

8(rad) 0.6925 0.6771 0.6612 0.6448 0.6280

8.38 A scale is made of two springs (K = 3 lb/in.) as shown in the

figure (y = 3 in., b = 4 in.). With no weight on the scale y = 0 and

the length of the spring L0 is given by L0 = Jb2 + Ycr. As weights are

placed on the scale, it moves down a distance y and the length of the

spring L is given by L = Jb2+(y0+y)2• The force in each spring is

Fs = K(L-L0) , and the relationship between W and Fs is

W = 2Fcose. The equivalent spring constant of the scale Keq is

given by Keq =
dW . Derive an expression for Keq as in terms of y dy

0.7350 0.7215

52 56

20.239 20.362

0.6107 0.5931

Yo

and determine the derivative Keq numerically for 0:.:::: y:.:::: 2 in. Make a plot of Keq versus y.

339

0.7073

60

20.484

0.5750

b

(a) Determine the derivative by using the user-defined function FirstDeriv that was written in Prob

lem 8.17.
(b) Determine the derivative by using MATLAB's built-in function di ff.

8.39 The position of a squirrel (x and y coordinates) running

around as a function of time, t, is given in the table that follows.

The velocity of the squirrel, v, is given by v = Jv; + v; , where

v x =
dx and v Y = r!.l. . The acceleration of the squirrel, a, is given dt dt

by a = � , where ax=
d2x and ay =

d2y . Write a MAT-dt2 a12
LAB program in a script file that

(a) determines v and a by using the user-defined function Frst-
ScndDeri v that was written in Problem 8.19;

y

�
\

\ x

.........._
___ /

(b) displays a figure with plots of v x, v y and v as a function of time (three plots in one figure);

(c) displays a second figure with plots of ax, aY and a as a function of time (three plots in one figure).

t (s) 0 2 4 6 8 10 12 14

x(m) 61 72.8 81.9 87.9 90.9 90.8 87.3 80.5

y(m) 65 46.7 30.3 15.8 3.2 -7.4 -15.8 -22.1

t (s) 16 18 20 22 24 26 28 30

x(m) 70.4 56.9 39.9 19.4 -4.6 -32.2 -63.3 -98

y(m) -26.2 -28.1 -27.9 -25.3 -20.5 -13.4 -4.1 7.6

340 Chapter 8 Numerical Differentiation

8.40 The position of the roller coaster cars (x and y coordinates) as

a function of time, t, is given in the table that follows. Determine the

velocity, v, given by v = Jv;+vy2, where vx = dx
and vy = <!J:., and

dt dt

the acceleration, a, given by a= Ja;+ay2, where ax= d 2x and
dt2

ay = d 2y of the cars. Write a MATLAB program in a script file
a12

that:

y(m)
35
30
25 20 15
10
5
0 x(m) 120

(a) Determines v and a as a function of time. (The user-defined functions FirstDeri vUneq and Snd
Deri vUneq can be used if Problems 8.23 and 8.24 were solved.)

(b) Displays plots of y versus x, v versus x, and a versus x. (Three figures on one page.)

t (s) 0 1 2 2.5 3 3.5 4 4.5

x (m) 0 4.1 14.9 25.4 37.5 48.4 59 69.6

Y (m) 31.6 22.3 7.1 2 3.54 7.6 10 8.2

8.41 The nondimensional stream function ..Y.. for potential flow
UR

over a cylinder of radius R in an incompressible flow of uniform

velocity U is given in the following table as a function of the non

dimensional coordinate r/R and the polar angle 8. The non

dimensional radial component u/U and the azimuthal compo

nent ur/U of the velocity are given by:

5

80.3

4.3

Ur_ 1 a(rYR) U9 a(rYR)
and-=---- - -----

u (r!R) a0 U o(r/R)

5.5 6

92.2 103.5

1.8 5.7

7 8

115.3 119.8

21.2 31.1

Calculate u/U and uefU at every point. Write a MATLAB program that uses two-point central difference

formulas at the interior points and one-sided three-point forward and backward difference formulas at the

endpoints. The user-defined function ParDer can be used instead if Problem 8.25 was solved.

8=0° 8=36° 8=72° 8=108° 8=144° 8=180° 8=216° 8=252° 8=288° 8=324° 8=360°

r/R=0.2 0 -2.8214 -4.5651 -4.5651 -2.8214 0 2.8214 4.5651 4.5651 2.8214 0

r!R=0.6 0 -0.6270 -1.0145 -1.014 -0.6270 0 0.6270 1.0145 1.0145 0.6270 0

r!R=l.0 0 0 0 0 0 0 0 0 0 0 0

r/R=l.4 0 0.4031 0.6522 0.6522 0.4031 0 -0.4031 -0.6522 -0.6522 -0.4031 0

r/R=l.8 0 0.7315 1.1835 1.1835 0.7315 0 -0.7315 -1.1835 -1.1835 -0.7315 0

r!R=2.2 0 1.0260 1.6600 1.6600 1.0260 0 -1.0260 -1.6600 -1.6600 -1.0260 0

r/R=2.6 0 1.3022 2.1070 2.1070 1.3022 0 -1.3022 -2.1070 -2.1070 -1.3022 0

r!R=3.0 0 1.5674 2.5362 2.5362 1.5674 0 -1.5674 -2.5362 -2.5362 -1.5674 0

Chapter9

Numerical Integration

Core Topics
Rectangle and midpoint methods (9.2).

Trapezoidal method (9.3).

Complementary Topics
Estimation of error (9.8).

Richardson's extrapolation (9.9).

Romberg integration (9.10).

Improper integrals (9.11).

Simpson's methods (9.4).

Gauss quadrature (9.5).

Evaluation of multiple integrals (9.6).

Use of MATLAB built-in functions for integration

(9.7).

y

y=f(x)

x

Figure 9-1: Length of a curve.

y
b

a
t dy

1-w-I x

Figure 9-2: Heat flux through a
rectangular cross section.

9.1 BACKGROUND

Integration is frequently encountered when solving problems and calcu

lating quantities in engineering and science. Integration and integrals

are also used when solving differential equations. One of the simplest

examples for the application of integration is the calculation of the

length of a curve (Fig. 9-1). When a curve in the x-y plane is given by

the equation y = f (x), the length L of the curve between the points

x = a and x = b is given by:

L = J: J1 + [f'(x)]2dx

In engineering there are circumstances that involve experimental or

test data, where a physical quantity that has to be determined may be

expressed as an integral of other quantities that are measured. For

example, the total rate of heat flow through a cross section of width W
and height (b - a) is related to the local heat flux via an integral (see

Fig. 9-2):

. y=b
Q = f

y
�:Wdy

where q" is the heat flux and Q is the heat flow rate. Experimental

measurements may yield discrete values for the heat flux along the sur

face as a function of y, but the quantity to be determined may be the

total heat flow rate. In this instance, the integrand may be specified as a

known set of values for each value of y.

341

342

r
�,(r)

Figure 9-3: Exhaust of a rocket
engine.

y

x
a b

Figure 9-4: Definite integral of
f(x) between a and b.

y
y=f(x)

l(f) x
a b

Figure 9-5: Finite number of
points are used in numerical
integration.

Chapter 9 Numerical Integration

As yet another illustration, consider the exhaust of a rocket engine

generating thrust. As shown in Fig. 9-3, the velocity and density of the

flow exiting the rocket nozzle are not uniform over the cross-sectional

area. For a circular cross section, both will vary with the radial coordi

nate r. The resulting expression for the magnitude of the thrust can be

obtained from conservation of momentum at steady state:

- f R 2 T - 0 2np(r) Vex;i(r)rdr

where Tis the thrust, p(r) is the mass density of the fluid, Vex;lr) is the

velocity profile at the exit plane of the engine, r is the radial coordinate,

and R is the radius of the rocket nozzle at the exit plane. Computational

fluid dynamics calculations can yield p(r) and vexit(r), but the thrust (a

quantity that can be measured in experiments or tests) must be obtained

by integration.

The general form of a definite integral (also called an antideriva

tive) is:

I(f) = J: f(x)dx (9.1)

where f(x), called the integrand, is a function of the independent vari

able x, and a and b are the limits of the integration. The value of the

integral I(f) is a number when a and b are numbers. Graphically, as

shown in Fig. 9-4, the value of the integral corresponds to the shaded

area under the curve of f(x) between a and b.

The need for numerical integration

The integrand can be an analytical function or a set of discrete points

(tabulated data). When the integrand is a mathematical expression for

which the antiderivative can be found easily, the value of the definite

integral can be determined analytically. Numerical integration is needed

when analytical integration is difficult or not possible, and when the

integrand is given as a set of discrete points.

9. 1.1 Overview of Approaches in Numerical Integration

Numerical evaluation of a single integral deals with estimating the

number I(f) that is the integral of a function f(x) over an interval

from a to b. If the integrand f(x) is an analytical function, the numeri

cal integration is done by using a finite number of points at which the

integrand is evaluated (Fig. 9-5). One strategy is to use only the end

points of the interval, (a, f(a)) and (b, f(b)). This, however, might not

give an accurate enough result, especially if the interval is wide and/or

the integrand varies significantly within the interval. Higher accuracy

can be achieved by using a composite method where the interval [a, b]
is divided into smaller subintervals. The integral over each subinterval

is calculated, and the results are added together to give the value of the

9.1 Background

y Closed
integration
method /

,,,..- .. �
/ l(f) x

a b

y Open
integration
method / ,,..- ... , /

-i I (f) x
a b

Figure 9-6: Closed and open
integration methods.

y

Figure 9-7: Integrating f(x)
using an integrable F(x)
function.

343

whole integral. If the integrand f(x) is given as a set of discrete points
(tabulated data), the numerical integration is done by using these points.

In all cases the numerical integration is carried out by using a set of
discrete points for the integrand. When the integrand is an analytical

function, the location of the points within the interval [a, b] can be

defined by the user or is defined by the integration method. When the

integrand is a given set of tabulated points (like data measured in an
experiment), the location of the points is fixed and cannot be changed.

Various methods have been developed for carrying out numerical
integration. In each of these methods, a formula is derived for calculat

ing an approximate value of the integral from discrete values of the
integrand. The methods can be divided into groups called open methods
and closed methods.

Closed and open methods

In closed integration methods, the endpoints of the interval (and the
integrand) are used in the formula that estimates the value of the inte
gral. In open integration methods, the interval of integration extends
beyond the range of the endpoints that are actually used for calculating
the value of the integral (Fig. 9-6). The trapezoidal (Section 9.3) and
Simpson's (Section 9.4) methods are closed methods, whereas the
midpoint method (Section 9.2) and Gauss quadrature (Section 9.5) are
open methods.

There are various methods for calculating the value of an integral
from the set of discrete points of the integrand. Most commonly, it is
done by using Newton-Cotes integration formulas.

Newton-Cotes integration formulas

In numerical integration methods that use Newton-Cotes integration
formulas, the value of the integrand between the discrete points is esti
mated using a function that can be easily integrated. The value of the
integral is then obtained by integration. When the original integrand is
an analytical function, the Newton-Cotes formula replaces it with a

simpler function. When the original integrand is in the form of data
points, the Newton-Cotes formula interpolates the integrand between
the given points. Most commonly, as with the trapezoidal method (Sec

tion 9.3) and Simpson's methods (Section 9.4), the Newton-Cotes inte
gration formulas are polynomials of different degrees.

A different option for integration, once the integrand f(x) is speci

fied as discrete points, is to curve-fit the points with a function F(x)
that best fits the points. In other words, as shown in Fig. 9-7,
f(x) :::J F(x), where F(x) is a polynomial or a simple function whose

antiderivative can be found easily. Then, the integral

I(f) = J:!(x)dx:::J J}'(x)dx

344 Chapter 9 Numerical Integration

is evaluated by direct analytical methods from calculus. This procedure

requires numerical methods for finding F(x) (Chapters 6 and 8), but

may not require a numerical method to evaluate the integral if F(x) is

an integrable function.

9.2 RECTANGLE AND MIDPOINT METHODS

Rectangle method

The simplest approximation for J: f(x)dx is to take f(x) over the inter

val x E [a, b] as a constant equal to the value of f(x) at either one of

the endpoints (Fig. 9-8).

Exact integral Approximating the integral
assuming.f{x)=.f{a)

Approximating the integral
assuming.f{x)=.f{b)

y

flb)

fla) -

y y

j{b)

fla) -

I(f) J(f) I(f)
x x

a b a b a

Figure 9-8: Integration using the rectangle method.

The integral can then be calculated in one of two ways:

x

b

I(f)= J:f(a)dx = f(a)(b-a) or !(/)= J:!(b)dx = f(b)(b-a) (9.2)

As Fig. 9-8 shows, the actual integral is approximated by an area of a

rectangle. Obviously for the monotonically increasing function shown,

the value of the integral is underestimated when f (x) is assumed to be

equal to /(a), and overestimated when /(x) is assumed to be equal to

f (b). Moreover, the error can be large. When the integrand is an ana

lytical function, the error can be significantly reduced by using the com

posite rectangle method.

Composite rectangle method

In the composite rectangle method the domain [a, b] is divided into N

subintervals. The integral in each subinterval is calculated with the rect

angle method, and the value of the whole integral is obtained by adding

the values of the integrals in the subintervals. This is shown in Fig. 9-9
where the interval [a, b] is divided into N subintervals by defining the

points x1,x2, . . • ,xN+t ·The first point is x1 =a and the last point is

x N + 1 = b (it takes N + 1 points to define N intervals). Figure 9-9 shows

subintervals with the same width, but in general, the subintervals can

have arbitrary width. In this way smaller intervals can be used in

9.2 Rectangle and Midpoint Methods 345

regions where the value of the integrand changes rapidly (large slopes)

and larger intervals can be used when the integrand changes more grad

ually.

In Fig. 9-9, the integrand in each subinterval is assumed to have the
value of the integrand at the beginning of the subinterval. By using Eq.

(9.2) for each subinterval, the integral over the whole domain can be
written as the sum of the integrals in the subintervals:

Ii 12 L

I(f) = J: f(x)dx::::: f(x1)(x2-x1) + f(x2)(x3-x2) + ... + f(x;)(x;+1-x;)

y

ffh) -------------- I I fix;) -------- I
fix2) --- I I
fix,) I I

Ii I JNI
h w x

X2 X3 X; X�l XN t
X1=a XN+I =b

Figure 9-9: The composite
rectangle method.

y

l(f)

a (a+b) b
2

Figure 9-10: The midpoint
method.

x

N
+ ... + f(xN)(xN+ 1 -xN) = L [f(x;)(x;+ 1 -x;)]

i = I
IN

(9.3)

When the subintervals have the same width, h, Eq. (9.3) can be simpli

fied to:

I(f) = f f(x)dx:::::hf f(x;)
a

i = I
(9.4)

Equation (9.4) is the formula for the composite rectangle method for the

case where the subintervals have identical width h.
Midpoint method

An improvement over the naive rectangle method is the midpoint

method. Instead of approximating the integrand by the values of the

function at x =a or at x = b, the value of the integrand at the middle of

the interval, that is, f (Ca; b)), is used. Substituting into Eq. (9.1)
yields:

f b J b (a+ b\ (a+ b\ l(f) = f(x)dx::::: f -) dx = f -/b-a)
a a 2 2

(9.5)

This method is depicted graphically in Fig. 9-10. As can be seen, the

value of the integral is still approximated as the area of a rectangle, but

with an important difference-the area is that of an equivalent rectan

gle. This turns out to be more accurate than the rectangle method

because for a monotonic function as shown in the figure, the regions of

the area under the curve that are ignored may be approximately offset

by those regions above the curve that are included. However, this is not

true for all cases, so that this method may still not be accurate enough.

As in the rectangle method, the accuracy can be increased using a com

posite midpoint method.

346

y
y=f(x)

j(xwt2xN+i) ______________ _

.f(�)
.f{X1�X2) _

12
I

h

I
I

I I
I I
I 1 I
I i I
I I I
w
X; X;+1

Chapter 9 Numerical Integration

Composite midpoint method

x

Figure 9-11: The composite midpoint method.

In the composite midpoint method, the domain

[a, b] is divided into N subintervals. The integral in

each subinterval is calculated with the midpoint

method, and the value of the whole integral is

obtained by adding the values of the integrals in the

subintervals. This is shown in Fig. 9-11 where the

interval [a, b] is divided into N subintervals by

defining the points x 1, x2, ... , x N + 1 • The first point is

x1 = a and the last point is xN + 1 = b (it takes N + 1
points to define N intervals). Figure 9-11 shows

subintervals with the same width, but in general, the

subintervals can have arbitrary width.

By using Eq. (9.5) for each subinterval, the integral over the whole

domain can be written as the sum of the integrals in the subintervals:

11 12

(x;+X;+1) (xN+xN+l) + f 2 (x;+1-x) + · · · + f 2 (xN+l -xN)

= �[! (x;+;;+1)<x;+1-x;)J (9.6)

When the subintervals have the same width, h, Eq. (9.6) can be simpli

fied to:

(9.7)

Equation (9. 7) is the formula for the composite midpoint method for the

case where the subintervals have identical width h.

9.3 TRAPEZOIDAL METHOD

A refinement over the simple rectangle and midpoint methods is to use

a linear function to approximate the integrand over the interval of inte

gration (Fig. 9-12). Newton's form of interpolating polynomials with

two points x = a and x = b , yields:

f(x) � f(a) + (x-a)f [a, b] = f(a) + (x-a)[f(b)-f(a)] (9.8) b-a
Substituting Eq. (9.8) into Eq. (9.1) and integrating analytically gives:

9.3 Trapezoidal Method 347

y

fib)

a

Area
=t(b-a)(.f{b) -./{a))

x

b

I(f)::::J
b
(f(a)+(x-a)[f(b)-f(a)]) dx

a b-a

= f(a)(b-a)+![f(b)-f(a)](b-a) (9.9)
2

Simplifying the result gives an approximate formula popularly

known as the trapezoidal rule or trapezoidal method:

I(f):::: [f(a) + f(b)](b-a)
2

(9.10)

Examining the result before the simplification, that is, the right

hand side of Eq. (9.9), shows that the first term, f(a)(b-a) ,
represents the area of a rectangle of height f(a) and length

Figure 9-12: The trapezoidal method.
(b -a) . The second term, �[f(b)-f(a)](b -a), is the area of

the triangle whose base is (b -a) and whose height is

y

fib)

fia)
I
I
I

y=f(x)

I Ii Ii
I
I

[f(b)-f(a)]. These are shown in Fig. 9-12 and serve to reinforce the

notion that in this method the area under the curve f(x) is approxi

mated by the area of the trapezoid (rectangle +triangle). As shown in

Fig. 9-12, this is more accurate than using a rectangle to approximate

the shape of the region under f(x).
As with the rectangle and midpoint methods, the trapezoidal

method can be easily extended to yield any desired level of accuracy by

subdividing the interval [a, b] into subintervals.

9.3. 1 Composite Trapezoidal Method

x

The integral over the interval [a, b] can be evaluated more

accurately by dividing the interval into subintervals, evaluating

the integral for each subintervals (with the trapezoidal method),

and adding the results. As shown in Fig. 9-13, the interval

[a, b] is divided into N subintervals by defining the points

x 1, x2, ... , x N + 1 where the first point is x 1
= a and the last point

is x N + 1
=
b (it takes N + 1 points to define N intervals).

The integral over the whole interval can be written as the

sum of the integrals in the subintervals:
X; X;+J XN t

XN+I =b
Figure 9-13: The composite trapezoidal
method. I(f) = J: f(x)dx = L�Z(x)dx + L:3 f(x)dx + ... + L�j](x)dx

XN+l � X;+l + ... + L
N
f(x)dx = �t f(x)dx (9.11)

IN

348 Chapter 9 Numerical Integration

Applying the trapezoidal method to each subinterval [x;, X;+ tl yields:

I; (f) = fx;f(x)dx>::: [f(x;)+:(x;+i)](x;+1-x;)
X

;

Substituting the trapezoidal approximation in the right side of Eq. (9 .11)
gives:

b 1
N

I(f) = t f (x)dx >::: 2� [f(x;) + f(xi+ 1)](x;+ 1 -x;) (9.12)

Equation 9.12 is the general formula for the composite trapezoidal

method. Note that the subintervals [x;, X;+ tl need not be identical (i.e.,

equally spaced) at all. In other words, each of the subintervals can be of

different width. If, however, the subintervals are all the same width, that

is, if

(x2-X1) = (x3-X2) =
. . .

= (X;+i-x;) =
. . .

= (xN-XN-1) = h

then Eq. (9.12) can be simplified to:

h
N

I(f)>:::2� [f(x;+1)+ f(x;)]

This can be further reduced to a formula that lends itself to program

ming by expanding the summation:

or,

I(f) >::: �[f(a) + 2/(x2) + 2f(x3) + ... + 2f(xN) + f(b)] 2

N
I(f) >::: �[f(a) + f(b)] + h Lf(x;) 2 i = 2

(9.13)

Equation (9 .13) is the formula for the composite trapezoidal method for

the case where the subintervals have identical width h.
Example 9-1 shows how the composite trapezoidal method is pro

grammed in MATLAB and then used for solving a problem.

Example 9-1: Distance traveled by a decelerating airplane.

A Boeing 737-200 airplane of mass m = 97000 kg

lands at a speed of 93 mis (about 181 knots) and

applies its thrust reversers at t = 0. The force F that is

applied to the airplane, as it decelerates, is given by

F = -5v2 -570000, where vis the airplane's velocity.

Using Newton's second law of motion and flow

dynamics, the relationship between the velocity and the position x of the airplane can be written as:

mv dv
= -5v2 -570000 dx

where xis the distance measured from the location of the jet at t = O.

9.3 Trapezoidal Method 349

Determine how far the airplane travels before its speed is reduced to 40 mis (about 78 knots) by

using the composite trapezoidal method to evaluate the integral resulting from the governing differ

ential equation.

SOLUTION
Even though the governing equation is an ODE, it can be expressed as an integral in this case. This is

done by separating the variables such that the speed v appears on one side of the equation and x

appears on the other.

97000vdv
_ dx (- 5v2- 570000)

Next, both sides are integrated. For x the limits of integration are from 0 to an arbitrary location x,

and for v the limits are from 93 mis to 40 mis.

rx f40 97000v f 93 97000v
Jo

dx =

-J93 (5v2 + 570000) dv
=

40 (5v2 + 570000) dv
(9.14)

The objective of this example is to show how the definite integral on the right-hand side of the equa

tion can be determined numerically using the composite trapezoidal method. In this problem, how

ever, the integration can also be carried out analytically. For comparison, the integration is done both

ways.

Analytical Integration
The integration can be carried out analytically by using substitution. By substituting

z = 5u2 + 570000, the integration can be performed to obtain the value x = 574.1494 m.

Numerical Integration
To carry out the numerical integration, the following user-defined function, named trapezoidal,
is created.

[Program 9-1: Function file, integration trapezoidal method.]
function I = trapezoidal(Fun,a,b,N)

% trapezoidal numerically integrate using the composite trapezoidal method.

% Input Variables:

% Fun Name for the function to be integrated.

% (Fun is assumed to be written with element-by-element calculations.)

% a Lower limit of integration.

% b Upper limit of integration.

% N Number of subintervals.

% Output Variable:

% I Value of the integral.

h = (b-a)/N;

x = a:h:b;

F = Fun(x);

Calculate the width h of the subintervals.]
Create a vector x with the coordinates of the subintervals. J

Create a vector F with the values of the integrand at each point x.

I =h* (F (1) + F (N+ 1)) /2 + h*sum(F (2 :N)); [Calculate the value of the integral according to Eq. (9.13).]

350 Chapter 9 Numerical Integration

The function trapezoidal is used next in the Command Window to determine the value of the

integral in Eq. (9.14). To examine the effect of the number of subintervals on the result, the function

is used three times using N = 10, 100 , and 1000. The display in the Command Window is:

>> format long g

>> Vel =@ (v) 97000*v./(5*v.A2+570000);

>> distance = trapezoidal(Vel,40,93,10)

distance =

574.085485133712

>> distance = trapezoidal(Vel,40,93,100)

distance =

574.148773931409

>> distance = trapezoidal(Vel,40,93,1000)

distance =

574.149406775129

Define an anonymous function for the integrand.
Note element-by-element calculations.

As expected, the results show that the integral is evaluated more accurately as the number of subin

tervals is increased. When N = 1000, the answer is the same as that calculated analytically to four

decimal places.

y

x

Example 9-1 reveals two key points:

• It is important to check results from numerical computations (per

formed either by hand or by computer), against known analytical

solutions. In the event an analytical solution is not available, it is

necessary to check the answer by another numerical method and to

compare the two results.

• In most problems involving numerical integration, it is possible to

improve on the accuracy of an answer by taking more subintervals,

that is, by reducing the size of the subinterval.

9.4 SIMPSON'S METHODS

The trapezoidal method described in the last section relies on approxi

mating the integrand by a straight line. A better approximation can pos

sibly be obtained by approximating the integrand with a nonlinear

function that can be easily integrated. One class of such methods, called

Simpson's rules or Simpson's methods, uses quadratic (Simpson's 1/3
method) and cubic (Simpson's 3/8 method) polynomials to approximate

the integrand.

9.4.1 Simpson's 113 Method

Figure 9-14: Simpson's 1/3
Method.

In this method, a quadratic (second-order) polynomial is used to

approximate the integrand (Fig. 9-14). The coefficients of a quadratic

polynomial can be determined from three points. For an integral over

the domain [a, b] , the three points used are the two endpoints x 1 = a,

9.4 Simpson's Methods 351

x3 = b , and the midpoint x2 = (a+ b)12 . The polynomial can be writ

ten in the form:

(9.15)

where a, �. and y are unknown constants evaluated from the condition

that the polynomial passes through the points, p(x1) = f(x1),
p(x2) = f(x2), and p(x3) = f(x3). These conditions yield:

a.= f(x1), 13 = [f(x2)-f(x1)]/(x2 -x1) , and y = f(x3)-2����) + f(xi)

where h = (b-a)/2 . Substituting the constants back in Eq. (9.15) and

integrating p(x) over the interval [a, b] gives:

I = J x3f(x)dx � J x3p(x)dx = �[f(x1) + 4f(x2) + f(x3)] x1 x1 3
= Hf(a)+4f (a;b) + f(b)J (9.16)

The value of the integral is shown in Fig. 9-14 as the shaded area

between the curve of p(x) and the x axis. The name 1/3 in the method

comes from the fact that there is a factor of 1/3 multiplying the expres

sion in the brackets in Eq. (9.16).
As with the rectangular and trapezoidal methods, a more accurate

evaluation of the integral can be done with a composite Simpson's 1/3
method. The whole interval is divided into small subintervals.

Simpson's 1/3 method is used to calculate the value of the integral in

each subinterval, and the values are added together.

Composite Simpson's 113 method
In the composite Simpson's 1/3 method (Fig. 9-15) the whole interval

[a, b] is divided into N subintervals. In general, the subintervals can

have arbitrary width. The derivation here, however, is limited to the

case where the subintervals have equal width h, where h = (b - a) IN .
Since three points are needed for defining a quadratic polynomial, the

Simpson's 1/3 method is applied to two adjacent subintervals at a time

(the first two, the third and fourth together, and so on). Consequently,

the whole interval has to be divided into an even number of

subintervals.

The integral over the whole interval can be written as the sum of the

integrals of couples of adjacent subintervals.

I(f) = r f(x)dx = f f(x)dx + f }(x)dx + ... + f'.f1(x)dx + ... a x1=a x3 X;_1
N

+ rN!(�)dx =. L f XJ(x)dx
XN-1 1=2,4,6 Xi-1

IN

(9.17)

352 Chapter 9 Numerical Integration

y

1.
11

h I h h h

X;-1 X; X;+J

Figure 9-15: Composite Simpson's 1/3 method.

x

By using Eq. (9.16), the integral over two adjacent intervals [x;_ 1, x;]
and [x;, X;+ i] can be written in terms of the Simpson's 1/3 method by:

f X;+J h l ;(f)= x1�(x)dx-;::;3[f(x;_1)+4f(x;)+f(x;+1)] (9.18)

where h= X;+i -x; = x;-X;_1. SubstitutingEq. (9.18) inEq. (9.17) for

each of the integrals gives:

l(J)-;::; �[f(a) + 4f(x2) + f(x3) + f(x3) + 4f(x4) + f(x5) + f(x5) + 4f(x6)
3

+ f(x7) + ... + f(xN-1) + 4f(xN) + f(b)]
By collecting similar terms, the right side of the last equation can be

simplified to give the general equation for the composite Simpson's 1/3

method for equally spaced subintervals:

[
N N-1

l I(f)-;::; � f(a) + 4_ L f(x;) + 2_L f(xj) + f(b) ' - 2, 4, 6 J - 3, 5, 7

where h= (b-a)/N.

(9.19)

Equation (9.19) is the composite Simpson's 113 formula for numerical

integration. It is important to point out that Eq. (9.19) can be used only

if two conditions are satisfied:

• The subintervals must be equally spaced.

• The number of subintervals within [a, b] must be an even number.

Equation (9 .19) is a weighted addition of the value of the function

at the points that define the subintervals. The weight is 4 at all the

points x; with an even index. These are the middle points of each set of

9.4 Simpson's Methods

Figure 9-17: Simpson's 3/8
method.

x

353

two adjacent subintervals (see Eq. (9.18)). The weight is 2 at all the
points x; with an odd index (except the first and last points). These

points are at the interface between adjacent pairs of subintervals. Each
point is used once as the right endpoint of a pair of subinterval and once
as the left endpoint of the next pair of subintervals. The endpoints are
used only once. Figure 9-16 illustrates the weighted addition according

y

1 4 4 2 4 2 4 2 4 2 4 1

1 4

I
I

I I
I I

I i10
I I
I I
I I

4

12

X2 X3 X4 X5 X6 X7 Xg X9 X10 X11 X12 t
X13= b

x

Figure 9-16: Weighted addition with the composite Simpson's 1/3 method.

to Eq. (9 .19) for a domain [a, b] that is divided into 12 subintervals.

Applying Eq. (9.19) to this illustration gives:
h I(f) ""3 { f(a) + 4[f(xz) + f(x4) + f(x6) + f(xs) + f(x10) + f(x12)]

+2[f(x3)+ f(x5)+ f(x7)+ f(x9)+ f(x11)]+ f(b)}

9.4.2 Simpson's 318 Method

In this method a cubic (third-order) polynomial is used to approximate
the integrand (Fig. 9-17). A third-order polynomial can be determined

from four points. For an integral over the domain [a, b], the four points

used are the two endpoints x1 =a and x4 = b, and two points x2 and x3
that divide the interval into three equal sections. The polynomial can be

written in the form:

p(x) = C3X
3
+ CzX

2
+ C1X +Co

where c3, c2, c1, and c0 are constants evaluated from the conditions

that the polynomial passes through the points, o(x1) = f(x1),

p(x2) = f(x2), o(x3) = f(x3), and p(x4) = f(x4). Once the constants are

determined, the polynomial can be easily integrated to give:

354

y

Chapter 9 Numerical Integration

I= J bf(x)dx� J bp(x)dx = �h[f(a)+3f(x2)+3f(x3)+ f(b)] (9.20)
a a 8

The value of the integral is shown in Fig. 9-17 as the shaded area

between the curve of p(x) and the x axis. The name 3/8 method comes

from the 3/8 factor in the expression in Eq. (9.20). Notice that Eq.

(9.20) is a weighted addition of the values of f(x) at the two endpoints

x1 =a and x4 = b, and the two points x2 and x3 that divide the interval

into three equal sections.
As with the other methods, a more accurate evaluation of the inte

gral can be done by using a composite Simpson's 3/8 method.

Composite Simpson's 318 Method
1 3 3 2 3 3 2 3 3 3 3 1

In the composite Simpson's 3/8 method,

the whole interval [a, b] is divided into N

subintervals. In general, the subintervals
can have arbitrary width. The derivation
here, however, is limited to the case where
the subintervals have an equal width h,
where h = (b - a)/ N. Since four points

are needed for constructing a cubic poly
nomial, the Simpson's 3/8 method is I

I
I
I
I

3 3

I h h h
t X2

I I I I
3 3

I

3 3

x

applied to three adjacent subintervals at a
time (the first three, the fourth, fifth, and
sixth intervals together, and so on). Con
sequently, the whole interval has to be

divided into a number of subintervals that
is divisible by 3.

The integration in each group of three Figure 9-18: Weighted addition with the composite
Simpson's 3/8 method.

adjacent subintervals is evaluated by using
Eq. (9 .20). The integral over the whole domain is obtained by adding
the integrals in the subinterval groups. The process is illustrated in Fig.

9-18 where the whole domain [a, b] is divided into 12 subintervals that

are grouped in four groups of three subintervals. Using Eq. (9.20) for
each group and adding the four equations gives:

For the general case when the domain [a, b] is divided into N subin

tervals (where N is at least 6 and divisible by 3), Eq. (9 .21) can be gen

eralized to:

9.5 Gauss Quadrature 355

Equation (9.22) is Simpson's 318 method for numerical integration.

Simpson's 3/8 method can be used if the following two conditions are

met:

• The subintervals are equally spaced.

• The number of subintervals within [a, b] must be divisible by 3.

Since Simpson's 1/3 method is only valid for an even number of

subintervals and Simpson's 3/8 method is only valid for a number of

subintervals that is divisible by 3, a combination of both can be used for

integration when there are any odd number of intervals. This is done by

using Simpson's 3/8 method for the first three subintervals ([a, x2],

[x2, x3], and [x3, x4]) or for the last three subintervals ([xN _ 2 , xN _ i],

[xN_1,xN], and [xN,xh]), and using Simpson's 1/3 method for the

remaining even number of subintervals. Such a combined strategy

works because the order of the numerical error is the same for both

methods (see Section 9.8).

9.5 GAUSS QUADRATURE

Background

In all the integration methods that have been presented so far, the inte

gral of f(x) over the interval [a, b] was evaluated by approximating

f(x) with a polynomial that could be easily integrated. Depending on

the integration method, the approximating polynomial and f(x) have

the same value at one (rectangular and midpoint methods), two (trape

zoidal method), or more points (Simpson's methods) within the inter

val. The integral is evaluated from the value of f(x) at the common

points with the approximating polynomial. When two or more points

are used, the value of the integral is calculated from weighted addition

of the values of f(x) at the different points. The location of the com

mon points is predetermined in each of the integration methods. All the

methods have been illustrated so far, using points that are equally

spaced. The various methods are summarized in the following table.

Integration Values of the function used in evaluating the
Method integral

Rectangle f(a) or f(b) (Either one of the endpoints.)
Equation (9.2)

Midpoint f((a + b)/2) (The middle point.)
Equation (9.5)

Trapezoidal f(a) and f(b) (Both endpoints.)
Equation (9.9)

356 Chapter 9 Numerical Integration

Integration Values of the function used in evaluating the
Method integral

Simpson's 1/3 f(a), f(b), and f((a+ b)/2) (Both endpoints and
Equation (9.16) the middle point.)

Simpson's 3/8
f(a), f(b), f (a+�(a+b)),and f (a+�(a+b)) Equation (9.20)
(Both endpoints and two points that divide the interval
into three equal-width subintervals.)

In Gauss quadrature, the integral is also evaluated by using

weighted addition of the values of f(x) at different points (called Gauss

points) within the interval [a, b] . The Gauss points, however, are not

equally spaced and do not include the endpoints. The location of the

points and the corresponding weights of f(x) are determined in such a

way as to minimize the error.

General form of Gauss quadrature

The general form of Gauss quadrature is:

n

f b f(x)dx ';:::; '° c. f(x.)
a

£...t 1 1

i = 1
(9.23)

where the coefficients C; are the weights and the x; are points (Gauss

points) within the interval [a, b]. For example, for n = 2 and n = 3

Eq. (9.23) has the form:

Lb f(x)dx:::; cl f (x1) + C2 f (x2) ' Lb f(x)dx:::; cl f (x1) + C2 f (x2) + C3 f (x3)

The value of the coefficients C; and the location of the points x; depend

on the values of n, a, and b, and are determined such that the right side
of Eq. (9.23) is exactly equal to the left side for specified functions

f(x).

Gauss quadrature integration of f_11 f(x)dx

For the domain [-1, 1] the form of Gauss quadrature is:
n

J_11 f (x)dx ';:::; L C; f (x;)
1 = 1

(9.24)

The coefficients C; and the location of the Gauss points x; are deter

mined by enforcing Eq. (9.24) to be exact for the cases when

f (x) = 1, x, x2, x3, The number of cases that have to be considered
depends on the value of n. For example, when n = 2:

(9.25)

9.5 Gauss Quadrature

-1 1
J3

x

Figure 9-19: Gauss quadrature
integration of f(x) = x2•

357

The four constants Ct> C2, x1, and x2 are determined by enforcing Eq.

(9.25) to be exact when applied to the following four cases:

Case 1: f(x) = 1 J 1
(l)dx = 2 = C1 +C2

-I

Case 2: f(x) = x

Case 3: f (x) = x2

f 1
xdx = 0 = C1x1 +C2x2 -1

f 1
x2dx = � = C x2 + C x2

-1 3 1 1 2 2

Case 4: f(x) = x3 J 1x3dx = 0 = C1xf + C2x�
-1

The four cases provide a set of four equations for the four unknowns.

The equations are nonlinear, which means that multiple solutions can

exist. One particular solution can be obtained by imposing an additional

requirement. Here the requirement is that the points x 1 , and x2 should

be symmetrically located about x = 0 (x1 = -x2). From the second

equation, this requirement implies that C 1 = C 2. With these require

ments, solving the equations gives:

C1 = 1' C2 = 1 , X1 = --1
= -0.57735027' X2 = -1

= 0.57735027
J3 J3

Substituting the constants back in Eq. (9.25) gives (for n = 2):

cl f(x)dx� f (-�) + f (�) (9.26)

The right-hand side of Eq. (9.26) gives the exact value for the integral

on the left hand side of the equation when f (x) = 1, f (x) = x,

f (x) = x2, or f (x) = x3• This is illustrated in Fig. 9-19 for the case

where f (x) = x2• In this case:

1 (-_!_) 2
+ 1 (J_) 2

J3 J3
(9.27)

The value of the integral ftdx is the area under the curve f(x) = x2•

The right-hand side of Eq. (9.27) is the area under the colored horizon

tal line. The two areas are identical since the area between f (x) and the

colored line for lxl > 1/(J3) is the same as the area that is between the

colored line and f(x) for lxl < ll(J3) (the light shaded areas that are

above and below the colored line have the same area).

When f (x) is a function that is different from f (x) = 1 ,

f (x) = x, f (x) = x2 , or f (x) = x3, or any linear combination of

these, Gauss quadrature gives an approximate value for the integral. For

example, if /(x) = cos(x), the exact value of the integral (the left-hand

side of Eq. (9 .26) is:

358

-1 _ _L
,J3

0.5

y = .f{x) = cos(x)

I

...L
,J3

Figure 9-20: Gauss
quadrature integration of
f(x) = cos(x).

x

Chapter 9 Numerical Integration

f 1cos(x)dx = sin(x)l�1 = sin(l)- sin(-1) = 1.68294197
-1

The approximate value of the integral according to Gauss quadrature
(the right-hand side of Eq. (9.26)) is:

cos(�) +cos(�) = 1.67582366

These results show that Gauss quadrature gives a very good approxima
tion (error of a 4.2%) for the integral, but not the exact value. The last
integration is illustrated in Fig. 9-20, where the exact integration is the
area under the curve f(x) = cos(x) and the approximate value of the

integral according to Gauss quadrature is the area under the red line. In
this case the two areas are not exactly identical. The light shaded area
under the red line is a little bit (4.2%) smaller than the light shaded area
that is above the red line.

The accuracy of Gauss quadrature can be increased by using a

higher value for n in Eq. (9.24). For n = 3 the equation has the form:

f_11 f (x)dx ';::j C1 f (x1) + C2 f (x2) + C3 f (x3) (9.28)

In this case there are six constants: C1' C2, C3, x1, x2, and x3• The con

stants are determined by enforcing Eq. (9.28) to be exact when

f(x) = 1, f(x) = x, f(x) = x
2
, f(x) = x3, f(x) = x4, and f(x) = x5• This

gives a set of six equations with six unknowns. (The process of finding
the unknowns is the same as was done when the value of n was 2.) The
constants that are determined are:

C1 = 0.5555556, C2 = 0.8888889 , C3 = 0.5555556

X1 = -0.77459667, X2 = 0 , X3 = 0.77459667
The Gauss quadrature equation for n = 3 is then:

J 1
f(x)dx ';::j 0.5555556 f (-0.77459667) + 0.8888889 f (0)

(9.29) -I + 0.5555556/ (0.77459667)

As an example, the integral when f (x) = cos(x) is estimated again by

using Eq. (9.29):

J �os(x)dx ';::j 0.5555556cos(-0.77459667) + 0.8888889cos(O)
-1 + 0.5555556cos(0.77459667) = 1.68285982

This value is almost identical to the exact value that was calculated ear
lier.

The accuracy of Gauss quadrature can be increased even more by
using higher values for n. The general equation for estimating the value
of an integral is:

9.5 Gauss Quadrature 359

Table 9-1 lists the values of the coefficients C; and the location of the

Gauss points x; for n = 2, 3, 4, 5, and 6 .

Table 9-1: Weight coefficients and Gauss points coordinates.

n
Coefficients C; (Number

of points) (weights)

2 C1 = 1

C2 = 1

3 C1 = 0.5555556

C2 = 0.8888889

C3 = 0.5555556

4 CI = 0.3478548

C2 = 0.6521452

C3 = 0.6521452

C4 = 0.3478548

5 CI = 0.2369269

C2 = 0.4786287

C3 = 0.5688889

C4 = 0.4786287

C5 = 0.2369269

6 C1 = 0.1713245

C2 = 0.3607616

C3 = 0.4679139

C4 = 0.4679139

C5 = 0.3607616

C6 = 0.1713245

Gauss quadrature integration of Lb f(x)dx

Gauss points x;

X1 = - 0.57735027

X2 = 0.57735027

X1 = -0.77459667

X2 = 0

X3 = 0.77459667

X1 = -0.86113631

X2 = -0.33998104

X3 = 0.33998104

X4 = 0.86113631

X1 = -0.90617985

X2 = -0.53846931

X3 = 0

X4 = 0.53846931

X5 = 0.90617985

X1 = -0.93246951

X2 = -0.66120938

X3 = -0.23861919

X4 = 0.23861919

X5 = 0.66120938

x6 = 0.93246951

The weight coefficients and the coordinates of the Gauss points given in

Table 9-1 are valid only when the interval of the integration is [-1, l].

In general, however, the interval can have any domain [a, b] . Gauss

quadrature with the coefficients and Gauss points determined for the

[-1, 1] interval can still be used for a general domain. This is done by

using a transformation. The integral Lb f (x)dx is transformed into an

integral in the form J_1/U)dt. This is done by changing variables:

360 Chapter 9 Numerical Integration

1 x= -[t(b-a)+a+b] 2
1 dx = -(b - a)dt 2 and

The integration then has the form:

Jbf(x)dx = J
1 ! ((b - a)t+a+b) (b - a)dt

a -I 2 2
Example 9-2 shows how to use the transformation.

Example 9-2: Evaluation of a single definite integral using fourth-order Gauss

quadrature.

Evaluate J 0
3 e -x

2 dx using four-point Gauss quadrature.

SOLUTION

(9.31)

Step 1: Since the limits of integration are [0, 3], the integral has to be transformed to the form

J_11 f (t)dt. In the present problem a = 0 and b = 3. Substituting these values in Eq. (9 .31) gives:

x= � [t(b - a)+a+b] = � [!(3 - 0)+0+3] = �(t+ 1) and dx= �(b-a)dt = �(3 - 0)dt = �dt

Substituting these values in the integral gives:

f
3 2

f
l

f
1 3 -[�(I+ l)r I = e -x dx = f (t)dt = -e 2 dt 0 -1 -1 2

Step 2: Use four-point Gauss quadrature to evaluate the integral. From Eq. (9.30), and using Table

9-1:

I= f,f(t)dt�C1f(t1)+C2/(t2)+C3/(t3)+C4/(t4) = 0.3478548·/ (-0.86113631)
+ 0.6521452 . f (-0.33998104) + 0.6521452 . /(0.33998104) + 0.3478548 . f (0.86113631;

[3] 2 - -(t+ 1)
Evaluating f (t) = �e 2 gives: 2

2 [3]2 3 -[�((-0.86113631)+ 1)] 3 - 2((-0.33998104)+ 1) I = 0.3478548 -e 2 + 0.6521452 -e 2 2
-rn(0.33998104 + l)r -rn(0.86113631 + l)r

+ 0.6521452�e + 0.3478548�e = 0.8841359 2 2

The exact value of the integral (when carried out analytically) is 0.8862073. The error is only about

1%.

9.6 EVALUATION OF MULTIPLE INTEGRALS
Double and triple integrals often arise in two-dimensional and three

dimensional problems. A two-dimensional (double integral) has the

9.6 Evaluation of Multiple Integrals 361

Z=./(x,y)

form:

f f b [f y= p(
x
) J I = f(x, y) dA = f(x, y)dy dJ

A a y= g(
x
)

(9.32)

The integrand f (x, y) is a function of the independent variables x andy.

The limits of integration of the inner integral may be a function of x, as

in Eq. (9.32), or may be constants, (When they are constants, the inte

gration is over a rectangular region.) Figure 9-21 schematically shows

the surface of the function f(x, y) and the projection of the surface on

the x-y plane. In this illustration, the domain [a, b] in the x direction is

y

I hx I
I�

I
g(x)I

I I
X2 X3 X4 X5 X6 l

X1=a X7=b

Figure 9-21: Function and domain for double integration.

x

divided into six equally spaced subintervals. In the y direction the

domain [g(x), p(x)] is a function of x, and at every x they direction is

divided into four equally spaced subintervals.

The double integration in Eq. (9.32) can be separated into two parts.

The inner integral can be written as:

f y= p(
x
) G(x) = f(x,y)dy y= g(

x
)

(9.33)

and the outer integral can be written with G(x) as its integrand:

I= s:G(x) dx (9.34)

The outer integral is evaluated by using one of the numerical methods

described in the previous sections. For example, if Simpson's 1/3
method is used, then the outer integral is evaluated by:

h I(G)r::i {{G(a)+4[G(x2)+G(x4)+G(x6)] +2[G(x3)+G(x5)]+ f(b)}
(9.35)

where hx =
b �a . Each of the G terms in Eq. (9.35) is an inner integral

that has to be integrated according to Eq. (9.33) using the appropriate

362 Chapter 9 Numerical Integration

value of x. In general, the integral G(x;) can be written as:

f y=
p

(x;) G(x;) = f (x;, y)dy
y=

g
(x;)

and then integrated numerically. For example, using Simpson's 1/3
method to integrate G(x3) gives:

f y=
p

(x3) G(x3) = f(x3, y)dy
y=

g
(x3) h

= t {J(x3,Y3,1)+4[f(x3,y3,2)+ f(x3,Y3,4)]+2[f(x3,y3,3)]+ f(x3,Y3,5)}

where h
y

=

p(x3) � g(x3).

In general, the domain of integration can be divided into any num

ber of subintervals, and the integration can be done with any numerical

method.

9.7 USE OF MATLAB BUil T-IN FUNCTIONS FOR
INTEGRATION

MATLAB has several built-in functions for carrying out integration.

The following describes how to use MATLAB's functions quad,
quadl, and trapz for evaluating single integrals, and the function

dblquad for evaluating double integrals. The quad, quadl, and

dblquad commands are used to integrate functions, while the trapz
function is used to integrate tabulated data.

The quad command
The form of the quad command is:

)
The value of

the integral.

I= quad(function,a,b)]
I \

The function to The integration limits.

be integrated.

• The function can be entered as a string expression, or as a function

handle.

• The function f (x) must be written for an argument x that is a vector

(use element-by-element operations), such that it calculates the

value of the function for each element of x.
• The user has to make sure that the function does not have a vertical

asymptote (singularity) between a and b.
• quad calculates the integral with an absolute error that is smaller

than 1.0 x 10-6. This number can be changed by adding an optional

to 1 argument to the command:

q =quad (function, a,b, tol)

9.7 Use of MATLAB Built-In Functions for Integration 363

to 1 is a number that defines the maximum error. With larger to 1 the
integral is calculated less accurately but more quickly.

The quad command uses an adaptive Simpson's method of integra
tion. Adaptive methods are integration schemes that selectively refine
the domain of integration, depending on the behavior of the integrand.
If the integrand varies sharply in the neighborhood of a point within the
domain of integration, then the subintervals in this vicinity are divided
into smaller subintervals.
The quadl command:

The form of the quadl (the last letter is a lower case L) command is
exactly the same as the quad command:

I= quad! (function,a,b)

The value of
the integral.

The function to
be integrated.

The integration limits.

All the comments listed above for the quad command are valid for the
quadl command. The difference between the two commands is in the
numerical method used for calculating the integration. The quadl uses
the adaptive Lobatto method.

The trapz command

The built-in function trapz can be used for integrating a function that
is given as discrete data points. It uses the trapezoidal method of numer
ical integration. The form of the command is:

(q= trapz (x,y)

where x and y are vectors with the x and y coordinates of the points,
respectively. The two vectors must be of the same length.

The dblquad command

The built-in function dblquad can be used to evaluate a double inte
gral. The format of the command is:

I= dblquad(function, xmin, xmax, ymin, ymax)

The value of
the integral.

The function to
be integrated.

The integration limits.

• The function can be entered as a string, or as a function handle.

• The function f(x, y) must be written for an argument x that is a vec
tor (use element-by-element operations) and for an argumenty that is
a scalar.

364 Chapter 9 Numerical Integration

• The limits of integration are constants.

In the format shown above, the integration is done using the quad

function and the default tolerance, which is 1.0 x 10-6 . The tolerance

can be changed by adding an optional to l argument to the command,

and the method of integration can be changed to quadl by adding it as

an argument:

q = dblquad (function, xmin, xmax, ymin, ymax, tol, quadl)

9.8 ESTIMATION OF ERROR IN NUMERICAL
INTEGRATION

The error is the difference between the value of the numerically calcu

lated integral and the exact value of the integral. When the integrand is

a set of tabulated data points, an exact value does not really exist and an

error cannot be calculated or even estimated. When the integrand is a

function, the error can be calculated if the exact value of the integral can

be determined analytically. However, if the value of the integral can be

calculated analytically, there is no real need to calculate the value of the

integral numerically. A common situation is that the integrand is a

mathematical expression, and the integral is evaluated numerically

because an exact result obtained by analytical integration is difficult or

impossible. In this case, the error can be estimated in some of the

numerical integration methods. As an illustration, an estimation of the

error in the rectangle method is presented in some detail.

In the rectangle method, the integral of f (x) over the interval

x E [a, b] is calculated by assuming that f (x) = f (a) within the inter

val:

I(f) = Lbf(x)dx� Lbf(a)dx = f(a)(b-a)
The error E is then:

E = Jabf(x)dx-f(a)(b-a) (9.36)

An estimate of the error can be obtained by writing the one-term Taylor

series expansion with a remainder (see Chapter 2) off (x) near the point

x= a:
f(x) = f(a) + f'(s)(x-a) (9.37)

where s is a point between a and b. Integrating both sides of Eq. (9.37)

gives:

f bf(x)dx=J [J(a) + f'(s)(x-a)]dx= f(a)(b-a)+ ! f'(s)(b-a)2 a a 2
(9.38)

The error according to Eq. (9.36) can be determined using Eq. (9.38):

E = f(x)dx-f(a)(b -a) = - f (s)(b-a) f b 1 I 2 a 2
(9.39)

9.8 Estimation of Error in Numerical Integration 365

Equation (9.39) shows that the error depends on (b-a) and the values

of the first derivative of f(x) within the interval [a, b]. Obviously, the
error can be large if the domain is large and/or the value of the deriva
tives is large. The error, however, can be reduced significantly if the

composite rectangle method is used. The domain is then divided into

subintervals of width h where h = x; + 1 -x;. Equation (9 .3 9) can be used

to estimate the error for a subinterval:

(9.40)

where �; is a point between x; and x; + 1• Now, the magnitude of the

error can be controlled by the size of h. When h is very small (much
smaller than 1), the error in the subinterval becomes very small. For the

whole interval [a, b], an estimate of the error is obtained by adding the
errors from all the subintervals. For the case where h is the same for all
subintervals:

(9.41)

If an average value of the derivative f' in the interval [a, b] can be

estimated by:

N

L i'c�;) !' i= I
� ---

N (9.42)

then Eq. (9.41) can be simplified by using Eq. (9.42) and recalling that

h= (b-a)/N:

E = (b-a)hf' = O(h)
2

(9.43)

This equation is an estimate of the error for the composite rectangle

method. The error is proportional to h since
(b -a) f' is a constant. It

2
is written as 0(h) , which means of the order of h .

The error in the composite midpoint, composite trapezoidal, and
composite Simpson's methods can be estimated in a similar way. The
details are beyond the scope of this book, and the results are as follows.

Composite midpoint method: E = (b -a) f" h2 = O(h2) (9.44)
24

Composite trapezoidal method:

Composite Simpson's 1/3 method: E = _Cb
1;;) f iv h4 = O(h4) (9.46)

CompositeSimpson's 3/8method: E=-(b-a)f1vh4 = O(h4) (9.47)
80

366 Chapter 9 Numerical Integration

Note that if the average value of the derivatives in Eqs. (9.43}
(9.47) can be bounded, then bounds can be found for the errors. Unfor
tunately, such bounds are difficult to find so that the exact magnitude of
the error is difficult to calculate in practice.

9.9 RICHARDSON'S EXTRAPOLATION

Richardson's extrapolation is a method for obtaining a more accurate
estimate of the value of an integral from two less accurate estimates.

For example, two estimates calculated with an error O(h2) can be used

for calculating an estimate with an error O(h4). This section starts by
deriving Richardson's extrapolation formula for this case by consider
ing two initial estimates that are calculated with the composite trapezoi-

dal method (error O(h2)). Next, Richardson's extrapolation formula for

obtaining an estimate with an error O(h6) from two estimates with an

error O(h4) is derived. Finally, a general Richardson's extrapolation
formula is presented. This formula uses known estimates of an integral

with an error of order hn , to calculate a new estimate that has an
increase of 1 (and possibly 2) in the order of accuracy (i.e., with error

O(hn+ 1) or O(hn+2)).

Richardson's extrapolation from two estimates with an error O(h2)

When an integral I(f his numerically evaluated with a method whose

truncation error can be written in terms of even powers of h, starting

with h2, then the true (unknown) value of the integral /(f) can be
expressed as the sum of I(f)hand the error:

2 4 l(f) = I(fh+Ch +Dh +... (9.48)

where C, D, .. ., are constants. For example, if the composite trapezoidal

method is used for calculating I(f h (with an error given by Eq.

(9.45)), then f(f) can be expressed by:

1(f) = 1(f h- (bl� a) f" h2
(9.49)

Two estimated values of an integral I (f) h and r (f) h can be calculated
1 2

by using a different number of subintervals (in one estimate h = h1 and

in the other h = h2). Substituting each of the estimates in Eq. (9.48)
gives:

(9.50)

and

(9.51)

If it is assumed that C is the same (the average value of the second

9.9 Richardson's Extrapolation 367

derivative f" is independent of the value of h), then Eqs. (9.50) and

(9.51) can be solved for J(f) in terms of I(f h and I(f h : 1 2

I(f)h1 -(h1) 2
1(f h1

I(f) = hi
(9.52)

1-(�:r
Equation (9.52) gives a new estimate for J(f), which has an error

O(h4), from the values of I(f h and J(f h, each of which have an 2
error O(hi). The proof that Eq. (9.52) has an error O(h4) is beyond the

scope of this book.1

A special case is when hi= lh1• The two estimates of the value of
2

the integral used for the extrapolation are such that the second estimate

has double the number of subintervals compared with the first estimate.

In this case Eq. (9.52) reduces to:

I(f) = 4I(fh2-I(fh1
(9.53)

3

Richardson's extrapolation from two estimates with an error O(h4J

When an integral I(f)his numerically evaluated with a method whose

truncation error can be written in terms of even powers of h, starting

with h4, then the true (unknown) value of the integral J(f) can be

expressed as the sum of I (f h and the error:

I(f) = I(fh+C h4 +Dh6+... (9.54)

where C, D, .. ., are constants.

Two estimated values of an integral I(f h and I(f h can be cal-1 2
culated with the same method (which has an error O(h4)) by using a

different number of subintervals (in one estimate h = h1 and in the

other h = hi) Substituting each of the estimates in Eq. (9.54) gives:

and

I(f) = I(f)h1 +Ch{ (9.55)

I(f) = I(fh +Ch� 2 (9.56)

If it is assumed that C is the same (the average value of the fourth deriv-

1. The interested reader is referred to: P. J. Davis, and P. Rabinowitz, Numerical Inte
gration, Blaisdell P ublishing Company, Waltham, Massachusetts, 1967, pp. 52-55,
166; L. F. Richardson and J. A. Gaunt, P hil Trans. Roy. Soc. London A, Vol 226,
pp. 299-361, 1927.

368 Chapter 9 Numerical Integration

ative f iv is independent of the value of h), then Eqs. (9.55) and (9.56)
can be solved for I(f) in terms of I(f h and J(f h : 1 2

I(f h1-(h1) 4
1(f)h2

I(f) = h2 (9.57)
1-c:r

Equation (9.57) gives an estimate for J(f) with an error O(h6) from

the values of I(f h and I(f)h, each of which were calculated with an 1 2

error 0(h 4) . (The proof is, again, beyond the scope of this book. See

footnote on the previous page.)

A special case is when h2 = lh1• The two estimates of the value of
2

the integral used for the extrapolation are such that in the second esti

mate the number of subintervals is doubled compared with the first esti

mate. In this case Eq. (9.57) reduces to:

I(f) = l6J(fh2-J(fh1 (9.58)
15

Richardson's general extrapolation formula

A general extrapolation formula can be derived for the case when the

two initial estimates of the value of the integral have the same estimated

error of order hp and are obtained such that in one the number of subin

tervals is twice the number of subintervals of the other.

