

Reinforcement Learning
Algorithms with Python

Learn, understand, and develop smart algorithms for
addressing AI challenges

Andrea Lonza

BIRMINGHAM - MUMBAI

Reinforcement Learning Algorithms with
Python
Copyright © 2019 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Pravin Dhandre
Acquisition Editor: Winston Christopher
Content Development Editor: Roshan Kumar
Senior Editor: Jack Cummings
Technical Editor: Joseph Sunil
Copy Editor: Safis Editing
Project Coordinator: Kirti Pisat
Proofreader: Safis Editing
Indexer: Rekha Nair
Production Designer: Nilesh Mohite

First published: October 2019

Production reference: 1181019

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78913-111-6

www.packt.com

http://www.packt.com

Thanks to you, Mom and Dad, for giving me that light called life and for always being present
for me. Fede, you're a furious mad. You've always inspired me to do more. Thanks brother.

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well
as industry leading tools to help you plan your personal development and advance your
career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Fully searchable for easy access to vital information

Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://subscribe.packtpub.com/
http://www.packt.com
http://www.packt.com

Contributors

About the author
Andrea Lonza is a deep learning engineer with a great passion for artificial intelligence and
a desire to create machines that act intelligently. He has acquired expert knowledge in
reinforcement learning, natural language processing, and computer vision through
academic and industrial machine learning projects. He has also participated in several
Kaggle competitions, achieving high results. He is always looking for compelling
challenges and loves to prove himself.

About the reviewer
Greg Walters has been involved with computers and computer programming since 1972.
He is extremely well-versed in Visual Basic, Visual Basic .NET, Python and SQL using
MySQL, SQLite, Microsoft SQL Server, Oracle, C++, Delphi, Modula-2, Pascal, C, 80x86
Assembler, COBOL, and Fortran. He is a programming trainer and has trained numerous
people on many pieces of computer software, including MySQL, Open Database
Connectivity, Quattro Pro, Corel Draw!, Paradox, Microsoft Word, Excel, DOS, Windows
3.11, Windows for Workgroups, Windows 95, Windows NT, Windows 2000, Windows XP,
and Linux. He is retired and, in his spare time, is a musician and loves to cook, but he is
also open to working as a freelancer on various projects.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Section 1: Algorithms and Environments
Chapter 1: The Landscape of Reinforcement Learning 8

An introduction to RL 9
Comparing RL and supervised learning 12
History of RL 13
Deep RL 15

Elements of RL 16
Policy 16
The value function 18
Reward 19
Model 20

Applications of RL 20
Games 21
Robotics and Industry 4.0 22
Machine learning 22
Economics and finance 23
Healthcare 23
Intelligent transportation systems 23
Energy optimization and smart grid 23

Summary 24
Questions 24
Further reading 24

Chapter 2: Implementing RL Cycle and OpenAI Gym 25
Setting up the environment 26

Installing OpenAI Gym 27
Installing Roboschool 27

OpenAI Gym and RL cycles 28
Developing an RL cycle 28
Getting used to spaces 32

Development of ML models using TensorFlow 33
Tensor 35

Constant 35
Placeholder 36
Variable 37

Creating a graph 38
Simple linear regression example 39

Table of Contents

[ii]

Introducing TensorBoard 42
Types of RL environments 46

Why different environments? 46
Open source environments 47

Summary 49
Questions 50
Further reading 50

Chapter 3: Solving Problems with Dynamic Programming 51
MDP 52

Policy 53
Return 54
Value functions 55
Bellman equation 56

Categorizing RL algorithms 57
Model-free algorithms 58

Value-based algorithms 59
Policy gradient algorithms 59

Actor-Critic algorithms 60
Hybrid algorithms 60

Model-based RL 60
Algorithm diversity 61

Dynamic programming 61
Policy evaluation and policy improvement 62
Policy iteration 64

Policy iteration applied to FrozenLake 65
Value iteration 68

Value iteration applied to FrozenLake 68
Summary 71
Questions 72
Further reading 72

Section 2: Model-Free RL Algorithms
Chapter 4: Q-Learning and SARSA Applications 74

Learning without a model 75
User experience 76
Policy evaluation 77
The exploration problem 77

Why explore? 78
How to explore 78

TD learning 79
TD update 80
Policy improvement 81
Comparing Monte Carlo and TD 81

SARSA 81

Table of Contents

[iii]

The algorithm 82
Applying SARSA to Taxi-v2 83
Q-learning 90

Theory 90
The algorithm 91

Applying Q-learning to Taxi-v2 92
Comparing SARSA and Q-learning 95

Summary 96
Questions 97

Chapter 5: Deep Q-Network 98
Deep neural networks and Q-learning 99

Function approximation 99
Q-learning with neural networks 100
Deep Q-learning instabilities 102

DQN 103
The solution 103

Replay memory 104
The target network 104

The DQN algorithm 104
The loss function 105
Pseudocode 106

Model architecture 108
DQN applied to Pong 109

Atari games 109
Preprocessing 110
DQN implementation 113

DNNs 114
The experienced buffer 115
The computational graph and training loop 116

Results 121
DQN variations 124

Double DQN 125
DDQN implementation 126
Results 127

Dueling DQN 128
Dueling DQN implementation 129
Results 129

N-step DQN 130
Implementation 131
Results 131

Summary 132
Questions 133
Further reading 134

Chapter 6: Learning Stochastic and PG Optimization 135
Policy gradient methods 136

Table of Contents

[iv]

The gradient of the policy 137
Policy gradient theorem 138
Computing the gradient 139
The policy 140
On-policy PG 142

Understanding the REINFORCE algorithm 143
Implementing REINFORCE 145
Landing a spacecraft using REINFORCE 148

Analyzing the results 150
REINFORCE with baseline 151

Implementing REINFORCE with baseline 153
Learning the AC algorithm 155

Using a critic to help an actor to learn 155
The n-step AC model 156
The AC implementation 157
Landing a spacecraft using AC 160
Advanced AC, and tips and tricks 162

Summary 162
Questions 163
Further reading 163

Chapter 7: TRPO and PPO Implementation 164
Roboschool 165

Control a continuous system 166
Natural policy gradient 169

Intuition behind NPG 171
A bit of math 172

FIM and KL divergence 173
Natural gradient complications 174

Trust region policy optimization 175
The TRPO algorithm 175
Implementation of the TRPO algorithm 179
Application of TRPO 184

Proximal Policy Optimization 187
A quick overview 187
The PPO algorithm 188
Implementation of PPO 188
PPO application 192

Summary 193
Questions 194
Further reading 194

Chapter 8: DDPG and TD3 Applications 195
Combining policy gradient optimization with Q-learning 196

Deterministic policy gradient 197

Table of Contents

[v]

Deep deterministic policy gradient 200
The DDPG algorithm 201
DDPG implementation 203
Appling DDPG to BipedalWalker-v2 208

Twin delayed deep deterministic policy gradient (TD3) 210
Addressing overestimation bias 210

Implementation of TD3 211
Addressing variance reduction 213

Delayed policy updates 213
Target regularization 213

Applying TD3 to BipedalWalker 215
Summary 218
Questions 219
Further reading 219

Section 3: Beyond Model-Free Algorithms and
Improvements
Chapter 9: Model-Based RL 221

Model-based methods 222
A broad perspective on model-based learning 223

A known model 223
Unknown model 225

Advantages and disadvantages 227
Combining model-based with model-free learning 228

A useful combination 228
Building a model from images 231

ME-TRPO applied to an inverted pendulum 232
Understanding ME-TRPO 232
Implementing ME-TRPO 233
Experimenting with RoboSchool 238

Results on RoboSchoolInvertedPendulum 239
Summary 241
Questions 242
Further reading 242

Chapter 10: Imitation Learning with the DAgger Algorithm 243
Technical requirements 244

Installation of Flappy Bird 244
The imitation approach 245

The driving assistant example 246
Comparing IL and RL 246
The role of the expert in imitation learning 248
The IL structure 248

Comparing active with passive imitation 250
Playing Flappy Bird 250

Table of Contents

[vi]

How to use the environment 251
Understanding the dataset aggregation algorithm 253

The DAgger algorithm 254
Implementation of DAgger 254

Loading the expert inference model 255
Creating the learner's computational graph 256
Creating a DAgger loop 257

Analyzing the results on Flappy Bird 259
IRL 260
Summary 261
Questions 262
Further reading 262

Chapter 11: Understanding Black-Box Optimization Algorithms 263
Beyond RL 264

A brief recap of RL 264
The alternative 265

EAs 265
The core of EAs 266

Genetic algorithms 269
Evolution strategies 270

CMA-ES 270
ES versus RL 271

Scalable evolution strategies 272
The core 272

Parallelizing ES 273
Other tricks 273
Pseudocode 274

Scalable implementation 274
The main function 276
Workers 278

Applying scalable ES to LunarLander 281
Summary 282
Questions 283
Further reading 284

Chapter 12: Developing the ESBAS Algorithm 285
Exploration versus exploitation 286

Multi-armed bandit 287
Approaches to exploration 289

The ∈-greedy strategy 289
The UCB algorithm 290

UCB1 291
Exploration complexity 292

Epochal stochastic bandit algorithm selection 293
Unboxing algorithm selection 293

Table of Contents

[vii]

Under the hood of ESBAS 295
Implementation 296
Solving Acrobot 300

Results 301
Summary 303
Questions 304
Further reading 304

Chapter 13: Practical Implementation for Resolving RL Challenges 305
Best practices of deep RL 306

Choosing the appropriate algorithm 306
From zero to one 308

Challenges in deep RL 311
Stability and reproducibility 311
Efficiency 313
Generalization 313

Advanced techniques 314
Unsupervised RL 314

Intrinsic reward 315
Transfer learning 316

Types of transfer learning 317
1-task learning 318
Multi-task learning 319

RL in the real world 319
Facing real-world challenges 319
Bridging the gap between simulation and the real world 321
Creating your own environment 321

Future of RL and its impact on society 322
Summary 323
Questions 323
Further reading 324

Assessments 325

Other Books You May Enjoy 333

Index 336

Preface
Reinforcement learning (RL) is a popular and promising branch of artificial intelligence
that involves making smarter models and agents that can automatically determine ideal
behavior based on changing requirements. Reinforcement Learning Algorithms with
Python will help you master RL algorithms and understand their implementation as you
build self-learning agents.

Starting with an introduction to the tools, libraries, and setup needed to work in the RL
environment, this book covers the building blocks of RL and delves into value-based
methods such as the application of Q-learning and SARSA algorithms. You'll learn how to
use a combination of Q-learning and neural networks to solve complex problems.
Furthermore, you'll study policy gradient methods, TRPO, and PPO, to improve
performance and stability, before moving on to the DDPG and TD3 deterministic
algorithms. This book also covers how imitation learning techniques work and how Dagger
can teach an agent to fly. You'll discover evolutionary strategies and black-box optimization
techniques. Finally, you'll get to grips with exploration approaches such as UCB and UCB1
and develop a meta-algorithm called ESBAS.

By the end of the book, you'll have worked with key RL algorithms to overcome challenges
in real-world applications, and you'll be part of the RL research community.

Who this book is for
If you are an AI researcher, deep learning user, or anyone who wants to learn RL from
scratch, this book is for you. You'll also find this RL book useful if you want to learn about
the advancements in the field. Working knowledge of Python is necessary.

What this book covers
Chapter 1, The Landscape of Reinforcement Learning, gives you an insight into RL. It describes
the problems that RL is good at solving and the applications where RL algorithms are
already adopted. It also introduces the tools, the libraries, and the setup needed for the
completion of the projects in the following chapters.

Preface

[2]

Chapter 2, Implementing RL Cycle and OpenAI Gym, describes the main cycle of the RL
algorithms, the toolkit used to develop the algorithms, and the different types of
environments. You will be able to develop a random agent using the OpenAI Gym interface
to play CartPole using random actions. You will also learn how to use the OpenAI Gym
interface to run other environments.

Chapter 3, Solving Problems with Dynamic Programming, introduces to you the core ideas,
terminology, and approaches of RL. You will learn about the main blocks of RL and
develop a general idea about how RL algorithms can be created to solve a problem. You
will also learn the differences between model-based and model-free algorithms and the
categorization of reinforcement learning algorithms. Dynamic programming will be used to
solve the game FrozenLake.

Chapter 4, Q-Learning and SARSA Applications, talks about value-based methods, in
particular Q-learning and SARSA, two algorithms that differ from dynamic programming
and scale well on large problems. To become confident with these algorithms, you will
apply them to the FrozenLake game and study the differences from dynamic programming.

Chapter 5, Deep Q-Networks, describes how neural networks and convolutional neural
networks (CNNs) in particular are applied to Q-learning. You'll learn why the combination
of Q-learning and neural networks produces incredible results and how its use can open
the door to a much larger variety of problems. Furthermore, you'll apply the DQN to an
Atari game using the OpenAI Gym interface.

Chapter 6, Learning Stochastic and PG Optimization, introduces a new family of model-free
algorithms: policy gradient methods. You will learn the differences between policy gradient
and value-based methods, and you'll learn about their strengths and weaknesses. Then you
will implement the REINFORCE and Actor-Critic algorithms to solve a new game called
LunarLander.

Chapter 7, TRPO and PPO Implementation, proposes a modification of policy gradient
methods using new mechanisms to control the improvement of the policy. These
mechanisms are used to improve the stability and convergence of the policy gradient
algorithms. In particular you'll learn and implement two main policy gradient methods that
use these techniques, namely TRPO and PPO. You will implement them on RoboSchool, an
environment with a continuous action space.

Chapter 8, DDPG and TD3 Applications, introduces a new category of algorithms called
deterministic policy algorithms that combine both policy gradient and Q-learning. You will
learn about the underlying concepts and implement DDPG and TD3, two deep
deterministic algorithms, on a new environment.

Preface

[3]

Chapter 9, Model-Based RL, illustrates RL algorithms that learn the model of the
environment to plan future actions, or, to learn a policy. You will be taught how they work,
their strengths, and why they are preferred in many situations. To master them, you will
implement a model-based algorithm on Roboschool.

Chapter 10, Imitation Learning with the DAgger Algorithm, explains how imitation learning
works and how it can be applied and adapted to a problem. You will learn about the most
well-known imitation learning algorithm, DAgger. To become confident with it, you will
implement it to speed up the learning process of an agent on FlappyBird.

Chapter 11, Understanding Black-Box Optimization Algorithms, explores evolutionary
algorithms, a class of black-box optimization algorithms that don't rely on backpropagation.
These algorithms are gaining interest because of their fast training and easy parallelization
across hundreds or thousands of cores. This chapter provides a theoretical and practical
background of these algorithms by focusing particularly on the Evolution Strategy
algorithm, a type of evolutionary algorithm.

Chapter 12, Developing ESBAS Algorithm, introduces the important exploration-exploitation
dilemma, which is specific to RL. The dilemma is demonstrated using the multi-armed
bandit problem and is solved using approaches such as UCB and UCB1. Then, you will
learn about the problem of algorithm selection and develop a meta-algorithm called ESBAS.
This algorithm uses UCB1 to select the most appropriate RL algorithm for each situation.

Chapter 13, Practical Implementations to Resolve RL Challenges, takes a look at the major
challenges in this field and explains some practices and methods to overcome them. You
will also learn about some of the challenges of applying RL to real-world problems, future
developments of deep RL, and their social impact in the world.

To get the most out of this book
Working knowledge of Python is necessary. Knowledge of RL and the various tools used
for it will also be beneficial.

Download the example code files
You can download the example code files for this book from your account at
www.packt.com. If you purchased this book elsewhere, you can visit
www.packtpub.com/support and register to have the files emailed directly to you.

http://www.packt.com
https://www.packtpub.com/support

Preface

[4]

You can download the code files by following these steps:

Log in or register at www.packt.com.1.
Select the Support tab.2.
Click on Code Downloads.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/ / github. com/
PacktPublishing/Reinforcement- Learning- Algorithms- with- Python. In case there's an
update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https://github. com/ PacktPublishing/ . Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: http:/ /www. packtpub. com/sites/ default/ files/
downloads/9781789131116_ ColorImages. pdf.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "In this book, we use Python 3.7, but all versions above 3.5 should work. We also
assume that you've already installed numpy and matplotlib."

http://www.packt.com
https://github.com/PacktPublishing/Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf

Preface

[5]

A block of code is set as follows:

import gym

create the environment
env = gym.make("CartPole-v1")
reset the environment before starting
env.reset()

loop 10 times
for i in range(10):
 # take a random action
 env.step(env.action_space.sample())
 # render the game
 env.render()

close the environment
env.close()

Any command-line input or output is written as follows:

$ git clone https://github.com/pybox2d/pybox2d
$ cd pybox2d
$ pip install -e .

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"In reinforcement learning (RL), the algorithm is called the agent, and it learns from the
data provided by an environment."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Preface

[6]

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

https://www.packtpub.com/support/errata
http://authors.packtpub.com/
http://www.packt.com/

1
Section 1: Algorithms and

Environments
This section is an introduction to reinforcement learning. It includes building the theoretical
foundation and setting up the environment that is needed in the upcoming chapters.

This section includes the following chapters:

Chapter 1, The Landscape of Reinforcement Learning
Chapter 2, Implementing RL Cycle and OpenAI Gym
Chapter 3, Solving Problems with Dynamic Programming

1
The Landscape of

Reinforcement Learning
Humans and animals learn through a process of trial and error. This process is based on
our reward mechanisms that provide a response to our behaviors. The goal of this process
is to, through multiple repetitions, incentivize the repetition of actions which trigger
positive responses, and disincentivize the repetition of actions which trigger negative ones.
Through the trial and error mechanism, we learn to interact with the people and world
around us, and pursue complex, meaningful goals, rather than immediate gratification.

Learning through interaction and experience is essential. Imagine having to learn to play
football by only looking at other people playing it. If you took to the field to play a football
match based on this learning experience, you would probably perform incredibly poorly.

This was demonstrated throughout the mid-20th century, notably by Richard Held and
Alan Hein's 1963 study on two kittens, both of whom were raised on a carousel. One kitten
was able to move freely (actively), whilst the other was restrained and moved following the
active kitten (passively). Upon both kittens being introduced to light, only the kitten who
was able to move actively developed a functioning depth perception and motor skills,
whilst the passive kitten did not. This was notably demonstrated by the absence of the
passive kitten's blink-reflex towards incoming objects. What this, rather crude experiment
demonstrated is that regardless of visual deprivation, physical interaction with the
environment is necessary in order for animals to learn.

Inspired by how animals and humans learn, reinforcement learning (RL) is built around
the idea of trial and error from active interactions with the environment. In particular, with
RL, an agent learns incrementally as it interacts with the world. In this way, it's possible to
train a computer to learn and behave in a rudimentary, yet similar way to how humans do.

The Landscape of Reinforcement Learning Chapter 1

[9]

This book is all about reinforcement learning. The intent of the book is to give you the best
possible understanding of this field with a hands-on approach. In the first chapters, you'll
start by learning the most fundamental concepts of reinforcement learning. As you grasp
these concepts, we'll start developing our first reinforcement learning algorithms. Then, as
the book progress, you'll create more powerful and complex algorithms to solve more
interesting and compelling problems. You'll see that reinforcement learning is very broad
and that there exist many algorithms that tackle a variety of problems in different ways.
Nevertheless, we'll do our best to provide you with a simple but complete description of all
the ideas, alongside a clear and practical implementation of the algorithms.

To start with, in this chapter, you'll familiarize yourself with the fundamental concepts of
RL, the distinctions between different approaches, and the key concepts of policy, value
function, reward, and model of the environment. You'll also learn about the history and
applications of RL.

The following topics will be covered in this chapter:

An introduction to RL
Elements of RL
Applications of RL

An introduction to RL
RL is an area of machine learning that deals with sequential decision-making, aimed at
reaching a desired goal. An RL problem is constituted by a decision-maker called
an Agent and the physical or virtual world in which the agent interacts, is known as
the Environment. The agent interacts with the environment in the form of Action which
results in an effect. As a result, the environment will feedback to the agent a new State
and Reward. These two signals are the consequences of the action taken by the agent. In
particular, the reward is a value indicating how good or bad the action was, and the state is
the current representation of the agent and the environment. This cycle is shown in the
following diagram:

The Landscape of Reinforcement Learning Chapter 1

[10]

In this diagram the agent is represented by PacMan that based on the current state of the
environment, choose which action to take. Its behavior will influence the environment, like
its position and that of the enemies, that will be returned by the environment in the form of
a new state and the reward. This cycle is repeated until the game ends.

The ultimate goal of the agent is to maximize the total reward accumulated during
its lifetime. Let's simplify the notation: if is the action at time and is the reward
at time , then the agent will take actions , to maximize the sum of all rewards

.

To maximize the cumulative reward, the agent has to learn the best behavior in every
situation. To do so, the agent has to optimize for a long-term horizon while taking care of
every single action. In environments with many discrete or continuous states and actions,
learning is difficult because the agent should be accountable for each situation. To make the
problem harder, RL can have very sparse and delayed rewards, making the learning
process more arduous.

The Landscape of Reinforcement Learning Chapter 1

[11]

To give an example of an RL problem while explaining the complexity of a sparse reward,
consider the well-known story of two siblings, Hansel and Gretel. Their parents led them
into the forest to abandon them, but Hansel, who knew of their intentions, had taken a slice
of bread with him when they left the house and managed to leave a trail of breadcrumbs
that would lead him and his sister home. In the RL framework, the agents are Hansel and
Gretel, and the environment is the forest. A reward of +1 is obtained for every crumb of
bread reached and a reward of +10 is acquired when they reach home. In this case, the
denser the trail of bread, the easier it will be for the siblings to find their way home. This is
because to go from one piece of bread to another, they have to explore a smaller area.
Unfortunately, sparse rewards are far more common than dense rewards in the real world.

An important characteristic of RL is that it can deal with environments that are dynamic,
uncertain, and non-deterministic. These qualities are essential for the adoption of RL in the
real world. The following points are examples of how real-world problems can be reframed
in RL settings:

Self-driving cars are a popular, yet difficult, concept to approach with RL. This is
because of the many aspects to be taken into consideration while driving on the
road (such as pedestrians, other cars, bikes, and traffic lights) and the highly
uncertain environment. In this case, the self-driving car is the agent that can act
on the steering wheel, accelerator, and brakes. The environment is the world
around it. Obviously, the agent cannot be aware of the whole world around it, as
it can only capture limited information via its sensors (for example, the camera,
radar, and GPS). The goal of the self-driving car is to reach the destination in the
minimum amount of time while following the rules of the road and without
damaging anything. Consequently, the agent can receive a negative reward if a
negative event occurs and a positive reward can be received in proportion to the
driving time when the agent reaches its destination.
In the game of chess, the goal is to checkmate the opponent's piece. In an RL
framework, the player is the agent and the environment is the current state of the
board. The agent is allowed to move the game pieces according to their own way
of moving. As a result of an action, the environment returns a positive or
negative reward corresponding to a win or a loss for the agent. In all other
situations, the reward is 0 and the next state is the state of the board after the
opponent has moved. Unlike the self-driving car example, here, the environment
state equals the agent state. In other words, the agent has a perfect view of the
environment.

The Landscape of Reinforcement Learning Chapter 1

[12]

Comparing RL and supervised learning
RL and supervised learning are similar, yet different, paradigms to learn from data. Many
problems can be tackled with both supervised learning and RL; however, in most cases,
they are suited to solve different tasks.

Supervised learning learns to generalize from a fixed dataset with a limited amount of data
consisting of examples. Each example is composed of the input and the desired output
(or label) that provides immediate learning feedback.

In comparison, RL is more focused on sequential actions that you can take in a particular
situation. In this case, the only supervision provided is the reward signal. There's no
correct action to take in a circumstance, as in the supervised settings.

RL can be viewed as a more general and complete framework for learning. The major
characteristics that are unique to RL are as follows:

The reward could be dense, sparse, or very delayed. In many cases, the reward is
obtained only at the end of the task (for example, in the game of chess).
The problem is sequential and time-dependent; actions will affect the next
actions, which, in turn, influence the possible rewards and states.
An agent has to take actions with a higher potential to achieve a goal
(exploitation), but it should also try different actions to ensure that other parts of
the environment are explored (exploration). This problem is called the
exploration-exploitation dilemma (or exploration-exploitation trade-off) and it
manages the difficult task of balancing between the exploration and exploitation
of the environment. This is also very important because, unlike supervised
learning, RL can influence the environment since it is free to collect new data as
long as it deems it useful.
The environment is stochastic and nondeterministic, and the agent has to take
this into consideration when learning and predicting the next action. In fact, we'll
see that many of the RL components can be designed to either output a single
deterministic value or a range of values along with their probability.

The third type of learning is unsupervised learning, and this is used to identify patterns in
data without giving any supervised information. Data compression, clustering, and
generative models are examples of unsupervised learning. It can also be adopted in RL
settings in order to explore and learn about the environment. The combination of
unsupervised learning and RL is called unsupervised RL. In this case, no reward is given
and the agent could generate an intrinsic motivation to favor new situations where they can
explore the environment.

The Landscape of Reinforcement Learning Chapter 1

[13]

It's worth noting that the problems associated with self-driving cars have
also been addressed as a supervised learning problem, but with poor
results. The main problem is derived from a different distribution of data
that the agent would encounter during its lifetime compared to that used
during training.

History of RL
The first mathematical foundation of RL was built during the 1960s and 1970s in the field of
optimal control. This solved the problem of minimizing a behavior's measure of a dynamic
system over time. The method involved solving a set of equations with the known
dynamics of the system. During this time, the key concept of a Markov decision process
(MDP) was introduced. This provides a general framework for modeling decision-making
in stochastic situations. During these years, a solution method for optimal control called
dynamic programming (DP) was introduced. DP is a method that breaks down a complex
problem into a collection of simpler subproblems for solving an MDP.

Note that DP only provides an easier way to solve optimal control for systems with known
dynamics; there is no learning involved. It also suffers from the problem of the curse of
dimensionality because the computational requirements grow exponentially with the
number of states.

Even if these methods don't involve learning, as noted by Richard S. Sutton and Andrew G.
Barto, we must consider the solution methods of optimal control, such as DP, to also be RL
methods.

In the 1980s, the concept of learning by temporally successive predictions—the so-called
temporal difference learning (TD learning) method—was finally introduced. TD learning
introduced a new family of powerful algorithms that will be explained in this book.

The first problems solved with TD learning are small enough to be represented in tables or
arrays. These methods are called tabular methods, which are often found as an optimal
solution but are not scalable. In fact, many RL tasks involve huge state spaces, making
tabular methods impossible to adopt. In these problems, function
approximations are used to find a good approximate solution with less computational
resources.

The Landscape of Reinforcement Learning Chapter 1

[14]

The adoption of function approximations and, in particular, of artificial neural networks
(and deep neural networks) in RL is not trivial; however, as shown on many occasions, they
are able to achieve amazing results. The use of deep learning in RL is called deep
reinforcement learning (deep RL) and it has achieved great popularity ever since a deep
RL algorithm named deep q network (DQN) displayed a superhuman ability to play Atari
games from raw images in 2015. Another striking achievement of deep RL was with
AlphaGo in 2017, which became the first program to beat Lee Sedol, a human professional
Go player, and 18-time world champion. These breakthroughs not only showed that
machines can perform better than humans in high-dimensional spaces (using the same
perception as humans with respect to images), but also that they can behave in interesting
ways. An example of this is the creative shortcut found by a deep RL system while playing
Breakout, an Atari arcade game in which the player has to destroy all the bricks, as shown
in the following image. The agent found that just by creating a tunnel on the left-hand side
of the bricks and by putting the ball in that direction, it could destroy much more bricks
and thus increase its overall score with just one move.

There are many other interesting cases where the agents exhibit superb behavior or
strategies that weren't known to humans, like a move performed by AlphaGo while playing
Go against Lee Sedol. From a human perspective, that move seemed nonsense but
ultimately allowed AlphaGo to win the game (the move is called move 37).

Nowadays, when dealing with high-dimensional state or action spaces, the use of deep
neural networks as function approximations becomes almost a default choice. Deep RL has
been applied to more challenging problems, such as data center energy optimization, self-
driving cars, multi-period portfolio optimization, and robotics, just to name a few.

The Landscape of Reinforcement Learning Chapter 1

[15]

Deep RL
Now you could ask yourself—why can deep learning combined with RL perform so well?
Well, the main answer is that deep learning can tackle problems with a high-dimensional
state space. Before the advent of deep RL, state spaces had to break down into simpler
representations, called features. These were difficult to design and, in some cases, only an
expert could do it. Now, using deep neural networks such as a convolutional neural
network (CNN) or a recurrent neural network (RNN), RL can learn different levels of
abstraction directly from raw pixels or sequential data (such as natural language). This
configuration is shown in the following diagram:

Furthermore, deep RL problems can now be solved completely in an end-to-end fashion.
Before the deep learning era, an RL algorithm involved two distinct pipelines: one to deal
with the perception of the system and one to be responsible for the decision-making. Now,
with deep RL algorithms, these processes are joined and are trained end-to-end, from the
raw pixels straight to the action. For example, as shown in the preceding diagram, it's
possible to train Pacman end-to-end using a CNN to process the visual component and a
fully connected neural network (FNN) to translate the output of the CNN into an action.

Nowadays, deep RL is a very hot topic. The principal reason for this is that deep RL is
thought to be the type of technology that will enable us to build highly intelligent
machines. As proof, two of the more renowned AI companies that are working to solve
intelligence problems, namely DeepMind and OpenAI, are heavily researching in RL.

The Landscape of Reinforcement Learning Chapter 1

[16]

Besides the huge steps achieved with deep RL, there is a long way to go. There are many
challenges that still need to be addressed, some of which are listed as follows:

Deep RL is far too slow to learn compared to humans.
Transfer learning in RL is still an open problem.
The reward function is difficult to design and define.
RL agents struggle to learn in highly complex and dynamic environments such as
the physical world.

Nonetheless, the research in this field is growing at a fast rate and companies are starting to
adopt RL in their products.

Elements of RL
As we know, an agent interacts with their environment by the means of actions. This will
cause the environment to change and to feedback to the agent a reward that is proportional
to the quality of the actions and the new state of the agent. Through trial and error, the
agent incrementally learns the best action to take in every situation so that, in the long run,
it will achieve a bigger cumulative reward. In the RL framework, the choice of the action in
a particular state is done by a policy, and the cumulative reward that is achievable from
that state is called the value function. In brief, if an agent wants to behave optimally, then
in every situation, the policy has to select the action that will bring it to the next state with
the highest value. Now, let's take a deeper look at these fundamental concepts.

Policy
The policy defines how the agent selects an action given a state. The policy chooses the
action that maximizes the cumulative reward from that state, not with the bigger
immediate reward. It takes care of looking for the long-term goal of the agent. For example,
if a car has another 30 km to go before reaching its destination, but only has another 10 km
of autonomy left and the next gas stations are 1 km and 60 km away, then the policy will
choose to get fuel at the first gas station (1 km away) in order to not run out of gas. This
decision is not optimal in the immediate future as it will take some time to refuel, but it will
be sure to ultimately accomplish the goal.

The Landscape of Reinforcement Learning Chapter 1

[17]

The following diagram shows a simple example where an actor moving in a 4 x 4 grid has
to go toward the star while avoiding the spirals. The actions recommended by a policy are
indicated by an arrow pointing in the direction of the move. The diagram on the left shows
a random initial policy, while the diagram on the right shows the final optimal policy. In a
situation with two equally optimal actions, the agent can arbitrarily chooses which action to
take:

An important distinction is between stochastic policies and deterministic policies. In the
deterministic case, the policy provides a single deterministic action to take. On the other
hand, in the stochastic case, the policy provides a probability for each action. The concept of
the probability of an action is useful because it takes into consideration the dynamicity of
the environment and helps its exploration.

One way to classify RL algorithms is based on how policies are improved during learning.
The simpler case is when the policy that acts on the environment is similar to the one that
improves while learning. Another way to say this is that the policy learns from the same
data that it generates. These algorithms are called on-policy. Off-policy algorithms, in
comparison, involve two policies—one that acts on the environment and another that
learns but is not actually used. The former is called the behavior policy, while the latter is
called the target policy. The goal of the behavior policy is to interact with and collect
information about the environment in order to improve the passive target policy. Off-
policy algorithms, as we will see in the coming chapters, are more unstable and difficult to
design than on-policy algorithms, but they are more sample efficient, meaning that they
require less experience to learn.

To better understand these two concepts, we can think of someone who has to learn a new
skill. If the person behaves as on-policy algorithms do, then every time they try a sequence
of actions, they'll change their belief and behavior in accordance with the reward
accumulated. In comparison, if the person behaves as an off-policy algorithm, they (the
target policy) can also learn by looking at an old video of themselves (the behavior policy)
doing the same skill—that is, they can use old experiences to help them to improve.

The Landscape of Reinforcement Learning Chapter 1

[18]

The policy-gradient method is a family of RL algorithms that learns a parametrized policy
(as a deep neural network) directly from the gradient of the performance with respect to the
policy. These algorithms have many advantages, including the ability to deal with
continuous actions and explore the environment with different levels of granularity. They
will be presented in greater detail in Chapter 6, Learning Stochastic and PG Optimization,
Chapter 7, TRPO and PPO Implementation, and Chapter 8, DDPG and TD3 Applications.

The value function
The value function represents the long-term quality of a state. This is the cumulative
reward that is expected in the future if the agent starts from a given state. If the reward
measures the immediate performance, the value function measures the performance in the
long run. This means that a high reward doesn't imply a high-value function and a low
reward doesn't imply a low-value function.

Moreover, the value function can be a function of the state or of the state-action pair. The
former case is called a state-value function, while the latter is called an action-value
function:

Here, the diagram shows the final state values (on the left side) and the corresponding
optimal policy (on the right side).

Using the same gridworld example used to illustrate the concept of policy, we can show the
state-value function. First of all, we can assume a reward of 0 in each situation except for
when the agent reaches the star, gaining a reward of +1. Moreover, let's assume that a
strong wind moves the agent in another direction with a probability of 0.33. In this case, the
state values will be similar to those shown in the left-hand side of the preceding diagram.
An optimal policy will choose the actions that will bring it to the next state with the highest
state value, as shown in the right-hand side of the preceding diagram.

The Landscape of Reinforcement Learning Chapter 1

[19]

Action-value methods (or value-function methods) are the other big family of RL
algorithms. These methods learn an action-value function and use it to choose the actions to
take. Starting from Chapter 3, Solving Problems with Dynamic Programming, you'll learn
more about these algorithms. It's worth noting that some policy-gradient methods, in order
to combine the advantages of both methods, can also use a value function to learn the
appropriate policy. These methods are called actor-critic methods. The following diagram
shows the three main families of RL algorithms:

Reward
At each timestep, that is, after each move of the agent, the environment sends back a
number that indicates how good that action was to the agent. This is called a reward. As we
have already mentioned, the end goal of the agent is to maximize the cumulative reward
obtained during their interaction with the environment.

In literature, the reward is assumed to be a part of the environment, but that's not strictly
true in reality. The reward can come from the agent too, but never from the decision-
making part of it. For this reason and to simplify the formulation, the reward is always sent
from the environment.

The reward is the only supervision signal injected into the RL cycle and it is essential to
design the reward in the correct way in order to obtain an agent with good behavior. If the
reward has some flaws, the agent may find them and follow incorrect behavior. For
example, Coast Runners is a boat-racing game with the goal being to finish ahead of other
players. During the route, the boats are rewarded for hitting targets. Some folks at OpenAI
trained an agent with RL to play it. They found that, instead of running to the finish line as
fast as possible, the trained boat was driving in a circle to capture re-populating targets
while crashing and catching fire. In this way, the boat found a way to maximize the total
reward without acting as expected. This behavior was due to an incorrect balance between
short-term and long-term rewards.

The Landscape of Reinforcement Learning Chapter 1

[20]

The reward can appear with different frequencies depending on the environment. A
frequent reward is called a dense reward; however, if it is seen only a few times during a
game, or only at its end, it is called a sparse reward. In the latter case, it could be very
difficult for an agent to catch the reward and find the optimal actions.

Imitation learning and inverse RL are two powerful techniques that deal with the absence
of a reward in the environment. Imitation learning uses an expert demonstration to map
states to actions. On the other hand, inverse RL deduces the reward function from an expert
optimal behavior. Imitation learning and inverse RL will be studied in Chapter 10,
Imitation Learning with the DAgger Algorithm.

Model
The model is an optional component of the agent, meaning that it is not required in order to
find a policy for the environment. The model details how the environment behaves,
predicting the next state and the reward, given a state and an action. If the model is known,
planning algorithms can be used to interact with the model and recommend future actions.
For example, in environments with discrete actions, potential trajectories can be simulated
using look ahead searches (for instance, using the Monte Carlo tree search).

The model of the environment could either be given in advance or learned through
interactions with it. If the environment is complex, it's a good idea to approximate it using
deep neural networks. RL algorithms that use an already known model of the environment,
or learn one, are called model-based methods. These solutions are opposed to model-free
methods and will be explained in more detail in Chapter 9, Model-Based RL.

Applications of RL
RL has been applied to a wide variety of fields, including robotics, finance, healthcare, and
intelligent transportation systems. In general, they can be grouped into three major
areas—automatic machines (such as autonomous vehicles, smart grids, and robotics),
optimization processes (for example, planned maintenance, supply chains, and process
planning) and control (for example, fault detection and quality control).

The Landscape of Reinforcement Learning Chapter 1

[21]

In the beginning, RL was only ever applied to simple problems, but deep RL opened the
road to different problems, making it possible to deal with more complex tasks. Nowadays,
deep RL has been showing some very promising results. Unfortunately, many of these
breakthroughs are limited to research applications or games, and, in many situations, it is
not easy to bridge the gap between purely research-oriented applications and industry
problems. Despite this, more companies are moving toward the adoption of RL in their
industries and products.

We will now take a look at the principal fields that are already adopting or will benefit
from RL.

Games
Games are a perfect testbed for RL because they are created in order to challenge human
capabilities, and, to complete them, skills common to the human brain are required (such as
memory, reasoning, and coordination). Consequently, a computer that can play on the
same level or better than a human must possess the same qualities. Moreover, games are
easy to reproduce and can be easily simulated in computers. Video games proved to be
very difficult to solve because of their partial observability (that is, only a fraction of the
game is visible) and their huge search space (that is, it's impossible for a computer to
simulate all possible configurations).

A breakthrough in games occurred when, in 2015, AlphaGo beat Lee Sedol in the ancient
game of Go. This win occurred in spite of the prediction that it wouldn't. At the time, it was
thought that no computer would be able to beat an expert in Go for the next 10 years.
AlphaGo used both RL and supervised learning to learn from professional human games.
A few years after that match, the next version, named AlphaGo Zero, beat AlphaGo 100
games to 0. AlphaGo Zero learned to play Go in only three days through self-play.

Self-play is a very effective way to train an algorithm because it just plays
against itself. Through self-play, useful sub-skills or behaviors could also
emerge that otherwise would not have been discovered.

The Landscape of Reinforcement Learning Chapter 1

[22]

To capture the messiness and continuous nature of the real world, a team of five neural
networks named OpenAI Five was trained to play DOTA 2, a real-time strategy game with
two teams (each with five players) playing against each other. The steep learning curve in
playing this game is due to the long time horizons (a game lasts for 45 minutes on
average with thousands of actions), the partial observability (each player can only see a
small area around themselves), and the high-dimensional continuous action and
observation space. In 2018, OpenAI Five played against the top DOTA 2 players at The
International, losing the match but showing innate capabilities in both collaboration and
strategy skills. Finally, on April 13, 2019, OpenAI Five officially defeated the world
champions in the game, becoming the first AI to beat professional teams in an esports
game.

Robotics and Industry 4.0
RL in industrial robotics is a very active area of research as it is a natural adoption of this
paradigm in the real world. The potential and benefit of industrial intelligent robots are
huge and extensive. RL enables Industry 4.0 (referred to as the fourth industrial revolution)
with intelligent devices, systems, and robots that perform highly complex and rational
operations. Systems that predict maintenance, real-time diagnoses, and management of
manufacturing activities can be integrated for better control and productivity.

Machine learning
Thanks to the flexibility of RL, it can be employed not only in standalone tasks but also as a
sort of fine-tune method in supervised learning algorithms. In many natural language
processing (NLP) and computer vision tasks, the metric to optimize isn't differentiable, so
to address the problem in supervised settings with neural networks, it needs an auxiliary
differentiable loss function. However, the discrepancy between the two loss functions will
penalize the final performance. One way to deal with this is to first train the system using
supervised learning with the auxiliary loss function, and then use RL to fine-tune the
network optimizing with respect to the final metric. For instance, this process can be of
benefit in subfields such as machine translation and question answering, where the
evaluation metrics are complex and not differentiable.

Furthermore, RL can solve NLP problems such as dialogue systems and text generation.
Computer vision, localization, motion analysis, visual control, and visual tracking can all be
trained with deep RL.

The Landscape of Reinforcement Learning Chapter 1

[23]

Deep learning proposes to overcome the heavy task of manual feature engineering while
requiring the manual design of the neural network architecture. This is tedious work
involving many parts that have to be combined in the best possible way. So, why can
we not automate it? Well, actually, we can. Neural architecture design (NAD) is an
approach that uses RL to design the architecture of deep neural networks. This is
computationally very expensive, but this technique is able to create DNN architectures that
can achieve state-of-the-art results in image classification.

Economics and finance
Business management is another natural application of RL. It has been successfully used for
internet advertising with the objective to maximize pay-per-click adverts for product
recommendations, customer management, and marketing. Furthermore, finance has
benefited from RL for tasks such as option pricing and multi-period optimization.

Healthcare
RL is used in healthcare both for diagnosis and treatment. It can build the baseline for an
AI-powered assistant for doctors and nurses. In particular, RL can provide individual
progressive treatments for patients—a process known as the dynamic treatment regime.
Other examples of RL in healthcare are personalized glycemic control and personalized
treatments for sepsis and HIV.

Intelligent transportation systems
Intelligent transportation systems can be empowered with RL to develop and improve all
types of transportation systems. Its application can range from smart networks that control
congestion (such as traffic signal controls), traffic surveillance, and safety (such as collision
predictions), to self-driving cars.

Energy optimization and smart grid
Energy optimization and smart grids are central for intelligent generation, distribution, and
consumption of electricity. Decision energy systems and control energy systems can adopt
RL techniques to provide a dynamic response to the variability of the environment. RL can
also be used to adjust the demand of electricity in response to a dynamic energy pricing or
reduce energy usage.

The Landscape of Reinforcement Learning Chapter 1

[24]

Summary
RL is a goal-oriented approach to decision-making. It differs from other paradigms due to
its direct interaction with the environment and for its delayed reward mechanism. The
combination of RL and deep learning is very useful in problems with high-dimensional
state spaces and in problems with perceptual inputs. The concepts of policy and value
functions are key as they give an indication about the action to take and the quality of the
states of the environment. In RL, the model of the environment is not required, but it can
give additional information and, therefore, improve the quality of the policy.

Now that all the key concepts have been introduced, in the following chapters, the focus
will be on actual RL algorithms. But first, in the next chapter, you will be given the
grounding to develop RL algorithms using OpenAI and TensorFlow.

Questions
What is RL?
What is the end goal of an agent?
What are the main differences between supervised learning and RL?
What are the benefits of combining deep learning and RL?
Where does the term "reinforcement" come from?
What is the difference between policy and value functions?
Can the model of an environment be learned through interacting with it?

Further reading
For an example of a faulty reward function, refer to the following link: https:/ /
blog.openai. com/ faulty- reward- functions/ .
For more information about deep RL, refer to the following link: http:/ /
karpathy. github. io/ 2016/ 05/ 31/rl/ .

https://blog.openai.com/faulty-reward-functions/
https://blog.openai.com/faulty-reward-functions/
https://blog.openai.com/faulty-reward-functions/
https://blog.openai.com/faulty-reward-functions/
https://blog.openai.com/faulty-reward-functions/
https://blog.openai.com/faulty-reward-functions/
https://blog.openai.com/faulty-reward-functions/
https://blog.openai.com/faulty-reward-functions/
https://blog.openai.com/faulty-reward-functions/
https://blog.openai.com/faulty-reward-functions/
https://blog.openai.com/faulty-reward-functions/
https://blog.openai.com/faulty-reward-functions/
https://blog.openai.com/faulty-reward-functions/
https://blog.openai.com/faulty-reward-functions/
https://blog.openai.com/faulty-reward-functions/
http://karpathy.github.io/2016/05/31/rl/
http://karpathy.github.io/2016/05/31/rl/
http://karpathy.github.io/2016/05/31/rl/
http://karpathy.github.io/2016/05/31/rl/
http://karpathy.github.io/2016/05/31/rl/
http://karpathy.github.io/2016/05/31/rl/
http://karpathy.github.io/2016/05/31/rl/
http://karpathy.github.io/2016/05/31/rl/
http://karpathy.github.io/2016/05/31/rl/
http://karpathy.github.io/2016/05/31/rl/
http://karpathy.github.io/2016/05/31/rl/
http://karpathy.github.io/2016/05/31/rl/
http://karpathy.github.io/2016/05/31/rl/
http://karpathy.github.io/2016/05/31/rl/
http://karpathy.github.io/2016/05/31/rl/
http://karpathy.github.io/2016/05/31/rl/
http://karpathy.github.io/2016/05/31/rl/

2
Implementing RL Cycle and

OpenAI Gym
In every machine learning project, an algorithm learns rules and instructions from a
training dataset, with a view to performing a task better. In reinforcement learning (RL),
the algorithm is called the agent, and it learns from the data provided by an environment.
Here, the environment is a continuous source of information that returns data according to
the agent's actions. And, because the data returned by an environment could be potentially
infinite, there are many conceptual and practical differences among the supervised settings
that arise while training. For the purpose of this chapter, however, it is important to
highlight the fact that different environments not only provide different tasks to
accomplish, but can also have different types of input, output, and reward signals, while
also requiring the adaptation of the algorithm in each case. For example, a robot could
either sense its state from a visual input, such as an RGB camera, or from discrete internal
sensors.

In this chapter, you'll set up the environment required to code RL algorithms and build
your first algorithm. Despite being a simple algorithm that plays CartPole, it offers a useful
baseline to master the basic RL cycle before moving on to more advanced RL algorithms.
Also, because, in the later chapters, you'll code many deep neural networks, here, we'll give
you a brief recap about TensorFlow and introduce TensorBoard, a visualization tool.

Almost all the environments used throughout the book are based on the interface open
sourced by OpenAI called Gym. Therefore, we'll take a look at it and use some of its built-
in environments. Then, before moving on to an in-depth examination of RL algorithms in
the next chapters, we'll list and explain the strengths and differences of a number of open
source environments. In this way, you'll have a broad and practical overview of the
problems that can be tackled with RL.

Implementing RL Cycle and OpenAI Gym Chapter 2

[26]

The following topics will be covered in this chapter:

Setting up the environment
OpenAI Gym and RL cycles
TensorFlow
TensorBoard
Types of RL environments

Setting up the environment
The following are the three main tools required to create deep RL algorithms:

Programming language: Python is the first choice for the development of
machine learning algorithms on account of its simplicity and the third-party
libraries that are built around it.
Deep learning framework: In this book, we use TensorFlow because, as we'll see
in the TensorFlow section, it is scalable, flexible, and very expressive. Despite this,
many other frameworks can be used in its place, including PyTorch and Caffe.
Environment: Throughout the book, we'll use many different environments to
demonstrate how to deal with different types of problems and to highlight the
strengths of RL algorithms.

In this book, we use Python 3.7, but all versions above 3.5 should work. We also assume
that you've already installed numpy and matplotlib.

If you haven't already installed TensorFlow, you can do so through their website or by
typing the following in a Terminal window:

$ pip install tensorflow

Alternatively, you can type the following command, if your machine has GPUs:

$ pip install tensorflow-gpu

You can find all the installation instructions and the exercises relating to this chapter on the
GitHub repository, which can be found here: https:/ /github. com/ PacktPublishing/
Reinforcement-Learning- Algorithms- with- Python.

Now, let's look at how to install the environments.

https://github.com/PacktPublishing/Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Hands-On-Reinforcement-Learning-Algorithms-with-Python

Implementing RL Cycle and OpenAI Gym Chapter 2

[27]

Installing OpenAI Gym
OpenAI Gym offers a general interface as well as a broad variety of environments.

To install it, we will use the following commands.

On OSX, we can use the following:

$ brew install cmake boost boost-python sdl2 swig wget

On Ubuntu 16.04, we will use the following command:

$ apt-get install -y python-pyglet python3-opengl zlib1g-dev libjpeg-dev
patchelf cmake swig libboost-all-dev libsdl2-dev libosmesa6-dev xvfb ffmpeg

On Ubuntu 18.04, we will use the following command:

$ sudo apt install -y python3-dev zlib1g-dev libjpeg-dev cmake swig python-
pyglet python3-opengl libboost-all-dev libsdl2-dev libosmesa6-dev patchelf
ffmpeg xvfb

After running the preceding command for your respective OS, the following command is
used:

$ git clone https://github.com/openai/gym.git
$ cd gym
$ pip install -e '.[all]'

Certain Gym environments also require the installation of pybox2d:

$ git clone https://github.com/pybox2d/pybox2d
$ cd pybox2d
$ pip install -e .

Installing Roboschool
The final environment we are interested in is Roboschool, a simulator for robots. It's easy to
install, but if you encounter any errors, take a look at its GitHub repository:

$ pip install roboschool

Implementing RL Cycle and OpenAI Gym Chapter 2

[28]

OpenAI Gym and RL cycles
Since RL requires an agent and an environment to interact with each other, the first
example that may spring to mind is the earth, the physical world we live in. Unfortunately,
for now, it is actually used in only a few cases. With the current algorithms, the problems
stem from the large number of interactions that an agent has to execute with the
environment in order to learn good behaviors. It may require hundreds, thousands, or even
millions of actions, requiring way too much time to be feasible. One solution is to use
simulated environments to start the learning process and, only at the end, fine-tune it in the
real world. This approach is way better than learning just from the world around it, but still
requires slow real-world interactions. However, in many cases, the task can be fully
simulated. To research and implement RL algorithms, games, video games, and robot
simulators are a perfect testbed because, in order to be solved, they require capabilities such
as planning, strategy, and long-term memory. Moreover, games have a clear reward system
and can be completely simulated in an artificial environment (computers), allowing fast
interactions that accelerate the learning process. For these reasons, in this book, we'll use
mostly video games and robot simulators to demonstrate the capabilities of RL algorithms.

OpenAI Gym, an open source toolkit for developing and researching RL algorithms, was
created to provide a common and shared interface for environments, while making a large
and diverse collection of environments available. These include Atari 2600 games,
continuous control tasks, classic control theory problems, simulated robotic goal-based
tasks, and simple text games. Owing to its generality, many environments created by third
parties are using the Gym interface.

Developing an RL cycle
A basic RL cycle is shown in the following code block. This essentially makes the RL model
play for 10 moves while rendering the game at each step:

import gym

create the environment
env = gym.make("CartPole-v1")
reset the environment before starting
env.reset()

loop 10 times
for i in range(10):
 # take a random action
 env.step(env.action_space.sample())
 # render the game

Implementing RL Cycle and OpenAI Gym Chapter 2

[29]

 env.render()

close the environment
env.close()

This leads to the following output:

Figure 2.1: Rendering of CartPole

Let's take a closer look at the code. It starts by creating a new environment named
CartPole-v1, a classic game used in control theory problems. However, before using it,
the environment is initialized by calling reset(). After doing so, the cycle loops 10 times.
In each iteration, env.action_space.sample() samples a random action, executes it in
the environment with env.step(), and displays the result with the render() method;
that is, the current state of the game, as in the preceding screenshot. In the end, the
environment is closed by calling env.close().

Don't worry if the following code outputs deprecation warnings; they are
there to notify you that some functions have been changed. The code will
still be functioning correctly.

This cycle is the same for every environment that uses the Gym interface, but for now, the
agent can only play random actions without having any feedback, which is essential to any
RL problem.

Implementing RL Cycle and OpenAI Gym Chapter 2

[30]

In RL, you may see the terms state and observation being used almost
interchangeably, but they are not the same. We talk about state when all
the information pertaining to the environment is encoded in it. We talk
about observation when only a part of the actual state of the environment
is visible to the agent, such as the perception of a robot. To simplify this,
OpenAI Gym always uses the term observation.

The following diagram shows the flow of the cycle:

Figure 2.2: Basic RL cycle according to OpenAI Gym. The environment returns the next state, a reward, a done flag, and some additional information

Indeed, the step() method returns four variables that provide information about the
interaction with the environment. The preceding diagram shows the loop between the
agent and environment, as well as the variables exchanged; namely, Observation, Reward,
Done, and Info. Observation is an object that represents the new observation (or state) of
the environment. Reward is a float number that represents the number of rewards obtained
in the last action. Done is a Boolean value that is used on tasks that are episodic; that is,
tasks that are limited in terms of the number of interactions. Whenever done is True, this
means that the episode has terminated and that the environment should be reset. For
example, done is True when the task has been completed or the agent has died. Info, on
the other hand, is a dictionary that provides extra information about the environment but
that usually isn't used.

If you have never heard of CartPole, it's a game with the goal of balancing a pendulum
acting on a horizontal cart. A reward of +1 is provided for every timestep when the
pendulum is in the upright position. The episode ends when it is too unbalanced or it
manages to balance itself for more than 200 timesteps (collecting a maximum cumulative
reward of 200).

Implementing RL Cycle and OpenAI Gym Chapter 2

[31]

We can now create a more complete algorithm that plays 10 games and prints the
accumulated reward for each game using the following code:

import gym

create and initialize the environment
env = gym.make("CartPole-v1")
env.reset()

play 10 games
for i in range(10):
 # initialize the variables
 done = False
 game_rew = 0

 while not done:
 # choose a random action
 action = env.action_space.sample()
 # take a step in the environment
 new_obs, rew, done, info = env.step(action)
 game_rew += rew
 # when is done, print the cumulative reward of the game and reset
the environment
 if done:
 print('Episode %d finished, reward:%d' % (i, game_rew))
 env.reset()

The output will be similar to the following:

Episode: 0, Reward:13
Episode: 1, Reward:16
Episode: 2, Reward:23
Episode: 3, Reward:17
Episode: 4, Reward:30
Episode: 5, Reward:18
Episode: 6, Reward:14
Episode: 7, Reward:28
Episode: 8, Reward:22
Episode: 9, Reward:16

Implementing RL Cycle and OpenAI Gym Chapter 2

[32]

The following table shows the output of the step() method over the last four actions of a
game:

Observation Reward Done Info
[-0.05356921, -0.38150626, 0.12529277, 0.9449761] 1.0 False {}
[-0.06119933, -0.57807287, 0.14419229, 1.27425449] 1.0 False {}
[-0.07276079, -0.38505429, 0.16967738, 1.02997704] 1.0 False {}
[-0.08046188, -0.58197758, 0.19027692, 1.37076617] 1.0 False {}
[-0.09210143, -0.3896757, 0.21769224, 1.14312384] 1.0 True {}

Notice that the environment's observation is encoded in a 1 x 4 array; that the reward, as we
expected, is always 1; and that done is True only in the last row when the game is
terminated. Also, Info, in this case, is empty.

In the upcoming chapters, we'll create agents that play CartPole by taking more intelligent
actions depending on the current state of the pole.

Getting used to spaces
In OpenAI Gym, actions and observations are mostly instances of the Discrete or
Box class. These two classes represent different spaces. Box represents an n-
dimensional array, while Discrete, on the other hand, is a space that allows a fixed range
of non-negative numbers. In the preceding table, we have already seen that the observation
of CartPole is encoded by four floats, meaning that it's an instance of the Box class. It is
possible to check the type and dimension of the observation spaces by printing
the env.observation_space variable:

import gym

env = gym.make('CartPole-v1')
print(env.observation_space)

Indeed, as we expected, the output is as follows:

>> Box(4,)

In this book, we mark the output of print() by introducing the printed
text with >>.

Implementing RL Cycle and OpenAI Gym Chapter 2

[33]

In the same way, it is possible to check the dimension of the action space:

print(env.action_space)

This results in the following output:

>> Discrete(2)

In particular, Discrete(2) means that the actions could either have the value 0 or 1.
Indeed, if we use the sampling function used in the preceding example, we obtain 0 or 1 (in
CartPole, this means left or right):

print(env.action_space.sample())
>> 0
print(env.action_space.sample())
>> 1

The low and high instance attributes return the minimum and maximum values allowed
by a Box space:

print(env.observation_space.low)
>> [-4.8000002e+00 -3.4028235e+38 -4.1887903e-01 -3.4028235e+38]
print(env.observation_space.high)
>> [4.8000002e+00 3.4028235e+38 4.1887903e-01 3.4028235e+38]

Development of ML models
using TensorFlow
TensorFlow is a machine learning framework that performs high-performance numerical
computations. TensorFlow owes its popularity to its high quality and vast amount of
documentation, its ability to easily serve models at scale in production environments, and
the friendly interface to GPUs and TPUs.

TensorFlow, to facilitate the development and deployment of ML models, has many high-
level APIs, including Keras, Eager Execution, and Estimators. These APIs are very useful in
many contexts, but, in order to develop RL algorithms, we'll only use low-level APIs.

Implementing RL Cycle and OpenAI Gym Chapter 2

[34]

Now, let's code immediately using TensorFlow. The following lines of code execute the
sum of the constants, a and b, created with tf.constant():

import tensorflow as tf

create two constants: a and b
a = tf.constant(4)
b = tf.constant(3)

perform a computation
c = a + b

create a session
session = tf.Session()
run the session. It computes the sum
res = session.run(c)
print(res)

A particularity of TensorFlow is the fact that it expresses all computations as a
computational graph that has to first be defined and later executed. Only after execution
will the results be available. In the following example, after the operation, c = a + b, c
doesn't hold the end value. Indeed, if you print c before creating the session, you'll obtain
the following:

>> Tensor("add:0", shape=(), dtype=int32)

This is the class of the c variable, not the result of the addition.

Moreover, execution has to be done inside a session that is instantiated
with tf.Session(). Then, to perform the computation, the operation has to be passed as
input to the run function of the session just created. Thus, to actually compute the graph
and consequently sum a and b, we need to create a session and pass c as an input to
session.run:

session = tf.Session()
res = session.run(c)
print(res)

>> 7

If you are using Jupyter Notebook, make sure to reset the previous graph
by running tf.reset_default_graph().

Implementing RL Cycle and OpenAI Gym Chapter 2

[35]

Tensor
The variables in TensorFlow are represented as tensors that are arrays of any number of
dimensions. There are three main types of tensors—tf.Variable, tf.constant, and
tf.placeholder. Except for tf.Variable, all the other tensors are immutable.

To check the shape of a tensor, we will use the following code:

constant
a = tf.constant(1)
print(a.shape)
>> ()

array of five elements
b = tf.constant([1,2,3,4,5])
print(b.shape)
>> (5,)

The elements of a tensor are easily accessible, and the mechanisms are similar to those
employed by Python:

a = tf.constant([1,2,3,4,5])
first_three_elem = a[:3]
fourth_elem = a[3]

sess = tf.Session()
print(sess.run(first_three_elem))

>> array([1,2,3])

print(sess.run(fourth_elem))

>> 4

Constant
As we have already seen, a constant is an immutable type of tensor that can be easily
created using tf.constant:

a = tf.constant([1.0, 1.1, 2.1, 3.1], dtype=tf.float32, name='a_const')
print(a)

>> Tensor("a_const:0", shape=(4,), dtype=float32)

Implementing RL Cycle and OpenAI Gym Chapter 2

[36]

Placeholder
A placeholder is a tensor that is fed at runtime. Usually, placeholders are used as input for
models. Every input passed to a computational graph at runtime is fed with feed_dict.
feed_dict is an optional argument that allows the caller to override the value of tensors in
the graph. In the following snippet, the a placeholder is overridden by [[0.1,0.2,0.3]]:

import tensorflow as tf

a = tf.placeholder(shape=(1,3), dtype=tf.float32)
b = tf.constant([[10,10,10]], dtype=tf.float32)

c = a + b

sess = tf.Session()
res = sess.run(c, feed_dict={a:[[0.1,0.2,0.3]]})
print(res)

>> [[10.1 10.2 10.3]]

If the size of the first dimension of the input is not known during the creation of the graph,
TensorFlow can take care of it. Just set it to None:

import tensorflow as tf
import numpy as np

NB: the first dimension is 'None', meaning that it can be of any length
a = tf.placeholder(shape=(None,3), dtype=tf.float32)
b = tf.placeholder(shape=(None,3), dtype=tf.float32)

c = a + b
print(a)

>> Tensor("Placeholder:0", shape=(?, 3), dtype=float32)

sess = tf.Session()
print(sess.run(c, feed_dict={a:[[0.1,0.2,0.3]], b:[[10,10,10]]}))

>> [[10.1 10.2 10.3]]

v_a = np.array([[1,2,3],[4,5,6]])
v_b = np.array([[6,5,4],[3,2,1]])
print(sess.run(c, feed_dict={a:v_a, b:v_b}))

>> [[7. 7. 7.]
 [7. 7. 7.]]

Implementing RL Cycle and OpenAI Gym Chapter 2

[37]

This feature is useful when the number of training examples is not known initially.

Variable
A variable is a mutable tensor that can be trained using an optimizer. For example, they
can be the free variables that constitute the weights and biases of a neural network.

We will now create two variables, one uniformly initialized, and one initialized with
constant values:

import tensorflow as tf
import numpy as np

variable initialized randomly
var = tf.get_variable("first_variable", shape=[1,3], dtype=tf.float32)

variable initialized with constant values
init_val = np.array([4,5])
var2 = tf.get_variable("second_variable", shape=[1,2], dtype=tf.int32,
initializer=tf.constant_initializer(init_val))

create the session
sess = tf.Session()
initialize all the variables
sess.run(tf.global_variables_initializer())

print(sess.run(var))

>> [[0.93119466 -1.0498083 -0.2198658]]

print(sess.run(var2))

>> [[4 5]]

The variables aren't initialized until global_variables_initializer() is called.

All the variables created in this way are set as trainable, meaning that the graph can
modify them, for example, after an optimization operation. The variables can be set as non-
trainable, as follows:

var2 = tf.get_variable("variable", shape=[1,2], trainable=False,
dtype=tf.int32)

Implementing RL Cycle and OpenAI Gym Chapter 2

[38]

An easy way to access all the variables is as follows:

print(tf.global_variables())

>> [<tf.Variable 'first_variable:0' shape=(1, 3) dtype=float32_ref>,
<tf.Variable 'second_variable:0' shape=(1, 2) dtype=int32_ref>]

Creating a graph
A graph represents low-level computations in terms of the dependencies between
operations. In TensorFlow, you first define a graph, and then create a session that executes
the operations in the graph.

The way a graph is built, computed, and optimized in TensorFlow allows a high degree of
parallelism, distributed execution, and portability, all very important properties when
building machine learning models.

To give you an idea of the structure of a graph produced internally by TensorFlow, the
following program produces the computational graph demonstrated in the following
diagram:

import tensorflow as tf
import numpy as np

const1 = tf.constant(3.0, name='constant1')

var = tf.get_variable("variable1", shape=[1,2], dtype=tf.float32)
var2 = tf.get_variable("variable2", shape=[1,2], trainable=False,
dtype=tf.float32)

op1 = const1 * var
op2 = op1 + var2
op3 = tf.reduce_mean(op2)

sess = tf.Session()
sess.run(tf.global_variables_initializer())
sess.run(op3)

Implementing RL Cycle and OpenAI Gym Chapter 2

[39]

This results in the following graph:

Figure 2.3: Example of a computational graph

Simple linear regression example
To better digest all the concepts, let's now create a simple linear regression model. First, we
have to import all the libraries and set a random seed, both for NumPy and TensorFlow (so
that we'll all have the same results):

import tensorflow as tf
import numpy as np
from datetime import datetime

np.random.seed(10)
tf.set_random_seed(10)

Implementing RL Cycle and OpenAI Gym Chapter 2

[40]

Then, we can create a synthetic dataset consisting of 100 examples, as shown in the
following screenshot:

Figure 2.4: Dataset used in the linear regression example

Because this is a linear regression example, y = W * X + b, where W and b are arbitrary
values. In this example, we set W = 0.5 and b = 1.4. Additionally, we add some normal
random noise:

W, b = 0.5, 1.4
create a dataset of 100 examples
X = np.linspace(0,100, num=100)
add random noise to the y labels
y = np.random.normal(loc=W * X + b, scale=2.0, size=len(X))

The next step involves creating the placeholders for the input and the output, and the
variables of the weight and bias of the linear model. During training, these two variables
will be optimized to be as similar as possible to the weight and bias of the dataset:

create the placeholders
x_ph = tf.placeholder(shape=[None,], dtype=tf.float32)
y_ph = tf.placeholder(shape=[None,], dtype=tf.float32)

create the variables
v_weight = tf.get_variable("weight", shape=[1], dtype=tf.float32)
v_bias = tf.get_variable("bias", shape=[1], dtype=tf.float32)

Implementing RL Cycle and OpenAI Gym Chapter 2

[41]

Then, we build the computational graph defining the linear operation and the mean
squared error (MSE) loss:

linear computation
out = v_weight * x_ph + v_bias

compute the mean squared error
loss = tf.reduce_mean((out - y_ph)**2)

We can now instantiate the optimizer and call minimize() to minimize the MSE loss.
minimize() first computes the gradients of the variables (v_weight and v_bias) and then
applies the gradient, updating the variables:

opt = tf.train.AdamOptimizer(0.4).minimize(loss)

Now, let's create a session and initialize all the variables:

session = tf.Session()
session.run(tf.global_variables_initializer())

The training is done by running the optimizer multiple times while feeding the dataset to
the graph. To keep track of the state of the model, the MSE loss and the model variables
(weight and bias) are printed every 40 epochs:

loop to train the parameters
for ep in range(210):
 # run the optimizer and get the loss
 train_loss, _ = session.run([loss, opt], feed_dict={x_ph:X, y_ph:y})

 # print epoch number and loss
 if ep % 40 == 0:
 print('Epoch: %3d, MSE: %.4f, W: %.3f, b: %.3f' % (ep, train_loss,
session.run(v_weight), session.run(v_bias)))

In the end, we can print the final values of the variables:

print('Final weight: %.3f, bias: %.3f' % (session.run(v_weight),
session.run(v_bias)))

The output will be similar to the following:

>> Epoch: 0, MSE: 4617.4390, weight: 1.295, bias: -0.407
 Epoch: 40, MSE: 5.3334, weight: 0.496, bias: -0.727
 Epoch: 80, MSE: 4.5894, weight: 0.529, bias: -0.012
 Epoch: 120, MSE: 4.1029, weight: 0.512, bias: 0.608
 Epoch: 160, MSE: 3.8552, weight: 0.506, bias: 1.092
 Epoch: 200, MSE: 3.7597, weight: 0.501, bias: 1.418
 Final weight: 0.500, bias: 1.473

Implementing RL Cycle and OpenAI Gym Chapter 2

[42]

During the training phase, it's possible to see that the MSE loss would decrease toward a
non-zero value (of about 3.71). That's because we added random noise to the dataset that
prevents the MSE from reaching a perfect value of 0.

Also, as anticipated, with regard to the weight and bias of the model approach, the values
of 0.500 and 1.473 are precisely the values around which the dataset has been built. The
blue line visible in the following screenshot is the prediction of the trained linear model,
while the points are our training examples:

Figure 2.5: Linear regression model predictions

For all the color references in the chapter, please refer to the color images
bundle: http:/ /www. packtpub. com/sites/ default/ files/ downloads/
9781789131116_ ColorImages. pdf.

Introducing TensorBoard
Keeping track of how variables change during the training of a model can be a tedious job.
For instance, in the linear regression example, we kept track of the MSE loss and of the
parameters of the model by printing them every 40 epochs. As the complexity of the
algorithms increases, there is an increase in the number of variables and metrics to be
monitored. Fortunately, this is where TensorBoard comes to the rescue.

http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf.
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf.
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf.
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf.
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf.
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf.
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf.
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf.
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf.
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf.
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf.
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf.
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf.
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf.
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf.
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf.
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf.
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf.
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf.
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf.
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf.
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf.

Implementing RL Cycle and OpenAI Gym Chapter 2

[43]

TensorBoard is a suite of visualization tools that can be used to plot metrics, visualize
TensorFlow graphs, and visualize additional information. A typical TensorBoard screen is
similar to the one shown in the following screenshot:

Figure 2.6: Scalar TensorBoard page

The integration of TensorBoard with TensorFlow code is pretty straightforward as it
involves only a few tweaks to the code. In particular, to visualize the MSE loss over time
and monitor the weight and bias of our linear regression model using TensorBoard, it is
first necessary to attach the loss tensor to tf.summar.scalar() and the model's
parameters to tf.summary.histogram(). The following snippet should be added after
the call to the optimizer:

tf.summary.scalar('MSEloss', loss)
tf.summary.histogram('model_weight', v_weight)
tf.summary.histogram('model_bias', v_bias)

Implementing RL Cycle and OpenAI Gym Chapter 2

[44]

Then, to simplify the process and handle them as a single summary, we can merge them:

all_summary = tf.summary.merge_all()

At this point, we have to instantiate a FileWriter instance that will log all the summary
information in a file:

now = datetime.now()
clock_time = "{}_{}.{}.{}".format(now.day, now.hour, now.minute,
now.second)
file_writer = tf.summary.FileWriter('log_dir/'+clock_time,
tf.get_default_graph())

The first two lines create a unique filename using the current date and time. In the third
line, the path of the file and the TensorFlow graph are passed to FileWriter(). The
second parameter is optional and represents the graph to visualize.

The final change is done in the training loop by replacing the previous line, train_loss,
_ = session.run(..), with the following:

train_loss, _, train_summary = session.run([loss, opt, all_summary],
feed_dict={x_ph:X, y_ph:y})
file_writer.add_summary(train_summary, ep)

First, all_summary is executed in the current session, and then the result is added to
file_writer to be saved in the file. This procedure will run the three summaries that were
merged previously and log them in the log file. TensorBoard will then read from this file
and visualize the scalar, the two histograms, and the computation graph.

Remember to close file_writer at the end, as follows:

file_writer.close()

Finally, we can open TensorBoard by going to the working directory and typing the
following in a terminal:

$ tensorboard --logdir=log_dir

This command creates a web server that listens to port 6006. To start TensorBoard, you
have to go to the link that TensorBoard shows you:

Implementing RL Cycle and OpenAI Gym Chapter 2

[45]

Figure 2.7: Histogram of the linear regression model's parameters

You can now browse TensorBoard by clicking on the tabs at the top of the page to access
the plots, the histograms, and the graph. In the preceding—as well as the
following—screenshots, you can see some of the results visualized on those pages. The
plots and the graphs are interactive, so take some time to explore them in order to improve
your understanding of their use. Also check the TensorBoard official documentation
(https://www.tensorflow. org/ guide/ summaries_ and_ tensorboard) to learn more about
the additional features included in TensorBoard:

Figure 2.8: Scalar plot of the MSE loss

https://www.tensorflow.org/guide/summaries_and_tensorboard
https://www.tensorflow.org/guide/summaries_and_tensorboard
https://www.tensorflow.org/guide/summaries_and_tensorboard
https://www.tensorflow.org/guide/summaries_and_tensorboard
https://www.tensorflow.org/guide/summaries_and_tensorboard
https://www.tensorflow.org/guide/summaries_and_tensorboard
https://www.tensorflow.org/guide/summaries_and_tensorboard
https://www.tensorflow.org/guide/summaries_and_tensorboard
https://www.tensorflow.org/guide/summaries_and_tensorboard
https://www.tensorflow.org/guide/summaries_and_tensorboard
https://www.tensorflow.org/guide/summaries_and_tensorboard
https://www.tensorflow.org/guide/summaries_and_tensorboard
https://www.tensorflow.org/guide/summaries_and_tensorboard
https://www.tensorflow.org/guide/summaries_and_tensorboard
https://www.tensorflow.org/guide/summaries_and_tensorboard
https://www.tensorflow.org/guide/summaries_and_tensorboard
https://www.tensorflow.org/guide/summaries_and_tensorboard

Implementing RL Cycle and OpenAI Gym Chapter 2

[46]

Types of RL environments
Environments, similar to labeled datasets in supervised learning, are the essential part of
RL as they dictate the information that has to be learned and the choice of algorithms. In
this section, we'll take a look at the main differences between the types of environments
and list some of the most important open source environments.