If In is an estimate of the value of the integral that is obtained by

using n subintervals and I 2n is an estimate of the value of the integral

that is obtained by using 2n subintervals, where in both the estimated

error is of order hp, then a new estimate for the value of the integral can

be calculated by:

I =2 - _
P I_2 _n -_I_n
2p -1

(9.59)

In general, the new estimate of the integral has an estimated error of

order h(p+ ').The error is of order h(p+2) when the truncation error can

be written in terms of even powers of h. Substituting p = 2 and p = 4
in Eq. (9.59) gives Eqs. (9.53) and (9.58), respectively. In the same way,

the extrapolation equation for using two estimates with an error O(h6)
to obtain a new estimate with an error O(h8) is obtained by substituting

p = 6 in Eq. (9.59):

6
I = 2 I 2n -In = 64 I -_!_I

2 6 -1 63 2n 63 n (9.60)

9.10 Romberg Integration 369

9.10 ROMBERG INTEGRATION

Romberg integration is a scheme for improving the accuracy of the esti

mate of the value of an integral by successive application of Richard

son's extrapolation formula (see Section 9.9). The scheme uses a series

of initial estimates of the integral calculated with the composite

trapezoidal method by using different numbers of subintervals. The

Romberg integration scheme, illustrated in Fig. 9-22, follows these

steps:

Step 1: The value of the integral is calculated with the composite trape

zoidal method several times. In the first time, the number of subinter

vals is n, and in each calculation that follows the number of

subintervals is doubled. The values obtained are listed in the first (left)

column in Fig. 9-22. In the first row 11, 1 is calculated with the compos

ite trapezoidal method using n subintervals. In the second row 12, 1 is

calculated using 2n subintervals, 13 1 using 4n subintervals, and so on.

The error in the calculations of the integrals in the first column is

O(h2).

Step 2: Richardson's extrapolation formula, Eq. (9.53), is used for

obtaining improved estimates for the value of the integral from the val

ues listed in the first (left) column in Fig. 9-22. This is the first level of

the Romberg integration. The first two values 11, 1 and 12, 1 give the esti

mate 11,2:

1 =4121-111
1,2 3

The second and third values (12 1 and 13 1) give the estimate 12 2: , , ,

41 -1 1 = 3, I 2, I 2,2 3

(9.61)

(9.62)

and so on. The new improved estimates are listed in the second column

in Fig. 9-22. According to Richardson's extrapolation formula they

have an error of 0(h 4) .
Step 3: Richardson's extrapolation formula, Eq. (9.58), is used for

obtaining improved estimates for the value of the integral from the val

ues listed in the second column in Fig. 9-22. This is the second level of

the Romberg integration. The first two values 11, 2 and 12, 2 give the esti

mate 11,3:
16122-112 1 = , ,

I, 3
15

The second and third values (12, 2 and 13, 2) give the estimate 12, 3:
16132-122 1 = , ,

2, 3
15

(9.63)

(9.64)

and so on. The new improved estimates are listed in the third column in

370

Subintervals

n -

2n -

4n -

8n -

l6n -

32n -

2nd 3rd

i i

t t t t

Chapter 9 Numerical Integration

4th

i

t

5th

i

t

Romberg level
of integration

Figure 9-22: Romberg integration method.

Fig. 9-22. According to Richardson's extrapolation formula they have

an error of O(h
6
).

Step 4 and beyond: The process of calculating improved estimates for

the value of the integral can continue where each new column is a

higher level of Romberg integration.

The equation for calculating the extrapolated values in each level

from the values in the previous level can be written in a general form:

j-1
4 1;+1,j-1 -Ii,j-1

Ii,;· = -----..,.'-'--,-----'-''"--
4

j - I -1
(9.65)

The values of the first column I 1, 1 through I k, 1 are calculated by using

the composite trapezoidal method. Then, the extrapolated values in the

rest of the columns are calculated by using Eq. (9.65) for j = 2, 3, ... , k

and in each column i = 1, 2, ... , (k- j + 1), where k is the number of

elements in the first column. The highest level of Romberg integration

that can be calculated is k -1 . The process can continue until there is

only one term in the last column (highest level of Romberg integration),

or the process can be stopped when the differences between the

improved estimated values of the integral are smaller than a predeter

mined tolerance. Example 9-3 shows an application of Romberg inte
gration.

9.10 Romberg Integration

Example 9-3: Romberg integration with comparison to the composite trapezoidal

method.

371

Evaluate r 1-
1

- dx using three levels of Romberg integration. Use an initial step size of h = 1 (one
Jo(l+x)

subinterval). Compare your result with the exact answer. What number of subintervals would be

required if you were to use the composite trapezoidal method to obtain the same level of accuracy?

SOLUTION

Exact answer: The exact answer to this problem can be obtained analytically. The answer is:

ln(2) = 0.69314718.
Romberg Integration
To carry out the numerical integration, a user-defined function, which is listed below, named Rom

berg is created.

[Program 9-2: Function file. Romberg integration. J
function IR = Romberg(Fun,a,b,Ni,Levels)

% Romberg numerically integrate using the Romberg integration method.

% Input Variables:

% Fun Name for the function to be integrated.

% (Fun is assumed to be written with element-by-element calculations.)

% a Lower limit of integration.

% b Upper limit of integration.

% Ni Initial number of subintervals.

% Levels Number of levels of Romberg integration.

% Output Variable:

% IR A matrix with the estimated values of the integral.

% Creating the first colwnn with the composite trapezoidal method:

for i = 1: Levels + 1 -

Nsubinter=Ni*2" (i - 1);

IR(i,l)=trapezoidal(Fun,a,b,Nsubinter);

end -

Create the first column of Fig. 9-22 by

- using the user-defined function trap

ezoidal (listed in Section 9.3).

% Calculating the extrapolated values using Eq. (9.65):
for j = 2 : Levels + 1 -

Calculate the
for i=l: (Levels - j +2)

IR (i' j) = (4" (j -1) *IR (i + 1, j -1) -IR (i' j -1)) I (4" (j -1) -1) ;
extrapolated val

... ues, level after

level, using Eq.

(9.65).
end

end -

The function Romberg is next used in the Command Window to determine the value of the integral

r 1_l_dx . The initial number of subintervals (for the first estimate with the composite trapezoidal
Jo (1 +x)
method) is 1.

>> format long

>> integ =@ (x) 1./(l+x);
[Define an anonymous function for the integrand. I Note element-by-element calculations.

372 Chapter 9 Numerical Integration

>> IntVal = Romberg(integ,0,1,1,3)

IntVal =

0.75000000000000

0.70833333333333

0.69702380952381

0.69412185037185

Estimates from

composite trapezoidal

integration.

0.69444444444444

0.69325396825397

0.69315453065453

0

t
Romberg

level l.

0.69317460317460

0.69314790148123

0

0

Romberg

level 2.

0.69314747764483

0

0

0

t
Romberg

level 3.

The results show that with the composite trapezoidal method (first column) the most accurate value

that is obtained (using eight subintervals) is accurate to two decimal places. The first-level Romberg

integration (second column) increases the accuracy to four decimal places. The second-level Rom

berg integration (third column) increases the accuracy to six decimal places. The result from the

third-level Romberg integration (fourth column) is also accurate to six decimal places, but the value

is closer to the exact answer.

The number of calculations that was executed is 10 (4 in the composite trapezoidal method and 6 in

the Romberg integration procedure). To obtain an estimate for the integral with an accuracy of six

decimal places by applying only the composite trapezoidal method, the method has to be applied

with 276 subintervals. This is shown below where trapezoidal is used in the Command Win

dow.

>> !Trap = trapezoidal(integ,0,1,277)

!Trap =

0.69314799511374

9.11 IMPROPER INTEGRALS

In all integrals J :f(x)dx that have been considered so far in this chap

ter, the limits of integration a and bare finite, and the integrand f(x) is

finite and continuous in the domain of integration. There are, however,

situations in science and engineering where one, or both integration

limits, are infinite, and cases where the integrand is not continuous

within the range of integration. For example, in statistics the integral

b (-x2)
J � e 2 dx is used to calculate the cumulative probability that a

-00 ,.J2rr.
quantity will have a value of b or smaller.

9. 11.1 Integrals with Singularities

An integral J :f(x)dx has a singularity when there is a point c within the

domain, a :::; c ::; b , where the value of the integrand f (c) is not defined

G f(x)I � oo as x � c). If the singularity is not at one of the endpoints,

the integral can always be written as a sum of two integrals. One over

9.11 Improper Integrals 373

[a, c] and one over [c, b] . Mathematically, integrals that have a singu
larity at one of the endpoints might or might not have a finite value. For

example, the function 1/ (Jx) has a singular point at x = 0, but the

integral of this function over [O, 2] has a value of 2, Jo1 � dx = 2. On

the other hand, the integral J 1 l dx does not have a finite value.
oX

Numerically, there are several ways of integrating an integral that
has a finite value when the integrand has a singularity at one of the end

points. One possibility is to use an open integration method where the

endpoints are not used for determining the integral. Two such methods
presented in this chapter are the composite midpoint method (Section
9.2) and Gauss quadrature (Section 9.5). Another possibility is to use a

numerical method that uses the value of the integrand at the endpoint,
but instead of using the endpoint itself, for example, x = a, the inte
gration starts at a point that is very close to the end point x = a + E

where E « lal.
In some cases it is also possible to eliminate a singularity analyti

cally. This can be done by using a change of variable or transformation.
Subsequently, the transformed integral can be integrated numerically.

9.11.2 Integrals with Unbounded Limits

Integrals with one or two unbounded limits can have one of the follow
ing forms:

I= f :00/(x)dx, I= L00f(x)dx, I= J :f(x)dx (9.66)

In general, integrals with unbounded limits might have a finite value
(converge) or might not have a finite value (diverge). When the integral
has a finite value, it is possible to carry out the integration numerically.

Typically, the integrand of such an integral has a finite value over a
small range of the domain of integration and a value close to zero
everywhere else. The numerical integration can then be done by replac
ing the unbounded limit (or limits) with a finite limit (or limits) where

the value of the integrand is close to zero. Then, the numerical integra
tion can be carried out with any of the methods described in this chap
ter. The integration is done successively, where in each the absolute
value of the limit is increased. The calculations stop when the value of

the integral does not change much with successive integrations.
In some cases it is also possible to use a change of variable to trans

form the integral such that the transformed integral will have bounded
limits. Subsequently, the transformed integral can be integrated numeri

cally.

374 Chapter 9 Numerical Integration

9.12 PROBLEMS

Problems to be solved by hand
Solve the following problems by hand When needed, use a calculator, or write a MATLAB script file to

carry out the calculations. If using MATLAB, do not use built-in functions for integration.

9.1 The function f(x) is given in the following tabulated form. Compute f �·8j(x)dx with h = 0.3 and

with h = 0.4.
(a) Use the composite rectangle method.

(b) Use the composite trapezoidal method.

(c) Use the composite Simpson's 3/8 method.

0

I f�x) j
0.3

0.5 0.6
0.6
0.8

0.9 1.2 1.5
1.3 2 3.2

9.2 To estimate the surface area and volume of a wine barrel, the diameter of

the barrel is measured at different points along the barrel. The surface area, S,
and volume, V, can be determined by:

S = 27tJ :rdz and V = 1tJ:r2dz
Use the data given in the table to determine the volume and surface area of the

barrel.

z (in.) -18 -12 -6 0
d (in.) 0 2.6 3.2 4.8

(a) Use the composite trapezoidal method.

(b) Use the composite Simpson's 1/3 method.

(c) Use the composite Simpson's 3/8 method.

6 12 18

5.6 6 6.2

9.3 To estimate the surface area and volume of a wine bottle, the radius of the

bottle is measured at different heights. The surface area, S, and volume, V, can be

determined by:

S = 27t J: rdz and V = 7t J: r2dz
Use the data given below to determine the volume and surface area of the vase:

z (cm) 0 2 4 6 8 10
r (cm) 10 11 11.9 12.4 13 13.5
z (cm) 20 22 24 26 28 30

r (cm) 8.9 4.7 4.1 3.5 3.0 2.4

(a) Use the composite rectangle method.

(b) Use the composite trapezoidal method.

(c) Use the composite Simpson's 3/8 method.

12 14 16 18
13.8 14.1 13.6 12.1
32 34 36

1.9 1.2 1.0

1.8
4.8

z
I I I \ \ \

x

\ I I I I

-d-

9.12 Problems

9.4 An approximate map of the state of Ohio is shown in the

figure. For determining the area of the state, the map is divided

into two parts (one above and one below the x-axis). Determine

the area of the state by numerically integrating the two areas. For

each part, make a list of the coordinate y of the border as a func

tion of x. Start with x = 0 and use increments of 10 mi, such that

the last point is x = 230 mi.

Once the tabulated data is available, determine the inte

grals once with the composite trapezoidal method.

9.5 The Head Severity Index (HSI) measures the risk of head

injury in a car crash. It is calculated by:

HSI = f : [a(t)]2"5 dt

50

-50

-100

]
t

··l

375

where a(t) is the normalized acceleration (acceleration in m/s2 divided by 9.81 m/s2) and tis time in sec

onds during a crash. The acceleration of a dummy head measured during a crash test is given in the follow

ing table.

t (ms) 0 5 10 15 20 25 30 35 40 45

a (m/s2) 0 3 8 20 33 42 40

Determine the HSI.

(a) Use the composite trapezoidal method.

(b) Use the composite Simpson's 1/3 method.

(c) Use the composite Simpson's 3/8 method.

9.6 Evaluate the integral

using the following methods:

I = L" sin2 xdx

48 60

(a) Simpson's 1/3 method. Divide the whole interval into six subintervals.

(b) Simpson's 3/8 method. Divide the whole interval into six subintervals.

12

50 55 60

8 4 3

The exact value of the integrals is I = n/2 . Compare the results and discuss the reasons for the differ

ences.

9.7 Evaluate the integral

using the following methods:

I= -- dx f 2.4 2x
o 1 + x2

(a) Simpson's 1/3 method. Divide the whole interval into six subintervals.

(b) Simpson's 3/8 method. Divide the whole interval into six subintervals.

The exact value of the integral is I = ln 169 . Compare the results and discuss the reasons for the dif-
25

ferences.

376 Chapter 9 Numerical Integration

9.8 Evaluate the integral in Problem 9.7 using

(a) three-point Gauss quadrature;

(b) four-point Gauss quadrature.

9.9 The area of the shaded region shown in the figure can be calculated

by:

A = r3 (- �x2 + s) dx = 20

Evaluate the integral using the following methods:

(a) Simpson's 1/3 method. Divide the whole interval into four

subintervals.

(b) Simpson's 3/8 method. Divide the whole interval into nme

subintervals.

(c) Three-point Gauss quadrature.

Compare the results and discuss the reasons for the differences.

9.10 The central span of the Golden Gate bridge is 4200 ft long

and the towers' height from the roadway is 500 ft. The shape of

the main suspension cables can be approximately modeled by the

equation:

f(x) = c(ex!C � e-x/C - 1) for -2100:.:;; X:.:;; 2100 ft

where C = 4491.

y
y= _lx2+5 5 9

y

x

By using the equation L = J: J1 + [f'(x)]2 dx, determine the length of the main suspension cables with

the following integration methods:

(a) Simpson's 1/3 method. Divide the whole interval into eight subintervals.

(b) Simpson's 3/8 method. Divide the whole interval into nine subintervals.

(c) Three-point Gauss quadrature.

9.11 A silo structure is made by revolving the curve z = - 0.025x4 + 32.4
from x = 0 m to x = 6 m about the z-axis, as shown in the figure to the

right.

The surface area, S, that is obtained by revolving a curve z = f (x) in

the domain from a to b around the z-axis can be calculated by:

S = 2nJ: xJl + [f'(x)]2 dx

Calculate the surface area of the silo with the following integration meth

ods:

(a) Simpson's 1/3 method. Divide the whole interval into four subinter
vals.

(b) Simpson's 3/8 method. Divide the whole interval into six subintervals.

(c) Three-point Gauss quadrature method.

y

9.12 Problems 377

9.12 Determine the volume of the silo in Problem 9 .11. The volume, v, that is obtained by revolving a

curve x = f (z) in the domain from a to b around the z-axis can be calculated by:

f b 2 V = 1t a [f (z)] dz

Calculate the volume of the silo with the following integration methods:

(a) Simpson's 1/3 method. Divide the whole interval into four subintervals.

(b) Simpson's 3/8 method. Divide the whole interval into six subintervals.

(c) Three-point Gauss quadrature.

9.13 In the standard Simpson's 1/3 method (Eq. (9.16)), the points used for the integration are the

endpoints of the domain, a and b, and the middle point (a+ b)/2. Derive a new formula for Simpson's 1/3
method in which the points used for the integration are x = a, x = b, and x = (a+ b)/3.

9.14 The value of 1t can be calculated from the integral 1t = !J
1

-4- dx.
2 -1 1 + x2

(a) Approximate 7t using the composite trapezoidal method with six subintervals.

(b) Approximate 7t using the composite Simpson's 1/3 method with six subintervals.

9.15 Evaluate the integral J: cos(7t;2) dx using second-level Romberg integration. Use n = 1 in the first

estimate with the trapezoidal method.

9.16 Evaluate the error integral defined as: erf(x) = � J xe-12dt at x = 2 by using four-point Gauss
Jn 0

quadrature.

9.17 Evaluate the integral

J�C- 0.5x5 + 3 .9x4- 8.lx3 + 2.7x2 + 5.9x + 1.5) dx

using four-point Gauss quadrature.

9.18 Show that the truncation error for the composite trapezoidal method is of the order of h2 , where h is

the step size (width of subinterval).

Problems to be programmed in MATLAB
Solve the following problems using MATLAB environment. Do not use MATLAB s built-in functions for
integration.

9.19 Write a user-defined MATLAB function for integration with the composite trapezoidal method of a

function f(x) that is given in a set of n discrete points. The points don't have to be spaced equally. For the
function name and arguments use I=IntPointsTrap (x, y), where the input arguments x and y are

vectors with the values of x and the corresponding values of f(x), respectively. The output argument I is

the value of the integral. To carry out the integration use Eq. (9.12).
(a) Use IntPointsTrap to solve Problem 9.2.
(b) Use IntPointsTrap to solve Problem 9.3.

378 Chapter 9 Numerical Integration

9.20 Write a user-defined MATLAB function for integration with the composite Simpson's method of a

function /(x) that is given in a set of n discrete points that are spaced equally. For the function name and

arguments use I=SimpsonPoints (x, y), where the input arguments x and y are vectors with the val

ues of x and the corresponding values of f(x), respectively. The output argument I is the value of the inte

gral. If the number of intervals in the data points is divisible by 3, the integration is done with the

composite Simpson's 3/8 method. If the number of intervals in the data points is one more than a number

divisible by 3, the integration in the first interval is done with the trapezoidal method and the integration

over the rest of the intervals is done with the composite Simpson's 3/8 method. If the number of intervals

in the data points is two more than a number divisible by 3, then the integration over the first two intervals

is done with Simpsons's 1/3 method and the integration over the rest of the intervals is done with the com

posite Simpson's 3/8 method.

(a) Use SimpsonPoints to solve Problem 9.1 .
(b) Use SimpsonPoints to solve Problem 9.5.

9.21 Write a user-defined MATLAB function that uses the composite trapezoidal method for integration

of a function /(x) that is given in analytical form (equation). For the function name and arguments use

I=Compzoidal (Fun, a, b). Fun is a name for the function that is being integrated. It is a dummy

name for the function that is imported into Cornpzoidal. The actual function that is integrated should be

written as an anonymous or a user-defined function that calculates, using element-by-element operations,

the values of f(x) for given values of x. It is entered as a function handle when Compzoidal is used. a
and bare the limits of integration, and I is the value of the integral. The function Compzoidal calculates

the value of the integral in iterations. In the first iteration the interval [a, b] is divided into two subinter

vals. In every iteration that follows, the number of subintervals is doubled. The iterations stop when the

difference in the value of the integral between two successive iterations is smaller than 0.1 %. Use

Compzoidal to solve Problems 9.6 and 9.7.

9.22 Write a user-defined MATLAB function that uses the composite Simpson's 1/3 method for integra

tion of a function /(x) that is given in analytical form (equation). For the function name and arguments

use I=Simpson13 (Fun, a, b). Fun is a name for the function that is being integrated. It is a dummy

name for the function that is imported into Simpson13. The actual function that is integrated should be

written as an anonymous or a user-defined function that calculates, using element-by-element operations,

the values of f(x) for given values of x. It is entered as a function handle when Sirnpson13 is used. a
and bare the limits of integration, and I is the value of the integral. The function Simpson13 calculates

the value of the integral in iterations. In the first iteration the interval [a, b] is divided into two subinter

vals. In every iteration that follows, the number of subintervals is doubled. The iterations stop when the

difference in the value of the integral between two successive iterations is smaller than 0.1 %. Use

Simpson13 to solve Problems 9.6 and 9.7.

9.23 Write a user-defined MATLAB function that uses the composite Simpson's 3/8 method for integra

tion of a function f(x) that is given in analytical form (equation). For the function name and arguments

use I=Simpsons38 (Fun, a, b). Fun is a name for the function that is being integrated. It is a dummy

name for the function that is imported into Simpson38. The actual function that is integrated should be

written as an anonymous or a user-defined function that calculates, using element-by-element operations,

the values of f(x) for given values ofx. It is entered as a function handle when Simpson38 is used. a and

b are the limits of integration, and I is the value of the integral. The integration function calculates the

9.12 Problems 379

value of the integral in iterations. In the first iteration the interval [a, b) is divided into three subintervals.

In every iteration that follows, the number of subintervals is doubled. The iterations stop when the differ

ence in the value of the integral between two successive iterations is smaller than 0.1 %. Use

Simpsons38 to solve Problems 9.6 and 9.7.

9.24 Write a user-defined MATLAB function for integration of a function f(x) in the domain [-1, 1)

Cf_� f (x)dx) with four-point Gauss quadrature. For the function name and arguments use

I=GaussQuad4 (Fun), where Fun is a name for the function that is being integrated. It is a dummy

name for the function that is imported into Gaus sQuad4. The actual function that is integrated should be

written as an anonymous or a user-defined function that calculates the value of f(x) for a given value of x.
It is entered as a function handle when GaussQuad4 is used. The output argument I is the value of the

integral. Use GaussQuad4 to solve Problem 9.9.

9.25 Write a user-defined MATLAB function for integration of a function f(x) in the domain [a, b]

CJ: f(x)dx) with five-point Gauss quadrature. For function name and arguments use

I=GaussQuad5ab (Fun, a, b), where Fun is a name for the function that is being integrated. It is a

dummy name for the function that is imported into Gaus sQuad5 ab. The actual function that is integrated

should be written as an anonymous or a user-defined function that calculates the value of f(x) for a given

value of x. It is entered as a function handle when GaussQuad5ab is used. The output argument I is the

value of the integral. Use GaussQuad5ab to evaluate the integral in Example 9-2.

9.26 The error function erf(x) (also called the Gauss error function), which is used in various disciplines

(e.g., statistics, material science), is defined as:

erf(x) = 2. J xe-12dt
Jn 0

Write a user-defined MATLAB function that calculates the error function. For function name and argu

ments use ef=ErrorFun (x). Use the user-defined function Simpson38 that was written in Problem

9.23 for the integration inside Error Fun.

(a) Use ErrorFun to make a plot of the error function for 0::;; x::;; 2. The spacing between points on the

plot should be 0.02.
(b) Use ErrorFun to make a two-column table with values of the error function. The first column dis

plays values of x from 0 to 2 with spacing of 0.2, and the second column displays the corresponding

values of the error function.

380 Chapter 9 Numerical Integration

Problems in math, science, and engineering
Solve the following problems using MATLAB environment. As stated, use the MATLAB programs that are

presented in the chapter, programs developed in previously solved problems, or MATLAB s built-in func

tions.

9.27 The centroid of the half-ellipse-shaped cross-sectional area

shown is given by:

Calculate y
c

.

y = - y.J9-y dy 4 f 5

� c 251t -5

(a) Use the user-defined function Simpsons3 8 written in Prob

lem 9.23.
(b) Use one ofMATLAB's built-in integration functions.

-5

y
3

x

5

9.28 The moment of inertia, Ix, about the x axis of the half-ellipse-shaped cross-sectional area shown in

Problem 9.27 is given by:

10f 5 � Ix = 3 y2.J9-y2 dy
-5

Calculate Ix .

(a) Use the user-defined function Simpsons38 written in Problem 9.23.
(b) Use one ofMATLAB's built-in integration functions.

9.29 The density, p, of the Earth varies with the radius, r. The following table gives the approximate den

sity at different radii:

r(km) 0 800 1200 1400 2000 3000 3400 3600
p (kg/m3) 13000 12900 12700 12000 11650 10600 9900 5500

The mass of the Earth can be calculated by:

f 6370
m =

0
p41tr2dr

Determine the mass of the earth by using the data in the table.

(a) Use the user-defined function IntPointsTrap that was writ

ten in Problem 9.19.

(b) Use MATLAB's built-in function trapz.
(c) Use MATLAB's built-in interpl function (with the spline

option for the interpolation method) to generate a new interpo

lated data set from the data that is given in the table. For spacing

divide the domain [O, 6370] into 50 equal subintervals (use the

4000 5000 5500 6370
5300 4750 4500 3300

l in space command). Calculate the mass of the Earth by integrating the interpolated data set with
MATLAB's built-in function trapz.

9.12 Problems

9.30 A pretzel is made by a robot that is programed to place the dough

according to the curve given by the following parametric equations:

x = (2.5 - 0.3t2)cos(t) y = (3.3 - 0.4t2)sin(t)

where -4 � t � 3 . The length of a parametric curve is given by the integral:

s: [��r + [�r dt
Determine the length of the pretzel. For the integration use:

(a) The user-defined function SimpsonPoints that was written in Prob

lem 9.20.

(b) MATLAB's built-in function trapz.

9.31 The flow rate Q (volume of water per second) in the chan

nel shown can be calculated by:

Q = 10 f
o

h
v(y)dy

where v(y) is the water speed, and h = 5 m is the overall height

of the water. The water speed at different heights are given in the

table.

(a) Use the user-defined function IntPointsTrap that was

written in Problem 9. 19.

(b) Use MATLAB's built-in function trapz.

y(m) 0 0.3 0.5 1 1.5 2

v (mis) 0 0.4 0.5 0.56 0.6 0.63

2.5

0.66

381

3 4 5

0.68 0.7 1 0.74

9.32 Measurements of the velocity distribution of a fluid flowing

in a pipe (laminar flow) are given in the table. The flow rate Q (vol

ume of fluid per second) in the pipe can be calculated by:

Q = J :21tvrdr

Use the data in the table to evaluate Q.

�---'t? ---�
(a) Use the user-defined function IntPointsTrap that was written in Problem 9. 19.

(b) Use the user-defined function SimpsonPoints that was written in Problem 9.20.

(c) Use MATLAB's built-in function trapz.

r (in) 0.0 0.25 0.5 0.75 1 1.25 1.5 1.75

v (in/s) 38.0 37.6 36.2 33.6 29.7 24.5 17.8 9.6

2.0

0

382

9.33 The value of n can be approximated by calculating the integral:

f 1_4_ dx
o 1 + x2

Chapter 9 Numerical Integration

Write a MATLAB program in a script file that calculates the value of the integral numerically with the

composite trapezoidal method and the composite Simpson's 1/3 method in eight iterations. In the first iter

ation the interval [O, 1] is divided into two subintervals. In every iteration that follows, the number of sub

intervals is doubled. (In the last iteration the domain is divided into 256 subintervals.) In every iteration,

the program calculates the error in the value of n (for each of the methods) which is defined by the abso

lute value of the difference between the value calculated by the numerical integration and the value of n
in MATLAB (pi). Show the results in a figure (log scale on both axes) that displays the error versus the

number of subintervals for each method. (Two plots in the same figure.)

9.34 The surface of steel can be hardened by increasing the concentration of carbon. This is done in a pro

cess called carburizing in which the surface of the steel is exposed to a high concentration of carbon at ele

vated temperature. This causes the carbon to diffuse into the steel. At constant temperature, the

relationship between the concentration of carbon Cx at a distance x (in m) from the surface, and time t (in

seconds), is given by:

ex- co = 1-erf (-x-) (eifis the error function) Cs-Co 2,/i5t
where C0 is the initial uniform carbon concentration, Cs is the carbon concentration that the steel is

exposed to, and D is the diffusion coefficient. Consider the case where C0 = 0.2 %, Cs = 1.2 %, and

D = 1.4 x 10-11 m2/s.

(a) For t = 3 h, calculate and plot the concentration of carbon as a function of x for 0 :s; x :s; 1.5 mm.

(b) For x = 0.4 mm, calculate and plot the concentration of carbon as a function oft for 0 :s; t :s; 10 h.

Solve the problem by using the user-defined function ErrorFun that was written in Problem 9.26.

9.35 The figure shows the output pulse from an MDS defibrilla

tor. The voltage as a function time is given by:

v(t) = 3500sin(140nt)e-63itt V
The energy, E, delivered by this pulse can be calculated by:

E = J t[v(t)]2 dt Joules.
o R

where R is the impedance of the patient. For R = 500, determine

the time when the pulse has to be switched off if 250 J of energy

is to be delivered.

3000 �-�-------

2000

-10000�-�-�,o�-�,s--�20
Time(ms)

(a) Use the composite Simpson's 3/8 method (user-defined function Simpsons38 that was written in

Problem 9.23).

(b) Use one ofMATLAB's built-in functions.

9.12 Problems

9.36 For the airfoil shown in the figure, the lift force, FL, can be

calculated from measurements of the air speed u along the surface

by integration:

FL = !pU2Lf x=c [(!:!.) 2
-1 J dx

2 x=O U
where L is the length of the wing, p is the density, and u/ U is

measured versus x as given below:

x(m) 0 0.0125 0.025 0.0375 0.05 0.1 0.15 0.2 0.25
u/U 0 0.969 1.241 1.279 1.279 1.286 1.305 1.314 1.310

383

y
u(x)

u x

.1

0.3 0.35 0.4 0.45 0.5
1.201 1.072 0.948 0.857 0.804

Determine the lift force for a wing L = 3 m long and chord length c = 0.5 m, if the speed U = 160km/h
and p = 1.225 kg/m3.

(a) Use the user-defined function IntPointsTrap that was written in Problem 9.19.
(b) Use MATLAB's built-in function trapz.

9.37 The force per unit length/that is exerted by the wind on the 24 ft tall

sail as a function of it height z is given by:

f = 160-z-e-218 lb/ft
z+4

The total force F on the sail is calculated by:

f
24 F = 0 fdz

Determine the total force.

(a) Use the user-defined function Simpsons38 that was written in Prob

lem 9.23.
(b) Use one ofMATLAB's built-in integration functions.

z

9.38 Solve Problem 9.37 by with the five-point Gauss quadrature method, by using the user-defined func

tion GaussQuad5ab that was written in Problem 9.26.

9.39 Evaluate the following infinite integral numerically:

I= f ""-1-dx
o x2 + 1

Write a MATLAB program in a script file in which the value of the integral is calculated for different val

ues of the upper limit. Start by using 1 for the upper limit, then 2, then 4, and so on (multiply the previous

value by 2). Calculate the relative difference between the last two evaluations ((J;-I;_ 1)/ I;_ 1), and stop

when the relative difference between the last two iterations is smaller than 0.00001. Each time the integral

should be evaluated with the composite Simpson's 1/3 method. The value of the integral is calculated using

iterations. In the first iteration the interval [O, b] is divided into two subintervals. In every iteration that fol

lows, the number of subintervals is doubled. The iterations stop when the difference in the value of the

integral between two successive iterations is smaller than 0.01 %. If Problem 9.22 was solved, use the user

defined function Simpsonl3 for the integration. Compare the numerical value with the exact value of

n/2.

384 Chapter 9 Numerical Integration

9.40 A thermocouple is used to measure the temperature of a flowing gas in a duct. The time-dependence
of the temperature of the spherical junction of a thermocouple is given by the implicit integral equation:

t = -f T VC dT
T; As[h(T- T 00) + BcrsB(T4-T furr)]

where Tis the temperature of the thermocouple junction at time t, p is the density of the junction material,
Vis the volume of the spherical junction, C is the heat capacity of the junction, As is the surface area of the
junction, h is the convection heat transfer coefficient, T"' is the temperature of the flowing gas, B is the
emissivity of the junction material, crsB is the Stefan-Boltzmann constant, and Tsurr is the temperature of
the surrounding duct wall.

For Ti= 298K, e = 0.9, p = 8500kg/m3, C = 4001/kg/K, T00 = 473K, h = 400W/m2/K,

V = 5.0x10-10m3, As= 1.0xl0-6m2, crsB = 5.67x10-8W/(m2K4), and Tsurr = 673 K, determine the
time it takes for the thermocouple junction temperature to increase to 490 K, using Romberg integration.

9.41 In the design of underground pipes, there is a need to esti
mate the temperature of the ground. The temperature of the
ground at various depths can be estimated by modeling the
ground as a semi-infinite solid initially at constant temperature.
The temperature at depth, x, and time, t, can be calculated from
the expression:

x

T(x, t)- Ts
_ f (x) _

2 f 2Jat -u2d ---- - er -- - - e u

T;-Ts 2JUt J1r, o
where Ts is the surface temperature, Ti is the initial soil tem-

perature, and a = 0.138 x 10-6 m2/s is the thermal diffusivity of

the soil. Answer the following questions taking Ts = -15 °C and T; =

Surface
temperature T8 '

12°C.

(a) Find the temperature at a depth x = 1m after30 days (t = 2.592 x 106 s).
(b) Write a MATLAB program in a script file that generates a plot that shows the temperature as a function

of time at a depth of x = 0.5 m for 40 days. Use increments of 1 day.
(c) Write a MATLAB program that generates a three-dimensional plot (Tvs. x and t) showing the temper-

ature as a function of depth and time for 0 :::; x:::; 3 m and 0 :::; t:::; 2.592 x 10 7 s.

9.42 In imaging and treatment of breast cancers, an ellipsoidal shape
may be used to represent certain tumors so that changes in their surface
areas may be quantified and monitored during treatment. The surface
area of an ellipsoid is given by:

f7t/2f 7t
/2 S = Bab

0 0
sinSJl - psin2S ded<j>

c2 c2 where p = Osin2<j>+ECOS2<j>, 0 = 1--, E = 1--,and2a,2b,and2c
a2 b2

are the major dimensions of the ellipsoid along the x, y, and z axes,
respectively. For 2a = 9.5 cm, 2b = 8 cm, and 2c = 4.2 cm, calculate
the surface area of this ellipsoidal tumor using the trapezoidal method.

ChapterlO

Ordinary Difierential Equations:

Initial-Value Problems

Core Topics

Euler's methods (explicit, implicit, errors) (10.2).
Modified Euler method (10.3).

Solving a higher order initial value ODE (10.9).
Use of MATLAB built-in functions for solving

initial-value ODEs (10.10).

Midpoint method (10.4). Complementary Topics

Runge-Kutta methods (second, third, fourth
order) (10.5).

Local truncation error in second-order Runge

Kutta method (10.11).
Multistep methods (10.6).
Predictor-corrector methods (10.7).
Systems of first-order ODEs (10.8).

Step size for desired accuracy (10.12).
Stability (10.13).
Stiff ODEs (10.14).

10.1 BACKGROUND

A differential equation is an equation that contains derivatives of an

unknown function. The solution of the equation is the function that sat

isfies the differential equation. A differential equation that has one inde

pendent variable is called an ordinary differential equation (ODE). A

first-order ODE involves the first derivative of the dependent variable

with respect to the independent variable. For example, if x is the inde

pendent variable and y is the dependent variable, the equation has com-

binations of the variables x, y, and cJl:.. A first-order ODE is linear, if it is
dx

a linear function of y and cJl:. (it can be a nonlinear function of x). Exam
dx

pies of a linear and a nonlinear first-order ODE are given in Eqs. (10.1)
and (10.2), respectively.

cJ1!. + ax2 +by = O (linear)
dx

cJl:. + ayx + b Jy = 0 (nonlinear)
dx

where a and b are constants.

(10.1)

(10.2)

385

386

h

,,,.,,,., ,

Figure 10-1: Water tank.

Chapter 10 Ordinary Differential Equations: Initial-Value Problems

Differential equations appear in all branches of science and engi
neering. They are also encountered in economics, business applications,
and social sciences where ideas have to be quantified and predictive
models are needed. Differential equations provide detailed information
regarding distributions or variations of the dependent variable as a func
tion of the independent variable.

As an example, consider the cylindrical water tank shown in Fig.
10-1. The tank is being filled at the top, and water flows out of the tank
through a pipe connected at the bottom. The rate of water flow into the
tank varies with time and is given by the equation:

dm. __ rn
= K + K cos(Ct)

dt
1 2 (10.3)

where dmin/dt is mass flow per unit time, and K 1, K2, and C are con

stants. The rate that water is flowing out of the tank, dm0u/dt, depends

on the height, h, of the water in the tank (pressure) and is given by:

dm � ---5!.!!.!. = p A . ,.,; 2 K.g nh
dt

pipe (10.4)

where p is the density of water, A pipe is the cross-sectional area of the

pipe at the exit, and g is the acceleration due to gravity. The time rate of

change of the mass in the tank, dm, is the difference between the rate of
dt

mass entering the tank and the rate of mass leaving the tank (conserva
tion of mass) per unit time:

dm
=

dmin _ dmout

dt dt dt
(10.5)

The mass of the water in the tank can be expressed in terms of the

height, h, and the cross-sectional area of the tank, A tank , by

m = pAtankh, which means that dm
= pA10n/h . Substituting this rela-

dt dt
tionship and the expressions from Eqs. (10.3) and (10.4) in Eq. (10.5)
gives an equation for the rate of change of the height, h:

(10.6)

Equation (10.6) is a first-order ODE, with t as the independent variable
and h the dependent variable. The solution of Eq. (10.6) is a function

h(t) that satisfies the equation. In general, an infinite number of func

tions satisfy the equation. To obtain a specific solution, a first-order

ODE must have an initial condition or constraint that specifies the value
of the dependent variable at a particular value of the independent vari
able. As discussed in Chapters 1 and 2, a properly formulated physical
problem resulting in an ODE of the first order has to have one such con
straint. Because such problems are typically time-dependent problems

10.1 Background

6 , ,,,,,,,,,,,,,,,,,, - ... ,, , ,,,,,,,,,,,,,,,, -- ... ,, , ,, , ,,,,,,,,,,,,
, , , ,,,,,,,,,,,,,,,
,,..._,,,,,,,,,,,,,,,,,,

5 ,, __ ,,,,,,,,,,,,,,,,,
,,,_.., ... ,,,,,,,,,,,,,,,
,, _ ... ,,,,,,,,,,,,,,,
I I , , -, ' ... , \ \ \ \ \ \ \ \ \ \ \ \

, ,,,, __ ,, , ,,,,,,,, \ \ \
>.4 ,,,,, , __ ..,,,,,,,,,,,,,

, ,,,, _ ,,,,,,, \\\ \
,,,,,, _ ,,,,,,,,,,
,,,,,,, _ ,, , , , ,,,,
,,,,,,,,, ___ ..,,,,,,,,,

3 ,, , ,,,,,,, ___ ..,,,,,,,,
,,,,,,,,,,, ... __ .., , ,,,,,
11IIII1111,,,. ,,,,
,,,,,,,,,,,,, ___ ..,,,,,
,,,,,,,,,,,,,, ... ___ .,. ... ,

2 ,,,,,,,,,,,,,,,, ____ ..,

0 2 3 4
x

Figure 10-2: Illustration of the
function f(x, y).

5.5

5

4.5

>-. 4

3.5

3

2.5

0 2 3 4
x

Figure 10-3: Different solutions
for the same ODE.

387

(i.e., problems in which time t is the independent variable), the con
straint is called an initial condition and the problem is called an initial
value problem (IVP). Such a constraint associated with Eq. (10.6) may

be written as:

h = h0 at t = t0 , or h(t0) = h0

First-order ODE problem statement
A first order ODE has the form:

� = f(x, y) with the initial condition: y(x1) = y1 (10.7)

The solution is the function y(x) that satisfies the equation and the ini
tial condition.

In the differential equation, Eq. (10.7), the function f(x, y) gives

the slope of y(x) as a function of x and y. For example, consider the fol

lowing ODE:

dv J() -0.3x :::.::.. = x, y = - 1.2 y + 7 e dx (10.8)

The value of f(x, y) in Eq. (10.8) for the domain 0 � x :2': 4 and 2 � y � 6

is illustrated in Fig. 10-2, where the slope at many points within the

domain is plotted. The slopes are tangent to the solution, which means

that the slopes are like "flow lines" that show the direction that y(x)
follows. It is clear from Fig. 10-2 that, in general, there can be many
(infinite) solutions since it is possible to draw different lines that follow
the "flow lines." Three possible solutions are shown in Fig. 10-3. The

solution to a specific problem is fixed by the initial condition that

defines the point where y(x) starts and the prescribed domain for x,
which specifies where y(x) ends. The initial conditions for the three

solutions that are shown in Fig. 10-3 are y(O) = 3, y(l.5) = 2 , and

y(2) = 6.

Analytical solution of a first-order ODE

Analytical solution of an ODE is a mathematical expression of the func

tion y(x) that satisfies the differential equation and has the value

y(x1) = y1• Once the function y(x) is known, its value at any x can be

calculated. As mentioned in Chapter 2, there are techniques for solving
relatively simple first-order ODEs, but in many situations an analytical

solution is not possible.

Numerical solution of a first-order ODE

A numerical solution of a first order ODE formulated as Eq. (10.7) is a
set of discrete points that approximate the function y(x). When a differ

ential equation is solved numerically, the problem statement also
includes the domain of the solution. For example, a solution is required

for values of the independent variable from x = a to x = b (the

domain is [a, b]). Depending on the numerical method used to solve the
equation, the number of points between a and b at which the solution is

388 Chapter 10 Ordinary Differential Equations: Initial-Value Problems

obtained can be set in advance, or it can be decided by the method. For

example, the domain can be divided into N subintervals of equal width

defined by N + 1 values of the independent variable from x1 = a to

xN+I = b. The solution consists of values of the dependent variable

that are determined at each value of the independent variable. The solu

tion then is a set of points (x1 , y1), (x2, 12), ... , (xN + ,, YN + 1) that define

the function y(x) .

Overview of numerical methods used/or solving a first-order ODE

Numerical solution is a procedure for calculating an estimate of the

exact solution at a set of discrete points. The solution process is incre

mental, which means that it is determined in steps. It starts at the point

where the initial value is given. Then, using the known solution at the

first point, a solution is determined at a second nearby point. This is fol

lowed by a solution at a third point, and so on. There are procedures

with a single-step and multistep approach. In a single-step approach,

the solution at the next point, x; + 1 , is calculated from the already

known solution at the present point, x;. In a multi-step approach, the

solution at xi+ 1 is calculated from the known solutions at several previ

ous points. The idea is that the value of the function at several previous

points can give a better estimate for the trend of the solution. Also, two

types of methods, explicit, and implicit, can be used for calculating the

solution at each step. The difference between the methods is in the way

that the solution is calculated at each step.

Explicit methods are those methods that use an explicit formula for

calculating the value of the dependent variable at the next value of the

independent variable. In an explicit formula, the right-hand side of the

equation only has known quantities. In other words, the next unknown

value of the dependent variable, Y; + 1 , is calculated by evaluating an

expression of the form:

Y;+ 1 = F(x;, X;+ 1, y;) (10.9)

where x;, Y;, and X;+ 1 are all known quantities.

In implicit methods, the equation used for calculating y i + 1 from

the known xi, Y;, and X;+ 1 has the form:

Y;+1 = F(x;,X;+1,Y;+1) (10.10)

Here, the unknown Yi+ 1 appears on both sides of the equation. In gen

eral, the right-hand side of Eq. (10.10) is nonlinear, and the equation

must actually be solved numerically for Y;+ 1 using the methods

described in Chapter 3. If the function on the right-hand side of Eq.

(10.10) depends linearly on Yi+I• then it is actually an explicit formula

just like (10.9) because Eq. (10.10) can be rewritten and solved for

Yi+ 1 to obtain an explicit expression in the form of Eq. (10.9). Implicit

methods provide improved accuracy over explicit methods, but require

more effort at each step.

10.1 Background

y

Y;+1

Exact
solution

!\
I

: Numerical
: solution
I

: x
X;i----+t X;+1

h

Figure 10-4: Single-step explicit
methods.

389

Errors in numerical solution of OD Es

Two types of errors, round-off errors and truncation errors, occur
when ODEs are solved numerically. Round-off errors are due to the
way that computers carry out calculations (see Chapter 1). Truncation

errors are due to the approximate nature of the method used to calculate
the solution. Since the numerical solution of a differential equation is
calculated in increments (steps), the truncation error at each step of the

solution consists of two parts. One, called local truncation error, is due
to the application of the numerical method in a single step. The second
part, called propagated, or accumulated, truncation error, is due to the

accumulation of local truncation errors from previous steps. Together,

the two parts are the global (total) truncation error in the solution.
More details on truncation errors are provided in the following sections
where the error in various methods is analyzed (see Sections 10.2.2 and
10.11).

Single-step explicit methods

In a single-step explicit method, illustrated in Fig. 10-4, the approxi
mate numerical solution (x;+ 1, Y;+ 1) is calculated from the known solu

tion at point (x;. y;) by:

Y;+ 1 = Y; +Slope· h

(10.11)

(10.12)

where h is the step size, and the Slope is a constant that estimates the

value of
dy

in the interval from x; to X;+ 1. The numerical solution
dx

starts at the point where the initial value is known. This corresponds to

i = 1 and point (x1, Yi). Then i is increased to i = 2, and the solution at

the next point, (x2, y2), is calculated by using Eqs. (10.11) and (10.12).

The procedure continues with i = 3 and so on until the points cover the
whole domain of the solution.

Many single-step explicit methods use the form ofEqs. (10.11) and
(10.12), and several are covered in Sections 10.2 through 10.6. The dif

ference between the methods is in the value used for the constant Slope

in Eq. (10.12) and in the way that it is determined. The simplest is
Euler's explicit method, described in Section 10.2, in which Slope is

equal to the slope of y(x) at (x;, Y;). In the modified Euler method,
described in Section 10.3, the value of Slope is an average of the slope

of y(x) at (x;. Y;) and an estimate of the slope of y(x) at the end of the

interval, (x;+ 1, Y;+ 1). In another method, called the midpoint method,

Section 10.4, the value of Slope is an estimate of the slope of y(x) at the

middle of the interval, (i.e., at (x; + X;+ 1)/2). A more sophisticated

class of methods, called Runge-Kutta methods, is presented in Section

10.5. In these methods the value of Slope is calculated from a weighted
average of estimates of the slope of y(x) at several points within an

interval.

390

y

y(x)--J
I Exac� / solut10n / Num�rical

olution
I

I

jl; I Is ope:f(x;,Y)
I I X

h
X;+1

Figure 10-5: Euler's explicit
method.

Chapter 10 Ordinary Differential Equations: Initial-Value Problems

10.2 EULER'S METHODS

Euler's method is the simplest technique for solving a first-order ODE
of the form of Eq. (10.7):

� = f(x, y) with the initial condition: y(x1) = y1

The method can be formulated as an explicit or an implicit method. The
more commonly used explicit formulation is presented in detail in the
next section. The implicit formulation is covered in Section 10.2.3.

10.2.1 Euler's Explicit Method

Euler's explicit method (also called the forward Euler method) is a
single-step, numerical technique for solving a first-order ODE. The

method uses Eqs. (10.11) and (10.12), where the value of the constant

Slope in Eq. (10.12) is the slope of y(x) at point (x;, y;). This slope is

actually calculated from the differential equation:

Slope = �lx=x�
f(x;,y;) (10.13)

Euler's method assumes that for a short distance h near (x;, y;), the func

tion y(x) has a constant slope equal to the slope at (x;, y;). With this

assumption, the next point of the numerical solution (x;+ 1, Y;+ 1) is cal

culated by:

X;+J = X; + h (10.14)

(10.15)

Euler's explicit method is illustrated schematically in Fig. 10-5. To sim
plify the illustration, the step size is exaggerated and the difference
(error) between the numerical and exact solutions at x; is ignored. A

more precise illustration is presented in Section 10.2.2. It is obvious
from Fig. 10-5 that the error in this method depends on the value of h
and is smaller for smaller h. A detailed discussion of the error is given
later in Section 10.2.2.

Equation (10.15) of Euler's method can be derived in several ways.
Starting with the given differential equation:

� = f(x, y) (10.16)

An approximate solution of Eq. (10.16) can be obtained either by

numerically integrating the equation or by using a finite difference
approximation for the derivative.

10.2 Euler's Methods 391

Deriving Euler's method by using numerical integration
Equation (10.16) can be written as an integration problem by multiply

ing both sides by dx:

(10.17)

Carrying out the integration on the left-hand side and solving for Yi+ 1

gives:

f Xi+I
Yi+ I = Yi+ 'f(x, y)dx

x,
(10.18)

The second term on the right-hand side is an integral that has to be eval

uated. Chapter 9 describes several methods of numerical integration.

The simplest of these is the rectangle method (Section 9.2.1), where the

integrand is approximated by the constant value f(xi, y;). Using this

approach, Eq. (10.18) becomes:

(10.19)

which is the same as Eq. (10.15) since h = (xi+ 1 -x;) .
Deriving Euler's method by using finite difference approximation for
the derivative
Euler's formula, Eq. (10.15), can also be derived by using an approxi

mation for the derivative in the differential equation. The derivative l.!1!. dx
in Eq. (10.15) can be approximated with the forward difference formula

(see Section 8.2) by evaluating the ODE at the point x = xi:
l}J!.I _Yi+ I -yi

= f() - xi, Yi dx X·+1-X·
X; l l

(10.20)

Solving Eq. (10.20) for Yi+ 1 gives Eq. (10.15) of Euler's method.

(Because the equation can be derived in this way, the method is also

known as the forward Euler method.)

Example 10-1 shows the application of Euler's explicit method in

the solution of first order ODEs. The equation that is solved numeri

cally can be (and also is) solved analytically. This provides an opportu

nity to compare the numerical and exact solutions, and to examine the

effect of the step size, h, on the error.

392 Chapter 10 Ordinary Differential Equations: Initial-Value Problems

Example 10-1: Solving a first-order ODE using Euler's explicit method.

Use Euler's explicit method to solve the ODE cJl. = - 1.2 y + 7 e -0.3x from x = 0 to x = 2.5 with the
dx

initial condition y = 3 at x = 0.
(a) Solve by hand using h = 0.5.
(b) Write a MATLAB program in a script file that solves the equation using h = 0.1.
(c) Use the program from part (b) to solve the equation using h = 0.01 .

In each part compare the results with the exact (analytical) solution: y =

7
9
° e-0.3x - � e-l.

2
x.

SOLUTION

(a) Solution by hand: The first point of the solution is (0, 3), which is the point where the initial

condition is given. For the first point i = 1. The values of x andy are x1 = 0 and y1 = 3.
The rest of the solution is determined by using Eqs. (10.14) and (10.15). In the present problem these

equations have the form:

Xi+l = X;+h = Xi+0.5

Yi+ 1 = Yi+ f(xi, y)h = Yi+ (- 1.2yi + 7e-0.3x;)0.5

Equations (10.21) and (10.22) are applied five times with i = 1, 2, 3, 4, and 5.
First step: For the first step i = 1. Equations (10.21) and (10.22) give:

X2 = XI + 0.5 = 0 + 0.5 = 0.5

Y2 = Y1 + (-l.2y1 + 7 e-0.3x•)0.5 = 3 + (-1.2 · 3 + 7 e-o.3 · 0)0.5 = 4.7

The second point is (0.5, 4.7) .

Second step: For the second step i = 2. Equations (10.21) and (10.22) give:

X3 = X2 + 0.5 = 0.5 + 0.5 = 1.0

y3 = 12+(-l.212+7e-0·3x2)0.5 = 4.7+(-1.2·4.7+7e-0·3· 05)0.5 = 4.893

The third point is (1.0, 4.893) .

Third step: For the third step i = 3. Equations (10.21) and (10.22) give:

X4 = X3 + 0.5 = 1.0 + 0.5 = 1.5

y 4 = y3 + (-l.2y3 + 7 e-0.3x3)0.5 = 4.893 + (-1.2 · 4.893 + 7 e-0.3 · l.0)0.5 = 4.550

The fourth point is (1.5, 4.550) .

Fourth step: For the fourth step i = 4. Equations (10.21) and (10.22) give:

X5 = X4 + 0.5 = 1.5 + 0.5 = 2.0

y5 = y 4 + (-l.2y 4 + 7 e-0.3x4)0.5 = 4.550 + (-1.2 · 4.550 + 7 e-0·3 · 1.
5)0.5 = 4.052

The fifth point is (2.0, 4.052) .

Fifth step: For the fifth step i = 5. Equations (10.21) and (10.22) give:

X6 = X5 + 0.5 = 2.0 + 0.5 = 2.5

y6 = y5 + (-l.2y5 + 7 e-0.3x5)0.5 = 4.052 + (-1.2 · 4.052 + 7 e-0·3 · 2·0)0.5 = 3.542

The sixth point is (2.5, 3.542) .

(10.21)

(10.22)

10.2 Euler's Methods

The figure on the right shows the calculated numerical solution

(red points) and the exact analytical solution (solid line).

The values of the exact and numerical solutions, and the error,

which is the difference between the two, are:

4.5

1 2 3 4 5 6
xi 0.0 0.5 1.0 1.5 2.0 2.5

Yi (numerical) 3.0 4.70 4.893 4.55 4.052 3.542

Yi (exact) 3.0 4.072 4.323 4.170 3.835 3.436

•

Error 0.0 -0.6277 -0.5696 0.3803 -0.2165 -0.1054

393

•

1.5 2 2.5
x

(b) To solve the ODE with MATLAB, a user-defined function (called odeEuler) that solves a

first-order, initial value problem using Euler's explicit method is written. Then a program in a script

file uses the function to solve part (b) of the problem. The script file also creates a plot that shows the

numerical solution and the exact solution.

[Program 10-1: User-defined function. Solving first-order ODE using Euler's explicit

function [x, y] = odeEULER(ODE,a,b,h,yINI)

% odeEULER solves a first-order initial value ODE using Euler's

% explicit method.

% Input variables:

% ODE Name for the function that calculates dy/dx.

% a The first value of x.

% b The last value of x.

% h Step size.

% yINI The value of the solution y at the first point (initial value).

% Output variables:

% x A vector with the x coordinate of the solution points.

% y A vector with the y coordinate of the solution points.

x(l) = a; y(l) = yINI;

N = (b - a)/h;

for i = l:N

x(i + 1) = x(i) + h;

y(i + 1) = y(i) + ODE(x(i) ,y(i))*h;

end

[Assign the initial value to x (1) and y (1) .]
[Determine the number of steps.]

[Apply Eq. (10.14). J
[Apply Eq. (10.15).J

The following program in a script file uses the function odeEULER for solving the ODE with

Euler's explicit method (part (b) of the problem). The program also plots the numerical and the exact

solutions.

clear

a = 0 ; b = 2 . 5 ; h = 0 . 1 ; yINI = 3 ; Assign the domain, step size, and initial value to variables. J
[x, y] = odeEULER(@ChaplOExmplODE,a,b,h,yINI); [Use theodeEULERfunction. J

xp = a:O.l:b;

yp=70/9*exp(-0.3*xp)-43/9*exp(-l.2*xp);
Create vectors for plotting the exact solution.

394 Chapter 10 Ordinary Differential Equations: Initial-Value Problems

plot(x,y,'--r' ,xp,yp)

xlabel ('x') ; ylabel ('y')

The user-defined function ChaplOExmplODE (listed below), which is typed as the first argument in

the function odeEULER, calculates the value of dyldx.

function dydx = ChaplOExmplODE(x,y)

dydx = -l.2*y + 7*exp(-0.3*x);

The plot that is created when the program is executed is shown below with the numerical (red) and

the exact (black) solutions.

(c) The program from part (b) is executed again with h = 0.01. The result is shown in the plot

below.

4.5----------�

4

3.5

1.5 2 2.5
x x

Part (b) Part (c)

As expected, the numerical solution becomes more accurate as h decreases.

10.2.2 Analysis of Truncation Error in Euler's Explicit
Method

As mentioned in Section 10.1, when ODEs are solved numerically there

are two sources of error, round-off and truncation (see also Chapter 1).

The round-off errors are due to the way that computers carry out calcu

lations. The truncation error is due to the approximate nature of the

method used for calculating the solution in each increment (step). In

addition, since the numerical solution of a differential equation is calcu

lated in increments (steps), the truncation error consists of a local trun

cation error and propagated truncation error (see Section 10.1). The

truncation errors in Euler's explicit method are discussed in this section.

The discussion is divided into two parts. First, the local truncation error

is analyzed, and then the results are used for determining an estimate of

the global truncation error.

A note about notation in this section

In the present section, different values of the dependent variable are calculated and compared at
the same value of the independent variable. To clarify the presentation, each quantity is identified

with a superscript. A dependent variable that is calculated by a numerical method is written as yNs

(in the rest of the chapter it isjusty). The true solution of the ODE is written as yrs. In addition,

the notation yTaylor is used for the value that is calculated with a Taylor series expansion.

10.2 Euler's Methods

Figure 10-6: Numerical and
true solution.