Why different environments?
While, for real applications, the choice of environment is dictated by the task to be learned,
for research applications, usually, the choice is dictated by intrinsic features of the
environment. In this latter case, the end goal is not to train the agent on a specific task, but
to show some task-related capabilities.

For instance, if the goal is to create a multi-agent RL algorithm, the environment should
have at least two agents with a means to communicate with one another, regardless of the
end task. Instead, to create a lifelong learner (agents that continuously create and learn
more difficult tasks using the knowledge acquired in previous easier tasks), the primary
quality that the environment should have is the ability to adapt to new situations and a
realistic domain.

Task aside, environments can differ by other characteristics, such as complexity,
observation space, action space, and reward function:

Complexity: Environments can spread across a wide spectrum, from the balance
of a pole to the manipulation of physical objects with a robot hand. More
complex environments can be chosen to show the capability of an algorithm to
deal with a large state space that mimics the complexity of the world. On the
other hand, simpler ones can be used to show only some specific qualities.
Observation space: As we have already seen, the observation space can range
from the full state of the environment to only a partial observation perceived by
the perception systems, such as row images.
Action space: Environments with a large continuous action space challenge the
agent to deal with real-value vectors, whereas discrete actions are easier to learn
as they have only a limited number of actions available.

Implementing RL Cycle and OpenAI Gym Chapter 2

[47]

Reward function: Environments with hard explorations and delayed rewards,
such as Montezuma's revenge, are very challenging to solve. Surprisingly, only a
few algorithms are able to reach human levels. For this reason, these
environments are used as a test bed for algorithms that propose to address the
exploration problem.

Open source environments
How can we design an environment that meets our requirements? Fortunately, there are
many open source environments that are built to tackle specific or broader problems. By
way of an example, CoinRun, shown in the following screenshot, was created to measure
the generalization capabilities of an algorithm:

Figure 2.9: The CoinRun environment

Implementing RL Cycle and OpenAI Gym Chapter 2

[48]

We will now list some of the main open source environments available. These are created
by different teams and companies, but almost all of them use the OpenAI Gym interface:

Figure 2.10: Roboschool environment

Gym Atari (https:/ /gym. openai. com/ envs/ #atari): Includes Atari 2600 games
with screen images as input. They are useful for measuring the performance of
RL algorithms on a wide variety of games with the same observation space.
Gym Classic control (https:/ / gym. openai. com/ envs/ #classic_ control):
Classic games that can be used for the easy evaluation and debugging of an
algorithm.
Gym MuJoCo (https:/ / gym. openai. com/ envs/ #mujoco): Includes continuous
control tasks (such as Ant, and HalfCheetah) built on top of MuJoCo, a physics
engine that requires a paid license (a free license is available for students).
MalmoEnv (https:/ / github. com/ Microsoft/ malmo): An environment built on
top of Minecraft.
Pommerman (https:/ / github. com/ MultiAgentLearning/ playground): A great
environment for training multi-agent algorithms. Pommerman is a variant of the
famous Bomberman.
Roboschool (https:/ /github. com/ openai/ roboschool): A robot simulation
environment integrated with OpenAI Gym. It includes an environment replica of
MuJoCo, as shown in the preceding screenshot, two interactive environments to
improve the robustness of the agent, and one multiplayer environment.

https://gym.openai.com/envs/#atari
https://gym.openai.com/envs/#atari
https://gym.openai.com/envs/#atari
https://gym.openai.com/envs/#atari
https://gym.openai.com/envs/#atari
https://gym.openai.com/envs/#atari
https://gym.openai.com/envs/#atari
https://gym.openai.com/envs/#atari
https://gym.openai.com/envs/#atari
https://gym.openai.com/envs/#atari
https://gym.openai.com/envs/#atari
https://gym.openai.com/envs/#atari
https://gym.openai.com/envs/#atari
https://gym.openai.com/envs/#classic_control
https://gym.openai.com/envs/#classic_control
https://gym.openai.com/envs/#classic_control
https://gym.openai.com/envs/#classic_control
https://gym.openai.com/envs/#classic_control
https://gym.openai.com/envs/#classic_control
https://gym.openai.com/envs/#classic_control
https://gym.openai.com/envs/#classic_control
https://gym.openai.com/envs/#classic_control
https://gym.openai.com/envs/#classic_control
https://gym.openai.com/envs/#classic_control
https://gym.openai.com/envs/#classic_control
https://gym.openai.com/envs/#classic_control
https://gym.openai.com/envs/#classic_control
https://gym.openai.com/envs/#classic_control
https://gym.openai.com/envs/#mujoco
https://gym.openai.com/envs/#mujoco
https://gym.openai.com/envs/#mujoco
https://gym.openai.com/envs/#mujoco
https://gym.openai.com/envs/#mujoco
https://gym.openai.com/envs/#mujoco
https://gym.openai.com/envs/#mujoco
https://gym.openai.com/envs/#mujoco
https://gym.openai.com/envs/#mujoco
https://gym.openai.com/envs/#mujoco
https://gym.openai.com/envs/#mujoco
https://gym.openai.com/envs/#mujoco
https://gym.openai.com/envs/#mujoco
https://github.com/Microsoft/malmo
https://github.com/Microsoft/malmo
https://github.com/Microsoft/malmo
https://github.com/Microsoft/malmo
https://github.com/Microsoft/malmo
https://github.com/Microsoft/malmo
https://github.com/Microsoft/malmo
https://github.com/Microsoft/malmo
https://github.com/Microsoft/malmo
https://github.com/Microsoft/malmo
https://github.com/Microsoft/malmo
https://github.com/MultiAgentLearning/playground
https://github.com/MultiAgentLearning/playground
https://github.com/MultiAgentLearning/playground
https://github.com/MultiAgentLearning/playground
https://github.com/MultiAgentLearning/playground
https://github.com/MultiAgentLearning/playground
https://github.com/MultiAgentLearning/playground
https://github.com/MultiAgentLearning/playground
https://github.com/MultiAgentLearning/playground
https://github.com/MultiAgentLearning/playground
https://github.com/MultiAgentLearning/playground
https://github.com/openai/roboschool
https://github.com/openai/roboschool
https://github.com/openai/roboschool
https://github.com/openai/roboschool
https://github.com/openai/roboschool
https://github.com/openai/roboschool
https://github.com/openai/roboschool
https://github.com/openai/roboschool
https://github.com/openai/roboschool
https://github.com/openai/roboschool
https://github.com/openai/roboschool

Implementing RL Cycle and OpenAI Gym Chapter 2

[49]

Duckietown (https:/ /github. com/ duckietown/ gym- duckietown): A self-driving
car simulator with different maps and obstacles.
PLE (https:/ / github. com/ ntasfi/ PyGame- Learning- Environment): PLE
includes many different arcade games, such as Monster Kong, FlappyBird, and
Snake.
Unity ML-Agents (https:/ /github. com/Unity- Technologies/ ml- agents):
Environments built on top of Unity with realistic physics. ML-agents allow a
great degree of freedom and the possibility to create your own environment
using Unity.
CoinRun (https:/ / github. com/openai/ coinrun): An environment that
addresses the problem of overfitting in RL. It generates different environments
for training and testing.
DeepMind Lab (https:/ / github. com/ deepmind/ lab): Provides a suite of 3D
environments for navigation and puzzle tasks.
DeepMind PySC2 (https:/ /github. com/ deepmind/ pysc2): An environment for
learning the complex game, StarCraft II.

Summary
Hopefully, in this chapter, you have learned about all the tools and components needed to
build RL algorithms. You set up the Python environment required to develop RL
algorithms and programmed your first algorithm using an OpenAI Gym environment. As
the majority of state-of-the-art RL algorithms involve deep learning, you have been
introduced to TensorFlow, a deep learning framework that you'll use throughout the book.
The use of TensorFlow speeds up the development of deep RL algorithms as it deals with
complex parts of deep neural networks such as backpropagation. Furthermore, TensorFlow
is provided with TensorBoard, a visualization tool that is used to monitor and help the
algorithm debugging process.

Because we'll be using many environments in the subsequent chapters, it's important to
have a clear understanding of their differences and distinctiveness. By now, you should
also be able to choose the best environments for your own projects, but bear in mind that
despite the fact that we provided you with a comprehensive list, there may be many others
that could better suit your problem.

That being said, in the following chapters, you'll finally learn how to develop RL
algorithms. Specifically, in the next chapter, you will be presented with algorithms that can
be used in simple problems where the environment is completely known. After those, we'll
build more sophisticated ones that can deal with more complex cases.

https://github.com/duckietown/gym-duckietown
https://github.com/duckietown/gym-duckietown
https://github.com/duckietown/gym-duckietown
https://github.com/duckietown/gym-duckietown
https://github.com/duckietown/gym-duckietown
https://github.com/duckietown/gym-duckietown
https://github.com/duckietown/gym-duckietown
https://github.com/duckietown/gym-duckietown
https://github.com/duckietown/gym-duckietown
https://github.com/duckietown/gym-duckietown
https://github.com/duckietown/gym-duckietown
https://github.com/duckietown/gym-duckietown
https://github.com/duckietown/gym-duckietown
https://github.com/ntasfi/PyGame-Learning-Environment
https://github.com/ntasfi/PyGame-Learning-Environment
https://github.com/ntasfi/PyGame-Learning-Environment
https://github.com/ntasfi/PyGame-Learning-Environment
https://github.com/ntasfi/PyGame-Learning-Environment
https://github.com/ntasfi/PyGame-Learning-Environment
https://github.com/ntasfi/PyGame-Learning-Environment
https://github.com/ntasfi/PyGame-Learning-Environment
https://github.com/ntasfi/PyGame-Learning-Environment
https://github.com/ntasfi/PyGame-Learning-Environment
https://github.com/ntasfi/PyGame-Learning-Environment
https://github.com/ntasfi/PyGame-Learning-Environment
https://github.com/ntasfi/PyGame-Learning-Environment
https://github.com/ntasfi/PyGame-Learning-Environment
https://github.com/ntasfi/PyGame-Learning-Environment
https://github.com/Unity-Technologies/ml-agents
https://github.com/Unity-Technologies/ml-agents
https://github.com/Unity-Technologies/ml-agents
https://github.com/Unity-Technologies/ml-agents
https://github.com/Unity-Technologies/ml-agents
https://github.com/Unity-Technologies/ml-agents
https://github.com/Unity-Technologies/ml-agents
https://github.com/Unity-Technologies/ml-agents
https://github.com/Unity-Technologies/ml-agents
https://github.com/Unity-Technologies/ml-agents
https://github.com/Unity-Technologies/ml-agents
https://github.com/Unity-Technologies/ml-agents
https://github.com/Unity-Technologies/ml-agents
https://github.com/Unity-Technologies/ml-agents
https://github.com/Unity-Technologies/ml-agents
https://github.com/openai/coinrun
https://github.com/openai/coinrun
https://github.com/openai/coinrun
https://github.com/openai/coinrun
https://github.com/openai/coinrun
https://github.com/openai/coinrun
https://github.com/openai/coinrun
https://github.com/openai/coinrun
https://github.com/openai/coinrun
https://github.com/openai/coinrun
https://github.com/openai/coinrun
https://github.com/deepmind/lab
https://github.com/deepmind/lab
https://github.com/deepmind/lab
https://github.com/deepmind/lab
https://github.com/deepmind/lab
https://github.com/deepmind/lab
https://github.com/deepmind/lab
https://github.com/deepmind/lab
https://github.com/deepmind/lab
https://github.com/deepmind/lab
https://github.com/deepmind/lab
https://github.com/deepmind/pysc2
https://github.com/deepmind/pysc2
https://github.com/deepmind/pysc2
https://github.com/deepmind/pysc2
https://github.com/deepmind/pysc2
https://github.com/deepmind/pysc2
https://github.com/deepmind/pysc2
https://github.com/deepmind/pysc2
https://github.com/deepmind/pysc2
https://github.com/deepmind/pysc2
https://github.com/deepmind/pysc2

Implementing RL Cycle and OpenAI Gym Chapter 2

[50]

Questions
What's the output of the step() function in Gym?1.
How can you sample an action using the OpenAI Gym interface?2.
What's the main difference between the Box and Discrete classses?3.
Why are deep learning frameworks used in RL?4.
What's a tensor?5.
What can be visualized in TensorBoard?6.
To create a self-driving car, which of the environments mentioned in the chapter7.
would you use?

Further reading
For the TensorFlow official guide, refer to the following link: https:/ / www.
tensorflow. org/ guide/ low_ level_ intro.
For the TensorBoard official guide, refer to the following link: https:/ /www.
tensorflow. org/ guide/ summaries_ and_ tensorboard.

https://www.tensorflow.org/guide/low_level_intro
https://www.tensorflow.org/guide/low_level_intro
https://www.tensorflow.org/guide/low_level_intro
https://www.tensorflow.org/guide/low_level_intro
https://www.tensorflow.org/guide/low_level_intro
https://www.tensorflow.org/guide/low_level_intro
https://www.tensorflow.org/guide/low_level_intro
https://www.tensorflow.org/guide/low_level_intro
https://www.tensorflow.org/guide/low_level_intro
https://www.tensorflow.org/guide/low_level_intro
https://www.tensorflow.org/guide/low_level_intro
https://www.tensorflow.org/guide/low_level_intro
https://www.tensorflow.org/guide/low_level_intro
https://www.tensorflow.org/guide/low_level_intro
https://www.tensorflow.org/guide/low_level_intro
https://www.tensorflow.org/guide/low_level_intro
https://www.tensorflow.org/guide/summaries_and_tensorboard
https://www.tensorflow.org/guide/summaries_and_tensorboard
https://www.tensorflow.org/guide/summaries_and_tensorboard
https://www.tensorflow.org/guide/summaries_and_tensorboard
https://www.tensorflow.org/guide/summaries_and_tensorboard
https://www.tensorflow.org/guide/summaries_and_tensorboard
https://www.tensorflow.org/guide/summaries_and_tensorboard
https://www.tensorflow.org/guide/summaries_and_tensorboard
https://www.tensorflow.org/guide/summaries_and_tensorboard
https://www.tensorflow.org/guide/summaries_and_tensorboard
https://www.tensorflow.org/guide/summaries_and_tensorboard
https://www.tensorflow.org/guide/summaries_and_tensorboard
https://www.tensorflow.org/guide/summaries_and_tensorboard
https://www.tensorflow.org/guide/summaries_and_tensorboard
https://www.tensorflow.org/guide/summaries_and_tensorboard
https://www.tensorflow.org/guide/summaries_and_tensorboard

3
Solving Problems with Dynamic

Programming
The purposes of this chapter are manifold. We will introduce many topics that are essential
to the understanding of reinforcement problems and the first algorithms that are used to
solve them. Whereas, in the previous chapters, we talked about reinforcement learning
(RL) from a broad and non-technical point of view, here, we will formalize this
understanding to develop the first algorithms to solve a simple game.

The RL problem can be formulated as a Markov decision process (MDP), a framework that
provides a formalization of the key elements of RL, such as value functions and the
expected reward. RL algorithms can then be created using these mathematical components.
They differ from each other by how these components are combined and on the
assumptions made while designing them.

For this reason, as we'll see in this chapter, RL algorithms can be categorized into three
main categories that can overlap each other. This is because some algorithms can unify
characteristics from more than one category. Once these pivotal concepts have been
explained, we'll present the first type of algorithm, called dynamic programming, which
can solve problems when given complete information about the environment.

The following topics will be covered in this chapter:

MDP
Categorizing RL algorithms
Dynamic programming

Solving Problems with Dynamic Programming Chapter 3

[52]

MDP
An MDP expresses the problem of sequential decision-making, where actions influence the
next states and the results. MDPs are general and flexible enough to provide a
formalization of the problem of learning a goal through interactions, the same problem that
is addressed with RL. Thus we can express and reason with RL problems in terms of MDPs.

An MDP is four-tuple (S,A,P,R):

S is the state space, with a finite set of states.
A is the action space, with a finite set of actions.
P is a transition function, which defines the probability of reaching a state,
s′, from s through an action, a. In P(s′, s, a) = p(s′| s, a), the transition function is
equal to the conditional probability of s′ given s and a.
R is the reward function, which determines the value received for transitioning to
state s′ after taking action a from state s.

An illustration of an MDP is given in the following diagram. The arrows represent the
transitions between two states, with the transition probabilities attached to the tail of the
arrows and the rewards on the body of the arrows. For their properties, the transition
probabilities of a state must add up to 1. In this example, the final state is represented with
a square (state S5) and for simplicity, we have represented an MDP with a single action:

Figure 3.1 Example of an MDP with five states and one action

Solving Problems with Dynamic Programming Chapter 3

[53]

The MDP is controlled by a sequence of discrete time steps that create a trajectory of states
and actions (S0, A0, S1, A1, ...), where the states follow the dynamics of the MDP, namely the
state transition function, p(s′|s, a). In this way, the transition function fully characterizes the
environment's dynamics.

By definition, the transition function and the reward function are determined only by the
current state, and not from the sequence of the previous states visited. This property is
called the Markov property, which means that the process is memory-less and the future
state depends only on the current one, and not on its history. Thus, a state holds all the
information. A system with such a property is called fully observable.

In many practical RL cases, the Markov property does not hold up, and for practicality, we
can get around the problem by assuming it is an MDP and using a finite number of
previous states (a finite history): St, St-1, St-2, ..., St-k. In this case, the system is partially
observable and the states are called observations. We'll use this strategy in the Atari
games, where we'll use row pixels as the input of the agent. This is because the single frame
is static and does not carry information about the speed or direction of the objects. Instead,
these values can be retrieved using the previous three or four frames (it is still an
approximation).

The final objective of an MDP is to find a policy, π, that maximizes the cumulative reward,

, where Rπ is the reward obtained at each step by following the policy, π.
A solution of an MDP is found when a policy takes the best possible action in each state of
the MDP. This policy is known as the optimal policy.

Policy
The policy chooses the actions to be taken in a given situation and can be categorized as
deterministic or stochastic.

A deterministic policy is denoted as at = µ(st), while a stochastic policy can be denoted as at

~ π(.|st), where the tilde symbol (~) means has distribution. Stochastic policies are used
when it is better to consider an action distribution; for example, when it is preferable to
inject a noisy action into the system.

Generally, stochastic policies can be categorical or Gaussian. The former case is similar to a
classification problem and is computed as a softmax function across the categories. In the
latter case, the actions are sampled from a Gaussian distribution, described by a mean and a
standard deviation (or variance). These parameters can also be functions of states.

Solving Problems with Dynamic Programming Chapter 3

[54]

When using parameterized policies, we'll define them with the letter θ. For example, in the
case of a deterministic policy, it would be written as µθ (st).

Policy, decision-maker, and agent are three terms that express the same
concept, so, in this book, we'll use these terms interchangeably.

Return
When running a policy in an MDP, the sequence of state and action (S0, A0, S1, A1, ...) is
called trajectory or rollout, and is denoted by . In each trajectory, a sequence of rewards
will be collected as a result of the actions. A function of these rewards is called return and
in its most simplified version, it is defined as follows:

At this point, the return can be analyzed separately for trajectories with infinite and finite
horizons. This distinction is needed because in the case of interactions within an
environment that do not terminate, the sum previously presented will always have an
infinite value. This situation is dangerous because it doesn't provide any information. Such
tasks are called continuing tasks and need another formulation of the reward. The best
solution is to give more weight to the short-term rewards while giving less importance to
those in the distant future. This is accomplished by using a value between 0 and 1 called
the discount factor denoted with the symbol λ. Thus, the return G can be reformulated as
follows:

This formula can be viewed as a way to prefer actions that are closer in time with respect to
those that will be encountered in the distant future. Take this example—you win the lottery
and you can decide when you would like to collect the prize. You would probably prefer to
collect it within a few days rather than in a few years. is the value that defines how long
you are willing to wait to collect the prize. If , that means that you are not bothered
about when you collect the prize. If , that means that you want it immediately.

Solving Problems with Dynamic Programming Chapter 3

[55]

In cases of trajectories with a finite horizon, meaning trajectories with a natural ending,
tasks are called episodic (it derives from the term episode, which is another word for
trajectory). In episodic tasks, the original formula (1) works, but nevertheless, it is preferred
to have a variation of it with the discount factor:

With a finite but long horizon, the use of a discount factor increases the stability of
algorithms, considering that long future rewards are only partially considered. In practice,
discount factor values between 0.9 and 0.999 are used.

A trivial but very useful decomposition of formula (3) is the definition of return in terms of
the return at timestep t + 1:

When simplifying the notation, it becomes the following:

Then, using the return notation, we can define the goal of RL to find an optimal policy, ,
that maximizes the expected return as , where is the expected
value of a random variable.

Value functions
The return provides a good insight into the trajectory's value, but still, it doesn't give
any indication of the quality of the single states visited. This quality indicator is important
because it can be used by the policy to choose the next best action. The policy has to just
choose the action that will result in the next state with the highest quality. The value
function does exactly this: it estimates the quality in terms of the expected return from a
state following a policy. Formally, the value function is defined as follows:

Solving Problems with Dynamic Programming Chapter 3

[56]

The action-value function, similar to the value function, is the expected return from a state
but is also conditioned on the first action. It is defined as follows:

The value function and action-value function are also called the V-function and Q-
function respectively, and are strictly correlated with each other since the value function
can also be defined in terms of the action-value function:

Knowing the optimal , the optimal value function is as follows:

That's because the optimal action is .

Bellman equation
V and Q can be estimated by running trajectories that follow the policy, , and then
averaging the values obtained. This technique is effective and is used in many contexts, but
is very expensive considering that the return requires the rewards from the full trajectory.

Luckily, the Bellman equation defines the action-value function and the value function
recursively, enabling their estimations from subsequent states. The Bellman equation does
that by using the reward obtained in the present state and the value of its successor state.
We already saw the recursive formulation of the return (in formula (5)) and we can apply it
to the state value:

Solving Problems with Dynamic Programming Chapter 3

[57]

Similarly, we can adapt the Bellman equation for the action-value function:

Now, with (6) and (7), and are updated only with the values of the successive states,
without the need to unroll the trajectory to the end, as required in the old definition.

Categorizing RL algorithms
Before deep diving into the first RL algorithm that solves the optimal Bellman equation, we
want to give a broad but detailed overview of RL algorithms. We need to do this because
their distinctions can be quite confusing. There are many parts involved in the design of
algorithms, and many characteristics have to be considered before deciding which
algorithm best fits the actual needs of the user. The scope of this overview presents the big
picture of RL so that in the next chapters, where we'll give a comprehensive theoretical and
practical view of these algorithms, you will already see the general objective and have a
clear idea of their location in the map of RL algorithms.

The first distinction is between model-based and model-free algorithms. As the name
suggests, the first requires a model of the environment, while the second is free from this
condition. The model of the environment is highly valuable because it carries precious
information that can be used to find the desired policies; however, in most cases, the model
is almost impossible to obtain. For example, it can be quite easy to model the game tic-tac-
toe, while it can be difficult to model the waves of the sea. To this end, model-free
algorithms can learn information without any assumptions about the environment. A
representation of the categories of RL algorithms is visible in figure 3.2.

Solving Problems with Dynamic Programming Chapter 3

[58]

Here the distinction is shown between model-based and model-free, and two widely
known model-free approaches, namely policy gradient and value-based. Also, as we'll see
in later chapters, a combination of those is possible:

Figure 3.2. Categorization of RL algorithms

The first distinction is between model-free and model-based. Model-free RL algorithms can
be further decomposed in policy gradient and value-based algorithms. Hybrids are
methods that combine important characteristics of both methods.

Model-free algorithms
In the absence of a model, model-free (MF) algorithms run trajectories within a given
policy to gain experience and to improve the agent. MF algorithms are made up of three
main steps that are repeated until a good policy is created:

The generation of new samples by running the policy in the environment. The1.
trajectories are run until a final state is reached or for a fixed number of steps.
The estimation of the return function.2.
The improvement of the policy using the samples collected, and the estimation3.
done in step 2.

Solving Problems with Dynamic Programming Chapter 3

[59]

These three components are at the heart of this type of algorithm, but based on how each
step is performed, they generate different algorithms. Value-based algorithms and policy
gradient algorithms are two such examples. They seem to be very different, but they are
based on similar principles and both use the three-step approach.

Value-based algorithms
Value-based algorithms, also known as value function algorithms, use a paradigm that's
very similar to the one we saw in the previous section. That is, they use the Bellman
equation to learn the Q-function, which in turn is used to learn a policy. In the most
common setting, they use deep neural networks as a function approximator and other
tricks to deal with high variance and general instabilities. To a certain degree, value-based
algorithms are closer to supervised regression algorithms.

Typically, these algorithms are off-policy, meaning they are not required to optimize the
same policy that was used to generate the data. This means that these methods can learn
from previous experience, as they can store the sampled data in a replay buffer. The ability
to use previous samples makes the value function more sample-efficient than other model-
free algorithms.

Policy gradient algorithms
The other family of MF algorithms is that of the policy gradient methods (or policy
optimization methods). They have a more direct and obvious interpretation of the RL
problem, as they learn directly from a parametric policy by updating the parameters in the
direction of the improvements. It's based on the RL principle that good actions should be
encouraged (by boosting the gradient of the policy upward) while discouraging bad
actions.

Contrary to value function algorithms, policy optimization mainly requires on-policy data,
making these algorithms more sample inefficient. Policy optimization methods can be
quite unstable due to the fact that taking the steepest ascent in the presence of surfaces with
high curvature can easily result in moving too far in any given direction, falling down into
a bad region. To address this problem, many algorithms have been proposed, such as
optimizing the policy only within a trust region, or optimizing a surrogate clipped objective
function to limit changes to the policy.

A major advantage of policy gradient methods is that they easily handle environments with
continuous action spaces. This is a very difficult thing to approach with value function
algorithms as they learn Q-values for discrete pairs of states and actions.

Solving Problems with Dynamic Programming Chapter 3

[60]

Actor-Critic algorithms
Actor-Critic (AC) algorithms are on-policy policy gradient algorithms that also learn a
value function (generally a Q-function) called a critic to provide feedback to the policy, the
actor. Imagine that you, the actor, want to go to the supermarket via a new route.
Unfortunately, before arriving at the destination, your boss calls you requiring you to go
back to work. Because you didn't reach the supermarket, you don't know if the new road is
actually faster than the old one. But if you reached a familiar location, you can estimate the
time you'll need to go from there to the supermarket and calculate whether the new path is
preferable. This estimate is what the critic does. In this way, you can improve the actor even
though you didn't reach the final goal.

Combining a critic with an actor has been shown to be very effective and is commonly used
in policy gradient algorithms. This technique can also be combined with other ideas used in
policy optimization, such as trust-region algorithms.

Hybrid algorithms
Advantages of both value functions and policy gradient algorithms can be merged, creating
hybrid algorithms that can be more sample efficient and robust.

Hybrid approaches combine Q-functions and policy gradients to symbiotically and
mutually improve each other. These methods estimate the expected Q-function of
deterministic actions to directly improve the policy.

Be aware that because AC algorithms learn and use a value function, they
are categorized as policy gradients and not as hybrid algorithms. This is
because the main underlying objective is that of policy gradient methods.
The value function is only an upgrade to provide additional information.

Model-based RL
Having a model of the environment means that the state transitions and the rewards can be
predicted for each state-action tuple (without any interaction with the real environment).
As we already mentioned, the model is known only in limited cases, but when it is known,
it can be used in many different ways. The most obvious application of the model is to use
it to plan future actions. Planning is a concept used to express the organization of future
moves when the consequences of the next actions are already known. For example, if you
know exactly what moves your enemy will make, you can think ahead and plan all your
actions before executing the first one. As a downside, planning can be very expensive and
isn't a trivial process.

Solving Problems with Dynamic Programming Chapter 3

[61]

A model can also be learned through interactions with the environment, assimilating the
consequences (both in terms of the states and rewards) of an action. This solution is not
always the best one because teaching a model could be terribly expensive in the real world.
Moreover, if only a rough approximation of the environment is understood by the model, it
could lead to disastrous results.

A model, whether known or learned, can be used both to plan and to improve the policy,
and can be integrated into different phases of an RL algorithm. Well-known cases of model-
based RL involve pure planning, embedded planning to improve the policy, and generated
samples from an approximate model.

A set of algorithms that use a model to estimate a value function is called dynamic
programming (DP) and will be studied later in this chapter.

Algorithm diversity
Why are there so many types of RL algorithms? This is because there isn't one that is better
than all the others in every context. Each one is designed for different needs and to take
care of different aspects. The most notable differences are stability, sample efficiency, and
wall clock time (training time). These will be more clear as we progress through the book
but as a rule of thumb, policy gradient algorithms are more stable and reliable than value
function algorithms. On the other hand, value function methods are more sample efficient
as they are off-policy and can use prior experience. In turn, model-based algorithms are
more sample efficient than Q-learning algorithms but their computational cost is much
higher and they are slower.

Besides the ones just presented, there are other trade-offs that have to be taken into
consideration while designing and deploying an algorithm (such as ease of use and
robustness), which is not a trivial process.

Dynamic programming
DP is a general algorithmic paradigm that breaks up a problem into smaller chunks of
overlapping subproblems, and then finds the solution to the original problem by combining
the solutions of the subproblems.

DP can be used in reinforcement learning and is among one of the simplest approaches. It is
suited to computing optimal policies by being provided with a perfect model of the
environment.

Solving Problems with Dynamic Programming Chapter 3

[62]

DP is an important stepping stone in the history of RL algorithms and provides the
foundation for the next generation of algorithms, but it is computationally very expensive.
DP works with MDPs with a limited number of states and actions as it has to update the
value of each state (or action-value), taking into consideration all the other possible states.
Moreover, DP algorithms store value functions in an array or in a table. This way of storing
information is effective and fast as there isn't any loss of information, but it does require the
storage of large tables. Since DP algorithms use tables to store value functions, it is called
tabular learning. This is opposed to approximated learning, which uses approximated
value functions to store the values in a fixed size function, such as an artificial neural
network.

DP uses bootstrapping, meaning that it improves the estimation value of a state by using
the expected value of the following states. As we have already seen, bootstrapping is used
in the Bellman equation. Indeed, DP applies the Bellman equations, (6) and (7), to estimate

 and/or . This can be done using the following:

Or by using the Q-function:

Then, once the optimal value and action-value function are found, the optimal policy can be
found by just taking the actions that maximize the expectation.

Policy evaluation and policy improvement
To find the optimal policy, you first need to find the optimal value function. An iterative
procedure that does this is called policy evaluation—it creates a sequence that
iteratively improves the value function for a policy, , using the state value transition of the
model, the expectation of the next state, and the immediate reward. Therefore, it creates a
sequence of improving value functions using the Bellman equation:

Solving Problems with Dynamic Programming Chapter 3

[63]

This sequence will converge to the optimal value as . Figure 3.3 shows the update of
 using the successive state values:

Figure 3.3. The update of using formula (8)

The value function (8) can be updated only if the state transition function, p, and the
reward function, r, for every state and action are known, so only if the model of the
environment is completely known.

Note that the first summation of the actions in (8) is needed for stochastic policies because
the policy outputs a probability for each action. For simplicity from now on, we'll consider
only deterministic policies.

Once the value functions are improved, it can be used to find a better policy. This
procedure is called policy improvement and is about finding a policy, , as follows:

Solving Problems with Dynamic Programming Chapter 3

[64]

It creates a policy, , from the value function, , of the original policy, . As can be
formally demonstrated, the new policy, , is always better than , and the policy is
optimal if and only if is optimal. The combination of policy evaluation and policy
improvement gives rise to two algorithms to compute the optimal policy. One is called
policy iteration and the other is called value iteration. Both use policy evaluation
to monotonically improve the value function and policy improvement to estimate the new
policy. The only difference is that policy iteration executes the two phases cyclically, while
value iteration combines them in a single update.

Policy iteration
Policy iteration cycles between policy evaluation, which updates under the current
policy, , using formula (8), and policy improvement (9), which computes using the
improved value function, . Eventually, after cycles, the algorithm will result in an
optimal policy, .

The pseudocode is as follows:

Initialize and for every state

while is not stable:

 > policy evaluation

 while is not stable:
 for each state s:

 > policy improvement
 for each state s:

After an initialization phase, the outer loop iterates through policy evaluation and policy
iteration until a stable policy is found. On each of these iterations, policy evaluation
evaluates the policy found during the preceding policy improvement steps, which in turn
use the estimated value function.

Solving Problems with Dynamic Programming Chapter 3

[65]

Policy iteration applied to FrozenLake
To consolidate the ideas behind policy iteration, we'll apply it to a game called FrozenLake.
Here, the environment consists of a 4 x 4 grid. Using four actions that correspond to the
directions (0 is left, 1 is down, 2 is right, and 3 is up), the agent has to move to the opposite
side of the grid without falling in the holes. Moreover, movement is uncertain, and the
agent has the possibility of movement in other directions. So, in such a situation, it could be
beneficial not to move in the intended direction. A reward of +1 is assigned when the end
goal is reached. The map of the game is shown in figure 3.4. S is the start position, the star is
the end position, and the spirals are the holes:

Figure 3.4 Map of the FrozenLake game

With all the tools needed, let's see how to solve it.

All the code explained in this chapter is available on the GitHub
repository of this book, using the following link: https:/ /https:/ /
github. com/ PacktPublishing/ Reinforcement- Learning- Algorithms-
with- Python

First, we have to create the environment, initializing the value function and the policy:

env = gym.make('FrozenLake-v0')
env = env.unwrapped
nA = env.action_space.n
nS = env.observation_space.n
V = np.zeros(nS)
policy = np.zeros(nS)

Then, we have to create the main cycle that does one step of policy evaluation and one step
of policy improvement. This cycle finishes whenever the policy is stable. To do this, use the
following code:

policy_stable = False
it = 0
while not policy_stable:
 policy_evaluation(V, policy)
 policy_stable = policy_improvement(V, policy)
 it += 1

https://github.com/PacktPublishing/Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Reinforcement-Learning-Algorithms-with-Python

Solving Problems with Dynamic Programming Chapter 3

[66]

In the end, we can print the number of iterations completed, the value function, the policy,
and the score reached running some test games:

print('Converged after %i policy iterations'%(it))
run_episodes(env, V, policy)
print(V.reshape((4,4)))
print(policy.reshape((4,4)))

Now, before defining policy_evaluation, we can create a function to evaluate the
expected action-value that will also be used in policy_improvement:

def eval_state_action(V, s, a, gamma=0.99):
 return np.sum([p * (rew + gamma*V[next_s]) for p, next_s, rew, _ in
env.P[s][a]])

Here, env.P is a dictionary that contains all the information about the dynamics of the
environment.

gamma is the discount factor, with 0.99 being a standard value to use for simple and
medium difficulty problems. The higher it is, the more difficult it is for the agent to predict
the value of a state because it should look further into the future.

Next, we can define the policy_evaluation function. policy_evaluation has to
calculate formula (8) under the current policy for every state until it reaches steady values.
Because the policy is deterministic, we only evaluate one action:

def policy_evaluation(V, policy, eps=0.0001):
 while True:
 delta = 0
 for s in range(nS):
 old_v = V[s]
 V[s] = eval_state_action(V, s, policy[s])
 delta = max(delta, np.abs(old_v - V[s]))
 if delta < eps:
 break

We consider the value function stable whenever delta is lower than the threshold, eps.
When these conditions are met, the while loop statement is stopped.

policy_improvement takes the value function and the policy and iterates them across all
of the states to update the policy based on the new value function:

def policy_improvement(V, policy):
 policy_stable = True
 for s in range(nS):
 old_a = policy[s]
 policy[s] = np.argmax([eval_state_action(V, s, a) for a in

Solving Problems with Dynamic Programming Chapter 3

[67]

range(nA)])
 if old_a != policy[s]:
 policy_stable = False
 return policy_stable

policy_improvement(V, policy) returns False until the policy changes. That's
because it means that the policy isn't stable yet.

The final snippet of code runs some games to test the new policy and prints the number of
games won:

def run_episodes(env, V, policy, num_games=100):
 tot_rew = 0
 state = env.reset()
 for _ in range(num_games):
 done = False
 while not done:
 next_state, reward, done, _ = env.step(policy[state])
 state = next_state
 tot_rew += reward
 if done:
 state = env.reset()
 print('Won %i of %i games!'%(tot_rew, num_games))

That's it.

It converges in about 7 iterations and wins approximately 85% of games:

Figure 3.5 Results of the FrozenLake game. The optimal policy is on the left and the optimal state values are on the right

The policy resulting from the code is shown on the left of figure 3.5. You can see that it
takes strange directions, but it's only because it follows the dynamics of the environment.
On the right of figure 3.5, the final state's values are presented.

Solving Problems with Dynamic Programming Chapter 3

[68]

Value iteration
Value iteration is the other dynamic programming algorithm to find optimal values in an
MDP, but unlike policy iterations that execute policy evaluations and policy iterations in a
loop, value iteration combines the two methods in a single update. In particular, it updates
the value of a state by selecting the best action immediately:

The code for value iteration is even simpler than the policy iteration code, summarized in
the following pseudocode:

Initialize for every state

while is not stable:
 > value iteration
 for each state s:

> compute the optimal policy:

The only difference is in the new value estimation update and in the absence of a proper
policy iteration module. The resulting optimal policy is as follows:

Value iteration applied to FrozenLake
We can now apply value iteration to the FrozenLake game in order to compare the two DP
algorithms and to see whether they converge to the same policy and value function.

Solving Problems with Dynamic Programming Chapter 3

[69]

Let's define eval_state_action as before to estimate the action state value for a state-
action pair:

def eval_state_action(V, s, a, gamma=0.99):
 return np.sum([p * (rew + gamma*V[next_s]) for p, next_s, rew, _ in
env.P[s][a]])

Then, we create the main body of the value iteration algorithm:

def value_iteration(eps=0.0001):
 V = np.zeros(nS)
 it = 0
 while True:
 delta = 0
 # update the value for each state
 for s in range(nS):
 old_v = V[s]
 V[s] = np.max([eval_state_action(V, s, a) for a in range(nA)])
equation 3.10
 delta = max(delta, np.abs(old_v - V[s]))
 # if stable, break the cycle
 if delta < eps:
 break
 else:
 print('Iter:', it, ' delta:', np.round(delta,5))
 it += 1
 return V

It loops until it reaches a steady value function (determined by the threshold, eps) and for
each iteration, it updates the value of each state using formula (10).

As for the policy iteration, run_episodes executes some games to test the policy. The only
difference is that in this case, the policy is determined at the same time that run_episodes
is executed (for policy iteration, we defined the action for every state beforehand):

def run_episodes(env, V, num_games=100):
 tot_rew = 0
 state = env.reset()

 for _ in range(num_games):
 done = False

 while not done:
 # choose the best action using the value function
 action = np.argmax([eval_state_action(V, state, a) for a in
range(nA)]) #(11)
 next_state, reward, done, _ = env.step(action)

Solving Problems with Dynamic Programming Chapter 3

[70]

 state = next_state
 tot_rew += reward
 if done:
 state = env.reset()

 print('Won %i of %i games!'%(tot_rew, num_games))

Finally, we can create the environment, unwrap it, run the value iteration, and execute
some test games:

env = gym.make('FrozenLake-v0')
env = env.unwrapped

nA = env.action_space.n
nS = env.observation_space.n

V = value_iteration(eps=0.0001)
run_episodes(env, V, 100)
print(V.reshape((4,4)))

The output will be similar to the following:

Iter: 0 delta: 0.33333
Iter: 1 delta: 0.1463
Iter: 2 delta: 0.10854
...
Iter: 128 delta: 0.00011
Iter: 129 delta: 0.00011
Iter: 130 delta: 0.0001
Won 86 of 100 games!
[[0.54083394 0.49722378 0.46884941 0.45487071]
 [0.55739213 0. 0.35755091 0.]
 [0.5909355 0.64245898 0.61466487 0.]
 [0. 0.74129273 0.86262154 0.]]

The value iteration algorithm converges after 130 iterations. The resulting value function
and policy are the same as the policy iteration algorithm.

Solving Problems with Dynamic Programming Chapter 3

[71]

Summary
An RL problem can be formalized as an MDP, providing an abstract framework for
learning goal-based problems. An MDP is defined by a set of states, actions, rewards, and
transition probabilities, and solving an MDP means finding a policy that maximizes the
expected reward in each state. The Markov property is intrinsic to the MDP and ensures
that the future states depend only on the current one, not on its history.

Using the definition of MDP, we formulated the concepts of policy, return function,
expected return, action-value function, and value function. The latter two can be defined in
terms of the values of the subsequent states, and the equations are called Bellman
equations. These equations are useful because they provide a method to compute value
functions in an iterative way. The optimal value functions can then be used to find the
optimal policy.

RL algorithms can be categorized as model-based or model-free. While the former requires
a model of the environment to plan the next actions, the latter is independent of the model
and can learn by direct interaction with the environment. Model-free algorithms can be
further divided into policy gradient and value function algorithms. Policy gradient
algorithms learn directly from the policy through gradient ascent and are typically on-
policy. Value function algorithms are usually off-policy, and learn an action-value function
or value function in order to create the policy. These two methods can be brought together
to give rise to methods that combine the advantages of both worlds.

DP is the first set of model-based algorithms that we looked at in depth. It is used whenever
the full model of the environment is known and when it is constituted by a limited number
of states and actions. DP algorithms use bootstrapping to estimate the value of a state and
they learn the optimal policy through two processes: policy evaluation and policy
improvement. Policy evaluation computes the state value function for an arbitrary policy,
while policy improvement improves the policy using the value function obtained from the
policy evaluation process.

By combining policy improvement and policy evaluation, the policy iteration algorithm
and the value iteration algorithm can be created. The main difference between the two is
that while policy iteration runs iteratively of policy evaluation and policy improvement,
value iteration combines the two processes in a single update.

Though DP suffers from the curse of dimensionality (the complexity grows exponentially
with the number of states), the ideas behind policy evaluation and policy iteration are key
in almost all RL algorithms because they use a generalized version of them.

Solving Problems with Dynamic Programming Chapter 3

[72]

Another disadvantage of DP is that it requires the exact model of the environment, limiting
its applicability to many other problems.

In the next chapter, you'll see how V-functions and Q-functions can be used to learn a
policy, using problems where the model is unknown by sampling directly from the
environment.

Questions
What's an MDP?1.
What's a stochastic policy?2.
How can a return function be defined in terms of the return at the next time step?3.
Why is the Bellman equation so important?4.
What are the limiting factors of DP algorithms?5.
What is policy evaluation?6.
How do policy iteration and value iteration differ?7.

Further reading
Sutton and Barto, Reinforcement Learning, Chapters 3 and 4

2
Section 2: Model-Free RL

Algorithms
This section introduces model-free RL algorithms, value-based methods, and policy
gradient methods. You will also develop many state-of-the-art algorithms.

This section includes the following chapters:

Chapter 4, Q-Learning and SARSA Applications
Chapter 5, Deep Q-Network
Chapter 6, Learning Stochastic and PG Optimization
Chapter 7, TRPO and PPO Implementation
Chapter 8, DDPG and TD3 Applications

4
Q-Learning and SARSA

Applications
Dynamic programming (DP) algorithms are effective for solving reinforcement learning
(RL) problems, but they require two strong assumptions. The first is that the model of the
environment has to be known, and the second is that the state space has to be small enough
so that it does not suffer from the curse of dimensionality problem.

In this chapter, we'll develop a class of algorithms that get rid of the first assumption. In
addition, it is a class of algorithms that aren't affected by the problem of the curse of
dimensionality of DP algorithms. These algorithms learn directly from the environment
and from the experience, estimating the value function based on many returns, and do not
compute the expectation of the state values using the model, in contrast with DP
algorithms. In this new setting, we'll talk about experience as a way to learn
value functions. We'll take a look at the problems that arise from learning a policy through
mere interactions with the environment and the techniques that can be used to solve them.
After a brief introduction to this new approach, you'll learn about temporal difference
(TD) learning, a powerful way to learn optimal policies from experience. TD learning uses
ideas from DP algorithms while using only information gained from interactions with the
environment. Two temporal difference learning algorithms are SARSA and Q-learning.
Though they are very similar and both guarantee convergence in tabular cases, they have
interesting differences that are worth acknowledging. Q-learning is a key algorithm, and
many state-of-the-art RL algorithms combined with other techniques use this method, as
we will see in later chapters.

Q-Learning and SARSA Applications Chapter 4

[75]

To gain a better grasp on TD learning and to understand how to move from theory to
practice, you'll implement Q-learning and SARSA in a new game. Then, we'll elaborate on
the difference between the two algorithms, both in terms of their performance and use.

The following topics will be covered in this chapter:

Learning without a model
TD learning
SARSA
Applying SARSA to Taxi-v2
Q-learning
Applying Q-learning to Taxi-v2

Learning without a model
By definition, the value function of a policy is the expected return (that is, the sum of
discounted rewards) of that policy starting from a given state:

Following the reasoning of Chapter 3, Solving Problems with Dynamic Programming, DP
algorithms update state values by computing expectations for all the next states of their
values:

Unfortunately, computing the value function means that you need to know the state
transition probabilities. In fact, DP algorithms use the model of the environment to obtain
those probabilities. But the major concern is what to do when it's not available. The best
answer is to gain all the information by interacting with the environment. If done well, it
works because by sampling from the environment a substantial number of times, you
should able to approximate the expectation and have a good estimation of the value
function.

Q-Learning and SARSA Applications Chapter 4

[76]

User experience
Now, the first thing we need to clarify is how to sample from the environment, and how to
interact with it to get usable information about its dynamics:

Figure 4.1. A trajectory that starts from state

Q-Learning and SARSA Applications Chapter 4

[77]

The simple way to do this is to execute the current policy until the end of the episode. You
would end up with a trajectory as shown in figure 4.1. Once the episode terminates, the
return values can be computed for each state by backpropagating upward the sum of the
rewards, . Repeating this process multiple times (that is, running multiple
trajectories) for every state would have multiple return values. The return values are
then averaged for each state to compute the expected returns. The expected returns
computed in such a way is an approximated value function. The execution of a policy until
a terminal state is called a trajectory or an episode. The more trajectories are run, the more
returns are observed and by the law of large numbers, the average of these estimations will
converge to the expected value.

Like DP, the algorithms that learn a policy by direct interaction with the environment rely
on the concepts of policy evaluation and policy improvement. Policy evaluation is the act of
estimating the value function of a policy, while policy improvement uses the estimates
made in the previous phase to improve the policy.

Policy evaluation
We just saw how using real experience to estimate the value function is an easy process. It
is about running the policy in an environment until a final state is reached, then computing
the return value and averaging the sampled return, as can be seen in equation (1):

Thus the expected return of a state can be approximated from the experience by averaging
the sampling episodes from that state. The methods that estimate the return function using
(1) are called Monte Carlo methods. Until all of the state-action pairs are visited and
enough trajectory has been sampled, Monte Carlo methods guarantee convergence to the
optimal policy.

The exploration problem
How can we guarantee that every action of each state is chosen? And why is that so
important? We will first answer the latter question, and then show how we can (at least in
theory) explore the environment to reach every possible state.

Q-Learning and SARSA Applications Chapter 4

[78]

Why explore?
The trajectories are sampled following a policy that can be stochastic or deterministic. In the
case of a deterministic policy, each time a trajectory is sampled, the visited states will
always be the same, and the update of the value function will take into account only this
limited set of states. This will considerably limit your knowledge about the environment. It
is like learning from a teacher that never changes their opinion on a subject—you will be
stuck with those ideas without learning about others.

Thus the exploration of the environment is crucial if you want to achieve good results, and
it ensures that there are no better policies that could be found.

On the other hand, if a policy is designed in such a way that it explores the environment
constantly without taking into consideration what has already been learned, the
achievement of a good policy is very difficult, perhaps even impossible. This balance
between exploration and exploitation (behaving according to the best policy currently
available) is called the exploration-exploitation dilemma and will be considered in greater
detail in Chapter 12, Developing an ESBAS Algorithm.

How to explore
A very effective method that can be used when dealing with such situations is called -
greedy exploration. It is about acting randomly with probability while acting greedily
(that means choosing the best action) with probability . For example, if , on
average, for every 10 actions, the agent will act randomly 8 times.

To avoid exploring too much in later stages when the agent is confident about its
knowledge, can decrease over time. This strategy is called epsilon-decay. With this
variation, an initial stochastic policy will gradually converge to a deterministic and,
hopefully, optimal policy.

There are many other exploration techniques (such as Boltzmann exploration) that are more
accurate, but they are also quite complicated, and for the purpose of this chapter, -greedy
is a perfect choice.

Q-Learning and SARSA Applications Chapter 4

[79]

TD learning
Monte Carlo methods are a powerful way to learn directly by sampling from the
environment, but they have a big drawback—they rely on the full trajectory. They have to
wait until the end of the episode, and only then can they update the state values. Therefore,
a crucial factor is knowing what happens when the trajectory has no end, or if it's very long.
The answer is that it will produce terrifying results. A similar solution to this problem has
already come up in DP algorithms, where the state values are updated at each step, without
waiting until the end. Instead of using the complete return accumulated during the
trajectory, it just uses the immediate reward and the estimate of the next state value. A
visual example of this update is given in figure 4.2 and shows the parts involved in a single
step of learning. This technique is called bootstrapping, and it is not only useful for long or
potentially infinite episodes, but for episodes of any length. The first reason for this is that it
helps to decrease the variance of the expected return. The variance is decreased because the
state values depend only on the immediate next reward and not on all the rewards of the
trajectory. The second reason is that the learning process takes place at every step, making
these algorithms learn online. For this reason, it is called one-step learning. In contrast,
Monte Carlo methods are offline as they use the information only after the conclusion of the
episode. Methods that learn online using bootstrapping are called TD learning methods.

Figure 4.2. One-step learning update with bootstrapping

TD learning can be viewed as a combination of Monte Carlo methods and DP because they
use the idea of sampling from the former and the idea of bootstrapping from the latter. TD
learning is widely used all across RL algorithms, and it constitutes the core of many of these
algorithms. The algorithms that will be presented later in this chapter (namely SARSA and
Q-learning) are all one-step, tabular, model-free (meaning that they don't use the model of
the environment) TD methods.

Q-Learning and SARSA Applications Chapter 4

[80]

TD update
From the previous chapter, Solving Problems with Dynamic Programming we know the
following:

Empirically, the Monte Carlo update estimates this value by averaging returns from
multiple full trajectories. Developing the equation further, we obtain the following:

The preceding equation is approximated by the DP algorithms. The difference is that TD
algorithms estimate the expected value instead of computing it. The estimate is done in the
same way as Monte Carlo methods do, by averaging:

In practice, instead of calculating the average, the TD update is carried out by improving
the state value by a small amount toward the optimal value:

 is a constant that establishes how much the state value should change at each update. If
, then the state value will not change at all. Instead, if , the state value will be

equal to (called the TD target) and it will completely forget the previous value.
In practice, we don't want these extreme cases, and usually ranges from 0.5 to 0.001.

Q-Learning and SARSA Applications Chapter 4

[81]

Policy improvement
TD learning converges to the optimal condition as long as each action of every state has a
probability of greater than zero of being chosen. To satisfy this requirement, TD methods,
as we saw in the previous section, have to explore the environment. Indeed, the exploration
can be carried out using an -greedy policy. It makes sure that both greedy actions and
random actions are chosen in order to ensure both the exploitation and exploration of the
environment.

Comparing Monte Carlo and TD
An important of both Monte Carlo TD methods is that they converge to an optimal solution
as long as they deal with tabular cases (meaning that state values are stored in tables or
arrays) and have an exploratory strategy. Nonetheless, they differ in the way they update
the value function. Overall, TD learning has lower variance but suffers from a higher bias
than Monte Carlo learning. In addition to this, TD methods are generally faster in practice
and are preferred to Monte Carlo methods.

SARSA
So far, we have presented TD learning as a general way to estimate a value function for a
given policy. In practice, TD cannot be used as it is because it lacks the primary component
to actually improve the policy. SARSA and Q-learning are two one-step, tabular TD
algorithms that both estimate the value functions and optimize the policy, and that can
actually be used in a great variety of RL problems. In this section, we will use SARSA to
learn an optimal policy for a given MDP. Then, we'll introduce Q-learning.

A concern with TD learning is that it estimates the value of a state. Think about that. In a
given state, how can you choose the action with the highest next state value? Earlier, we
said that you should pick the action that will move the agent to the state with the highest
value. However, without a model of the environment that provides a list of the possible
next states, you cannot know which action will move the agent to that state. SARSA,
instead of learning the value function, learns and applies the state-action function, .
tells the value of a state, , if the action, , is taken.

Q-Learning and SARSA Applications Chapter 4

[82]

The algorithm
Basically, all the observations we have done for the TD update are also valid for SARSA.
Once we apply them to the definition of Q-function, we obtain the SARSA update:

 is a coefficient that determines how much the action value has been updated. is the
discount factor, a coefficient between 0 and 1 used to give less importance to the values that
come from distant future decisions (short-term actions are preferred to long-term ones). A
visual interpretation of the SARSA update is given in figure 4.3.

The name SARSA comes from the update that is based on the state, ; the
action, , the reward, ; the next state, ; and finally, the next action, . Putting
everything together, it forms , as can be seen in figure 4.3:

Figure 4.3 SARSA update

SARSA is an on-policy algorithm. On-policy means that the policy that is used to collect
experience through interaction with the environment (called a behavior policy) is the same
policy that is updated. The on-policy nature of the method is due to the use of the current
policy to select the next action, , to estimate , and the assumption that in
the following action it will follow the same policy (that is, it acts according to action).

Q-Learning and SARSA Applications Chapter 4

[83]

On-policy algorithms are usually easier than off-policy algorithms, but they are less
powerful and usually require more data to learn. Despite this, as for TD learning, SARSA is
guaranteed to converge to the optimal policy if it visits every state-action an infinite
number of times and the policy, over time, becomes a deterministic one. Practical
algorithms use an -greedy policy with a decay that tends to be zero, or a value close to it.
The pseudocode of SARSA is summarized in the following code block. In the pseudocode,
we used an -greedy policy, but any strategy that encourages exploration can be used:

Initialize for every state-action pair

for episodes:

 while is not a final state:

 # env() take a step in the environment

 is a function that implements the strategy. Note that SARSA executes the
same action that has been selected and used in the previous step to update the state-action
value.

Applying SARSA to Taxi-v2
After a more theoretical view of TD learning and particularly of SARSA, we are finally able
to implement SARSA to solve problems of interest. As we saw previously, SARSA can be
applied to environments with unknown models and dynamics, but as it is a tabular
algorithm with scalability constraints, it can only be applied to environments with small
and discrete action and state spaces. So, we choose to apply SARSA to a gym environment
called Taxi-v2 that satisfies all the requirements and is a good test bed for these kinds of
algorithm.

Q-Learning and SARSA Applications Chapter 4

[84]

Taxi-v2 is a game that was introduced to study hierarchical reinforcement learning (a type
of RL algorithm that creates a hierarchy of policies, each with the goal of solving a subtask)
where the aim is to pick up a passenger and drop them at a precise location. A reward of
+20 is earned when the taxi performs a successful drop-off, but a penalty of -10 is incurred
for illegal pickup or drop-off. Moreover, a point is lost for every timestep. The render of the
game is given in figure 4.4. There are six legal moves corresponding to the four directions,
the pickup, and the drop-off actions. In figure 4.4, the : symbol represents an empty
location; the | symbol represents a wall that the taxi can't travel through; and R,G,Y,B are
the four locations. The taxi, the yellow rectangle in the diagram, has to pick up a person in
the location identified by the light blue color and drop them off in the location identified by
the color violet.

Figure 4.4 Start state of the Taxi-v2 environment

The implementation is fairly straightforward and follows the pseudocode given in the
previous section. Though we explain and show all the code here, it is also available on the
GitHub repository of the book.

Let's first implement the main function, SARSA(..), of the SARSA algorithm, which does
most of the work. After this, we'll implement a couple of auxiliary functions that perform
simple but essential tasks.

 SARSA needs an environment and a few other hyperparameters as arguments to work:

A learning rate, lr, previously called , that controls the amount of learning at
each update.
num_episodes speaks for itself because it is the number of episodes that SARSA
will execute before terminating.
eps is the initial value of the randomness of the -greedy policy.
gamma is the discount factor used to give less importance to actions more in the
future.
eps_decay is the linear decrement of eps across episodes.

Q-Learning and SARSA Applications Chapter 4

[85]

The first lines of code are as follows:

def SARSA(env, lr=0.01, num_episodes=10000, eps=0.3, gamma=0.95,
eps_decay=0.00005):
 nA = env.action_space.n
 nS = env.observation_space.n
 test_rewards = []
 Q = np.zeros((nS, nA))
 games_reward = []

Here, some variables are initialized. nA and nS are the numbers of actions and observations
respectively of the environment, Q is the matrix that will contain the Q-values of each state-
action pair, and test_rewards and games_rewards are lists used later to hold
information about the scores of the games.

Next, we can implement the main loop that learns the Q-values:

 for ep in range(num_episodes):
 state = env.reset()
 done = False
 tot_rew = 0

 if eps > 0.01:
 eps -= eps_decay

 action = eps_greedy(Q, state, eps)

Line 2 in the preceding code block resets the environment on each new episode and stores
the current state of the environment. Line 3 initializes a Boolean variable that will be set to
True when the environment is in a terminal state. The following two lines update the eps
variable until it has a value higher than 0.01. We set this threshold to keep, in the long run,
a minimum rate of exploration of the environment. The last line chooses an -greedy action
based on the current state and the Q-matrix. We'll define this function later.

Now that we have taken care of the initialization needed at the start of each episode and
have chosen the first action, we can loop until the episode (the game) ends. The following
piece of code samples from the environment and updates the following Q-function, as per
formula (5):

 while not done:
 next_state, rew, done, _ = env.step(action) # Take one step in
the environment

 next_action = eps_greedy(Q, next_state, eps)
 Q[state][action] = Q[state][action] + lr*(rew +
gamma*Q[next_state][next_action] - Q[state][action]) # (4.5)

Q-Learning and SARSA Applications Chapter 4

[86]

 state = next_state
 action = next_action
 tot_rew += rew
 if done:
 games_reward.append(tot_rew)

done holds a Boolean value that indicates whether the agent is still interacting with the
environment, as can be seen in line 2. Therefore, to loop for a complete episode is the same
as iterating as long as done is False (the first line of the code). Then, as usual, env.step
returns the next state, the reward, the done flag, and an information string. In the next
line, eps_greedy chooses the next action based on the next_state and the Q-values. The
heart of the SARSA algorithm is contained in the subsequent line, which performs the
update as per formula (5). Besides the learning rate and the gamma coefficient, it uses the
reward obtained in the last step and the values held in the Q array.

The final lines set the state and action as the previous one, adds the reward to the total
reward of the game, and if the environment is in a final state, the sum of the rewards is
appended to games_reward and the inner cycle terminates.

In the last lines of the SARSA function, every 300 epochs, we run 1,000 test games and print
information such as the epoch, the eps value, and the mean of the test rewards. Moreover,
we return the Q array:

 if (ep % 300) == 0:
 test_rew = run_episodes(env, Q, 1000)
 print("Episode:{:5d} Eps:{:2.4f} Rew:{:2.4f}".format(ep, eps,
test_rew))
 test_rewards.append(test_rew)
 return Q

We can now implement the eps_greedy function, which chooses a random action from
those that are allowed with probability, eps. To do this, it just samples a uniform number
between 0 and 1, and if this is smaller than eps, it selects a random action. Otherwise, it
selects a greedy action:

def eps_greedy(Q, s, eps=0.1):
 if np.random.uniform(0,1) < eps:
 # Choose a random action
 return np.random.randint(Q.shape[1])
 else:
 # Choose the greedy action
 return greedy(Q, s)

Q-Learning and SARSA Applications Chapter 4

[87]

The greedy policy is implemented by returning the index that corresponds to the maximum
Q value in state s:

def greedy(Q, s):
 return np.argmax(Q[s])

The last function to implement is run_episodes, which runs a few episodes to test the
policy. The policy used to select the actions is the greedy policy. That's because we don't
want to explore while testing. Overall, the function is almost identical to the one
implemented in the previous chapter for the dynamic programming algorithms:

def run_episodes(env, Q, num_episodes=100, to_print=False):
 tot_rew = []
 state = env.reset()
 for _ in range(num_episodes):
 done = False
 game_rew = 0
 while not done:
 next_state, rew, done, _ = env.step(greedy(Q, state))
 state = next_state
 game_rew += rew
 if done:
 state = env.reset()
 tot_rew.append(game_rew)
 if to_print:
 print('Mean score: %.3f of %i games!'%(np.mean(tot_rew),
num_episodes))
 else:
 return np.mean(tot_rew)

Great!

Now we're almost done. The last part involves only creating and resetting the environment
and the call to the SARSA function, passing the environment along with all the
hyperparameters:

if __name__ == '__main__':
 env = gym.make('Taxi-v2')
 env.reset()
 Q = SARSA(env, lr=.1, num_episodes=5000, eps=0.4, gamma=0.95,
eps_decay=0.001)

Q-Learning and SARSA Applications Chapter 4

[88]

As you can see, we start with an eps of 0.4. This means that the first actions will be
random with a probability of 0.4 and because of the decay, it will decrease until it reaches
the minimum value of 0.01 (that is, the threshold we set in the code):

Figure 4.5 Results of the SARSA algorithm on Taxi-v2

Q-Learning and SARSA Applications Chapter 4

[89]

The performance plot of the test games' cumulative rewards is shown in figure 4.5.
Moreover, figure 4.6 shows a complete episode run with the final policy. It has to be read
from left to right and from top to bottom. We can see that the taxi (highlighted in yellow
first, and green later) has driven along an optimal path in both directions.

Figure 4.6 Render of the Taxi game. The policy derives from the Q-values trained with SARSA

For all the color references mentioned in the chapter, please refer to the
color images bundle at http:/ /www. packtpub. com/sites/ default/ files/
downloads/ 9781789131116_ ColorImages. pdf.

To have a better view of the algorithm and all the hyperparameters, we suggest you play
with them, change them, and observe the results. You can also try to use an exponential -
decay rate instead of a linear one. You learn by doing just as RL algorithms do, by trial and
error.

http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf

Q-Learning and SARSA Applications Chapter 4

[90]

Q-learning
Q-learning is another TD algorithm with some very useful and distinct features from
SARSA. Q-learning inherits from TD learning all the characteristics of one-step learning
(from TD learning, that is, the ability of learning at each step) and the characteristic to learn
from experience without a proper model of the environment.

The most distinctive feature about Q-learning compared to SARSA is that it's an off-policy
algorithm. As a reminder, off-policy means that the update can be made
independently from whichever policy has gathered the experience. This means that off-
policy algorithms can use old experiences to improve the policy. To distinguish between
the policy that interacts with the environment and the one that actually improves, we call
the former a behavior policy and the latter a target policy.

Here, we'll explain the more primitive version of the algorithm that copes with tabular
cases, but it can easily be adapted to work with function approximators such as artificial
neural networks. In fact, in the next chapter, we'll implement a more sophisticated version
of this algorithm that is able to use deep neural networks and that also uses previous
experiences to exploit the full capabilities of the off-policy algorithms.

But first, let's see how Q-learning works, formalize the update rule, and create a
pseudocode version of it to unify all the components.

Theory
The idea of Q-learning is to approximate the Q-function by using the current optimal action
value. The Q-learning update is very similar to the update done in SARSA, with the
exception that it takes the maximum state-action value:

 is the usual learning rate and is the discount factor.

Q-Learning and SARSA Applications Chapter 4

[91]

While the SARSA update is done on the behavior policy (like a -greedy policy), the Q-
update is done on the greedy target policy that results from the maximum action value. If
this concept is not clear yet, take a look at figure 4.7. While in SARSA we had figure 4.3,
where both actions and come from the same policy, in Q-learning, action is
chosen based on the next maximum state-action value. Because an update in Q-learning is
not more dependent on the behavior policy (which is used only for sampling from the
environment), it becomes an off-policy algorithm.

Figure 4.7. Q-learning update

The algorithm
As Q-learning is a TD method, it needs a behavior policy that, as time passes, will converge
to a deterministic policy. A good strategy is to use an -greedy policy with linear or
exponential decay (as has been done for SARSA).

To recap, the Q-learning algorithm uses the following:

A target greedy policy that constantly improves
A behavior -greedy policy to interact with and explore the environment

After these conclusive observations, we can finally come up with the following pseudocode
for the Q-learning algorithm:

Initialize for every state-action pair

for episodes:

Q-Learning and SARSA Applications Chapter 4

[92]

 while is not a final state:

 # env() take a step in the environment

In practice, usually has values between 0.5 and 0.001 and ranges from 0.9 to 0.999.

Applying Q-learning to Taxi-v2
In general, Q-learning can be used to solve the same kinds of problems that can be tackled
with SARSA, and because they both come from the same family (TD learning), they
generally have similar performances. Nevertheless, in some specific problems, one
approach can be preferred to the other. So it's useful to also know how Q-learning is
implemented.

For this reason, here we'll implement Q-learning to solve Taxi-v2, the same environment
that was used for SARSA. But be aware that with just a few adaptations, it can be used with
every other environment with the correct characteristics. Having the results from both Q-
learning and SARSA from the same environment we'll have the opportunity to compare
their performance.

To be as consistent as possible, we kept some functions unchanged from the SARSA
implementation. These are as follows:

eps_greedy(Q,s,eps) is the -greedy policy that takes a Q matrix, a state s,
and the eps value. It returns an action.
greedy(Q,s) is the greedy policy that takes a Q matrix and a state s. It returns
the action associated with the maximum Q-value in the state s.
run_episodes(env,Q,num_episodes,to_print) is a function that
runs num_episodes games to test the greedy policy associated with the Q matrix.
If to_print is True it prints the results. Otherwise, it returns the mean of the
rewards.

Q-Learning and SARSA Applications Chapter 4

[93]

To see the implementation of those functions, you can refer to the SARSA applied to Taxi-
v2 section or the GitHub repository of the book, which can be found at https:/ / github.
com/PacktPublishing/ Reinforcement- Learning- Algorithms- with- Python.

The main function that executes the Q-learning algorithm takes an environment, env; a
learning rate, lr (the variable used in (6)); the number of episodes to train the
algorithm, num_episodes; the initial value, eps, used by the -greedy policy; the decay
rate, eps_decay; and the discount factor, gamma, as arguments:

def Q_learning(env, lr=0.01, num_episodes=10000, eps=0.3, gamma=0.95,
eps_decay=0.00005):
 nA = env.action_space.n
 nS = env.observation_space.n

 # Q(s,a) -> each row is a different state and each columns represent a
different action
 Q = np.zeros((nS, nA))

 games_reward = []
 test_rewards = []

The first lines of the function initialize the variables with the dimensions of the action and
observation space, initialize the array Q that contains the Q-value of each state-action pair,
and create empty lists used to keep track of the progress of the algorithm.

Then, we can implement the cycle that iterates num_episodes times:

 for ep in range(num_episodes):
 state = env.reset()
 done = False
 tot_rew = 0
 if eps > 0.01:
 eps -= eps_decay

Each iteration (that is, each episode) starts by resetting the environment, initializing
the done and tot_rew variables, and decreasing eps linearly.

Then, we have to iterate across all of the timesteps of an episode (that correspond to an
episode) because that is where the Q-learning update takes place:

 while not done:
 action = eps_greedy(Q, state, eps)
 next_state, rew, done, _ = env.step(action) # Take one step in
the environment

 # get the max Q value for the next state

https://github.com/PacktPublishing/Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Reinforcement-Learning-Algorithms-with-Python

Q-Learning and SARSA Applications Chapter 4

[94]

 Q[state][action] = Q[state][action] + lr*(rew +
gamma*np.max(Q[next_state]) - Q[state][action]) # (4.6)
 state = next_state
 tot_rew += rew

 if done:
 games_reward.append(tot_rew)

This is the main body of the algorithm. The flow is fairly standard:

The action is chosen following the -greedy policy (the behavior policy).1.
The action is executed in the environment, which returns the next state, a reward,2.
and the done flag.
The action-state value is updated based on formula (6).3.
next_state is assigned to the state variable.4.
The reward of the last step is added up to the cumulative reward of the episode.5.
If it was the final step, the reward is stored in games_reward and the cycle6.
terminates.

In the end, every 300 iterations of the outer cycle, we can run 1,000 games to test the agent,
print some useful information, and return the Q array:

 if (ep % 300) == 0:
 test_rew = run_episodes(env, Q, 1000)
 print("Episode:{:5d} Eps:{:2.4f} Rew:{:2.4f}".format(ep, eps,
test_rew))
 test_rewards.append(test_rew)
 return Q

That's everything. As a final step, in the main function, we can create the environment and
run the algorithm:

if __name__ == '__main__':
 env = gym.make('Taxi-v2')
 Q = Q_learning(env, lr=.1, num_episodes=5000, eps=0.4, gamma=0.95,
eps_decay=0.001)

Q-Learning and SARSA Applications Chapter 4

[95]

The algorithm reaches steady results after about 3,000 episodes, as can be deduced from
figure 4.8. This plot can be created by plotting test_rewards:

Figure 4.8 The results of Q-learning on Taxi-v2

As usual, we suggest that you tune the hyperparameters and play with the implementation
to gain better insight into the algorithm.

Overall, the algorithm has found a policy similar to the one found by the SARSA algorithm.
To find it by yourself, you can render some episodes or print the greedy action resulting
from the Q array.

Comparing SARSA and Q-learning
We will now look at a quick comparison of the two algorithms. In figure 4.9, the
performance of Q-learning and SARSA in the Taxi-v2 environment is plotted as the episode
progresses. We can see that both are converging to the same value (and to the same policy)
with comparable speed. While doing these comparisons, you have to consider that the
environment and the algorithms are stochastic and they may produce different results. We
can also see from plot 4.9 that Q-learning has a more regular shape. This is due to the fact
that it is more robust and less sensitive to change:

Q-Learning and SARSA Applications Chapter 4

[96]

Figure 4.9 Comparison of the results between SARSA and Q-learning on Taxi-v2

So, is it better to use Q-learning? Overall, the answer is yes, and in most cases, Q-learning
outperforms the other algorithms, but there are some environments in which SARSA works
better. The choice between the two is dependent on the environment and the task.

Summary
In this chapter, we introduced a new family of RL algorithms that learn from experience by
interacting with the environment. These methods differ from dynamic programming in
their ability to learn a value function and consequently a policy without relying on the
model of the environment.

Q-Learning and SARSA Applications Chapter 4

[97]

Initially, we saw that Monte Carlo methods are a simple way to sample from the
environment but because they need the full trajectory before starting to learn, they are not
applicable in many real problems. To overcome these drawbacks, bootstrapping can be
combined with Monte Carlo methods, giving rise to so-called temporal difference (TD)
learning. Thanks to the bootstrapping technique, these algorithms can learn online (one-
step learning) and reduce the variance while still converging to optimal policies. Then, we
learned two one-step, tabular, model-free TD methods, namely SARSA and Q-learning.
SARSA is on-policy because it updates a state value by choosing the action based on the
current policy (the behavior policy). Q-learning, instead, is off-policy because it estimates
the state value of a greedy policy while collecting experience using a different policy (the
behavior policy). This difference between SARSA and Q-learning makes the latter slightly
more robust and efficient than the former.

Every TD method needs to explore the environment in order to know it well and find the
optimal policies. The exploration of the environment is in the hands of the behavior policy,
which occasionally has to act non-greedily, for example, by following an -greedy policy.