395

Local truncation error

The local truncation error is the error inherent in the formula used to
obtain the numerical solution in a single step (subinterval). It is the dif
ference between the numerical solution and an exact solution for that

step. In a general step i, the numerical solution y{"8 at x = x; is known

(previously calculated), and the numerical solution, y{ff 1 at x = x; + 1
is calculated with an approximate formula. The value of the exact solu

tion for this step can be expressed by a two-term Taylor series expan
sion with a remainder (see Chapter 2):

d2

I
h2

Y'[a;:lor
= yNS + f(x. y!fS)h + __J:. -

z+ I i P ' dx2 2
x= �;

(10.23)

where f(x;, y{"8) = <!.1:.1 and�; is a value of x between x; and X;+ 1. dx
x=x,

With Euler's explicit method the numerical solution y{"f1 at x = X;+ 1
is calculated with:

YNS = y!fS + f(x. y!fS)h 1 +I 1 " 1 (10.24)

Comparing Eq. (10.23) with Eq. (10.24) shows that the Euler explicit
formula is an approximation consisting of the first two terms of the Tay

lor series expansion. The difference between the two (truncation error)
is because the remainder term in Eq. (10.23) was truncated. This error,

called the local truncation error in step i, e[R , is given by:

d2

I
h2

eTR = y!'axlor -y!VS = � _ = O(h2) 1 1 + I 1 + I d x2 2
x= � ;

(10.25)

This is the truncation error inherent in every step. It should be empha

sized, as illustrated in Fig. 10-6, that the value y{"8 that is used in both

Eq. (10.23) and Eq. (10.24) is not the true solution. y[8 is the true solu

tion of the ODE at x = x;. y{"8 is a numerical solution at x = x;
obtained by applying Euler's formula in previous steps. Moreover, the

value f(x;, y{"8) is not the derivative (slope) of the true solution at

x = x; since y{"8 "* y[8. The difference between the numerical solution

and the true solution at x = X;+ 1 is the total error, part of which is due

to the local truncation error and the rest due to the accumulation of trun
cation errors from previous steps. (The discussion here excludes round
off errors.) The total error due to truncation alone is called the global
truncation error. An estimate of the global truncation error for Euler's

explicit method is given next.

396

y

Chapter 10 Ordinary Differential Equations: Initial-Value Problems

Global truncation error

In the first subinterval (step), [x1, x2], the local truncation error is the

same as the global truncation error because the true solution at the first

point is known (initial condition). Starting with the second subinterval

(step), [x2 , x3], there is an additional error in each step because the value

f(x;, yf8) (the slope) in Eq. (10.24) is not the true value of the deriva

x tive at x = x;. (The true value is f(x;, yfS).) In other words, the trunca-----i�--+�����r-�� X1 ------ h - Xz ti on error is propagated, or accumulated, from the previous

subinterval(s) to the next subinterval. The error in the first step is shown
Figure 10-7: Error in the first step . in Fig. 10-7, and the accumulation of error in the first few points is

y
Global truncation error

Figure 10-8: Local and global
truncation error.

illustrated in Fig. 10-8. At some point x;, the global truncation error is

the difference between the true solution, yf8, and the numerical solu-

tion yf8:
(10.26)

Similarly, at X;+ 1 the global truncation error is:

ET!1 = Yli1 -Yff1 (10.27)

The value of the true solution, ylf_1, in step i can also be expressed by a

two-term Taylor series expansion with a remainder:

d2

I h2
Yrs = yrs + f(x y'!'S)h + q__]!_ 1+ 1 l I' I dx2 2 x= lJ,

(10.28)

where f(x;, yf8) = <ix.I , and 11; is a value of x between x; and X;+ 1. dx x=xi
Subtracting Eq. (10.28) and Eq. (10.24), and using Eqs. (10.26) and

(10.27) yields:

2

I
2

E'!'R = £TR+ [f(x yTS)-f(x. yl!S)] h + <!...J:. h
l + 1 I I' I I' I d X2 2 x= 11,

(10.29)

The mean-value theorem for derivatives (see Chapter 2) gives:

[f(x;, yf8)-f(x;, yf8)] = f}f�, y) I (y[8 -Yf8) = EfR Bf�, y) I y y = �
y y = � x =� x =�

(10.30)

where Y; is a value of y between yf8 and yf8. Substituting Eq. (10.30)
in Eq. (10.29) gives:

Eff1 = EfR[l +hf y(x;, Y;)] + a;h2 (10.31)

where f (x y) = Bf(x, y)' and a = !d2
y l Suppose now y I' I a =

I 2dx2 Y y
y x= 11 x =x 1

that in the domain of the solution, f y(x;, y;) is bounded by a positive

number C. Then If y(x;, y;)I :::; C and Eq. (10.31) can be written as:

10.2 Euler's Methods 397

(10.32)

Equation (10.32) can be used for showing how the truncation error

propagates (accumulates) as the numerical solution progresses. At the

first point of the solution where the initial value is given, EfR = 0

(since yfS
= yf8). Then, from Eq. (10.32) the truncation error at the

second point is:

(10.33)

At the third point:

E[R � E{R[l + hC] + a2h2
= a1h2[1 + hC] + a2h

2
= h2 { [l + hC]a1 + a2} (10.34)

In the same way, at the fourth point:

EJR � h2 { [1 + hC]2a1 + [1 + hC]a2 + a3} (10.35)

At each step a new (local) truncation error is added, and the truncation

errors from the previous steps are multiplied (magnified) by [1 + hC].
For the ith step the expression for the global truncation error is:

ETR � h2 {[1 + hC] i-2a1 + [l + hC] i-3a2 + ... + [l + hC] a;_2 + a;_1} (10.36)
Suppose now that in the domain of the solution a; is bounded by a pos

itive number M. Then la;I �Mand Eq. (10.36) can be written as:

ETR � h2 M { 1 + [1 + hC] + ... + [l + hC] i-3 + [l + hC] i-2} (10.37)

If z is defined as z = [1 + h C], then the expression inside the parenthe

ses { } in Eq. (10.37) resembles the series:

2 m zm +
1
-1 1 +z+z + ... +z = --

z-1
Using Eq. (10.38), Eq. (10.37) can be written as:

ETR�h2M {[l+h�b-l-l}
=

h� {[l+hC]i-
1_1}

(10.38)

(10.39)

It is difficult to determine the order of magnitude of ETR directly from

Eq. (10.39). It is possible, however, to determine a bound by consider-

ing the Taylor series expansion of the exponential function es about

s = 0:

2 3
/ = 1 +s+�+�+ ...

2 3!

Substituting s = hC gives:

2 3
ic = 1 + hC + @.f2: + � + ...

2 3!

(10.40)

(10.41)

Equation (10.41) implies that 1 +hC�ic, or [1 +hC]i-I �ic(i-I).
Using this result in Eq. (10.39) gives:

398

y

y

Numerical
solution

h

,-......._Exact
: solut10n
I

I

Sl�pe:/(x1+1,y1+1) X

X;+1

Figure 10-9: Euler's implicit
method.

Chapter 10 Ordinary Differential Equations: Initial-Value Problems

EfR:s;;hM[iC(i-1)_1] (10.42)
c

which is a bound on the global truncation error in step i. If the solution

process continues for N steps, the bound on the global truncation error

at the last point x = x N + 1 is:

(10.43)

since the number of subintervals (steps) is given by N = (x N + 1 - x 1) I h.
Equation (10.43) shows that E'fl+ 1::;; O(h) , so that the global truncation

error is of the order of h, even though the local truncation error is of the

order of h2•
In summary, the local truncation error of Euler's explicit method is

0(h2) . The global truncation error is 0(h) . The total numerical error is

the sum of the global truncation error and the round-off error. The trun

cation error can be reduced by using smaller h (step size). However, if h
becomes too small such that round-off errors become significant, the

total error might increase. It should be emphasized that Eq. (10.43)
cannot be used for calculating an actual value for the bound of global

truncation error because the values of the constants M and C are not

known. The usefulness of Eq. (10.43) is in the fact that it can be used to

compare the accuracy of Euler's method for solving an ODE with other

methods.

A numerical example of the errors is included in part (a) of Exam

ple 10-1. The step size in part (a) of the solution is h = 0.5, and the list

of the errors in each step shows that the errors indeed are of the order of

0.5.

10.2.3 Euler's Implicit Method

The form of Euler's implicit method is the same as the explicit scheme,

except, as illustrated schematically in Fig. 10-9, for a short distance, h,
near (xi, y;) the slope of the function y(x) is taken to be a constant equal

to the slope at the endpoint of the interval (xi+ 1, Yi+ 1). With this

assumption, the next point of the numerical solution (xi+ 1, Y;+ 1) is cal

culated by:

(10.44)

(10.45)

Now, the unknown Yi+ 1 appears on both sides of Eq. (10.45), and

unless /(x;+ 1, Yi+ 1) depends on Y;+ 1 in a simple linear or quadratic

form, it is not easy or even possible to solve the equation for Y;+ 1
explicitly. In general, Eq. (10.45) is a nonlinear equation for the

unknown Y;+ 1> which must be solved numerically using the methods

10.2 Euler's Methods 399

described in Chapter 3.
The derivation of Eq. (10.45) is similar to the derivation of Eq.

(10.15) (see Section 10.2.1), except that in the derivation that uses inte

gration, the approximation of the integral with the rectangle method
uses the end point of the interval. In the derivation that uses an approxi
mation of the derivative, the backward difference formula is used.
Because of this, Euler's implicit method is also known as the backward

Euler method. The local and global truncation errors are the same as
those in the explicit method (see Section 10.2.2). Example 10-2 shows a
solution of an initial value ODE using Euler's implicit method.

Example 10-2: Solving a first-order ODE using Euler's implicit method.

A chemical compound decays over time when exposed to air, at a rate proportional to its concentra

tion to the power of 3/2. At the same time, the compound is produced by another process. The dif
ferential equation for its instantaneous concentration is:

dn(t) = -0.8n312 +I On (1 -e-31) (10.46)
dt I

where n(t) is the instantaneous concentration and n1 = 2000 is the initial concentration at t = 0.
Solve the differential equation to find the concentration as a function of time from t = O until

t = 0.5 s, using Euler's implicit method and Newton's method for solving for the roots of a nonlin

ear equation. Use a step size of h = 0. 002 s, and plot n versus time.

SOLUTION

In this problem tis the independent variable, and n is the dependent variable. The function f(t, n) is

given by:

(10.47)
The numerical solution of the differential equation is done incrementally by using Eqs. (10.44) and
(10.45):

n. = n.+[-08n�12+IOn (1-e-31;+1)]h 1+ I 1 • 1+ I I

where f(t, n) from Eq. (10.47) was substituted in Eq. (10.45).

(10.48)

(10.49)

At each step of the solution, Eq. (10.49) has to be solved for n;+ 1• Since Eq. (10.49) cannot be

solved explicitly, the solution has to be done numerically. To carry out the numerical solution, Eq.

(10.49) is written in the form g(x) = 0, where x = n;+ 1:

(10.50)

A numerical solution of Eq. (10.50) with Newton's method (see Section 3.5) requires the derivative

of g(x) , which is given by:

g'(x) = 1+08·�·x112·h .
2 (10.51)

The iteration equation for solving Eq. (10.50) with Newton's method is obtained by substituting Eqs.

(10.50) and (10.51) in Eq. (3.14):

400 Chapter 10 Ordinary Differential Equations: Initial-Value Problems

x. + 0 8x�12h- lOn (1 - e-31,+1)h- n. _ J " J 1 I
Xj+l - Xj-

3 (10.52)
1+0.8 · 2 · xY2 • h

The MATLAB program (script file) that solves the problem is listed below. The program starts by

calculating the number of steps N (N = (b - a)/ h) in the solution. The program has a main loop for

i (from 1 to N), in which the solution at point i + 1 is calculated. Inside the main loop there is a

nested loop (uses the index}) in which at each step the solution ofEq. (10.50) is determined by using

Newton's method. The iterations are performed by using Eq. (10.52). The starting value of the itera

tions is the solution (the value on n) at the previous point. The iterations stop when the estimated rel

ative error (Eq. (3.18)) is smaller than 0.0001. The nested loop is limited to 20 iterations.

(Program 10-2: Script file. Solving first-order ODE using Euler's implicit method.]

% Solving first order ODE with Euler's implicit method.

clear all

a = 0; b = 0.5; h = 0.002;

N = (b - a)/h;

n(l) = 2000; t(l) = a;

for i=l:N

t(i + 1) = t(i) + h;

x = n(i);

% Newton's method starts.

for j = 1:20

[Assign the domain to variables a and b, and the step size to h.)
[Calculate the number of steps.]

(Assign the initial condition to the first point of the solution.]

(Calculate the next value of the independent variable, Eq. (10.48).)

(Start the solution ofEq. (10.50) using Newton's method.)

num =x + 0. 800*x" (3/2) *h - 10. O*n (1) * (1 - exp (-3*t (i + 1))) *h - n (i) ;

denom = 1+0. 800*1. 5*x" (1/2) *h;

xnew = x - num/ denom;

if abs((xnew - x)/x) < 0.0001

break

else

end

end

x = xnew;

if j == 20

[Eq. (10.52).

Check if the error is small enough to stop the iterations.

fprintf('Numerical solution could not be calculated at t =%gs', t(i))

break

end

% Newton's method ends.

n(i + 1) = xnew;

end

plot(t,n)

The solution from Newton's method is assigned to
the solution of the ODE at the next point.

axis([O 0.5 0 2000]), xlabel('t (s) ') , ylabel('n')

10.3 Modified Euler's Method 401

The plot that displayed when the program is executed

is shown in the figure.

1500

= 1000

500

0 0 0.1 0.2 0.3 0.4 0.5

t (s)

10.3 MODIFIED EULER'S METHOD
The modified Euler method is a single-step, explicit, numerical tech

nique for solving a first-order ODE. The method is a modification of

Euler's explicit method. (This method is sometimes called Heun's1

method.) As discussed in Section 10.2.1, the main assumption in

Euler's explicit method is that in each subinterval (step) the derivative

(slope) between points (xi, Y;) and (x;+ 1, Yi+ 1) is constant and equal to

the derivative (slope) of y(x) at point (xi, y;). This assumption is the

main source of error. In the modified Euler method the slope used for

calculating the value of Yi+ 1 is modified to include the effect that the

slope changes within the subinterval. The slope used in the modified

Euler method is the average of the slope at the beginning of the interval

and an estimate of the slope at the end of the interval. The slope at the

beginning is given by:

� Ix= x;
= f (x;, y;) (10.53)

The estimate of the slope at the end of the interval is determined by first

calculating an approximate value for Y;+ 1' written as yf.:1 using

Euler's explicit method:

(10.54)
and then estimating the slope at the end of the interval by substituting

the point (xi+ 1, yf: 1) in the equation for <!J:.: dx
<!J:.
I

= J (Eu)
d - Eu

X; +I 'Y; +] XY-Y;+1
X = X;+I

(10.55)

1. There is inconsistency in the literature in the use of the name Heun's method. Some
times the name is used for the method presented in this section, and at other times
for a different method. Since the term "modified (or improved) Euler method" is fre
quently associated with the method presented in this section, we (as many other
authors) use "modified Euler" for the name of the method presented here. A differ
ent method presented in Section 10.5.1 is referred to as Heun's method.

402

h
X;+J

(a)

Chapter 10 Ordinary Differential Equations: Initial-Value Problems

Once the two slopes are calculated, a better value of Y;+ 1 is calculated

using the average of the two slopes:

(10.56)

The modified Euler method is illustrated schematically in Fig. 10-
10. Figure 10-lOa shows the slope at the beginning of the interval that

is given by Eq. (10.53) and the value of yf_f 1 that is calculated with Eq.

(10.54). Figure 10-lOb shows the estimated slope at the end of the inter

val that is calculated with Eq. (10.55), and Fig. 10-lOc shows the value

of Y;+ 1 that is obtained with Eq. (10.56) using the average of the

slopes. Equation (10.56) can also be derived by integrating the ODE

over the interval [x;, X;+ i] using the trapezoidal method.

y

Estimate of the slope at
the end of the interval. y

y(x)-J
I

Exact I
solution I yEu :� i+l

I \
: Slope:/(.x,+1,y,��) Y;
: x
X;+1

Using the average
of the two slopes.

I y(x)--.J

Exact
solution

I ,

//
I

!slope: f(x,,y,) +[(x,+1,yf+�)

: x
h

X;+J

(c)

Figure 10-10: The modified Euler method.

The modified Euler method is summarized in the following algorithm.

Algorithm for the modified Euler method
1. Given a solution at point (x;, Y;), calculate the next value of the

independent variable:

X;+I = X; + h

2. Calculate f(x;, y;).
3. Estimate Y;+ 1 using Euler's method:

Yf P1 = Y; + f (x;, y;)h

4. Calculate f(x;+1,yffi) .
5. Calculate the numerical solution at x = X;+I:

= +
f(x;, Y;) + f(x;+ 1 , Yf-f1) h Yi+I Y; 2

The implementation of the modified Euler method is shown in

Example 10-3 where the problem from Example 10-1 is solved again.

10.3 Modified Euler's Method 403

Example 10-3: Solving a first-order ODE using the modified Euler method.

Use the modified Euler method to solve the ODE c.!l. = - l.2y + 7 e -0.3x from x = Oto x = 2.5 with
dx

the initial condition y(O) = 3. Write a user-defined function that solves a first-order ODE using the

modified Euler methos. Use the user-defined function in a script file to solve the ODE using h = 0.5.

Compare the results with the exact (analytical) solution: y =

70 e-0.3x - 43 e-1.2x.
9 9

SOLUTION

The following is a user-defined function named odeModEuler that solves a first-order ODE using

the modified Euler methods.

[Program 10-3: User-defined function. Solving first-order ODE using the modified Euler

function [x, y] = odeModEuler(ODE,a,b,h,yINI)

% odeModEuler solves a first order ODE using the

% modified Euler method.

% Input variables:

% ODE Name for the function that calculates dy/dx.

% a The first value of x.

% b The last value of x.

% h Step size.

% yINI The value of the solution y at the first point (initial value).

% Output variables:

% x A vector with the x coordinate of the solution points.

% y A vector with the y coordinate of the solution points.

x(l) = a; y(l) = yINI;

N = (b - a)/h;

for i = l:N

[Assign the initial value to x (1) and y (1) .]
[Determine the number of steps. J

x(i+l) =x(i) +h; [ApplyEq.(10.14).]
SlopeEu =ODE (x (i) , y (i)) ; Determine the slope at the beginning of the interval, Eq. (10.53).)
yEu=y(i) +SlopeEu*h; [ApplyEq.(10.54). J
SlopeEnd= ODE (x (i + 1) , yEu) ; Determine the estimated slope at the end of the interval, Eq. (10.55).]
y (i + 1) =y (i) + (SlopeEu + SlopeEnd) *h/2; Calculate the numerical solution in

end step i, Eq. (10.56).

The following program, written in a script file, uses the user-defined function odeModEuler for

solving the problem. The function ODE in the input argument of odeModEuler is the same as in

Example 10-1 (Chapl OExrnplODE). The program also creates a plot that shows the numerical and

the exact solutions.

clear

a = 0 ; b = 2 . 5 ; h = 0 . 5 ; yINI = 3 ; [Assign the domain, step size and initial value to variables.)
[x, y] = odeModEuler(@ChaplOExmplODE,a,b,h,yINI); [Use theodeModEulerfunction.)

xp=a:O.l:b;

yp=70/9*exp(-0.3*xp) -43/9*exp(-l.2*xp);
Create vectors for plotting the exact solution.

plot(x,y,'*r' ,xp,yp)

404 Chapter 10 Ordinary Differential Equations: Initial-Value Problems

xlabel ('x') ; ylabel ('y')

The plot produced by the program is shown in the figure
on the right. The figure shows that the calculated points

are much closer to the exact solution than in Example
10-1, part (a) , where Euler's explicit method was
employed using the same step size.

4.5

;>.. 4

3.5

•

The numerical values of the exact and numerical solu

tions, and the error, which is the difference between the
two, are:

3 --���������
0.5 1.5 2 2.5

x

1
X; 0.0
Y; (numerical) 3.0
Y; (exact) 3.0
Error 0.0

2
0.5
3.946
4.072
0.1261

3
1.0
4.188
4.323
0.1351

4 5 6
1.5 2.0 2.5
4.063 3.764 3.394
4.170 3.835 3.436
0.1063 0.0716 0.0425

Comparing the error values here with those in Example 10-1, where the problem was solved with
Euler's explicit method using the same size subintervals, shows that the error with the modified
Euler method is much smaller.

10.4 MIDPOINT METHOD

The midpoint method is another modification of Euler's explicit
method. Here, the slope used for calculating Y; + 1 is an estimate of the

slope at the middle point of the interval (step). This estimate is calcu
lated in two steps. First, Euler's method is used to calculate an approxi

mate value of y at the middle point of the interval xm = x; + h/2,
written as Ym:

(10.57)

Then, the estimated slope at the midpoint is calculated by substituting

(xm, Ym) in the differential equation for ri1: dx

�lx=xm =J(xm,Ym) (10.58)

The slope from Eq. (10.58) is then used for calculating the numerical
solution, Y;+ 1:

Y;+ 1 = Y; + f(xm, Ym)h (10.59)

The midpoint method is illustrated schematically in Fig. 10-11. Figure
10-11 a shows the determination of the midpoint with Euler's explicit

method using Eq. (10.57). Figure 10-llb shows the estimated slope that
is calculated with Eq. (10.58), and Fig. 10-llc shows the value of Y;+ 1
obtained with Eq. (10.59). Equation (10.59) can also be derived by inte

grating the ODE over the interval [x;, X;+ i] using the rectangle method

applied at the midpoint of the interval.

10.5 Runge-Kutta Methods

y
Use Euler's method
to calculate yhl2•

(a)

x
X;+1

y

405

Calculate the slope Calculate the numerical
at (xhl2• Yhl2)· I

Exact---. I
solution

y solutionyi+t· I
�------�1 Numerical

Exact ---. solution

X;

I

I

I

I

I
I I I Slope:f(xh12,yh12)
: I X

X;+1

(b)

Figure 10-11: The midpoint method.

X;

solution ,/
y(x) I

I

I

I

I

I

I

I

I

Slope: f (xh/2, yh12)

X;+1

(c)

x

10.5 RUNGE-KUTTA METHODS

Runge-Kutta methods are a family of single-step, explicit, numerical

techniques for solving a first-order ODE. As was stated in Section 10.1,
for a subinterval (step) defined by [x;,X;+d, where h = X;+1-x;, the

value of Y; + 1 is calculated by:

Y;+ 1 = Y; +Slope· h (10.60)

where Slope is a constant. The value of Slope in Eq. (10.60) is obtained

by considering the slope at several points within the subinterval. Vari

ous types of Runge-Kutta methods are classified according to their

order. The order identifies the number of points within the subinterval

that are used for determining the value of Slope in Eq. (10.60). Second

order Runge-Kutta methods use the slope at two points, third-order

methods use three points, and so on. The so-called classical Runge

Kutta method is of fourth order and uses four points. The order of the

method is also related to the global truncation error of each method. For

example, the second-order Runge-Kutta method is second-order accu-

rate globally; that is, it has a local truncation error of O(h3) and a global

truncation error of O(h2). For each order there are several methods. The

differences between the methods is in the location of the points within

the subinterval that are used for determining the slopes and in the way

that the constant Slope in Eq. (10.60) is determined from the slopes at

the different points within the subinterval.

Runge-Kutta methods give a more accurate solution compared to

the simpler Euler's explicit method. The accuracy increases (i.e., the

truncation error decreases) with increasing order. In each step, however,

they require several evaluations (depending on the order) of the func

tion for the derivative f(x, y).

406 Chapter 10 Ordinary Differential Equations: Initial-Value Problems

10.5.1 Second-Order Runge-Kutta Methods

The general form of second-order Runge-Kutta methods is:

Y;+ 1 = Yi+ (c1K1 + c2K2)h (10.61)

with

K1 = f(x;, y;)
K2 = f(xi + a2h, Y; + b21K1h)

(10.62)

where ci. c2, a2 , and b21 are constants. The values of these constants

vary with the specific second-order method.

The modified Euler method (Section 10.3) and the midpoint

method (Section 10.4) are two versions of a second-order Runge-Kutta

method. These two versions and an additional version called Heun's

method are presented next, using the general form of Eq s. (10. 61) and

(10.62).

Modified Euler method in the form of a second-order Runge-Kutta
method

For the modified Euler method, the constants in Eqs. (10.61) and

(10.62) are:

1 1 c1 = 2, c2 = 2 , a2 =
1, and b21 =

1

Substituting these constants in Eqs. (10.61) and (10.62) yields:

1 Y;+ i = Y; + 2(K1 + K1)h

where

K1 = f(x;, Y;)
K2 = f(x;+h,y;+K1h)

(10.63)

(10.64)

Equations (10.63) and (10.64) can also be derived by integrating the

ODE over the interval [x;, X;+ il using the trapezoidal method.

Midpoint method in the form of a second-order Runge-Kutta method

For the midpoint method, the constants in Eqs. (10.61) and (10.62) are:

1 1 c1 =
0, c2 =

1, a2 =
-

, and b21 =
-2 2

Substituting these constants in Eqs. (10.61) and (10.62) yields:

where

K 1 = f (x;, Y;)

K2 = f (x;+�h,y;+�K1h)

(10.65)

(10.66)

10.5 Runge-Kutta Methods

Heun's method

In Heun's method the constants in Eqs. (10.61) and (10.62) are:

1 3 2 2 c1 = 4' c2 = 4' a2 = 3' and h21 = 3
Substituting these constants in Eqs. (10.61) and (10.62) yields:

Y;+ 1 = Y;+GK1 +�K2)h

where

K1 = f(x;, y;)

K1 = f (x; + �h, Y; + �K1h)
Truncation error in second-order Runge-Kutta methods

407

(10.67)

(10.68)

The local truncation error in second-order Runge-Kutta methods is

0(h3), and the global truncation error is 0(h2). This is smaller by a fac

tor of h than the truncation errors in Euler's explicit method. This means

that, for the same accuracy, a larger step size can be used. In each step,

however, the function f(x, y) in the second-order Runge-Kutta meth

ods is calculated twice. The derivation of an estimate of the local trun

cation error for the modified Euler's version of the second-order

Runge-Kutta method is presented in Section 10.11.

Second-order Runge-Kutta methods and Taylor series expansion

Second-order Runge-Kutta methods can be associated with Taylor

series expansion. For the interval defined by [x;, x;+ i], where

h = x; + 1 - x; and the value of Y; is known, the value of Y; + 1 can be

approximated with three terms of a Taylor series expansion:

. = +� 1 h+!d2y l h2+0(h3) Yi+ 1 y, dx 2dx2 Xi X; (10.69)

The first derivative <!1!.I is given by the right-hand side of the differendx x,
tial equation evaluated at x = x; :

�Ix, = f(x;, Y;) (10.70)

and the second derivative 6 1 can be determined from the dx2
X;

first

derivative by using the chain rule (see Chapter 2):

6 1 = of(x,y) I +of(x,y) I <!J!.I dx2 ox oy dx X; x1, Y; X;, Y; xi (10.71)

408 Chapter 10 Ordinary Differential Equations: Initial-Value Problems

Substituting Eqs. (10.70) and (10.71) in Eq. (10.69) yields:

. = . + f(. .)h + ! af (x, y) I h2 + ! af (x, y)f(. .)h2 + O(h3) y, + 1 y, x,, y, 2 ax 2 ay
x,, y,

X;,Y;

(10.72)

In the general form of second-order Runge-Kutta methods (see Eqs.

(10.61) and (10.62)), K2 is defined as:

(10.73)

Using Taylor series expansion for a function of two variables (see

Chapter 2), the right-hand side of the last equation can be expanded to

give:

K2 = f(x;+a2h,yi+b21K1h) =

= f(x. y.)+a haf(x,y) I
.

+b haf(x,y) I
.

K +O(h2) (10.74)
" l 2

ax
21

ay 1
x,,Y; x,,Y;

Substituting K1 = f(xi, Y;: and K2 from Eq. (10.74) in Eq. (10.61)
gives:

Yi+ 1 = Yi+ c1 f(xi, y;)h + c2 f(xi, Yi)h + c2a2h
2a f(x, y) I

ax

+ c2b21h
2ar�� y)I f(x;, y;) + O(h3)

X;,Y;

X;,Y;

(10.75)

Equations (10.72) and (10.75) are two different equations for calculat

ing the (same) value of Y;+ 1• Since the equations have the same type of

terms, the coefficients in both equations have to be equal. Matching

coefficients of terms with the same power of h gives the following three

equations:

(10.76)

The three equations have four unknowns, which means that there is no

unique solution; instead, many solutions exist. The constants of the

modified Euler method, midpoint, and Heun's methods are three exam

ples of such solutions. If the coefficients are chosen to satisfy Eq.

(10.76), then the local truncation error of the method can be seen from

Eq. (10.72) and (10.75) to be of the order O(h3).
Example 10-4 shows a solution of the ODE that was solved in

Examples 10-1 and 10-3 using the second-order Runge-Kutta method

worked out manually.

10.5 Runge-Kutta Methods 409

Example 10-4: Solving by hand a first-order ODE using the second-order Runge
Kutta method.

Use the second-order Runge-Kutta method (modified Euler version) to solve the ODE

dv -0 3x fi .
h h

. . . 1 d" . =- = - 1.2y + 7 e · rom x = 0 to x = 2.0 wit t e 1mtla con 1tlon y = 3 at x = 0.
dx
Solve by hand using h = 0.5.

SOLUTION
The equation is solved with the modified Euler method in Example 10-3, where the solution is

obtained by writing a MATLAB program in a script file. Here, in order to illustrate how the Runge

Kutta method is applied, the calculations are carried out by hand.

The first point of the solution is (0, 3), which is the point where the initial condition is given. The

values of x andy at the first point are x1 = 0 and y1 = 3.

The rest of the solution is done by steps. In each step the next value of the independent variable is

given by:

X;+ I
= X; + h = X; + 0.5 (10.77)

The value of the dependent variable Y;+ 1 is calculated by first calculating K1 and K2 using Eq.

(10.64):

K1 = f(x;, Y;)

K2 = f(x;+h,y;+K1h)

and then substituting the Ks in Eq. (10.63):

1
Y;+ 1 = Y; + -(K1 + Kz)h

2
First step: In the first step i = 1. Equations (10. 77)-(10. 79) give:

Xz = X1 + 0.5 = 0 + 0.5 = 0.5

K1 = - l.2YJ+7e-0·3"1 = -l.2·3+7e�3·0 = 3.4

y1 + K1h = 3 + 3.4 · 0.5 = 4.7

K2 = - 1.2(y1 + K1h) + 7e-0.3(x1 +0.5) = -1.2 · 4.7 + 7e-0.3 · 0.5 = 0.385

1 1
Y2 = Y1+l(K1 + Kz)h = 3 + 2(3.4 + 0.385) · 0.5 = 3.946

At the end of the first step: x2 = 0.5, y2 = 3.946

Second step: In the second step i = 2. Equations (10.77)-(10.79) give:

X3 = Xz + 0.5 = 0.5 + 0.5 = 1.0

K1 = - l.2y2+7e-03"2 = -l.2·3.946+7e-0.3·0.S = 1.290

Y2+K1 h = 3.946 + 1.290 · 0.5 = 4.591

K2 = - l.2(y2+K1h)+7e-0.3(xz+O.S) = -l.2·4.591+7e�.3· 1.0 = -0.3223

y3 = y2+�(K1 +K2)h = 3.946+�(1.290+(-0.3223))·0.5 = 4.188

At the end of the second step: x3 = 1.0, y3 = 4.188

Third step: In the third step i = 3. Equations (10.77)-(10.79) give:

(10.78)

(10.79)

410 Chapter 10 Ordinary Differential Equations: Initial-Value Problems

X4 = X3 + 0.5 = 1.0 + 0.5 = 1.5
K1 = - 1.2y3 + 7e-0.3x3 = -1.2 · 4.188 + 7e-03 ·LO = 0.1601
y3+K1h = 4.188+0.1601·0.5 = 4.268
K2 = - 1.2(y3+K1h)+7e-0.3(x3+0.S) = -l.2·4.268+7e-0.3·L5

= -0.6582

y4 = y3 + �(K1 + K2)h = 4.188 + �(0.1601+(-0.6582))·0.5 = 4.063
At the end of the third step: x4 = 1.5 , y 4 = 4.063
Fourth step: In the third step i = 4. Equations (10.77)-(10.79) give:

X5 = X4 + 0.5 = 1.5 + 0.5 = 2.0
K1 = - l.2y4+7e-0.3x4 = -1.2·4.063+7e-0.3· 1.S = -0.4122
y4 + K1h = 4.063 + (-0.4122) · 0.5 = 3.857
K2 = - 1.2(y4+K1h)+7e-0·3(x4+0.S) = -1.2·3.857+7e-0·3· 2·0 = -0.7867

1 1 Ys = Y4 + 2(K1 + K2)h = 4.063 + 2(- 0.4122 + (-0.7867)) · 0.5 = 3.763
At the end of the fourth step: x5 = 2.0 , y5 = 3.763

The solution obtained is obviously identical (except for rounding errors) to the solution in Example

10-3.

10.5.2 Third-Order Runge-Kutta Methods

The general form of third-order Runge-Kutta methods is:

Y;+ 1 = Y; + (c1K1 + c2K2 + c3K3)h (10.80)

with

K1 = f(x;, Y;)
K2 = f(x; + a2h, Yt + b21K1h) (10.81)

K3 = f(x;+a3h,y;+b31K1h+b32K2h)

where c1, c2 , c3, a2, a3 , b21, b31and b32 are eight constants. Six equa

tions that relate the eight constants can be derived by comparing Eqs.

(10.80) and (10.81) with a four-term Taylor series expansion that esti

mates the value of Yt+I· (The derivation is beyond the scope of this

book.) This means that, as in the second-order Runge-Kutta methods, it

is possible to have many third-order methods that have different sets of

constants.

One method is called the classical third-order Runge-Kutta
method. The values of the eight constants in this method are:

1 4 1 1 1 c1=6, c2=6, c3=6, a2=2 , a3=1, b21=2 , b31=-1,and b32 = 2
With these constants the equations for the classical third-order Runge

Kutta method are:

(10.82)

10.5 Runge-Kutta Methods 411

where

KI = f (x;, y;)

K2 = f (x;+�h,y;+�K1h) (10.83)

K3 = f(x; + h, Y;-K1h + 2K2h)

Equations (10.82) and (10.83) can also be derived by integrating the

ODE over the interval [x;, X;+ i] using Simpson's 1/3 method.

Truncation errors in third-order Runge-Kutta methods

The local truncation error in third-order Runge-Kutta methods is

0(h
4
), and the global truncation error is 0(h

3
). The derivation of these

error estimates is tedious and beyond the scope of this book.

Other variations of third-order Runge-Kutta method use different

combinations of constants in Eqs. (10.80) and (10.81). The constants of

three such methods, as well as the constants of the classical third-order

Runge-Kutta method, are listed in Table 10-1.

Table 10-1: Constants of third-order Runge-Kutta methods.

Method Cl

Classical 1/6

Nystrom's 2/8

Nearly Optimal 219

Heun's Third 1/4

C2 C3 a2 b21 a3 b31 b32

4/6 1/6 1/2 1/2 1 -1 2

3/8 3/8 2/3 2/3 2/3 0 2/3

319 419 1/2 1/2 3/4 0 3/4

0 3/4 1/3 1/3 2/3 0 2/3

10.5.3 Fourth-Order Runge-Kutta Methods

The general form of fourth-order Runge-Kutta methods is:

Y;+1 = Y;+(c1K1 +c2K2+c3K3+c4K4)h (10.84)

with

K1 = f(x;, Y;)

K2 = f(x; + a2h, Y; + b21K1h)

K3 = f(x;+a3h,y;+b31K1h+b32K2h) (10.85)

K4 = f(x; + a4h, Y; + b41K1h + b42K2h + b43K3h)

where cl> c2, c3, c4, a2, a3, a4 b21, b31, b32, b41' b42 and b43 are 13

constants. The values of these constants vary with the specific fourth

order method.

The classical fourth-order Runge-Kutta method is among the

methods more commonly used. The constants of this method are:

1 2 1
c1 = C4 = 6' Cz = C3 = 6' az = a3 = b21 = b32 -

2
a4 = b43 = 1, b31 = b41 = b42 = 0

412

X;

y

X;

y(x)

Chapter 10 Ordinary Differential Equations: Initial-Value Problems

With these constants the equations for the classical fourth-order Runge

Kutta method are:

where

K1 = f(xi,yJ
K2 = f (xi+�h,yi+�K1h)

K3 = f (xi+ �h, Y; + �K2h)

K4 = f(xi + h, Yi+ K3h)

(10.86)

(10.87)

The classical fourth-order Runge-Kutta method is illustrated schemati

cally in Fig. 10-12. Figures (a) through (c) show the determination of

the slopes in Eq. (10.87). Figure (a) shows the slope K1 and how it is

used to find the slope K2; figure (b) shows how slope K2 is used to find

the slope K3; figure (c) shows how slope K3 is used to find the slope

K4; and figure (d) illustrates the application of Eq. (10.86) where the

\.
\.sl�pe: K1

I

X;+-ih
h

(a)

h

(c)

Slope: Kz
I
I x I X;+i

, ---- Exact
I solution
I
I
I
I

"-. 's1ope:K4
I
I
I
I
I x I

.
lx;+h

y

y

X;
h

(b)

,---Exact
1 solution
I
I
I

Slope: KJ

x X;+1

y(x) Numerical
1 V solution Slope: 6(K1+2Kz+2K3+K4) 1

solution
\ ---- Exact

x

h X;+1=X;+h

(d)

Figure 10-12: The classical fourth-order Runge-Kutta method.

10.5 Runge-Kutta Methods 413

slope used for calculating Y;+i is a weighted average of the slopes Ki,

K2, K3, and K4•

Truncation errors in fourth-order Runge-Kutta Methods
The local truncation error in fourth-order Runge-Kutta methods is

O(h5), and the global truncation error is O(h4). The derivation of these
error estimates is tedious and beyond the scope of this book.

Equations (10.86) and (10.87) can also be derived by integrating the
ODE over the interval [x;, X;+ i] using Simpson's 1/3 method. However,
unlike the third-order Runge-Kutta methods, the function evaluations
in the fourth-order methods are combined in such a way as to give a

local truncation error of O(h5).
Examples 10-5 and 10-6 show solutions of first-order initial value

problems using the classical fourth-order Runge-Kutta method. In
Example 10-5 the first three steps of a solution are calculated by hand,
and in Example 10-6, a MATLAB user-defined function is imple
mented.

Example 10-5: Solving by hand a first-order ODE using the fourth-order Runge-
Kutta method.

Use the classical fourth-order Runge-Kutta method to solve the ODE <!l!. = - 1.2y + 7 e -0.
3

x from dx
x = 0 to x = 1.5 with the initial condition y = 3 at x = 0.
Solve by hand using h = 0.5.
Compare the results with the exact (analytical) solution: y = 79o e-0.3x - � e-l.2x.

SOLUTION
The first point of the solution is (0, 3), which is the point where the initial condition is given. The
values of x and y at the first point are x 1 = 0 and y 1 = 3.
The rest of the solution is done in steps. In each step the next value of the independent variable is cal
culated by:

X;+ 1 = X; + h = X; + 0.5 (10.88)

The value of the dependent variable Y;+ 1 is calculated by first evaluating K1, K2, K3 and K4 using
Eq. (10.87):

K1 = f(x;, y;)

K2 = f (x;+ !h,y;+ !K1h)
K3 = f (x; + !h, Y; + !K2h)
K4 = f(x; + h, Y; + K3h)

and then substituting the Ks in Eq. (10.86):

1
Y;+ i = Y; + -(K1 + 2K2 + 2K3 + K4)h 6

First step: In the first step i = 1. Equations (10.88}--{10.90) give:

(10.89)

(10.90)

414 Chapter 10 Ordinary Differential Equations: Initial-Value Problems

X2 = X1 + 0.5 = 0 + 0.5 = 0.5
K1 = - 1.2y1+7e-0.3x1

= -1.2·3+7e-03·0
= 3.4

1 1 1 1 X1+2h = 0+2·0.5 = 0.25 Y1+2K1h = 3+2·3.4·0.5 = 3.85

K2 = - l.2(y1+�K1h)+7e-o.J(xi+�h) = -l.2·3.85+7e-0.3·0.25
= 1.874

y1 + lK2h = 3 + l . 1.874 · 0.5 = 3.469 2 2

K3 = - 1.2(y1+�K2h)+7e-o.J(xi+�h) = -1.2·3.469+7e-0.3·0.25
= 2.331

y1 + K3h = 3 + 2.331 · 0.5 = 4.166

1 1 y2 = y1 + G(K1+2K2+2K3 + K4)h = 3 + (5(3.4 + 2 · 1.874 + 2 · 2.331+1.026)- 0.5 = 4.069
At the end of the first step: x2 = 0.5, Yi = 4.069
Second step: In the second step i = 2. Equations (10.88)-(10.90) give:

X3 = X2 + 0.5 = 0.5 + 0.5 = 1.0
K 1 = - l.2y2 + 7 e-0.3x2 = -1.2 · 4.069 + 7 e-0.3 · 0.5

= 1.142
X2 + �h = 0.5 + � . 0.5 = 0.75 Y2 + �K1h = 4.069 + � . 1.142 . 0.5 = 4.355

K2 = - l.2(Ji+�K1h)+7e-0.3
(x2+H = -l.2·4.355+7e-0.3·0.75

= 0.3636

Yi+ �K2h = 4.069 + � · 0.3636 · 0.5 = 4.16

K3 = - 1.2(y2+�K2h) +7e-o.3
(x2+�h) = -1.2·4.16+7e-03·0·75

= 0.5976

y2 + K3h = 4.069 + 0.5976 · 0.5 = 4.368

K4 = - 1.2(Yi + K3h) + 7e- O.J(x2+h)
= -1.2 · 4.368 + 7e-0·3 ·LO = -0.0559

y3 = y2 + l(K1 + 2K2 + 2K3 + K4)h = 4.069 + l[l.142 + 2 · 0.3636 + 2 · 0.5976 + (-0.0559)] · 0.5 = 4.32 6 6
At the end of the second step: x3 = 1.0, y3 = 4.32
Third step: In the third step i = 3. Equations (10.88)-(10.90) give:

X4 = X3 + 0.5 = 1.0 + 0.5 = 1.5
K 1 =

- 1.2y3 + 7 e-0.3x3 =
-1.2 · 4.32 + 7 e-0.3 · l.O = 0.001728

X3 + �h = 1.0 + � . 0.5 = 1.25 Y3 + �K1h = 4.32 + � . 0.001728 . 0.5 = 4.320

K2 = - 1.2(y3+�K1h)+7e-o.3
(x3+�h) = -1.2·4.32+7e-0.3· 1.25

= -0.373

10.5 Runge-Kutta Methods

y3 + �K2h = 4.32 + � · (-0.373) · 0.5 = 4.2 27

K3 = - 1.2 (y3+�K2h) +7e-o.3(x3+!h) = -l.2·4.2 27+7e-0.3·!.25 = -0.2614

y3 + K3h = 4.32 + (-0.2614)- 0.5 = 4.189

K4 = - l.2 (y3+K3h)+7e-0.3(x3+h) = -l.2·4.189+7e-0·3·!.5 = -0.5634

415

1 1 y4 = y3+6(K1+ 2K2 + 2K3 + K4)h =4.32+ 6[0.0 0 1728 + 2·(-0.373) +2-(-0.2614) + (-0.5634)] · 0.5 = 4.167

At the end of the third step: x4 = 1.5, y4 = 4.167

A comparison between the numerical solution and the exact solution is shown in the following table
and figure. The error is 0.003. The global truncation error in the second-order Runge-Kutta method

is of the order of h
4

. In this problem h
4

= 0.5
4

= 0.062 5, which is smaller than the actual error. It

should be remembered, however, that in the error term the h
4

is multiplied by a constant whose
value is not known. This shows that the estimates of truncation errors are good for comparing the
accuracy of different methods, but they do not necessarily give an accurate numerical value for the
error.

x
i

Yi (numerical)

Yi (exact)

Error

1
0.0
3.0
3.0
0.0

2 3
0.5 1.0
4.069 4.32
4.072 4.323
0.003 0.003

4 4.5
1.5
4. 167 4

4. 170 :>-.

0.003 3.5

3
0.5 1.5

x

Example 10-6: A user-defined function for solving a first-order ODE using the fourth
order Runge-Kutta method.

Write a user-defined MATLAB function that solves a first-order ODE using the classical fourth
order Runge-Kutta method. Name the function [x, y] =odeRK4 (ODE, a, b, h), where ODE is the
name of a user-defined function that calculates the derivative dy/dx.

Use the function odeRK4 to solve:

dv -0 3x fj · h h · · · 1 d' · ::L = - l.2y + 7 e · rom x = 0 to x = 2.5 wit t e 1mt1a con 1t10n y = 3 at x = 0.
dx

using h = 0.5.

Compare the results with the exact (analytical) solution: y = 70 e-0.3x -4 3 e-1.2x.
9 9

SOLUTION
To solve the problem, a user-defined MATLAB function called odeRK4, which solves a first-order
initial value ODE, is written. The function is then used in a script file, which also generates a plot
that shows a comparison between the numerical and the exact solutions. The ODE itself is written in
a separate user-defined function that is used by the odeRK4 function.

416 Chapter 10 Ordinary Differential Equations: Initial-Value Problems

Program 10-4: User-defined function. Solving first-order ODE using Runge-Kutta fourth-order metho4.

function [x, y] = odeRK4(0DE,a,b,h,yini)

% odeRK4 solves a first order initial value ODE usinq Runqe-Kutta fourth

order method.

% Input variables:

% ODE Name for the function that calculates dy/dx.

% a The first value of x.

% b The last value of x.

% h Step size.

% yini The value of the solution y at the first point (initial value).

% Output variables:

% x A vector with the x coordinate of the solution points.

% y A vector with the y coordinate of the solution points.

x(l) = a; y(l) = yini

n = (b - a)/h;

[Assign the initial value to the first point of the solution.]
[Calculate the number of steps.]

for i = l:n

x(i + 1) = x(i) + h;

Kl = ODE(x(i) ,y(i));

xhalf = x(i) + h/2;

yKl = y(i) + Kl*h/2;

K2 = ODE(xhalf,yKl);

yK2 = y(i) + K2*h/2;

K3 = ODE(xhalf,yK2);

yK3 = y(i) + K3*h;

K4 = ODE(x(i + l),yK3);

y (i + 1) =y (i) + (Kl+ 2*K2 + 2*K3 + K4) *h/6;

end

Calculate the next value of the independent variable. J
[Calculate K1, Eq. (10.87). j

[Calculate K2, Eq. (10.87).]

Calculate K3, Eq. (10.87). J

[Calculate K4, Eq. (10.87). j

I
Calculate the next value of the dependent

I variable, Eq. (10.86).

The following script file uses the function odeRK4 for solving the ODE.

a = 0; b = 2.5;

h = 0.5; yini = 3;

[x,y]=odeRK4(@Chapl0Exmp60DE,a,b,h,yini)

xp=a:O.l:b;

yp=70/9*exp(-0.3*xp) - 43/9*exp(-l.2*xp);

plot(x,y, '*r' ,xp,yp)

[Use the user-defined odeRK4 function.]

Create vectors for plotting the exact solution.]

yExact=70/9*exp(-0.3*x) - 43/9*exp(-l.2*x)

I
Calculate the exact solution at points of

I error= yExact - y the numerical solution.

The user-defined function Cha pl 0Exmp60DE used in the argument of the function odeRK4 calcu

lates the value of dyldx:

function dydx = Chapl0Exmp60DE(x,y)

dydx = -l.2*y + 7*exp(-0.3*x);

10.6 Multistep Methods 417

When the script file is executed, the following data is displayed in the Command Window. In addi

tion, a plot that shows the points of the numerical solution and the exact solution is displayed in the

Figure Window.

x =

0 0.5000 1.0000 1.5000 2.0000 2.5000

y =

3.0000 4.0698 4.3203 4.1676 3.8338 3.4353

yExact =

3.0000 4.0723 4.3229 4.1696 3.8351 3.4361

error =

0 0.0025 0.0026 0.0020 0.0013 0.0008

The results (the error vector and the figure) show that the

numerical solution has a very small error, even though the

step size is quite large. 4

•Numerical
-Exact

311--����--=:o::::===.::::::=.__J
0.5 1.5 2 2.5

x

10.6 MUL TISTEP METHODS

In single-step methods the solution Y;+ 1 at the next point x = X;+ 1 is

obtained by using only the value of Y; and x; at the previous point. In

multistep methods, the solution Y;+ 1 at the next point x = X;+ 1 is cal

culated by considering two or more previous points. Multistep methods

can be explicit or implicit. In explicit multistep methods, the solution,

Y;+ 1' at the next point is calculated from an explicit formula. For exam

ple, if three prior points are used, the next unknown value of the depen

dent variable, Y;+ i. is calculated by evaluating an expression of the

form:

(10.91)

This form is explicit since the right-hand side of the equation has only

known quantities. Such a method obviously cannot be used for deter

mining the solution at the second point, since only one prior point (the

initial condition) is known. Depending on the number of prior points

used, the first few points can be determined by single-step methods or

by multistep methods that use fewer prior points. In implicit multistep

methods, the unknown Y;+ 1 appears on both sides of the equation,

which is then solved numerically using the methods described in Chap

ter 3.

418 Chapter 10 Ordinary Differential Equations: Initial-Value Problems

10.6.1 Adams-Bashforth Method
The Adams-Bashforth method is an explicit multistep method for solv

ing a first-order ODE. There are several Adams-Bashforth formulas for

calculating the value of Y;+ 1 by using the known solution at two or

more previous points. The formulas are classified according to their

order, which is the number of points used in the formula, and is also the

order of the global truncation error of the scheme. The second-order

formula uses the points (x;, y;) and (x;_ 1, Y;_ 1). The third-order formula

uses the three points (x;, y;) , (xi_ 1, yi _ 1), and (xi_2, Y;-2), and so on.

The formulas of the Adams-Bashforth method are derived by inte

grating the differential equation over an arbitrary interval [xi, xi+ i]. If

the differential equation is given by:

� = f(x, y) (10.92)

integration from x; to x; + 1 gives:

Y;+ 1 = Y; + ('.+1 f(x, y)dx (10.93)

The integration is carried out by approximating f(x, y) with a polyno

mial that interpolates the value of f(x, y) at (x;, y;) and at previous

points.

Second-order Adams-Bashforth method
If f(x, y) in Eq. (10.93) is approximated by a polynomial that interpo

lates the value of f(x, y) at (x;, y;) and at the previous point,

(xi_ 1, Y;-1) , then the polynomial is of first order and can be written in

the form:

f() = f(. .)+f(xi,y;)-f(xi-l>Yi-1)(_ .) x,y x,,y1 h x x1 (10.94)

where
h

= x; -x; _ 1 . Equation (10.94) is substituted in Eq. (10.93),
which is then integrated. Carrying out the integration gives:

(10.95)

Equation (10.95) is the second-order Adams-Bashforth method that

approximates the solution of the differential equation at x;+ 1 from the

previously calculated solutions (xi, y;) and (xi_ 1, yi _ 1) .
Higher-order formulas that include more previous points are

derived in the same way. The formulas for the third, fourth, and fifth
order Adams-Bashforth method are given next.

10.6 Multistep Methods 419

Third-order Adams-Bashforth method

The third-order formula gives the solution Y;+ 1 in terms of the known

values of the solution at the previous three points:

h Yt+I = Y;+ 12[23f(x;,Y;)-16f(x;_1,Yt-1)+5f(x;_2,Yt-2)] (10.96)

When solving a first-order ODE, the first point is known (initial condi

tion). The solutions at the second and third points have to be determined

by other methods, and the formula in Eq. (10.96) can be used starting

from the fourth point.

Fourth-order Adams-Bashforth method

The fourth-order formula gives the solution Y; + 1 in terms of the known

values of the function in the previous four points:

(10.97)

where the notation f; = f(x;,y;), ft-I= f(x;_1,y;_1), and so on, is

used. When solving a first-order ODE, other methods have to be used

for evaluating y at the second, third, and fourth points, and the formula

in Eq. (10.97) can be used starting from the fifth point.

10.6.2 Adams-Moulton Method

The Adams-Moulton method is an implicit multistep method for solv

ing first-order ODEs. There are several Adams-Moulton formulas for

calculating the value of Y;+ 1 by using the previously calculated solu

tions at two or more points. The formulas are classified according to

their order, which refers to the number of points used in the formula and

the order of the global truncation error. The second-order formula uses

the points (x;,y;) and (x;_1,y;_1). The third-order formula uses the

three points (x;,Y;), (x;_1,y;_1), and (x;_2,y;_2), and so on. The

approach used in this method is similar to that of the Adams-Bashforth,

where the function f(x, y) in Eq. (10.93) is approximated with a poly

nomial. The difference between the methods is that in the Adams

Moulton method, the points used for determining the interpolation

points include (x;, Y;) and previous points, as well as the point

(x;+ 1, Y;+ 1) where the solution is to be determined. Consequently, the

variable Y;+ 1 also appears on the right-hand side of the equation, which

makes the method implicit. The derivation of the equations is beyond

the scope of this book, but the second, third, and fourth-order formulas

are given here.

420 Chapter 10 Ordinary Differential Equations: Initial-Value Problems

Second-order Adams-Moulton method

The second-order formula is:

h
Yi+ 1 = Yi+ l[f(x;, Y;) + f(xi+ I• Yi+ 1)]

The formula is an implicit form of the modified Euler method.

Third-order Adams-Moulton method

The third-order formula is:

Fourth-order Adams-Moulton method

The fourth-order formula is:

(10.98)

(10.100)

All of the formulas above can be used only if the solutions at the

required number of previous points are already known.

The Adams-Moulton methods can be used in two ways. If they are

used by themselves, they have to be solved numerically, since the equa

tions contain the unknown Yi+ 1 on both sides of the equation. Usually,

however, they are used in conjunction with other equations in methods

that are called predictor-corrector methods, which are presented in the

next section.

10.7 PREDICTOR-CORRECTOR METHODS

Predictor-corrector methods refer to a family of schemes for solving

ODEs using two formulas; predictor and corrector formulas. The pre

dictor is an explicit formula and is used first to determine an estimate of

the solution Yi+ 1. Since the predictor is an explicit formula, the value of

Yi+ 1 is calculated from the known solution at the previous point (xi, y;)
(single-step method) or several previous points (multistep methods).

Once an estimate of Yi+ 1 is found, the corrector is applied. The correc

tor uses the estimated value of Yi+ 1 on the right-hand side of an other

wise implicit formula for calculating a new, more accurate, value for

Yi+ 1 on the left-hand side. Therefore, the corrector equation, which is

usually an implicit equation, is being used in an explicit manner since

no solution of a nonlinear equation is required. This scheme utilizes the

benefits of the implicit formula while avoiding the difficulties associ

ated with solving an implicit equation directly. Furthermore, the appli

cation of the corrector can be repeated several times such that the new

value of Yi+ 1 is substituted back on the right-hand side of the corrector

formula to obtain a more refined value for Yi+ 1. The predictor-correc

tor method is summarized in the following algorithm.

10.7 Predictor-Corrector Methods

Algorithm for the predictor-corrector method
Given a solution at points (x1, Yi), (x2, Yi), ... , (xi, y1).

J. Calculate Yi+ 1 using an explicit method.

421

2. Substitute Yi+ 1 from Step 1, as well as any required values from the

already known solution at previous points, in the right-hand side of

an implicit formula to obtain a refined value for Yt+ 1.

3. Repeat Step 2 by substituting the refined value of Yt+ 1 back in the

implicit formula, to obtain an even more refined value for y1+1•
Step 2 can be repeated as many times as necessary to produce the

desired level of accuracy, that is, until further repetitions do not

change the answer for Yi+ 1 to a specified number of decimal

places.

The simplest example of a predictor-corrector method is the modi

fied Euler method which is presented in Section 10.3. Recall that in this

method a first estimate of Yt+ 1 is calculated with Euler's explicit for

mula, Eq. (10.54), which is the predictor. The estimate is then used to

calculate a more accurate value of Y;+ 1 using Eq. (10.56), which is the

corrector. In addition, as mentioned earlier in this section, this method

can be modified such that the corrector equation is applied several times

at each step. With this modification, the modified Euler predictor-cor

rector method is presented in the following algorithm.

Algorithm for the modified Euler predictor-corrector method
Given a solution at point (x1, y1).

J. Calculate a first estimate for yf V1 using Euler's explicit method as

a predictor:

(10.101)

2. Calculate better estimates for Yt+ 1 by using Eq. (10.56) repetitively

as a corrector:

Yl(k+)I = Y,· +
f(x;, y;) + f(

2
x;+ 1 , yft1 l))h fi

(10 102) or k = 2, 3,

3. Stop the iterations when I Y(k) -yCk-1) 1 z+I 1+1
:<S;i:;

Y(k-1) 1+ I

Adams-Bashforth and Adams-Moulton predictor-corrector methods
The Adams-Bashforth method (Section 10.6.1), which is an explicit

method, and the Adams-Moulton method (Section 10.6.2), which is an

implicit method, can be used together in a predictor-corrector method.

For example, with the formulas of the third order, the predictor equation

422 Chapter 10 Ordinary Differential Equations: Initial-Value Problems

that calculates the first estimate of y}V1 is:

YfV1 = Y;+ :2[23f(x;,Y;)-16f(x;_1,Y;-1)+5f(x;_z,y;_z)] (10.103)

The corrector equation is:

YW1=y;+1�[5f}i11)+8f;-f;_i] for k=2,3, . . . (10.104)

10.8 SYSTEM OF FIRST-ORDER ORDINARY
DIFFERENTIAL EQUATIONS

Ordinary differential equations are used to describe, or simulate, pro
cesses and systems that are modeled by rates. Frequently, these pro
cesses and systems are associated with several dependent variables that

are affecting each other. In many of these instances there is a need to
solve a system of coupled first-order ODEs. In addition, as will be
shown in Section 10.9, initial value problems involving ODEs of sec
ond and higher orders are solved by converting the equation into a sys

tem of first-order equations.
A simple example of application of a system of two first-order

ODEs is in the simulation of growth or decay of two populations that

are affecting each other (the so-called predator-prey problem). Suppose

a community consists of NL lions (predators) and NG gazelles (prey),

with b and d representing the birth and death rates of the respective spe

cies. Then, the rate of change (growth or decay) of the lion (L) and
gazelle populations can be modeled by the equations:

dNL () dt = bLNLNG-dLNL 10.105
dNG --= bGNG-dGNGNL dt

The dependent variables in Eq. (10.105) are NL and NG' and the inde

pendent variable is time. The constants bL and bG are the birth rates of

lions and gazelles, respectively, and d L and d G are their respective

death rates. The first equation indicates that the rate of change of the
population of the lions increases as a function of the product N LNG' and

decreases linearly as a function of the number of lions. For the gazelles,
the second equation states that the rate of change of their population
increases linearly as a function of the number of gazelles and decreases

as a function of the product N LN c· Once an initial condition is specified

(the number of lions and gazelles at t = 0), a solution of the system of
equations in Eq. (10.105) will give the population of both species as a
function of time (see Example 10-11). The differential equations in Eq.

(10.105) are coupled since each equation contains both dependent vari

ables.

10.8 System of First-Order Ordinary Differential Equations 423

Chemical reactions are often written as "equations" but with arrows

instead of an equal sign. For example, the reaction:

k1 H +Erz� HBr +Br

kz
HBr+ Br�H +Erz

represents the physical process of a hydrogen atom (H) colliding with a

bromine molecule (Erz), resulting in the formation of a new molecule

(HBr) and a bromine atom (Br). The rate at which this reaction occurs

is proportional to the amount of reactants (in this case, (H) and (Erz)
that are present. Therefore, the rate of production of (HBr) and (Br) is

written as:

dnBr
-- = k1nHnBr -kznHBrnBr dt 2

dnH
-

= kznHBrnBr-klnHnBr
dt 2

(10.106)

where n; is the number of atoms or molecules of species i per unit vol

ume, and k1 and kz are the rate coefficients for the reactions. It can be

seen from Eqs. (10.106) that the number of atoms per unit volume, nsr
and nH, are the dependent variables and time is the independent vari

able.

Genera/form of a system of first-order ODEs

A system of n first-order ordinary differential equations has the form:

dyl
dt = f1 (t,y1,yz,Y3···•Yn)

dyz
dt = fz (t,Yt,Yz,y3 .. .,Yn)

(10.107)

where tis the independent variable and y1, yz, y3 .. ., Yn are the depen

dent variables. The right-hand sides of Eq. (10.107) can be nonlinear

and of arbitrary complexity.

Some systems of first-order ODEs may be solved with any of the

previously discussed explicit methods. For single-step methods, the

general form is the same as in Eqs. (10.11) and (10.12), except that the

second equation is applied for each of the dependent variables.

t;+ 1 = ti+ h (10.108)

Y1,;+1 = Y1 ;+(Slope)1 ·h

Yz,;+1 = Yz,;+(Slope)z·h
(10.109)

424 Chapter 10 Ordinary Differential Equations: Initial-Value Problems

where h is the step size and (Slope)i is a quantity that estimates the

value of
d y; in the interval from t; to ti+ 1 .
dt

The next three sections present the details of solving a system of
ODEs with Euler's explicit method, The modified Euler method, and
the fourth-order Runge-Kutta method. Other explicit methods can be
used in the same way.

10.8.1 Solving a System of First-Order ODEs Using Euler's

Explicit Method

The application of Euler's method for solving a system of ODEs is
shown first for the case of two ODEs. A system of two first-order
ODEs, withy andz as the dependent variables andx as the independent
variable, has the form:

<!l. - f - 1(x,y,z)
dx

dz
dx

= f 2(x, y, z)

(10.110)

(10.111)

for the domain [a, b] with the initial conditions: y(a) = y1 and

z(a) = z1.
For a system of two ODEs, Euler's explicit method is given by:

X;+I = X;+h (10.112)

(10.113)

(10.114)

The solution process begins with i = 1 at the first point, x1, where the

values y1 and z1 are known. Then, once h is assigned a value, Eqs.

(10.112}-(10.114) are used to calculate the second (next) point of the
solution (since all the quantities on the right-hand side of the equations
are known). The process then continues with i = 2, 3, . . . all the way to
the end of the domain of the solution. This approach can be readily
extended to solve a system of n ODEs.

10.8.2 Solving a System of First-Order ODEs Using Second

Order Runge-Kutta Method (Modified Euler Version)

The application of the second-order Runge-Kutta method for solving a
system ofODEs is shown for the case of three ODEs. A system of three

first-order ODEs, withy, z, and w as the dependent variables andx as the
independent variable, has the form:

r!1:. -
dx

- /1(x, y, z, w) (10.115)

10.8 System of First-Order Ordinary Differential Equations

dz
dx = f 2(x, y, z, w)

dw
dx = f3(x, y, z, w)

425

(10.116)

(10.117)

for the domain [a, b] with the initial conditions: y(a) = y1, z(a) = z1,

and w(a) = w 1 •
The system is solved by using the modified Euler version of the

second-order Runge-Kutta method; see Eqs. (10.63) and (10.64) in

Section 10.5.1. When this formulation is used to solve one equation, the
value of Y; + 1 at each interval is calculated in three steps. In the first

step the value of K 1 is calculated; in the second step the value of K 2 is

calculated by using K 1 from the first step; and finally in the third step

both Ks are used for calculating Yi+ 1• When solving a system of equa

tions, this process is applied in parallel for each of the equations. This

means that the K1 for all of the ODEs is calculated first. Then, the K1s

are used for calculating the K 2 s for all of the equations, and once the

two Ks for each equation are known, the value of each dependent vari

able is calculated at x;+ 1•

For the system of three ODEs given in Eqs. (10.115)-(10.117), the

solution process in each step starts by calculating the value of the inde

pendent variable at the end of the step:

X;+J = X; +h (10.118)
Then, the K1s associated with each of the ODEs are calculated:

Ky, 1 = f1(X;, Y;, Z;, W;)
Kz 1 = f 2(X;, Y;, Z;, w;)
Kw 1 = f3(Xi, Yi• Z;, W;)

(10.119)

where Ky, b Kz,
1, and Kw,

1 are the K1 of the first, second, and third

ODEs, respectively. Next, the K2s associated with each of the ODEs are

calculated:

Ky, 2 = f1(X; + h, Y; +Ky, 1h, Zi + Kz, 1h, W; +Kw, 1h)
Kz,

2 = f2(x; + h, Y; +Ky, 1h, Z; + Kz, 1h, W; +Kw,
1h)

Kw,
2 = f3(Xi + h, Y; +Ky, 1h, Zi + K2, 1h, Wi +Kw,

1h)
(10.120)

where Ky, 2, K z,
2, and Kw,

2 are the K 2 of the first, second, and third

OD Es, respectively. Finally, the values of the three dependent variables

at xi+ 1 are calculated by:

Y.+1 = y.+l(K i+K 2)h
I I 2 y, y,

1 W;+ I = W; +- (Kw I+ Kw 2)h
2 ' '

(10.121)

426 Chapter 10 Ordinary Differential Equations: Initial-Value Problems

The generalization to a system of n equations is presented in the follow
ing algorithm.

Algorithm for solving a system of first-order OD Es with second-order

Runge-Kutta method (modified Euler version)

A system of n ODEs with the independent variable x and dependent

variables y1, y2, . . • , Yn is written as:

dyl
- = f1(x, Y1, ... , Yn)
dx

dyn

dx
= f n(x, Y1• ... , Yn)

over the interval [a, b] with the initial conditions:

Y1lx=a = YI

YI = Yn n x=a

(10.122)

1. Choose a step size h = (b-a)/N,whereNis the number ofsteps.

2. For i = 1, . .. , N,

• Calculate the next value of the independent variable:

(10.123)

• Using xi and the known Yi, i• ... , Yn, i' calculate K 1 for each

ODE:

(10.124)

•Using xi , the known Yl, i• .. .,Yn, i' and the known K1s, calculate

the K2s for each ODE:

K1,2 = f1(x;+h,Y1,;+Kl,lh, ··.,Yn,;+Kn,1h)

(10.125)

•Using the known y1 i• ... ,yn i' K1,1, ... ,Kn,I and K1,2, . • . ,Kn,2, , ,
calculate the solution y1 ;+ 1, ... , Yn i+ 1: ' ,

1
Y1 ;+1 = Y1;+-(K11 +K1 2)h ' ' 2 ' '

1
Y · 1 = Y · + -(K 1 + K 2)h n, z + n, z 2 n, n,

(10.126)

Example 10-7 shows the application of Euler's explicit method and

Runge-Kutta second-order method (modified Euler version) for solving

a system of equations.

10.8 System of First-Order Ordinary Differential Equations 427

Example 10-7: Solving a system of two first-order OD Es using Euler's explicit method

and second-order Runge-Kutta method.

Consider the following initial value problem consisting of two first-order ODEs:

<:!x. = (-y +z)eCI-x)+0.5y with the initial condition y(O) = 3
dx

dz
= y-z2

with the initial condition z(O) = 0.2
dx

on the domain from x = Oto x = 3.

(10.127)

(10.128)

(a) Solve the system for the first three steps by hand with Euler's explicit method using h = 0.25.
(b) Solve the system for the first two steps by hand with the second-order Runge-Kutta method

(modified Euler version) using h = 0.25.
(c) Write a MATLAB program in a script file that solves the system with the second-order Runge-

Kutta method (modified Euler version) using h = 0.1 .
Show the results from the three parts in a plot.

SOLUTION

(a) Solution by hand with Euler's method: The first point of the solution is x1 = 0, y1 = 3, and

z1 = 0.2, which is the point where the initial conditions are given. For the first point i = 1.
The rest of the solution is determined by using Eqs. (10.112)-(10.114). In the present problem these

equations have the form:

Z;+ I = Z; + f 2(X;, Y;, Z;)h = Z; + [Y; -zfl h
Equations (10.129}-(10.131) are next applied three times with i = 1, 2 , 3.
First step: For the first subinterval i = 1. Equations (10.129}-(10.131) give:

X2 = X1 + 0.25 = 0 + 0.25 = 0.25

y2 = y1+[(-y1+z1)e(l-xi)+0.5yi]h = 3+[(-3+0.2)e0-0)+0.5·3]0.25 = 1.472

Z2 = Z1 + [Y1 -zfJ h = 0.2 + [3 -0.22] 0.25 = 0.94

The second point of the solution is: x2 = 0.25, Yi = 1.472 , and z2 = 0.94 .
Second step: For the second step i = 2 . Equations (10.129)-(10.131) give:

X3 = X2 + 0.25 = 0.25 + 0.25 = 0.5

(10.129)

(10.130)

(10.131)

Y3 = y2 + [(-y2 + z2)e(l -xi)+ 0.5 y2] h = 1.472 + [(-1.472 + 0.94)eCl-0·25) + 0.5 · 1.472] 0.25 = 1.374

Z3 = Z2 + [Y2 -zfl h = 0.94 + [1.472 -0.942] 0.25 = 1.0871

The third point of the solution is: x3 = 0.5 , y3 = 1.374, and z3 = 1.087 .
Third step: For the third step i = 3. Equations (10.129)-(10.131) give:
X4 = X3 + 0.25 = 0.5 + 0.25 = 0.75

y4 = y3+[(-y3+z3)e(l-xi)+0.5y3]h = l.374+[(-1.374+ l.087)e(l-0.5)+0.5 · l.374]0.25 = 1.427

Z4 = Z3 + [y3 -z:D h = 1.087 + [1.374 -1.0872] 0.25 = 1.135

428 Chapter 10 Ordinary Differential Equations: Initial-Value Problems

The fourth point of the solution is: x3 = 0.75, y3 = 1.427, and z3 = 1.135 .

The solution obtained with Euler's explicit method is shown in the figure at the end of the solution of

part (c) .
(b) Solution by hand with second-order Runge-Kutta method: The first point of the solution is

x1 = 0, y1 = 3, and z1 = 0.2, which is the point where the initial conditions are given. For the first

point i = 1.

The rest of the solution is determined by using Eqs. (10.124}-(10.126). In the present problem these

equations have the form:

xi+l = xi+h = xi+0.25

K = (-y.+z.)e(l-x;)+0 5y. y, I 1 1 • 1

V - (+) (l-X;+1)+0 5 n.. y,2 - -Yest Zest e · Yest

(10.132)

(10.133)

(10.134)

where: Yest = Yi+ Ky, 1h, and zest = zi + Kz, 1h .

1
Yi+l = Yi+l(Ky,1 +Ky,2)h

Note: To simplify the equations, the quanti
ties Yest and zest are introduced. They are cal
culated after Ky, 1 and Kz, 1 are determined,
and are used for evaluating Ky,2 and Kz,2.

1
Zi+ 1 = zi + -(Kz I+ Kz 2)h

2 ' '

Equations (10.132)-(10.135) are next applied three times with i = 1, 2, 3 .

First step: For the first interval i = 1. Equations (10.132}-(10.135) give:

X2 = X1 + 0.25 = 0 + 0.25 = 0.25

Ky,l = (-y1+z1)e(l-x1)+0.5y1 = (- 3+0.2)e(l-0)+0.5·3 = -6.111

Kz] = Yi-Zf = 3 - 0.22 = 2.96

Yest= Y1+Ky,1h = 3+(-6.111)0.25 = 1.472

Zest = Z1+K2,1h = 0.2 + 2.96 · 0.25 = 0.94

Ky, 2 = (-Yest+ Zest)e(l-xi+ 1) + 0.5 Yest = (- 1.472 + 0.94)e0 -0·25) + 0.5 · 1.472 = -0.3902

Kz 2 = Yest - z;st = 1.472 - 0.942 = 0.5884

Y2 = Y1 +!(Ky 1 +Ky 2)h = 3 + ![- 6.111 + (-0.3902)]0.25 = 2.187
2 ' ' 2

Z2 = Z1 + !(Kz I+ Kz 2)h = 0.2 + ![2.96 + 0.5884]0.25 = 0.6436
2 ' ' 2

The second point of the solution is: x2 = 0.25, Yi = 2.187, and z2 = 0.6436 .

Second step: For the second interval i = 2. Equations (10.132)-(10.135) give:

X3 = X2 + 0.25 = 0.25 + 0.25 = 0.5

Ky,l = (-y2+z2)e(l-x2)+0.5Ji = (- 2.187+0.6436)e0-0.25)+0.5 ·2.187 = -2.173

Kz, 1 = Y2 - zi = 2.187 - 0.64362 = 1.773

(10.135)

10.8 System of First-Order Ordinary Differential Equations

Yest = Yi+ Ky, ih = 2.187 + (-2.173)0.25 = 1.644

Zest = Z2 + K z, 1 h = 0.6436 + 1. 773 · 0.25 = 1.087
Ky,2 = (-Yest+ Zest)e(l-x;+i) + 0.5yest = (- 1.644 + l.087)eCl-0.5) + 0.5 · 1.644 = -0.09634
K z, 2 = Yest - z;st = 1.644 - 1.0872

= 0.4624

y3 = y2 + l(Ky 1 +Ky 2)h = 2.187 + l[- 2.173 + (-0.09634)]0.25 = 1.903 2 , , 2
z3 = z2 + l(Kz 1 + Kz 2)h = 0.6436 + l[l.773 + 0.4624]0.25 = 0.9230 2 , , 2
The third point of the solution is: x3 = 0.5 , y3 = 1.903, and z3 = 0.9230.

429

The solution points that were obtained with the second-order Runge-Kutta method are shown in the

figure at the end of the solution of part (c) .

c) Solution with a computer program that uses the second-order Runge-Kutta method. First, a

user-defined function, named Sys20DEsRK2, that solves a system of two ODEs using the second

order Runge-Kutta method is written. This function uses two other user-defined functions (listed in

the function definition line as ODEl and ODE2) that calculate the value of dy/dx and dzldx in each

step. The functions are named odeExample7dydx and odeExample7dzdx. The solution itself

is done in a MATLAB program in a script file. The program also produces a plot that shows the solu

tion from part (c) and the solutions calculated in parts (a) and (b).

Program 10-5: User-defined function. Solving a system of two first-order ODEs using a second-order
Runge-Kutta method (modified Euler version).

function [x, y, z] = Sys20DEsRK2(0DE1,0DE2,a,b,h,yINI,zINI)

% Sys20DEsRK2 solves a system of two first-order initial value ODEs using

% second-order Runge-Kutta method.

% The independent variable is x, and the dependent variables are y and z.

% Input variables:

% ODEl Name for the function that calculates dy/dx.

% ODE2 Name for the function that calculates dz/dx.

% a The first value of x.

% b The last value of x.

% h The size of a increment.

% yINI The initial value of y.

% zINI The initial

% Output variables:

% x A vector with

% y A vector with

% z A vector with

value of z.

the x coordinate

the y coordinate

the z coordinate

x(l) = a; y(l) = yINI; z(l) = zINI;

N = (b - a)/h;

for i = l:N
x(i + 1) = x(i) + h;

Kyl = ODEl (x (i) , y (i) , z (i)) ;

Kzl = ODE2 (x (i) , y (i) , z (i)) ;

of

of

of

the solution points.

the solution points.

the solution points.

Assign the initial value to x (1) , y (1) , and z (1) .
[Determine the number of steps.]

Calculate the next value of the independent variable.]

[Calculate the K 1s, Eq. (10.133). J

430 Chapter 10 Ordinary Differential Equations: Initial-Value Problems

Ky2=0DE1(x(i+l) ,y(i) +Kyl*h,z(i) +Kzl*h);

Kz2 = ODE2 (x (i + 1) , y (i) + Kyl*h, z (i) + Kzl*h) ;

y (i + 1) =y (i) + (Kyl + Ky2) *h/2;

z(i+l) =z(i) + (Kzl+Kz2)*h/2;

end

[Calculate the K2 s, Eq. (10.134).j

Calculate the next value of the depen

dent variables, Eq. (10.135).

Listed next are two user-defined functions that calculate the value of dyldx, Eq. (10.127), and dzldx,

Eq. (10.128). The functions are named odeExample7dydx and odeExample7dzdx.

function dydx = odeExample7dydx(x,y,z)

dydx= (-y+ z) *exp (1 - x) + 0. S*y;

function dzdx = odeExample7dzdx(x,y,z)

dzdx=y - z"2;

The MATLAB program in a script file that uses the above functions for solving the problem is listed

next. The program also displays a plot that shows the solution from part (c) and the solutions that

were obtained in parts (a) and (b).

% Solving Chapter 10 Example 7

clear

a = 0; b = 3; yINI = 3; zINI = 0.2; h = 0.1;

[x, y, z]=Sys20DEsRK2(@odeExample7dydx,@odeExample7dzdx,a,b,h,yINI,zINI);

% Data from part (a)

xa = [O 0.25 0.5 0.75];
....______ Use the user-defined function Sys20DEsRK2

for solving the system.

ya = [3 1.472 1.374 1.427);

za = [0.2 0.94 1.087 1.135);

% Data from part (b)

xb = [0 0.25 0.5];

yb = [3 2.187 1.903);

zb = [0.2 0.6436 0.9230);

plot (x, y, '-k' , x, z, '-r' , xa, ya, '*k' , xa, za, '*r' , xb, yb, 'ok' , xb, zb, 'or')

The figure on the right shows the numerical solution

obtained for the whole domain in part (c) (solid lines),

the first four points from part (a) (star markers), and the

three points calculated in part (b) (circle markers).

0 0.5 1.5 2 2.5 3
x

10.8 System of First-Order Ordinary Differential Equations 431

10.8.3 Solving a System of First-Order ODEs Using the
Classical Fourth-Order Runge-Kutta Method

Application of the fourth-order Runge-Kutta method for solving a sys
tem of ODEs is in principle the same as the second-order method
described in the previous section. The only difference is that in the
fourth-order Runge-Kutta method (see Eqs. (10.86) and (10.87) in Sec

tion 10.5.3) there are four quantities, K1, K2, K3 , and K4 for each
ODE that have to be calculated prior to calculating the values of the
dependent variables at the next value of the independent variable, x; + 1.

Again since the equations are coupled, the Ks have to be calculated in

parallel, which means that the values of all the K 1 s are calculated first.

This is followed by calculating all of the K2s, then all of the K3s, and

finally all of the K4s. Once the four Ks for each ODE are known, the

values of the dependent variables are calculated.
To avoid writing a large number of general equations, application of

the fourth-order Runge-Kutta method is presented here for the case of a
system of three first-order OD Es. The approach can easily be extended
for solving a system with more ODEs.

A system of three first-order ODEs, with y, z, and w as the depen
dent variables and x as the independent variable, has the form:

� = f1(x,y,z,w) (10.136)

dz
dx

= f2(x, y, z, w)

dw
- = f3(x, y, z, w)
dx

(10.137)

(10.138)

for the domain [a, b] with the initial conditions: y(a) = y1, z(a) = z1,

and w(a) = w1•

The solution process starts by calculating the value of K 1 for each
ODE:

Ky,I = f1(x;,Y;,z;,w;)

Kz, 1 = f 2(X;, Y;, Z;, w;)

Kw 1 = f3(X;, Y;, Z;, w;)

Next, the value of K2 is calculated for each of the equations:

(10.139)

(10.140)

432 Chapter 10 Ordinary Differential Equations: Initial-Value Problems

This is followed by the calculation of K3:

KY 3 = f 1(x; + !h, Y; +!KY 2h, Z; + !Kz 2h, W; +!Kw 2h) , 2 2 , 2 , 2 ,

(1 1 1 1) Kw 3 = /3 X; + -h, Y; +-Ky 2h, Z; + -Kz 2h, W; +-Kw 2h , 2 2 , 2 , 2 ,

The last quantity to be calculated is K4:
Ky,4 = j1(x; + h, Y; + Ky,3h, Z; + Kz,3h, W; + Kw,3h)
Kz,4 = f2(X; + h, Y; + Ky,3h, Z; + Kz,3h, W; + Kw,3h)
Kw,4 = J3(x; + h, Y; + Ky,3h, Z; + Kz,3h, W; + Kw,3h)

(10.141)

(10.142)

Once the four Ks for each ODE are determined, the value of the depen
dent variables (solution) at x = X;+ 1 is calculated by:

1 Y;+ 1 = Y; +-(Ky 1+2Ky 2 + 2Ky 3 +Ky 4)h 6 , ' , ,

1 Z;+ I = Z; + -(Kz I+ 2Kz 2 + 2Kz 3 + Kz 4)h 6 ' ' ' , (10.143)

1 W;+J = W;+-(Kw1+2Kw2+2Kw3+Kw4)h 6 ' ' , '

A user-defined MATLAB function for solving a system of two first
order ODEs using the fourth-order Runge-Kutta method is given in
Example 10-8.

10.9 SOLVING A HIGHER-ORDER INITIAL VALUE
PROBLEM

Second-order IVP

A second order ODE with x and y as the independent and dependent
variables, respectively, can be written in the form:

d 2 (d) � = f x,y,d�
dx x (10.144)

over the domain [a, b]. Such an equation can be solved if two con
straints are specified. When the two constraints are specified at one
value of x, the problem is classified as an initial-value problem (IVP).
The two initial conditions are the value of y and the value of the first

derivative dy at the first point, a, of the solution domain. If A and
B

are dx
these values, the initial conditions can be written as:

y(a) = A and r!J!. I =
B dx

x=a

(10.145)

10.9 Solving a Higher-Order Initial Value Problem 433

This type of second-order ODE can be transformed into a system of two
first-order ODEs that can be solved numerically with the methods pre
sented in Section 10.8. The solution of second-order (and higher-order)

equations that are not initial value problems is presented in Chapter 11.
Transforming a second-order ODE into a system of two first-order

ODEs is done by introducing a new dependent variable, w, such that:

w = r!1:. (10.146)
dx

and

2 dw = c!_x
dx d x2

(10.147)

With these definitions, the second-order ODE in Eq. (10.144) with the
initial conditions Eq. (10.145) can be written as the following system of
two first-order ODEs:

r!1:. = w with y(a) = A
dx

dw 'h -=f(x,y,w)w1t w(a)=B
dx

(10.148)

(10.149)

Once written in this form, the system can be solved numerically with
any of the previously described methods.

As a specific example, consider the second-order ODE:

2
c!_x=-o.2r!l:.-2y+3sin(t) withy(O) = 3 and r!l:. I = 1.5 (10.150)
dt2 dt df

I= 0

2
By defining w = r!1:., such that dw = d Y, Eq. (10.150) can be written

dt dt dt2
as the following system of two first-order OD Es:

r!J:. = w with y(O) = 3 (10.151)
dt

dw = -0.2w-2y + 3 sin(!) with w(O) = 1.5
dt

(10.152)

The methods of Section 10.8 may now be used to solve the system of
Eq. (10.151) and (10.152) numerically.

Solving a second-order initial value problem is illustrated in Exam

ple 10-8, where a numerical solution is obtained for the motion of a
pendulum. The problem is solved for the case where damping and large
displacements of the pendulum are present. This problem can be linear

ized and solved analytically for small displacements. The nonlinear
case of large displacements, however, can only be solved numerically.

434 Chapter 10 Ordinary Differential Equations: Initial-Value Problems

Example 10-8: Damped, nonlinear motion of a pendulum.

A pendulum is modeled by a mass that is attached to a

weightless rigid rod. According to Newton's second law, as

the pendulum swings back and forth, the sum of the forces that

are acting on the mass equals the mass times acceleration (see

the free body diagram in the figure). Writing the equilibrium

equation in the tangential direction gives:

I
I
I
I
\
\

\
'

"

',_
x

de . d2 e FREE BODY

I-F = -cL--mgsme = mL- (10.153) DIAGRAM
MASS ACCELERATION
DIAGRAM

t dt dt2 n¥
where e is the angle of the pendulum (with respect to the ver-

r /.. 1

tical axis, as shown in the figure), c = 0.16 (N · s)/m is the -
Fv=cLe

damping coefficient, m = 0.5 kg is the mass, L = l.2m is the mg a

length, and g = 9.81 ml s2 is the acceleration due to gravity. Newton's Second Law

Equation (10.153) can be rewritten as the following second-order differential equation:

2
d e

= _ E_ de
_

�sine (10.154)
dt2 mdt L

The pendulum is initially displaced such that e = 90°, and then at t = 0 it is released from rest,

�� = 0 (zero initial velocity). Determine the angle of the pendulum as a function of time, e(t), for

the first 18 seconds after it is released.

SOLUTION

To solve Eq. (10.154), a new dependent variable, w, is introduced, such that:

w =

de
and dw

=

d28
dt dt dt2

With these definitions Eq. (10.154) can be rewritten as the following system of two first-order

OD Es:

de
= w with the initial condition 8(0) = �

dt 2
(10.155)

dw
=

_£w-�sine with the initial condition w(O) = 0 (10.156)
dt m L

The system of ODEs is solved with a user-defined MATLAB function named [t, x, y]
Sys20DEsRK4 (ODE1,0DE2,a,b,h,xl,yl), which is listed below. The function solves a system

of two ODEs using the fourth-order Runge-Kutta method. The function uses two additional user

defined functions that calculate the value of the right-hand side of each ODE.

Program 10-6: User-defined function. Solving a system of two first-order ODEs using fourth-order
Runge-Kutta method.

function [t, x, y]=Sys20DEsRK4(0DE1,0DE2,a,b,h,xl,yl)

% Sys20DEsRK4 solves a system of two first-order initial value ODEs usinq

% fourth-order Runqe-Kutta method.

% The independent variable is t, and the dependent variables are x and y.

% Input variables:

10.9 Solving a Higher-Order Initial Value Problem 435

% ODEl Name for the function that calculates dx/dt.

% ODE2 Name for the function that calculates dy/dt.

% a The first value of t.

% b The last value of t.

% h The size of a increment.

% xl The initial value of x.

% yl The initial value of y.

% Output variables:

% t A vector with the t coordinate of the solution points.

% x A vector with the x coordinate of the solution points.

% y A vector with the y coordinate of the solution points.

t(l) = a; x(l) = xl; y(l) = yl;

n = (b - a)/h;

[Assign the initial values to the first point of the solution.)
[Calculate the number of steps.)

for i = l:n

t(i+l) = t(i) + h;

tm = t(i) + h/2;

Kxl = ODEl(t(i) ,x(i) ,y(i));

Kyl = ODE2(t(i) ,x(i),y(i));

Kx2 = ODEl(tm,x(i)+ Kxl*h/2,y(i)+ Kyl*h/2);

Ky2 = ODE2(tm,x(i)+ Kxl*h/2,y(i)+ Kyl*h/2);

Kx3 = ODEl(tm,x(i)+ Kx2*h/2,y(i)+ Ky2*h/2);

Ky3 = ODE2(tm,x(i)+ Kx2*h/2,y(i)+ Ky2*h/2);

Kx4 = ODEl(t(i + 1),x(i)+ Kx3*h,y(i)+ Ky3*h);

Ky4 = ODE2(t(i + 1),x(i)+ Kx3*h,y(i)+ Ky3*h);

x(i+l) = x(i) + (Kxl + 2*Kx2 + 2*Kx3 + Kx4)*h/6;

y(i+l) = y(i) + (Kyl + 2*Ky2 + 2*Ky3 + Ky4)*h/6;

end

To solve the system ofODEs in Eqs. (10.155) and (10.156), two user-defined functions are written.

One, named PendulumDthethaDt, calculates de
, and the other, named PendulumDtheth

dt
aDt, calculates dw:

dt

function dxdt = PendulumDthethaDt(t,x,y)

dxdt = y;

function dydt = PendulumDwDt(t,x,y)

c = 0.16; m = 0.5; g = 9.81; L = 1.2;

dydt = -(c/m)*y - (g/L)*sin(x);

[Eq. (10.155).)

Eq. (10.156). I

The user-defined functions are used in the following MATLAB program (script file) for solving the

pendulum problem. The program also displays a plot (0 versus time) of the solution.

[t, x, y] = Sys20DEsRK4(@PendulumDthethaDt,@PendulumDwDt,0,18, 0 .1,pi/2, 0);

plot(t,x)

xlabel('Time (s) ')

ylabel ('Angle thetha (rad) ')

436 Chapter 10 Ordinary Differential Equations: Initial-Value Problems

When the script file is executed, the following figure is displayed:

-2 �����������
0 5 10 15 20

Time (s)

Higher-order /VP

Third and higher-order ODEs can be converted into systems of first
order ODEs in a similar way as second-order ODEs. An nth-order IVP
has the form:

d ny - (cJ1!.. d2y d(n-l)Y)
dx2 - f x,y,dx'dx2 , ... ,dx(n-l)

with initial conditions:

for a ..:;,x..:;, b (10.157)

d I d2

I
d(n -I)

I y(a)=A1, � =A2, --1:'.
2 =A3, • • • , C � = An_1{10.158) dx dx dx n-

x=a x=a x=a

The nth-order ODE can be transformed into a system of n first-order

ODEs by introducing n - 1 new dependent variables

Wl, W2, W3, ... , Wn-1 SUCh that:

= cJ1!.. w = dw1 = t..J:. w = dw2 = <f!...J:.. w 1 dx ' 2 dx d x2 ' 3 dx d x3 '
dw acn-1)

W _ n-2 _ Y n-1 - � - dx(n-1)

... '

(10.159)

With these definitions, the nth-order ODE in Eq. (10.157) with the ini
tial conditions Eq. (10.158) can be written as the following system of n
first-order ODEs, each with its own initial condition:

r!1!.. = w with y(a) = A1 (10.160) dx 1

dw1 - =w2 dx
dw2
- =w3 dx

dwn-2 -- =w dx n-1

with w1(a) = A2 (10.161)

with w2(a) = A3 (10.162)

with wn_2(a) = An-1 (10.163)

10.10 Use of MATLAB Built-In Functions for Solving Initial-Value Problems

For example, the third-order IVP:

d3 d d2 � = 2x-3y+4�+x�
dx3 dx dx2

with the initial conditions:

y(O) = 3, d2y l = 7
dx2

x�O

437

(10.164)

(10.165)

can be transformed into the following system of three first-order OD Es:

r!l.. = w dx 1

dw1
- =wz dx

with y(O) = 3

with W1(0) = 2

dw2 -=2x-3y+4w1+xw2 with wz(0)=7
dx

Systems of higher-order IVP

(10.166)

(10.167)

(10.168)

Any coupled system of higher-order OD Es can also be rewritten as a

system of first-order ODEs using the previously described approach.

For example, consider a system of two second-order ODEs:

2 d x _f (tdxr!J..)
dt2 - x, y, ' dt' dt

2 r!...J:. _ f (dx &..)
dt2 - x, y, t, dt' dt

(10.169)

By defining u = dx and w = r!l.., the system in Eq. (10.169) can be dt dt
rewritten as a system of four first-order OD Es:

dx = u
dy = w dt dt

du f - = (x, y, t, u, w) dt
dw) - = f(x,y, t, u, w dt

(10.170)

This system can be solved with the methods described in Section 10.8,

provided that the initial conditions are prescribed.

10.10 USE OF MATLAB BUILT-IN FUNCTIONS FOR
SOLVING INITIAL-VALUE PROBLEMS

MATLAB has a variety of built-in functions that can be used for solving

a single, first-order ODE and systems of first-order ODEs. A number of
different numerical methods are available for solving ODEs, and most

use advanced techniques that optimize the step size automatically, min

imize the error per step, or even adapt the step size to the local behavior

of the solution. This section introduces the use of these built-in func-

438 Chapter 10 Ordinary Differential Equations: Initial-Value Problems

tions. Solution of single first order ODEs is addressed first in Section

10.10.1. Solution of systems of first-order ODEs with MATLAB built

in functions is presented in Section 10 .10 .2.
For the remainder of this section the independent variable is taken

as t (time), and the dependent variable as y. This is done in order to be

consistent with the information provided in the Help menu of

MATLAB, and because in many applications time is the independent

variable.

10.10.1 Solving a Single First-Order ODE Using MATLAB

MATLAB has several built-in functions that can be used for solving a

single first-order ODE. The differences between the various built-in

functions are in the numerical methods used for the solution. The proce

dure for solving a first-order ODE with MATLAB is summarized in the

following list.

• Problem statement
The ODE has to be written in the form:

dy = f(t y) with y(t1) = Y1
dt

,

Three pieces of information are needed for solving a first-order ODE:

an equation that gives an expression for the derivative of y with respect

to t, the interval of the independent variable, and the initial value of y.
An example is:

cJ1:.
= t3-2Y for 1::;;1::;;3 with y = 4.2 att = 1 (10.171)

dt t
• User-defined function for calculating the function f(t, y)

The function f(t, y), which gives the value of
cJ1:.

for arbitrary values
dt

oft and y, has to be supplied by a user-defined MATLAB function. For

the ODE given in Eq. (10.171) the function is:

function dydt = DiffEq (t,y)

dydt = (tA3 - 2*y)/t

This user-defined MATLAB function is named DiffEq in the above

example but in general can have any name. As shown later, the name is

used in the MATLAB built-in function that actually solves the ODE.

The output argument is the value of
cJ1:.

and in its simplest form, the
dt

function has two input arguments (t and y). The user-defined function
for f(t, y: can have other input arguments in addition to t and y. For

example, if f is also a function of temperature, T (a constant), then the

function definition line will include T as an input argument as well:

function dydt = DiffEq(t, y, T)

10.10 Use of MATLAB Built-In Functions for Solving Initial-Value Problems 439

As will be explained later, a numerical value for Tis transferred to the
function when it is used in the built-in MATLAB function that actually
solves the ODE.

• Method of solution

Table 10-2 lists several of the built-in functions available in MATLAB
for solving a first-order ODE. A short description of the numerical
method used in each built-in function is included in the table.

Table 10-2: MATLAB Built-in functions for solving first-order ODE.

Solver Name Description

ode45 For nonstiff problems, best to apply as a first try for
most problems. Single-step method based on fourth

and fifth-order explicit Runge-Kutta methods.

ode23 For nonstiff problems. Single-step method based on

second and third-order explicit Runge-Kutta meth-
ods. Often quicker but less accurate than ode 4 5.

ode113 For nonstiff problems. Multistep method based on
Adams-Bashforth-Moulton methods.

ode15s For stiff problems. Multistep method that uses a
variable-order method. Low to medium accuracy.

ode23s For stiff problems. One-step solver. Can solve some

problems that ode 15 cannot. Low accuracy.

ode23t For moderately stiff problems. Low accuracy.

ode23tb For stiff problems. Uses an implicit Runge-Kutta
method. Often more efficient than ode 15 s.

The various functions have internal parameters (control parameters)

that control the details of the integration with each method, such as step
size and error. The default values of these parameters are selected such
that the functions perform well when solving common problems. As

described later, if needed the user can change the values of the control
parameters.

• Solving the ODE

The form of the command that is actually used for solving the ODE is
the same for all the solvers. The command has a simple form that is
suitable for solving common ODEs and a more advanced form that
includes additional optional arguments. The simplest form of the com

mand with an example is presented first. The command with the addi
tional optional arguments is presented after the example.

440 Chapter 10 Ordinary Differential Equations: Initial-Value Problems

The simple form ofMATLAB's built-in function for solving a first

order ODE is:

[t,y] = SolverName (@DiffEq, tspan,yini)

where:

Sol verName The name of the solver (numerical method) from

Table 10-1 that is used (e.g., ode45 or ode23s).
DiffEq Function handle of the user-defined function (func-

tsp an

yini

[t' y]

tion file) that calculates r!1:. = f(t, y) for given values
dt

oft andy.

A vector that specifies the domain of the independent

variable. The vector must have at least two elements

but can have more. If the vector has only two ele

ments, the elements must be [ta tb] , which define

the domain of the independent variable. The vector

tspan can, however, have additional values between

the first and last points. The number of elements in

tspan affects the output from the command. See

[t, y] below.

The initial value of y (the value of y at the first point

of the domain).

The output, which is the solution of the ODE. t and y
are column vectors. The first and the last points are

the first and last points of the solution domain. The

spacing and number of points in between depend on

the input vector tspan. If tspan has two elements

(the beginning and end points), the vectors t and y
contain the solution at every integration step calcu

lated by the solver. If tspan has more than two ele

ments (additional points between the first and the

last), then the vectors t and y contain the solution

only at these points. The number of points in tspan
does not affect the time steps actually used for the

solution by the built-in solver.

A solution of the ODE that was solved in Example 10-6 is shown

next in Example 10-9, using MATLAB's ode45 function.

10.10 Use of MATLAB Built-In Functions for Solving Initial-Value Problems

Example 10-9: Using MATLAB's built-in function to solve a first-order ODE.
Use MATLAB's built-in function ode45, to solve the ODE:
dv -0 3x fi

. h h . . . 1 d" . =- = - l . 2y + 7 e · rom x =Oto x = 2.5 wit t e imtia con 1t1on y = 3 at x = 0. dx
Compare the results with the exact (analytical) solution: y = 70 e-0.3x - 43 e-1.2x. 9 9
SOLUTION
The following script file demonstrates the use ofMATLAB's ode45 ODE solver.

441

tspan= [0:0.5:2.5];

yini = 3;

[x,y] = ode45 (@DiffEqExp8, tspan,yini)

yExact = 70/9*exp (-0. 3*x) - 43/9*exp (-1. 2*x)

error = yExact - y

[Domain of independent variable.]
[Initial value of the dependent variable.]

[Use the ode45 function.)
Calculate the exact solution at same
points as numerical solution.

The user-defined function DiffEqExp8 that is used in the argument of the function ode45 calcu

lates the value of dyldx:

function dydx = DiffEqExp8 (x, y)

dydx = -1. 2*y +?*exp (-0. 3*x) ;

Since ts pan is a vector with six elements, the solution is displayed at the six points. When the

script file is executed, the following data is displayed in the Command Window.

x =

0
0.5000

1.0000
1.5000

2.0000

2.5000

y =

3.0000
4. 0723

4.3229
4.1696

3.8351

3.4361

error =

1.0e-005 *
0

-0.2400
-0.0374

0.0310

0.0452
0.0476

The results (the error vector) show that the numerical solution has an extremely small error.

442 Chapter 10 Ordinary Differential Equations: Initial-Value Problems

As mentioned before, MATLAB 's built-in functions for solving a

first-order ODE can include additional optional input arguments that

can change the default values of the internal parameters that control the

integration properties within the solvers. These parameters can be used

to transfer values of arguments to the user-defined DiffEq function.

When these optional input arguments are used, the form of the com

mand is:

[t,y]=SolverName(DiffEq,tspan,yini,options,arql,arq2

The argument options can be used for changing the default values of

the internal parameters (called properties) inside the ODE solvers.

options is a name of a structure array that contains the new values of

the properties. (Structure array in MATLAB is an array of fields that

can contain different types of data. For example, one field can contain a

string, and the next field can contain a number.) The options struc

ture is created by a MATLAB built-in function called ode set, which

has the following form:

options= odeset ('namel' , valuel, 'name2' , value2, ...)

where namel, name2, ... ,are names of the properties, and valuel,
value2, ... ,are the corresponding new values of the properties. For

example, to set the initial step size to 0.0002 and the relative error to

0.001, the command is written as:

options= odeset ('InitialStep', 0. 0002, 'RelTol', 0. 001)

Many other properties are listed in the MATLAB help documentation.

This feature should be used by experienced users.

The arguments argl, arg2, ... , can be used, when needed, for

transferring values of arguments to the user-defined function DiffEq

that calculates <l1!. = f. In this case f is a function of y, t, and additional
dt

parameters, and the function definition line in the user-defined function

DiffEq has the form (for the case of two additional arguments):

dydt=DiffEq(t, y, argl,arg2)

When the function of the ODE solver is executed, the values of the

additional arguments are transferred to function Di f fE q.

Important note

In the function of the solver, the options argument has to be present
if optional arguments argl, arg2, ... ,are used for transferring values

of arguments to the user-defined function Di f fE q. If the user does not

wish to change any internal parameters, an empty (null) vector (typed as

[J) should be entered for options.

10.10 Use of MATLAB Built-In Functions for Solving Initial-Value Problems 443

The use of optional arguments in MATLAB 's ODE solvers is illus
trated in Example 10-10.

Example 10-10: Cooling of a hot plate. (Using a MATLAB's built-in function to solve a

first-order ODE.)

When a thin hot plate is suddenly taken out of an oven and is exposed to the surrounding air, it cools
due to heat loss by convection and radiation. The rate at which the plate's temperature, T, is changing
with time is given by:

dT As 4 4

dt
=

- VC
[crsse(T -T00)+h(T-T00)]

p
v

(10.172)

where As is the plate's surface area, p = 300 kg/m3 is its mass density, V is its volume, C v = 900
J/kg/K is its specific heat at constant volume, and s = 0.8 is its radiative emissivity. Also,

crsB = 5.67 x 10-8 W/m2/K4 is the Stefan-Boltzmann constant, h = 30 W/m2/K is the heat transfer
coefficient, and T 00 is the ambient air temperature.

Write a user-defined MATLAB function that calculates the temperature of the plate as a function
of time for the first 180 s after the plate is taken out of the oven, and display the result in a figure.
Name the function Plate Temp (T 1, Vo 1, Are a, T amb) where T 1 is the initial temperature of the
plate, Vol, and Area are the volume and surface area of the plate, respectively, and Tamb is the
ambient temperature.

Use the function to make a plot that shows the variation of temperature with time for a plate with
V = 0.003m3, As = 0.25 m2, which has an initial temperature of 673 K, when the ambient tempera
ture is 298 K.
SOLUTION

To solve the problem, two user-defined functions are written. One is the function
PlateTemp(Tl,Vol,Area,Tamb), and the other 1s a function named

TempRate(t,T,Vol,As,Tamb) that calculates the value of dT in Eq. (10.172). The ODE is
dt

solved inside PlateTemp by using MATLAB's built-in function ode45. (ode45 uses Tem

pRa te when solving the equation). The constants p, C v, s, and cr ss, are defined inside Tem

pRa te. The input arguments of Temp Rate are t, T, Vol, As, and Tamb. The first two arguments,
t and T, are the standard independent and dependent variables. The last three arguments, Vol, As,
and Tamb, are additional arguments that provide the values of the volume, surface area of the plate,
and the ambient temperature. The value of these arguments is entered in the function PlateTemp
and is transferred to TempRate through the additional optional arguments in the function ode45.

The listing of the user-defined function PlateTemp is:

function PlateTemp(Tl,Vol,Area,Tamb)

% The function PlateTemp calculates the temperature of a plate.

% Input variables:

% Tl The initial temperature in degrees K.

% Vol Volume of the plate in m cube.

% Area Area of the plate in m square.

% Tamb The ambient temperature in degrees K.

444 Chapter 10 Ordinary Differential Equations: Initial-Value Problems

% Output: / [Op tional input arguments . J

tspan = [0 18 0] ; [Dom a in of independent v ar iable.]
[Time Temp] = ode45 (@TempRate, tspan,Tl, [] , Vol ,Area,Tamb); [Use the ode45 function.)

% A plot of temperature versus time.

plot(Time,Temp) '-
xlabel ('Time (s) ') "'r-[_E_m_ p_ty_v_e -ct-or-fi,,.... o -r t...,...h_e_o _p -t i-. o_n_ s_ a-rgum--e-n---, t. J
ylabel('Temperature (K) ')

The user-defined function Pla teTemp, that is used in the argument of the function ode4 5, calcu

lates the value of dT/dt is:

function dTdt=TempRate(t, T, Vol, As, Tamb)

Rho= 300; Cv = 900; h = 30; Epsi = 0. 8; Sigma= 5. 67e-8;

ARVC =As/ (Rho*Vol *Cv) ;

SigEps =Epsi*Sigma;

dTdt = -ARVC* (SigEps* (T"4 - Tamb"4) + h* (T - Tamb)); [Eq. (10.172).)
The problem is solved by entering the following in the Command Window:

>> PlateTemp(673,0.001,0.25,298)

When the function PlateTemp is executed, the following figure is displayed:

700 �--�-�--�--�

g 600
Q)

� 500
i:)
13:' 400
Q)

E-< 300

50 100 150
Time (s)

200

10.10.2 Solving a System of First-Order ODEs Using
MATLAB

Systems of first-order ODEs can be solved with the built-in solvers

listed in Table 10-1. The procedures and commands for solving a sys

tem are the same as those for a single equation. When solving a system,

however, the equations of the system and the initial values are entered

as vectors, and the solution that MATLAB returns is in the form of a

matrix, where each column contains the solution for one dependent

variable.

• User-defined function for calculating dy;= f;(t, y1, Ji, ...)
dt

When solving a single ODE, the user-defined function DiffEq

calculates the right-hand side of one differential equation, <!l!. = f(t, y).
dt

10.10 Use of MATLAB Built-In Functions for Solving Initial-Value Problems 445

The function definition line has the form: dydt = DiffEq (t, y),
where the input arguments t and y are scalars used for calculating the

value of f(t, y), which is assigned to dydt.

When a system of OD Es is solved (see Eq. (10.107)), there are sev

eral dependent variables, Yi· y2, ... , and the DiffEq function calcu

lates the value of the right-hand side of several differential equations at

a specified instant, t:
dy

i
dyz dt = f 1(t, Yi· Yz, ...) , dt = f2(t, Yi, Yz, ...) ,

· · ·

The function definition line has the same form as when solving a single

ODE: dydt = DiffEq (t, y). When used for solving systems, how

ever, t is a scalar and y is a vector of the dependent variables

[y1, y2, • • •]. The components of y and the value oft are used for calcu

lating the values off i (t, Yi, y2, ...), f 2(t, y1, y2, ...), .. ., which have to be

assigned as elements in a column vector to the output argument dydt.
• Solving a system of OD Es

The command of the built-in function of the solver is [t, y] =

SolverName (DiffEq, tspan, yini). When used for solving a

system of ODEs, the input argument yini is a vector whose compo

nents are the initial values of the various dependent variables,

[Y1, Y2, ...](see Eq. (10.107)). The output arguments are [t, y]. When

solving one ODE, t and y are each a column vector. When solving a

system ofODEs tis a column vector and y is a matrix, where each col

umn of y is a solution for one dependent variable. The first column is

the solution of y
i
• the second of y2, and so on.

Example 10-11 shows how MATLAB built-in functions are used

for solving a system of OD Es.

Example 10-11: The predator-prey problem. (Using MATLAB's built-in function to

solve a system of two first-order OD Es.)

The relationship between the population of lions (predators), NL, and the population of gazelles

(prey), Ne• that reside in the same area can be modeled by a system of two ODEs. Suppose a com

munity consists of NL lions (predators) and Ne gazelles (prey), with b and d representing the birth

and death rates of the respective species. The rate of change (growth or decay) of the lion (L) and

gazelle populations can be modeled by the equations:

dNL dt = bLNLNe-dLNL (10.173)
dNe dt = beNe-deNeNL

Determine the population of the lions and gazelles as a function of time from t = O to t = 25 years,

if at t = 0 , Ne = 3000, and NL = 500 . The coefficients in the model are: he = 1.1 yr-1,

bL = 0.00025yr-1, de = 0.0005yr-1,and dL = 0.7yr-1.

446 Chapter 10 Ordinary Differential Equations: Initial-Value Problems

SOLUTION

In this problem NL and NG are the dependent variables, and t is the independent variable. To solve

the problem a user-defined function named Pop Rate (t, N) is written. The function, listed below,

calculates the values of
dN L and

dN G in Eq. (10.173). The input argument N is a vector of the
dt dt

dependent variables, where N(l) =NL and N(2) =NG. Notice how these components are used

when the values of the differential equations are calculated. The output argument dNdt is a column

vector where the first element is the value of the derivative
d NL

, and the second is the value of the
dt

d . . dNG envatlve -- .
dt

function dNdt = PopRate(t, N)
bG = 1.1 ; bL = 0.00025 ; dG = 0.0005 ; dL =
fl = bL*N(l)*N(2) - dL*N(l) ;
f2 = bG*N(2) - dG*N(2)*N(l) ;
dNdt = [fl ; f2] ;

0.7 ;

}! CalculateEq.(10.173).]

The system ofODEs in Eq. (10.173) is solved with MATLAB's solver ode45. The solver uses the

user-defined function Pop Rate for calculating the right-hand sides of the differential equations.

The following MATLAB program in a script file shows the details. Notice that Nini is a vector in

which the first element is the initial value of NL and the second element is the initial value of NG·

tspan = [0 2 5] ; [Domain of independent variable.]
Nini= [500 3000] ; [Initial values of the dependent variable (notice that Nini is a vector).]
[Time Pop] = ode4 5 (@PopRa te , tspan, Nini) ; [Solve the system of OD Es.]
plot(Time,Pop(:,l) ,'-' ,Time,Pop(:,2) ,'--')
xlabel('Time (yr)')
ylabel('Population')
leqend('Lions' ,'Gazelles')

In the output arguments of the solver ode4 5, the variable Time is a column vector, and the variable

Pop is a two-column array, with the solution of NL and NG in the first and second columns, respec

tively. The first few elements of [Time Pop] that are displayed in the Command Window (if the

semicolon at the end of the command is removed) are shown below. The program generates a plot

that shows the population of the lions and gazelles as a function of time.

Time =
0

0.0591
0.1182

Column of NL.

0 .1773 Column of NG·

Pop =
l.Oe+003 *

0.5000 3.0000
0.5020 3.1545
0.5053 3.3166

§
-�
'3
p..
0

p...

10000
" " -Lions

8000 I l " --Gazelles

I I I l

10.11 Local Truncation Error in Second-Order Range-Kutta Method

10.11 LOCAL TRUNCATION ERROR IN SECOND
ORDER RANGE-KUTTA METHOD

447

The second-order Runge-Kutta method was presented in Section

10.5.1. As was mentioned, the local truncation error in this method is

O(h3), and the global truncation error is O(h2). This section presents

the derivation of an estimate of the local truncation error for the modi

fied Euler version of the second-order Runge-Kutta method. In general,

the local truncation error at each step of the solution is due to the

approximate formula used for calculating the solution.

A note about notation in this section

In the present section, different values of the dependent variable are calculated and compared at

the same value of the independent variable. To clarify the presentation, each quantity is identified

with a superscript. A dependent variable that is calculated by a numerical method is written as yNS
(in the rest of the chapter it is just y). The true solution of the ODE is written as yrs. In addition,

the notation yTaylor is used for the value that is calculated with a Taylor series expansion.

The local truncation error is the error inherent in the formula used

to obtain the numerical solution in a single step (interval). It is the dif

ference between the numerical solution and an exact solution for that

step. In a general step i the numerical solution yf8 at x = xi is known

(previously calculated), and the numerical solution yff 1 at x = xi+ 1 is

calculated with an approximate formula. The value of the exact solution

for this step with Yi presumed known can be expressed by a three-term

Taylor series expansion with a remainder (see Chapter 2):
2
I

2
Yraxzor = yNs + r!l!..I h + '.!.....l "'2... + a.h3 1+J I d d 2 2 I X NS X NS x

i, Yi X;,Y;
(10.174)

where the fourth term on the right is the remainder term. Since

r!1!.. = f(x, y), the second derivative �1 can be expressed in terms dx dx2 Ns X;,Y;
of f(x, y) and its partial derivatives:

2 '.!.....l = !!... f(x y) = §L + §Lr!J!.. (10.175) dx2 dx ' ox oydx
Substituting Eq. (10.175) in Eq. (10.174) gives:

Yf't1.lor =yfS+ f(x;,yfS)h+(�lx,,yfS +�lx,,yf/(x;,yfS))�2
+aih3 (10.176)

The numerical solution with the modified Euler version of the sec

ond-order Runge-Kutta method is given by Eqs. (10.63)-(10.64),
which are repeated here:

448 Chapter 10 Ordinary Differential Equations: Initial-Value Problems

yf"f1 = Yf8 + !(K1 + K1)h 2

K1 = f(xi, Yf8)
K2 = f(xi + h, yf8 + K1h)

(10.177)

(10.178)

In the equation for K2, the function f(xi+h,yf8+K1h) can be

expanded in a Taylor series expansion (three terms) about x = xi and

y = yf8 (using Taylor expansion for a function of two variables, see

Section 2.7.2, since/is a function of x andy):

(10.179)

where the fourth term on the right is the remainder term. Substituting

K1 = f(xi, yf8) in Eq. (10.179) and then substituting Eq. (10.179) and

K1 = f(xi, yf8) in Eq. (10.177) yields:

yff1= yfs+ f(xi, Yf8)h + !h2(SL I + f(xi, Yf8)£l l) + !1\h3
2 OX NS OY NS

2
xi, Yi xi, Yi

(10.180)

The local truncation error, efR, is given by the difference between Eq.

(10.180) and Eq. (10.176), which is of the order of h3:
1 3 3 3 eTR = yNS -yTaxlor = _R.h -a.h = O(h) z+l z+l z+l 2,.,' z (10.181)

Equation (10.181) shows that the local truncation error is of the

order of (0(h3)). When an interval of solution [a, b] is divided into N
subintervals of width h, the local truncation errors accumulate and the

global truncation error is O(h2).

10.12 STEP SIZE FOR DESIRED ACCURACY

The order of magnitude of the truncation errors for the various numeri

cal methods for solving first-order ODEs can be used for determining

the step size, h, that should used for solving the ODE with a desired

accuracy. Recall from Example 10-1 that, in general, as the step size is

made smaller, the more accurate is the solution. If one desires the solu

tion to be of a certain accuracy, for example, correct to five decimal

places, information about the truncation error of a particular numerical

scheme can help determine the step size necessary to get the desired
accuracy. This section describes a method of determining this step size.

The method used to find a step size for desired accuracy is illus

trated here using the third-order Runge-Kutta method. As mentioned in
Section 10.5.2, the third-order Runge-Kutta method has a local trunca-

tion error of the order of h 4. Therefore, the local truncation error for a

chosen h can be written as:

eTR - Ah4
h - (10.182)

10.12 Step Size for Desired Accuracy 449

where A is a problem-dependent constant. Note that if h is halved, then
4

the local error is er�2 = �� . This means that the local truncation error

incurred in advancing the numerical solution over an extent h for the

independent variable by using two steps of h/2 is approximately equal

(neglecting accumulated truncation error) to 2er�2 or:

TR Ah4 2eh12 = -8

Subtracting Eq. (10.183) from Eq. (10.182) gives:

TR TR 4 Ah
4

7 4
eh -2eh12 =Ah -8 = SAh

(10.183)

(10.184)

Now, suppose that an ODE is solved with the third-order Runge-Kutta

method twice: once, a solution is calculated for a single step of size h
yielding a numerical solution yh, and a second time another solution is

calculated for two steps of size h/2 yielding a numerical solution Yhn·
Using Eq. (10.181) the numerical solutions can be expressed in terms of
Taylor series expansion and the local truncation error:

and

I TR
Y

NS = yTay or(x + h) + 2e h/2 h i h/2

(10.185)

(10.186)

The factor 2 on the right-hand side ofEq. (10.186) is necessary because

in the solution with a step size of h/2 two steps are required for a solu

tion at x; + h. Subtracting Eq. (10.185) from Eq. (10.186) and using Eq.

(10.184) yields:

(10.187)

The significance of Eq. (10.187) is that by running a code already writ
ten to solve an ODE using the third-order Runge-Kutta method twice

with the different step sizes of h and h/2, the problem-dependent con
stant A can be determined by a numerical experiment. In other words,
by running the code once (for one step) with an arbitrarily chosen (but

reasonable) step size of h, yff8 can be found. Then, by running the

same code (for two steps) with a step size of h/2, yffz can be found.

Since h was chosen, it is a known quantity and Eq. (10.187) can be
used to determine the parameter A. Once A is determined, Eq. (10.182)

can be used for calculating a value of h for a desired level of accuracy.

For example, if the desired error is �. then the value of h such that

erR ::;; � is given by:

- (�) 1/4

h - -
A

(10.188)

450 Chapter 10 Ordinary Differential Equations: Initial-Value Problems

Similar expressions can be derived for Runge-Kutta methods of differ

ent orders or other methods.

Criteria such as Eq. (10.188) establish a guideline and are therefore

inexact. The reason is that in this discussion of numerical error, only

truncation error (which is method-dependent) has been considered. The

total error is the sum of the global truncation error and the round-off

error, and (10 .186) does not contain any information regarding the

machine-dependent round-off error (see Chapter 1). Consequently, the

optimum step size provided by (10.186) is approximate and must be

viewed as such. Example 10-12 shows how an optimum step size may

be found for a particular problem when using the fourth-order Runge

Kutta method.

Example 10-12: Determining the step size for given accuracy.

(a) Develop the formula that can be used for calculating the step size for a required accuracy for the

fourth-order Runge--Kutta method.