We implemented both SARSA and Q-learning and applied them to a tabular game called
Taxi. We saw that both converge to the optimal policy with similar results.

The Q-learning algorithm is key in RL because of its qualities. Moreover, through careful
design, it can be adapted to work with very complex and high-dimensional games. All of
this is possible thanks to the use of function approximations such as deep neural networks.
In the next chapter, we'll elaborate on this, and introduce a deep Q-network that can learn
to play Atari games directly from pixels.

Questions
What's the main property of the Monte Carlo method used in RL?
Why are Monte Carlo methods offline?
What are the two main ideas of TD learning?
What are the differences between Monte Carlo and TD?
Why is exploration important in TD learning?
Why is Q-learning off-policy?

5
Deep Q-Network

So far, we've approached and developed reinforcement learning algorithms that learn
about a value function, V, for each state, or an action-value function, Q, for each action-state
pair. These methods involve storing and updating each value separately in a table (or an
array). These approaches do not scale because, for a large number of states and actions, the
table's dimensions increase exponentially and can easily exceed the available memory
capacity.

In this chapter, we will introduce the use of function approximation in reinforcement
learning algorithms to overcome this problem. In particular, we will focus on deep neural
networks that are applied to Q-learning. In the first part of this chapter, we'll explain how
to extend Q-learning with function approximation to store Q values, and we'll explore some
major difficulties that we may face. In the second part, we will present a new algorithm
called Deep Q-network (DQN), which using new ideas, offers an elegant solution to some
challenges that are found in the vanilla version of Q-learning with neural networks. You'll
see how this algorithm achieves surprising results on a wide variety of games that learn
only from pixels. Moreover, you'll implement this algorithm and apply it to Pong, and see
some of its strengths and vulnerabilities for yourself.

Since DQN was proposed, other researchers have proposed many variations that provide
more stability and efficiency for the algorithm. We'll quickly look at and implement some of
them so that we have a better understanding of the weaknesses of the basic version of DQN
and so that we can provide you with some ideas so that you can improve it yourself.

The following topics will be covered in this chapter:

Deep neural networks and Q-learning
DQN
DQN applied to Pong
DQN variations

Deep Q-Network Chapter 5

[99]

Deep neural networks and Q-learning
The Q-learning algorithm, as we saw in Chapter 4, Q-Learning and SARSA Applications, has
many qualities that enable its application in many real-world contexts. A key ingredient of
this algorithm is that it makes use of the Bellman equation for learning the Q-function. The
Bellman equation, as used by the Q-learning algorithm, enables the updating of Q-values
from subsequent state-action values. This makes the algorithm able to learn at every step,
without waiting until the trajectory is completed. Also, every state or action-state pair has
its own values stored in a lookup table that saves and retrieves the corresponding values.
Being designed in this way, Q-learning converges to optimal values as long as all the state-
action pairs are repeatedly sampled. Furthermore, the method uses two policies: a non-
greedy behavior policy to gather experience from the environment (for example, -greedy)
and a target greedy policy that follows the maximum Q-value.

Maintaining a tabular representation of values can be contraindicated and in some cases,
harmful. That's because most problems have a very high number of states and actions. For
example, images (including small ones) have more state than the atoms in the universe.
You can easily guess that, in this situation, tables cannot be used. Besides the infinite
memory that the storage of such a table requires, only a few states will be visited more than
once, making learning about the Q-function or V-function extremely difficult. Thus, we
may want to generalize across states. In this case, generalization means that we are not
only interested in the precise value of a state, V(s), but also in the values in similar and near
states. If a state has never been visited, we could approximate it with the value of a state
near it. Generally speaking, the concept of generalization is incredibly important in all
machine learning, including reinforcement learning.

The concept of generalization is fundamental in circumstances where the agent doesn't
have a complete view of the environment. In this case, the full state of the environment will
be hidden by the agent that has to make decisions based solely on a restricted
representation of the environment. This is known as observation. For example, think about
a humanoid agent that deals with basic interactions in the real world. Obviously, it doesn't
have a view of the complete state of the universe and of all the atoms. It only has a limited
viewpoint, that is, observation, which is perceived by its sensors (such as video cameras).
For this reason, the humanoid agent should generalize what's happening around it and
behave accordingly.

Function approximation
Now that we have talked about the main constraints of tabular algorithms and expressed
the need for generalization capabilities in RL algorithms, we have to deal with the tools that
allow us to get rid of these tabular constraints and address the generalization problem.

Deep Q-Network Chapter 5

[100]

We can now dismiss tables and represent value functions with a function approximator.
Function approximation allows us to represent value functions in a constraint domain
using only a fixed amount of memory. Resource allocation is only dependent on the
function that's used to approximate the problem. The choice of function approximator is, as
always, task-dependent. Examples of function approximation are linear functions, decision
trees, nearest neighbor algorithms, artificial neural networks, and so on. As you may
expect, artificial neural networks are preferred over all the others – it is not a coincidence
that it is widespread across all kinds of RL algorithms. In particular, deep artificial neural
networks, or for brevity, deep neural networks (DNNs), are used. Their popularity is due
to their efficiency and ability to learn features by themselves, creating a hierarchical
representation as the hidden layers of the network increase. Also, deep neural networks,
and in particular, convolutional neural networks (CNNs), deal incredibly well with
images, as demonstrated by recent breakthroughs, especially in supervised tasks. But
despite the fact that almost all studies of deep neural networks have been done in
supervised learning, their integration in an RL framework has produces very interesting
results. However, as we'll see shortly, this is not easy.

Q-learning with neural networks
In Q-learning, a deep neural network learns a set of weights to approximate the Q-value
function. Thereby, the Q-value function is parametrized by (the weights of the network)
and written as follows:

To adapt Q-learning with deep neural networks (this combination takes the name of deep
Q-learning), we have to come up with a loss function (or objective) to minimize.

As you may recall, the tabular Q-learning update is as follows:

Here, is the state at the next step. This update is done online on each sample that's
collected by the behavior policy.

Compared to the previous chapters, to simplify the notation, here, we
refer to as the state and action in the present step, while is
referred to as the state and action in the next step.

Deep Q-Network Chapter 5

[101]

With the neural network, our objective is to optimize the weight, , so that resembles the
optimal Q-value function. But since we don't have the optimal Q-function, we can only
make small steps toward it by minimizing the Bellman error for one step,

. This step is similar to what we've done in tabular Q-learning.
However, in deep Q-learning, we don't update the single value, . Instead, we take the
gradient of the Q-function with respect to the parameters, :

Here, is the partial derivate of with respect to . is called the learning rate,
which is the size of the step to take toward the gradient.

In reality, the smooth transition that we just saw from tabular Q-learning to deep Q-
learning doesn't yield a good approximation. The first fix involves the use of the Mean
Square Error (MSE) as a loss function (instead of the Bellman error). The second fix is to
migrate from an online Q-iteration to a batch Q-iteration. This means that the parameters of
the neural network are updated using multiple transitions at once (such as using a mini-
batch of size greater than 1 in supervised settings). These changes produce the following
loss function:

Here, isn't the true action-value function since we haven't used it. Instead, it is the Q-
target value:

Then, the network parameter, , is updated by gradient descent on the MSE loss function,
:

Deep Q-Network Chapter 5

[102]

It's very important to note that is treated as a constant and that the gradient of the loss
function isn't propagated further.

Since, in the previous chapter, we introduced MC algorithms, we want to
highlight that these algorithms can also be adapted to work with neural
networks. In this case, will be the return, . Since the MC update isn't
biased, it's asymptotically better than TD, but the latter has better results
in practice.

Deep Q-learning instabilities
With the loss function and the optimization technique we just presented, you should be
able to develop a deep Q-learning algorithm. However, the reality is much more subtle.
Indeed, if we try to implement it, it probably won't work. Why? Once we introduce neural
networks, we can no longer guarantee improvement. Although tabular Q-learning has
convergence capabilities, its neural network counterpart does not.

Sutton and Barto in Reinforcement Learning: An Introduction, introduced a problem called the
deadly triad, which arises when the following three factors are combined:

Function approximation
Bootstrapping (that is, the update used by other estimates)
Off-policy learning (Q-learning is an off-policy algorithm since its update is
independent on the policy that's being used)

But these are exactly the three main ingredients of the deep Q-learning algorithm. As the
authors noted, we cannot get rid of bootstrapping without affecting the computational cost
or data efficiency. Moreover, off-policy learning is important for creating more intelligent
and powerful agents. And clearly, without deep neural networks, we'll lose an extremely
important component. Therefore, it is very important to design algorithms that preserve
these three components but at the same time mitigate the deadly triad problem.

Besides, from equations (5.2) and (5.3), the problem may seem similar to supervised
regression, but it's not. In supervised learning, when performing SGD, the mini-batches are
always sampled randomly from a dataset to make sure that they are independent and
identically distributed (IID). In RL, it is the policy that gathers the experience. And
because the states are sequential and strongly related to each other, the i.i.d assumption is
immediately lost, causing severe instabilities when performing SGD.

Deep Q-Network Chapter 5

[103]

Another cause of instability is due to the non-stationarity of the Q-learning process. From
equation, (5.2) and (5.3), you can see that the same neural network that is updated is also
the one that computes the target values, . This is dangerous, considering that the target
values will also be updated during training. It's like shooting at a moving circular target
without taking into consideration its movement. These behaviors are only due to the
generalization capabilities of the neural network; in fact, they are not a problem in a tabular
case.

Deep Q-learning is poorly understood theoretically but, as we'll soon see, there is an
algorithm that deploys a few tricks to increase the i.i.d of the data and alleviate the moving
target problem. These tricks make the algorithm much more stable and flexible.

DQN
DQN, which was introduced for the first time in the paper Human-level control through deep
reinforcement learning by Mnih and others from DeepMind, is the first scalable
reinforcement learning algorithm that combines Q-learning with deep neural networks. To
overcome stability issues, DQN adopts two novel techniques that turned out to be essential
for the balance of the algorithm.

DQN has proven itself to be the first artificial agent capable of learning in a diverse array of
challenging tasks. Furthermore, it has learned how to control many tasks using only high-
dimensional row pixels as input and using an end-to-end RL approach.

The solution
The key innovations brought by DQN involve a replay buffer to get over the data
correlation drawback, and a separate target network to get over the non-stationarity
problem.

Deep Q-Network Chapter 5

[104]

Replay memory
To use more IID data during SGD iterations, DQN introduced a replay memory (also called
experienced replay) to collect and store the experience in a large buffer. This buffer ideally
contains all the transitions that have taken place during the agent's lifetime. When doing
SGD, a random mini-batch will be gathered from the experienced replay and used in the
optimization procedure. Since the replay memory buffer holds varied experience, the mini-
batch that's sampled from it will be diverse enough to provide independent samples.
Another very important feature behind the use of an experience replay is that it enables the
reusability of the data as the transitions will be sampled multiple times. This greatly
increases the data efficiency of the algorithm.

The target network
The moving target problem is due to continuously updating the network during training,
which also modifies the target values. Nevertheless, the neural network has to update itself
in order to provide the best possible state-action values. The solution that's employed in
DQNs is to use two neural networks. One is called the online network, which is constantly
updated, while the other is called the target network, which is updated only every N
iterations (with N usually being between 1,000 and 10,000). The online network is used to
interact with the environment while the target network is used to predict the target values.
In this way, for N iterations, the target values that are produced by the target network
remain fixed, preventing the propagation of instabilities and decreasing the risk of
divergence. A potential disadvantage is that the target network is an old version of the
online network. Nonetheless, in practice, the advantages greatly outweigh the
disadvantages and the stability of the algorithm will improve significantly.

The DQN algorithm
The introduction of a replay buffer and of a separate target network in a deep Q-learning
algorithm has been able to control Atari games (such as Space Invaders, Pong, and
Breakout) from nothing but images, a reward, and a terminal signal. DQN learns
completely end to end with a combination of CNN and fully connected neural networks.

Deep Q-Network Chapter 5

[105]

DQN has been trained separately on 49 Atari games with the same algorithm, network
architecture, and hyperparameters. It performed better than all the previous algorithms,
achieving a level comparable to or better than professional gamers on many games. The
Atari games are not easy to solve and many of them demand complex planning strategies.
Indeed, a few of them (such as the well-known Montezuma's Revenge) required a level that
even DQN hasn't been able to achieve.

A particularity of these games is that, as they provide only images to the agent, they are
partially observable. They don't show the full state of the environment. In fact, a single
image isn't enough to fully understand the current situation. For example, can you
deduce the direction of the ball in the following image?

Figure 5.1. Rendering of pong

You can't, and neither can the agent. To overcome this situation, at each point in time, a
sequence of the previous observations is considered. Usually the last two to five frames are
used, and in most cases, they give a pretty accurate approximation of the actual overall
state.

The loss function
The deep Q-network is trained by minimizing the loss function (5.2) that we have already
presented, but with the further employment of a separate Q-target network, , with a
weight, , putting everything together, the loss function becomes:

Deep Q-Network Chapter 5

[106]

Here, is the parameters of the online network.

The optimization of the differentiable loss function (5.4) is performed with our favorite
iterative method, namely mini-batch gradient descent. That is, the learning update is
applied to mini-batches that have been drawn uniformly from the experienced buffer. The
derivative of the loss function is as follows:

Unlike the problem framed in the case of deep Q-learning, in DQN, the learning process is
more stable. Furthermore, because the data is more i.i.d. and the target is (somehow) fixed,
it's very similar to a regression problem. But on the other hand, the targets still depend on
the network weights.

If you optimize the loss function (5.4) at each step and only on a single
sample, you would obtain the Q-learning algorithm with function
approximation.

Pseudocode
Now that all the components of DQN have been explained, we can put all the pieces
together and show you the pseudocode version of the algorithm to clarify any uncertainties
(don't worry if it doesn't – in the next section, you'll implement it and everything will be
clearer).

The DQN algorithm involves three main parts:

Data collection and storage. The data is collected by following a behavior policy
(for example, -greedy).
Neural network optimization (performing SGD on mini-batches that have been
sampled from the buffer).
Target update.

Deep Q-Network Chapter 5

[107]

The pseudocode of DQN is as follows:

Initialize function with random weight

Initialize function with random weight
Initialize empty replay memory

for do

 Initialize environment
 for do
 > Collect observation from the env:

 > Store the transition in the replay buffer:

 > Update the model using (5.4):

 Sample a random minibatch from

 Perform a step of GD on on
 > Update target network:

 Every C steps

 end for

end for

Here, d is a flag that's returned by the environment that signals whether the environment is
in its final state. If d=True, that is, the episode has ended, the environment has to be reset.

 is a preprocessing step that changes the images to reduce their dimensionality (it converts
the images into grayscale and resizes them into smaller images) and adds the last n frames
to the current frame. Usually, n is a value between 2 and 4. The preprocessing part will
be explained in more detail in the next section, where we'll implement DQN.

In DQN, the experienced replay, , is a dynamic buffer that stores a limited number of
frames. In the paper, the buffer contains the last 1 million transitions and when it exceeds
this dimension, it discards the older experiences.

Deep Q-Network Chapter 5

[108]

All the other parts have already been described. If you are wondering why the target
value, , takes the if value, it is because there won't be any other interactions
with the environment after and so is its actual unbiased Q-value.

Model architecture
So far, we have talked about the algorithm itself, but we haven't explained the architecture
of the DQN. Besides the new ideas that have been adopted to stabilize its training, the
architecture of the DQN plays a crucial role in the final performance of the algorithm. In the
DQN paper, a single model architecture is used in all of the Atari environments. It
combines CNNs and FNNs. In particular, as observation images are given as input, it
employs a CNN to learn about feature maps from those images. CNNs have been widely
used with images for their translation invariance characteristics and for their property of
sharing weights, which allows the network to learn with fewer weights compared to other
deep neural network types.

The output of the model corresponds to the state-action values, with one for each action.
Thus, to control an agent with five actions, the model will output a value for each of those
five actions. Such a model architecture allows us to compute all the Q-values with only one
forward pass.

There are three convolutional layers. Each layer includes a convolution operation with an
increasing number of filters and a decreasing dimension, as well as a non-linear function.
The last hidden layer is a fully connected layer, followed by a rectified activation function
and a fully-connected linear layer with an output for each action. A simple representation
of this architecture is shown in the following illustration:

Figure 5.2. Illustration of a DNN architecture for DQN composed with a CNN and FNN

Deep Q-Network Chapter 5

[109]

DQN applied to Pong
Equipped with all the technical knowledge about Q-learning, deep neural networks, and
DQN, we can finally put it to work and start to warm up the GPU. In this section, we will
apply DQN to an Atari environment, Pong. We have chosen Pong rather than all the other
Atari environments because it's simpler to solve and thus requires less time, computational
power, and memory. That being said, if you have a decent GPU available, you can apply
the same exact configuration to almost all the other Atari games (some may require a little
bit of fine-tuning). For the same reason, we adopted a lighter configuration compared to the
original DQN paper, both in terms of the capacity of the function approximator (that is,
fewer weights) and hyperparameters such as a smaller buffer size. This does not
compromise the results rather on Pong but might degrade the performance of other games.

First, we will briefly introduce the Atari environment and the preprocessing pipeline before
moving on to the DQN implementation.

Atari games
Atari games became a standard testbed for deep RL algorithms since their introduction in
the DQN paper. These were first provided in the Arcade Learning Environment (ALE) and
subsequently wrapped by OpenAI Gym to provide a standard interface. ALE (and
Gym) includes 57 of the most popular Atari 2600 video games, such as Montezuma's
Revenge, Pong, Breakout, and Space Invaders, as shown in the following illustration. These
games have been widely used in RL research for their high-dimensional state space (210 x
160 pixels) and their task diversity between games:

Figure 5.3 The Montezuma's Revenge, Pong, Breakout, and Space Invaders environments

Deep Q-Network Chapter 5

[110]

A very important note about Atari environments is that they are deterministic, meaning
that, given a fixed set of actions, the results will be the same across multiple matches. From
an algorithm perspective, this determinism holds true until all the history is used to choose
an action from a stochastic policy.

Preprocessing
The frames in Atari are 210 x 160 pixels with RGB color, thus having an overall size of 210 x
160 x 3. If a history of 4 frames was used, the input would have a dimension of 210 x 160 x
12. Such dimensionality can be computationally demanding and it could be difficult to
store a large number of frames in the experienced buffer. Therefore, a preprocessing step to
reduce the dimensionality is necessary. In the original DQN implementation, the following
preprocessing pipeline is used:

RGB colors are converted into grayscale
The images are downsampled to 110 x 84 and then cropped to 84 x 84
The last three to four frames are concatenated to the current frame
The frames are normalized

Furthermore, because the games are run at a high frame rate, a technique called frame-
skipping is used to skip consecutive frames. This technique allows the agent to store and
train on fewer frames for each game without significantly degrading the performance of the
algorithms. In practice, with the frame-skipping technique, the agent selects an action
every frames and repeats the action on the skipped frames.

In addition, in some environments, at the start of each game, the agent has to push the fire
button in order to start the game. Also, because of the determinism of the environment,
some no-ops are taken on the reset of the environment to start the agent in a random
position.

Luckily for us, OpenAI released an implementation of the preprocessing pipeline that is
compatible with the Gym interface. You can find it in this book's GitHub repository in the
atari_wrappers.py file. Here, we will give just a brief explanation of the
implementation:

NoopResetEnv(n): Takes n no-ops on reset of the environment to provide a
random starting position for the agent.
FireResetEnv(): Fires on reset of the environment (required only in some
games).

Deep Q-Network Chapter 5

[111]

MaxAndSkipEnv(skip): Skips skip frames while taking care of repeating the
actions and summing the rewards.
WarpFrame(): Resizes the frame to 84 x 84 and converts it into grayscale.
FrameStack(k): Stacks the last k frames.

All of these functions are implemented as a wrapper. A wrapper is a way to easily
transform an environment by adding a new layer on top of it. For example, to scale the
frames on Pong, we would use the following code:

env = gym.make('Pong-v0')
env = ScaledFloatFrame(env)

 A wrapper has to inherit the gym.Wrapper class and override at least one of the following
methods: __init__(self, env), step, reset, render, close, or seed.

We won't show the implementation of all the wrappers listed here as they are outside of the
scope of this book, but we will use FireResetEnv and WrapFrame as examples to give
you a general idea of their implementation. The complete code is available in this book's
GitHub repository:

class FireResetEnv(gym.Wrapper):
 def __init__(self, env):
 """Take action on reset for environments that are fixed until
firing."""
 gym.Wrapper.__init__(self, env)
 assert env.unwrapped.get_action_meanings()[1] == 'FIRE'
 assert len(env.unwrapped.get_action_meanings()) >= 3

 def reset(self, **kwargs):
 self.env.reset(**kwargs)
 obs, _, done, _ = self.env.step(1)
 if done:
 self.env.reset(**kwargs)
 obs, _, done, _ = self.env.step(2)
 if done:
 self.env.reset(**kwargs)
 return obs

 def step(self, ac):
 return self.env.step(ac)

Deep Q-Network Chapter 5

[112]

First, FireResetEnv inherits the Wrapper class from Gym. Then, during the initialization,
it checks the availability of the fire action by unwrapping the environment through
env.unwrapped. The function overrides the reset function by calling reset, which was
defined in the previous layer with self.env.reset, then takes a fire action by calling
self.env.step(1) and an environment-dependent action, self.env.step(2).

WrapFrame has a similar definition:

class WarpFrame(gym.ObservationWrapper):
 def __init__(self, env):
 """Warp frames to 84x84 as done in the Nature paper and later
work."""
 gym.ObservationWrapper.__init__(self, env)
 self.width = 84
 self.height = 84
 self.observation_space = spaces.Box(low=0, high=255,
 shape=(self.height, self.width, 1), dtype=np.uint8)
 def observation(self, frame):
 frame = cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY)
 frame = cv2.resize(frame, (self.width, self.height),
interpolation=cv2.INTER_AREA)
 return frame[:, :, None]

This time, WarpFrame inherits the properties from gym.ObservationWrapper and creates
a Box space with values between 0 and 255 and with the shape 84 x 84.
When observation() is called, it converts the RGB frames into grayscale and resizes the
images to the chosen shape.

We can then create a function, make_env, to apply every wrapper to an environment:

def make_env(env_name, fire=True, frames_num=2, noop_num=30,
skip_frames=True):
 env = gym.make(env_name)
 if skip_frames:
 env = MaxAndSkipEnv(env) # Return only every `skip`-th frame
 if fire:
 env = FireResetEnv(env) # Fire at the beginning
 env = NoopResetEnv(env, noop_max=noop_num)
 env = WarpFrame(env) # Reshape image
 env = FrameStack(env, frames_num) # Stack last 4 frames
 return env

Deep Q-Network Chapter 5

[113]

The only preprocessing step that is missing is the scaling of the frame. We'll take care of
scaling immediately before giving the observation frame as input to the neural network.
This is because FrameStack uses a particular memory-efficient array called a lazy array,
which is lost whenever scaling is applied as a wrapper.

DQN implementation
Though DQN is a pretty simple algorithm, it requires particular attention when it comes to
its implementation and design choices. This algorithm, like every other deep RL algorithm,
is not easy to debug and tune. Therefore, throughout this book, we'll give you some
techniques and suggestions for how to do this.

The DQN code contains four main components:

DNNs
An experienced buffer
A computational graph
A training (and evaluation) loop

The code, as usual, is written in Python and TensorFlow, and we'll use TensorBoard to
visualize the training and the performance of the algorithm.

All the code is available in this book's GitHub repository. Make sure to
check it out there. We don't provide the implementation of some simpler
functions here to avoid weighing down the code.

Let's immediately jump into the implementation by importing the required libraries:

import numpy as np
import tensorflow as tf
import gym
from datetime import datetime
from collections import deque
import time
import sys

from atari_wrappers import make_env

atari_wrappers includes the make_env function we defined previously.

Deep Q-Network Chapter 5

[114]

DNNs
The DNN architecture is as follows (the components are built in sequential order):

A convolution of 16 filters of dimension 8 x 8 with 4 strides and rectifier1.
nonlinearity.
A convolution of 32 filters of dimension 4 x 4 with 2 strides and rectifier2.
nonlinearity.
A convolution of 32 filters of dimension 3 x 3 with 1 strides and rectifier3.
nonlinearity.
A dense layer of 128 units and ReLU activation.4.
A dense layer with a number of units equal to the actions that are allowed in the5.
environment and a linear activation.

In cnn, we define the first three convolutional layers, while in fnn, we define the last two
dense layers:

def cnn(x):
 x = tf.layers.conv2d(x, filters=16, kernel_size=8, strides=4,
padding='valid', activation='relu')
 x = tf.layers.conv2d(x, filters=32, kernel_size=4, strides=2,
padding='valid', activation='relu')
 return tf.layers.conv2d(x, filters=32, kernel_size=3, strides=1,
padding='valid', activation='relu')

def fnn(x, hidden_layers, output_layer, activation=tf.nn.relu,
last_activation=None):
 for l in hidden_layers:
 x = tf.layers.dense(x, units=l, activation=activation)
 return tf.layers.dense(x, units=output_layer,
activation=last_activation)

In the preceding code, hidden_layers is a list of integer values. In our implementation,
this is hidden_layers=[128]. On the other hand, output_layer is the number of agent
actions.

In qnet,the CNN and FNN layers are connected with a layer that flattens the 2D output of
the CNN:

def qnet(x, hidden_layers, output_size, fnn_activation=tf.nn.relu,
last_activation=None):
 x = cnn(x)
 x = tf.layers.flatten(x)
 return fnn(x, hidden_layers, output_size, fnn_activation,
last_activation)

Deep Q-Network Chapter 5

[115]

The deep neural network is now fully defined. All we need to do is connect it to the main
computational graph.

The experienced buffer
The experienced buffer is a class of the ExperienceBuffer type and stores a queue of
type FIFO (First In, First Out) for each of the following components: observation, reward,
action, next observation, and done. FIFO means that once it reaches the maximum capacity
specified by maxlen, it discards the elements starting from the oldest one. In our
implementation, the capacity is buffer_size:

class ExperienceBuffer():

 def __init__(self, buffer_size):
 self.obs_buf = deque(maxlen=buffer_size)
 self.rew_buf = deque(maxlen=buffer_size)
 self.act_buf = deque(maxlen=buffer_size)
 self.obs2_buf = deque(maxlen=buffer_size)
 self.done_buf = deque(maxlen=buffer_size)

 def add(self, obs, rew, act, obs2, done):
 self.obs_buf.append(obs)
 self.rew_buf.append(rew)
 self.act_buf.append(act)
 self.obs2_buf.append(obs2)
 self.done_buf.append(done)

The ExperienceBuffer class also manages the sampling of mini-batches, which are used
to train the neural network. These are uniformly sampled from the buffer and have a
predefined batch_size size:

 def sample_minibatch(self, batch_size):
 mb_indices = np.random.randint(len(self.obs_buf), size=batch_size)

 mb_obs = scale_frames([self.obs_buf[i] for i in mb_indices])
 mb_rew = [self.rew_buf[i] for i in mb_indices]
 mb_act = [self.act_buf[i] for i in mb_indices]
 mb_obs2 = scale_frames([self.obs2_buf[i] for i in mb_indices])
 mb_done = [self.done_buf[i] for i in mb_indices]

 return mb_obs, mb_rew, mb_act, mb_obs2, mb_done

Deep Q-Network Chapter 5

[116]

Lastly, we override the _len method to provide the length of the buffers. Note that because
every buffer is the same size as the others, we only return the length of self.obs_buf:

 def __len__(self):
 return len(self.obs_buf)

The computational graph and training loop
The core of the algorithm, namely the computational graph and the training (and
evaluation) loop, is implemented in the DQN function, which takes the name of the
environment and all the other hyperparameters as arguments:

def DQN(env_name, hidden_sizes=[32], lr=1e-2, num_epochs=2000,
buffer_size=100000, discount=0.99, update_target_net=1000, batch_size=64,
update_freq=4, frames_num=2, min_buffer_size=5000, test_frequency=20,
start_explor=1, end_explor=0.1, explor_steps=100000):

 env = make_env(env_name, frames_num=frames_num, skip_frames=True,
noop_num=20)
 env_test = make_env(env_name, frames_num=frames_num, skip_frames=True,
noop_num=20)
 env_test = gym.wrappers.Monitor(env_test,
"VIDEOS/TEST_VIDEOS"+env_name+str(current_milli_time()),force=True,
video_callable=lambda x: x%20==0)

 obs_dim = env.observation_space.shape
 act_dim = env.action_space.n

In the first few lines of the preceding code, two environments are created: one for training
and one for testing. Moreover, gym.wrappers.Monitor is a Gym wrapper that saves the
games of an environment in video format, while video_callable is a function parameter
that establishes how often the videos are saved, which in this case is every 20 episodes.

Then, we can reset the TensorFlow graph and create placeholders for the observations, the
actions, and the target values. This is done with the following lines of code:

 tf.reset_default_graph()
 obs_ph = tf.placeholder(shape=(None, obs_dim[0], obs_dim[1],
obs_dim[2]), dtype=tf.float32, name='obs')
 act_ph = tf.placeholder(shape=(None,), dtype=tf.int32, name='act')
 y_ph = tf.placeholder(shape=(None,), dtype=tf.float32, name='y')

Deep Q-Network Chapter 5

[117]

Now, we can create a target and an online network by calling the qnet function that we
defined previously. Because the target network has to update itself sometimes and take the
parameters of the online network, we create an operation called update_target_op,
which assigns every variable of the online network to the target network. This assignment
is done by the TensorFlow assign method. tf.group, on the other hand, aggregates every
element of the update_target list as a single operation. The implementation is as follows:

 with tf.variable_scope('target_network'):
 target_qv = qnet(obs_ph, hidden_sizes, act_dim)
 target_vars = tf.trainable_variables()

 with tf.variable_scope('online_network'):
 online_qv = qnet(obs_ph, hidden_sizes, act_dim)
 train_vars = tf.trainable_variables()

 update_target = [train_vars[i].assign(train_vars[i+len(target_vars)])
for i in range(len(train_vars) - len(target_vars))]
 update_target_op = tf.group(*update_target)

Now that we have defined the placeholder that's created the deep neural network and
defined the target update operation, all that remains is to define the loss function. The loss
function is (or, equivalently, (5.5)). It requires the target values, ,
computed as they are in formula (5.6), which are passed through the y_ph placeholder and
the Q-values of the online network, . A Q-value is dependent on the action, , but
since the online network outputs a value for each action, we have to find a way to retrieve
only the Q-value of while discarding the other action-values. This operation can be
achieved by using a one-hot encoding of the action, , and then multiplying it by the
output of the online network. For example, if there are five possible actions and , then
the one-hot encoding will be . Then, supposing that the network outputs

, the results of the multiplication with the one-hot encoding will be
. After, the q-value is obtained by summing this vector. The result will be .

All of this is done in the following three lines of code:

 act_onehot = tf.one_hot(act_ph, depth=act_dim)
 q_values = tf.reduce_sum(act_onehot * online_qv, axis=1)
 v_loss = tf.reduce_mean((y_ph - q_values)**2)

To minimize the loss function we just defined, we will use Adam, a variant of SGD:

 v_opt = tf.train.AdamOptimizer(lr).minimize(v_loss)

Deep Q-Network Chapter 5

[118]

This concludes the creation of the computation graph. Before going through the main DQN
cycle, we have to prepare everything so that we can save the scalars and the histograms. By
doing this, we will be able to visualize them later in TensorBoard:

 now = datetime.now()
 clock_time = "{}_{}.{}.{}".format(now.day, now.hour, now.minute,
int(now.second))

 mr_v = tf.Variable(0.0)
 ml_v = tf.Variable(0.0)

 tf.summary.scalar('v_loss', v_loss)
 tf.summary.scalar('Q-value', tf.reduce_mean(q_values))
 tf.summary.histogram('Q-values', q_values)

 scalar_summary = tf.summary.merge_all()
 reward_summary = tf.summary.scalar('test_rew', mr_v)
 mean_loss_summary = tf.summary.scalar('mean_loss', ml_v)

 hyp_str = "-lr_{}-upTN_{}-upF_{}-frms_{}".format(lr, update_target_net,
update_freq, frames_num)
 file_writer =
tf.summary.FileWriter('log_dir/'+env_name+'/DQN_'+clock_time+'_'+hyp_str,
tf.get_default_graph())

Everything is quite self-explanatory. The only things that you may question are the mr_v
and ml_v variables. These are variables we want to track with TensorBoard. However,
because they aren't defined internally by the computation graph, we have to declare them
separately and assign them in session.run later. FileWriter is created with a unique
name and associated with the default graph.

We can now define the agent_op function that computes the forward pass on a scaled
observation. The observation has already passed through the preprocessing pipeline (built
in the environment with the wrappers), but we left the scaling aside:

 def agent_op(o):
 o = scale_frames(o)
 return sess.run(online_qv, feed_dict={obs_ph:[o]})

Then, the session is created, the variables are initialized, and the environment is reset:

 sess = tf.Session()
 sess.run(tf.global_variables_initializer())

 step_count = 0
 last_update_loss = []
 ep_time = current_milli_time()

Deep Q-Network Chapter 5

[119]

 batch_rew = []

 obs = env.reset()

The next move involves instantiating the replay buffer, updating the target network so that
it has the same parameters as the online network, and initializing the decay rate
with eps_decay. The policy for the epsilon decay is the same as the one that was adopted
in the DQN paper. A decay rate has been chosen so that, when it's applied linearly to the
eps variable, it reaches a terminal value, end_explor, in about explor_steps steps. For
example, if you want to decrease from 1.0 to 0.1 in 1,000 steps, you have to decrement the
variable by a value equal to on each step. All of this is accomplished
in the following lines of code:

 obs = env.reset()

 buffer = ExperienceBuffer(buffer_size)

 sess.run(update_target_op)

 eps = start_explor
 eps_decay = (start_explor - end_explor) / explor_steps

As you may recall, the training loop comprises two inner cycles: the first iterates across the
epochs while the other iterates across each transition of the epoch. The first part of the
innermost cycle is quite standard. It selects an action following an -greedy behavior policy
that uses the online network, takes a step in the environment, adds the new transition to the
buffer, and finally, updates the variables:

 for ep in range(num_epochs):
 g_rew = 0
 done = False

 while not done:
 act = eps_greedy(np.squeeze(agent_op(obs)), eps=eps)
 obs2, rew, done, _ = env.step(act)
 buffer.add(obs, rew, act, obs2, done)

 obs = obs2
 g_rew += rew
 step_count += 1

In the preceding code, obs takes the value of the next observation and the cumulative game
reward is incremented.