(b) For the given ODE, apply the formula from part (a) to find the magnitude of the step size such

that the local truncation error will be less than 10-6.

c!l. = _ --1'....._ with y(O) = 1, for O < x < 1
dx 1 + x2 '

(10.189)

SOLUTION

(a) Since the local truncation error for the fourth-order Runge-Kutta method is O(h\ the truncation

error in a solution with a step size of h can be expressed by (analogous to Eq. (10.182)):

erR
= Ah5 (10.190)

When the step size is halved, the local truncation error when the independent variable advances two

steps is:

TR Ah5 2eh12 =
-16

Subtracting the last two equations gives a relation analogous to Eq. (10.184):
5 TR 2

TR - Ah5 Ah - 15Ah5 eh - eh/2 - - - - -16 16

(10.191)

(10.192)
By using Eqs. (10.185) and (10.186), the difference in the truncation errors in Eq. (10.192) can be

written in terms of the difference in the numerical solutions that are obtained with step sizes of h and

h/2:

(NS NS) NS NS _
15 Ah5 or A =

16 Yh - Yh12 (l0.193) Yh - Yh12 - 16 ' 15 h5
Once the two numerical solutions are obtained, the constant A in Eq. (10.193) can be determined.
With A known, the step size for the required accuracy is calculated by using Eq. (10.190):

where � is the desired error.

h -- (
A
;c)l/ 5 .::.. (10.194)

10.12 Step Size for Desired Accuracy 451

(b) To find the magnitude of the step size such that the local truncation error will be less than 10-6,
Eq. (10.189) is solved twice with the fourth-order Runge-Kutta method: once with h = 1 and once

with h = 1/2. The solution ofEq. (10.189) is performed in the Command Window of MATLAB by

using the user-defined function odeRK4 that was developed in Example 10-6:

>> [x, y] = odeRK4 (@Chap10Exmpl20DE, 0, 1, 1, 1)

x =

0 1 Solve the ODE using h = 1. J
y=

1.00000000000000 0.45666666666667

From this solution yfS = 0.45666666666667.

>> [x, y] = odeRK4 (@Chap10Exmpl20DE, 0, 1, 0. 5, 1)

x =

0 0.50000000000000 1.00000000000000

y=

1.00000000000000 0.62900807381776

From this solution yff2 = 0.45599730642061.

0.45599730642061

-

-
Solve the ODE using - h = 1/2 .

The argument Chap10Exmp120DE in the user-defined function odeRK4 is the name of the following

user-defined function that calculates the value of dyldx:

function dydx = Cha pl 0Exmpl20DE (x, y)

dydx = -y/ (1 + x"2) ;

The results from the numerical solutions are used in Eq. (10.193) for determining the value of the

constant A:

A =

16(0.45666667 -0.45599730)
= 7.14 x l0-

4

15 15

Now that A is known, the magnitude of the step size such that the local truncation error will be less

than 10-6 can be calculated with Eq. (10.194):

h = (10-6
-4) 115 = 0.2687

7.14 x 10
Thus, the step size must be smaller than h = 0.2687 for solving Eq. (10.189) with the fourth-order

Runge-Kutta method for the local truncation error to be smaller than 10-6.
To check the result, Eq. (10.189) is solved again using h = 0.2 , which is smaller than the value

obtained above.

>> [x,y]=odeRK4(@Chap10Exmpl20DE,0,1,0.2,1);

>> y(6)

ans =

0.45594036941322

This numerical solution gives y = 0.45594036941322 .
The exact solution ofEq. (10.189) is y = 0.45593812776600.

Solve the ODE using h = 0.2 . J

Display the last value of y. j

452 Chapter 10 Ordinary Differential Equations: Initial-Value Problems

The difference between the two solutions is 2.24 x 10-6 which is larger than but on the order of 10-6.
However, the step size of h was calculated for a required local truncation error, and the last solution

also contains a global truncation error (round-off errors are likely negligible since MATLAB uses

double precision).

10.13 STABILITY

The total numerical error consists of the method-dependent truncation

error and the machine-dependent round-off error. When solving an

ODE numerically, the error that is introduced in each step is ideally

expected not to increase as the solution progresses. The total error is

also generally expected to decrease (or at least not increase) as the step

size, h, is reduced. In other words, the numerical solution is expected to

become more accurate as the step size is reduced. However, in some sit

uations the numerical error grows without bound either as the solution

progresses in an initial value problem, or even as the step size is

reduced. These situations are symptomatic of instability, and the solu

tion is said to become unstable. The stability of a solution depends in

general on three factors:
1. The particular numerical method used.
2. The step size, h, used in the numerical solution.

3. The specific differential equation being solved.

There are several ways to analyze stability. One way is to perform

the calculation first with single-precision and then with double-preci

sion (see Chapter 1 for further discussion) and compare the answers

(MATLAB by default uses double-precision). This can help to examine

the accumulation of the round-off error part of the total error. The sec

ond way is to vary the step size, h, and observe the behavior of the
answer as the step size is reduced. This enables control over the trunca

tion error portion of the total error. Very small step size can also result

in larger round-off errors. The third way is to use a higher-order numer

ical method (with a lower truncation error, such as, for example, the

fourth-order Runge--Kutta method) and compare the results with the

answers obtained with a lower-order method (such as, for example, the

second or third-order Runge-Kutta methods). Yet another way to check

for stability is to test a method on a differential equation that has a

known analytical solution. If the method is unstable when solving the

equation with the known solution, it can be expected to be unstable

when solving other equations.

Euler's explicit method and higher order single-step Runge-Kutta
methods are numerically stable if the step size, h, is sufficiently small.

This is illustrated by considering an ODE of the simple form:

� = -ay, with y(O) = 1 (10.195)

10.13 Stability

-1 1 21

-1 I y =1- ah

I

ah

3

453

where a > 0 is a constant. The exact solution of this equation is

y(x) =
e-ax. For an interval [x;, X;+ i], (where h = X;+ 1 -x;) the exact

solution at point x; + 1 is:

yTS(x;+ 1) =
e-ax;+1

=
e-a(x;+h)

=
e-ux;e-ah = yTS(x;) e-ah (10.196)

The numerical solution with Euler's explicit method gives:

Y;+i = Y;+(-ay;)h = (1- ah)y; = YY; (10.197)

where y = (1 - ah) .

Comparing Eqs. (10.196) and (10.197) shows that the factor y in

the numerical solution is just an approximation for the factor e-ah in the

exact solution. In fact, y consists of the first two terms of the Taylor

series expansion of e-uh for small ah . The two factors are plotted in

Fig. 10-13. This factory is the source of the error and instability. It can

be seen from Eq. (10.197) that when lyl < 1 the error will not be ampli

fied. Thus, for stability, lrl < 1 ::::> -1 < 1 - ah < 1 , which can be written

as:

0 < ah< 2 (10.198)
Figure 10-13: Stability criterion. Equation (10 .198) defines a stability criterion. It states that the error for

an ODE of the form <!1!. = -ay will not grow without bound provided
dx

ah < 2 . Since a is dependent on the problem, this stability criterion

sets an upper limit on the step size h for a particular problem.

Example 10-13 is a numerical example of the effect step size has on

the stability of the solution of an ODE with the form <!1!. = -ay when
dx

solved using Euler's explicit method.

Example 10-13: Stability of Euler's explicit method.

Consider the solution of the ODE:

� = -2.5y, with y(O) = 1, for 0<x<3.4

(a) Solve with Euler's explicit method using h = 0.2 .
(b) Solve with Euler's explicit method using h = 0.85.

(10.199)

The exact (analytical) solution is: y =
e-2.sx . Show the results from parts (a) and (b) in a plot

together with the exact solution.

SOLUTION

Equation (10.199) is in the form ofEq. (10.195) with a = 2.5 . According to Eq. (10.198), a stable

solution will be obtained for h < 1- = 0.8. Consequently, it can be expected that a stable solution
2.5

will be obtained in part (a) , while the solution in part (b) will be unstable. The solutions are carried

out by writing the following MATLAB program in a script file.

454 Chapter 10 Ordinary Differential Equations: Initial-Value Problems

a = 0; b = 3.4; alpha = 2.5;

ha = 0.2; hb = 0.85;

xa(l) = a; xb(l) = a;

ya(l) = 1; yb(l) = 1;

Na = (b - a)/ha; Nb= (b - a)/hb;

DY = @ (y) -2.5*y;

for i = l:Na

xa(i + 1) = xa(i) + ha;
ya(i + 1) = ya(i) + DY(ya(i))*ha;

end

for i = l:Nb

xb(i + 1) = xb(i) + hb;
yb(i + 1) = yb(i) + DY(yb(i))*hb;

end

xTrue = a:0.05:b;
yTrue = exp(-alpha*xTrue);

plot(xa,ya, 'ro--' ,xb,yb, '*r--' ,xTrue,yTrue, ' k ')

The figure generated by the program is shown on

the right. As expected, the figure shows that a sta

ble solution is obtained in part (a), while an unsta

ble solution, in which the values of y grow with

every step, is obtained in part (b).

2

;.., 0

-I

-2
0

\
\

'i

}i Solution for part (a) .

}i Solution for part (b) . J

}i True (exact) solution.

,
* I

I \ I
I \ I

I \
I \

o Part (a) I
\

I "*·Part(b)
• -Exact

2 3 4
x

In contrast to Euler's explicit method, Euler's implicit method is

>, 0.5

-0- Part (a)
+ Part(b)
-Exact

unconditionally stable. This means that truncation errors are not magni

fied as the numerical solution proceeds, regardless of the step size. The

solution of Example 10-13 with Euler's implicit method (see Problem

10.22) is shown in Fig. 10-14. Note that although the numerical solution

becomes less accurate as h is increased, it does not become unstable. In

0 general, stability criteria such as Eq. (10.198) cannot be derived for
0 ;_ 4 ODEs of arbitrary complexity. Nevertheless, stability issues such as

. . those depicted in the figure in Example 10-13 can be observed as the
Figure �0-14: Solu�ion ?� Example step size is varied. 10-13 with Euler's imphcit method.

10.14 STIFF ORDINARY DIFFERENTIAL EQUATIONS

Certain applications in science and engineering involve competing

physical phenomena with widely different time scales or spatial (length)

scales. For example, widely varying time scales are encountered in

10.14 Stiff Ordinary Differential Equations 455

problems involving combustion, chemical reactions, electronic net

working, and control. These applications frequently lead to systems of

ODEs whose solutions include several terms with magnitudes varying

with time at a significantly different rate. Such ODE systems are called

stiff and are difficult to solve. For example, the solution of a stiff ODE

can have sums or differences of exponential terms such as cat and e-bt
(t is the independent variable), where there is a large difference between

the magnitude of a and b.
As an illustrative example of stiff equations, consider the following

system of two OD Es:

dx
dt

= 998x- 1998y (10.200)

ef1:. = 1000x- 2000y (10.201)
dt

with x(O) = 1 and y(O) = 2 . An analytical solution to the system can

be obtained by subtracting the two OD Es and treating (x - y) as the

dependent variable to yield:

-21
y- x = e

Substituting for y from Eq. (10.202) into Eq. (10.200) yields:

dx -2t -21
dt

= 998x- 1998(x + e) = - lOOOx- 1998e

which has the solution:

x(t) = _ 1998
e

-21 + 2996
e

-10001
998 998

and from (10.200), y is:

(t) - (t) + -21 - 1000 -21 + 2996 -10001
y - x e - - --e -- e

998 998

(10.202)

(10.203)

(10.204)

(10.205)

Evaluating x and y at t = 0.1 , the exact answers are:

x(O.l) = -1.63910225, and y(0.1) = -0.8203715 0. Note that in the solu-

tions (10.202) and (10.203), the terms containing e
-10001

contribute neg

ligibly to the answer. However, it is precisely these terms that force

taking small step sizes for accuracy, when the equations are solved

numerically.

Using Euler's explicit method for solving the system of Eqs.

(10.200) and (10.201) with a step size of h = 0.1 gives the following

results for x(O.l) and y(O.l), which are the values of the dependent

variables after the first step:

x(0.1) = x1 + (998x1 - 1998y1)h = 1 + (998 · 1 - (1998 · 2))0.1 = -298.8
y(O.l)= y1 + (1000x1 - 2000y1)h =2 + (1000 · 1- (2000 · 2))0.1 = -298

Clearly, these answers of x(O.l) = -298.8 and y(0.1) = -298 are com

pletely wrong. As discussed in Section 10.13, stability considerations

require that a step size smaller than a critical value must be used in

456

x(0.1)

y(O.l)

Chapter 10 Ordinary Differential Equations: Initial-Value Problems

order to get an accurate answer. In this problem, step sizes h = 0.1 , or

smaller, must be chosen. For instance, if a step size of h = 0.0001 is

used, the numerical solutions for the first step are x(O.l) = -1.63906946

and y(0.1) = -0.820355090, which are close to the exact solution. As

smaller and smaller step sizes are used, the answers will only get

slightly more accurate until finally round-off errors begin to grow.

Thus, it can be seen that there is a limit to the accuracy that can be

attained for stiff equations when an explicit method such as the Euler's

method is used.

Solution with implicit methods can give more accurate results for

stiff equations. Using Euler's explicit method for solving the system of

Eqs. (10.200) and (10.201) with a step size of h = 0.1 gives the follow

ing equations for the first step:

x2 = x1 + (998x2 - 1998y2)h = 1 + (998x2 - 199812)0.1

y2 = y1 + (1000x2 -2000y2)h = 2 + (1000x2-200012)0.l

which leads to the following system of two simultaneous equations:

[��
-

���;
8

] �:] � [=�] (10.206)

Solving the system in Eq. (10.206) for x2 and y2, gives the solution of

the ODEs at the end of the first step: x(0.1) = -1.63861386 and

y(0.1) = -0.80528053. This is far more accurate than the answers

obtained with Euler's explicit method for a comparable step size. These

results, summarized in Table 10-3, show that when solving stiff ODEs,

the step size that must be used depends essentially on the stability of the

numerical method used, and not on the desired accuracy.

Table 10-3: Solutions of a system of two stiff ODEs.

Exact solution Euler's explicit Euler's explicit Euler's implicit

method h = 0.1 . method h = 0.0001 method h = 0.1

-1.63910225 -298.8 -1.63906946 -1.63861386

-0.82037150 -298 ---0.82035509 -0.80528053

Since Euler's implicit method is unconditionally stable, it is very effec

tive in solving stiff OD Es compared to Euler's explicit method, which

is constrained by stability limits.

MATLAB has several built-in ODE solvers specifically intended

for stiff systems. These are usually identified by a suffix s that appears

after the solver's name. For example, odel5s and ode23s are examples
of stiff solvers. In addition, ode23t and ode23tb can also be used for

moderately stiff OD Es.

In summary, stiffODEs are OD Es that have widely varying time (or

length) scales. In the course of solving an initial value problem with a

10.15 Problems 457

set of stiff ODEs, explicit methods require vanishingly small step sizes
based on stability requirements so that it is (1) either impractical to
obtain a solution because it takes so long to solve the problem or (2) the
accuracy of the answer is limited because the round-off error grows
with ever smaller step sizes. In contrast, implicit methods are free of
stability constraints and are the preferred methods for solving stiff
ODEs. Predictor-corrector methods can also be useful in solving some
moderately stiff problems.

10.15 PROBLEMS

Problems to be solved by hand
Solve the following problems by hand. When needed, use a calculator, or write a MATLAB script file to

carry out the calculations. If using MATLAB, do not use built-in functions for numerical solutions

10.1 Consider the following first-order ODE:

rJl!.. = x2/y
dx

from x = 0 to x = 2.1 with y(O) = 2

(a) Solve with Euler's explicit method using h = 0.7.

(b) Solve with the modified Euler method using h = 0.7.

(c) Solve with the classical fourth-order Runge-Kutta method using h = 0.7.

The analytical solution of the ODE is y = J2;3
+ 4 . In each part, calculate the error between the true

solution and the numerical solution at the points where the numerical solution is determined.

10.2 Consider the following first-order ODE:

r!l!.. = x-:!l'. from x = 1 to x = 3.4 with y(l) = 1
dx 2

(a) Solve with Euler's explicit method using h = 0.8.

(b) Solve with the modified Euler method using h = 0.8 .

(c) Solve with the classical fourth-order Runge-Kutta method using h = 0.8.
1-x2

The analytical solution of the ODE is y = 2 - e 4 • In each part, calculate the error between the true

solution and the numerical solution at the points where the numerical solution is determined.

10.3 Consider the following first-order ODE:

r!l!.. = y + t3
dt

from t = 0 to t = 1.5 with y(O) = 1

(a) Solve with Euler's explicit method using h = 0.5.

(b) Solve with the midpoint method using h = 0.5.

(c) Solve with the classical fourth-order Runge-Kutta method using h = 0.5.

The analytical solution of the ODE is y = 7 e1 -t3 - 3 t2 -6t -6 . In each part, calculate the error between
the true solution and the numerical solution at the points where the numerical solution is determined.

458 Chapter 10 Ordinary Differential Equations: Initial-Value Problems

10.4 Consider the following first-order ODE:

<!1!. = l'. _ 0.5t2 from t = 2 to t = 5 with y(2) = 4 dt t
(a) Solve with Euler's explicit method using h = 1.
(b) Solve with the modified Euler method using h = 1.
(c) Solve with the classical third-order Runge-Kutta method using h = 1.

The analytical solution of the ODE is y = - � + 3 t . In each part, calculate the error between the true 4
solution and the numerical solution at the points where the numerical solution is determined.

10.5 Consider the following system of two ODEs:
dx

= 2x + 2y <!1!. = 2x- y from t = 0 to t = 1.2 with x(O) = 1 , and y(O) = 2 dt dt
(a) Solve with Euler's explicit method using h = 0.4.
(b) Solve with the modified Euler method using h = 0.4 .

The analytical solution of the system is x =

e-21(sest_3) , y =

2e-21C2e5t+3). In each part, calculate 5 5
the error between the true solution and the numerical solution at the points where the numerical solution is
determined.

10.6 Consider the following system of two OD Es:
dx

= x - yt <!1!. = t + y from t = O to t = 1.2 with x(O) = 1 , and y(O) = 1 dt dt
(a) Solve with Euler's explicit method using h = 0.4.
(b) Solve with the classical fourth-order Runge-Kutta method using h = 0.4.
The analytical solution of the system is x = 4e1 - t2e1 - t2 - 3 t - 3 , y = 2e1 - t- 1 . In each part, calcu
late the error between the true solution and the numerical solution at the points where the numerical solu
tion is determined.

10.7 Write the following second-order ODE as a system of two first-order ODEs:
d2y + 5(<!1:.\2 - 6y + esint = 0
dt2 di)

10.8 Write the following second-order OD Es as systems of two first-order OD Es:
2

(a) EI � = - Psiny + Q!:.x - Qx2, where E, I, P, Q, and Lare constants.
dx2 2 2

(b) EI d
2

y = M[1 + (<!1!.)2]312, where E, I, and Mare constants.
dx2 dx

10.9 Write the following second-order OD Es as systems of two first-order OD Es:

(a) !d2h
=

I_1_0.00S(dh)2 ,whereg,T,andware constants. gdt2 w w dt

(b) � + 500� + 250(�\3 + Q
=

1000 .
dt2 15 dt 15 dt) 15 . 4.2 x 10-6 15

10.15 Problems

10.10 Write the following system of two second-order OD Es as a system of four first-order OD Es:

d2x
= _1.(dx) (dx)2 + (r!J:.)2 <i.J:. = _ _ 1.(r!J:.) (dx)2 + (r!J:.)2 dt2 m dt dt dt dt2 g m dt dt dt

10.11 Consider the following second-order ODE:

2
r!_J::_ + 2r!l:. + 2y = O from x = 0 to x = 1.5, with y(O) = -1 and r!J:.I = 0.2 dx2 dx dx x=O

(a) Solve with Euler's explicit method using h = 0.5 .
(b) Solve with the modified Euler method using h = 0.5 .

459

The analytical solution of the ODE is y = e-x(-cos(x)- 4sin(x)/5). In each part, calculate the error

between the true solution and the numerical solution at the points where the numerical solution is deter

mined.

10.12 Consider the following second-order ODE:

d2 � = e3x_y dx2 from x = O to x = 1.5, with y(O) = 0 and r!J:.I 1 dx x=O
(a) Solve with Euler's explicit method using h = 0.5.
(b) Solve with the classical fourth-order Runge-Kutta method using h = 0.5.
The analytical solution of the ODE is y = (e3x-cos(x) + 7sin(x))/10 . In each part, calculate the error

between the true solution and the numerical solution at the points where the numerical solution is deter

mined.

10.13 Consider the following second-order ODE:

from x = O to x = 1.0, with y(O) = O and �1 1
dx x=O

(a) Solve with Euler's explicit method using h = 0.5.
(b) Solve with the classical fourth-order Runge-Kutta method using h = 0.5.

Problems to be programmed in MATLAB
Solve the following problems using the MATLAB environment. Do not use MATLAB s built-in functions for
solving differential equations.

10.14 Use the user-defined MATLAB function odeEULER (Program 10-1 which is listed in Example

10-1) to solve Problem 10.1. Write a MATLAB program as a script file that solves the ODE in Problem

10.l three times, once by using h = 0.7 , once by using h = 0.35, and once by using h = 0.1 . The pro

gram should also plot the exact solution (given in Problem 10.1) and plot the three numerical solutions (all

in the same figure).

10.15 Use the user-defined MATLAB function odeEULER (Program 10-1 which is listed in Example
10-1) to solve Problem 10.2. Write a MATLAB program as a script file that solves the ODE in Problem

10.2 three times, once by using h = 0.8, once by using h = 0.4, and once by using h = 0.1 . The program

should also plot the exact solution (given in Problem 10.2) and plot the three numerical solutions (all in the

same figure).

460 Chapter 10 Ordinary Differential Equations: Initial-Value Problems

10.16 Write a user-defined MATLAB function that solves a first-order ODE by applying the midpoint

method (use the form of second-order Runge-Kutta method, Eqs. (10.65), (10.66)). For function name and

arguments use [x, y] =odeMIDPOINT (ODE, a, b, h, yINI). The input argument ODE is a name for

the function that calculates ef1!.. It is a dummy name for the function that is imported into odeMIDPOINT.
dx

The arguments a and b define the domain of the solution, his the step size, and yINI is the initial value.

The output arguments, x and y, are vectors with the x and y coordinates of the solution.

Use the function odeMIDPOINT to solve the ODE in Problem 10.2. Write a MATLAB program in a

script file that solves the ODE twice, once by using h = 0.8 and once by using h = 0.1. The program

should also plot the exact solution (given in Problem 10.2) and plot the two numerical solutions (all in the

same figure).

10.17 Write a user-defined MATLAB function that solves a first-order ODE by applying the classical

third-order Runge-Kutta method, Eqs. (10.82), (10.83). For function name and arguments use

[x, y] =odeRK3 (ODE, a, b, h, yINI). The input argument ODE is a name for the function that calcu-

lates ef1!.. It is a dummy name for the function that is imported into odeRK3. The arguments a and b define
dx

the domain of the solution, his the step size, and yINI is the initial value. The output arguments, x and y,
are vectors with the x andy coordinates of the solution.

Use the function odeRK3 to solve Problem 10.2. Write a MATLAB program in a script file that

solves the ODE in Problem 10.2 twice, once by using h = 0.8 and once by using h = 0.1 . The program

should also plot the exact solution (given in Problem 10.2) and plot the two numerical solutions (all in the

same figure).

10.18 Write a user-defined MATLAB function that solves a first-order ODE by using the second-order

Adams-Bashforth method. The function should use the modified Euler method for calculating the solution

at the second point, and Eq. (10.95) for calculating the solution at the rest of the points. For function name

and arguments use [x, y] =odeAdams2 (ODE, a, b, h, yINI). The input argument ODE is a name for

the function that calculates dy. It is a dummy name for the function that is imported into odeAdams2.
dx

The arguments a and b define the domain of the solution, his the step size, and yINI is the initial value.

The output arguments, x and y, are vectors with the x and y coordinates of the solution.

Use the function odeAdams2 to solve the ODE in Problem 10.3. Write a MATLAB program in a

script file that solves the ODE by using h = 0.1. The program should also plot the exact solution (given in

Problem 10.3) and the numerical solution (both in the same figure).

10.19 Write a user-defined MATLAB function that solves a first-order ODE by using the modified Euler

predictor-corrector method (see algorithm in Section 10.7). In each step the iterations should continue

until the estimated relative error is smaller than 0.0005, i.e., I
YWi - Yfi1 J)

I
:::; s

= 0.0005. For function name
YfiJ: I)

and arguments use [x, y J =odeEulerPreCor (ODE, a, b, h, yINI) . The input argument ODE is a

name for the function that calculates ef1!. . It is a dummy name for the function that is imported into
dx

odeEulerPreCor. The arguments a and b define the domain of the solution, h is the step size, and

yINI is the initial value. The output arguments, x and y, are vectors with the x and y coordinates of the

solution.

10.15 Problems 461

Use the function odeEulerPreCor to solve the ODE in Problem 10.3. Write a MATLAB pro

gram in a script file that solves the ODE by using h = 0.1. The program should also plot the exact solution

(given in Problem 10.3) and the numerical solution (both in the same figure).

10.20 The user-defined MATLAB function Sys20DEsRK2(0DEl,ODE2,a,b,h,yINI,zINI)

(Program 10-5), that is listed in the solution of Example 10-7, solves a system of two OD Es by using the

second-order Runge-Kutta method (modified Euler version). Modify the function such that the two ODEs

are entered in one input argument. Similarly, the domain should be entered by using one input argument,

and the two initial conditions entered in one input argument. For function name and arguments use

[t, x, y] =Sys20DEsModEU (ODEs, ab, h, INI). The input argument ODEs is a name (dummy name

for the function that is imported into Sys20DEsModEU) for the function that calculates dx and <.!.l. (the
dt dt

input arguments of this function are t, x, y, and the output argument is a two-element vector with the val-

ues of
dx and <.!.l.). The argument ab is a two-element vector that defines the domain of the solution, h is
dt dt

the step size, and INI is a two-element vector with the initial values for x andy. The output arguments, t,

x, and y, are vectors of the solution.

(a) Use the function Sys20DEsModEu to solve the system of OD Es in Problem 10.5. Write a MATLAB

program in a script file that solves the system by using h = 0.1. The program should also plot the exact

solution (given in Problem 10.5) and the numerical solution (both in the same figure).

(b) Use the function Sys20DEsModEu to solve Problem 10.11. Use h = 0.05 and ploty vs x.

10.21 The user-defined MATLAB function Sys20DEsRK4 (ODEl, ODE2, a, b, h, xl, yl) (Program

10-6) that is listed in the solution of Example 10-8 solves a system of two OD Es by using the fourth-order

Runge-Kutta method. Modify the function such that the two ODEs are entered in one input argument.

Similarly, the domain is entered by using one input argument, and the two initial conditions are entered in

one input argument. For function name and arguments use

[t, x, y] =Sys20DEsRKclas (ODEs, ab, h, INI). The input argument ODE is a name (dummy name

for the function that is imported into Sys20DEsRKclas) for the function that calculates dx and <.!.l. (the
dt dt

input arguments of this function are t, x, and y, and the output argument is a two-element vector with the

values of dx and <.!.l.). ab is a two-element vector that defines the domain of the solution, his the step size,
dt dt

and INI is a two-element vector with the initial values. The output arguments, t, x, and y, are vectors of

the solution.

(a) Use the function Sys20DEsRKclas to solve the system of ODEs in Problem 10.6. Write a MAT

LAB program in a script file that solves the system by using h = 0.1. The program should also plot the

exact solution and the numerical solution (both in the same figure).

(b) Use the function Sys20DEsRKclas to solve Problem 10.12. Use h = 0.05 and ploty vs x. The pro

gram should also plot the exact solution (given in Problem 10.12) and the numerical solution (both in

the same figure).

462 Chapter 10 Ordinary Differential Equations: Initial-Value Problems

10.22 Write a program in a script file that solves the initial value problem in Example 10-13, using

Euler's implicit method with h = 0.1. Plot the numerical and analytical solutions.

10.23 Consider the following first-order ODE:

<!J:. = 1 - r from t = 1 to t = 6, with y(1) = 5 dt t
Write a MATLAB program in a script file that solves the ODE using the predictor-corrector method

described in Section 10.7. In the first step, the program uses the Euler predictor-corrector method accord

ing to Eqs. (10.101) and (10.102). In the following steps, the program uses the Adams-Bashforth and

Adams-Moulton predictor-corrector methods according to Eqs. (10.103) and (10.104). In each step, the

iterations when the corrector is applied should continue until the estimated relative error is smaller than

0.00001, I YW1 - yft11) 1 � ,.. -_ 0.00001. u h Th h ld 1 h
.

1 1
.

d c. se = 0.25 . e program s ou p ot t e numenca so ut10n an
Yfil I)

the exact solution in one figure.

The analytical solution of the ODE is y = � + .2... 2 2t

Problems in math, science, and engineering
Solve the following problems using the MATLAB environment. As stated, use the MATLAB programs that

are presented in the chapter, programs developed in previously solved problems, or MATLAB s built-in

functions.

10.24 An inductor and a nonlinear resistor with resistance

R = 500 + 2501 2 .Q are connected in series with a DC power source

and a switch, as shown in the figure. The switch is initially open and

then is closed at time t = 0 . The current l in the circuit for t > 0 is

determined from the solution of the equation:

dl Vo R
- = ---1 dt L L

For V0 = 500 V and L = 15 Henries, determine and plot the current

as a function of time for O � t � 0.1 s.

l(t)

L

R

(a) Solve the problem with the function odeMIDPOINT that was written in Problem 10.16. For step size

use 0.005 s.

(b) Solve the problem using one of MATLAB's built-in functions for solving an ODE.

10.25 An inductor L = 15 H and a resistor R = 1000 n are con

nected in series with an AC power source providing voltage of

V = 10sin(2nvt) V, where v = 100 kHz, as shown in the figure.

The current l in the circuit is determined from the solution of the

equation:

dl
dt

10sin(2nvt)
_

!!:,1
L L

Solve the equation and plot the current as a function of time for

0 � t � 1 x 10--4 s with 1(0) = 0.

I(t)

L

R

10.15 Problems 463

(a) Solve the problem with the function odeMIDPOINT that was written in Problem 10.16. For step size

use 1 x 10-9 s.
(b) Solve the problem using one ofMATLAB's built-in functions for solving an ODE.

10.26 Consider the cylindrical water tank that is shown in Fig. 10-1 (shown
also on the right). The tank is being filled at the top, and water flows out of the
tank through a pipe that is connected at the bottom. The rate of change of the
height, h, of the water is given by Eq. (10.6):

pAtank �; = K1 + K2sin(5Ct)cos(Ct)- pApipeJ2ih

For the given tank, Atank = 3.13m2, A pipe = 0.06m2, C =
1

7t
2

, K1 = 300 kg/s,

and K2 = 1000 kg/s. Also, p = 1000 kg/m3, and g = 9.81 m/s2. Determine and

plot the height of the water as a function of time for 0 � t � 150 s, if at t = 0,

h = 3m.
(a) Use the user-defined function odeRK3 that was written in Problem 10.17.

For step size use O.ls.
(b) Use one ofMATLAB's built-in functions for solving an ODE.

10.27 The circuit shown consists of a coil wound around an iron
core, a resistance R, a switch S, and a voltage source V. The governing
equation for the magnetic flux in the iron core is:

� = v -2.5<j>-0.015<j>3
dt

where <I> is the magnetic flux measured in kilolines (1 kiloline= 10-5

T-m2), t is time in milliseconds, and Vis the voltage of the source in

Volts. If V = 50V, find the magnetic flux at t = 0.5 s if <j>(O) = 0.

R

f' -
h ', __________ /

/,,,.---------..... , A1io1e

dm,./dt

s ,Iron core

.
L•

•
v

+ ii -

(a) Use the user-defined function odeRK3 that was written in Problem 10.17. For step size use O.Ols.
(b) Use one ofMATLAB's built-in functions for solving an ODE.

10.28 A spherical water tank of radius R = 4 m is emptied through a
small circular hole of radius r = 0.02 m at the bottom. The top of the tank
is open to the atmosphere. The instantaneous water level h in the tank
(measured from the bottom of the tank, at the drain) can be determined
from the solution of the following ODE:

dh __ r2J2ih
dt 2hR-h2

where g = 9.81 m/s2. If the initial (t = 0) water level is h = 6.5 m, find

the time required to drain the tank to a level of h = 0.5 m.

(a) Use the fourth-order Runge-Kutta method (use the user-defined func
tion odeRK4 (Program 10-4) that was developed in Example 10-6).

(b) Use one ofMATLAB's built-in functions for solving an ODE.

464 Chapter 10 Ordinary Differential Equations: Initial-Value Problems

10.29 The volume of water in a reservoir varies according to inflow and discharge D according to the fol

lowing ODE:

d V
= 42te-0 .273 t + 10cos(2nt)-D

dt

where the discharge D, measured in acre-ft/hr, is given by D = C(0.2)(V -4000)2 if V > 4000 and D = 0

if V::;; 4000. The volume of water Vis measured in acre-ft, tis the time in hours, and C is the discharge

coefficient which varies as a function of the discharge D according to:

0 < D < 25 C = 0.75

25 ::;; D < 50 C = 0.80

50::;; D < 75 C = 0.85

75 :s;D c = 0.9

Determine and plot the instantaneous reservoir volume as a function of time for 10 hours. The initial reser

voir volume is 3900 acre-ft.

(a) Use the third-order Runge-Kutta method (use the user-defined function odeRK3 written in Problem

10-17). Use a time step of 0.01 hr.

(b) Use one ofMATLAB's built-in functions for solving an ODE.

10.30 The flux <I> in a transformer can be determined by the nonlinear Duffing equation:

d 2p
+ roiJ<j> + a<j>3 = � V cos(rot)

dt2 N
where V cos(rot) is the source voltage, and N is the number of windings on the primary side. Rewrite the

second-order ODE as a system of two first-order ODEs. Use V = 165V, N = 600, ro = 120n s-1,

a = 0.14 , and roiJ = 83 s-1 to solve the system for 0::;; t::;; 0.1 s with <j>(O) = 0 and �1 = 0 . Make a
dt

t= 0

plot of <I> versus time.

(a) Solve by using the user-defined function Sys20DEsRKclas that was written in Problem 10.21. For

step size use 0.005 s.

(b) Solve by using MATLAB built-in functions.

10.31 A small rocket having an initial weight of 3000 lb (including 2400 lb of

fuel), and initially at rest, is launched vertically upward. The rocket bums fuel at a

constant rate of 80 lb/s, which provides a constant thrust, T, of 8000 lb. The instan

taneous weight of the rocket is w(t) = 3000-80t lb. The drag force, D, experi-

enced by the rocket is given by D = 0.005g(�)2 lb, where y is distance in ft, and

g = 32.2 ft/s2. Using Newton's law, the equation of motion for the rocket is given

by:

wd
2

- � = T-w-D
g dt2

y

Determine and plot the position, velocity, and acceleration of the rocket (three separate figures on one

page) as a function of time from t = 0, when the rocket starts moving upward from rest, until t = 3 .
Reduce the second-order ODE to a system of two first-order ODEs.

10.15 Problems 465

(a) Use the fourth-order Runge-Kutta method. Use either the user-defined function Sys20DEsRK4 (Pro
gram 10-6) that was developed in Example 10-8, or the user-defined function Sys20DEsRKclas
that was written in Problem 10.21. For step size use 0.05 s.

(b) Use one ofMATLAB's built-in functions for solving ODEs.

10.32 In a static firing test, a rocket is tethered to a rigid wall by
an elastic support with stiffness k. The governing equation of
motion is:

d2x m-+kx = T
dt2

where m is the instantaneous mass m(t) = m0 - mt, with

x
..

m0 = 100 slugs, m = 1 slug/s, T = 10000 lb, and k = 2 x 105 lb/ft. At t = 0, x = 0 and dx
= 0. Solve for dt

x(t). Find the maximum displacement over the interval 0 � t � 5 s.

(a) Use the fourth-order Runge-Kutta method. Use either the user-defined function Sys20DEsRK4 (Pro
gram 10-6) that was developed in Example 10-8, or the user-defined function Sys20DEsRKclas
that was written in Problem 10.21. For step size use 0.01 s.

(b) Use one ofMATLAB's built-in functions for solving ODEs.

10.33 A U-tube manometer (used to measure pressure) is initially filled with

water, but is exposed to a pressure difference such that the water level on the left

side of the U-tube is 0.025 m higher than the water level on the right. At t = 0 the
pressure difference is suddenly removed. When friction is neglected, the height of y
the water level on the left side, y, measured from the mid-plane between the two ini- -'--W--

tial water levels is given by the solution of the equation:

d2
L� = -2gy

dt2
where L = 0.1 m is the total length of the U-tube, and g = 9.81 m/s2. Solve the

ODE, and plot y and ':!.l. (two separate figures on one page) as a function oft for the first 10 seconds. dt
Reduce the second-order ODE to a system of two first-order ODEs and solve the system.
(a) Use the user-defined function Sys20DEsModEu that was written in Problem 10.20. For step size use

0.02 s.

(b) Use one ofMATLAB's built-in functions for solving ODEs.

10.34 If the effect of friction is included in the analysis of the U-tube manometer in Problem 10.33, the
height of the water level, y, is given by the solution of the equation:

d2 d L� = - 0 . 05� - 2gy
dt2 dt

Solve the ODE, and plot y and ':!.l. (two separate figures on one page) as a function oft for the first 10 secdt
onds. Reduce the second-order ODE to a system of two first-order ODEs and solve the system.
(a) Use the user-defined function Sys20DEsRKclas that was written in Problem 10.21. For step size

use 0.02 s.
(b) Use one ofMATLAB's built-in functions for solving ODEs.

466 Chapter 10 Ordinary Differential Equations: Initial-Value Problems

10.35 The differential equation for free motion of a spring-mass-damper system is:

d2x+2y
dx+k2x = 0

dt2 dt

where k2 = 48 Nim/kg, y = 0. 7 s-1, x(O) = 0 , and dx

I = 0.2 mis. Solve the ODE over the interval
dt t= 0

0::::; t::::; 5 s, and plot x(t) and dx (two separate figures on one page) as a function oft.
dt

(a) Use the user-defined function Sys20DEsModEU that was written in Problem 10.20. For step size use

0.01 s.

(b) Use one ofMATLAB's built-in functions for solving ODEs.

10.36 Diatomic molecules such as N2 can be modeled as harmonic oscilla

tors, that is, masses connected by a spring (see figure). Their vibrational

motion is described by the following wave equation:

d2 . 81t2m 'l'v1b + __

R(E .
_ 27t2v2m x2)"' . = o

d x2 h2
v1b R '1'v1b

where 'l'vib is called the vibrational wavefunction, x is the distance between

the two atoms, h = 6.62 x 10-34 J-s 1s Planck's constant,

mR = 1.16235 x 10-26 kg is the reduced mass of the N2 molecule,

�
I x .. I

Evib = h v(v+ 0.5) is the vibrational energy, v = 6.89517 x 1013 s-1 (or Hz), and v = 0, 1, 2, 3, . . . is an

integer called the vibrational quantum number. Solve the ODE for the vibrational wavefunction 'l'vib for

(a) v = 0 , (b) v = 1 , and (c) v = 10 , with the boundary conditions: 'l'vib � 0 as x � oo and

'l'vib � O as x � -oo . (Hint: Since such boundary conditions are impractical to implement numerically,

take large enough positive and negative values of x and set 'l'vib = 0 at these endpoints.) Make a plot of

'l'v;b versus x.

10.37 A permanent magnet M exerts a force on a block of mass

m placed on a flat surface. The magnetic force is inversely pro

portional to the square of the distance x between the center of the

block and the center of the magnet. The coefficient of friction

between the block and the surface is µ . The governing equation

for the motion of the block is:

d2x k 1 -+---µg = 0
dt2 mx2

where klm = 7000 s-2, µ = 0.1 , and g = 386 in/s2. If the initial position is x =

x

12 in. and the initial veloc-

ity is zero, solve for x(t), dx I dt , and d2 x Id t2, over the interval 0 ::::; t::::; 0.93 s. Plot the position, velocity,

and acceleration (three separate figures on the same page) as a function of time. Use MATLAB's built-in

function ode45 for the solution. For the input argument tspan (see Section 10.10) use [0: lE-
4: 0. 93].

10.15 Problems

10.38 An inductor L = 15 Henries, a nonlinear resistor with resis

tance R = 200 + 2501 2 0, and a capacitor with capacitance of
C = 4.2 x 10-6 F are connected in series with a DC power source
V0 = 1000 V, and a switch, as shown in the figure. The switch is ini- V. 0
tially open and then is closed at time t = 0 . The charge, Q, in the
capacitor for t > 0 is determined from the solution of the equation:

cf.._Q
+

RodQ
+

Ri(dQ) 3
+

Q =
Vo

dt2 L dt L dt LC L

where R0 = 200 0, and R1 = 250 Q. Initially, Q = 0 and c!.f2. = 0.
dt

467

I(t)

(a) Reduce the second-order ODE to a system of two first-order ODEs, and determine the charge, Q, as a
function of time for 0 � t � 0.3s by solving the system using the fourth-order Runge-Kutta method.
Use either the user-defined function Sys20DEsRK4 (Program 10-6) that was developed in Example
10-8, or the user-defined function Sys20DEsRKclas that was written in Problem 10.21. Use
h = 0.002 s, and plot of Q versus time.

(b) Use the results from part (a) to plot the current in the circuit. The current is given by the derivative

with respect to time of the charge, I = c!.f2. .
dt

(c) Solve the problem (parts (a) and (b)) using MATLAB's built-in functions.

10.39 A mass of 2 lbm is attached to a spring having a spring con
stant k = 1.2 lb/in and a dashpot that exerts a force F

D
on the mass

which depends on both the displacementy and the velocity of the mass

dy/dt according to F
D

= µ(y2 - 1)(7i) , where µ = 4 lb-s/ft3. Applica

tion of Newton's Second Law yields the following ODE:

md2y + µ (y2 - 1)(r!l!.) + ky = 0
dt2 dt

Rewrite the second-order ODE as a system of two first-order ODEs.

Determine the displacement y(t) and the velocity r!l!. for 0 � t � 20 s
dt

with the initial condition y(O) = 0.75 ft and dy l = 0.
dt

t= 0

µ
k

m

T; ------

(a) Solve by using the user-defined function Sys20DEsRKclas that was written in Problem 10.21. Use
a step size of 0.05 s.

(b) Solve by using MATLAB built-in functions.

468 Chapter 10 Ordinary Differential Equations: Initial-Value Problems

10.40 The circuit shown (transformer) consists of a

primary side (left) and a secondary side (right). The

two sides are inductively coupled via the inductors

shown in the diagram. A voltage of V0(t) = 4sin(cot)
is impressed upon the primary side by the voltage sup

ply. The currents in the two circuits IP and Is are deter

mined by solving:

<!.!..e dis () LP
dt

+Mspdt+RPIP = V0 t

dis dI
L -+RI = -M -.:...:....E. s

dt
s s ps

dt

Rs

Solve for Ip and Is in Amperes if co = 2nf' f = 105Hz, LP = 50 µ H, Ls = 500 µ H, RP = 800 n'

Rs = 6 n, and M ps = Msp = 150 µ H (M is the mutual inductance). The initial conditions are

I p(O) = Is(O) = 0.

(a) Rewrite the above equations in a form that enables them to be solved as a system of first-order ODEs

by solving for dI/ dt from the second equation, substituting into the first equation, and then solving

fordI/dt.
(b) Solve the system from part (a) for 0 � t � 50 µ s by using the user-defined function

Sys20DEsRKclas that was written in Problem 10.21. Use a step size of 10-8 s, and plot! P and Is in

the same figure.

(c) Solve the system from part (a) by using MATLAB built-in functions, and plot IP and Is in the same

figure. Use intervals of I0-8 s in the plot.

10.41 Write a user-defined MALAB function that generates a saw

tooth waveform that has a frequency of/and amplitude of 1. For func

tion name and arguments use y=sawtoothwave (ft). The input

argument ft is a time vector multiplied by the frequency, and the out-

put argument y is the amplitude. For f = 105Hz the function should

generate the wave shown in the figure. Use the user-defined function

to solve Problem 10.40 for a voltage supply V 0(!) with a form of a

sawtooth wave with an amplitude of 4 V.

10.42 The Foucault pendulum, which is free to swing in both the x and y

directions, is often used to demonstrate the earth's rotation. Its equations

of motion (in the absence of damping) are described by:
2 2 d x-[2cosin(l)]�+&x = 0 �-[2cosin(l)]dx+&y = 0

dt2 a dt L dt2 a dt L

where co = 7.29 x 10-5 rad/s is the angular velocity of the earth's rotation,

la is the latitude of the pendulum location in degrees, g = 9.81 m/s2 is the

acceleration due to gravity, and L = 10 m is the length of the pendulum.

t(s)

z

x

5

x 1 -s

y

Solve the system of equations and determine how long it would take for the plane of swing of the pendu-

10.15 Problems 469

lum to rotate by 45°. Use la = 39.9611° (for Columbus, Ohio), and the following initial conditions:

x(O) = 1, dx l = 0, y(O) = 0 and, <!1:.1 = 0. Reduce the system of two second-order ODEs to a
dt

t = 0 dt
t = 0

system of four first-order ODEs and solve using MATLAB's built-in functions.

10.43 The unstable isotope 135Te (atomic weight 135) decays according to:

135Te ki m1

135l k1 , 13 5Xe

mxe k3 • 13 5Cs

mes k4 ' mBa
where k1 = 5.78 x 10-3 s-1, k 2 = 2.87 x 10-5 s-1, k3 = 2.09 x 10-5 s-1, and k4 = 1.10 x 10-i2 s-1. The instan
taneous amount of each element is determined from the solution of the following system of OD Es:

d(Te) = -ki(Te) d(I) = ki(Te)-k2(1)
dt dt

d(Xe) = kz(I)-k3(Xe) d(Cs) = k3(Xe)-k4(Cs)
dt dt

d(Ba) = k (Cs)
dt

4

Use MATLAB 's built-in functions to find the amount of each element present at the following times. Plot
the results using semilog plots where applicable.
(a) 10-second intervals for the first 5 minutes.
(b) 1000-second intervals for the next 9 hours.
The initial conditions are (Te) = 6.033 x 1023 , (I) = (Xe) = (Cs) = (Ba) = 0.

10.44 Two tanks of cross-sectional areas Ai and A2 are intercon
nected by a pipe of length L = 1 ft and cross-sectional area A0 • If the
initial height of the fluid in each tank is 10 ft, and a pressure

p- {Po 0 < t < 2 s .
dd 1 l" d h fl "d c: . 1s su en y app ie to t e m sur1ace m

o t ?. 2 s
tank 2, then the upward displacement of the fluid level in tank 1, xi,

(neglecting friction) is given by the nonlinear ODE:

d2 xi [i-(�) 2J(dxi) 2 [i +(�)J _ p

dt2
+

2H dt
+ g H Xi - yH

where H=10 [1+��]+ [1-(��) 2J xi+
L

A
�i

, g=32.2 ft/s 2 , P0/y=100ft2/s2, Ai1A2=2, and

Ail A0 = 10. Use MATLAB's built-in functions to solve for xi(t) from t = 0 to t= 60s. For the input
argument tsp an (see Section 10.10) use [0: 0. 01: 60]. The initial conditions are: x(O) = 0 ft and
dx l = 0.
dt

x= 0

Chapterll

Ordinary Difierential Equations:

Boundary-Value Problems

The finite difference method (11.3).

Use of MATLAB built-in functions for solving

boundary value OD Es (11.4)

Complementarv Topics

Error and stability in numerical solution of bound

ary value problems (11.5).

11.1 BACKGROUND

A specific solution of a differential equation can be determined if the

constraints of the problem are known. A first-order ODE can be solved

if one constraint, the value of the dependent variable (initial value) at

one point is known. To solve an nth-order equation, n constraints must

be known. The constraints can be the value of the dependent variable

(solution) and its derivative(s) at certain values of the independent vari-

able. When all the constraints are specified at one value of the indepen

dent variable, the problem is called an initial value problem (IVP).

Solution of initial value problems is discussed in Chapter 10. In many

cases there is a need to solve differential equations of second and higher

order that have constraints specified at different values of the indepen

dent variable. These problems are called boundary value problems

(BVP), and the constraints are called boundary conditions because the

constraints are often specified at the endpoints or boundaries of the

domain of the solution.

As an example, consider the modeling of temperature distribution

in a pin fin used as a heat sink for cooling an object (Fig. 11-1). If con

Figure 11-l: Heat flow in a pin fin. vection and radiation are included in the analysis, the steady-state tem

perature distribution, T(x), along the fin can be obtained from the

solution of an equation of the form:

d2T 4 4 --a1(T-T8)-a
2
(T -T8) = 0 (11.1)

dx2

471

472 Chapter 11 Ordinary Differential Equations: Boundary-Value Problems

where Ts is the temperature of the surrounding air, and a1 and a2 are

coefficients. Equation (11.1) is a second-order ODE and can be solved

once two boundary conditions are specified. Two such boundary condi

tions can be the temperatures at the ends of the fin, TA and TB .

Problem statement of a second-order boundary value problem
With an independent variable x and dependent variable y, a second

order boundary value problem statement consists of a differential equa

tion:

d2 (d) � = f x,y,dqx
d x x (11.2)

a domain of the solution a � x � b , and the boundary conditions. The

two boundary conditions required for a solution are typically given at

the endpoints of the domain. Since a boundary condition can be a value

of y, or a value of the derivative r!.l. , the boundary conditions can be
dx

specified in different ways. Common forms of boundary conditions are:

• Two values of y are given--one at x = a and one at x = b :

y(a) = Ya and y(b) = Yb (11.3)

These conditions are called Dirichlet boundary conditions. A sec

ond-order ODE with these boundary conditions is called a two-point

BVP.

• Two values of r!.l. are given-one at x = a and one at x = b:
dx

r!.l. I = D
dx a

x=a
and r!.l. I = Db dx x=b

These conditions are called Neumann boundary conditions.

(11.4)

• The third possibility involves mixed boundary conditions, which can

be written in the form:

(11.5)

where c1 , c2, c3, and c4 are constants. These conditions are called

mixed boundary conditions. Special cases are when c1 = O and

c4 = 0, or when c2 = 0 and c3 = 0. In these cases the value of y is

given at one endpoint, and the value of the derivative is given at the

other endpoint.

It is also possible to have nonlinear boundary conditions where D a, Db,
c1, c2, Ca, or Cb are nonlinear functions ofy or its derivatives.

11.1 Background

y

p(x)

473

Boundary value problems with ODEs of order higher than second

order require additional boundary conditions, which are typically the

values of higher derivatives of y. For example, the differential equation

that relates the deflection of a beam, y, due to the application of a dis

tributed load, p(x), is:

d4 1 --2: = - p(x)
dx4 EI

(11.6)

where E and I are the elastic modulus of the beam's material and the

area moment of inertia of the beam's cross-sectional area, respectively.

This fourth-order ODE can be solved if four boundary conditions are

i 1=:::;=:;�=��:;::�=1-=x:;_ specified. The boundary conditions depend on the way that the beam is

supported. The beam shown in Fig. 11-2 is clamped at both ends, which

Figure 11-2: Clamped beam
under distributed load.

means that the deflection and slope of the deflection curve are equal to

zero at the ends. This gives the following four boundary conditions:

y(O) = O;

y(L) = O;

c!J!. I = 0 dx x=O

dy l - 0 dx x=L

(11.7)

Overview of numerical methods used for solving boundary value
problems

This chapter presents two approaches for solving boundary value prob

lems: shooting methods and finite differences methods. Shooting

methods reduce the second-order (or higher order) ordinary differential

equation to an initial value problem. This is done, as was explained in

Section 10.9, by transforming the equation into a system of first-order

ODEs. The boundary value at the first point of the domain is known and

is used as one initial value for the system. The additional initial values

needed for solving the system are guessed. The system is then solved,

and the solution at the end of the interval is compared with the specified

boundary condition(s) there. If the two disagree to a required accuracy,

the guessed initial values are changed and the system is solved again.

The calculations are repeated until all the specified boundary conditions

are satisfied. The difference between various shooting methods is in the

way that the values of the assumed initial conditions are modified after

each calculation.

In finite difference methods, the derivatives in the differential equa

tion are approximated with finite difference formulas (see Chapter 8).
The domain of the solution is divided into N subintervals that are

defined by (N + 1) points (mesh points), and the differential equation is

approximated at each mesh point of the domain. This results in a system

of linear (or nonlinear) algebraic equations. The solution of the system

is the numerical solution of the differential equation. The difference

between various finite difference methods is in the finite difference for-

474 Chapter 11 Ordinary Differential Equations: Boundary-Value Problems

mulas used for approximating the differential equation.

Both approaches have their respective advantages and disadvan

tages. In the finite difference methods, there is no need to solve the dif

ferential equation several times in order to match the prescribed

boundary conditions at the endpoint of the domain. On the other hand,

the solution of nonlinear ODEs using finite difference methods results

in the need to solve a system of simultaneous nonlinear equations (usu

ally iteratively), which can be tedious and fraught with difficulty.

Shooting methods have the advantage that the solution of nonlinear

ODEs is fairly straightforward. The disadvantage of the shooting meth

ods is that the ODE has to be solved several times.

11.2 THE SHOOTING METHOD

In the shooting method a boundary value problem (BVP) is transformed

into a system of initial value problems (IVPs). A BVP involving an

ODE of second-order can be transformed, as was described in Section

10.9, into a system of two first-order ODEs. This system of ODEs can

be solved numerically if the initial condition for each ODE is known. A
problem statement of a BVP with an nth-order ODE includes n bound

ary conditions, where some of the boundary conditions are given at the

first point of the domain and others at the end-point. When the nth-order

ODE is transformed to a system of n first-order ODEs, the boundary

conditions given at the first point of the domain are used as initial con

ditions for the system. The additional initial conditions required for

solving the system are guessed. The system is then solved, and the solu

tion obtained at the end point of the domain is compared with the

boundary conditions there. If the numerical solution is not accurate

enough, the guessed initial values are changed, and the system is solved

again. This process is repeated until the numerical solution agrees with

the prescribed boundary condition(s) at the endpoint of the domain. A
detailed description of the shooting method for the case of a second

order BVP is given next.

Shooting method for a two-point BVP

Consider a BVP with a second-order ODE where the boundary condi

tions are the values of the dependent variable at the endpoints:

d2 (d) � = f x,y,� for a�x�b with y(a) =Ya and y(b) = Yb(ll.8)
dx dx

A numerical solution with the shooting method can be obtained by the

following procedure:

Step 1: The ODE is transformed into a system of two first-order IVPs

(see Section 10.9). The two equations have the form:

r!l. = w with the initial condition: y(a) = Ya (11.9) dx

11.2 The Shooting Method

y I
tYb2

y(x) 11: Yb
Slope W2 __ ""'-. / •Y

&..----- /I
\ /..- -� Ii bl

!V ' / I
Y. --' '-.__,....... I

a I"--- Slope W1 I
x

a b

Figure 11-3: Shooting method.

and

dw
dx

= f (x, y, w)

475

(11.10)

The problem statement does not include an initial condition for Eq.

(11.10).

Step 2: A first estimate (guess) is made for the initial value of Eq.

(11.10):

w(a) = <!xi = W1
dx x=a (11.11)

This is actually a guess for the slope at x = a . With this estimate, the

system of Eqs. (11.9) and (11.10) is solved numerically. The numerical

solution at x = b (the end of the interval) is Ybb as shown in Fig. 11-3.
If the numerical solution is close enough to the boundary condition Yb
(i.e., the error between the two is acceptable), then a solution has been

obtained. Otherwise the solution process continues in Step 3.

Step 3: A second estimate (guess) is made for the initial value of Eq.

(11.10):

w(a) = ¥xix=: Wz (11.12)

With this estimate, the system of Eqs. (11.9) and (11.10) is solved

numerically again. The numerical solution at x = b (the end of the

interval) is y62 (Fig. 11-3). If the numerical solution is close enough to

the boundary condition Yb (i.e., the error between the two is accept

able), then a solution has been obtained. Otherwise the solution process

continues in Step 4.

Step 4: A new estimate for the initial value of Eq. (11.10) is determined

by using the results of the previous two solutions:

w(a) = <!xi = W
dx

3 x=a (11.13)

Several methods can be used in this step. For example, if the value of

the boundary condition, Yb, is between Ybr and Ybz (Ybi <Yb< Ybz), as

illustrated in Fig. 11-3, interpolation can be used for finding a value of

W 3 that is between W 1 and W 2. Additional details about how to do this

and about other methods are given later in this section.

Step 5: Using w(a) = W3 as the initial value in Eq. (11.10), the system

of Eqs. (11.9) and (11.10) is solved numerically again. If the numerical

solution at x = b is equal to the boundary condition, Yb (or the error

between the two is acceptable), then a solution has been obtained. Oth

erwise, as was done in Step 4, a new estimate for the initial value is

determined.

476

a b

Figure 11-4: Two iterations in a
solution with shooting method.

Chapter 11 Ordinary Differential Equations: Boundary-Value Problems

Steps 4 and 5 are repeated until the numerical solution at x = b

agrees to a required accuracy with the boundary condition. In each cal

culation a new estimate for the initial condition for Eq. (11.10) is deter

mined by using the results from the previous calculations. Several

methods that can be used for this purpose are presented next.

Estimating the slope (initial value) at x = a

As was described earlier, the process of solving a second-order BVP

with the shooting method starts by guessing two values for the slope of

y(x) at the first point of the domain. "Intelligent" guesses can be made

in many situations when the differential equation is associated with a

real application. Then, using each of the guesses, the system of equa

tions is solved to give two solutions at the endpoint of the domain.

These solutions are then used for estimating a new value for the initial

slope that is used in the next calculation for obtaining a more accurate

solution. The simplest method is to use linear interpolation.

Linear interpolation: Consider two numerical solutions of a second

order BVP, shown in Fig. 11-4, that are obtained by assuming W H and

W L for the slope (initial condition for Eq. (11.10)) at x = a. The solu

tions at x = bare Yb H and Yb L• respectively. Recall that the boundary , '

condition at this point is y(b) = Yb, and suppose that Yb H and Yb L , ,
have been found such that Yb� Yb Hand Yb L �Yb. Using linear interpo-, ,
lation, illustrated in Fig. 11-5, a new value for the slope W N that corre-

sponds to Yb can be calculated by:

W H-WL
WN= WL+(Yb-YbL) ---, Yb, H-Yb,L

(11.14)

The new value W N is used in the next calculation with a new solution at

-t--�---�--�-w .. the endpoint. Then, the new solution with either Yb, H or Yb,L (depend-
Wr WN WH ing on whether the new solution is above or below the boundary condi

Figure 11-5: Linear
interpolation for determining

WN.

tion) can be used in linear interpolation for calculating the next estimate

for the initial slope. Example 11-1 illustrates application of the shooting

method with linear interpolation. Two initial solutions are first obtained

by using two guesses for the slope at the first point of the interval. Inter

polation is then used for determining a third guess for the slope, which

gives a much more accurate solution when the problem is solved for the

third time.

11.2 The Shooting Method

Example 11-1: Temperature distribution in a pin fin. Solving a second-order ODE
(BVP) using the shooting method.

A pin fin is a slender extension attached to a surface in order to
increase the surface area and enable greater heat transfer. When con
vection and radiation are included in the analysis, the steady-state
temperature distribution, T (x) , along a pin fin can be calculated from
the solution of the equation:

dz� -hcP(T-Ts)-f.crssP(T4-Ti) = 0' O � x � L (11.15)
dx kAc kAc

with the boundary conditions: T(O) = TA and T(L) = T 8 .

477

In Eq. (11.15), he is the convective heat transfer coefficient, Pis the perimeter bounding the cross
section of the fin, f. is the radiative emissivity of the surface of the fin, k is the thermal conductivity
of the fin material, Ac is the cross-sectional area of the fin, Ts is the temperature of the surrounding

air, and crss = 5.67 x 10-8 W/(m2K4) is the Stefan-Boltzmann constant.

Determine the temperature distribution if L= O.lm, T(O) = 473K, T(0.1) = 293K, and Ts = 293K.

Use the following values for the parameters in Eq. (11.15): he = 40 W/m2/K, P = 0.016m,

f. = 0.4 , k = 240 W/m/K, and Ac = 1.6 x 10-5m2.

SOLUTION

Equation (11.15) is a second-order nonlinear BVP. To solve, it is transformed into a system of two

first-order ODEs. The transformation is done by introducing a new variable w = dT . With this def
dx

inition, the system is:
dT - = w
dx

(11.16)

dw = hcP (T-Ts) + f.crssP (T4 -Ti) (11.17)
dx kAc kAc

The initial value for Eq. (11.16) is T(O) = 473. The initial condition for Eq. (11.17) is not known.
To illustrate the shooting method, the system in Eqs. (11.16) and (11.17) is solved three times with
three different values for the initial condition of Eq. (11.17). This is executed in a MATLA B program
(script file) that uses the user-defined function Sys20DEsRK2 that was created in Section 10.8.2.

(The function Sys20DEsRK2 solves a system of two first-order ODEs using the second-order
Runge-Kutta method.)
The operations in the program, which is listed below, are:
• Solving the system assuming w(O) = -1000 .
• Solving the system assuming w(O) = -3500.
• Using interpolation, Eq. (11.14), calculating a third value for w(O) from the results of the first

two solutions.
• Solving the system using the interpolated value of w(O).
For each solution, the program lists the calculated temperature at the endpoint. In addition, the pro
gram displays a figure that shows the three solutions.

478 Chapter 11 Ordinary Differential Equations: Boundary-Value Problems

(Program 11-1: Script file. Solving second-order ODE using the shooting method. J
��������������

clear all Solve the system assuming w(O) = -1000.

a=O; b=O.l; TINI=473; wINil=-1000; h=0.001;

[x, Tl, w]=Sys20DEsRK2(@odeChap11ExmpldTdx,@odeChapl1Exmpldwdx,a,b,h,TINI,wINI1) ·

n = length (x) ;

fprintf('The temperature at x=0.1 is %5.3f, for initial value of dt/dx= %4.lf\n' ,Tl(n) ,wINil)

wINI2 = -3500; Solve the system assuming w(O) =-3500.

[x, T2, w] =Sys20DEsRK2(@odeChap11ExmpldTdx,@odeChap11Exmpldwdx,a,b,h,TINI,wINI2) ·

fprintf ('The temperature at x=O .1 is %5. 3f, for initial value of dt/dx= %4. lf\n' ,T2 (n) ,wINI2)

wINI3 = wINil + (293 - Tl (n)) * (wINI2 - wINil) I (T2 (n) - Tl (n)); [Interpolation using Eq. (11.14).]
[x, T3, w] =Sys20DEsRK2(@odeChap11ExmpldTdx,@odeChap11Exmpldwdx,a,b,h,TINI,wINI3) ·

fprintf ('The temperature at x = 0 .1 is %5.3f, for initial value of dt/dx = %4. lf\n' ,T3 (n) ,wINI3)

plot (x, Tl, '-k' , x, T2, '-k' , x, T3, '-r') Solve the s stem with the inte olated value ofw(O .

xlabel ('Distance (m) ') ; ylabel ('Temperature (K) ')

The first two input arguments in the function Sys20DEsRK2 are the names of user-defined func

tions that calculate the values of dT/dx, Eq. (11.16), and dwldx, Eq. (11.17). The two functions,

odeChapllExmpldTdx and odeChapllExmpldwdx, are:

function dTdx = odeChapllE:xmpldTdx (x,T,w)

dTdx = w;

function dwdx = odeChapllE:xmpldwdx (x,T,w)

he = 40; P = 0.016; eps = 0.4; k = 240; Ac = 1.6E-5; Seg = 5.67E-8;

Ts = 293;

kAc = k*Ac;

Al = hc*P/kAc; A2 = eps*Seg*P/kAc;

dwdx = Al* (T - Ts) + A2* (TA4 - TsA4) ;

When the script file is executed, the following is displayed in the Command Window:

The temperature at x = 0.1 is 536.502, for initial value of dt/dx = -1000.0

The temperature at x = 0.1 is 198.431, for initial value of dt/dx = -3500.0

The temperature at x = 0 .1 is 291. 835, for initial value of dt/dx = -2800. 7

In addition, the program displays a figure (shown on the

right) with plots of the three solutions.

The results show that with the first assumption for the

slope, w(O) = -1000, the temperature at the endpoint is

higher than the prescribed boundary condition. The sec

ond assumption, w(O) = -3500, gives a lower value.

Solution with the interpolated value of w(O) = -2800.7

gives T(0.1) = 291.835 K, which is lower, but close to

prescribed boundary condition of 293 K.

0.05

Distance (m)
0.1

It can be expected that a more accurate solution can be obtained by executing additional calcula

tions with better guesses for w(O).

11.2 The Shooting Method 479

a b

Figure 11-6: Two iterations in a
solution with shooting method.

E

A more sophisticated method is to consider the error (difference
between the numerical solution and the given boundary condition at the
endpoint of the solution domain) as a function of the assumed initial

slope, and use the methods from Chapter 3 for finding a solution (the
zero) of this function. Using this approach with the bisection method
and with the secant method is described next.

Shooting method using the bisection method: Consider the BVP in
Eq. (11.8) which is solved by converting the problem into the system of

two IVPs in Eqs. (11.9) and (11.10). Two numerical solutions that have
been obtained in previous calculations are shown in Fig. 11-6. In one

solution, Yb,H• the value at x = b is larger than the boundary condition

y(b) = Yb, and in the other solution, Yb,L the value is lower. The initial

values of the slopes at x = a that correspond to these solutions are W H

and W L (recall that W = c!2:. I). The error in each numerical solution
dx

x=a

is EH = Yb,H-Yb (a positive number) and EL = Yb,L -Yb (a negative

number). With this notation, the error, E, can be considered as a func-

E = 0 tion of the slope, W, and the objective is to find the value of W where

---------1-------1 E =

�i�h the bisection method, illustrated in Fig. 11-7, the initial value
__,,___w_r __. _____ +' _ __.w for the slope, W N, in the next calculation is

I
I

---· (11.18)

Figure 11-7: Bisection method
for determining W N·

When the method is implemented in a computer code, the values of

Yb,H' Yb,L• W H• and WL should be specified. Then after each iteration,

the program should select the new values such that the boundary condi
tion will be bounded between Yb,H and Yb,L· Implementation of the

bisection method in the shooting method is shown in Example 11-2.

Example 11-2: Temperature distribution in a pin fin. Solving a second-order ODE

(BVP) using the shooting method in conjunction with the bisection

method.

Write a MATLAB program (script file) that solves the BVP in Exam
ple 11-1 by using the bisection method within the shooting method for

determining a new estimate for the initial slope w(O). Start by solving

the problem twice using w(O) = -1000 and w(O) = -3500, which, as

shown in Example 11-1, give solutions that are higher and lower,

respectively, than the boundary condition at x = 0.1, and thus can be

the starting values for the bisection method. Stop the iterations when
the difference between the calculated temperature from the numerical
solution and the prescribed boundary condition is less than 0.01 K.

SOLUTION

480 Chapter 11 Ordinary Differential Equations: Boundary-Value Problems

Recall from Example 11-1 that the second-order BVP to be solved is:

d2T hcP E<:JsnP 4 4 () -2 --(T-T8)---(T -T8) = 0, 0:5x:50.l 11.19
dx kAc kAc

with the boundary conditions: T(O) = 473 and T(L) = 293.

The solution is accomplished by converting Eq. (11.19) into the following system of two first-order

OD Es:

dT
- = w (11.20)
dx

dw
=

hcP(T-Ts)
+E<:JsnP(T4-T�) (11.21)

dx kAc kAc
The initial value for Eq. (11.20) is T(O) = 473. The initial condition for Eq. (11.21) is not known.

The MATLAB program listed below incorporates the bisection method in the shooting method. The

program uses the user-defined function Sys20DEsRK2 that was written in Section 10.8.2 for solv

ing the system of Eqs. (11.20) and (11.21). The order of operations in the program is:
• Solve the system assuming w(O) = -1000.

• Solve the system assuming w(O) = -3500.
• Use the first two solutions and start calculating new values for w(O) using the bisection method,

Eq. (11.18).
• display a plot of the solution and output the numerical solution at x = 0.1 where the boundary

value is prescribed.

(Program 11-2: Script file. Applying the shooting method in conjunction with the bisection

% Solving Chapter 11 Example 2

clear

a = 0; b = 0.1; TINI = 473; h = 0.001; Yb = 293;

tol = 0.01; imax = 15;

wH = -1000;

[x, T, w] = Solve the system assuming w(O) = -1000.

Sys20DEsRK2(@odeChap11ExmpldTdx,@odeChap11Exmpldwdx,a,b,h,TINI,wH);

n = length(x);

wL = -3500; [Solve the system assuming w(O) = -3500. J
[x,T, w] =Sys20DEsRK2(@odeChap11ExmpldTdx,@odeChap11Exmpldwdx,a,b,h,TINI,wL) �

for i = 1: imax + 1 [The start of the loop of the iterations.]
wi = (wH + wL)/2; [Calculate a new valueforw(O) usingbisection,Eq.(11.18).]
[x,T,w]=Sys20DEsRK2(@odeChap11ExmpldTdx,@odeChapllExmpld wdx,a,b,h,TINI,wi);

E = T (n) - Yb; Calculate the error between the new

if abs(E) < tol

break

end

if E > 0

wH = wi;

solution and the boundary condition.

Stop if the error is smaller than specified.

Solve the system with

the new value of w(O).

else Assign a new value to W H• or to W L·

wL = wi;

end

11.2 The Shooting Method 481

end The end of the loop of the iterations. J
if i > imax

fprintf('Solution was not obtained in %i iterations.' ,imax}

else

plot(x,T}

xlabel('Distance (m} '); ylabel('Temperature (K} '}

fprintf('The calculated temperature at x = 0.1 is %5.3f K.\n' ,T(n))

fprintf('The solution was obtained in %2.0f iterations.\n' ,i}

end

The first two input arguments in the function Sys20DEsRK2 are the names of user-defined func

tions that calculate the values of dT!dx, Eq. (11.20), and dwldx, Eq. (11.21). The two functions,

odeChapl lExmpldTdx and odeChapl lExmpldwdx, are listed in Example 11-1.
When the script file is executed, the following is displayed in the Command Window:

The calculated temperature at x = 0.1 is 292.999 K.

The solution was obtained in 9 calculations.

In addition, the program produces a figure (shown on the

right) with a plot of the solution.

a b

Figure 11-8: Two iterations in a
solution with shooting method.

g 450

� 400

i 350
"
.... 300

250
0 0.02 0.04 0.06 0.08 0.1

Distance (m)

Shooting method using the secant method: The BVP in Eq. (11.8) is

solved by converting the problem into the system of two IVPs in Eqs.

(11 .9) and (11.10). Shown in Fig. 11-8 are two numerical solutions that

have been obtained in two iterations, i and i - 1 . The solutions at x = b
are Yb, i- l and Yb,;. Recall that the boundary condition at this point is

y(b) = Yb· The initial values of the slopes at x = a that correspond to

these solutions are W; _ 1 and W;, respectively (recall that W = <!l.. I).
dx x=a

The errors in each numerical solution are E; _ 1 = y b,
; _ 1 - Y h and

E; = Yb,; - Yb· With this notation, the error, E, can be considered as a

function of the slope, W, and the objective is to find the value of W
where E = 0.

In an iterative process, the secant method determines an estimate

for the zero of a function from the value of function at two points near

the solution (see Section 3.6). When used in combination with the

shooting method, the next estimate for the slope, W; + 1, is calculated

from the points (W;, E;), and (W;_1 , E;_1). This is illustrated in Fig. 11-
9. The new value of the slope, W;+ 1, is given by (see Eq. (3.26)):

482

E

I
I
I
I

Ei ----i---
'
I
I

E=O

I w

Figure 11-9: Secant method for
determining W;+ 1•

y •

r

Yi+I T
. Yi ' I • Yz-1 ' ,

I I T I I ,!I
I
ll I h I h I

I • •I • • !
I I X

t r Interior points
Endpoint Endpoint

Figure 11-10: Finite difference
method.

Chapter 11 Ordinary Differential Equations: Boundary-Value Problems

(11.22)

In this method the Es from the previous two iterations can be both posi

tive, negative, or they can have opposite signs.

The shooting method can also be used for solving boundary value

problems with derivative, or mixed, boundary conditions. The overall

approach is the same as with two-point boundary value problems. The

second-order (or higher) ODE is converted into a system of first-order

ODEs that is solved as an initial value problem by assuming the

unknown initial values needed for the solution. The solution is then

compared with the prescribed boundary conditions, and if the results are

not accurate enough, the assumed initial values are modified and the

system is solved again. When derivative boundary conditions are pre

scribed at the endpoint, the calculated value of the derivative must be

evaluated numerically.

11.3 FINITE DIFFERENCE METHOD
In finite difference methods, the derivatives in the differential equation

are replaced with finite difference approximations. As shown in Fig. 11-
10, the domain of the solution [a, b] is divided into N subintervals of

equal length h, that are defined by (N + 1) points called grid points. (In

general, subintervals can have unequal length.) The length of each sub

interval (step size) is then h = (b-a)/N. Points a and bare the end
points, and the rest of the points are the interior points. The differential

equation is then written at each of the interior points of the domain. This

results in a system of linear algebraic equations when the differential

equation is linear, or in a system of nonlinear algebraic equations when

the differential equation is nonlinear. The solution of the system is the

numerical solution of the differential equation.

Many finite difference formulas are listed in Chapter 8 (see Table

8-1). Frequently, the central difference formulas are used in finite dif

ference methods since they give better accuracy. Recall that for a func

tion y(x) that is given at points (x1,y1), ... ,(x;,y;), ... ,(xN+l•YN+1)
that are equally spaced (h = X;+1 -x; for i = l...N), the finite differ

ence approximation of the first and the second derivatives at the interior

points, with the central difference formulas, are given by:

c!J!.
=

Y;+1 -Y;-1
dx 2h and <f..J::.

=
Yi-1 -2y; + Y;+ l

dx2 h2
Finite difference solution of a linear two-point BVP

(11.23)

The finite difference approximation for a linear second-order differen

tial equation of the form:

11.3 Finite Difference Method

is:

d2 d � + f(x)f!l!. + g(x)y = h(x)
dx2 dx

Y;-1-2Y;+Y;+1+f(.)Y;+1-Y;-1+ (.) . = h(.)
h2 x,

2h
g x, y, x,

483

(11.24)

(11.25)

The process of converting the differential equation, Eq. (11.24), into the
algebraic form, Eq. (11.25) at each point x; is called discretization. For
a two-point BVP, the value of the solution at the endpoints, y1 and
y N + 1 are known. Equation (11.25) is written N -1 times for
i = 2, ... , N. This gives a system of N -1 linear algebraic equations for

the unknowns Ji, ... , yN, that can be solved numerically with any of the
methods presented in Chapter 4.

Example 11-3 shows the solution of a linear second-order BVP
using the finite difference method. In this example, the temperature dis
tribution in a pin fin is calculated for the case where only convection is
included in the analysis.

Example 11-3: Temperature distribution in a pin fin. Solving a second-order linear

ODE (BVP) using the finite difference method.

When only convection is included in the analysis, the steady state tem
perature distribution, T (x) , along a pin fin can be obtained from the
solution of the equation:

d2T hcP
- - - (T-T5) = 0 O�x�L (11.26)
dx2 kAc '

with the boundary conditions: T(O) = TA and T(L) = TB·

In Eq. (11.26), he is the convective heat transfer coefficient, P is the
perimeter bounding the cross section of the fin, k is the thermal con-
ductivity of the fin material, Ac is the cross-sectional area of the fin,
and Ts is the temperature of the surrounding air.
Determine the temperature distribution if L= O.lm, T(O) = 473K, T(0.1) = 293 K, and T8 = 293K.

Use the following values for the parameters in Eq. (11.26): he = 40 W/m2/K, P = 0.016 m,

k = 240 W/m/K, and Ac = 1.6 x 10-5 m2.
Solve the ODE using the finite difference method. Divide the domain of the solution into five
equally spaced subintervals.

SOLUTION

Equation (11.26) is a second-order linear ODE. Using the finite difference method, the second deriv-
2

ative d T is approximated by the central difference formula, Eq. (11.23):
dx2

(11.27)

484 Chapter 11 Ordinary Differential Equations: Boundary-Value Problems

where J3 =

hcP
. Equation (11.27) can be written as:

kAc

Next, the domain of the solution is divided

into five equally spaced subintervals

(defined by six points), as shown in the fig

ure.

T

T1 =473K
T2

•
I

(11.28)

I

I
Ts •

T6 =293K
• x I

X1=0 X2=0.02 X3=0.04 X4=0.06 X5=0.08 X6=0.I

t t t t t t
Endpoint Interior points Endpoint

Next, Eq. (11.28) is written for each of the interior points (i.e., i = 2, 3, 4, 5):

for i = 2 T1-(2+h2J3)T2+T3 = -h2J3Ts or -(2+h2J3)T2+T3 = -(h2J3Ts+T1) (11.29)

Recall that T 1 is known.

for i = 5

for i = 3

for i = 4 T3 -(2 + h
2
j3)T4 + T5 = -h2J3Ts

2 2 2 2
T4-(2+h j3)T5+T6 = -h J3Ts or T4-(2+h J3)T5 = -(h J3Ts+T6)

Recall that T 6 is known from the boundary condition T(O. l) = 293 K.

(11.30)

(11.31)

(11.32)

Equations (11.29)-(11.32) are a system of four linear algebraic equations for the four unknowns T2,

T 3, T 4, and T 5. In matrix form, [a] [T] = [c], the system can be written as:

-(2 + h
2
J3)

2
1 0 0 T2

-(h J3Ts+ T1)

1 -(2 + h2J3) 1 0 T3 -h2J3Ts
(11.33)

0 1 -(2 + h2J3) 1 T4 -h2J3Ts

0 0 1 -(2 + h2J3) Ts 2
-(h J3Ts+ T6)

The system of equations in Eq. (11.33) can be solved with any method described in Chapter 4. The

answer is the solution of the ODE in Eq. (11.26) at the interior points.

The following MATLAB program in a script solves Eq. (11.33) and plots of the results.

(Program 11-3: Script file. Solving a linear second-order ODE using the finite difference method.)

% Solution of Example 11-3

clear

he = 40; P = 0.016; k = 240; Ac = l.6E-5;
h = 0.02; Ts = 293;

x = 0: 0. 02: 0 .1; [Create a vector for the x coordinate of the mesh points.

beta = hc*P/(k*Ac);

aDia = -(2 + h"2*beta) ;

cele = -h"2*beta*Ts;

T (1) = 473; T (6) = 293;

11.3 Finite Difference Method

a = eye(4,4) *aDia;

for i = 1:3

a(i,i + 1) = 1;

a(i + 1,i) = 1;

end

485

c = [cele - T(l) ; cele; cele; cele - T(6)];

T(2:5) = a\c;

[Define the vector [c] . J
Solve the system in Eq. (11.33). J

fprintf('The temperatures at the grid points are\n')

disp(T)

plot(x,T, '*r')

xlabel('Distance (m) ') ; ylabel('Temperature (K) ')

When the program is executed, the figure on the right is

displayed, and the following results are output in the

Command Window.

The temperatures at the grid points are

500

.;� g 450

OJ

a 400
"'

I 350

....

300

250
0

*

*
*

O.o2 0.04 0.06

Distance (m)

473.0000 424.4117 384.5842 350.8623 320.9979 293.0000

Additional note

*
��

0.08 0.1

Application of the finite difference method to an ODE does not always

result in a tridiagonal system of equations as in the above illustration.

The numerical solution in Example 11-3 yielded a tridiagonal system

because the ODE is second order and a central difference scheme is

used to approximate the second derivative.

Finite difference solution of a nonlinear two-point B VP

The approach for solving a nonlinear ODE with the finite difference

method is the same as that used for solving a linear ODE. The only dif

ference is that the resulting system of simultaneous equations is nonlin

ear. Methods for solving such systems are described in Chapter 3. The

task is much more challenging than that of solving a system of linear

equations. The most computationally efficient means of solving a sys

tem of nonlinear equations is applying some type of iterative scheme.

However, as discussed in Chapter 3, iterative methods run the risk of

diverging unless the starting or initial values for the iterations are close
enough to the final answer.

Application of the finite difference method to a nonlinear ODE

results in a system of nonlinear simultaneous equations. One method for

solving such nonlinear systems is a variant of the fixed-point iteration

486 Chapter 11 Ordinary Differential Equations: Boundary-Value Problems

method described in Section 3.2.10. If [y] is a column vector of the

unknowns, the system of nonlinear equations can be written in the form:

[a][y] +[<I>] = [b] (11.34)

where [a] is a matrix of coefficients, [<I>] is a column vector whose ele

ments are nonlinear functions of the unknowns Y;, and [b] is a column

vector of known quantities.

There are many ways to develop iteration functions to perform the

fixed point iteration procedure. One form that is readily evident from

Eq. (11.34) is:

[a][y] k + I = [b] _ [<I>] k (11.35)

where [y] k + 1 is the vector of unknowns, and [<I>] k is known since it

uses the values of the solution [y] k that were obtained in the previous

iteration. Equation (11.35) can now be solved for [y] k + 1 • Note that if

the number of interior points is small, [a] can be inverted to yield:

[y]k+I = [ar\[b]-[<I>]k) (11.36)

This approach is illustrated in Example 11-4. In the case of a large num

ber of interior points, Eq. (11.35) can be solved by Gaussian elimination

or by the Thomas algorithm if [a] is a tridiagonal matrix.

Example 11-4: Temperature distribution in a pin fin. Solving a second-order nonlinear

ODE (BVP) using the finite difference method.

When convection and radiation are included in the analysis, the steady

state temperature distribution, T(x), along a pin fin can be calculated

from the solution of the equation:

d2T hcP E<JssP 4 4 ---(T-Ts)- -- (T -Ts) = 0, O�x�L (11.37)
dx2 kAc kAc

with the boundary conditions: T(O) = TA and T(L) = Ts·
The definition and values of all the constants in Eq. (11.37) are given in

Example 11-2.
Determine the temperature distribution if L= O.lm, T(O) = 473K,
T(O.l) = 293 K, and Ts = 293K.
Solve the ODE using the finite difference method. Divide the domain of the solution into five equally

spaced subintervals.

SOLUTION

Equation (11.37) is a second-order nonlinear ODE. Using the finite difference method, the second

2
derivative d T is approximated by the central difference formula, Eq. (11.23):

dx2

(11.38)

11.3 Finite Difference Method

hp EO"s p where A = _c_ and A = __

B_ PA kA PB kA
c c

Equation (11.38) can be written as:

487

2 2 4 2 4 T;_1-(2+ h 13A)T;- h q13BT i +Ti
+I = -h (13ATs+13BT s) (11.39)

Next, the domain of the solution is divided

into five equally spaced subintervals (defined

by six points), as shown in the figure.

T

x,=o

t
Endpoint

Ts •
I

T6 =293K
• x

Xz=0.02 X3=0.04 X4=0.06 X5=0.08 x6=0.I

t t t t t
Interior points Endpoint

Next, Eq. (11.39) is written for each of the interior points (i.e., i = 2, 3, 4, 5):

for i = 2

or

Recall that T 1 is known.

for i = 3

for i = 4

for

or

Recall that T6 is known from the boundary condition, T(O.l) = 293 K.

(11.40)

(11.41)

(11.42)

(11.43)

Equations (11.40}-(11.43) are a system of four nonlinear algebraic equations for the four unknowns

T2, T3, T4, and T5• Following Eq. (11.34), the system can be written in the form [a][T] + [<l>] = [b] :

0 0 1

0

0

1

T2
T3

T4
+

h
2
13 T4

- B 2
2 4

-h 13BT3

-h
2
l3 T4

B 4

-h
2A T4
PB 5

2 4
- h (l3ATs+l3BTs)-T1

-h\13ATs+13 BTi)
2 4

-h (13ATs+ 13BTs)
(11.44)

The system of equations in Eq. (11.44) can be solved by using the fixed-point iteration method (see

Chapter 3). An iteration formula is obtained by solving Eq. (11.44) for [T]:

[T]k+1
= [ar1

([b]-[<I>]k
) (11.45)

The iterative solution starts by guessing the values of T 2, T 3, T 4, and T 5, calculating the vector [b]

and using Eq. (11.45) to calculate new values of [T]k+I. The new values are substituted back in Eq.

(11.45), and so on. While various iteration formulas can be written from Eq. (11.44), not all will con

verge. The equations in Eq. (11.44) are for the case N = 5. The system of equations, however, is

tridiagonal and can be easily extended if the domain is divided into a larger number of subintervals.

488 Chapter 11 Ordinary Differential Equations: Boundary-Value Problems

The system can be solved with any of the methods for solving a system of nonlinear equations that

have been presented in Chapter 3. A MATLAB program (script file) that numerically solves the prob

lem is listed next. The program is written in terms of the number of subintervals N. The program uses

the fixed-point iteration method and executes four iterations. The program displays the temperature at

the interior points after each iteration and plots the results from the last iteration.

[Program 11-4: Script file. Solving a nonlinear second-order ODE using the finite difference

% Solution of Chapter 11 Example 4

clear

he = 40; P = 0.016; k = 240; Ac = 1.6E-5; epsln = 0.4; seg = 5.67E-8;

betaA = hc*P/ (k*Ac) ; betaB = epsln*seg*P/ (k*Ac) ; Ts = 293;

N = 5; h = 0.1/N;

x = O:h:0.1; [Define a vector for the x coordinate of the mesh points.

aDia = - (2 + hA2*betaA) ;

bele = -hA2* (betaA*Ts + betaB*TsA4) ;

h2betaB = hA2*betaB;

Ti (l) = 473; Ti (N + 1) = 293;

Tnext (l) = Ti (l) ; Tnext (N + 1) = Ti (N + 1) ;

a = eye (N - 1,N - l) *aDia;

for i = l:N - 2

a (i,i + 1) = 1;

a (i + l,i) = 1;

end

ainv = inv (a) ;

b (l) = bele - Ti (l) ; b (N-1) = bele - Ti (N+l) ;

b (2:N - 2) = bele;

Ti (2:N) = 400;

for i = 1:4

phi = -h2betaB*Ti (2:N) .A4';

Tnext (2:N) = ainv* (b' - phi) ;

Ti = Tnext;

]----+[Assign the matrix [a] . J

Define the vector [b] . J
Initial guess for the interior points is 400K.

Solve the system in Eq. (11.44).

fprintf('After iteration number%2.0f the temperatures at mesh points are:\n' ,i)
disp (Tnext)

end

plot (x,Tnext,'*r')

xlabel ('Distance (m) ') ; ylabel ('Temperature (K) ')

When the program is executed, the figure on the right is pro

duced, and the following results are displayed in the Com

mand Window.

In addition, the program was executed with N = 20. The
results from this execution are shown in the lower figure.

500

��
� 450

tS,
� 400

e
" � 350

�
300

250
0

*
*

*
*

��

0.02 0.04 0.06 0.08 0.1

Distance (m)

11.3 Finite Difference Method 489

After iteration number 1 the temperatures at mesh points are:
473.0000 423.2293 382.8297 349.1078 319.8155 293.0000

After iteration nmnber 2 the temperatures at mesh points are:
473.0000 423.3492 383.3225 349.8507 320.4519 293.0000

After iteration nmnber 3 the temperatures at mesh points are:
473.0000 423.3440 383.3132 349.8409 320.4456 293.0000

After iteration nmnber 4 the temperatures at mesh points are:
473.0000 423.3441 383.3134 349.8410 320.4457 293.0000

g 450

"

.a 400

i 350
�

300

250
0 0.02 0.04 0.06 0.08 0.1

Distance (m)

The results agree with the solution that was obtained using the shooting method in Example 11-2.
Additional notes
(1) In this example an iterative solution of the nonlinear system was easily enabled by MATLAB's

built-in function for calculating the inverse of a matrix. (It was done for convenience because in this

problem the matrix is small.) As stated in Chapter 4, it is in general not a good idea to invert a matrix

since it is computationally inefficient. It is better to solve the system in Eq. (11.44) by Gaussian elimi

nation or by the Thomas algorithm.

(2) If a different iteration formula is used (e.g. [y L + 1 = [y] i - {[a][y] ; + [<!>]; - [b] }), the iterations

will not converge regardless of how close the initial guesses are to the true solution.

Finite difference solution of a linear BVP with mixed boundary con
ditions

The finite difference method can also be applied for a BVP with mixed

boundary conditions. In this case, a constraint that involves the deriva

tive is prescribed at one or both of the endpoints of the solution domain.

In these problems the finite difference method is used to discretize the

ODE at the interior points (as in two-point BVPs). However, the system

of algebraic equations that is obtained cannot be solved since the solu

tion at the endpoints is not given (there are more equations than

unknowns). The additional equations needed for solving the problem

are obtained by discretizing the boundary conditions using finite differ

ences, and incorporating the resulting equations into the algebraic equa

tions for the interior points. The solution of a second-order BVP with

mixed boundary conditions is illustrated in Example 11-5.

Final note

The foregoing discussion and examples show that neither the finite dif

ference method nor the shooting method has a clear advantage when

solving a higher-order nonlinear ODE. The finite difference method

requires the solution of a nonlinear system of equations, while the

shooting method requires information regarding the higher derivatives

of the dependent variable at the leftmost boundary. The choice of which

method to use is therefore problem-dependent, depending either on how

easily initial guesses can be generated for the derivatives of the depen

dent variable at a boundary (shooting method) or on how well a particu

lar fixed-point iteration scheme converges (finite difference method).

490 Chapter 11 Ordinary Differential Equations: Boundary-Value Problems

Example 11-5: Solving a BVP with mixed boundary conditions.

Use the finite difference method to solve the following mixed boundary condition BVP.

d2 -0.2x -2 J + y = e , for 0 :s; x :s; 1
dx2 (11.46)

with the boundary conditions: y(O) = 1 and �I x= 1
= -ylx= 1

·

Divide the solution domain into eight subintervals, and use the central difference approximation for
all derivatives. Compare the numerical solution with the exact solution:

SOLUTION

t;:, t;:,
-0.2x

Y = -0.2108ex!(.,,,Z) + 0. 1238e -x!(.,,,Z) + _e -
0.92

(11.47)

2
To use the finite difference method, the second derivative d l in Eq. (11.46) is approximated with

dx
the three-point second-order accurate central difference formula, Eq. (11.23):

(Y;-1-2Y;+ Y;+1) _ -o.zx; -2 +y. - e 2 I

h
(11.48)

By combining like terms and multiplying through by h2
, Eq. (11.48) can be written as:

2 2 -0.2x;
-2y;_1 +(4+h)y;-2Y;+i =he (11.49)

Next, Eq. (11.49) is written for each of the interior points (i.e. i = 2, 3, 4, 5, 6, 7, 8):

since y1 = y(O) = 1.

for
2 2 -0.2x2

i = 2 -2y1 + (4 + h)Yz -2y3 = h e
2 2 -0.2x2

or (4 + h)y2 -2y3 = 2 + h e

for i = 3:

for i = 4:

for i = 5:

for i = 6:

(11.50)

(11.51)

(11.52)

(11.53)

(11.54)

2 2 -0.2x7
for i = 7: -2y6+(4+h)y7-2y8 =he (11.55)

&: 2 2 -0.2x8
ior i = 8: -2y7 + (4 + h)y8 -2y9 = h e (11.56)

Equations (11.50) through (11.56) are a system of seven linear equations with eight unknowns, y2,
y3, y4, y5, y6 , y7 , y8, and y9. In this problem, unlike the two-point BVP, the value of the solution

at the right endpoint (i.e., y9) is not known.

An additional equation can be derived by considering the discretized boundary condition at x = 1 :

�1 = -y (11.57)
dx x= I

11.3 Finite Difference Method 491

The derivative in Eq. (11.57) is approximated by a finite difference formula. As described in Chapter

8, several formulas can be used for this purpose. Since the derivative condition is given at the last

point, it makes sense to use a one-sided backward formula that uses values at the previous points. In

addition, since the second derivative in Eq. (11.46) is approximated with a second-order accurate

formula, it makes sense to use a three-point backward difference formula for the first derivative,

which is also a second-order accurate formula. The general form of the three-point backward differ

ence formula is:

<!J!.. = Y;-2-4Y;-1+3y;
dx 2h

(11.58)

Using Eq. (11.58) to approximate the derivative at the last point (x9, y9) in the boundary condition at

x = 1 gives:

(11.59)

Solving Eq. (11.59) for y9 yields:

-1 4
Y9 =

3 + 2h Y7 +
3 + 2h Ys (11.60)

Equation (11.60) provides the additional relationship needed for solving all the unknowns. Substitut

ing Eq. (11.60) in Eq. (11.56) gives:

(2) (2 8) 2 -0.2x8 ---2 y7+ 4+h --- y8 =he
3 + 2h 3 + 2h

(11.61)

Equation (11.61) together with Eqs. (11.50)-(11.55) form a system of seven linear equations with

seven unknowns. In matrix form, [a][y] = [c], the system can be expressed by:

(4 + h2) -2 0 0 0

-2 (4 + h2) -2 0 0

0 -2 (4 + h2) -2 0

0 0 -2 (4 + h2) -2
-2 (4 + h2)

-2

0 0

0 0

0 0

0 0

-2 0

(4 + h2) -2
(-2-- 2) (4+h2 __ 8_)

3 + 2h 3 + 2h

Yi

Y3

Y4

Ys

Y6

Y7

Ys

h2 -0.2x2
2+ e

h2 e
-0.2x3

h2 e
-0.2x4

h2 e
-0.2xs

h2 e
-0.2x6

h2 e
-0.2x7

h2 e
-0.2x8

(11.62)

Once Eqs. (11.62) are solved, the value of y9 can be calculated with Eq. (11.60). Notice that the sys

tem of equations in Eq. (11.62) is tridiagonal and can be easily extended if the domain is divided into

a larger number of subintervals. The system can be solved with any of the methods for solving a sys

tem of linear equations that have been presented in Chapter 4, especially the Thomas algorithm.

The following MATLAB program in a script file presents the solution. The program uses the

user-defined function named Tridiagonal, which was written in Example 4-9, for solving a

tridiagonal system of equations. The program is written in terms of the number of subintervals, N,
such that it be easily executed with different values for N.

[Program 11-5: Script file. Solving BVP with mixed boundary conditions using finite difference method.]

492 Chapter 11 Ordinary Differential Equations: Boundary-Value Problems

% Solution of Chapter 11 Example 5
clear

a = O; b = 1;

N = 8; h = (b - a)/N;

x = a:h:b

hDenom = 3 + 2*h;

aDia = (4 + hA2);

y(l) = 1;

(Endpoints of the solution domain.]

Define a vector for the x coordinate of the interior points. J

a = eye(N - 2,N - 2)*aDia;

a(N - 1,N - 1) = aDia - 8/hDenom;

for i = l:N - 2

a(i,i + 1) = -2;

a(i + l,i) = -2;

end

•----+[Assign the matrix [a] . J

a (N - 1 , N - 2) = 2 /hDenom - 2 ;

c(l) = 2 + hA2*exp(-0.2*x(2));

c(2:N - 1) = hA2*exp(-0.2*x(3:N));
Create the vector [c] .

y(2 :N) = Tridiagonal (a,c); Solve the system inEq. (11.62).]
y (N + 1) = -1 *y (N - 1) /hDenom + 4 *y (N) /hDenom (Solution at the last point using Eq. (11.60)j
yExact = -0. 2108. *exp (x. /sqrt (2)) + 0 .1238. *exp (-x. /sqrt (2)) +exp (-0. 2. *x) . /O. 92

When the program is executed with N = 8, the solution displayed in the Command Window is:

x =

0 0.1250 0.2500 0.3750 0.5000 0.6250 0.7500 0.8750 1.0000

y =

1.0000 0.9432 0.8861 0.8284 0.7701 0.7106 0.6499 0.5874 0.5230

yExact =

1.0000 0.9432 0.8861 0.8286 0.7702 0.7109 0.6501 0.5878 0.5234

The results show a close agreement between the numerical and exact solutions.

11.4 USE OF MATLAB BUILT-IN FUNCTIONS FOR

SOLVING BOUNDARY VALUE PROBLEMS

Boundary value problems involve ODEs of second-order or higher with

boundary conditions specified at both endpoints of the interval. As was

shown in Section 10.9, ODEs of second-order or higher can be trans

formed into a system of first-order ODEs. MATLAB solves BVP s by

solving a system of the first-order OD Es. The solution is obtained with

a MATLAB built-in function named bvp4c. This function uses a finite

difference method with the three-stage Lobatto Illa formula.1 The func

tion bvp 4 c has different forms, but in order to simplify the presenta

tion it is introduced here in its simplest form, and is applied for solving

a two-point BVP.

Recall that a second-order ODE, with x as the independent variable

and y as the dependent variable, has the form:

11.4 Use of MATLAB Built-In Functions for Solving Boundary Value Problems 493

d2 (d) --1:'. = f x,y, � for a�x�b with y(a) =Ya and y(b) =Yb (11.63)
dx2 dx

Transforming the second-order ODE into a system of two first-order

ODEs gives:

dv
d

dw
="'- = w an - = f (x, y, w) dx dx (11.64)

where w is an additional (new) dependent variable.

The simple form of MATLAB's built-in function bvp4c for solv

ing a first-order ODE is:

where:

ode fun

be fun

sol = bvp4c (ode fun, bcfun, solini t)

The name of the user-defined function (function file)

that calculates <ix. = w and dw = f (x, y, w) for
dx dx

given values of x, w andy, ode fun, can be typed as a

string (i.e., 'odefun') or by using a handle (i.e.,

@ode fun).
The format of the user-defined function ode fun is:

(dydx = odefun (x, yw))
The input argument x is a scalar, and the input argu

ment yw is a column vector with the values of the

dependent variables, [�] .The output argument dydx

is a column vector with the values: [w l.
f (x, y, w)j

The name of the user-defined function (function file)

that computes the residual in the boundary condition.

The residual is the difference between the numerical

solution and the prescribed boundary conditions (at

the points where the boundary conditions are pre

scribed). bcfun can be typed as a string (i.e.,

'be fun') or by using a handle (i.e., @be fun).

1. The Lobatto formula is a quadrature formula that, unlike Gauss quadrature

(see Chapter 9), uses both endpoints of the interval, (n - 1) interior points
and weights, to make the integration exact for polynomials of degree

2n - 1. The locations of these (n - 1) interior points are the roots of a set of
orthogonal polynomials known as Jacobi polynomials. Details of this
method are beyond the scope of this book.

494

Boundary condition:

y(a) = Ya and r!J:.. I = Db
dx x=b

vector res 1s: . [ya(l) -Y aj
yb(2)-Db

Boundary condition:

� lx=a= Da and y(b) = Yb

. [ya(2)-DJ
vector res 1s:

yb(I)-Yb

Boundary condition (general case):

cl ':!1:.. 1 + c2y(a) = ca and
dx x=a

C3 ':!1:.. 1 + C4y(b) = Cb
dx x=b

vector res is (for c1, c3 "# 0): rya(2)-Ca+ C2 ya(1)1
Cl Cl
Cb C4 yb(2)--+ -yb(I)
C3 C3

Figure 11-11: The residuals for
mixed boundary conditions.

Chapter 11 Ordinary Differential Equations: Boundary-Value Problems

solinit

The format of the user-defined function be fun is:

(res= bcfun (ya, yb)

The input arguments ya and yb are column vectors

corresponding to the numerical solution at x = a and

at x = b. The first elements, ya (1) and yb (1), are

the values of y at x = a, and x = b, respectively. The

second elements ya (2) and yb (2) , are the values

of dy/dx at x = a, and x = b, respectively. The output

argument res is a column vector with the values of

the residuals. The function bcfun can be used with

any boundary conditions. For example, for Dirichlet

boundary conditions (see Eq. (11.3)), where Ya and

Yb are the prescribed boundary conditions, the col-

umn vector res is:
[ya(l)-Yal_

For Neumann
yb(l)-Ybj

boundary conditions (see Eq. (11.4)), where the

derivatives Da and Db are the prescribed boundary

con 1t1ons, t e co umn vector res is: . d.. h l .
[ya(2)-DaJ
yb(2)-Db

Mixed boundary conditions can have several forms

(see Eq. (11.5)). The possible expressions for the col

umn vector res are listed in Fig. 11-11.

A structure containing the initial guess for the solu

tion. solinit is created by a built-in MATLAB

function named bvpini t. (solini t is the output

argument ofbvpini t.)
The format of the built-in function bvpini tis:

(solini t = bvpini t (x, yini t) J
The input argument x is a vector that specifies the

initial interior points. For a BVP with the domain

[a, b] , the first element of x is a, and the last element

is b. Often an initial number of ten points is adequate

and can be created by typing x=lins
pace (a, b, 10) . The input argument yini t is the

initial guess for the solution. yini t is a predefined

vector that has one element for each of the dependent

variables in the system of first-order ODEs that is

solved. In the case of two equations, Eq. (11.64), the

vector yin it has two elements. The first element is

the initial guess for the value of y, and the second ele

ment is the initial guess for the value of w. MATLAB

11.4 Use of MATLAB Built-In Functions for Solving Boundary Value Problems 495

sol

uses these initial guesses for all the interior points.

yini t can also be entered as a name of a user

defined function (i.e., typed as a string 'yini t' or

@yini t). In this case, the function has the form

y=gu es s (x) , where x is an interior point and y is

the vector with the initial guess for the solution, as

was explained earlier.

A structure containing the solution. Three important

fields in sol are:

sol . x The x coordinate of the interior points. The

number of interior points is determined during the

solution process by MATLAB. It is, in general, not

the same as was entered by the user in bvpini t.
sol. y The numerical solution, y(x), which is the

y value at the interior points.

sol . yp The value of the derivative, <!1!., at the inte
dx

rior points.

Using MATLAB's built-in function bvp4c for solving a two-point

BVP, is illustrated in detail next in Example 11-6.

Example 11-6: Solving a two-point BVP using MATLAB's built-in function bvp4c.

Use MATLAB's built-in function bvp4c to solve the following two-point BVP.

d2 d --1:'+2x� +5y-cos(3x) = 0, for o:s;x:s;7t
dx2 dx

with the boundary conditions: y(O) = 1.5 and y(7t) = 0.

SOLUTION

To be solved with MATLAB, the equation is rewritten in the form:

(11.65)

d2 d --1:' = -2x� -5y+cos(3x) (11.66)
dx2 dx

2
Next, by introducing a new dependent variable w = <!1!., dw

=

d Y, the second-order ODE, Eq. dx dx dx2
(11.66), is transformed into the following system of two first-order ODEs:

<!1!. = w (11.67) dx
dw
- = -2xw-5y+cos(3x) (11.68)
dx

MATLAB's bvp4c function has the form: sol = bvp4c (ode fun, bcfun, solini t). Before

it can be used, the two user-defined functions ode fun and be fun have to be written.

In the present solution, the user-defined function odefun is actually named odefunExample6.
The listing of the function is:

496 Chapter 11 Ordinary Differential Equations: Boundary-Value Problems

function dydx = odefunExample6(x,yw)

dydx = [yw(2)

-2*x*yw(2) - 5*yw(l) + cos(3*x)];

Comments about the user-defined function odefunExarnple6:

Right-hand side ofEq. (11.67).]
Right-hand side ofEq. (11.68).]

• yw is a column vector in which yw (1) is the value of y and yw (2) is the value of w.

• dydx is a column vector in which dydx (1) is the value of the right-hand side ofEq. (11.67) and dydx (2) is the
value of the right-hand side ofEq. (11.68).

In the present solution, the user-defined function be fun is actually named bcfunExample6. The

listing of the function is:

function res = bcfunExample6(ya,yb)

BCa = 1.5; BCb = 0; [The boundary conditions are assigned to BCa and Bcb.

res = [ya(l) - BCa

yb(l) - BCb];

Comments about the user-defined function b cf unExamp 1e6:

The residual at x = a.]
[The residual at x = b.]

• ya is a column vector in which ya (1) is the numerical (calculated by MATLAB) value of the solution, y, at

x = a. yb (1) is the numerical (calculated by MATLAB) value of the solution,y, at x = b.
• res is a column vector in which res (1) is the value of the residual at x = a, and res (2) is the value of the

residual at x = b.

Once the two user-defined functions, odefunExample6 and bcfunExample6, are written, they

are used together with MATLAB's built-in functions bvpinit and bvp4c, in the following pro

gram, written in a script file, to solve the BVP in Eq. (11.65).

% Solution of Chapter 11, Example 6 _____.f Initial grid.]

clear all , � , ,----1 -----1(Initial guess of the solution.]
solini t = bvpini t (linspace (0, pi, 20) , [0. 2, 0. 2]) ; Use the function bvpini t to

sol=bvp4c(@odefunExample6,@bcfunExample6,solinit) create the structure solini t
plot(sol.x, sol.y(l,:),'r')

xlabel ('x') ; ylabel ('y')

When the program is executed, the figure on the

right, with the plot of the solution, is displayed in

the Figure Window. In addition, the fields of the

structure sol are displayed in the Command Win

dow (since no semicolon is typed at the end of the

sol= command).

The display in the Command Window is:

sol =

x: [lx24 double]

y: [2x24 double]

yp: [2x24 double]

solver: 'bvp4c'

� Use the function bvp4c to solve the ODE. J

11.5 Error and Stability in Numerical Solution of Boundary Value Problems 497

x : is a row vector with the x coordinates of the interior points.

y: is a (2 x 24) matrix with the values of the solution at the interior points. The first row is the solu

tion for y, and the second row is the solution for w.

yp: is a (2 x 24) matrix with the values of the derivatives, r!1. (first row), and dw (second row).
dx dx

The content of a field can be displayed by typing sol. fieldname. For example, typing sol. x

displays the following values of the x coordinates of the interior points:

>> sol.x

ans =

Columns 1 through 12
0 0.1653 0.2480 0.3307 0.3720 0.4134 0.4960 0.6614 0.8267 0.9921 1.0748 1.1574

Columns 13 through 24
1.3228 1.4881 1.6535 1.8188 1.9842 2.2322 2.4802 2.6456 2.8109 2.8936 2.9762 3.1416

This shows that the solution was obtained by using 23 subintervals.

Typing sol . y (1 , :) displays the first row of y : , which is the solution at the interior points:

>> sol . y (1 , :)
ans =

Columns 1 through 12
1.5000 1.0849 0.8354 0.5728 0.4404 0.3089 0.0544 -0.3909 -0.7116 -0.8908 -0.9303 -0.9404

Columns 13 through 24
-0.8901 -0.7750 -0.6271 -0.4711 -0.3242 -0.1438 -0.0276 0.0124 0.0260 0.0247 0.0192 0

11.5 ERROR AND STABILITY IN NUMERICAL
SOLUTION OF BOUNDARY VALUE PROBLEMS

Numerical error

Numerical error for a boundary value problem depends on the choice of

the numerical method used. For the shooting method, the numerical

error is the same as for the initial value problem discussed in Section

10.5 and depends on the method used. Obviously, this is because the

shooting method solves the BVP by reformulating it as a series of IVP s

with guesses for the leftmost boundary condition.

In the case of the finite difference method of solution of the BVP,

the error is determined by the order of accuracy of the numerical

scheme used. The truncation errors of the different approximations used

for the derivatives are discussed in Section 8.3. As discussed in Section

8.9, the total error consists of the truncation error and round-off error.

The accuracy of the solution by the finite difference method is therefore

determined by the larger of the two truncation errors: that of the differ

ence scheme used for the differential equation or that of the difference
scheme used to discretize the boundary conditions. An effort must

therefore be made to ensure that the order of the truncation error is the

same for the boundary conditions and the differential equation.

498 Chapter 11 Ordinary Differential Equations: Boundary-Value Problems

Stability

The stability of numerical solutions to IVPs was discussed in Section
10.13. Numerical solutions to BVPs are also susceptible to instability,
although the solution can become unstable in different ways. In an IVP,

the instability was associated with error that grew as the integration pro
gressed. In contrast, in BVPs, the growth of numerical error as the solu
tion progresses is limited by the boundary conditions. In some cases,
there may be valid multiple solutions to the BVP so that when it is

solved as an IVP, small changes in the initial constraint (i.e., leftmost
boundary condition) can produce one solution or the other for a small

change in the leftmost boundary condition.
In the case of the shooting method (Example 11-2), it can be seen

that even if the two approximate solutions generated by guesses for the

unknown dT

I
are laden with error, an accurate numerical solution

dx x=O

can still be obtained by trapping the rightmost boundary condition

between two approximate solutions generated numerically. Thus, the
rightmost constraint keeps the types of errors illustrated in Example 8-

13 from growing unboundedly. This does not mean that the solution at
the interior points will be error free. The solution at the interior points

can still exhibit the types of error propagation shown in Example 8-13,

depending on the choice of method and step size.
In some cases, the differential equation itself may be unstable to

small perturbations in the boundary conditions, in which case the prob

lem formulation has to be examined. In other cases, multiple, valid

solutions to the ODE exist for different rightmost boundary conditions.
Use of the finite difference method for solving a BVP places the

burden of stability on the technique used to solve the resulting system

of equations simultaneously at all points. Because the solution is deter
mined everywhere simultaneously, the notion of marching forward in
time or marching from left to right that is present in IVPs is not relevant
for BVPs. Stability of solving a BVP by fmite differences therefore

rests on stability of the scheme used to solve the resulting set of simul
taneous equations. In Example 11-3, the resulting system of equations
for the unknown temperatures at the interior points is linear. In this

case, all the potential difficulties of solving a linear system of equations
discussed in Chapter 4 such as conditioning, apply. In Example 11-4,
the system of equations is nonlinear. In this case, stability is determined
by the type of method used to solve the system as well as the proximity

of the initial guess to the solution. Since fixed-point iteration was used

to solve the system of nonlinear equations in Example 11-4, stability of
the numerical solution depends on the choice of the iteration function as
well as the initial guess used to start the iteration. This instance shows

that the rightmost boundary condition is unable to prevent a runaway
divergence in the case of some iteration functions.

11.6 Problems 499

11.6 PROBLEMS

Problems to be solved by hand
Solve the following problems by hand. When needed, use a calculator, or write a MATLAB script file to

carry out the calculations. If using MATLAB, do not use built-in functions for numerical solutions

11.1 Consider the following second-order ODE:

d2
� = y+ sin x

d x2
(a) Using the central difference formula for approximating the second derivative, discretize the ODE

(rewrite the equation in a form suitable for solution with the finite difference method).

(b) If the step size is h = 1, what is the value of the diagonal elements in the resulting matrix of coeffi

cients of the system of linear equations that has to be solved?

11.2 Consider the following second-order ODE:

2
�+2: = c

dr2 r
where C is a constant.

(a) Using the central difference formula for approximating the second derivative, discretize the ODE

(rewrite the equation in a form suitable for solution with the finite difference method).

(b) If the step size is h = 0.5, what is the value of the diagonal elements in the resulting matrix of coeffi

cients of the system of linear equations that has to be solved?

11.3 Consider the following second-order ODE:

d2 d � + x� + y = 2xy for 0:::; x:::; 1 , with y(O) = 1 and y(l) = 1
d x2 dx

(a) Using the central difference formulas for approximating the derivatives, discretize the ODE (rewrite

the equation in a form suitable for solution with the finite difference method).

(b) What is the expression for the diagonal terms in the resulting matrix of coefficients of the tridiagonal

system of linear equations that has to be solved?

11.4 Consider the following boundary value problem:

2 d
d { + ay + b Y4 = 0 for O :::; x :::; 1 , with the boundary conditions: <!1!. I = 0 and y(1) = 1 x � x=O

where a and bare constants. Discretize the second-order ODE using:

(a) Second-order accurate forward difference.

(b) Second-order accurate backward difference.

(c) Discretize the boundary condition at x = 0 using the second-order accurate forward difference.

11.5 Consider the following boundary value problem:

d3 d � + � - exsiny = 0 for O:::; x:::; 1 , with the boundary conditions: y(O) = 0, <!1!.I = 0 and y(l) = 10. d x3 dx dx x=O
Discretize the third-order ODE using second-order central differences. When the boundary conditions are

discretized, make sure that the order of the truncation error is compatible with that of the ODE.

500 Chapter 11 Ordinary Differential Equations: Boundary-Value Problems

11.6 Consider the following boundary value problem:
2

� + ! � = -e-x2 for O � x � l , with the boundary conditions: � I = 0 and � I = ay(l) + b y4(1) dx2 xdx d d xx=O xx=I
where a and b are constants. Discretize the ODE using second-order accurate central differences for the
derivatives. When the boundary conditions are discretized, make sure that the order of the truncation error
is compatible with that of the ODE.

11. 7 Consider the following boundary value problem:
2 �
x
� - u = -e-x2sin (1tx) for O � x � 1 , with the boundary conditions: u(O) = 1 and u(l) = -1

What are the diagonal elements of the resulting tridiagonal matrix when the finite difference method with
first-order accurate central differences is applied to solve the problem with a step size of 1/4?

11.8 Consider the second-order ODE of the form:

d2 d ---1'. + pf!l:. + qy = r(x)
dx2 dx

where p and q are constants, and r(x) is a given function. Using second-order accurate central differences
for the derivatives, discretize the ODE.

11.9 Given the boundary value problem � - 2f!l:. + y = 0 with f!1:. d2 d d I d x2 dx ' dx x = 0
1 and y(1) = 2 . Set up the

problem for solving using the shooting method. Use the bisection method to determine the value of y(O)
such that the boundary condition at x = 1 is met within a specified error defined as EH = IY c(1) - 1 I where

y cC 1) is the calculated value of the solution at x = 1. Set up the equations to be solved but do not solve.

2
11.10 Given the boundary value problem � - 2� + y = 0, with y(O) = 0 and � 1 = 5 . Discretize

dx2 dx dx x= I
the problem using second-order accurate central differences for the derivatives and a second-order accurate
one-sided difference for the boundary condition at x = l. For a constant step size h, what is the term on
the right-hand side of the last of the simultaneous equations that result?

11.11 Write the BVP in Problem 11.10 as a set of two first-order OD Es, ready to be solved using the
shooting method. Use the linear interpolation method described in Section 11.2 to set up the equation for
determining dyldx at x = 0 such that the boundary condition at x = 1 may be satisfied to a desired error

defined as EH = Id Y c I - 5 1 , where
d Y

c I is the calculated value of the derivative at x = 1 . Set up the dx x=l dx x=l
equations to be solved but do not solve.

11.6 Problems 501

Problems to be programmed in MATLAB
Solve the following problems using the MATLAB environment. Do not use MATLAB s built-in functions for

solving differential equations.

11.12 Write a user-defined MATLAB function that solves, with the shooting method, a second-order

boundary value problem of the form:

d
2

d � + f(x)qx + g(x)y = h(x) for a� x � b with y(a) = Ya and y(b) = Yb
d x

2 dx

where Ya and Yb are constants. The function should first calculate two solutions using two assumed values

for the slope at x = a , which are specified by the user, and use these solutions for calculating a new initial

slope using interpolation (Eq. (11.14)), which is then used for calculating the final solution of the problem.

Name the function [x, y] =BVPShootint (fOFx, gOFx, hOFx, a, b, n, Ya, Yb, WL, WH). The input

arguments fOFx, gOFx, and hOFx are names for the functions that calculate f(x;, g(x), and h(x) , respec

tively. They are dummy names for the anonymous or user-defined functions that are imported into BVP

Shootint. a and b define the domain of the solution, n is the number of subintervals, Ya and Yb are the

boundary conditions, and WL and WH are the assumed slopes at x = a . Once the first two solutions are cal

culated, the program should confirm that at x = b the given boundary condition Yb is between the two

solutions, and then calculate the final solution with the interpolated value for the slope. If the boundary

condition at x = b is not between the first two solutions, the program should stop and display an error

message. Use the user-defined function Sys20DEsRK4 that was written in Example 8-8 for solving the

system of the two first-order ODEs within the user-defined function BVPShootint.

Use BVPShootint to solve the boundary value problem in Example 11-6. Use n = 100 ,

WL = -5 , and w
H

= -1. 5 .