Deep Q-Network Chapter 5

[120]

Then, in the same cycle, eps is decayed and if some of the conditions are met, it trains the
online network. These conditions make sure that the buffer has reached a minimal size and
that the neural network is trained only once every update_freq steps. To train the online
network, first, a minibatch is sampled from the buffer and the target values are calculated.
Then, the session is run to minimize the loss function, v_loss, which feeds the dictionary
with the target values, the actions, and the observations of the minibatch. While the session
is running, it also returns v_loss and scalar_summary for statistics purposes.
scalar_summary is then added to file_writer to be saved in the TensorBoard logging
file. Finally, every update_target_net epochs, the target network is updated. A
summary with the mean losses is also run and added to the TensorBoard logging file. All of
this is done by the following snippet of code:

 if eps > end_explor:
 eps -= eps_decay

 if len(buffer) > min_buffer_size and (step_count % update_freq
== 0):
 mb_obs, mb_rew, mb_act, mb_obs2, mb_done =
buffer.sample_minibatch(batch_size)
 mb_trg_qv = sess.run(target_qv, feed_dict={obs_ph:mb_obs2})
 y_r = q_target_values(mb_rew, mb_done, mb_trg_qv, discount)
Compute the target values
 train_summary, train_loss, _ = sess.run([scalar_summary,
v_loss, v_opt], feed_dict={obs_ph:mb_obs, y_ph:y_r, act_ph: mb_act})

 file_writer.add_summary(train_summary, step_count)
 last_update_loss.append(train_loss)

 if (len(buffer) > min_buffer_size) and (step_count %
update_target_net) == 0:
 _, train_summary = sess.run([update_target_op,
mean_loss_summary], feed_dict={ml_v:np.mean(last_update_loss)})
 file_writer.add_summary(train_summary, step_count)
 last_update_loss = []

When an epoch terminates, the environment is reset, the total reward of the game is
appended to batch_rew, and the latter is set to zero. Moreover, every test_frequency
epochs, the agent is tested for 10 games, and the statistics are added to file_writer. At
the end of the training, the environments and the writer are closed. The code is as follows:

 if done:
 obs = env.reset()
 batch_rew.append(g_rew)
 g_rew = 0
 if ep % test_frequency == 0:
 test_rw = test_agent(env_test, agent_op, num_games=10)

Deep Q-Network Chapter 5

[121]

 test_summary = sess.run(reward_summary, feed_dict={mr_v:
np.mean(test_rw)})
 file_writer.add_summary(test_summary, step_count)
 print('Ep:%4d Rew:%4.2f, Eps:%2.2f -- Step:%5d -- Test:%4.2f
%4.2f' % (ep,np.mean(batch_rew), eps, step_count, np.mean(test_rw),
np.std(test_rw))
 batch_rew = []
 file_writer.close()
 env.close()
 env_test.close()

That's it. We can now call the DQN function with the name of the Gym environment and all
the hyperparameters:

if __name__ == '__main__':
 DQN('PongNoFrameskip-v4', hidden_sizes=[128], lr=2e-4,
buffer_size=100000, update_target_net=1000, batch_size=32, update_freq=2,
frames_num=2, min_buffer_size=10000)

There's one last note before reporting the results. The environment that's being used here
isn't the default version of Pong-v0 but a modified version of it. The reason for this is that
in the regular version, each action is performed 2, 3, or 4 times where this number is
sampled uniformly. But because we want to skip a fixed number of times, we opted for the
version without the built-in skip feature, NoFrameskip, and added the
custom MaxAndSkipEnv wrapper.

Results
Evaluating the progress of an RL algorithm is very challenging. The most obvious way to
do this is to keep track of its end goal; that is, monitoring the total reward that's
accumulated during the epochs. This is a good metric. However, training the average
reward can be very noisy due to changes in the weights. This leads to large changes in the
distribution of the state that's being visited.

For these reasons, we evaluated the algorithm on 10 test games every 20 training epochs
and kept track of the average of the total (non-discounted) reward that was accumulated
throughout the games. Moreover, because of the determinism of the environment, we
tested the agent on an -greedy policy (with) so that we have a more robust
evaluation. The scalar summary is called test_rew. You can see it in TensorBoard if you
access the directory where the logs have been saved, and execute the following command:

tensorboard --logdir .

Deep Q-Network Chapter 5

[122]

The plot, which should be similar to yours (if you run the DQN code), is shown in the
following diagram. The x axis represents the number of steps. You can see that it reaches a
steady score of after a linear increase in the first 250,000 steps and a more significant
growth in the next 300,000 steps:

Figure 5.4. A plot of the mean total reward across 10 games. The x axis represents the number of steps

Pong is a relatively simple task to complete. In fact, our algorithm has been trained on
around 1.1 million steps, whereas in the DQN paper, all the algorithms were trained on 200
million steps.

Deep Q-Network Chapter 5

[123]

An alternative way to evaluate the algorithm involves the estimated action-values. Indeed,
the estimated action-values are a valuable metric because they measure the belief of the
quality of the state-action pair. Unfortunately, this option is not optimal as some algorithms
tend to overestimate the Q-values, as we will soon learn. Despite this, we tracked it during
training. The plot is visible in the following diagram and, as we expected, the Q-value
increases throughout the training in a similar way to the plot in the preceding diagram:

Figure 5.5. A plot of the estimated training Q-values. The x axis represents the number of steps

Another important plot, shown in the following diagram, shows the loss function through
time. It's not as useful as in supervised learning as the target values aren't the ground truth,
but it can always provide a good insight into the quality of the model:

Deep Q-Network Chapter 5

[124]

Figure 5.6. A plot of the loss function

DQN variations
Following the amazing results of DQN, many researchers have studied it and come up with
integrations and changes to improve its stability, efficiency, and performance. In this
section, we will present three of these improved algorithms, explain the idea and solution
behind them, and provide their implementation. The first is Double DQN or DDQN, which
deals with the over-estimation problem we mentioned in the DQN algorithm. The second is
Dueling DQN, which decouples the Q-value function in a state value function and an
action-state advantage value function. The third is n-step DQN, an old idea taken from TD
algorithms, which spaces the step length between one-step learning and MC learning.

Deep Q-Network Chapter 5

[125]

Double DQN
The over-estimation of the Q-values in Q-learning algorithms is a well-known problem. The
cause of this is the max operator, which over-estimates the actual maximum estimated
values. To comprehend this problem, let's assume that we have noisy estimates with a
mean of 0 but a variance different from 0, as shown in the following illustration. Despite the
fact that, asymptotically, the average value is 0, the max function will always return values
greater than 0:

Figure 5.7. Six values sampled from a normal distribution with a mean of 0

In Q-learning, this over-estimation is not a real problem until the higher values are
uniformly distributed. If, however, the over-estimation is not uniform and the error differs
from states and actions, this over-estimation negatively affects the DQN algorithm, which
degrades the resulting policy.

Deep Q-Network Chapter 5

[126]

To address this problem, in the paper Deep Reinforcement Learning with Double Q-
learning, the authors suggest using two different estimators (that is, two neural networks):
one for the action selection and one for the Q-values estimation. But instead of using two
different neural networks and increasing the complexity, the paper proposes the use of the
online network to choose the best action with the max operation, and the use of the target
network to compute its Q-values. With this solution, the target value, , will change from
being as follows for standard Q-learning:

Now, it's as follows:

 (5.7)

This uncoupled version significantly reduces over-estimation problems and improves the
stability of the algorithm.

DDQN implementation
From an implementation perspective, the only change to make in order to implement
DDQN is in the training phase. You just need to replace the following lines of code in the
DDQN implementation itself:

mb_trg_qv = sess.run(target_qv, feed_dict={obs_ph:mb_obs2})
y_r = q_target_values(mb_rew, mb_done, mb_trg_qv, discount)

Replace this with the following code:
mb_onl_qv, mb_trg_qv = sess.run([online_qv,target_qv],
feed_dict={obs_ph:mb_obs2})
y_r = double_q_target_values(mb_rew, mb_done, mb_trg_qv, mb_onl_qv,
discount)

Here, double_q_target_values is a function that computes (5.7) for each transition of
the minibatch.

https://arxiv.org/abs/1509.06461
https://arxiv.org/abs/1509.06461

Deep Q-Network Chapter 5

[127]

Results
To see if DQN actually overestimates the Q-values in respect to DDQN, we reported the Q-
value plot in the following diagram. We also included the results of DQN (the orange line)
so that we have a direct comparison between the two algorithms:

Figure 5.8. A plot of the estimated training Q-values. The DDQN values are plotted in blue and the DQN values are plotted in orange. The x axis represents the number of steps

The performance of both DDQN (the blue line) and DQN (the orange line), which are
represented by the average reward of the test games, is as follows:

For all the color references mentioned in the chapter, please refer to the
color images bundle at http:/ /www. packtpub. com/sites/ default/ files/
downloads/ 9781789131116_ ColorImages. pdf.

http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf

Deep Q-Network Chapter 5

[128]

Figure 5.9. A plot of the mean test rewards. The DDQN values are plotted in blue and the DQN values are plotted in orange. The x axis represents the number of steps

As we expected, the Q-values are always smaller in DDQN than in DQN, meaning that the
latter was actually over-estimating the values. Nonetheless, the performance on the test
games doesn't seem to be impacted, meaning that those over-estimations were probably not
hurting the performance of the algorithm. However, be aware that we only tested the
algorithm on Pong. The effectiveness of an algorithm shouldn't be evaluated in a single
environment. In fact, in the paper, the authors apply it to all 57 ALE games and reported
that DDQN not only yields more accurate value estimates but leads to much higher scores
on several games.

Dueling DQN
In the paper Dueling Network Architectures for Deep Reinforcement Learning (https:/ /arxiv.
org/abs/1511.06581), a novel neural network architecture with two separate estimators
was proposed: one for the state value function and the other for the state-action advantage
value function.

The advantage function is used everywhere in RL and is defined as follows:

https://arxiv.org/abs/1511.06581
https://arxiv.org/abs/1511.06581
https://arxiv.org/abs/1511.06581
https://arxiv.org/abs/1511.06581
https://arxiv.org/abs/1511.06581
https://arxiv.org/abs/1511.06581
https://arxiv.org/abs/1511.06581
https://arxiv.org/abs/1511.06581
https://arxiv.org/abs/1511.06581
https://arxiv.org/abs/1511.06581
https://arxiv.org/abs/1511.06581
https://arxiv.org/abs/1511.06581

Deep Q-Network Chapter 5

[129]

The advantage function tells us the improvement of an action, , compared to the average
action in a given state, . Thus, if is a positive value, this means that the action, , is
better then the average action in the state, . On the contrary, if is a negative value,
this means that is worse than the average action in the state, .

Thus, estimating the value function and the advantage function separately, as done in the
paper, allows us to rebuild the Q-function, like so:

 (5.8)

Here, the mean of the advantage has been added to increase the stability of the DQN.

The architecture of Dueling DQN consists of two heads (or streams): one for the value
function and one for the advantage function, all while sharing a common convolutional
module. The authors reported that this architecture can learn which states are or are not
valuable, without having to learn the absolute value of each action in a state. They tested
this new architecture on the Atari games and obtained considerable improvements
regarding their overall performance.

Dueling DQN implementation
One of the benefits of this architecture and of formula (5.8) is that it doesn't impose any
changes on the underlying RL algorithm. The only changes are in the construction of the Q-
network. Thus, we can replace qnet with the dueling_qnet function, which can be
implemented as follows:

def dueling_qnet(x, hidden_layers, output_size, fnn_activation=tf.nn.relu,
last_activation=None):
 x = cnn(x)
 x = tf.layers.flatten(x)
 qf = fnn(x, hidden_layers, 1, fnn_activation, last_activation)
 aaqf = fnn(x, hidden_layers, output_size, fnn_activation,
last_activation)
 return qf + aaqf - tf.reduce_mean(aaqf)

Two forward neural networks are created: one with only one output (for the value
function) and one with as many outputs as the actions of the agent (for the state-dependent
action advantage function). The last line returns formula (5.8).

Deep Q-Network Chapter 5

[130]

Results
The results of the test rewards, as shown in the following diagram, are promising, proving
a clear benefit in the use of a dueling architecture:

Figure 5.10. A plot of the test rewards. The dueling DQN values are plotted in red and the DQN values are plotted in orange. The x axis represents the number of steps

N-step DQN
The idea behind n-step DQN is old and comes from the shift between temporal difference
learning and Monte Carlo learning. These algorithms, which were introduced in Chapter 4,
Q-Learning and SARSA Applications, are at the opposite extremes of a common spectrum. TD
learning learns from a single step, while MC learns from the complete trajectory. TD
learning exhibits a minimal variance but a maximal bias, where as MC exhibits high
variance but a minimal bias. The variance-bias problem can be balanced using an n-step
return. An n-step return is a return computed after n steps. TD learning can be viewed as a
0-step return while MC can be viewed as a -step return.

Deep Q-Network Chapter 5

[131]

With the n-step return, we can update the target value, as follows:

 (5.9)

Here, is the number of steps.

An n-step return is like looking ahead n steps, but in practice, as it's impossible to actually
look into the future, it's done in the opposite way, that is, by computing the value of n-
steps ago. This leads to values that are only available at time , delaying the learning
process.

The main advantage of this approach is that the target values are less biased and this can
lead to faster learning. An important problem that arises is that the target values that are
calculated in this way are correct, but only when the learning is on-policy (DQN is off-
policy). This is because formula (5.9) assumes that the policy that the agent will follow for
the next n-steps is the same policy that collected the experience. There are some ways to
adjust for the off-policy case, but they are generally complicated to implement and the best
general practice is just to keep a small n and ignore the problem.

Implementation
To implement n-step DQN, only a few changes in the buffer are required. When sampling
from the buffer, the n-step reward, the n-step next state, and the n-step done flag have to be
returned. We will not provide the implementation here as it is quite simple but you can
look at it in the code provided in this book's GitHub repository. The code to support n-step
return is in the MultiStepExperienceBuffer class.

Results
For off-policy algorithms (such as DQN), n-step learning works well with small values of n.
In DQN, it has been shown that the algorithm works well with values of n between 2 and 4,
leading to improvements in a wide range of Atari games.

Deep Q-Network Chapter 5

[132]

In the following graph, the results of our implementation are visible. We tested DQN with a
three-step return. From the results, we can see that it requires more time before taking off.
Afterward, it has a steeper learning curve but with an overall similar learning curve
compared to DQN:

Figure 5.11. A plot of the mean test total reward. The three-step DQN values are plotted in violet and the DQN values are plotted in orange. The x axis represents the number of
steps

Summary
In this chapter, we went further into RL algorithms and talked about how these can be
combined with function approximators so that RL can be applied to a broader variety of
problems. Specifically, we described how function approximation and deep neural
networks can be used in Q-learning and the instabilities that derive from it. We
demonstrated that, in practice, deep neural networks cannot be combined with Q-learning
without any modifications.

Deep Q-Network Chapter 5

[133]

The first algorithm that was able to use deep neural networks in combination with Q-
learning was DQN. It integrates two key ingredients to stabilize learning and control
complex tasks such as Atari 2600 games. The two ingredients are the replay buffer, which is
used to store the old experience, and a separate target network, which is updated less
frequently than the online network. The former is employed to exploit the off-policy quality
of Q-learning so that it can learn from the experiences of different policies (in this case, old
policies) and to sample more i.i.d mini-batches from a larger pool of data to perform
stochastic gradient descent. The latter is introduced to stabilize the target values and reduce
the non-stationarity problem.

After this formal introduction to DQN, we implemented it and tested it on Pong, an Atari
game. Moreover, we showed more practical aspects of the algorithm, such as the
preprocessing pipeline and the wrappers. Following the publication of DQN, many other
variations have been introduced to improve the algorithm and overcome its instabilities.
We took a look at them and implemented three variations, namely Double DQN, Dueling
DQN, and n-step DQN. Despite the fact that, in this chapter, we applied these algorithms
exclusively to Atari games, they can be employed in many real-world problems.

In the next chapter, we'll introduce a different category of deep RL algorithms called policy
gradient algorithms. These are on-policy and, as we'll soon see, they have some very
important and unique characteristics that widen their applicability to a larger set of
problems.

Questions
What is the cause of the deadly triad problem?1.
How does DQN overcome instabilities?2.
What's the moving target problem?3.
How is the moving target problem mitigated in DQN?4.
What's the optimization procedure that's used in DQN?5.
What's the definition of a state-action advantage value function?6.

Deep Q-Network Chapter 5

[134]

Further reading
For a comprehensive tutorial regarding OpenAI Gym wrappers, read the
following article: https:/ /hub. packtpub. com/ openai- gym- environments-
wrappers- and- monitors- tutorial/ .
For the original Rainbow paper, go to https:/ /arxiv. org/ abs/ 1710. 02298.

https://hub.packtpub.com/openai-gym-environments-wrappers-and-monitors-tutorial/
https://hub.packtpub.com/openai-gym-environments-wrappers-and-monitors-tutorial/
https://hub.packtpub.com/openai-gym-environments-wrappers-and-monitors-tutorial/
https://hub.packtpub.com/openai-gym-environments-wrappers-and-monitors-tutorial/
https://hub.packtpub.com/openai-gym-environments-wrappers-and-monitors-tutorial/
https://hub.packtpub.com/openai-gym-environments-wrappers-and-monitors-tutorial/
https://hub.packtpub.com/openai-gym-environments-wrappers-and-monitors-tutorial/
https://hub.packtpub.com/openai-gym-environments-wrappers-and-monitors-tutorial/
https://hub.packtpub.com/openai-gym-environments-wrappers-and-monitors-tutorial/
https://hub.packtpub.com/openai-gym-environments-wrappers-and-monitors-tutorial/
https://hub.packtpub.com/openai-gym-environments-wrappers-and-monitors-tutorial/
https://hub.packtpub.com/openai-gym-environments-wrappers-and-monitors-tutorial/
https://hub.packtpub.com/openai-gym-environments-wrappers-and-monitors-tutorial/
https://hub.packtpub.com/openai-gym-environments-wrappers-and-monitors-tutorial/
https://hub.packtpub.com/openai-gym-environments-wrappers-and-monitors-tutorial/
https://hub.packtpub.com/openai-gym-environments-wrappers-and-monitors-tutorial/
https://hub.packtpub.com/openai-gym-environments-wrappers-and-monitors-tutorial/
https://hub.packtpub.com/openai-gym-environments-wrappers-and-monitors-tutorial/
https://hub.packtpub.com/openai-gym-environments-wrappers-and-monitors-tutorial/
https://hub.packtpub.com/openai-gym-environments-wrappers-and-monitors-tutorial/
https://hub.packtpub.com/openai-gym-environments-wrappers-and-monitors-tutorial/
https://hub.packtpub.com/openai-gym-environments-wrappers-and-monitors-tutorial/
https://hub.packtpub.com/openai-gym-environments-wrappers-and-monitors-tutorial/
https://arxiv.org/abs/1710.02298
https://arxiv.org/abs/1710.02298
https://arxiv.org/abs/1710.02298
https://arxiv.org/abs/1710.02298
https://arxiv.org/abs/1710.02298
https://arxiv.org/abs/1710.02298
https://arxiv.org/abs/1710.02298
https://arxiv.org/abs/1710.02298
https://arxiv.org/abs/1710.02298
https://arxiv.org/abs/1710.02298
https://arxiv.org/abs/1710.02298
https://arxiv.org/abs/1710.02298
https://arxiv.org/abs/1710.02298

6
Learning Stochastic and PG

Optimization
So far, we've addressed and developed value-based reinforcement learning algorithms.
These algorithms learn a value function in order to be able to find a good policy. Despite
the fact that they exhibit good performances, their application is constrained by some limits
that are embedded in their inner workings. In this chapter, we'll introduce a new class of
algorithms called policy gradient methods, which are used to overcome the constraints of
value-based methods by approaching the RL problem from a different perspective.

Policy gradient methods select an action based on a learned parametrized policy, instead of
relying on a value function. In this chapter, we will also elaborate on the theory and
intuition behind these methods, and with this background, develop the most basic version
of a policy gradient algorithm, named REINFORCE.

REINFORCE exhibits some deficiencies due to its simplicity, but these can be mitigated
with only a small amount of additional effort. Thus, we'll present two improved versions of
REINFORCE, called REINFORCE with baseline and actor-critic (AC) models.

Learning Stochastic and PG Optimization Chapter 6

[136]

The following topics will be covered in this chapter:

Policy gradient methods
Understanding the REINFORCE algorithm
REINFORCE with a baseline
Learning the AC algorithm

Policy gradient methods
The algorithms that have been learned and developed so far are value-based, which, at
their core, learn a value function, V(s), or action-value function, Q(s, a). A value function is a
function that defines the total reward that can be accumulated from a given state or state-
action pair. An action can then be selected, based on the estimated action (or state) values.

Therefore, a greedy policy can be defined as follows:

Value-based methods, when combined with deep neural networks, can learn very
sophisticated policies in order to control agents that operate in high-dimensionality spaces.
Despite these great qualities, they suffer when dealing with problems with a large number
of actions, or when the action space is continuous.

In such cases, maximum operation is not feasible. Policy gradient (PG) algorithms exhibit
incredible potential in such contexts, as they can be easily adapted to continuous action
spaces.

PG methods belong to the broader class of policy-based methods, including evolution
strategies, which are studied later in Chapter 11, Understanding Black-Box Optimization
Algorithms. The distinctiveness of PG algorithms is in their use of the gradient of the policy,
hence the name policy gradient.

A more concise categorization of RL algorithms, with respect to the one reported in Chapter
3, Solving Problems with Dynamic Programming, is shown in the following diagram:

Learning Stochastic and PG Optimization Chapter 6

[137]

Examples of policy gradient methods are REINFORCE and AC that will be introduced in the next sections.

The gradient of the policy
The objective of RL is to maximize the expected return (the total reward, discounted or
undiscounted) of a trajectory. The objective function, can then be expressed as:

Where θ is the parameters of the policy, such as the trainable variables of a deep neural
network.

In PG methods, the maximization of the objective function is done through the gradient of
the objective function . Using gradient ascent, we can improve by moving the
parameters toward the direction of the gradient, as the gradient points in the direction in
which the function increases.

Learning Stochastic and PG Optimization Chapter 6

[138]

We have to take the same direction of the gradient, because we aim to
maximize the objective function (6.1).

Once the maximum is found, the policy, πθ, will produce trajectories with the highest
possible return. On an intuitive level, policy gradient incentivizes good policies by
increasing their probability while punishing bad policies by reducing their probabilities.

Using equation (6.1), the gradient of the objective function is defined as follows:

By relating to the concepts from the previous chapters, in policy gradient methods, policy
evaluation is the estimation of the return, . Instead, policy improvement is the
optimization step of the parameter . Thus, policy gradient methods have to
symbiotically carry on both phases in order to improve the policy.

Policy gradient theorem
An initial problem is encountered when looking at equation (6.2), because, in its
formulation, the gradient of the objective function depends on the distribution of the states
of a policy; that is:

We would use a stochastic approximation of that expectation, but to compute the
distribution of the states, , we still need a complete model of the environment. Thus, this
formulation isn't suitable for our purposes.

The policy gradient theorem comes to the rescue here. Its purpose is to provide an
analytical formulation to compute the gradient of the objective function, with respect to the
parameters of the policy, without involving the derivative of the state distribution.
Formally, the policy gradient theorem, enables us to express the gradient of the objective
function as:

Learning Stochastic and PG Optimization Chapter 6

[139]

The proof of the policy gradient theorem is beyond the scope of this book, and thus, isn't
included. However, you can find it in the book by Sutton and Barto (http:/ /
incompleteideas.net/ book/ the- book- 2nd. htmlor) or from other online resources.

Now that the derivative of the objective doesn't involve the derivative of the state
distribution, the expectation can be estimated by sampling from the policy. Thus, the
derivative of the objective can be approximated as follows:

This can be used to produce a stochastic update with gradient ascent:

Note, that because the goal is to maximize the objective function, gradient ascent is used to
move the parameters in the same direction as the gradient (contrary to gradient descent,
which performs).

The idea behind equation (6.5) is to increase the probability that good actions will be re-
proposed in the future, while reducing the probability of bad actions. The quality of the
actions is carried on by the usual scalar value of , which gives the quality of the
state-action pair.

Computing the gradient
As long as the policy is differentiable, its gradient can be easily computed, taking
advantage of modern automatic differentiation software.

To do that in TensorFlow, we can define the computational graph and
call tf.gradient(loss_function,variables) to calculate the gradient of the loss
function (loss_function) with respect to the variables trainable parameters. An
alternative would be to directly maximize the objective function using the stochastic
gradient descent optimizer, for example, by calling
tf.train.AdamOptimizer(lr).minimize(-objective_function).

http://incompleteideas.net/book/the-book-2nd.htmlor
http://incompleteideas.net/book/the-book-2nd.htmlor
http://incompleteideas.net/book/the-book-2nd.htmlor
http://incompleteideas.net/book/the-book-2nd.htmlor
http://incompleteideas.net/book/the-book-2nd.htmlor
http://incompleteideas.net/book/the-book-2nd.htmlor
http://incompleteideas.net/book/the-book-2nd.htmlor
http://incompleteideas.net/book/the-book-2nd.htmlor
http://incompleteideas.net/book/the-book-2nd.htmlor
http://incompleteideas.net/book/the-book-2nd.htmlor
http://incompleteideas.net/book/the-book-2nd.htmlor
http://incompleteideas.net/book/the-book-2nd.htmlor
http://incompleteideas.net/book/the-book-2nd.htmlor
http://incompleteideas.net/book/the-book-2nd.htmlor
http://incompleteideas.net/book/the-book-2nd.htmlor
http://incompleteideas.net/book/the-book-2nd.htmlor

Learning Stochastic and PG Optimization Chapter 6

[140]

The following snippet is an example of the steps that are required to compute the
approximation in formula (6.5), with a policy of discrete action space of the
env.action_space.n dimension:

pi = policy(states) # actions probability for each action
onehot_action = tf.one_hot(actions, depth=env.action_space.n)
pi_log = tf.reduce_sum(onehot_action * tf.math.log(pi), axis=1)

pi_loss = -tf.reduce_mean(pi_log * Q_function(states, actions))

calculate the gradients of pi_loss with respect to the variables
gradients = tf.gradient(pi_loss, variables)

or optimize directly pi_loss with Adam (or any other SGD optimizer)
pi_opt = tf.train.AdamOptimizer(lr).minimize(pi_loss)

tf.one_hot produces a one-hot encoding of the actions actions. That is, it produces a
mask with 1, corresponding with the numerical value of the action, 0, in the others.

Then, in the third line of the code, the mask is multiplied by the logarithm of the action
probability, in order to obtain the log probability of the actions actions. The fourth line
computes the loss as follows:

And finally, tf.gradient calculates the gradients of pi_loss, with respect to the
variables parameter, as in formula (6.5).

The policy
In the case that the actions are discrete and limited in number, the most common approach
is to create a parameterized policy that produces a numerical value for each action.

Note that, differently from the Deep Q-Network algorithm, here, the
output values of the policy aren't the Q(s,a) action values.

Learning Stochastic and PG Optimization Chapter 6

[141]

Then, each output value is converted to a probability. This operation is performed with the
softmax function, which is given as follows:

The softmax values are normalized to have a sum of one, so as to produce a probability
distribution where each value corresponds to the probability of selecting a given action.

The next two plots show an example of five action-value predictions before (the plot on the
left) and after (the right plot) they are applied to the softmax function. Indeed, from the plot
on the right, you can see that, after the softmax is computed, the sum of the new values is
one, and that they all have values greater than zero:

The right plot indicates that actions 0,1,2,3, and 4, will be selected approximately, with
probabilities of 0.64, 0.02, 0.09, 0.21, and 0.02, correspondingly.

Learning Stochastic and PG Optimization Chapter 6

[142]

To use a softmax distribution on the action values that are returned by the parameterized
policy, we can use the code that is given in the Computing the gradient section, with only one
change, which has been highlighted in the following snippet:

pi = policy(states) # actions probability for each action
onehot_action = tf.one_hot(actions, depth=env.action_space.n)

pi_log = tf.reduce_sum(onehot_action * tf.nn.log_softmax(pi), axis=1) #
instead of tf.math.log(pi)

pi_loss = -tf.reduce_mean(pi_log * Q_function(states, actions))
gradients = tf.gradient(pi_loss, variables)

Here, we used tf.nn.log_softmax, because it's been designed to be more stable than first
calling tf.nn.softmax, and then tf.math.log.

An advantage of having actions according to stochastic distribution, is in the intrinsic
randomness of the actions selected, which enable a dynamic exploration of the
environment. This can seem like a side effect, but it's very important to have a policy that
can adapt the level of exploration by itself.

In the case of DQN, we had to use a hand-crafted variable to adjust the exploration
throughout all the training, using linear decay. Now that the exploration is built into the
policy, at most, we have to add a term (the entropy) in the loss function in order to
incentivize it.

On-policy PG
A very important aspect of policy gradient algorithms is that they are on-policy. Their on-
policy nature comes from the formula (6.4), as it is dependent on the current policy. Thus,
unlike off-policy algorithms such as DQN, on-policy methods aren't allowed to reuse old
experiences.

This means that all the experience that has been collected with a given policy has to be
discarded once the policy changes. As a side effect, policy gradient algorithms are less
sample efficient, meaning that they are required to gain more experience to reach the same
performance as the off-policy counterpart. Moreover, they usually tend to generalize
slightly worse.

Learning Stochastic and PG Optimization Chapter 6

[143]

Understanding the REINFORCE algorithm
The core of policy gradient algorithms has already been covered, but we have
another important concept to explain. We are yet to look at how action values are
computed.

We already saw with the formula (6.4):

that we are able to estimate the gradient of the objective function by sampling directly from
the experience that is collected following the policy.

The only two terms that are involved are the values of and the derivative of the
logarithm of the policy, which can be obtained through modern deep learning frameworks
(such as TensorFlow and PyTorch). While we defined , we haven't explained how to
estimate the action-value function, yet.

The simpler way, introduced for the first time in the REINFORCE algorithm by Williams, is
to estimate the return is using Monte Carlo (MC) returns. For this reason, REINFORCE is
considered an MC algorithm. If you remember, MC returns are the return values of
sampled trajectories run with a given policy. Thus, we can rewrite equation (6.4), changing
the action-value function, , with the MC return, :

The return is computed from a complete trajectory, implying that the PG update is
available only after steps, where is the total number of steps in a trajectory. Another
consequence is that the MC return is well defined only in episodic problems, where there is
an upper bound to the maximum number of steps (the same conclusions that we came up
with in the other MC algorithms that we previously learned).

To get more practical, the discounted return at time , which can also be called the reward to
go, as it uses only future rewards, is as follows:

Learning Stochastic and PG Optimization Chapter 6

[144]

This can be rewritten recursively, as follows:

This function can be implemented by proceeding in reverse order, starting from the last
reward, as shown here:

def discounted_rewards(rews, gamma):
 rtg = np.zeros_like(rews, dtype=np.float32)
 rtg[-1] = rews[-1]
 for i in reversed(range(len(rews)-1)):
 rtg[i] = rews[i] + gamma*rtg[i+1]
 return rtg

Here, in the first place, a NumPy array is created, and the value of the last reward is
assigned to the rtg variable. This is done because, at time , . Then,
the algorithm computes rtg[i] backward, using the subsequent value.

The main cycle of the REINFORCE algorithm involves running a few epochs until it gathers
enough experience, and optimizing the policy parameter. To be effective, the algorithm has
to complete at least one epoch before performing the update step (it needs at least a full
trajectory to compute the reward to go ()). REINFORCE is summarized in the following
pseudocode:

Initialize with random weight

for episode 1..M do

 Initialize environment
 Initialize empty buffer

 > Generate a few episodes
 for step 1..MaxSteps do
 > Collect experience by acting on the environment

 if :

 > Compute the reward to go

 # for each t
 > Store the episode in the buffer

Learning Stochastic and PG Optimization Chapter 6

[145]

 # where is the length of the
episode
 > REINFORCE update step using all the experience in
following formula (6.5)

Implementing REINFORCE
It's time to implement REINFORCE. Here, we provide a mere implementation of the
algorithm, without the procedures for its debugging and monitoring. The complete
implementation is available in the GitHub repository. So, make sure that you check it out.

The code is divided into three main functions, and one class:

REINFORCE(env_name, hidden_sizes, lr, num_epochs, gamma,

steps_per_epoch): This is the function that contains the main implementation
of the algorithm.
Buffer: This is a class that is used to temporarily store the trajectories.
mlp(x, hidden_layer, output_size, activation, last_activation):
This is used to build a multi-layer perceptron in TensorFlow.
discounted_rewards(rews, gamma): This computes the discounted reward
to go.

We'll first look at the main REINFORCE function, and then implement the supplementary
functions and class.

The REINFORCE function is divided into two main parts. In the first part, the
computational graph is created, while in the second, the environment is run and the policy
is optimized cyclically until a convergence criterion is met.

The REINFORCE function takes the name of the env_name environment as the input, a list
with the sizes of the hidden layers—hidden_sizes, the learning rate—lr, the number of
training epochs—num_epochs, the discount value—gamma, and the minimum number of
steps per epoch—steps_per_epoch. Formally, the heading of REINFORCE is as follows:

def REINFORCE(env_name, hidden_sizes=[32], lr=5e-3, num_epochs=50,
gamma=0.99, steps_per_epoch=100):

Learning Stochastic and PG Optimization Chapter 6

[146]

At the beginning of REINFORCE(..), the TensorFlow default graph is reset, an
environment is created, the placeholder is initialized, and the policy is created. The policy is
a fully connected multi-layer perceptron, with an output for each action,
and tanh activation, on each hidden layer. The outputs of the multi-layer perceptron are
the unnormalized values of the actions, called logits. All this is done in the following
snippet:

def REINFORCE(env_name, hidden_sizes=[32], lr=5e-3, num_epochs=50,
gamma=0.99, steps_per_epoch=100):

 tf.reset_default_graph()

 env = gym.make(env_name)
 obs_dim = env.observation_space.shape
 act_dim = env.action_space.n

 obs_ph = tf.placeholder(shape=(None, obs_dim[0]), dtype=tf.float32,
name='obs')
 act_ph = tf.placeholder(shape=(None,), dtype=tf.int32, name='act')
 ret_ph = tf.placeholder(shape=(None,), dtype=tf.float32, name='ret')
 p_logits = mlp(obs_ph, hidden_sizes, act_dim, activation=tf.tanh)

We can then create an operation that will compute the loss function, and one that will
optimize the policy. The code is similar to the code that we saw earlier, in the The policy
section. The only difference is that now the actions are sampled
by tf.random.multinomial , which follows the action distribution that is returned by the
policy. This function draws samples from a categorical distribution. In our case, it chooses a
single action (depending on the environment, it could be more than one action).

The following snippet is the implementation of the REINFORCE update:

 act_multn = tf.squeeze(tf.random.multinomial(p_logits, 1))
 actions_mask = tf.one_hot(act_ph, depth=act_dim)
 p_log = tf.reduce_sum(actions_mask * tf.nn.log_softmax(p_logits), axis=1)
 p_loss = -tf.reduce_mean(p_log*ret_ph)
 p_opt = tf.train.AdamOptimizer(lr).minimize(p_loss)

A mask is created over the actions that are chosen during the interaction with the
environment and multiplied by log_softmax in order to obtain . Then, the full
loss function is computed. Be careful—there is a minus sign before tf.reduce_sum. We
are interested in the maximization of the objective function. But because the optimizer
needs a function to minimize, we have to pass a loss function. The last line optimizes the
PG loss function using AdamOptimizer.

Learning Stochastic and PG Optimization Chapter 6

[147]

We are now ready to start a session, reset the global variables of the computational graph,
and initialize some further variables that we'll use later:

 sess = tf.Session()
 sess.run(tf.global_variables_initializer())
 step_count = 0
 train_rewards = []
 train_ep_len = []

Then, we create the two inner cycles that will interact with the environment to gather
experience and optimize the policy, and print a few statistics:

 for ep in range(num_epochs):
 obs = env.reset()
 buffer = Buffer(gamma)
 env_buf = []
 ep_rews = []

 while len(buffer) < steps_per_epoch:

 # run the policy
 act = sess.run(act_multn, feed_dict={obs_ph:[obs]})
 # take a step in the environment
 obs2, rew, done, _ = env.step(np.squeeze(act))

 env_buf.append([obs.copy(), rew, act])
 obs = obs2.copy()
 step_count += 1
 ep_rews.append(rew)

 if done:
 # add the full trajectory to the environment
 buffer.store(np.array(env_buf))
 env_buf = []
 train_rewards.append(np.sum(ep_rews))
 train_ep_len.append(len(ep_rews))
 obs = env.reset()
 ep_rews = []
 obs_batch, act_batch, ret_batch = buffer.get_batch()
 # Policy optimization
 sess.run(p_opt, feed_dict={obs_ph:obs_batch, act_ph:act_batch,
ret_ph:ret_batch})

 # Print some statistics
 if ep % 10 == 0:
 print('Ep:%d MnRew:%.2f MxRew:%.1f EpLen:%.1f Buffer:%d --
Step:%d --' % (ep, np.mean(train_rewards), np.max(train_rewards),
np.mean(train_ep_len), len(buffer), step_count))

Learning Stochastic and PG Optimization Chapter 6

[148]

 train_rewards = []
 train_ep_len = []
 env.close()

The two cycles follow the usual flow, with the exception that the interaction with the
environment stops whenever the trajectory ends, and the temporary buffer has enough
transitions.

We can now implement the Buffer class that contains the data of the trajectories:

class Buffer():
 def __init__(self, gamma=0.99):
 self.gamma = gamma
 self.obs = []
 self.act = []
 self.ret = []

 def store(self, temp_traj):
 if len(temp_traj) > 0:
 self.obs.extend(temp_traj[:,0])
 ret = discounted_rewards(temp_traj[:,1], self.gamma)
 self.ret.extend(ret)
 self.act.extend(temp_traj[:,2])

 def get_batch(self):
 return self.obs, self.act, self.ret
 def __len__(self):
 assert(len(self.obs) == len(self.act) == len(self.ret))
 return len(self.obs)

And finally, we can implement the function that creates the neural network with an
arbitrary number of hidden layers:

def mlp(x, hidden_layers, output_size, activation=tf.nn.relu,
last_activation=None):
for l in hidden_layers:
 x = tf.layers.dense(x, units=l, activation=activation)
 return tf.layers.dense(x, units=output_size,
activation=last_activation)

Here, activation is the non-linear function that is applied to the hidden layers, and
last_activation is the non-linearity function that is applied to the output layer.

Learning Stochastic and PG Optimization Chapter 6

[149]

Landing a spacecraft using REINFORCE
The algorithm is complete however, the most interesting part has yet to be explained. In
this section, we'll apply REINFORCE to LunarLander-v2, an episodic Gym environment
with the aim of landing a lunar lander.

The following is a screenshot of the game in its initial position, and a hypothetical
successful final position:

This is a discrete problem, and the lander has to land at coordinates (0,0), with a penalty if it
lands far from that point. The lander has a positive reward when it moves from the top of
the screen to the bottom, but when it fires the engine to slow down, it loses 0.3 points on
each frame.

Moreover, depending on the conditions of the landing, it receives an additional -100 or +100
points. The game is considered solved with a total of 200 points. Each game is run for a
maximum of 1,000 steps.

For that last reason, we'll gather at least 1,000 steps of experience, to be sure that at least one
full episode has been completed (this value is set by the steps_per_epoch
hyperparameter).

REINFORCE is run calling the function with the following hyperparameters:

REINFORCE('LunarLander-v2', hidden_sizes=[64], lr=8e-3, gamma=0.99,
num_epochs=1000, steps_per_epoch=1000)

Learning Stochastic and PG Optimization Chapter 6

[150]

Analyzing the results
Throughout the learning, we monitored many parameters, including p_loss (the loss of
the policy), old_p_loss (the policy's loss before the optimization phase), the total rewards,
and the length of the episodes, in order to get a better understanding of the algorithm, and
to properly tune the hyperparameters. We also summarized some histograms. Look at the
code in the book's repository to learn more about the TensorBoard summaries!

In the following figure, we have plotted the mean of the total rewards of the full trajectories
that were obtained during training:

From this plot, we can see that it reaches a mean score of 200, or slightly less, in about
500,000 steps; therefore requiring about 1,000 full trajectories, before it is able to master the
game.

Learning Stochastic and PG Optimization Chapter 6

[151]

When plotting the training performance, remember that it is likely that the algorithm is still
exploring. To check whether this is true, monitor the entropy of the actions. If it's higher
than 0, it means that the algorithm is uncertain about the actions selected, and it will keep
exploring—choosing the other actions, and following their distribution. In this case, after
500,000 steps, the agent is also exploring the environment, as shown in the following plot:

REINFORCE with baseline
REINFORCE has the nice property of being unbiased, due to the MC return, which
provides the true return of a full trajectory. However, the unbiased estimate is to the
detriment of the variance, which increases with the length of the trajectory. Why? This
effect is due to the stochasticity of the policy. By executing a full trajectory, you would
know its true reward. However, the value that is assigned to each state-action pair may not
be correct, since the policy is stochastic, and executing it another time may lead to a new
state, and consequently, a different reward. Moreover, you can see that the higher the
number of actions in a trajectory, the more stochasticity you will have introduced into the
system, therefore, ending up with higher variance.

Learning Stochastic and PG Optimization Chapter 6

[152]

Luckily, it is possible to introduce a baseline, , in the estimation of the return, therefore
decreasing the variance, and improving the stability and performance of the algorithm. The
algorithms that adopt this strategy is called REINFORCE with baseline, and the gradient of
its objective function is as follows:

This trick of introducing a baseline is possible, because the gradient estimator still remains
unchanged in bias:

At the same time, for this equation to be true, the baseline must be a constant with respect
to the actions.

Our job now is to find a good baseline. The simplest way is to subtract the average return.

If you would like to implement this in the REINFORCE code, the only change is in the
get_batch() function of the Buffer class:

 def get_batch(self):
 b_ret = self.ret - np.mean(self.ret)
 return self.obs, self.act, b_ret

Although this baseline decreases the variance, it's not the best strategy. As the baseline can
be conditioned on the state, a better idea is to use an estimate of the value function:

Remember that the value function is, on average, the return that is obtained following
the policy.

This variation introduces more complexity into the system, as we have to design an
approximation of the value function, but it's very common to use, and it considerably
increases the performance of the algorithm.

Learning Stochastic and PG Optimization Chapter 6

[153]

To learn , the best solution is to fit a neural network with MC estimates:

In the preceding equation, is the parameters of the neural network to be learned.

In order to not overrun the notation, from now on, we'll neglect to specify the policy, so
that will become .

The neural network is trained on the same trajectories' data that is used for learning ,
without requiring additional interaction with the environment. Once computed, the MC
estimates, for example, with discounted_rewards(rews, gamma), will become the
target values, and the neural network will be optimized in order to minimize the mean
square error (MSE) loss—just as you'd do in a supervised learning task:

Here, is the weights of the value function neural network, and each element of the

dataset contains the state, and the target value .

Implementing REINFORCE with baseline
The value function that baseline approximated with a neural network can be implemented
by adding a few lines to our previous code:

Add the neural network, the operations for computing the MSE loss function,1.
and the optimization procedure to the computational graph:

 ...
 # placeholder that will contain the reward to go values (i.e. the y
values)
 rtg_ph = tf.placeholder(shape=(None,), dtype=tf.float32, name='rtg')
 # MLP value function
 s_values = tf.squeeze(mlp(obs_ph, hidden_sizes, 1, activation=tf.tanh))

 # MSE loss function
 v_loss = tf.reduce_mean((rtg_ph - s_values)**2)

Learning Stochastic and PG Optimization Chapter 6

[154]

 # value function optimization
 v_opt = tf.train.AdamOptimizer(vf_lr).minimize(v_loss)
 ...

Run s_values, and store the predictions, as later we'll need to compute2.
. This operation can be done in the innermost cycle (the differences

from the REINFORCE code are shown in bold):

 ...
 # besides act_multn, run also s_values
 act, val = sess.run([act_multn, s_values],
feed_dict={obs_ph:[obs]})
 obs2, rew, done, _ = env.step(np.squeeze(act))

 # add the new transition, included the state value predictions
 env_buf.append([obs.copy(), rew, act, np.squeeze(val)])
 ...

Retrieve rtg_batch, which contains the "target" values from the buffer, and3.
optimize the value function:

 obs_batch, act_batch, ret_batch, rtg_batch = buffer.get_batch()
 sess.run([p_opt, v_opt], feed_dict={obs_ph:obs_batch,
act_ph:act_batch, ret_ph:ret_batch, rtg_ph:rtg_batch})

Compute the reward to go (), and the target values . This change4.
is done in the Buffer class. We have to create a new empty self.rtg list in the
initialization method of the class, and modify the store and get_batch
functions, as follows:

 def store(self, temp_traj):
 if len(temp_traj) > 0:
 self.obs.extend(temp_traj[:,0])
 rtg = discounted_rewards(temp_traj[:,1], self.gamma)
 # ret = G - V
 self.ret.extend(rtg - temp_traj[:,3])
 self.rtg.extend(rtg)
 self.act.extend(temp_traj[:,2])

 def get_batch(self):
 return self.obs, self.act, self.ret, self.rtg

Learning Stochastic and PG Optimization Chapter 6

[155]

You can now test the REINFORCE with baseline algorithm on whatever environment you
want, and compare the performance with the basic REINFORCE implementation.

Learning the AC algorithm
Simple REINFORCE has the notable property of being unbiased, but it exhibits high
variance. Adding a baseline reduces the variance, while keeping it unbiased
(asymptotically, the algorithm will converge to a local minimum). A major drawback of
REINFORCE with baseline is that it'll converge very slowly, requiring a consistent number
of interactions with the environment.

An approach to speed up training is called bootstrapping. This is a technique that we've
already seen many times throughout the book. It allows the estimation of the return values
from the subsequent state values. The policy gradient algorithms that use this techniques is
called actor-critic (AC). In the AC algorithm, the actor is the policy, and the critic is the
value function (typically, a state-value function) that "critiques" the behavior of the actor, to
help him learn faster. The advantages of AC methods are multiple, but the most important
is their ability to learn in non-episodic problems.

It's not possible to solve continuous tasks with REINFORCE, as to compute the reward to
go, they need all the rewards until the end of the trajectory (if the trajectories are infinite,
there is no end). Relying on the bootstrapping technique, AC methods are also able to learn
action values from incomplete trajectories.

Using a critic to help an actor to learn
The action-value function that uses one-step bootstrapping is defined as follows:

Here, is the notorious next state.

Thus, with an actor, and a critic using bootstrapping, we obtain a one-step AC step:

This will replace the REINFORCE step with a baseline:

Learning Stochastic and PG Optimization Chapter 6

[156]

Note the difference between the use of the state-value function in REINFORCE and AC. In
the former, it is used only as a baseline, to provide the state value of the current state. In the
latter example, the state-value function is used to estimate the value of the next state, so as
to only require the current reward to estimate . Thus, we can say that the one-step
AC model is a fully online, incremental algorithm.

The n-step AC model
In reality, as we already saw in TD learning, a fully online algorithm has low variance but
high bias, the opposite of MC learning. However, usually, a middle-ground strategy,
between fully online and MC methods, is preferred. To balance this trade-off, an n-step
return can replace a one-step return of online algorithms.

If you remember, we already implemented n-step learning in the DQN algorithm. The only
difference is that DQN is an off-policy algorithm, and in theory, n-step can be employed
only on on-policy algorithms. Nevertheless, we showed that with a small , the
performance increased.

AC algorithms are on-policy, therefore, as far as the performance increase goes, it's possible
to use arbitrary large values. The integration of n-step in AC is pretty straightforward;
the one-step return is replaced by , and the value function is taken in the state:

Here, . Pay attention here to how, if is a final
state, .

Besides reducing the bias, the n-step return propagates the subsequent returns faster,
making the learning much more efficient.

Interestingly, the quantity can be seen as an estimate of the
advantage function. In fact, the advantage function is defined as follows:

Learning Stochastic and PG Optimization Chapter 6

[157]

Due to the fact that is an estimate of , we obtain an estimate of
the advantage function. Usually, this function is easier to learn, as it only denotes the
preference of one particular action over the others in a particular state. It doesn't have to
learn the value of that state.

Regarding the optimization of the weights of the critic, it is optimized using one of the well-
known SGD optimization methods, minimizing the MSE loss:

In the previous equation, the target values are computed as follows:
.

The AC implementation
Overall, as we have seen so far, the AC algorithm is very similar to the REINFORCE
algorithm, with the state function as a baseline. But, to provide a recap, the algorithm is
summarized in the following code:

Initialize with random weight

Initialize environment
for episode 1..M do
 Initialize empty buffer

 > Generate a few episodes
 for step 1..MaxSteps do
 > Collect experience by acting on the environment

 if :

 > Compute the n-step reward to go

 # for each t
 > Compute the advantage values

 # for each t
 > Store the episode in the buffer

 # where is the lenght of the
episode

Learning Stochastic and PG Optimization Chapter 6

[158]

 > Actor update step using all the experience in

 > Critic update using all the experience in D

The only differences with REINFORCE are the calculation of the n-step reward to go, the
advantage function calculation, and a few adjustments of the main function.

Let's first look at the new implementation of the discounted reward. Differently to before,
the estimated value of the last last_sv state is now passed in the input and is used to
bootstrap, as given in the following implementation:

def discounted_rewards(rews, last_sv, gamma):
 rtg = np.zeros_like(rews, dtype=np.float32)
 rtg[-1] = rews[-1] + gamma*last_sv # Bootstrap with the estimate
next state value

 for i in reversed(range(len(rews)-1)):
 rtg[i] = rews[i] + gamma*rtg[i+1]
 return rtg

The computational graph doesn't change, but in the main cycle, we have to take care of a
few small, but very important, changes.

Obviously, the name of the function is changed to AC, and the learning rate of the cr_lr
critic is added as an argument.

The first actual change involves the way in which the environment is reset. If, in
REINFORCE, it was preferred to reset the environment on every iteration of the main cycle,
in AC, we have to resume the environment from where we left off in the previous iteration,
resetting it only when it reaches its final state.

The second change involves the way in which the action-value function is bootstrapped,
and how the reward to go is calculated. Remember that for every state-
action pair, except in the case of when is a final state. In this case, . Thus, we
have to bootstrap with a value of 0, whenever we are in the last state, and bootstrap with

 in all the other cases. With these changes, the code is as follows:

 obs = env.reset()
 ep_rews = []

 for ep in range(num_epochs):

Learning Stochastic and PG Optimization Chapter 6

[159]

 buffer = Buffer(gamma)
 env_buf = []

 for _ in range(steps_per_env):
 act, val = sess.run([act_multn, s_values],
feed_dict={obs_ph:[obs]})
 obs2, rew, done, _ = env.step(np.squeeze(act))

 env_buf.append([obs.copy(), rew, act, np.squeeze(val)])
 obs = obs2.copy()
 step_count += 1
 last_test_step += 1
 ep_rews.append(rew)

 if done:

 buffer.store(np.array(env_buf), 0)
 env_buf = []

 train_rewards.append(np.sum(ep_rews))
 train_ep_len.append(len(ep_rews))
 obs = env.reset()
 ep_rews = []

 if len(env_buf) > 0:
 last_sv = sess.run(s_values, feed_dict={obs_ph:[obs]})
 buffer.store(np.array(env_buf), last_sv)

 obs_batch, act_batch, ret_batch, rtg_batch = buffer.get_batch()
 sess.run([p_opt, v_opt], feed_dict={obs_ph:obs_batch,
act_ph:act_batch, ret_ph:ret_batch, rtg_ph:rtg_batch})
 ...

The third change is in the store method of the Buffer class. In fact, now, we also have to
deal with incomplete trajectories. In the previous snippet, we saw that the estimated
state values are passed as the third argument to the store function. Indeed, we use them to
bootstrap and to compute the reward to go. In the new version of store, we call the
variable that is associated with the state values, last_sv, and pass it as the input to the
discounted_reward function, as follows:

 def store(self, temp_traj, last_sv):
 if len(temp_traj) > 0:
 self.obs.extend(temp_traj[:,0])
 rtg = discounted_rewards(temp_traj[:,1], last_sv, self.gamma)
 self.ret.extend(rtg - temp_traj[:,3])
 self.rtg.extend(rtg)
 self.act.extend(temp_traj[:,2])

Learning Stochastic and PG Optimization Chapter 6

[160]

Landing a spacecraft using AC
We applied AC to LunarLander-v2, the same environment used for testing REINFORCE. It
is an episodic game, and as such, it doesn't fully emphasize the main qualities of the AC
algorithm. Nonetheless, it provides a good testbed, and you can freely test it in another
environment.

We call the AC function with the following hyperparameters:

AC('LunarLander-v2', hidden_sizes=[64], ac_lr=4e-3, cr_lr=1.5e-2,
gamma=0.99, steps_per_epoch=100, num_epochs=8000)

The resulting plot that shows the total reward accumulated in the training epochs is as
follows:

Learning Stochastic and PG Optimization Chapter 6

[161]

You can see that AC is faster than REINFORCE, as shown in the following plot. However, it
is less stable, and after about 200,000 steps, the performance declines a little bit, fortunately
continuing to increment afterward:

In this configuration, the AC algorithm updates the actor and critic every 100 steps. In
theory, you could use a smaller steps_per_epochs but, usually, it makes the training
more unstable. Using a longer epoch can stabilize the training, but the actor learns more
slowly. It's all about finding a good trade-off and good learning rates.

For all the color references mentioned in the chapter, please refer to the
color images bundle at http:/ /www. packtpub. com/sites/ default/ files/
downloads/ 9781789131116_ ColorImages. pdf.

http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf

Learning Stochastic and PG Optimization Chapter 6

[162]

Advanced AC, and tips and tricks
There are several further advancements of AC algorithms, and there are many tips and
tricks to keep in mind, while designing such algorithms:

Architectural design: In our implementation, we implemented two distinct
neural networks, one for the critic, and one for the actor. It's also possible to
design a neural network that shares the main hidden layers, while keeping the
heads distinct. This architecture can be more difficult to tune, but overall, it
increases the efficiency of the algorithms.
Parallel environments: A widely adopted technique to decrease the variance is
to collect experience from multiple environments in parallel. The A3C
(Asynchronous Advantage Actor-Critic) algorithm updates the global
parameters asynchronously. Instead, the synchronous version of it, called A2C
(Advantage Actor-Critic) waits for all of the parallel actors to finish before
updating the global parameters. The agent parallelization ensures more
independent experience from different parts of the environment.
Batch size: With respect to other RL algorithms (especially off-policy algorithms),
policy gradient and AC methods need large batches. Thus, if after tuning the
other hyperparameters, the algorithm doesn't stabilize, consider using a larger
batch size.
Learning rate: Tuning the learning rate in itself is very tricky, so make sure that
you use a more advanced SGD optimization method, such as Adam or RMSprop.

Summary
In this chapter, we learned about a new class of reinforcement learning algorithms called
policy gradients. They approach the RL problem in a different way, compared to the value
function methods that were studied in the previous chapters.

The simpler version of PG methods is called REINFORCE, which was learned,
implemented, and tested throughout the course of this chapter. We then proposed adding a
baseline in REINFORCE in order to decrease the variance and increase the convergence
property of the algorithm. AC algorithms are free from the need for a full trajectory using a
critic, and thus, we then solved the same problem using the AC model.

Learning Stochastic and PG Optimization Chapter 6

[163]

With a solid foundation of the classic policy gradient algorithms, we can now go further. In
the next chapter, we'll look at some more complex, state-of-the-art policy gradient
algorithms; namely, Trust Region Policy Optimization (TRPO) and Proximal Policy
Optimization (PPO). These two algorithms are built on top of the material that we have
covered in this chapter, but additionally, they propose a new objective function that
improves the stability and efficiency of PG algorithms.

Questions
How do PG algorithms maximize the objective function?1.
What's the main idea behind policy gradient algorithms?2.
Why does the algorithm remain unbiased when introducing a baseline in3.
REINFORCE?
What broader class of algorithms does REINFORCE belong to?4.
How does the critic in AC methods differ from a value function that is used as a5.
baseline in REINFORCE?
If you had to develop an algorithm for an agent that has to learn to move, would6.
you prefer REINFORCE or AC?
Could you use an n-step AC algorithm as a REINFORCE algorithm? 7.

Further reading
To learn about an asynchronous version of the actor-critic algorithm, read https:/ /arxiv.
org/pdf/1602.01783. pdf.

https://arxiv.org/pdf/1602.01783.pdf
https://arxiv.org/pdf/1602.01783.pdf
https://arxiv.org/pdf/1602.01783.pdf
https://arxiv.org/pdf/1602.01783.pdf
https://arxiv.org/pdf/1602.01783.pdf
https://arxiv.org/pdf/1602.01783.pdf
https://arxiv.org/pdf/1602.01783.pdf
https://arxiv.org/pdf/1602.01783.pdf
https://arxiv.org/pdf/1602.01783.pdf
https://arxiv.org/pdf/1602.01783.pdf
https://arxiv.org/pdf/1602.01783.pdf
https://arxiv.org/pdf/1602.01783.pdf
https://arxiv.org/pdf/1602.01783.pdf
https://arxiv.org/pdf/1602.01783.pdf

7
TRPO and PPO
Implementation

In the previous chapter, we looked at policy gradient algorithms. Their uniqueness lies in
the order in which they solve a reinforcement learning (RL) problem—policy gradient
algorithms take a step in the direction of the highest gain of the reward. The simpler
version of this algorithm (REINFORCE) has a straightforward implementation that alone
achieves good results. Nevertheless, it is slow and has a high variance. For this reason, we
introduced a value function that has a double goal—to critique the actor and to provide a
baseline. Despite their great potential, these actor-critic algorithms can suffer from
unwanted rapid variations in the action distribution that may cause a drastic change in the
states that are visited, followed by a rapid decline in the performance from which they
could never recover from.

In this chapter, we will address this problem by showing you how introducing a trust-
region, or a clipped objective, can mitigate it. We'll show two practical algorithms, namely
TRPO and PPO. These have shown ability in controlling simulated walking, controlling
hopping and swimming robots, and playing Atari games. We'll cover a new set of
environments for continuous control and show how policy gradient algorithms can be
adapted to work in a continuous action space. By applying TRPO and PPO to these new
environments, you'll be able to train an agent to run, jump, and walk.

The following topics will be covered in this chapter:

Roboschool
Natural policy gradient
Trust region policy optimization
Proximal policy optimization

TRPO and PPO Implementation Chapter 7

[165]

Roboschool
Up until this point, we have worked with discrete control tasks such as the Atari games in
Chapter 5, Deep Q-Network, and LunarLander in Chapter 6, Learning Stochastic and PG
Optimization. To play these games, only a few discrete actions have to be controlled, that is,
approximately two to five actions. As we learned in Chapter 6, Learning Stochastic and PG
Optimization, policy gradient algorithms can be easily adapted to continuous actions. To
show these properties, we'll deploy the next few policy gradient algorithms in a new set of
environments called Roboschool, in which the goal is to control a robot in different
situations. Roboschool has been developed by OpenAI and uses the famous OpenAI Gym
interface that we used in the previous chapters. These environments are based on the Bullet
Physics Engine (a physics engine that simulates soft and rigid body dynamics) and are
similar to the ones of the famous Mujoco physical engine. We opted for Roboschool as it is
open source (Mujoco requires a license) and because it includes some more challenging
environments.

Specifically, Roboschool incorporates 12 environments, from the simple Hopper
(RoboschoolHopper), displayed on the left in the following figure and controlled by three
continuous actions, to a more complex humanoid (RoboschoolHumanoidFlagrun) with 17
continuous actions, shown on the right:

Figure 7.1. Render of RoboschoolHopper-v1 on the left and RoboschoolHumanoidFlagrun-v1 on the right

In some of these environments, the goal is to run, jump, or walk as fast as possible to reach
the 100 m endpoint while moving in a single direction. In others, the goal is to move in a
three-dimensional field while being careful of possible external factors, such as objects that
have been thrown. Also included in the set of 12 environments is a multiplayer Pong
environment, as well as an interactive environment in which a 3D humanoid is free to
move in all directions and has to move toward a flag in a continuous movement. In
addition to this, there is a similar environment in which the robot is bombarded with cubes
to destabilize the robot, who then has to build a more robust control to keep its balance.

TRPO and PPO Implementation Chapter 7

[166]

The environments are fully observable, meaning that an agent has a complete view of its
state that is encoded in a Box class of variable size, from about 10 to 40. As we mentioned
previously, the action space is continuous and it is represented by a Box class of variable
size, depending on the environment.

Control a continuous system
Policy gradient algorithms such as REINFORCE and AC, as well as PPO and TRPO, all of
which will be implemented in this chapter, can work with a discrete and continuous action
space. The migration from one type of action to the other is pretty simple. Instead of
computing a probability for each action in a continuous control, the actions can be specified
through the parameters of a probability distribution. The most common approach is to
learn the parameters of a normal Gaussian distribution, which is a very important family of
distributions that is parametrized by a mean, , and a standard deviation, . Examples of
Gaussian distributions and the change of these parameters are shown in the following
figure:

Figure 7.2. A plot of three Gaussian distributions with different means and standard deviations

TRPO and PPO Implementation Chapter 7

[167]

For all the color references mentioned in the chapter, please refer to the
color images bundle at http:/ /www. packtpub. com/sites/ default/ files/
downloads/ 9781789131116_ ColorImages. pdf.

For example, a policy that's represented by a parametric function approximation (such as
deep neural networks) can predict the mean and the standard deviation of a normal
distribution in the functionality of a state. The mean can be approximated as a linear
function and, usually, the standard deviation is independent of the state. In this case, we'll
represent the parameterized mean as a function of a state denoted by and the
standard deviation as a fixed value denoted by . Moreover, instead of working with
standard deviation, it is preferred to use the logarithm of the standard deviation.

Wrapping this up, a parametric policy for discrete control can be defined using the
following line of code:

p_logits = mlp(obs_ph, hidden_sizes, act_dim, activation=tf.nn.relu,
last_activation=None)

mlp is a function that builds a multi-layer perceptron (also called a fully connected neural
network) with hidden layer sizes specified in hidden_sizes, an output of
the act_dim dimension, and the activations specified in the activation and
last_activation arguments. These will become part of a parametric policy for
continuous control and will have the following changes:

p_means = mlp(obs_ph, hidden_sizes, act_dim, activation=tf.tanh,
last_activation=None)
log_std = tf.get_variable(name='log_std', initializer=np.zeros(act_dim,
dtype=np.float32))

Here p_means is and log_std is .

Furthermore, if all the actions have a value between 0 and 1, it is better to use a tanh
function as the last activation:

p_means = mlp(obs_ph, hidden_sizes, act_dim, activation=tf.tanh,
last_activation=tf.tanh)

Then, to sample from this Gaussian distribution and obtain the actions, the standard
deviation has to be multiplied by a noisy vector that follows a normal distribution with a
mean of 0 and a standard deviation of 1 that have been summed to the predicted mean:

http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf

TRPO and PPO Implementation Chapter 7

[168]

Here, z is the vector of Gaussian noise, , with the same shape as . This can be
implemented in just one line of code:

p_noisy = p_means + tf.random_normal(tf.shape(p_means), 0, 1) *
tf.exp(log_std)

Since we are introducing noise, we cannot be sure that the values still lie in the limit of the
actions, so we have to clip p_noisy in such a way that the action values remain between
the minimum and maximum allowed values. The clipping is done in the following line of
code:

act_smp = tf.clip_by_value(p_noisy, envs.action_space.low,
envs.action_space.high)

In the end, the log probability is computed as follows:

This formula is computed in the gaussian_log_likelihood function, which returns the
log probability. Thus, we can retrieve the log probability as follows:

p_log = gaussian_log_likelihood(act_ph, p_means, log_std)

Here, gaussian_log_likelihood is defined in the following snippet:

def gaussian_log_likelihood(x, mean, log_std):
 log_p = -0.5 * (np.log(2*np.pi) + (x-mean)**2 / (tf.exp(log_std)**2 +
1e-9) + 2*log_std)
 return tf.reduce_sum(log_p, axis=-1)

That's it. Now, you can implement it in every PG algorithm and try all sorts of
environments with continuous action space. As you may recall, in the previous chapter, we
implemented REINFORCE and AC on LunarLander. The same game is also available with
continuous control and is called LunarLanderContinuous-v2.

With the necessary knowledge to tackle problems with an inherent continuous action space,
you are now able to address a broader variety of tasks. However, generally speaking, these
are also more difficult to solve and the PG algorithms we've learned about so far are too
weak and not best suited to solving hard problems. Thus, in the remaining chapters, we'll
look at more advanced PG algorithms, starting with the natural policy gradient.

TRPO and PPO Implementation Chapter 7

[169]

Natural policy gradient
REINFORCE and Actor-Critic are very intuitive methods that work well on small to
medium-sized RL tasks. However, they present some problems that need to be addressed
so that we can adapt policy gradient algorithms so that they work on much larger and
complex tasks. The main problems are as follows:

Difficult to choose a correct step size: This comes from the nature of RL being
non-stationary, meaning that the distribution of the data changes continuously
over time and as the agent learns new things, it explores a different state space.
Finding an overall stable learning rate is very tricky.
Instability: The algorithms aren't aware of the amount by which the policy will
change. This is also related to the problem we stated previously. A single, not
controlled update could induce a substantial shift of the policy that will
drastically change the action distribution, and that consequently will move the
agent toward a bad state space. Additionally, if the new state space is very
different from the previous one, it could take a long time before recovering from
it.
Bad sample efficiency: This problem is common to almost all on-policy
algorithms. The challenge here is to extract more information from the on-policy
data before discarding it.

The algorithms that are proposed in this chapter, namely TRPO and PPO, try to address
these three problems by taking different approaches, though they share a common
background that will be explained soon. Also, both TRPO and PPO are on-policy policy
gradient algorithms that belong to the model-free family, as shown in the following
categorization RL map:

TRPO and PPO Implementation Chapter 7

[170]

Figure 7.3. The collocation of TRPO and PPO inside the categorization map of the RL algorithms

Natural Policy Gradient (NPG) is one of the first algorithms that has been proposed to
tackle the instability problem of the policy gradient methods. It does this by presenting a
variation in the policy step that takes care of guiding the policy in a more controlled way.
Unfortunately, it is designed for linear function approximations only, and it cannot be
applied to deep neural networks. However, it's the base for more powerful algorithms such
as TRPO and PPO.

TRPO and PPO Implementation Chapter 7

[171]

Intuition behind NPG
Before looking at a potential solution to the instability of PG methods, let's understand why
it appears. Imagine you are climbing a steep volcano with a crater on the top, similar to the
function in the following diagram. Let's also imagine that the only sense you have is the
inclination of your foot (the gradient) and that you cannot see the world around you—you
are blind. Let's also set a fixed length of each step you can take (a learning rate), for
example, one meter. You take the first step, perceive the inclination of your feet, and move
1 m toward the steepest ascent direction. After repeating this process many times, you
arrive at a point near the top where the crater lies, but still, you are not aware of it since you
are blind. At this point, you observe that the inclination is still pointing in the direction of
the crater. However, if the volcano only gets higher for a length smaller than your step,
with the next step, you'll fall down. At this point, the space around you is totally new. In
the case outlined in the following diagram, you'll recover pretty soon as it is a simple
function, but in general, it can be arbitrarily complex. As a remedy, you could use a much
smaller step size but you'll climb the mountain much slower and still, there is no guarantee
of reaching the maximum. This problem is not unique to RL, but here it is more serious as
the data is not stationary and the damage could be way bigger than in other contexts, such
as supervised learning. Let's take a look at the following diagram:

Figure 7.4. While trying to reach the maximum of this function, you may fall inside the crater

TRPO and PPO Implementation Chapter 7

[172]

A solution that could come to mind, and one that has been proposed in NPG, is to use the
curvature of the function in addition to the gradient. The information regarding the
curvature is carried on by the second derivative. It is very useful because a high value
indicates a drastic change in the gradient between two points and, as prevention, a smaller
and more cautious step could be taken, thus avoiding possible cliffs. With this new
approach, you can use the second derivative to gain more information about the action
distribution space and make sure that, in the case of a drastic shift, the distribution of the
action spaces don't vary too much. In the following section, we'll see how this is done in
NPG.

A bit of math
The novelty of the NPG algorithm is in how it updates the parameters with a step update
that combines the first and second derivatives. To understand the natural policy gradient
step, we have to explain two key concepts: the Fisher Information Matrix (FIM) and the
Kullback-Leibler (KL) divergence. But before explaining these two key concepts, let's look
at the formula behind the update:

 (7.1)

This update differentiates from the vanilla policy gradient, but only by the term , which
is used to enhance the gradient term.

In this formula, is the FIM and is the objective function.

As we mentioned previously, we are interested in making all the steps of the same length in
the distribution space, no matter what the gradient is. This is accomplished by the inverse
of the FIM.

TRPO and PPO Implementation Chapter 7

[173]

FIM and KL divergence
The FIM is defined as the covariance of an objective function. Let's look at how it can help
us. To be able to limit the distance between the distributions of our model, we need to
define a metric that provides the distance between the new and the old distributions. The
most popular choice is to use the KL divergence. It measures how far apart two
distributions are and is used in many places in RL and machine learning. The KL
divergence is not a proper metric as it is not symmetric, but it is a good approximation of it.
The more different two distributions, are the higher the KL divergence value. Consider the
plot in the following diagram. In this example, the KL divergences are computed with
respect to the green function. Indeed, because the orange function is similar to the green
function, the KL divergence is 1.11, which is close to 0. Instead, it's easy to see that the blue
and the green lines are quite different. This observation is confirmed by the high KL
divergence between the two: 45.8. Note that the KL divergence between the same function
will be always 0.

For those of you who are interested, the KL divergence for discrete

probability distribution is computed as .

Let's take a look at the following diagram:

Figure 7.5. The KL divergence that's shown in the box is measured between each function and the function colored in green. The bigger the value, the farther the two functions are
apart.

TRPO and PPO Implementation Chapter 7

[174]

Thus, using the KL divergence, we are able to compare two distributions and get an
indication of how they relate to each other. So, how can we use this metric in our problem
and limit the divergence between two subsequent policies distribution?

It so happens that the FIM defines the local curvature in the distribution space by using the
KL divergence as a metric. Thereby, we can obtain the direction and the length of the step
that keeps the KL divergence distance constant by combining the curvature (second-order
derivative) of the KL divergence with the gradient (first-order derivative) of the objective
function (as in formula (7.1)). Thus, the update that follows from formula (7.1) will be more
cautious by taking small steps along the steepest direction when the FIM is high (meaning
that there is a big distance between the action distributions) and big steps when the FIM is
low (meaning that there is a plateau and the distributions don't vary too much).

Natural gradient complications
Despite knowing the usefulness of the natural gradient in the RL framework, one of the
major drawbacks of it is the computational cost that involves the calculation of FIM. While
the computation of the gradient has a computational cost of , the natural gradient has a
computational cost of , where is the number of parameters. In fact, in the NPG paper
that dates back to 2003, the algorithm has been applied to very small tasks with linear
policies. The computation of is too expensive with modern deep neural networks that
have hundreds of thousands of parameters. Nonetheless, by introducing some
approximations and tricks, the natural gradient can be also used with deep neural
networks.

In supervised learning, the use of the natural gradient is not needed as
much as in reinforcement learning because the second-order gradient is
somehow approximated in an empirical way by modern optimizers such
as Adam and RMSProp.

TRPO and PPO Implementation Chapter 7

[175]

Trust region policy optimization
Trust region policy optimization (TRPO) is the first successful algorithm that makes use of
several approximations to compute the natural gradient with the goal of training a deep
neural network policy in a more controlled and stable way. From NPG, we saw that it isn't
possible to compute the inverse of the FIM for nonlinear functions with a lot of parameters.
TRPO overcomes these difficulties by building on top of NPG. It does this by introducing a
surrogate objective function and making a series of approximations, which means it
succeeds in learning about complex policies for walking, hopping, or playing Atari games
from raw pixels.

TRPO is one of the most complex model-free algorithms and though we already learned the
underlying principles of the natural gradient, there are still difficult parts behind it. In this
chapter, we'll only give an intuitive level of detail regarding the algorithm and provide the
main equations. If you want to dig into the algorithm in more detail, check their paper
(https://arxiv.org/ abs/ 1502. 05477) for a complete explanation and proof of the
theorems.

We'll also implement the algorithm and apply it to a Roboschool environment.
Nonetheless, we won't discuss every component of the implementation here. For the
complete implementation, check the GitHub repository of this book.