11.13 Write a user-defined MATLAB function that solves, with the shooting method in conjunction with

the bisection method, a second-order boundary value problem of the form:

d
2

d � + f(x)qx + g(x)y = h(x) for a� x � b with y(a) = Ya and y(b) = Yb
d x

2 dx

where Ya and Yb are constants. For the function name and arguments use

[x, y] =BVPShootBisec (fOFx, gOFx, hOFx, a, b, n, Ya, Yb, WL, WH). The input arguments

fOFx, gOFx, and hOFx are names for the functions that calculate f(x), g(x), and h(x) , respectively. They

are dummy names for the anonymous or user-defined functions that are imported into BVPShootBisec.

a and b define the domain of the solution, n is the number of subintervals, Ya and Yb are the boundary

conditions, and WL and WH are the assumed slopes at x = a that are used in the first two solutions. Once

the first two solutions are calculated, the program should confirm that at x = b the value of the boundary

condition Yb is between the first two solutions. If the boundary condition is not between the first the two

solutions, the program should stop and display an error message. Within the user-defined function BVP

ShootBisec, use the user-defined function Sys20DEsRK4 that was written in Example 8-8 for solving

the system of the two first-order OD Es. Iterate until the absolute value of the true error at x = b is smaller
than 0.001.

Use BVPShootBisec to solve the boundary value problem in Example 11-6. Use n = 100,
WL = -5, and W

H
= -1.5.

502 Chapter 11 Ordinary Differential Equations: Boundary-Value Problems

11.14 Write a user-defined MATLAB function that solves, with the shooting method in conjunction with

the secant method, a second-order boundary value problem of the form:

d2 d � + f(x)qJ:'. + g(x)y = h(x) for a� x � b with y(a) = Ya and y(b) = Yb
dx2 dx

where Ya and Yb are constants. For the function name and arguments use

[x, y] =BVPShootSecant (fOFx, gOFx, hOFx, a, b, n, Ya, Yb, WL, WH). The input arguments

fOFx, gOFx, and hOFx are names for the functions that calculate f(x), g(x), and h(x) , respectively. They

are dummy names for the anonymous or user-defined functions that are imported into

BVPShootSecant. The arguments a and b define the domain of the solution, n is the number of subin

tervals, Ya and Yb are the boundary conditions, and WL and WH are the assumed slopes at x = a that are

used in the first two solutions. Within the user-defined function BVPShootSecant, use the user-defined

function Sys20DEsRK4 that was written in Example 10-8 for solving the system of the two first-order

OD Es. Iterate until the absolute value of the true error at x = b is smaller than 0.001.
Use BVPShootSecant to solve the boundary value problem in Example 11-6. Use n = 1 00,

WL = -5, and w H = -l.5.

11.15 Write a user-defined MATLAB function that uses the finite difference method to solve a second

order ODE of the form:

d2 d � + pqJ:'. + qy = r(x) for a� x � b with y(a) = Ya and y(b) = Y6 dx2 dx
where p, q, Ya and Yb are constants. Discretize the ODE using second-order accurate central differences.

Name the function [x, y] =BVP2ndConst (a, b, n, Ya, Yb, p, q, rOFx). The input arguments a and

b define the domain of the solution, Ya and Yb are the boundary conditions, n is the number of subinter

vals, and rOFx is a name for the function that calculates r(x). It is a dummy name for the anonymous or

user-defined function that is imported into BVP2ndConst. Within the program, use MATLAB's left divi

sion operation to solve the system of linear equations.

Use BVP2ndConst with 50 subintervals to solve the ODE in Problem 11.1 with the boundary con

ditions y(O) = 1, y(2) = 0. Plot the solution.

11.16 Write a user-defined MATLAB function that uses the finite difference method to solve a boundary

value problem of the form:

d2 d �+p(x)qJ:'.+q(x)y = r(x) fora�x�b with y(a) = Yaandy(b) =Yb
dx2 dx

where Ya and Yb are constants. Discretize the ODE using second-order accurate central differences. For

the function name and arguments use [x, y] =BVP2ndVar (a, b, Ya, Yb, n, pOFx, qOFx, rOFx).

The input variables a and b define the domain of the solution, Ya and Yb are the boundary conditions, n is

the number of subintervals, and pOFx, qOFx, and rOFx are the names for the user-defined functions that

calculate p(x), q(x), and r(x), respectively. They are dummy names for the anonymous or user-defined

functions that are imported into BVP2ndVar. Within the program, use MATLAB's left division operation

to solve the system of linear equations.

Use BVP2ndVar with 50 subintervals to solve the boundary value problem in Problem 11.3. Plot

the solution.

11.6 Problems 503

11.17 Write a user-defined MATLAB function that uses the finite difference method to solve a boundary

value problem of the form (see Eq. (11.24)):

� + p(x)qx + q(x)y = r(x) for a :5 x :5 b with y(a) = Ya and qx = Db
d2 d d

I di dx dx x=b

where Ya and Db are constants. Discretize the ODE using second-order accurate central differences. For

function name and arguments use [x, y] =BVP2ndDriv (a, b, Ya, Db, n, pOFx, qOFx, rOFx). The

input variables a and b define the domain of the solution, Ya and Db are the boundary conditions, n is the

number of subintervals, and pOFx, qOFx, and rOFx are the names for the user-defined functions that cal

culate p(x), q(x), and r(x), respectively. Within the program, use MATLAB's left division operation to

solve the system of linear equations.

Use BVP2ndDri v with 50 subintervals to solve the following boundary value problem:

Plot the solution.

6 + ! r!J:. = -10 y(1) = 1 , r!J:. I = -1.2
d x2 x dx dx x = 3

Problems in math, science, and engineering
Solve the following problems using the MATLAB environment. As stated, use the MATLAB programs that
are presented in the chapter, programs developed in previously solved problems, or MATLAB s built-in
functions.

11.18 A flexible cable of uniform density is suspended between two

points, as shown in the figure. The shape of the cable, y(x), is gov

erned by the differential equation:

6
=

cj 1+ (r!1:.12
dx2 d--;J

where C is a constant equal to the ratio of the weight per unit length

of the cable to the magnitude of the horizontal component of tension

in the cable at its lowest point. The cable hangs between two points

specified by y(O) = 10 m and y(20) = 15 m, and C = 0.041 m-1.

y
(20, 15)

(0, lO)r---�

x

Use MATLAB's built-in functions to determine and plot the shape of the cable between

x = 20 m.

x = O and

11.19 A simply supported beam of length L = 4 m is loaded by a

uniform distributed load, as shown in the figure. For large deflec

tions, the deflection of the beam, y, is determined from the solution

of the following ODE:

EI d2y = [1 + (r!J:.)2]312!q(Lx-x2) y(O) = 0 and y(L) = 0
dx2 dx 2

where EI = 1.4 x 1O7 N-m2 is the flexural rigidity, and
q = 10 x 10

3
N/m.

1 l l l l l l l l l l l {J l l l l !l �

I L I

Use MATLAB's built-in functions to determine and plot the deflection of the beam as a function of x.

504 Chapter 11 Ordinary Differential Equations: Boundary-Value Problems

11.20 A simply supported beam of length L = 4 m is
loaded by a distributed load and a tensile axial force T, as
shown in the figure. The deflection of the beam, y, is deter
mined from the solution of the following ODE:

6 = _!_ [1 + (cJx.)2 J312[!q0(L x-x3) +Ty] dx2 EI dx 6 L
with the boundary conditions y(0) = 0 and y(L) = 0.

y

T

..------- L

EI = l.2 x 107N-m2 is the flexural rigidity, q0 = 3 0 x 103 Nim, and T = 20 x 103N.

T x

Use MATLAB 's built-in functions to determine and plot the deflection of the beam as a function of x.
11.21 A cylindrical pipe with inner radius 1 cm and wall thickness 2.5 cm car
ries a fluid at a temperature of 600°C. The outer wall of the pipe is at 25°C.
The governing equation for the temperature distribution in the pipe wall is:

d2T dT r-+- = -5 00 dr2 dr
subject to the boundary conditions T(l) = 600 °C and T(3.5) = 25 °C. Solve
for the temperature T(r) and plot the temperature distribution as a function of
r.
(a) Use the user-defined function BVP2ndVar (written in Problem 11.16) with 5 subintervals.
(b) Use the user-defined function BVP2ndVar (written in Problem 11.16) with 10 subintervals.
(c) Use MATLAB built-in functions to solve the ODE.

11.22 Solve Problem 11.21 subject to the boundary conditions T(1) = 600 and
dTI = O.l(T(3.5)- 25). dr r =

3
.5

11.23 The temperature distribution in a straight fin, T(x) , with a trian
gular profile is given by the solution of the equation:

d2T _ _ l _dT _ 2h(LW+bL-bx)(T-TrrJ
= O dx2 (L-x)dx kbW(L-x)

where T 00 = 300 K is the ambient temperature, x is the coordinate mea
sured along the fin, k = 23 7 W /m/K is the thermal conductivity of alu-
minum, h = 1 5 W /m2 /K is the convective heat transfer coefficient,
L = 0.01 m is the length of the fin, W = O.lm is its width, and
b = 0.01 m is the height of the base. The boundary conditions are

T(x = 0) = 1073K, and dTI = 0. dx x=L

Find and plot the temperature distribution, T(x), along the fin. Write a program in a script file that solves
the problem with the shooting method. Note that a derivative boundary condition is prescribed at x = L.
Use the three-point backward difference formula to calculate the value of the derivative from the numerical
solution at x = L. Compare the numerical solution with the prescribed boundary condition and use the
bisection method to calculate the new estimate for the slope at x = 0 . Iterate until the true relative error at

11.6 Problems 505

x = L is smaller than 0.01. Important note: The point x = L is a singular point of the ODE. Therefore,
the problem cannot be solved as specified. An approximate solution can, however, be obtained by using

L = 0.00999999 m for the length of the fin.

11.24 Solve Problem 11.23 using the finite difference method with 100 subintervals. Use second-order
accurate central differences for all the derivatives in the ODE, and use appropriate one-sided differences

for the boundary condition. As explained in Problem 11.23, use L = 0.00999999 m for the length of the fin.

11.25 The fuel rod of a nuclear reactor is a cylindrical structure with the fuel

retained inside a cladding, as shown in the figure. The fuel causes heat to be
generated by nuclear reactions within the cylinder as well as in the cladding.

The outer surface of the cladding is cooled by flowing water at T 00 = 473 K

with a heat transfer coefficient of h = 104 W/m2/K. The thermal conductivity

of the cladding material is k = 16.75 W/m/K. The dimensions of the fuel rod

are R = 1.5 x 10-2 m, and w = 3.0 x 10-3 m. The temperature distribution in

the cladding is determined by the solution of the following boundary value
problem:

Cladding

1 d (dT) 8 e
-r/R

. dT I 6.32 x 10
5

dT I h --rk-=-10 --,for RSrSR+w,with - = - and- = -- (Tl _ -T,,J
rdr dr r dr k dr k r-R+w

r=R r=R+w
Use MATLAB's built-in function bvp4c to solve the boundary value problem. Plot the temperature distri
bution in the cladding as a function of r.

11.26 The electron density in a cylindrically confined weakly ionized plasma
(ionized gas) is described under some circumstances by the ambipolar equation:

D d (dn
e
) 3 --r - = -k .n n

A
+ k n

r dr dr ' e r e
where Dis the diffusion coefficient, n

e
is the electron number density, n

A
is the

number density of the neutral atoms, k; is the ionization rate coefficient, and k r is

the recombination rate coefficient. The diameter of the tube is d = 3 x 10-2m. For

D = 0.4m2/s, k; = 1 x I0 -1 8 m3/s, k r = 7.8 x lQ-32m6/s, n
A

= 3.2 x 1022m-3, and

the following boundary conditions:

r = 0 dn
e = 0

dr

r = d/2 => n
e

= 0

- + -
I

"- i ---- -r--

1
---- · ---�

solve for n
e
(r) using MATLAB's built-in function bvp4c and plot n

e
(r) . Use the initial guesses,

n
e

= 1018 m-3, d
n

e = 0, and 100 intervals. Note that the center line at r = 0 is a singularity, so the solu
dr

tion must begin at a small, but non-zero value of r, e.g., r = 1 x 10 -6 m. Explore the physical nature of the

solution by varying k; by a small amount, e.g. 1.3 x 10 -1 8 , 1.5 x 10 -1 8 , 1.7 x 10 -1 8 , and 1.9 x 10 -1 8 .

506 Chapter 11 Ordinary Differential Equations: Boundary-Value Problems

11.27 The radial distribution of temperature in a current-carrying bare
wire is described by:

k d (dT) 12
Pe

; dr
r

dr
=

- (1 2) 2 -nD
4

where T is the temperature in K, r is the radial coordinate in m,
k = 72 W/m/K is the thermal conductivity, I = 0.5A is the current,

Pe = 32 x 10-8 Q -m is the electrical resistivity, and D = 1 x 10-4m is
the wire diameter. Use MATLAB's built-in function bvp4c to solve the equation for T(r). Solve twice for
the following boundary conditions:

dT (a) At r = 10-6m,
dr

= 0 and at r = D/2, T = 300K.

n n h 2 (b) At r = 10-6m,
dr

= 0 and at r = D/2,
dr

= -k(T(r = D/2)-T 00), where h = 100 W/m is the con-

vection heat transfer coefficient and T 00 = 300 K is the ambient temperature.
Important note: r = 0 is a singular point and must therefore be replaced with a small, non-zero value. As

initial guesses, use T = 500 K and dT = 0, and use 50 subintervals.
dr

11.28 The axial temperature variation of a current-carrying bare wire
is described by:

2 (4 4) 2 d T _4h(T-T)-4ccrss T -T00 I Pe
dx2 kD

00
kD

kGnD2r
where T is the temperature in K, x is the coordinate along the wire,

k = 72 W /m/K is the thermal conductivity, h = 2000 W /m2 /K 2 is
the convective heat coefficient, c = 0.1 is the radiative emissivity,

crss = 5.67 x 10-8 W/m2/K4 is the Stefan-Boltzmann constant,

x

I = 2A is the current, Pe = 32 x 10-8 nm is the electrical resistivity, T 00 = 300 K is the ambient tempera

ture, D = 7.62 x 10-5 m is the wire diameter, and L = 4. 0 x 10-3 is the length of the wire. The boundary
conditions are:

at x = O T = 300 K and at x = !:. dT = o ' 2 dx

Use MATLAB 's built-in function bvp 4 c to solve the boundary value problem for 0::;; x::;; �, since the tem-

perature distribution is symmetric about x = !.::. . Plot the temperature distribution along the wire.
2

11.6 Problems 507

11.29 A spherical organism whose radius is R = 100 µ m consumes Oz at a rate of k02 = 25 s-1 throughout

its volume. The oxygen concentration at the surface of the organism is 3 x 1022 m-3, and its value in the
interior of the organism is governed by the following one-dimensional diffusion equation:

_!_l{(Dr2
dno2)- ko no = 0

r2dr dr 2 2

where D = 10-8 m
z

/s IS the diffusivity of Oz. By symmetry, the boundary condition at r = 0 IS

dno21 = 0 .
dr r=O

(a) Rewrite the ODE as a system of two first-order ODEs and write down the boundary conditions.
(b) Solve the system of first-order ODEs using the MATLAB built-in function bvp4c for the steady state

distribution n0 (r). Note that r = 0 appears as a singularity on the right-hand side of one of the equa-2
tions in part (a) , and must therefore be replaced with a small (compared to R), non-zero value, e.g.,

10-7 m. Solve the equations from r = 10-7 m to r = R by dividing the domain into 100 subintervals,

and using initial guesses of n0 = 3 x 1022 and
dno2 = 0. Make a plot of n0 versus r. 2 � 2

(c) Find the total rate of consumption of Oz by the organism, which is equal to the rate of diffusion of Oz

at the surface, i.e., R0 = 4rcrR D-- . • 2 dnozl 2 dr r = R

11.30 The velocity distribution in laminar boundary layer flow over a
flat plate is described by the solution of an ODE of the dimensionless
function f(TJ) (Blasius problem):

3 2
Q + 0.5 f <.!...:...f.. = (with the boundary conditions:
iT]3 dT]2

/(0) = 0, efJ-1 = 0, and efJ-1 1
T]l)=O T]l)�OO

y

x

where TJ = y ru:, is a dimensionless variable, and ..!:!.... = gj_ . The velocity components in the x and y direc-
� � uoo dT]

tions are u and v, respectively. Solve this two-point boundary value problem for /(TJ) by rewriting the
third-order ODE as a system of three first-order OD Es. Solve the system as though it was an initial value

2
problem. This requires an assumed value for U at TJ = 0 that gives a solution that satisfies the boundary

dT]2

condition ef1 I = 1. For the infinity boundary condition use TJ = 6 . Write a MATLAB program in a
dT] 11 �00

script file that uses MATLAB's built-in functions to solve the system of the three OD Es. The program first
2

determines two values for rU that, when used in the solution, bound the boundary condition at infinity.
dT]2

Then, the program uses the shooting method with linear interpolation (Eq. (11.14)) to determine the solu-

508 Chapter 11 Ordinary Differential Equations: Boundary-Value Problems

2
tion to the problem. To determine two values for 0 that, when used in the solution bound the boundary

dri2

condition at infinity, start with the guess d 2; I = 0 and d 2; I = ..!..., then use ..!... and l. , and so on.
dri 11 = 0 dri 11 = 0 30 30 30

Display the results in a plot of/versus ri, and a plot of <.!.1. versus ri (two separate figures).
dri

11.31 Stagnation plane flow of a fluid is encountered in welding applications.

For two-dimensional flow where the free stream horizontal component of

velocity is given by u00 = Cx113 , the velocity distribution is determined by the

solution of the ODE for the non-dimensional function/:

rU + f O-o.s[(<}f_)2 -1] = o
dri3 dri2 dri

with the boundary conditions:

f (0) = 0, <fJ-1 = 0, and <fJ-1 1
ril]=O ril]--.+OO

x

where ri = y J 2C is dimensionless variable, and .!:!.... = <}j_. The velocity components in the x and y
3vx213 uoo dri

directions are u and v, respectively. Solve this two-point boundary value problem for f(ri) by rewriting the

third-order ODE as a system of three first-order OD Es. Solve the system as though it was an initial value

2
problem. This requires an assumed value for 0 at ri = 0 that gives a solution that satisfies the boundary

dri2

condition gf_ I = 1. For the infinity boundary condition use fl = 4.5 . Write a MATLAB program in a
dfl l]--.+00

script file that uses MATLAB's built-in functions to solve the system of the three ODEs. The program first

2
determines two values for 0 that, when used in the solution, bound the boundary condition at infinity.

dri2
Then, the program uses the shooting method with linear interpolation (Eq. (11.14)) to determine the solu-

2
tion to the problem. To determine two values for 0 that, when used in the solution, bound the boundary

dri2

condition at infinity, start with the guess 0 I = 0 and 0 I = ..!..., then use ..!... and l. , and so on.
dri2 11=0 dri2 11=0 30 30 30

Display the results in a plot off versus fl, and a plot of * versus fl (two separate figures). Note that

replacing ri � oo with a number greater than 4.5 will cause numerical problems as the second derivative

2
0 vanishes and changes the ODE.
dri2

Appendix A

Introductory MATLAB

Core Topics

Starting with MATLAB (A.2).

Arrays (A.3).

User-defined functions and function files (A.7).

Anonymous functions (A.8).

Function functions (A.9).

Mathematical operations with arrays (A.4).

Script files (A.5).

Subfunctions (A.10)

Programming in MATLAB (A.11).

Plotting (A.6).

A.1 BACKGROUND

MATLAB is a powerful language for technical computing. The name

MATLAB stands for MATrix LABoratory because its basic data ele

ment is a matrix (array). MATLAB can be used for mathematical com

putations, modeling and simulations, data analysis and processing,

visualization and graphics, and algorithm development.

MATLAB is widely used in universities and colleges in introduc

tory and advanced courses in mathematics, science, and especially in

engineering. In industry the software is used in research, development,

and design. The standard MATLAB program has tools (built-in func

tions) that can be used to solve common problems. In addition, MAT

LAB has optional toolboxes that are a collection of specialized

programs designed to solve specific types of problems. Examples

include toolboxes for signal processing, symbolic calculations, and con

trol systems.

This appendix is a brief introduction to MATLAB. It presents the

most basic features and syntax that will enable the reader to follow the

use of MATLAB in this book. For a more complete introduction, the

reader is referred to MATLAB: An Introduction with Applications,

F ourthrd Edition, by Amos Gilat, Wiley, 2011.

A.2 STARTING WITH MATLAB

It is assumed that the software is installed on the computer and that the

user can start the program. When the program is running, eight win

dows can be used. A list of the various windows and their purpose is

509

510

Window

Appendix A Introductory MATLAB

given in Table A-1. Four of the windows-the Command Window, the
Figure Window, the Editor Window, and the Help Window-are the
most commonly used.

Table A-1: MATLAB Windows

Purpose

Command Window Main window, enters variables, runs programs.

Figure Window Contains output from graphics commands.

Editor Window Creates and debugs script and function files.

Help Window Provides help information.

Launch Pad Window Provides access to tools, demos, and documentation.

Command History Window Logs commands entered in the Command Window.

Workspace Window Provides information about the variables that are used.

Current Directory Window Shows the files in the current directory.

Command Window: The Command Window is MATLAB 's main win

dow and opens when MATLAB is started.
• Commands are typed next to the prompt (> >) and are executed when

the Enter key is pressed.

• Once a command is typed and the Enter key is pressed, the command
is executed. However, only the last command is executed. Everything
executed previously is unchanged.

• Output generated by the command is displayed in the Command
Window, unless a semicolon (;) is typed at the end.

• When the symbol % (percent symbol) is typed in the beginning of a
line, the line is designated as a comment and is not executed.

• The clc command (type clc and press Enter) clears the Command
Window. After working in the Command Window for a while, the

display may be very long. Once the clc command is executed, a
clear window is displayed. The command does not change anything
that was done before. For example, variables that have been defined
previously still exist in the memory and can be used. The up-arrow

key (t) can also be used to recall commands that were typed
before.

Figure Window: The Figure Window opens automatically when graph

ics commands are executed and contains graphs created by these com
mands.

Editor Window: The Editor Window is used for writing and editing
programs. This window is opened from the File menu in the Command
Window. More details on the Editor Window are given in Section A.5

A.2 Starting with MATLAB 511

Operation

Addition

Subtraction

Multiplication

Symbol

+

-

*

where it is used for creating script files.

Help Window: The Help Window contains help information. This win

dow can be opened from the Help menu in the toolbar of any MATLAB

window. The Help Window is interactive and can be used to obtain

information on any feature of MATLAB.

Elementary arithmetic operations with scalars

The simplest way to use MATLAB is as a calculator. With scalars, the

symbols of arithmetic operations are:

Example Operation Symbol Example

5+3 Right division I 5/3

5-3 Left division \ 5\3=3/5

5 * 3 Exponentiation /\ 5 "3 (means 53 = 125)

A mathematical expression can be typed in the Command Window.

When the Enter key is pressed, MATLAB calculates the expression and

responds by displaying ans = and the numerical result of the expres

sion in the next line. Examples are:

>> 7 + 8/2

ans =
11

>> (7+8)/2 + 27A(l/3)

ans =
10.5000

>> a = 12

a =
12

>> B = 4;

Numerical values can also be assigned to variables, which is a name

made of a letter or a combination of several letters (and digits). Variable

names must begin with a letter. Once a variable is assigned a numerical

value, it can be used in mathematical expressions, in functions, and in

any MATLAB statements and commands.

Since a semicolon is typed at the end of the
command, the value of B is not displayed.

>> C = (a - B) + 40 - a/B*lO

c =
18

Elementary math built-in functions

In addition to basic arithmetic operations, expressions in MATLAB can

include functions. MATLAB has a very large library of built-in func

tions. A function has a name and an argument (or arguments) in paren

theses. For example, the function that calculates the square root of a

512

Command

sqrt(x)

exp(x)

abs(x)

log(x)

loglO(x)

sin(x)

sind(x)

Appendix A Introductory MATLAB

number is sqrt (x). Its name is sqrt, and the argument is x. When

the function is used, the argument can be a number, a variable, or a

computable expression that can be made up of numbers and/or vari

ables. Functions can also be included in arguments, as well as in expres

sions. The following shows examples of using the function

sqrt (x) when MATLAB is used as a calculator with scalars.

>> sqrt(64)

ans =

[Argument is a number. J

8

>> sqrt(50 + 14*3)

ans =

9.5917

>> sqrt(54 + 9*sqrt(100))

ans =

12

>> (15 + 600/4)/sqrt(121)

ans =

15

[Argument is an expression. J

[Argument includes a function.]

[Function is included in an expression.]

Lists of some commonly used elementary MATLAB mathematical

built-in functions are given in Table A-2. A complete list of functions

organized by category can be found in the Help Window.

Table A-2: Built-in elementary math functions.

Description Example

Square root. >> sqrt(81)
ans =

9

Exponential (ex) . >> exp(5)
ans =

148.4132

Absolute value. >> abs(-24)
ans =

24

Natural logarithm. >> log(lOOO)

Base e logarithm (ln). ans =

6.9078

Base 10 logarithm. >> loglO(lOOO)
ans =

3.0000

Sine of angle x (x in radians). >> sin(pi/6) >> sind(30)
ans = ans =

Sine of angle x (x in degrees). 0.5000 0.5000

A.2 Starting with MATLAB 513

Table A-2: Built-in elementary math functions. (Continued)

Command Description Example

The other trigonometric functions are written in the same way. The inverse trigonometric functions are
written by adding the letter "a" in front, for example, as in (x).

round(x)

fix(x)

ceil(x)

floor(x)

Command

format short

format long

format short e

format long e

format short g

Round to the nearest integer. >> round(17/5)
ans =

3

Round toward zero. >> fix(9/4) >> fix(-9/4)
ans = ans =

2 -2

Round up toward infinity. >> ceil(ll/5)
ans =

3

Round down toward minus infinity. >> floor(-9/4)
ans =

-3

Display formats

The format in which MATLAB displays output on the screen can be
changed by the user. The default output format is fixed point with four
decimal digits (called short). The format can be changed with the

format command. Once the format command is entered, all the
output that follows will be displayed in the specified format. Several of

the available formats are listed and described in Table A-3.

Table A-3: Display format

Description Example

Fixed point with four decimal digits for: >> 290/7

0.001 ::::; number::::; 1000 ans =

Otherwise display format short e. 41.4286

Fixed point with 14 decimal digits for: >> 290/7

0.001 ::::; number::::; 100 ans =

Otherwise display format long e. 41.42857142857143

Scientific notation with four decimal >> 290/7

digits. ans =

4.1429e+001

Scientific notation with 15 decimal dig- >> 290/7

its. ans =

4.142857142857143e+001

Best of 5-digit fixed or floating point. >> 290/7
ans =

41. 429

514

Command

format long g

format bank

Appendix A Introductory MATLAB

Table A-3: Display format (Continued)

Description Example

Best of 15-digit fixed or floating point. >> 290/7
ans =

41.4285714285714

Two decimal digits. >> 290/7
ans =

41. 43

A.3 ARRAYS

The array is a fundamental form that MATLAB uses to store and

manipulate data. An array is a list of numbers arranged in rows and/or

columns. The simplest array (one-dimensional) is a row, or a column of

numbers, which in science and engineering is commonly called a vec

tor. A more complex array (two-dimensional) is a collection of numbers

arranged in rows and columns, which in science and engineering is

called a matrix. Each number in a vector or a matrix is called an ele

ment. This section shows how to construct vectors and matrices. Sec

tion A.4 shows how to carry out mathematical operations with arrays.

Creating a vector

In MATLAB, a vector is created by assigning the elements of the vector

to a variable. This can be done in several ways depending on the source

of the information that is used for the elements of the vector. When a

vector contains specific numbers that are known, the value of each ele

ment is entered directly by typing the values of the elements inside

square brackets:

[variable_name = [number number ... number]

For a row vector, the numbers are typed with a space or a comma

between the elements. For a column vector the numbers are typed with

a semicolon between them. Each element can also be a mathematical

expression that can include predefined variables, numbers, and func

tions. Often, the elements of a row vector are a series of numbers with

constant spacing. In such cases the vector can be created by typing:

(variable_name = m:q:n)
where m is the first element, q is the spacing, and n is the last element.

Another option is to use the linspace command:

(variable_ name = linspace (xi, xf, n)

Several examples of constructing vectors are:

>> yr= [1984 1986 1988 1990 1992 1994 1996] [Row vector by typing elements.)

A.3 Arrays

yr =

1984 1986

>> pnt = [2; 4;

pnt =

2
4
5

>> x = [1:2:13]

x =

1 3 5

1988 1990

5]

7 9 11 13

1992 1994 1996

515

[Column vector by typing elements. J

[Row vector with constant spacing.

>> va = linspace (0, 8, 6)

va =

[Row vector with 6 elements, first element 0, last element 8. J

0 1.6000 3.2000 4.8000 6.4000 8.0000

Creating a two-dimensional array (matrix)

A two-dimensional array, also called a matrix, has numbers in rows and

columns. A matrix is created by assigning the elements of the matrix to

a variable. This is done by typing the elements, row by row, inside

square brackets []. Within each row the elements are separated with

spaces or commas. Between rows type ; or the press Enter.

variable_name= [1st row elements; 2nd row ele
ments; ; last row elements]

The elements that are entered can be numbers or mathematical expres

sions that may include numbers, predefined variables, and functions.

All the rows must have the same number of elements. If an element is

zero, it has to be entered as such. MATLAB displays an error message if

an attempt is made to define an incomplete matrix. Examples of matri

ces created in different ways are:

>>a= [5 35 43; 4 76 81; 21 32 40] [Semicolons are typed between rows. J
a =

5
4

21

35
76
32

43
81
40

>> cd = 6; e = 3; h = 4; [Variables are defined.]
>>Mat= [e, cd*h, cos(pi/3); h"'2, sqrt(h*h/cd), 14] Elements are

Mat = entered as mathe-
3. 0000 24. 0000 0. 5000 matical expres-

16.0000 1.6330 14.0000 sions.

• All variables in MATLAB are arrays. A scalar is an array with one

element; a vector is an array with one row, or one column, of ele

ments; and a matrix is an array with elements in rows and columns.

516 Appendix A Introductory MATLAB

• The variable (scalar, vector, or matrix) is defined by the input when
the variable is assigned. There is no need to define the size of the
array (single element for a scalar, a row or a column of elements for
a vector, or a two-dimensional array of elements for a matrix) before
the elements are assigned.

• Once a variable exists as a scalar, a vector, or a matrix, it can be
changed to be any other size, or type, of variable. For example, a

scalar can be changed to a vector or a matrix, a vector can be
changed to a scalar, a vector of different length, or a matrix, and a
matrix can be changed to have a different size, or to be reduced to a
vector or a scalar. These changes are made by adding or deleting ele
ments.

Array addressing

Elements in an array (either vector or matrix) can be addressed individ
ually or in subgroups. This is useful when there is a need to redefine
only some of the elements, or to use specific elements in calculations,
or when a subgroup of the elements is used to define a new variable.

The address of an element in a vector is its position in the row (or
column). For a vector named ve, ve (k) refers to the element in posi
tion k. The first position is 1. For example, if the vector ve has nine ele
ments:

ve=35 46 78 23 5 14 81 3 55

then

ve(4) = 23, ve(7) = 81, and ve(l) = 35.
The address of an element in a matrix is its position, defined by

the row number and the column number where it is located. For a
matrix assigned to a variable ma, ma(k,p) refers to the element in row k

and columnp.

For example, if the matrix is: ma = [! \1 to �l
13 9 0 �J

then, ma(l,l) = 3, and ma(2,3) = 10.

It is possible to change the value of one element by reassigning a
new value to the specific element. Single elements can also be used like
variables in mathematical expressions.

>> VCT = [35 46 78 23 5 14 81 3 55]

VCT =

[Define a vector. J

35 46 78 23 5 14 81 3 55

>> VCT (4) =- 2; VCT (6) = 273

VCT =

[Assign new values to the fourth and sixth elements. J

35 46 78 - 2 5 273

>> VCT (5) "VCT (8) +sqrt (VCT (7))

81 3
Use vector elements in a
mathematical expression.

A.3 Arrays 517

ans =
134

>>MAT= [3 11 6 5; 4 7 10 2; 13 9 0 8] [Define a matrix. J
MAT =

3 11 6 5
4 7 10 2

13 9 0 8

>> MAT(3,1) =20

MAT =

Assign a new value to the (3,1) element. J

3
4

20

11
7
9

6 5
10 2

0 8

>> MAT(2,4) -MAT(l,2) Use matrix elements in a
mathematical expression.

ans =
-9

Using a colon : in addressing arrays

A colon can be used to address a range of elements in a vector or a

matrix. If va is a vector, va(m:n) refers to elements m through n of the

vectorva.

If A is a matrix, A(:,n)refers to the elements in all the rows of column n.

A(n,:)refers to the elements in all the columns of row n. A(:,m:n) refers

to the elements in all the rows between columns m and n. A(m:n,:) refers

to the elements in all the columns between rows m and n. A(m:n,p:q)

refers to the elements in rows m through n and columns p through q.

>> v= [4 15 8 12 34 2 50 23 11] [Define a vector.

v =
4 15 8 12 34 2 50 23 11

>>u=v(3:7) [Vector u is created from the elements 3 through 7 of vector v.

u =
8 12 34 2 50

>>A= [l 3 5 7 9 11; 2 4 6 8 10 12; 3 6 9 12 15 18; 4 8 12 16 20
24; 5 10 15 20 25 30] [Define a matrix.]

A =
1 3 5 7 9 11
2 4 6 8 10 12
3 6 9 12 15 18
4 8 12 16 20 24
5 10 15 20 25 30

c =A(2,:) [Vector C is created from the second row of matrix A.

c =
2 4 6 8 10 12

>> F = A(1:3,2:4) Matrix F is created from the elements in rows 1
through 3 and columns 2 through 4 of matrix A.

518

Command

length(A)

size(A)

zeros(m,n)

ones (m, n)

eye(n)

F =
3

4
6

5
6
9

7

8

12

Appendix A Introductory MATLAB

MATLAB has many built-in functions for managmg and handling

arrays. Several are listed in Table A-4.

Table A-4: Built-in functions for handling arrays.

Description Example

Returns the number of elements in vec- >> A= [5 9 2 4] ;

tor A. >> length (A)
ans =

4

Returns a row vector [m, n] , where m >>A= [6 1 4 0 12; 5 19 6 8

and n are the size m x n of the array A. 2]

(mis number of rows. n is number of A=

columns.) 6 1 4 0 12
5 19 6 8 2

>>size (A)
ans=

2 5

Creates a matrix with m rows and n col- >> zr =zeros (3, 4)

umns, in which all the elements are the zr=

number 0. 0 0 0 0
0 0 0 0
0 0 0 0

Creates a matrix with m rows and n col- > > ne = ones (4 , 3)

umns, in which all the elements are the ne=

number 1. 1 1 1
1 1 1
1 1 1
1 1 1

Creates a square matrix with n rows and >> idn =eye (3)

n columns in which the diagonal ele- idn=

ments are equal to 1 (identity matrix). 1 0 0
0 1 0
0 0 1

Strings

• A string is an array of characters. It is created by typing the charac

ters within single quotes.

• Strings can include letters, digits, other symbols, and spaces.

• Examples ofstrings: 'adef','3%fr2','{edcba:21!'.

A.4 Mathematical Operations with Arrays 519

• When a string is being typed in, the color of the text on the screen
changes to maroon when the first single quote is typed. When the
single quote at the end of the string is typed the color of the string

changes to purple.

Strings have several different uses in MATLAB. They are used in
output commands to display text messages, in formatting commands of
plots, and as input arguments of some functions. Strings can also be

assigned to variables by simply typing the string on the right side of the
assignment operator, as shown in the next example.

>> a= 'FRty 8'

a =
FRty 8

>> B = 'My name is John Smith'

B =
My name is John Smith

A.4 MATHEMATICAL OPERATIONS WITH ARRAYS

Once variables are created in MATLAB, they can be used in a wide
variety of mathematical operations. Mathematical operations in MAT
LAB can be divided into three categories:

1. Operations with scalars ((1x1) arrays) and with single elements of

arrays.

2. Operations with arrays following the rules oflinear algebra.

3. Element-by-element operations with arrays.

Operations with scalars and single elements of arrays are done by
using the standard symbols as in a calculator. So far, all the mathemati
cal operations in the appendix have been done in this way.

Addition and subtraction of arrays

With arrays, the addition, subtraction, and multiplication operations fol
low the rules of linear algebra (see Chapter 2). The operations+ (addi
tion) and - (subtraction) can only be carried out with arrays of identical
size (the same number of rows and columns). The sum, or the differ

ence of two arrays, is obtained by adding, or subtracting, their corre

sponding elements. For example, if A and B are two (2 x 3) matrices,

A = [A11 A12 A131 and B = [Bu B12 B131
A11 A12 A13j B21 B12 B13J

then, the matrix that is obtained by adding A and B is:

ICA11 +Bu) (A12 + B12) (A13 + B13)l .

l(A21 + B21) (A22 + B21) (A23 + B13)j
In MATLAB, when a scalar (number) is added to, or subtracted from,

520 Appendix A Introductory MATLAB

an array, the number is added to, or subtracted from, all the elements of

the array. Examples are:

>>VA= [8 5 4]; VB= [10 2 7];
>> VC=VA+VB

[Define two vectors VA and VB. J
Define a vector VC that is equal to VA+ VB. J

VC=

18 7
>>A= [5 -3

A=

5 -3

9 2
B=

10 7
-11 15

>>C=A+B

c =

11

8; 9 2 10] I B= [10 7 4; -11 15 1] [Define two matrices A and B. J

8

10

4
1

Define a matrix c that is equal to A+ B.

15 4 12
-2 17 11

>>C- 8

ans=

7
-10

-4
9

4
3

Subtract 8 from the matrix C.

8 is subtracted from each element of C.

Multiplication of arrays

The multiplication operation * is executed by MATLAB according to
the rules oflinear algebra (see Section 2.4.1). This means that if A andB
are two matrices, the operation A* B can be carried out only if the num
ber of columns in matrix A is equal to the number of rows in matrix B.
The result is a matrix that has the same number of rows as A and the
same number of columns as B. For example, if Eis a (3 x 2) matrix and

G is a (2 x 4) matrix, then the operation C=A*B gives a (3 x 4) matrix:

>>A= [2 -1; 8 3; 6 7], B= [4 9 1 -3; -5 2 4[Define two matricesAandB.J
A=

2 -1
8 3

6 7
B=

4 9

-5 2

>>C=A*B

C=

13 16
17 78

-11 68

1 -3

4 6

[Multiply A *B.

c is a (3 x 4) matrix.)
-2 -12
20 -6

34 24

Two vectors can be multiplied only if both have the same number of

elements, and one is a row vector and the other is a column vector. The

A.4 Mathematical Operations with Arrays 521

multiplication of a row vector times a column vector gives a (1 x 1)

matrix, which is a scalar. This is the dot product of two vectors.
(MATLAB also has a built-in function, named dot (a, b) , that com
putes the dot product of two vectors.) When using the dot function, the
vectors a and b can each be a row or a column vector. The multiplica
tion of a column vector times a row vector, both with n elements, gives

an (n x n) matrix.

>>AV= [2 5 l]

AV=

[Define three-element row vector AV. J

2 5 1

>>BV= [3; 1; 4)

BV=

Define three-element column vector BV. J

3
1

4

>>AV*BV

ans=

15

>>BV*AV

ans=

6
2
8

15

5

20

Multiply AV by BV. The answer is a scalar. (Dot product of two vectors.) J

3
1

4

Array division

Multiply BV by AV. The answer is a (3 x 3)
matrix. (Cross product of two vectors.)

The division operation in MATLAB is associated with the solution of a
system of linear equations. MATLAB has two types of array division,
which are the left division and the right division. The two operations are
explained in Section 4.8.1. Note that division is not a defined operation
in linear algebra (see Section 2.4.1). The division operation in MAT

LAB performs the equivalent of multiplying a matrix by the inverse of
another matrix (or vice versa).

Element-by-element operations

Element-by-element operations are carried out on each element of the
array (or arrays). Addition and subtraction are already by definition ele
ment-by-element operations because when two arrays are added (or
subtracted) the operation is executed with the elements that are in the
same position in the arrays. In the same way, multiplication, division,

and exponentiation can be carried out on each element of the array.

When two or more arrays are involved in the same expression, element
by-element operations can only be done with arrays of the same size.

Element-by-element multiplication, division, and exponentiation of
two vectors or matrices are entered in MATLAB by typing a period in

522 Appendix A Introductory MATLAB

front of the arithmetic operator.

Symbol Description Symbol Description

* Multiplication ./ Right division

/\ Exponentiation .\ Left Division

If two vectors a and b are a = [a1 a2 a3 a� and

b = [b1 b2 b3 bJ, then element-by-element multiplication, division,

and exponentiation of the two vectors are:

a .* b = [a1b1 a2b2 a3b3 a4b�

a .I b = [a1/b1 a2/b2 a3/b3 a4/b�
/\ b

� bi b2 b3 b�
a . = L(a1) (a2) (a3) (a4)

J
If two matrices A and B are: [A11 A12 Anj [B11 B12 Bn

:

A = A21 A21 A13 and B = B21 B22 B23
A31 A32 A33 B31 B32 B33

then element-by-element multiplication and division of the two matri

ces give:

Examples of element-by-element operations with MATLAB are:

>>A= [2 6 3; 5 8 4]
A=

[Define a (2 x 3) matrix A.]

2 6 3

5 8 4
>>B= [1 4 10; 3 2 7]

B=
1
3

4
2

>>A.* B
ans=

2
15

24
16

>> C=A ./B

10
7

30
28

Define a (2 x 3) matrix B.]

Element-by-element multiplication of arrays A and B. J

Element-by-element division of array A by array B. J

A.4 Mathematical Operations with Arrays 523

Command

mean(A)

sum(A)

sort(A)

C=
2.0000 1.5000 0.3000
1.6667 4.0000 0.5714

>> B " 3
ans=

1 64
27 8

Element-by-element exponentiation of array B. J

1000
343

Element-by-element calculations are very useful for calculating the

value of a function at many values of its argument. This is done by first

defining a vector that contains values of the independent variable and

then by using this vector in element-by-element computations to create

a vector in which each element is the corresponding value of the func-

3
tion. For example, calculating y =

z
2+ 52 for eight values of z,

4z -10
z = 1, 3, 5, ... , 15, is accomplished as follows:

>>z= [1:2:15] [Define a vector z with eight elements. J
z=

1 3 5 7 9 11 13 15
>>y= (z. "3 + S*z) . I (4*z. "2 - 10)

y=
Vector z is used in element-by-element
calculation of the elements of vector y.

-1.0000 1.6154 1.6667 2.0323 2.4650 2.9241 3.3964 3.8764

In the last example element-by-element operations are used three times;

to calculate z3 and z2 and to divide the numerator by the denominator.

MATLAB has many built-in functions for operations with arrays.

Several of these functions are listed in Table A-5.

Table A-5: Built-in functions for handling arrays.

Description Example

If A is a vector, the function returns the >>A= [5 9 2 4] ;
mean value of the elements of the vec- >>mean (A)
tor. ans =

5

If A is a vector, the function returns the >>A= [5 9 2 4] ;
sum of the elements of the vector. >>sum(A)

ans=
20

If A is a vector, the function arranges the >>A= [5 9 2 4] ;
elements of the vector in ascending >>sort(A)
order. ans=

2 4 5 9

524

Command

det(A)

Appendix A Introductory MATLAB

Table A-5: Built-in functions for handling arrays. (Continued)

Description Example

The function returns the determinant of >>A= [2 4; 3 5] ;

a square matrix A. >>det(A)
ans=

-2

A.5 SCRIPT FILES

A script file is a file that contains a sequence of MATLAB commands,

which is also called a program. When a script file is run, MATLAB exe

cutes the commands in the order they are written just as if they were

typed in the Command Window. When a command generates output

(e.g., assignment of a value to a variable without semicolon at the end),

the output is displayed in the Command Window. Using a script file is

convenient because it can be stored, edited later (corrected and/or

changed), and executed many times. Script files can be typed and edited

in any text editor and then pasted into the MATLAB editor. Script files

are also called M-files because the extension .m is used when they are

saved.

Creating and saving a script file

Script files are created and edited in the Editor/Debugger Window. This

window is opened from the Command Window. In the File menu,

select New and then select M-file. Once the window is open, the com

mands of the script file are typed line by line. MATLAB automatically

numbers a new line every time the Enter key is pressed. The commands

can also be typed in any text editor or word processor program and then

copied and pasted in the Editor/Debugger Window.

Before a script file can be executed, it has to be saved. This is done

by choosing Save As ... from the File menu, selecting a location (folder),

and entering a name for the file. The rules for naming a script file fol

low the rules of naming a variable (must begin with a letter, can include

digits and underscore, and be up to 63 characters long). The names of

user-defined variables, predefined variables, MATLAB commands, or

functions should not be used to name script files.

A script file can be executed either by typing its name in the Com

mand Window and then pressing the Enter key, or directly from the

Editor Window by clicking on the Run icon. Before this can be done,

however, the user has to make sure that MATLAB can find the file (i.e.,

that MATLAB knows where the file is saved). In order to be able to run

a file, the file must be in either the current directory or the search path.

The current directory is shown in the "Current Directory" field in

the desktop toolbar of the Command Window. The current directory

can be changed in the Current Directory Window.

When MATLAB is asked to run a script file or to execute a func-

A.5 Script Files 525

tion, it searches for the file in directories listed in the search path. The

directories included in the search path are displayed in the Set Path

Window that can be opened by selecting Set Path in the File menu.

Once the Set Path Window is open, new folders can be added to, or

removed from, the search path.

Input to a script file

When a script file is executed, the variables used in the calculations

within the file must have assigned values. The assignment of a value to

a variable can be done in three ways, depending on where and how the

variable is defined. One option is to define the variable and assign it a

value in the script file. In this case the assignment of value to the vari

able is part of the script file. If the user wants to run the file with a dif

ferent variable value, the file must be edited and the assignment of the

variable changed. Then, after the file is saved, it can be executed again.

A second option is to define the variable and assign it a value in the

Command Window. In this case, if the user wants to run the script file

with a different value for the variable, the new value is assigned in the

Command Window and the file is executed again.

The third option is to define the variable in the script file but assign

a specific value in the Command Window when the script file is exe

cuted. This is done by using the input command.

Output from a script file

As discussed earlier, MATLAB automatically generates a display when

some commands are executed. For example, when a variable is

assigned a value, or the name of a previously assigned variable is typed

and the Enter key is pressed, MATLAB displays the variable and its

value. In addition, MATLAB has several commands that can be used to

generate displays. The displays can be messages that provide informa

tion, numerical data, and plots. Two commands frequently used to gen

erate output are disp and fprintf. The disp command displays the

output on the screen, while the fprintf command can be used to dis

play the output on the screen or to save the output to a file.

The di sp command is used to display the elements of a variable

without displaying the name of the variable and to display text. The for

mat of the disp command is:

disp(name of a variable) or disp('text as string')

Every time the disp command is executed, the display it generates

appears in a new line.
The fprintf command can be used to display output (text and

data) on the screen or to save it to a file. With this command the output

can be formatted. For example, text and numerical values of variables

can be intermixed and displayed in the same line. In addition, the for

mat of the numbers can be controlled. To display a mix of text and a

526

6

4

Appendix A Introductory MATLAB

number (value of a variable), the fprintf command has the form:

fprintf('text as string %-5.2£ additional text' ,variable_name)

The % sign marks the
spot where the number is
inserted within the text.

>>x= [1

>>y= [2

Formatting elements
(define the format of
the number).

A.6 PLOTTING

The name of the
variable whose
value is displayed.

MATLAB has many commands that can be used for creating different
types of plots. These include standard plots with linear axes, plots with

logarithmic axes, bar and stairs plots, polar plots, and many more. The
plots can be formatted to have a desired appearance.

Two-dimensional plots can be created with the plot command.
The simplest form of the command is:

(plot (x, y))
The arguments x and y are each a vector (one-dimensional array). Both
vectors must have the same number of elements. When the plot com
mand is executed, a figure is appears in the Figure Window, which
opens automatically. The figure has a single curve with the x values on

the abscissa (horizontal axis) and the y values on the ordinate (vertical
axis). The curve is constructed of straight line segments that connect the

points whose coordinates are defined by the elements of the vectors x

and y. The vectors, of course, can have any name. The vector that is
typed first in the plot command is used for the horizontal axis, and the
vector that is typed second is used for the vertical axis. The figure that
is displayed has axes with linear scale and default range. For example,

if a vector x has the elements 1, 2, 3, 5, 7, 7.5, 8, 10, and a vector y has
the elements 2, 6.5, 7, 7, 5.5, 4, 6, 8, a simple plot of y versus x can be
produced by typing the following in the Command Window:

2 3 5 7 7.5 8 10];

6.5 7 7 5.5 4 6 8];

>>plot(x,y)

2 4 6 8 10

Once the plot command is executed, the plot that is shown in Fig. A-5
is displayed in the Figure Window.

The plot command has additional optional arguments that can

be used to specify the color and style of the line and the color and type
of markers, if any are desired. With these options the command has the

Figure A-1: A plot of data points.

A.6 Plotting 527

form:

plot(x,y, 'line specifiers')

Line specifiers can be used to define the style and color of the line and

the type of markers (if markers are desired). The line style specifiers

are:

Line Style Specifier Line Style Specifier

solid (default) - dotted

dashed -- dash-dot -

The line color specifiers are:

Line Color Specifier Line Style Specifier Line Color Specifier Line Color Specifier

red r blue b magenta m black k

green g cyan c yellow y white w

The marker type specifiers are:

Marker Specifier Marker Specifier Marker Specifier

plus sign + asterisk * square s

circle

� 25 ·�
� 20 ,,"
� /
� 15 "
� 10

;� ...

i'988 1989 1990 1991 1992 1993 1994
YEAR

Figure A-2: Formatted plot.

0 point . diamond d

The specifiers are typed inside the plot command as strings. Within

the string the specifiers can be typed in any order.

The plot command creates bare plots. The plot can be modified

to include axis labels, a title, and other features. Plots can be formatted

by using MATLAB commands that follow the plot command. The

formatting commands for adding axis labels and a title are:

xlabel('text as string')
ylabel('text as string')
title('text as string')

For example, the program listed below produces the plot that is dis

played in Fig. A-2. The data is plotted with a dashed red line and aster

isk markers, and the figure includes axis labels and a title.

>>yr= [1988: 1: 1994];

>>sle= [8 12 20 22 18 24 27];

>>plot(yr,sle,'--r*' ,'linewidth' ,2,'markersize' ,12)

>> xlabel ('YEAR')

>> ylabel (' SALES (Millions) ')

>> title (' Sales Records ')

528

The word function

must be the first word

and must be typed in
lower case letters.

Appendix A Introductory MATLAB

Formatting of plots can also be done in the Figure Window using

the insert menu or Plot Editor.

A.7 USER-DEFINED FUNCTIONS AND FUNCTION
FILES

A function in mathematics can be expressed in the form y = f(x),
where f(x) is a mathematical expression in terms of x. A value of y

(output) is obtained when a value of x (input) is substituted in the

expression. A function file in MATLAB is a computer program that is

used like a math function. Data is imported into the program and is used

for calculating the value of the function. Schematically, a function file

can be illustrated by:

Input data
-

Function

File

Output data

The input and output arguments can be one or several variables, and

each can be a scalar, a vector, or an array of any size. Functions can be

used for a math function and as subprograms in large programs. In this

way large computer programs can be made up of smaller "building

blocks" that can be tested independently.

MATLAB has already many built-in functions. Examples are the

standard math functions (i.e. sin (x), cos (x), sqrt (x), and

exp (x)) that are used by typing their name with a value for the input

argument. MATLAB contains also many built-in functions for execut

ing more complicated operations (e.g., solving a nonlinear equation,

curve fitting).

MATLAB users can write additional (new) user-defined functions

that can be used like the built-in functions. This section describes how

to write, save, and use user-defined functions.

User-defined functions are created and edited, like script files, in

the Editor/Debugger Window. The first executable line in a function file

must be the function definition line that has the form:

function [output arguments] =function_name(input arguments)

A list of output arguments The name of

typed inside brackets and the function.

separated by commas.

A list of input arguments

typed inside parentheses

and separated by commas.

The word "function", typed in lower case letters, must be the first
word in the function definition line. The input and output arguments are

A.7 User-Defined Functions and Function Files 529

used to transfer data into and out of the function. The input arguments

are listed inside parentheses following the function name. Usually, there

is at least one input argument. If there are more than one, the input argu

ments are separated by commas. The computer code that performs the

calculations within the function file is written in terms of the input argu

ments and assumes that the arguments have assigned numerical values.

The output arguments, which are listed inside brackets on the left

side of the assignment operator in the function definition line, transfer

the output from the function file. A user-defined function can have one,

several, or no output arguments. If there are more than one, the output

arguments are separated with commas or spaces. If there is only one

output argument, it can be typed without brackets. In order for the user

defined function to work, the output arguments must be assigned values

within the computer program of the function.

Following the function definition line, there are usually several

lines of comments. They are optional but frequently used to provide

information about the function. Next, the function contains the com

puter program (code) that actually performs the computations. The code

can use all MATLAB programming features, including calculations,

assignments, any built-in or user-defined functions, and flow control

(conditional statements and loops; see Section A.11).

All the variables in a user-defined function are local. This means

that the variables that are defined within the program of the user

defined function are recognized only in this program. When a function

file is executed, MATLAB uses an area of memory that is separate from

the workspace (the memory space of the Command Window and the

script files). In a user-defined function the input variables are assigned

values each time the function is called. These variables are then used in

the calculations within the function file. When the function file finishes

its execution, the values of the output arguments are transferred to the

variables that were used when the function was called. Thus, a function

file can have variables with the same name as variables in the Com

mand Window or in script files. The function file does not recognize

variables with the same name that have been assigned values outside

the function. The assignment of values to these variables in the function

file will not change their assignment elsewhere.

A simple user-defined function, named loan, that calculates the

monthly and total pay of a loan for a given loan amount, interest rate,

and duration is listed next.

function [mpay, tpay] =loan (amount, rate, years) Function definition line.)
%loan calculates monthly and total payment of loan.

%Input arguments:

%amount: loan amount in $.

%rate: annual interest rate in percent.

530

%years:

%Output

%mpay:

%tpay:

number of years.

arguments:

monthly payment.

total payment.

Appendix A Introductory MATLAB

format bank

ratem = rate*O. 01/12;

a= 1 + ratem;

b = (a" (years*l2) - 1) /ratem;

mpay =amount* a" (years*l2) I (a*b);

tpay = mpay*years*l2;
}-1 Assign values to the output arguments. J

The user-defined function loan is next used in the Command Win

dow for calculating the monthly and total pay of a four-year loan of

$25,000 with interest rate of 4%:

>> [month total] =loan (25000, 7. 5, 4)

month=

600.72

total=

28834.47

A.8 ANONYMOUS FUNCTIONS

An anonymous function is a simple (one-line) user-defined function

that is defined without creating a separate function file (M-file). Anony

mous functions can be defined in the Command Window, within a

script file, or inside a user-defined function.

An anonymous function is created by typing the following com

mand:

Yame;/
The name of the anony- The @
mous function. symbol.

(ar�ist) e�
A list of input argu- Mathematical

ments (independent expression.

variables).

A simple example is: cube= @ (x) x/\3, which calculates the cubic

power of the input argument.

• The command creates the anonymous function, and assigns a handle
for the function to the variable name that is on the left-hand side of

the = sign. Function handles provide means for referencing the func

tion, and passing it to other functions, see Section A.8.

A.8 Anonymous Functions 531

• The expr consists of a single valid mathematical MATLAB expres

s10n.

• The mathematical expression can have one or several independent

variables. The independent variable(s) is (are) listed in the (arg-
1 is t) . If there are more than one, the independent variables are

separated with commas.

An example of an anonymous function that has two independent

variables is: circle=@ (x, y) 16*x"2+9*y"2

• The mathematical expression can include any built-in or user

defined functions.

• The operations in the mathematical expression must be written

according to the dimensions of the arguments (element-by-element

or linear algebra calculations).

• The expression can include predefined variables that are already

defined when the anonymous function is defined. For example, if

three variables a, b, and c are defined (they have assigned numeri

cal values), then they can be used in the expression of the anony

mous function: parabola= @ (x) a*x"2+b*x+c. Important
note: MATLAB captures the values of the predefined variables

when the anonymous function is defined. This means that if subse

quently new values are assigned to the predefined variables, the

anonymous function is not changed. The anonymous function has to

be redefined in order for the new values of the predefined variables

to be used in the expression of the anonymous function.

Using an anonymous function
• Once an anonymous function is defined, it can be used by typing its

name and a value for the argument (or arguments) in parentheses

(see examples that follow).

• Anonymous functions can also be used as arguments in other func

tions (see Section A.8).

Example of an anonymous function with one independent variable:

x2

The function: f(x) = � can be defined (in the Command Win
x2 + 5

dow) as an anonymous function for x as a scalar by:

>> FA= @ (x) exp(xA2)/sqrt(xA2+5)

FA =

@(x)exp(xA2)/sqrt(xA2+5)

>> FA(2)

If a semicolon is not typed at the end, MATLAB displays the function.

The function can then be used for different values of x:

532 Appendix A Introductory MATLAB

ans =

18.1994

>> z = FA(3)

z =

2.1656e+003

If x is expected to be an array, and the function calculated for each ele
ment, then the function must be modified for element-by-element calcu
lations.

>> FA = @ (x) exp(x.A2) ./sqrt(x.A2+5)

FA =

@(x)exp(x.A2) ./sqrt(x.A2+5)

> > FA ([1 0 . 5 2]) [Using a vector as input argument.]
ans =

1.1097 0.5604 18.1994

Example of an anonymous function with several independent vari
ables:

The function f(x, y) = 2x2-4xy + y2 can be defined as an anonymous
function by:

>> HA = @ (x,y) 2*xA2 - 4*x*y + yA2

HA =

>> HA(2,3)
ans =

-7

Then, the anonymous function can be used for different values of x and

y. For example, typing HA (2, 3) gives:

A.9 FUNCTION FUNCTIONS

There are many situations where a function has to be imported into
another function. For example, MATLAB has a built-in function called

fzero that finds the zero of a math function /(x), i.e., the value of x

where f(x) = 0. The program (code) of the function fzero is written

in such a way that it can find the zero of different functions. When

fzero is used, the specific function to be solved is passed (imported)
into fzero. (The function fzero is described in detail in Chapter 3.)

A function function is a MATLAB function (built-in, or user

defined) that imports another function as an input argument. A function

function includes in its input arguments a name (a dummy function
name) that represents the imported function. The dummy function name
is used in the operations within the program (code) of the function func
tion. When the function function is used (called), the specific function

A.9 Function functions 533

that is imported is listed in its input argument by using a function han
dle.

Function handle

A function handle is a MATLAB value that is associated to a function.

It is a MATLAB data type, and can be passed as an argument into

another function. Once passed, the function handle provides means for

calling (using) the function it is associated with. Function handles can

be used with any kind of MATLAB function. This includes built-in

functions, user-defined functions, and anonymous functions.
• For built-in and user-defined functions, a function handle is created

by typing the symbol @ in front of the function name. For example,

@cos is the function handle of the built-in function cos, and

@loan is the function handle of the user-defined function loan that
was written in Section A. 7.

• The function handle can also be assigned to a variable name. For

example, cosHandle=@cos assigns the handle @cos to

cos Handle. Then, the name cos Handle can be used for passing

the handle.

• For anonymous functions (Section A.8), their name is already a
function handle.

Writing a function function that accepts a function handle as an input

argument

As already mentioned, the input arguments of a function function (a

function that accepts another function) includes a name (dummy func

tion name) that represents the imported function. This dummy function

name (including a list of input arguments enclosed in parentheses) is
used for the operations in the program within the function function.
• The function that is actually being imported must be consistent with

the way that the dummy function is being used in the program. This

means that both must have the same number and type of input and
output arguments.

The following is an example of a user-defined function function,

named funplot, that makes a plot of a function (any function f(x)

that is imported into it) between the points x = a and x = b. The input

arguments are (Fun, a, b) , where Fun is a dummy name that repre

sents the imported function, and a and b are the endpoints of the plot.
The function funplot also has a numerical output xyout, which is a

3 x 2 matrix with the values of x and f(x) at the three points: x = a,

x = (a+ b)/2 and x = b. Note that in the program, the dummy func

tion Fun has one input argument (x) and one output argument y,

which are both vectors.

534 Appendix A Introductory MATLAB

[A name for the function that is imported (dummy function name). J

�
function xyout=funplot(Fun,a,b)

% funplot makes a plot of the function

% when funplot is called in the domain

% Input arguments:

% Fun: Function handle of the function

% a: The first point of the domain.

% b: The last point of the domain.

% Output argument:

Fun which is passed

[a, b] .

to be plotted.

% xyout: The values of x and y at x=a, x=(a+b)/2, and x=b

% listed in a 3 by 2 matrix.

x=linspace(a,b,100);

in

y=Fun (x) ; [Using the imported function to calculatej{x) at 100 points.]
xyout(l,l)=a; xyout(2,l)=(a+b)/2; xyout(3,l)=b;

xyout(l,2)=y(l);

xyout(2,2)=Fun((a+b)/2);

xyout(3,2)=y(l00);

plot(x,y)

Using the imported function to
calculate j{x) at the mi dpoint.

xlabel ('x'), ylabel ('y')

As an example, the function funplot is used for making a plot of the

math function f(x) = e-O.l7xx3 - 2x2 + 0.8x- 3 over the domain [0.5, 4].

This is demonstrated in two ways: first, by writing a user-defined func

tion for f(x), and then by writing f(x) as an anonymous function.

Passing a user-defined function into a function function:

First, a user-defined function named Fdemo is written for f(x). Fdemo

calculates f(x) for a given value of x and is written using element-by

element operations.

function y=Fdemo(x)

y=exp(-0.17*x) .*x.A3-2*x.A2+0.8*x-3;

Next, the function Fdemo is passed into the user-defined function func

tion funplot which is called in the Command Window. Note that a

handle of the user-defined function Fdemo is entered (the handle is

@Fdemo) for the input argument Fun in the user-defined function

funplot.

>> ydemo=funplot(@Fdemo,0.5,4)

ydemo = ��En-t-er _a_h_a _n - dl _e_o _f_th _e_u-se-r�-
0. 5000 -2. 9852 defined function Fdemo.
2.2500

4.0000

-3.5548
0.6235

A.10 Subfunctions 535

When the command is executed the numerical output is displayed in the
Command Window, and the plot shown in the fig. A-3 is displayed in
the Figure Window.

Passing an anonymous function into a function function:

Figure A-3: Plot created by
funplot.

To use an anonymous function, the function

f(x) = e-0.17xx3 - 2x2 + 0.8x- 3 first has to be written as an anonymous

function, and then passed into the user-defined function funplot. The
following shows how both of these steps are done in the Command
Window. Note that the name of the anonymous function FdernoAnony
is entered without the sign @ for the input argument Fun in the user

defined function funplot (since the name is already the handle of the
anonymous function).

>> FdemoAnony=@(x) exp(-0.17*x) .*x.A3-2*x.A2+0.8*x-3

FdemoAnony = � Create an anonymous
@ (x) exp (-0. l 7*x). *x. A3-2*x. A2+0. 8*x-3 function for f(x).

>> ydemo=funplot(FdemoAnony,0.5,4)

ydemo =

0.5000

2.2500

4.0000

-2.9852

-3.5548

0.6235

Enter the name of the anonymous
function (FdemoAnony).

A.10 SUBFUNCTIONS

A function file can contain more than one user-defined function. The

functions are typed one after the other. Each function begins with a
function definition line. The first function is called the primary function

and the rest of the functions are called subfunctions. The subfunctions
can be typed in any order. The name of the function file that is saved
should correspond to the name of the primary function. Each of the
functions in the file can call any of the other functions in the file. Out

side functions, or programs (script files), can only call the primary func
tion. Each of the functions in the file has its own workspace, which
means that in each the variables are local. In other words, the primary

function and the subfunctions cannot access each others variables
(unless variables are declared to be global).

Subfunctions can help writing user-defined functions in an orga
nized manner. The program in the primary function can be divided into

smaller tasks, where each is carried out in a subfunction. This is demon
strated in the following user-defined function named SortAveSD. The

input to the function is a vector with numbers (grades). The function

sorts the vector from the smallest element to the largest, and calculates
the average and the standard deviation of the grades. The function con

tains three subfunctions. The average xave (mean) of a given set of n

numbers X1, Xz, .. ., Xn is given by:

536 Appendix A Introductory MATLAB

Xave = (x, + X2 + ... + xn)/n

The standard deviation is given by:

cr

n-1

The primary function.

function [GrSort GrAve GrSD] = SortAveSD(Grades)

% SortAveSD sorts a vector that contains grades from the small

est to the

% largest, calculates the average grade ans the standard devia

tion.

% Input argument:

% Grades A vector with the grades.

% Output arguments:

% GrSort A vector with the grades sorted from the smallest to

the largest.

% GrAve The average grade.

% GrSD The standard deviation.

n= length(Grades);

GrAve=Ave(Grades,n);

GrSort=LowToHigh(Grades,n);

GrSD=StandDiv(Grades,n,GrAve);

The subfunctions are used
in the primary function.

function av = Ave(x,num)

av=sum(x)/num;

A subfunction that calculates the average (mean)
of the elements of a vector.

function xsorted = LowToHigh(x,num)

for i = l:num-1

for j = i+l:num

end

end

if x(j) < x(i)

temp=x(i);

x(i)= x(j);

x(j)= temp;

end

xsorted = x;

function Sdiv = StandDiv(x,num,ave)

xdif2 = (x-ave) .A2;

Sdiv = sqrt(sum(xdif2)/(num-1));

A subfunction that sorts the elements
of a vector from the smallest to the
largest.

A subfunction that calculates the
standard deviation of the elements of
a vector.

Next, The user-defind function SortAveSD 1s used (called) in the

A.11 Programming in MATLAB 537

Command Window:

>> ClassGrades = [80 75 91 60 79 89 65 80 95 50 81];
[Define a vector with a list of grades.]

>> [GAS] = SortAveSD(ClassGrades)

G =

A=

s =

50 60 65 75 79 80

76.8182

80 81 89 91 95
[The grades are sorted. J

[The average grade.)

13.6661 [The standard deviation. J

A.11 PROGRAMMING IN MATLAB

A computer program is a sequence of computer commands. In a simple

program the commands are executed one after the other in the order that

they are typed. Many situations, however, require more sophisticated

programs in which different commands (or groups of commands) are

executed when the program is executed with different input variables.

In other situations there might be a need to repeat a sequence of com

mands several times within a program. For example, programs that

solve equations numerically repeat a sequence of calculations until the

error in the answer is smaller than some measure.

MATLAB provides several tools that can be used to control the

flow of a program. Conditional statements make it possible to skip com

mands or to execute specific groups of commands in different situa

tions. For loops and while loops make it possible to repeat a

sequence of commands several times.

Changing the flow of a program requires some kind of decision

making process within the program. The computer must decide whether

to execute the next command or to skip one or more commands and

continue at a different line in the program. The program makes these

decisions by comparing values of variables. This is done by using rela

tional and logical operators.

A. 11. 1 Relational and Logical Operators

Relational and logical operators are used in combination with other

commands in order to make decisions that control the flow of a com

puter program. A relational operator compares two numbers by deter

mining whether a comparison statement (e.g., 5 < 8) is true or false. If

the statement is true, it is assigned a value of 1. If the statement if false,

it is assigned a value of 0. Relational operators in MATLAB are given
in the table that follows.

Relational Operator Description Relational Operator Description

< Less than >= Greater than or equal to

538 Appendix A Introductory MATLAB

Relational Operator Description Relational Operator Description

>

<=

Logical operator

&

Example: A&B

I

Example: AIB

�

Example: � A

>>5 >8

ans=
0

Greater than Equal to

Less than or equal to Not equal to

Note that the "equal to" relational operator consists of two= signs (with

no space between them), since one = sign is the assignment operator. In

all relational operators that consist of two characters there is no space

between the characters(<=,>=,�=). Two examples are:

>> 4 == 6

ans =
0

Name

AND

OR

NO T

>> 3 & 7

ans=
1

A logical operator examines true/false statements and produces a

result that is true (1) or false (0) according to the specific operator. Log

ical operators in MATLAB are:

Description

Operates on two operands (A and B). If both are true, the result is true

(1); otherwise the result is false (0).

Operates on two operands (A and B). If either one, or both are true, the

result is true (1); otherwise (both are false) the result is false (0).

Operates on one operand (A). Gives the opposite of the operand. True (1)

if the operand is false, and false (0) if the operand is true.

Logical operators can have numbers as operands. A nonzero number is

true, and a zero is false. Several examples are:

3 and 7 are both true (nonzero), so the outcome is 1.]

>> a=510

a=
1 is assigned to a since at least one number is true (nonzero).]

1

>>-25

ans=
0

A.11.2 Conditional Statements, if-else Structures

A conditional statement is a command that allows MATLAB to make a

decision of whether to execute a group of commands that follow the

A.11 Programming in MATLAB 539

conditional statement, or to skip these commands. In a conditional

statement, a conditional expression is stated. If the expression is true, a

group of commands that follow the statement is executed. If the expres

sion is false, the computer skips the group.

The if-end structure

The simplest form of a conditional statement is the if-end structure,

which is shown schematically in Fig. A-4. The figure shows how the

commands are typed in the program and presents a flowchart that sym

bolically shows the flow, or the sequence, in which the commands are

executed. As the program executes, it reaches the if statement. If the

conditional expression in the if statement is true (1), the program con

tinues to execute the commands that follow the if statement all the

Flowchart

MATLAB program.

if conditional expression

A group
MATLAB commands.

end

MATLAB program.

Figure A-4: The structure of the if-end conditional statement.

way down to the end statement. If the conditional expression is false

(0), the program skips the group of commands between the if and the

end, and continues with the commands that follow the end statement.

The if-else-end structure

The if-else-end structure provides a means for choosing one

group of commands, out of a possible two groups, for execution (see

Fig. A-5). The first line is an if statement with a conditional expres

sion. If the conditional expression is true, the program executes the

group 1 commands between the if and the e 1 s e statements, and then

skips to the end. If the conditional expression is false, the program

skips to the e 1 s e statement and executes the group 2 commands

between the else and the end statements.

The if-elseif-else-end structure

The if-elseif-else-end structure is shown in Fig. A-6. This

structure includes two conditional statements (if and e 1 s e if) that

540 Appendix A Introductory MATLAB

Flowchart
MATLAB program.

False

Commands
Group 2

if conditional expression

Group 1
MATLAB commands.

else

Group 2
MATLAB commands.

end

MATLAB program.

Figure A-5: The structure of the if-else-end conditional statement.

False

Commands
Group 3

make it possible to select one out of three groups of commands for exe

cution. The first line is an if statement with a conditional expression.

If the conditional expression is true, the program executes the group 1
commands between the if and the else if statements and then skips

to the end. If the conditional expression in the if statement is false,

the program skips to the else if statement. If the conditional expres

sion in the else if statement is true, the program executes the group 2
commands between the else if and the else statements and then

skips to the end. If the conditional expression in the elseif state

ment is false, the program skips to the else statement and executes the

group 3 commands between the else and the end statements.

Flowchart
MATLAB program.

if conditional expression

J
Group 1

MATLAB commands.

e 1 s e if conditional expression

J
Group 2

MATLAB commands.

else

J
Group 3

MATLAB commands.

end

MATLAB program.

FigureA-6: The structure of the if-elseif-else-end conditional statement.

A.11 Programming in MATLAB 541

Several else if statements and associated groups of commands

can be added. In this way more conditions can be included. Also, the

else statement is optional. This means that in the case of several

else if statements and no else statement, if any of the conditional

statements is true, the associated commands are executed, but otherwise

nothing is executed.

In general, the same task can be accomplished by using several

elseif statements or if-else-end structures. A better program

ming practice is to use the latter method, which makes the program eas

ier to understand, modify, and debug.

A.11.3 Loops

A loop is another means to alter the flow of a computer program. In a

loop, the execution of a command, or a group of commands, is repeated

several times consecutively. Each round of execution is called a pass. In

each pass at least one variable (but usually more than one) that is

defined within the loop is assigned a new value.

for-end loops

In for-end loops, the execution of a command or a group of com

mands is repeated a predetermined number of times. The form of the

loop is shown in Fig. A-7. In the first pass k = f, and the computer exe-

Loop index The value of k in The increment in k
after each pass. �v_a_ri _ab_le_. �

�fir st pass.

for k = f: s: t ---------< The value of kin
the last pass.

end

Figure A-7: The structure of a for-end loop.

cutes the commands between the for and the end commands. Then,

the program goes back to the for command for the second pass. k
obtains a new value equal to k = f + s, and the commands between the

for and the end commands are executed with the new value of k. The

process repeats itself until the last pass where k = t. Then the program

does not go back to the for, but continues with the commands that fol

low the end command. For example, if k = 1 :2:9, then there are five

loops, and the value of k in the passes is 1, 3, 5, 7, and 9. If the incre
ment value s is omitted, its value is 1 (default) (i.e., k = 3:7 produces

five passes with k = 3, 4, 5, 6, 7).

A program that illustrates the use of conditional statements and

loops is shown next (script file). The program changes the elements of a

542 Appendix A Introductory MATLAB

given vector such that elements that are positive and are divisible by 3

and/or by 5 are doubled. Elements that are negative but greater than -5

are raised to the power of 3, and all the other elements are unchanged.

V = [5, 17, -3, 8, 0, -7, 12, 15, 20 -6, 6, 4, -2, 16];

n = length (V) ;

for k = 1: n [In the kth pass of the loop the kth element is checked and changed, if needed.

end

v

V =

if V(k) >0 & (rem(V(k) , 3) = = O I rem(V(k) , 5) = = 0)

V(k) = 2*V(k) ;

elseif V(k) < 0 & V(k) >-5

V(k) = V(k) "3;

end

When the program is executed, the following new vector V is displayed

in the Command Window:

10 17 -27 8 0 -7 24 30 40 -6 12 4 -8 16

A.12 PROBLEMS
A.1 Define the variables x and z as x = 5.3, and z = 7.8, then evaluate:

(a) � + 14x2-0 8z2 2 •

(xlz)
(x) 2 (2) 112 (b) x2z-z2x+ � - �

A.2 Define two variables: alpha= 35°, beta= 23°. Using these variables, show that the following trigo

nometric identity is correct by calculating the value of the left and right sides of the equation:

cosacosp = �[cos(a-p)+cos(a+p)]
A.3 Two trigonometric identities are given by:

(a) tan4x = 4tanx-4tan3x (b) tan� = 1 -cosx
1 -6tan2x + tan4 x 2 sinx

For each part, verify that the identity is correct by calculating the values of the left and right sides of

the equation, substituting x = 17 °.

A.4 Create a row vector with 15 equally spaced elements in which the first element is 9 and the last ele

ment is 44.

A.5 Create a column vector in which the first element is 14, the elements decrease with increments of-3,

and the last element is -10. (A column vector can be created by the transpose of a row vector.)

A.12 Problems

A.6 Given: J sin2 xdx = lx _ l sin2x . Use MATLAB to calculate the following definite integral: 2 4
3it

J!! 4 sin2xdx
3

543

A. 7 Create the matrix shown by using the vector notation for creating vectors with constant spacing
when entering the rows (i.e., do not type individual elements).

A=
2.5000

42.0000
15.0000

3.0000

3.5000
38.6000
14.6000

2.0000

4.5000
35.2000
14.2000

1.0000

5.5000
31.8000
13.8000

0

6.5000
28.4000
13.4000
-1.0000

7.5000
25.0000
13.0000
-2.0000

A.8 Create the matrix A in Problem A.7, and then use colons to address a range of elements to create the
following vectors:
(a) Create a four-element row vector named va that contains the third through sixth elements of the sec

ond row of A.
(b) Create a three-element column vector named vb that contains the second through fourth elements of

the fifth column of A.

A.9 Create the matrix A in Problem A. 7, and then use colons to address a range of elements to create the
following matrices:

(a) Create a 3 x 4 matrix B from the first, second, and fourth rows, and the first, second, fourth, and sixth
columns of the matrix A.

(b) Create a 2 x 3 matrix C from the second and fourth rows, and the second, fifth, and sixth columns of
the matrix A.

A.10 For the function y =

(2x2 - 16x + 4)2 , calculate the value of y for the following values of x: -1.2, x+ 15
-0.4, 0.4, 1.2, 2, 2.8, 3.6. Solve the problem by first creating a vector x, and then creating a vector y, using
element-by-element calculations. Make a plot of the points using asterisk markers for the points and a
black line connecting the points. Label the axes.

A.11 Define a and b as scalars a = 3 and b = -4, and x as the vector x = -3, -2.8, -2.6, ... , 1.6, 1.8, 2.
a2/b3 Then use these variables to calculate y by: y = 8 . Plot y versus x.

x2 + b2/a3

A.12 For the function y = 61(113) _

(t + 3)2 + 2, calculate the value of y for the following values oft: 2(!+4)
0, 2, 4, 6, 8, 10, 12, 14, 16, using element-by-element operations.

A.13 Use MATLAB to show that the sum of the infinite series
n
t (-1)n

(2n
1
+ 1)

converges to n/ 4 . Do

it by computing the sum for:

544 Appendix A Introductory MATLAB

(a) n = 100
(b) n = 1,000
(c) n = 5,000

In each part create a vector n in which the first element is 0, the increment is 1, and the last term is
either 100, 1,000, or 5,000. Then, use element-by-element calculation to create a vector in which the ele-

ments are (-1)n 1 . Finally, use the function sum to add the terms of the series. Compare the values
(2n + 1)

7t
obtained in parts a, b, and c with the value of 4 . (Do not forget to type semicolons at the end of commands

that otherwise will display large vectors.)

A.14 A cantilever beam is loaded by a force P = 850 N and

a moment M = 3600N-m as shown. The deflection y at a
point x along the beam is given by the equation:

y = - -(x3 -3Lx2) + -x2 1 [p M J EI 6 2

where E is the elastic modulus, I is the moment of inertia,
and L is the length of the beam. For the beam shown in the

I L .1
figure L = 6 m, E = 70 x 109Pa (aluminum), and I = 9.19 x 1 0-6 m4.

Plot the deflection of the beam y as a function of x.

A.15 The Gateway Arch in St. Louis is shaped according to the equation:

y = 693.8 - 68.8 cosh(__..!__) ft.
99.7

Make a plot of the Arch for -299.25:::; x:::; 299.25 ft.

y

x
-299.25 299.25

A.16 Plot the function f(x) =
o
�
5x3-x2

for -15::;x ::; 15. Notice that the function has two vertical
x - x- 20

asymptotes. Plot the function by dividing the domain of x into three parts: one from -15 to near the left
asymptote, one between the two asymptotes, and one from near the right asymptote to 15. Set the range of
the y-axis from-20 to 20.

A.17 Write an anonymous MATLAB function for the following math function:

y(x) = xe-0.7xJ2x2 + 1
The input to the function is x and the output is y. Write the function such that x can be a vector.
(a) Use the function to calculate y(3), andy(8).

(b) Use the function to make a plot of the function y(x) for 0:::; x:::; 10.

A.18 The fuel efficiency of automobiles is measured in mi/Gal (miles per gallon) or in km/L (kilometers

per liter). Write a MATLAB user-defined function that converts fuel efficiency values from mi/Gal (U.S.
Gallons) to km/L. For the function name and arguments use kmL=mgTOkm (mpg). The input argument

A.12 Problems 545

mpg is the efficiency in mi/Gal, and the output argument kmL is the efficiency in km/L . Use the function in
the Command Window to:
(a) Determine the fuel efficiency in km/L of a car that consumes 23 mi/Gal.

(b) Determine the fuel efficiency in km/L of a car that consumes 50 mi/Gal.

A.19 Write a user-defined MATLAB function that determines the cross-sec
tional area, A, the location of the centroid (the distance ye), and moments of

inertia I xx and I
YY

of an "T" beam. For the function name and arguments use

[A, yC, Ixx, Iyy] = Mofiner (b, h, tf, tw). The input arguments are

the width, b, height, h, flange thickness, t 1, and web thickness, tw, of the

beam, in millimeters, as shown in the figure. The output arguments are the

cross-sectional area (in mm2), the location of the centroid (in mm), and the

moments of inertia (in mm4). Use the function in the Command Window to
determine the cross-sectional area, centroid location, and moments of inertia

and of a beam with b = 300 mm, h = 400 mm, t 1 = 20 mm, and tw = 12 mm.

A.20 Write a user-defined MATLAB function that cal-
culates the equivalent resistance, Req of n resistors

R1, R2, .. ., Rn connected in parallel. For function name

and arguments use Req = EqResistance (R). The

input argument is a vector whose elements are the values
of the resistors. The output argument is the value of the
equivalent resistance. The function should work for any

number of resistors. Use the function in the Command

R

y b
--r--r--_-----. l t1

--.-----+++--x T

Window to determine the equivalent resistance of the following five resistors that are connected in parallel

R1 = 200Q' R1 = 600Q ' R3 = IOOOQ ' R4 = IOOQ ' and Rs = soon.

A.21 A vector is given by x = [15 85 72 59 100 80 44 60 91 38]. Using conditional statements and
loops write a program that determines the average of the elements of the vector that are larger than 59.

A.22 Write a user-defined function that creates a vector whose elements are the prime numbers between
two numbers. For the function name and arguments use pr= Primary (a, b). The input to the function

are two numbers (integers) a and b (such that a< b), and the output pr is a vector in which the elements

are the prime numbers between a and b.

A.23 Write a user-defmed function that sorts the elements of a vector (of any
length) from the largest to the smallest. For the function name and arguments use
y =down sort (x). The input to the function is a vector x of any length, and the

output y is a vector in which the elements of x are arranged in descending order.

Do not use the MATLAB sort function. Test your function by using it in the
Command Window to rearrange the elements of the following vector: [-2, 8, 29, 0,
3,-17,-1,54, 15,-10,32].

546 Appendix A Introductory MATLAB

A.24 A cylindrical, vertical fuel tank has hemispheric end cap at the bottom and a conic end cap at the top

as shown. The radius of the cylinder and the hemispheric end cap is r = 60 cm.

Write a user-defined function (for the function name and arguments use V = Vfuel (h)) that gives the

volume of the fuel in the tank as a function of the height h. Use the function to make a plot of the volume as a

function of h for 0:::;; h:::;; 2.8 m.

A.25 Write a user-defined MATLAB function that calculates the determinant of a 3 x 3 matrix by using

the formula:

i A22 A23
A A21 A23 +A A21 A22

et = A11 - 12 13
A32 A33 A31 A33 A31 A32

For the function name and arguments use d3 = det3by3 (A), where the input argument A is the matrix
and the output argument d3 is the value of the determinant. Write the code of det3by3 such that it has a

subfunction that calculates the 2 x 2 determinant. Use det3by3 for calculating the determinants of:

(a) [� � !l (b) [-�.5
:3 -�.61 .

7 8 �J 4 2 -lJ
A.26 Write a user-defined function that determines the polar coordinates of a point

from the Cartesian coordinates in a two-dimensional plane. For the function name and

arguments use [radius theta] =CartToPolar (x, y). The input arguments are

the x and y coordinates of the point, and the output arguments are the radial distance to

the point and angle 8. The angle 8 is in degrees and is measured relative to the positive

x axis, such that it is a number between 0 and 90 in quadrant I, between 90 and 180 in

quadrant II, between 180 and 270 in quadrant III, and between 270 and 360 in quadrant

(II)

(III)

y
(x,y)

(IV)

IV Use the function to determine the polar coordinates of points (-15, -3), (7, 12), (17, -9), and (-10, 6.5).

A.27 Write a user-defined function that adds two vectors that are written in polar coordinates. For the function

name and arguments use [vapb] =VecAddPolar (va, vb). The input arguments va and vb are the vectors

to be added. The output argument v a pb is the results. Each is a two-element MATLAB vector where the first

element is the angle (between 0 and 360 in degrees) and the second element is the magnitude of the radius. To

add the vectors the program first converts each of the vectors to Cartesian coordinates, then adds the vectors, and

finally converts the result to polar coordinates and assigns it to the output argument vapb. The code is written

such that it includes subfunctions for the conversion of the input vectors to Cartesian coordinates, and for the

conversion of the result to polar coordinates (the user-defined function Cart ToPolar from Problem A.26 can

be used for the latter task). Use the function in the Command Window to:

(a) Add the vectors a = [32°, 50] and b = [60°, 70].

(b) Add the vectors c = [167°, 58] and d = [250°, 90].
(c) Add the vectors e = [25°, 43] and g = [290°, 115].

AppendixB

MATLAB Programs

The following table is a summary of the major MATLAB programs (script files and user-defined func
tions) that are listed in the book.

Program Program Name
Number or Title File Type Description Page

3-1 Bisection method. Script file Solves a nonlinear equation using the 62

bisection method.

3-2 NewtonRoot User-defined Finds the root of a nonlinear equation 68

function using Newton's method.

3-3 SecantRoot User-defined Finds the root of a nonlinear equation 73

function using the secant method.

4-1 Gauss User-defined Solves a system of linear equations using 109

function the Gauss elimination method.

4-2 GaussPivot User-defined Solves a system of linear equations using 113

function Gauss elimination method with pivoting.

4-3 LUdecompCrout User-defined Decomposes a matrix into lower triangular 126

function and upper triangular matrices using Crout's
method.

4-4 ForwardSub User-defined Applies forward substitution. 126

function

4-5 BackwardSub User-defined Applies backward substitution. 127

function

4-6 Crout's LU decomposi- Script file Solves a system of linear equations using 127

ti on. Crout's LU decomposition method.

4-7 InverseLU User-defined Calculates the inverse of a matrix using 130

function Crout's LU decomposition method.

547

548 Appendix B MATLAB Programs

Program Program Name
Number or Title File Type Description Page

4-8 Gauss Seidel iteration. Script file Solves a system of four linear equations 135
using the Gauss-Seidel iteration method.

4-9 Tridiagonal User-defined Solves a tridiagonal system of linear equa- 144
function tions using the Thomas algorithm.

5- 1 QRFactorization User-defined Factors a matrix into an orthogonal matrix 183
function and an upper-triangular matrix.

6- 1 LinearRegression User-defined Curve fitting with linear function using the 199
function least squares method.

6-2 Curve fitting with non- Script file Curve fitting with nonlinear functions 205
linear functions. using the least squares method.

6-3 Curve fitting using. Script file Curve fitting of a fourth-order polynomial. 209
polynomial regression.

6-4 Lagrange INT User-defined Interpolation using Lagrange polynomial. 2 15
function

6-5 Newtons INT User-defined Interpolation using Newton's polynomial. 222
function

6-6 Linear Spline User-defined Interpolation using linear splines. 225
function

7- 1 DFT User-defined Real discrete Fourier Transform. 265
function

7-2 Discrete Fourier Trans- Script file Discrete Fourier Transform of a sine wave. 266
form.

7-3 DFTCmplx User-defined Complex Discrete Fourier Transform 270
function

7-4 Applying MATLAB 's Script file Applying MATLAB's fft to a sine wave. 280
fft.

8- 1 derivative User-defined Calculates the derivative of a function that 308
function is given by a set of points.

Appendix B MATLAB Programs 549

Program Program Name
Number or Title File Type Description Page

9-1 trapezoidal User-defined Numerical integration using the composite 349

function trapezoidal method.

9-2 Romberg User-defined Numerical integration using the Romberg 371
function integration method.

10-1 odeEuler User-defined Solves a first-order ODE using Euler's 393
function explicit method.

10-2 Solving a first-order Script file Solves a first-order initial value problem 400
ODE using Euler's implicit method.

10-3 odeModEuler User-defined Solving first-order ODE using the modi- 403
function fled Euler method.

10-4 odeRK4 User-defined Solves a first-order ODE using the fourth- 416
function order Runge-Kutta method.

10-5 Sys20DEsRK2 User-defined Solves a system of two first-order OD Es 429

function using the second-order Runge-Kutta

method.

10-6 Sys20DEsRK4 User-defined Solves a system of two first-order OD Es 434
function using the fourth-order Runge-Kutta

method.

11-1 Solving a second-order Script file Solving second-order ODE (BVP) using 478
ODE(BVP) the shooting method.

11-2 Solving a second-order Script file Solving second-order ODE (BVP) using 480
ODE(BVP) the shooting method in conjunction with

the bisection method.

11-3 Solving a linear second- Script file Solving a linear second-order ODE using 484
order ODE (BVP) the finite difference method.

11-4 Solving a nonlinear sec- Script file Solving a nonlinear second-order ODE 488
ond-order ODE (BVP) using the finite difference method.

11-5 Solving a linear second- Script file Solving a linear second-order ODE with 491
order ODE (BVP with mixed boundary conditions using the finite

mixed boundary condi- difference method.

tions)

AppendixC

Derivation of the Real Discrete

Fourier Transform (DFT)
The discrete Fourier series that approximates the value of a function with a finite number of sine and

cosine terms is introduced in Eq. (7.44). The formulas for the coefficients are given in Eqs. (7.45). This

Appendix presents the mathematical details of the derivation of the formulas for the coefficients. In Sec

tion C.1 the property of orthogonality of sines and cosines over a set of equally spaced discrete points is

derived 1, and in Section C.2 it is used for deriving the coefficients that are the real DFT.

C.1 ORTHOGONALITY OF SINES AND COSINES FOR DISCRETE POINTS

The property of orthogonality for equally spaced discrete points over the interval t E [0, (2�� 1)t] is

given by:

2N
· (2rtk) · (2rtm) L sm -.- tjpm -.- tj)

j= I

k-:Fm
k = m, and k, m "# 0, N

k = m = 0, k = m = N

k-Fm

(C.1)

k = m, and k, m * 0, N(C.2)

k = m = 0, k = m = N

2N 2N

(C.3)

To prove Eqs. (C.1)-(C.3) consider the infinite series Le2itint/r Leitin(j-l)IN where n is an
j= I j= I

integer. If z =
eiti nl N , then this series can be recognized as the standard geometric series:

2N 2N
L eitin(j-1)/N

= 1 + eiti n/N + e2iti n/N + e3iti n/N + ... + eitin(2N-l)IN
= L zj-1 (C.4)

j=l j=l
The series in Eq. (C.4) can be written out as: 1 + z + z2 + ... + z2N -1• Multiplying this finite series by (1 - z)
(where z * 1) yields:

1. R.F. Hamming, "Numerical Methods for Scientist and Engineers", McGraw-Hill, 1962.

551

552 Appendix C Derivation of the Real Discrete Fourier Transform (DFT)

(l+z+z2+ ... +z2N-1)(1-z) = l+z+z2+ ... +z2N-1-z-z2-... -z2N-1-z2N = 1-z2N (C.5)

Thus,
2N l -z2N '°' zi-1 = -- for z =F 1
L. 1-z

j= I
Therefore, the geometric series in Eq. (C.4) converges to:

� zi -I =
{ 1; �:N

for

i =I 2N for

z ::/= 1

z = 1

1 z2N 1 _ e2 rtin
Substituting e"i n!N yields for z =F 1, -

-
-- = = 0 since by Euler's formula e2"in = 1 for any
1-z 1-e"i n/N

integer n. Thus,

2N { 0 L e"in (j-1)/N

J= 1

=

2N

for

for

n =1= 0, ±2N, ±4N, .. .
n = 0, ±2N, ±4N, .. .

(C.6)

since, again, by Euler's formula z = 1 when n = 0, ±2N, ±4N, Next, the product of the two functions
e2"ik 1/� and e-21timtj h summed over the set of points t1, where k and mare integers, yields:

2N 2N

L e"ik(j-1)/N e-rtim(j-1)/N = L e"i(k-m)(j-1)/N

j= I j= I

� e"ik(j-1)/N e-rtim(j-1)/N = � e"i(k-m)(j-1)/N = { 0

j= 1 i = 1 2N

Again, using Euler's formula,

�1 e•l(k-•)U-l)!N � { cos[*-';,l(j-1 l] + ;sm[•(k-';,l(j- !)] }

(C.7)

= { O for lk-ml: 0, 2N, 4N, ...
(C.9)

2N for lk-ml - 0, 2N, 4N, .. .

Equating real and imaginary parts in Eq. (C.9) yields:

and

� cos[n(k-�(j-1)] =
{O

J=l 2N

for lk-ml =F 0, 2N, 4N, .. .
for lk-ml = 0, 2N, 4N, .. .

�sin[n(k-�(j-l)J = 0 for any values ofkandm
j= I

(C.10)

(C.11)

Equations (C.10) and (C.11) and the trigonometric identities cosAcosB = [cos(A + B) + cos(A-B)]/2,

sinAsinB = [cos(A-B)- cos(A+B)]/2,and sinAcosB = [sin(A+B)+sin(A-B)]/2 areused nextfor
proving the orthogonality conditions given by Eqs. (C.1)-(C.3).

Consider first the property of orthogonality in Eq. (C.1). Using the trigonometric identity for sinA sinB
the middle term in Eq. (C.1) can be expressed as:

C.2 Determination of the Real DFT 553

� sin(• k(�- !)) sin(•m(k- l)) = � 1� { cos[<(k-".!J(i-l)J-cos[<(k+ ';_)<i- i)J} (C.12)

Note from Eq. (C. l 0) that if lk-ml ;e 0, 2N, 4N, . . . and lk +ml ;e 0, 2N, 4N, . . . , the right-hand-side of Eq.

(C.12) is equal to 0. This is the same as stating that when k ;em the right-hand-side ofEq. (C.12) is equal to

0. Likewise, when k = m = 0 and when k = m = N the right-hand-side of Eq. (C.12) is equal to 0.

Finally, if k = m, but neither k nor m equal 0 or N, the right-hand-side of Eq. (C.12) reduces to

(2N)/2 = N. Thus, {o
2N • 2rtk . 2rtm 2N . rtk · - 1 . rtm · - 1

1� sm(�tJ sm(-'t-t1) =
1� sm((1)) sm((k)) = �

k ;em

k = m, and k, m ;e 0, N
k = m = 0, k = m = N

Consider next the property of orthogonality in Eq. (C.2). Using the trigonometric identity for cosAcosB
the middle term in Eq. (C.2) can be expressed as:

� cos(•k(r 1 >)cos(•m(k- 1 >) = � 1� { cos[«k+ ';_)<J-1 lJ + cos[« k--::JU - 1 >J} (C.13)

Using Eq. (C.10), if lk-ml *- 0, 2N, 4N, . .. and lk +ml*- 0, 2N, 4N, . .. , the right-hand-side ofEq. (C.13) is

equal to 0. If k = m = 0 and when k = m = N then the right-hand-side of Eq. (C.13) reduces to 2N .
Finally, if k = m, but neither knor m equal 0 or N, the right-hand-side ofEq. (C.13) reduces to N . Thus, { 0 k-F-m � cos(2:k1Jcos(2:m1,) = � cos(•k(�- l))cos(•m(t l)) = ;,. k

k

=

=: :":.
k

k,

=

m=�:
The property of orthogonality in Eq. (C.3) is proved next. Using the trigonometric identity for sinAcosB
the middle term in Eq. (C.3) can be expressed as:

� s;n(• k(�- 1 >)cos(•m(k- 1 >) = � �;{ s;n [<Ck+ ';_)U- I lJ + s;n[<(k--;J(j- l >J} (C.14)

Using Eq. (C.11), both terms on the right-hand-side ofEq. (C.14) are equal to 0 regardless of the values of

k and m. Therefore:

C.2 DETERMINATION OF THE REAL OFT

As stated in Section 7.5, a discrete Fourier series that approximates the value of the function f(t1) consists

of a finite number of sine and cosine terms in the form:

f(t1) = �[Aksin(2n'tkti) + Bkcos(2n'tkti)J

The coefficients Ak and Bk are determined by applying orthogonality.

(C.15)

554 Appendix C Derivation of the Real Discrete Fourier Transform (DFT)

Determination of the coefficients Ak

The determination starts by multiplying both sides ofEq. (C.15) by sin(27t;t i) and summing from j = 1

to j = 2N:

� f(tJ)sin(21t:t i) = �tJ Aksin(21t:t i) sin(27t:t i) + Bkcos(21t:t i) sin(27t:t i) J (C.16)

Since the summations are interchangeable,

� f (t;) sm(2n:I ') = ,t, {Z. [A,sin(2n:t t) sin(2n:I 0 J } + ,t, { z. [n,cos(2n:I i) sm(2n:I i) J } (C.17)

From the orthogonality conditions Eqs. (C.1) and (C.3), the second term on the right-hand-side of Eq.

(C.17) is equal to 0, and:

L
2N f() . (27tmt,) L

N { L2N [. (27tkt,) . (27tmt,)J } { O

tJ sm ______,, = Aksm -"' sm -"' = N Am
� � � J=l k=O J=l 0

k=Fm
k = m =FO, N
k = m = O,N

(C.18)

1 2N . (21tkt) from which can be seen that A0 = 0 , AN = 0, and Ak = - L f(tJ)sm � for k = 1, 2,. . ., N -1 .
NJ= l �

Determination of the coefficients Bk

The determination starts by multiplying both sides ofEq. (C.15) by cos(27t;t i) and summing from j = 1

to j = 2N:

J� f(tJ)cos(21t:t i) = J�
k� [Aksin(21t:t i) cos(27t:! i) + Bkcos(21t:t i) cos(27t:t i) J (C.19)

Since the summations are interchangeable,

� f(t ;)cos(2n:t t) = kc� [A, sin(2�1) cos(2n:I t) J } + ,t, c� [B ,cos(2�1 i) cos(2n;I i) J }(C20)

From the orthogonality conditions Eqs. (C.2) and (C.3), the first term on the right-hand-side of Eq. (C.20)
is equal to zero, and:

2N (21tmt) Lf(t)cos :..:..:..:..:..
J=l �

k=Fm
k = m=F-0,N
k = m = O,N

(C.21)

1 2N 1 2N
(21t

kt) from which can be seen that B0 = -I f(tJ), Bk = - L f(t)cos --1 for k = 1, 2, ... , N -1, and
2NJ= 1 NJ= 1 �

1 2N (21tNt) B
N = -If(t)cos :.:..:..:.;__:_ .

2NJ= 1 �

Index

A

abs, 281, 512

Adams-Bashforth method, 418

Adams-Moulton method, 419

Algorithm, 16

Aliasing, 272

Anonymous function, 530

Antiderivative, 26

Array (in MATLAB), 514

Average value of a function, 28

B

Back substitution, 101

Backward difference formula, 306

Backward Euler method, 399

Bandwidth (Fourier transform), 286

Basic fitting interface, 23 8

Basic power method, 167

bcfun, 493

Binary number, 5

Bisection method, 61

Bit, 7

Boundary condition

Dirichlet, 4 72

mixed, 472

Neumann, 472

Bracketing methods, 59

bvp4c, 493

bvpini t, 494

Byte, 7

c

Canonical form oflinear ODE, 41

ceil, 513

Central difference formula, 306

Chain rule, 45

Characteristic equation, 167

Chopping, 10

clc, 510

Closed interval, 24

Command Window, 510

complex discrete Fourier transform, 268

Composite integration

midpoint method, 346

rectangle method, 344

Simpson's 1/3 method, 351

Simpson's 3/8 method, 354

trapezoidal method, 34 7

cond, 140

Condition number, 151

Conditional statement, 538

conj, 281

Cramer's rule, 38

Cross product, 31

Crout's method, 121

Cubic splines, 229

cubic, 233

Curve fitting

higher order polynomial, 206

least-squares regression, 197

linear combination of nonlinear functions, 238

linear equation, 195

nonlinear equation, 201

overall error, 196

polynomial, 205

quadratic polynomial, 205

Curve fitting, 194

D

dblquad, 363

Decimal number, 4

Definite integral, 27

Dependent variable, 24

Derivative

backward difference, 306, 311, 316

central difference, 306, 312, 315

finite difference approximation, 304, 305

forward difference, 306, 310, 316

Derivative, 25

det, 140, 524

Determinant, 37

DFT complex, 268

DFT, 265

Diagonal matrix, 35

Diagonally dominant, 132

diff, 321

Difference formula

backward, 306

central, 306

forward, 306

Differential equation, 41

Differential equations

Adams-Bashforth method, 418

Adams-Moulton method, 419

analytical solution, 42

background, 41

backward Euler method, 399

boundary value problem, 471

canonial form, 41

Euler's explicit method, 390, 549

Euler's implicit method, 398

555

556

explicit methods, 388

finite difference method, 482

first-order, 3 87

forward Euler's method, 391

Heun's method, 401, 407, 411

homogeneous, 41

implicit methods, 388

initial value problem, 387

midpoint method, 404

modified Euler's method, 401

multistep methods, 417

multi-step, 388

nonhomogeneous,41

nonlinear, 42

Nystrom's method, 411

order, 41

predictor-corrector methods, 420

Runge-Kutta fourth-order, 411

Runge-Kutta methods, 405

Runge-Kutta second-order, 406

Runge-Kutta third-order, 410

second-order IVP, 432

shooting method, 4 7 4

single-step explicit methods, 389

single-step, 388

stability, 452

step size, 448

stiff ODE, 454

system of first-order, 422

Differentiation

partial differentiation, 327

Richardson's extrapolation, 322

using curve fitting, 320

using Lagrange polynomials, 319

Differentiation formulas, 317

Dirichlet boundary condition, 472

Discrete Fourier transform (DFT), 265

Discretization, 483

disp, 525

Display formats (MATLAB), 513

Divided differences table, 220

Divided differences, 218

Domain, 24

Dot product, 31

dot, 521

Double precision, 7

E

eig, 184

Eigenvalue problem, 165

Eigenvalues, 165

Eigenvectors, 165

Element-by-element operations, 521

eps, 9

Epsilon, 9

Error

estimated relative, 60

in solving ODE, 389

numerical differentiation, 325

numerical integration, 364

relative, 60

round-off, 10

solving equation, 59

solving system of equation, 149

total, 14

true relative, 14, 60

true, 14, 60

truncation, 13

Error, 146

Estimated relative error, 60

Euclidean 2-norm, 148

Euler's explicit method, 390

Euler's implicit method, 398

exp, 512

Explicit methods (solving ODE), 388

Exponent, 6

eye, 518

F

False position method, 64

Fast Fourier transform, 289

fft, 279

Filters (Fourier transform), 286

Finite difference approximation, 304, 305

Finite difference method, 473, 482

fix, 513

Fixed-point iteration method, 74, 86

Floating point number representation, 6

floor, 513

for-end, 541

format, 513

Forward difference formula, 306

Forward Euler method, 391

Forward substitution, 101

Fourier methods

aliasing, 272

bandwidth, 286

complex discrete Fourier transform, 268

discrete Fourier series, 264, 553

discrete Fourier transform (DFT), 265

fast fourier transform, 289

filters, 286

Fourier series complex form, 261

Fourier series, 257

inverse discrete Fourier transform, 265

leakage, 284

Nyquist frequency, 274

power (Energy) spectrum, 271

windowing, 284

Fourier Series complex form, 261

Index

Index

Fourier Series discrete, 264, 551, 553

Fourier Series, 257

fprintf, 525

Function

anonymous, 530

function functions, 532

handle, 530, 533

importing, 534

passing, 534

subfunctions, 535

Function file, 528

Fundamental theorem of calculus, 27

fzero, 78

G
Gauss elimination method, 102

Gauss elimination with pivoting, 112

Gauss quadrature, 355

Gauss-Jordan elimination method, 115

Gauss-Seidel iterative method, 133

Gibbs-Wilbraham Phenomenon, 257

Global truncation error, 389, 396

Grid points, 482

H

Handle (function), 530, 533

Heun's method, 401, 407, 411

Householder matrix, 175

I
Identity matrix, 35

IEEE standard, 7

if-else-end, 539, 541

if-elseif-end,539

if-end, 539

if ft shift, 281

Ill-conditioned systems, 151

Implicit methods (solving ODE), 388

Importing a function, 534

Improper integrals, 3 72

Indefinite integral, 26

Independent variable, 24

Infinity norm, 148, 149

Inner product, 50

Integral

definite, 27

indefinite, 26

with singularities, 372

with unbounded limits, 373

Integration

closed methods, 343

Gauss quadrature, 355

midpoint method, 345

multiple integrals, 360

Newton-Cotes formula, 343

open methods, 343

rectangle method, 344

Richardson's extrapolation, 366

Romberg integration, 369

Simpson's 1/3 method, 350

Simpson's 3/8 method, 353

trapezoidal method, 346

Intermediate value theorem, 25

interpl, 236

Interpolation

cubic spline, 237

Lagrange polynomials, 212

linear, 236

nearest, 236

Newton's polynomials, 216

piecewise (spline), 223

single polynomial, 210

Interpolation, 194

Interval

closed, 24

open, 24

inv, 139

Inverse discrete Fourier Transform, 265

Inverse of a matrix, 36, 128, 13 7

Inverse power method, 172

Iteration function, 74

Iterative methods, 132

J
Jacobi iterative method, 133

Jacobian, 46, 85

K

Knots, 223

L

Lagrange polynomials

curve fitting, 212

differentiation formulas, 319

Leakage, 284

Least-squares regression, 197

Left division, 136

length, 518

Linear equations, system of, 38, 76, 99

Linear splines, 223

linear, 236

Linearly dependent, 31

Linearly independent, 31

Local truncation error, 389, 395

log, 512

loglO, 512

Logical operator, 538

Loop, 541

Lower triangular matrix, 35, 101

LU decomposition

Crout' s method, 121

Gauss elimination, 120

557

558

LU decomposition with pivoting, 128

LU decomposition, 119

lu, 138

M

Machine epsilon, 9

Mantissa, 6

Matrix

addition, 33

determinant of, 37

diagonal, 35

identity, 35

inverse, 36, 128

lower triangular, 35

multiplication by scalar, 33

multiplication, 34

size, 32

square, 35

subtraction, 33

symmetric, 36

transpose, 33

upper triangular, 35

zero, 36

Matrix norms, 149

Matrix, 32

Mean value theorem for derivatives, 26

Mean value theorem for integrals, 27

mean, 523

Midpoint method (integration), 345

Midpoint method (solving ODE), 404

Modified Euler's method, 401

Multiple integrals, 360

Multiple solutions, 79

Multistep methods, differential equations, 417

N

nearest, 236

Neumann boundary condition, 472

Newton's method, 66, 82

Newton's polynomials, 216

Newton-Cotes formula, 343

Nonlinear equations, systems, 81

Norm, 40, 148

norm, 140

Number representation

binary, 5

decimal, 4

floating point, 6

Numerical differentiation

error, 325

finite difference formulas, 317

Nyquist frequency, 274

Nystrom's method, 411

0

ODE system, solving with MATLAB, 444

ODE,41

ODE, solving with MATLAB, 437

odell3, 439

odel5s, 439

ode23, 439

ode23s, 439

ode23t, 439

ode23tb, 439

ode45, 439

One-norm, 148

ones, 518

Open interval, 24

Open methods, 59

Orthogonality, 50

Overflow, 8

p

Partial derivative, 44

Partial differentiation, 327

Passing a function, 534

pchip, 233, 237

Piecewise interpolation, 223

Pivot coefficient, 103

Pivot equation, 103

plot, 526

Plotting (with MATLAB), 526

polyder, 322

polyfi t, 236

Polynomial

Lagrange, 212

Newton's, 216

Polynomial regression, 207

Power (Energy) spectrum, 271

Power method

basic, 167

inverse, 172

shifted, 173

Power method, 167

Predictor-corrector methods, 420

Q
QR factorization method, 174, 188

qr, 185

quad, 362

quadl, 363

Quadratic splines, 225

R

Range,24

Rectangle method (integration), 344

Regression

linear equation, 197

polynomial, 207

Regula falsi method, 64

Relational operator, 537

Relative error, 60, 150

Index

Index

Relative residual, 150

Residual, 146

Richardson's extrapolation

differentiation, 322

integration, 366

Riemann sum, 27

Right division, 136

Romberg integration, 369

roots, 79

round, 513

Rounding, 10

Round-off error, 10

Runge-Kutta method

fourth-order, 411

Heun's method, 407

second-order, 406

third-order, 410

Runge-Kutta methods, 405

s

Scalar, 28

Script file, 524

Secant method, 71

Shifted power method, 173

Shooting method, 474

Similar matrices, 174

Simpson's 1/3 method (integration), 350

Simpson's 3/8 method (integration), 353

sin, 512

sind, 512

Single-precision, 7

size, 518

solini t, 494

sort, 523

Spline interpolation
cubic, 229

linear, 223

quadratic, 225

spline, 233, 237

sqrt, 512

Square matrix, 35

Stability, solving ODE, 452

Step size in solving ODE, 448

Step size, 482

Stiff ODE, 454

Strings, 518

Subfunctions, 535

sum, 523

Symmetric matrix, 36

System of first-order ODEs, 422

T

Taylor series

one independent variable, 47

two independent variable, 49

Taylor's series

finite difference formula, 310

Runge-Kutta second-order, 407

Thomas algorithm, 141

title, 527

Tolerance, 60

Total differential, 45

Total error, 14

Transpose, 30, 33

Trapezoidal method (integration), 346

trapz, 363

Triangle inequality, 32, 148

Tridiagonal systems of equations, 141

True error, 14, 60

True relative error, 14, 60

Truncation error
Euler's explicit method, 394

global, 389, 396

local in second-order Runge-Kutta method, 447

local, 389, 395

propagated, 389

Runge-Kutta fourth-order, 413

Runge-Kutta second-order, 407

Runge-Kutta third-order, 411

Truncation error, 13

Two-norm, 149

Two-point BVP, 4 72

u

Underflow, 8

Unit vector, 29

Upper triangular matrix, 35, 100

v

Vector (in MATLAB), 514

Vector norms, 148

Vector, 28

w

Windowing, 284

x

xlabel, 527

y

ylabel, 527

z

Zero matrix, 3 6

zeros, 518

559

	Cover
	Preface
	Contents
	Chapter 1 Introduction
	1.1 Background
	1.2 Representation of Numbers on a Computer
	1.3 Errors in Numerical Solutions
	1.4 Computers and Programming
	1.5 Problems

	Chapter 2 Mathematical Background
	2.1 Background
	2.2 Concepts from Pre-Calculus and Calculus
	2.3 Vectors
	2.4 Matrices and Linear Algebra
	2.5 Ordinary Differential Equations (ODE)
	2.6 Functions of Two or More Independent Variable
	2.7 Taylor Series Expansion of Functions
	2.8 Inner Product and Orthogonality
	2.9 Problems

	Chapter 3 Solving Nonlinear Equations
	3.1 Background
	3.2 Estimation of Errors in Numerical Solutions
	 3.3 Bisection Method
	3.4 Regula Falsi Method
	3.5 Newton's Method
	3.6 Secant Method
	3.7 Fixed-Point Iteration Method
	3.8 Use of MATLAB Built-In Functions for Solving Nonlinear Equations
	3.9 Equations with Multiple Solutions
	3.10 Systems of Nonlinear Equations
	3.11 Problems

	Chapter 4 Solving a System of Linear Equations
	4.1 Background
	4.2 Gauss Elimination Method
	4.3 Gauss Elimination with Pivoting
	4.4 Gauss-Jordan Elimination Method
	4.5 LU Decomposition Method
	4.6 Inverse of a Matrix
	4.7 Iterative Methods
	4.8 Use of MATLAB Built-In Functions for Solving a System of Linear Equations
	4.9 Tridiagonal Systems of Equations
	4.10 Error, Residual, Norms, and Condition Number
	4.11 ILL-Conditioned Systems
	4.12 Problems

	Chapter 5 Eigenvalues and Eigenvectors
	5.1 Background
	5.2 The Characteristic Equation
	5.3 The Basic Power Method
	5.4 The Inverse Power Method
	5.5 The Shifted Power Method
	5.6 The QR Factorization and Iteration Method
	5.7 Use of MATLAB Built-In Functions for Determining Eigenvalues and Eigenvectors
	5.8 Problems

	Chapter 6 Curve Fitting and Interpolation
	6.1 Background
	6.2 Curve Fitting with a Linear Equation
	6.3 Curve Fitting with Nonlinear Equation by Writing the Equation in a Linear Form
	6.4 Curve Fitting with Quadratic and Higher-Order Polynomials
	6.5 Interpolation Using a Single Polynomial
	6.6 Piecewise (Spline) Interpolation
	6.7 Use of MATLAB Built-In Functions for Curve Fitting and Interpolation
	6.8 Curve Fitting with a Linear Combination of Nonlinear Functions
	6.9 Problems

	Chapter 7 Fourier Methods
	7.1 Background
	7.2 Approximating a Square Wave by a Series of Sine Functions
	7.3 General (Infinite) Fourier Series
	7.4 Complex Form of the Fourier Series
	7.5 The Discrete Fourier Series and Discrete Fourier Transform
	7.6 Complex Discrete Fourier Transform
	7.7 Power (Energy) Spectrum
	7.8 Aliasing and Nyquist Frequency
	7.9 Alternative Forms of the Discrete Fourier Transform
	7.10 Use of MATLAB Built-In Functions for Calculating Discrete Fourier Transform
	7 .11 Leakage and Windowing
	7.12 Bandwidth and Filters
	7.13 The Fast Fourier Transform (FF T)
	7.14 Problems

	Chapter 8 Numerical Differentiation
	8.1 Background
	8.2 Finite Difference Approximation of the Derivative
	8.3 Finite Difference Formulas Using Taylor Series Expansion
	8.4 Summary of Finite Difference Formulas for Numerical Differentiation
	8.5 Differentiation Formulas Using Lagrange Polynomials
	8.6 Differentiation Using Curve Fitting
	8.7 Use of MATLAB Built-In Functions for Numerical Differentiation
	8.8 Richardson's Extrapolation
	8.9 Error in Numerical Differentiation
	8.10 Numerical Partial Differentiation
	8.11 Problems

	Chapter 9 Numerical Integration
	9.1 Background
	9.2 Rectangle and Midpoint Methods
	9.3 Trapezoidal Method
	9.4 Simpson's Methods
	9.5 Gauss Quadrature
	9.6 Evaluation of Multiple Integrals
	9.7 Use of MATLAB Built-In Functions for Integration
	9.8 Estimation of Error in Numerical Integration
	9.9 Richardson's Extrapolation
	9 .10 Romberg Integration
	9.11 Improper Integrals
	9.12 Problems

	Chapter 10 Ordinary Differential Equations: Initial-Value Problems
	10.1 Background
	10.2 Euler's Methods
	10.3 Modified Euler's Method
	10.4 Midpoint Method
	10.5 Runge-Kutta Methods
	10.6 Multistep Methods
	10. 7 Predictor-Corrector Methods
	10.8 System of First-Order Ordinary Differential Equations
	10.9 Solving a Higher-Order Initial Value Problem
	10.10 Use of MATLAB Built-In Functions for Solving Initial-Value Problems
	10.11 Local Truncation Error in Second-Order Range-Kutta Method
	10.12 Step Size for Desired Accuracy
	10.13 Stability
	10.14 Stiff Ordinary Differential Equations
	10.15 Problems

	Chapter 11 Ordinary Differential Equations: Boundary-ValueProblems
	11.1Background
	11.2 The Shooting Method
	11.3 Finite Difference Method
	11.4 Use of MATLAB Built-In Functions for Solving Boundary Value Problems
	11.5 Error and Stability in Numerical Solution of Boundary Value Problems
	11.6 Problems

	Appendix A Introductory MATLAB
	A.1 Background
	A.2 Starting with MATLAB
	A.3 Arrays
	A.4 Mathematical Operations with Arrays
	A.5 Script Files
	A.6 Plotting
	A.7 User-Defined Functions and Function Files
	A.8 Anonymous Functions
	A.9 Function functions
	A.10 Subfunctions
	A.11 Programming in MATLAB
	A.12 Problems

	Appendix B. MATLAB Programs
	Appendix C. Derivation of the Real Discrete Fourier Transform(DFT)
	C.1 Orthogonality of Sines and Cosines for Discrete Points
	C.2 Determination of the Real DF T

	Index