The TRPO algorithm
From a broad perspective, TRPO can be seen as a continuation of the NPG algorithm for
nonlinear function approximation. The biggest improvement that was introduced in TRPO
is the use of a constraint on the KL divergence between the new and the old policy that
forms a trust region. This allows the network to take larger steps, always within the trust
region. The resulting constraint problem is formulated as follows:

 (7.2)

Here, is the objective surrogate function that we'll see soon, is the KL
divergence between the old policy with the parameters, and the new policy with
the and parameters is a coefficient of the constraint.

https://arxiv.org/abs/1502.05477
https://arxiv.org/abs/1502.05477
https://arxiv.org/abs/1502.05477
https://arxiv.org/abs/1502.05477
https://arxiv.org/abs/1502.05477
https://arxiv.org/abs/1502.05477
https://arxiv.org/abs/1502.05477
https://arxiv.org/abs/1502.05477
https://arxiv.org/abs/1502.05477
https://arxiv.org/abs/1502.05477
https://arxiv.org/abs/1502.05477
https://arxiv.org/abs/1502.05477
https://arxiv.org/abs/1502.05477

TRPO and PPO Implementation Chapter 7

[176]

The objective surrogate function is designed in such a way that it is maximized with respect
to the new policy parameters using the state distribution of the old policy. This is done
using importance sampling, which estimates the distribution of the new policy (the desired
one) while only having the distribution of the old policy (the known distribution).
Importance sampling is required because the trajectory was sampled with the old policy,
but what we actually care about is the distribution of the new one. Using importance
sampling, the surrogate objective function is defined:

 (7.3)

 is the advantage function of the old policy. Thus, the constraint optimization problem is
equivalent to the following:

 (7.4)

Here, indicates the actions distributions conditioned on the state, .

What we are left to do is replace the expectation with an empirical average over a batch of
samples and substitute with an empirical estimate.

Constraint problems are difficult to solve and in TRPO, the optimization problem in
equation (7.4) is approximately solved by using a linear approximation of the objective
function and a quadratic approximation to the constraint so that the solution becomes
similar to the NPG update:

Here, .

The approximation of the original optimization problem can now be solved using the
Conjugate Gradient (CG) method, an iterative method for solving linear systems. When
we talked about NPG, we emphasize that computing is computationally very
expensive with a large number of parameters. However, CG can approximately solve a
linear problem without forming the full matrix, . Thus, using CG, we can compute as
follows:

 (7.5)

TRPO and PPO Implementation Chapter 7

[177]

TRPO also gives us a way of estimating the step size:

 (7.6)

Therefore, the update becomes as follows:

 (7.7)

So far, we have created a special case of the natural policy gradient step, but to complete
the TRPO update, we are missing a key ingredient. Remember that we approximated the
problem with the solution of a linear objective function and quadratic constraint. Thus, we
are solving only a local approximation to the expected return. With the introduction of
these approximations, we cannot be certain that the KL divergence constraint is still
satisfied. To ensure the nonlinear constraint while improving the nonlinear objective, TRPO
performs a line search to find the higher value, , that satisfies the constraint. The TRPO
update with the line search becomes the following:

 (7.8)

It may seem to you that the line search is a negligible part of the algorithm, but as
demonstrated in the paper, it has a fundamental role. Without it, the algorithm may
compute large steps, causing catastrophic degradation in the performance.

In terms of the TRPO algorithm, it computes a search direction with the conjugate gradient
algorithm to find a solution for the approximated objective function and constraint. Then it
uses a line search for the maximal step length, , so that the constraint on the KL divergence
is satisfied and the objective is improved. To further increase the speed of the algorithm, the
conjugate gradient algorithm also makes use of an efficient Fisher-Vector product (to learn
more about it, check out the paper that can be found at https:/ / arxiv. org/ abs/1502.
05477paper).

TRPO can be integrated into an AC architecture where the critic is included in the
algorithm to provide additional support to the policy (the actor) in the learning of the
task. A high-level implementation of such an algorithm (that is, TRPO combined with a
critic), when written in pseudocode, is as follows:

Initialize with random weight

Initialize environment

https://arxiv.org/abs/1502.05477
https://arxiv.org/abs/1502.05477
https://arxiv.org/abs/1502.05477
https://arxiv.org/abs/1502.05477
https://arxiv.org/abs/1502.05477
https://arxiv.org/abs/1502.05477
https://arxiv.org/abs/1502.05477
https://arxiv.org/abs/1502.05477
https://arxiv.org/abs/1502.05477
https://arxiv.org/abs/1502.05477
https://arxiv.org/abs/1502.05477
https://arxiv.org/abs/1502.05477

TRPO and PPO Implementation Chapter 7

[178]

for episode 1..M do
 Initialize empty buffer

 > Generate few trajectories
 for step 1..TimeHorizon do
 > Collect experience by acting on the environment

 if :

 > Store the episode in the buffer

 # where is the length of the
episode

 Compute the advantage values and n-step reward to go

 > Estimate the gradient of the objective function

 (1)

 > Compute using conjugate gradient

 (2)
 > Compute the step length

 (3)

 > Update the policy using all the experience in

 Backtracking line search to find the maximum value that satisfy the
constraint

 (4)

 > Critic update using all the experience in

After this high-level overview of TRPO, we can finally start implementing it.

TRPO and PPO Implementation Chapter 7

[179]

Implementation of the TRPO algorithm
In this implementation section of the TRPO algorithm, we'll concentrate our efforts on the
computational graph and the steps that are required to optimize the policy. We'll leave out
the implementation of other aspects that we looked at in the previous chapters (such as the
cycle to gather trajectories from the environment, the conjugate gradient algorithm, and the
line search algorithm). However, make sure to check out the full code in this book's GitHub
repository. The implementation is for continuous control.

First, let's create all the placeholders and the two deep neural networks for the policy (the
actor) and the value function (the critic):

act_ph = tf.placeholder(shape=(None,act_dim), dtype=tf.float32, name='act')
obs_ph = tf.placeholder(shape=(None, obs_dim[0]), dtype=tf.float32,
name='obs')
ret_ph = tf.placeholder(shape=(None,), dtype=tf.float32, name='ret')
adv_ph = tf.placeholder(shape=(None,), dtype=tf.float32, name='adv')
old_p_log_ph = tf.placeholder(shape=(None,), dtype=tf.float32,
name='old_p_log')
old_mu_ph = tf.placeholder(shape=(None, act_dim), dtype=tf.float32,
name='old_mu')
old_log_std_ph = tf.placeholder(shape=(act_dim), dtype=tf.float32,
name='old_log_std')
p_ph = tf.placeholder(shape=(None,), dtype=tf.float32, name='p_ph')
result of the conjugate gradient algorithm
cg_ph = tf.placeholder(shape=(None,), dtype=tf.float32, name='cg')

Actor neural network
with tf.variable_scope('actor_nn'):
 p_means = mlp(obs_ph, hidden_sizes, act_dim, tf.tanh,
last_activation=tf.tanh)
 log_std = tf.get_variable(name='log_std', initializer=np.ones(act_dim,
dtype=np.float32))

Critic neural network
with tf.variable_scope('critic_nn'):
 s_values = mlp(obs_ph, hidden_sizes, 1, tf.nn.relu,
last_activation=None)
 s_values = tf.squeeze(s_values)

There are a few things to note here:

The placeholder with the old_ prefix refers to the tensors of the old policy.1.
The actor and the critic are defined in two separate variable scopes because we'll2.
need to select the parameters separately later.

TRPO and PPO Implementation Chapter 7

[180]

The action space is a Gaussian distribution with a covariance matrix that is3.
diagonal and independent of the state. A diagonal matrix can then be resized as a
vector with one element for each action. We also work with the logarithm of this
vector.

Now, we can add normal noise to the predicted mean according to the standard deviation,
clip the actions, and compute the Gaussian log likelihood, as follows:

p_noisy = p_means + tf.random_normal(tf.shape(p_means), 0, 1) *
tf.exp(log_std)

a_sampl = tf.clip_by_value(p_noisy, low_action_space, high_action_space)

p_log = gaussian_log_likelihood(act_ph, p_means, log_std)

We then have to compute the objective function, , the MSE loss
function of the critic, and create the optimizer for the critic, as follows:

TRPO loss function
ratio_new_old = tf.exp(p_log - old_p_log_ph)
p_loss = - tf.reduce_mean(ratio_new_old * adv_ph)

MSE loss function
v_loss = tf.reduce_mean((ret_ph - s_values)**2)

Critic optimization
v_opt = tf.train.AdamOptimizer(cr_lr).minimize(v_loss)

Then, the subsequent steps involve the creation of the graph for the points (2), (3), and (4),
as given in the preceding pseudocode. Actually, (2) and (3) are not done in TensorFlow and
so they aren't part of the computational graph. Nevertheless, in the computational
graph, we have to take care of some related things. The steps for this are as follows:

Estimate the gradient of the policy loss function.1.
Define a procedure to restore the policy parameters. This is needed because in2.
the line search algorithm, we'll optimize the policy and test the constraints, and if
the new policy doesn't satisfy them, we'll have to restore the policy parameters
and try with a smaller coefficient.
Compute the Fisher-vector product. It is an efficient way to compute without3.
forming the full .
Compute the TRPO step.4.
Update the policy.5.

TRPO and PPO Implementation Chapter 7

[181]

Let's start from step 1, that is, estimating the gradient of the policy loss function:

def variables_in_scope(scope):
 return tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope)

Gather and flatten the actor parameters
p_variables = variables_in_scope('actor_nn')
p_var_flatten = flatten_list(p_variables)

Gradient of the policy loss with respect to the actor parameters
p_grads = tf.gradients(p_loss, p_variables)
p_grads_flatten = flatten_list(p_grads)

Since we are working with vector parameters, we have to flatten them using
flatten_list. variable_in_scope returns the trainable variables in scope. This
function is used to get the variables of the actor since the gradients have to be computed
with respect to these variables only.

Regarding step 2, the policy parameters are restored in this way:

p_old_variables = tf.placeholder(shape=(None,), dtype=tf.float32,
name='p_old_variables')

variable used as index for restoring the actor's parameters
it_v1 = tf.Variable(0, trainable=False)
restore_params = []

for p_v in p_variables:
 upd_rsh = tf.reshape(p_old_variables[it_v1 :
it_v1+tf.reduce_prod(p_v.shape)], shape=p_v.shape)
 restore_params.append(p_v.assign(upd_rsh))
 it_v1 += tf.reduce_prod(p_v.shape)

restore_params = tf.group(*restore_params)

It iterates over each layer's variables and assigns the values of the old variables to the
current one.

The Fisher-vector product of step 3 is done by calculating the second derivative of the KL
divergence with respect to the policy variables:

gaussian KL divergence of the two policies
dkl_diverg = gaussian_DKL(old_mu_ph, old_log_std_ph, p_means, log_std)

Jacobian of the KL divergence (Needed for the Fisher matrix-vector
product)
dkl_diverg_grad = tf.gradients(dkl_diverg, p_variables)

TRPO and PPO Implementation Chapter 7

[182]

dkl_matrix_product = tf.reduce_sum(flatten_list(dkl_diverg_grad) * p_ph)

Fisher vector product
Fx = flatten_list(tf.gradients(dkl_matrix_product, p_variables))

Steps 4 and 5 involve the application of the updates to the policy, where beta_ph is ,
which is calculated using formula (7.6), and alpha is the rescaling factor found by line
search:

NPG update
beta_ph = tf.placeholder(shape=(), dtype=tf.float32, name='beta')
npg_update = beta_ph * cg_ph
alpha = tf.Variable(1., trainable=False)

TRPO update
trpo_update = alpha * npg_update

Apply the updates to the policy
it_v = tf.Variable(0, trainable=False)
p_opt = []
for p_v in p_variables:
 upd_rsh = tf.reshape(trpo_update[it_v :
it_v+tf.reduce_prod(p_v.shape)], shape=p_v.shape)
 p_opt.append(p_v.assign_sub(upd_rsh))
 it_v += tf.reduce_prod(p_v.shape)

p_opt = tf.group(*p_opt)

Note how, without , the update can be seen as the NPG update.

The update is applied to each variable of the policy. The work is done by
p_v.assign_sub(upd_rsh), which assigns the p_v - upd_rsh values to p_v, that i,:

. The subtraction is due to the fact that we converted the objective function into
a loss function.

Now, let's briefly see how all the pieces we implemented come together when we update
the policy at every iteration of the algorithm. The snippets of code we'll present here should
be added after the innermost cycle where the trajectories are sampled. But before digging
into the code, let's recap what we have to do:

Get the output, log probability, standard deviation, and parameters of the policy1.
that we used to sample the trajectory. This policy is our old policy.
Get the conjugate gradient.2.
Compute the step length, .3.

TRPO and PPO Implementation Chapter 7

[183]

Execute the backtracking line search to get .4.
Run the policy update.5.

The first point is achieved by running a few operations:

 ...
 old_p_log, old_p_means, old_log_std = sess.run([p_log, p_means,
log_std], feed_dict={obs_ph:obs_batch, act_ph:act_batch, adv_ph:adv_batch,
ret_ph:rtg_batch})
 old_actor_params = sess.run(p_var_flatten)
 old_p_loss = sess.run([p_loss], feed_dict={obs_ph:obs_batch,
act_ph:act_batch, adv_ph:adv_batch, ret_ph:rtg_batch,
old_p_log_ph:old_p_log})

The conjugate gradient algorithm requires an input function that returns the
estimated Fisher Information Matrix, the gradient of the objective function, and the number
of iterations (in TRPO, this is a value between 5 and 15):

 def H_f(p):
 return sess.run(Fx, feed_dict={old_mu_ph:old_p_means,
old_log_std_ph:old_log_std, p_ph:p, obs_ph:obs_batch, act_ph:act_batch,
adv_ph:adv_batch, ret_ph:rtg_batch})

 g_f = sess.run(p_grads_flatten,
feed_dict={old_mu_ph:old_p_means,obs_ph:obs_batch, act_ph:act_batch,
adv_ph:adv_batch, ret_ph:rtg_batch, old_p_log_ph:old_p_log})
 conj_grad = conjugate_gradient(H_f, g_f, iters=conj_iters)

We can then compute the step length, , beta_np, and the maximum coefficient, ,
 best_alpha, which satisfies the constraint using the backtracking line search algorithm,
and run the optimization by feeding all the values to the computational graph:

 beta_np = np.sqrt(2*delta / np.sum(conj_grad * H_f(conj_grad)))

 def DKL(alpha_v):
 sess.run(p_opt, feed_dict={beta_ph:beta_np, alpha:alpha_v,
cg_ph:conj_grad, obs_ph:obs_batch, act_ph:act_batch, adv_ph:adv_batch,
old_p_log_ph:old_p_log})
 a_res = sess.run([dkl_diverg, p_loss],
feed_dict={old_mu_ph:old_p_means, old_log_std_ph:old_log_std,
obs_ph:obs_batch, act_ph:act_batch, adv_ph:adv_batch, ret_ph:rtg_batch,
old_p_log_ph:old_p_log})
 sess.run(restore_params, feed_dict={p_old_variables:
old_actor_params})
 return a_res

 best_alpha = backtracking_line_search(DKL, delta, old_p_loss, p=0.8)

TRPO and PPO Implementation Chapter 7

[184]

 sess.run(p_opt, feed_dict={beta_ph:beta_np, alpha:best_alpha,
cg_ph:conj_grad, obs_ph:obs_batch, act_ph:act_batch, adv_ph:adv_batch,
old_p_log_ph:old_p_log})

 ...

As you can see, backtracking_line_search takes a function called DKL that returns the
KL divergence between the old and the new policy, the coefficient (this is the constraint
value), and the loss of the old policy. What backtracking_line_search does is, starting
from , incrementally decrease the value until it satisfies the following condition: the
KL divergence is less than and the new loss function has decreased.

To this end, the hyperparameters that are unique to TRPO are as follows:

delta, (), the maximum KL divergence between the old and new policy.
The number of conjugate iterations, conj_iters. Usually, it is a number
between 5 and 15.

Congratulations for coming this far! That was tough.

Application of TRPO
The efficiency and stability of TRPO allowed us to test it on new and more complex
environments. We applied it on Roboschool. Roboschool and its Mujoco counterpart are
often used as a testbed for algorithms that are able to control complex agents with
continuous actions, such as TRPO. Specifically, we tested TRPO on RoboschoolWalker2d,
where the task of the agent is to learn to walk as fast as possible. This environment is
shown in the following figure. The environment terminates whenever the agent falls or
when more than 1,000 timesteps have passed since the start. The state is encoded in a Box
class of size 22 and the agent is controlled with 6 float values with a range of :

Figure 7.6. Render of the RoboschoolWalker2d environment

TRPO and PPO Implementation Chapter 7

[185]

In TRPO, the number of steps to collect from an environment on each episode is called
the time horizon. This number will also determine the size of the batch. Moreover, it can be
beneficial to run multiple agents in parallel so as to collect more representative data of the
environment. In this case, the batch size will be equal to the time horizon, multiplied by the
number of agents. Although our implementation is not predisposed to running multiple
agents in parallel, the same objective can be achieved by using a time horizon longer than
the maximum number of steps allowed on each episode. For example, knowing that, in
RoboschoolWalker2d, an agent has a maximum of 1,000 time steps to reach the goal, by
using a time horizon of 6,000, we are sure that at least six full trajectories are run.

We run TRPO with the hyperparameters that are reported in the following table. Its third
column also shows the standard ranges for each hyperparameter:

Hyperparameter For RoboschoolWalker2 Range
Conjugate iterations 10 [7-10]

Delta (δ) 0.01 [0.005-0.03]
Batch size (Time Horizon *

Number of Agents) 6000 [500-20000]

The progress of TRPO (and PPO, as we'll see in the next section) can be monitored by
specifically looking at the total reward accumulated in each game and the state values that
were predicted by the critic.

We trained for 6 million steps and the result of the performance is shown in the following
diagram. With 2 million steps, it is able to reach a good score of 1,300 and it is able to walk
fluently and with a moderate speed. In the first phase of training, we can note a transition
period where the score decreases a little bit, probably due to a local optimum. After that,
the agent recovers and improves until reaching a score of 1,250:

TRPO and PPO Implementation Chapter 7

[186]

Figure 7.7. Learning curve of TRPO on RoboschoolWalker2d

Also, the predicted state value offers an important metric with which we can study the
results. Generally, it is more stable than the total reward and is easier to analyze. The
shown is provided in the following diagram. Indeed, it confirms our hypothesis since it is
showing a smoother function in general, despite a few spikes around 4 million and 4. 5
million steps:

Figure 7.8. State values predicted by the critic of TRPO on RoboschoolWalker2d

TRPO and PPO Implementation Chapter 7

[187]

From this plot, it is also easier to see that after the first 3 million steps, the agent continues
to learn, if even at a very slow rate.

As you saw, TRPO is a pretty complex algorithm with many moving parts. Nonetheless, it
constitutes as proof of the effectiveness of limiting the policy inside a trust region so as to
keep the policy from deviating too much from the current distribution.

But can we design a simpler and more general algorithm that uses the same underlying
approach?

Proximal Policy Optimization
A work by Schulman and others shows that this is possible. Indeed, it uses a similar idea
to TRPO while reducing the complexity of the method. This method is called Proximal
Policy Optimization (PPO) and its strength is in the use of the first-order optimization
only, without degrading the reliability compared to TRPO. PPO is also more general and
sample-efficient than TRPO and enables multi updates with mini-batches.

A quick overview
The main idea behind PPO is to clip the surrogate objective function when it moves away,
instead of constraining it as it does in TRPO. This prevents the policy from making updates
that are too large. The main objective is as follows:

 (7.9)

Here, is defined as follows:

 (7.10)

What the objective is saying is that if the probability ratio, , between the new and the
old policy is higher or lower than a constant, , then the minimum value should be taken.
This prevents from moving outside the interval . The value of is taken as the
reference point, .

https://arxiv.org/pdf/1707.06347.pdf

TRPO and PPO Implementation Chapter 7

[188]

The PPO algorithm
The practical algorithm that is introduced in the PPO paper uses a truncated version of
Generalized Advantage Estimation (GAE), an idea that was introduced for the first time in
the paper High-Dimensional Continuous Control using Generalized Advantage
Estimation. GAE calculates the advantage as follows:

 (7.11)

It does this instead of using the common advantage estimator:

 (7.12)

Continuing with the PPO algorithm, on each iteration, N trajectories from multiple parallel
actors are collected with time horizon T, and the policy is updated K times with mini-
batches. Following this trend, the critic can also be updated multiple times using mini-
batches. The following table contains standard values of every PPO hyperparameter and
coefficient. Despite the fact that every problem needs ad hoc hyperparameters, it would be
useful to get an idea of their ranges (reported in the third column of the table):

Hyperparameter Symbol Range
Policy learning rate - [1e-5, 1e-3]

Number of policy iterations K [3, 15]
Number of trajectories

(equivalent to the number of
parallel actors)

N [1, 20]

Time horizon T [64, 5120]
Mini-batch size - [64, 5120]

Clipping coefficient ∈ 0.1 or 0.2
Delta (for GAE) δ [0.9, 0.97]

Gamma (for GAE) γ [0.8, 0.995]

Implementation of PPO
Now that we have the basic ingredients of PPO, we can implement it using Python and
TensorFlow.

https://arxiv.org/pdf/1506.02438.pdf
https://arxiv.org/pdf/1506.02438.pdf

TRPO and PPO Implementation Chapter 7

[189]

The structure and implementation of PPO is very similar to the actor-critic algorithms but
with only a few additional parts, all of which we'll explain here.

One such addition is the generalized advantage estimation (7.11) that takes just a few lines
of code using the already implemented discounted_rewards function, which computes
(7.12):

def GAE(rews, v, v_last, gamma=0.99, lam=0.95):
 vs = np.append(v, v_last)
 delta = np.array(rews) + gamma*vs[1:] - vs[:-1]
 gae_advantage = discounted_rewards(delta, 0, gamma*lam)
 return gae_advantage

The GAE function is used in the store method of the Buffer class when a trajectory is
stored:

class Buffer():
 def __init__(self, gamma, lam):
 ...

 def store(self, temp_traj, last_sv):
 if len(temp_traj) > 0:
 self.ob.extend(temp_traj[:,0])
 rtg = discounted_rewards(temp_traj[:,1], last_sv, self.gamma)
 self.adv.extend(GAE(temp_traj[:,1], temp_traj[:,3], last_sv,
self.gamma, self.lam))
 self.rtg.extend(rtg)
 self.ac.extend(temp_traj[:,2])

 def get_batch(self):
 return np.array(self.ob), np.array(self.ac), np.array(self.adv),
np.array(self.rtg)

 def __len__(self):
 ...

Here, ... stands for the lines of code that we didn't report.

We can now define the clipped surrogate loss function (7.9):

def clipped_surrogate_obj(new_p, old_p, adv, eps):
 rt = tf.exp(new_p - old_p) # i.e. pi / old_pi
 return -tf.reduce_mean(tf.minimum(rt*adv, tf.clip_by_value(rt, 1-eps,
1+eps)*adv))

TRPO and PPO Implementation Chapter 7

[190]

It is quite intuitive and it doesn't need further explanation.

The computational graph holds nothing new, but let's go through it quickly:

Placeholders
act_ph = tf.placeholder(shape=(None,act_dim), dtype=tf.float32, name='act')
obs_ph = tf.placeholder(shape=(None, obs_dim[0]), dtype=tf.float32,
name='obs')
ret_ph = tf.placeholder(shape=(None,), dtype=tf.float32, name='ret')
adv_ph = tf.placeholder(shape=(None,), dtype=tf.float32, name='adv')
old_p_log_ph = tf.placeholder(shape=(None,), dtype=tf.float32,
name='old_p_log')

Actor
with tf.variable_scope('actor_nn'):
 p_means = mlp(obs_ph, hidden_sizes, act_dim, tf.tanh,
last_activation=tf.tanh)
 log_std = tf.get_variable(name='log_std', initializer=np.ones(act_dim,
dtype=np.float32))
 p_noisy = p_means + tf.random_normal(tf.shape(p_means), 0, 1) *
tf.exp(log_std)
 act_smp = tf.clip_by_value(p_noisy, low_action_space,
high_action_space)
 # Compute the gaussian log likelihood
 p_log = gaussian_log_likelihood(act_ph, p_means, log_std)

Critic
with tf.variable_scope('critic_nn'):
 s_values = tf.squeeze(mlp(obs_ph, hidden_sizes, 1, tf.tanh,
last_activation=None))

PPO loss function
p_loss = clipped_surrogate_obj(p_log, old_p_log_ph, adv_ph, eps)
MSE loss function
v_loss = tf.reduce_mean((ret_ph - s_values)**2)

Optimizers
p_opt = tf.train.AdamOptimizer(ac_lr).minimize(p_loss)
v_opt = tf.train.AdamOptimizer(cr_lr).minimize(v_loss)

The code for interaction with the environment and the collection of the experience is equal
to AC and TRPO. However, in the PPO implementation in this book's GitHub repository,
you can find a simple implementation that uses multiple agents.

TRPO and PPO Implementation Chapter 7

[191]

Once transitions (where N is the number of trajectories to run and T is the time
horizon of each trajectory) are collected, we are ready to update the policy and the critic. In
both cases, the optimization is run multiple times and done on mini-batches. But before it,
we have to run p_log on the full batch because the clipped objective needs the action log
probabilities of the old policy:

 ...
 obs_batch, act_batch, adv_batch, rtg_batch = buffer.get_batch()
 old_p_log = sess.run(p_log, feed_dict={obs_ph:obs_batch,
act_ph:act_batch, adv_ph:adv_batch, ret_ph:rtg_batch})
 old_p_batch = np.array(old_p_log)
lb = len(buffer)
 lb = len(buffer)
 shuffled_batch = np.arange(lb)

 # Policy optimization steps
 for _ in range(actor_iter):
 # shuffle the batch on every iteration
 np.random.shuffle(shuffled_batch)

 for idx in range(0,lb, minibatch_size):
 minib = shuffled_batch[idx:min(idx+batch_size,lb)]
 sess.run(p_opt, feed_dict={obs_ph:obs_batch[minib],
act_ph:act_batch[minib], adv_ph:adv_batch[minib],
old_p_log_ph:old_p_batch[minib]})

 # Value function optimization steps
 for _ in range(critic_iter):
 # shuffle the batch on every iteration
 np.random.shuffle(shuffled_batch)

 for idx in range(0,lb, minibatch_size):
 minib = shuffled_batch[idx:min(idx+minibatch_size,lb)]
 sess.run(v_opt, feed_dict={obs_ph:obs_batch[minib],
ret_ph:rtg_batch[minib]})
 ...

On each optimization iteration, we shuffle the batch so that every mini-batch is different
from the others.

That's everything for the PPO implementation, but keep in mind that before and after every
iteration, we are also running the summaries that we will later use with TensorBoard to
analyze the results and debug the algorithm. Again, we don't show the code here as it is
always the same and is quite long, but you can go through it in the full form in this book's
repository. It is fundamental for you to understand what each plot displays if you want to
master these RL algorithms.

TRPO and PPO Implementation Chapter 7

[192]

PPO application
PPO and TRPO are very similar algorithms and we choose to compare them by testing PPO
in the same environment as TRPO, namely RoboschoolWalker2d. We devoted the same
computational resources for tuning both of the algorithms so that we have a fairer
comparison. The hyperparameters for TRPO are the same as those we listed in the previous
section but instead, the hyperparameters of PPO are shown in the following table:

Hyperparameter Value
Neural network 64, tanh, 64, tanh

Policy learning rate 3e-4
Number of actor iterations 10

Number of agents 1
Time horizon 5,000

Mini-batch size 256
Clipping coefficient 0.2

Delta (for GAE) 0.95
Gamma (for GAE) 0.99

A comparison between PPO and TRPO is shown in the following diagram. PPO needs
more experience to take off, but once it reaches this state, it has a rapid improvement that
outpaces TRPO. In these specific settings, PPO also outperforms TRPO in terms of its final
performance. Keep in mind that further tuning of the hyperparameters could bring better
and slightly different results:

Figure 7.9. Comparison of performance between PPO and TRPO

TRPO and PPO Implementation Chapter 7

[193]

A few personal observations: we found PPO more difficult to tune
compared to TRPO. One reason for that is the higher number of
hyperparameters in PPO. Moreover, the actor learning rate is one of the
most important coefficients to tune, and if not properly tuned, it can
greatly affect the final results. A great point in favor of TRPO is that it
doesn't have a learning rate and that the policy is conditioned on a few
hyperparameters that are easy to tune. Instead, an advantage of PPO is
that it's faster and has been shown to work with a bigger variety of
environments.

Summary
In this chapter, you learned how policy gradient algorithms can be adapted to control
agents with continuous actions and then used a new set of environments called
Roboschool.

You also learned aboutand developed two advanced policy gradient algorithms: trust
region policy optimization and proximal policy optimization. These algorithms make better
use of the data sampled from the environment and both use techniques to limit the
difference in the distribution of two subsequent policies. In particular, TRPO (as the name
suggests) builds a trust region around the objective function using a second-order
derivative and some constraints based on the KL divergence between the old and the new
policy. PPO, on the other hand, optimizes an objective function similar to TRPO but using
only a first-order optimization method. PPO prevents the policy from taking steps that are
too large by clipping the objective function when it becomes too large.

PPO and TRPO are still on-policy (like the other policy gradient algorithms) but they are
more sample-efficient than AC and REINFORCE. This is due to the fact that TRPO, using a
second-order derivative, is actually extracting a higher order of information from the data.
The sample efficiency of PPO, on the other hand, is due to its ability to perform multiple
policy updates on the same on-policy data.

Thanks to their sample efficiency, robustness, and reliability, TRPO and especially PPO are
used in many very complex environments such as Dota (https:/ / openai. com/ blog/
openai-five/).

PPO and TRPO, as well as AC and REINFORCE, are stochastic gradient algorithms.

In the next chapter, we'll look at two policy gradient algorithms that are deterministic.
Deterministic algorithms are an interesting alternative because they have some useful
properties that cannot be replicated in the algorithms we have seen so far.

https://openai.com/blog/openai-five/
https://openai.com/blog/openai-five/
https://openai.com/blog/openai-five/
https://openai.com/blog/openai-five/
https://openai.com/blog/openai-five/
https://openai.com/blog/openai-five/
https://openai.com/blog/openai-five/
https://openai.com/blog/openai-five/
https://openai.com/blog/openai-five/
https://openai.com/blog/openai-five/
https://openai.com/blog/openai-five/
https://openai.com/blog/openai-five/
https://openai.com/blog/openai-five/

TRPO and PPO Implementation Chapter 7

[194]

Questions
How can a policy neural network control a continuous agent?1.
What's the KL divergence?2.
What's the main idea behind TRPO?3.
How is the KL divergence used in TRPO?4.
What's the main benefit of PPO?5.
How does PPO achieve good sample efficiency?6.

Further reading
If you are interested in the original paper of the NPG, read A Natural Policy
Gradient: https:/ / papers. nips.cc/ paper/ 2073- a-natural- policy- gradient.
pdf.
For the paper that introduced the Generalized Advantage Function, please
read High-Dimensional Continuous Control Using Generalized Advantage
Estimation: https:/ /arxiv. org/ pdf/ 1506. 02438. pdf.
If you are interested in the original Trust Region Policy Optimization paper, then
please read Trust Region Policy Optimization: https:/ /arxiv. org/ pdf/ 1502.
05477.pdf.
If you are interested in the original paper that introduced the Proximal Policy
Optimization algorithm, then please read Proximal Policy Optimization
Algorithms: https:/ /arxiv. org/ pdf/1707. 06347. pdf.
For a further explanation of Proximal Policy Optimization, read the following
blog post: https:/ / openai. com/ blog/ openai- baselines- ppo/ .
If you are interested in knowing how PPO has been applied on Dota 2, check the
following blog post regarding OpenAI: https:/ /openai. com/ blog/ openai- five/
.

https://papers.nips.cc/paper/2073-a-natural-policy-gradient.pdf
https://papers.nips.cc/paper/2073-a-natural-policy-gradient.pdf
https://papers.nips.cc/paper/2073-a-natural-policy-gradient.pdf
https://papers.nips.cc/paper/2073-a-natural-policy-gradient.pdf
https://papers.nips.cc/paper/2073-a-natural-policy-gradient.pdf
https://papers.nips.cc/paper/2073-a-natural-policy-gradient.pdf
https://papers.nips.cc/paper/2073-a-natural-policy-gradient.pdf
https://papers.nips.cc/paper/2073-a-natural-policy-gradient.pdf
https://papers.nips.cc/paper/2073-a-natural-policy-gradient.pdf
https://papers.nips.cc/paper/2073-a-natural-policy-gradient.pdf
https://papers.nips.cc/paper/2073-a-natural-policy-gradient.pdf
https://papers.nips.cc/paper/2073-a-natural-policy-gradient.pdf
https://papers.nips.cc/paper/2073-a-natural-policy-gradient.pdf
https://papers.nips.cc/paper/2073-a-natural-policy-gradient.pdf
https://papers.nips.cc/paper/2073-a-natural-policy-gradient.pdf
https://papers.nips.cc/paper/2073-a-natural-policy-gradient.pdf
https://papers.nips.cc/paper/2073-a-natural-policy-gradient.pdf
https://papers.nips.cc/paper/2073-a-natural-policy-gradient.pdf
https://papers.nips.cc/paper/2073-a-natural-policy-gradient.pdf
https://papers.nips.cc/paper/2073-a-natural-policy-gradient.pdf
https://papers.nips.cc/paper/2073-a-natural-policy-gradient.pdf
https://papers.nips.cc/paper/2073-a-natural-policy-gradient.pdf
https://arxiv.org/pdf/1506.02438.pdf
https://arxiv.org/pdf/1506.02438.pdf
https://arxiv.org/pdf/1506.02438.pdf
https://arxiv.org/pdf/1506.02438.pdf
https://arxiv.org/pdf/1506.02438.pdf
https://arxiv.org/pdf/1506.02438.pdf
https://arxiv.org/pdf/1506.02438.pdf
https://arxiv.org/pdf/1506.02438.pdf
https://arxiv.org/pdf/1506.02438.pdf
https://arxiv.org/pdf/1506.02438.pdf
https://arxiv.org/pdf/1506.02438.pdf
https://arxiv.org/pdf/1506.02438.pdf
https://arxiv.org/pdf/1506.02438.pdf
https://arxiv.org/pdf/1506.02438.pdf
https://arxiv.org/pdf/1506.02438.pdf
https://arxiv.org/pdf/1502.05477.pdf
https://arxiv.org/pdf/1502.05477.pdf
https://arxiv.org/pdf/1502.05477.pdf
https://arxiv.org/pdf/1502.05477.pdf
https://arxiv.org/pdf/1502.05477.pdf
https://arxiv.org/pdf/1502.05477.pdf
https://arxiv.org/pdf/1502.05477.pdf
https://arxiv.org/pdf/1502.05477.pdf
https://arxiv.org/pdf/1502.05477.pdf
https://arxiv.org/pdf/1502.05477.pdf
https://arxiv.org/pdf/1502.05477.pdf
https://arxiv.org/pdf/1502.05477.pdf
https://arxiv.org/pdf/1502.05477.pdf
https://arxiv.org/pdf/1502.05477.pdf
https://arxiv.org/pdf/1707.06347.pdf
https://arxiv.org/pdf/1707.06347.pdf
https://arxiv.org/pdf/1707.06347.pdf
https://arxiv.org/pdf/1707.06347.pdf
https://arxiv.org/pdf/1707.06347.pdf
https://arxiv.org/pdf/1707.06347.pdf
https://arxiv.org/pdf/1707.06347.pdf
https://arxiv.org/pdf/1707.06347.pdf
https://arxiv.org/pdf/1707.06347.pdf
https://arxiv.org/pdf/1707.06347.pdf
https://arxiv.org/pdf/1707.06347.pdf
https://arxiv.org/pdf/1707.06347.pdf
https://arxiv.org/pdf/1707.06347.pdf
https://arxiv.org/pdf/1707.06347.pdf
https://arxiv.org/pdf/1707.06347.pdf
https://openai.com/blog/openai-baselines-ppo/
https://openai.com/blog/openai-baselines-ppo/
https://openai.com/blog/openai-baselines-ppo/
https://openai.com/blog/openai-baselines-ppo/
https://openai.com/blog/openai-baselines-ppo/
https://openai.com/blog/openai-baselines-ppo/
https://openai.com/blog/openai-baselines-ppo/
https://openai.com/blog/openai-baselines-ppo/
https://openai.com/blog/openai-baselines-ppo/
https://openai.com/blog/openai-baselines-ppo/
https://openai.com/blog/openai-baselines-ppo/
https://openai.com/blog/openai-baselines-ppo/
https://openai.com/blog/openai-baselines-ppo/
https://openai.com/blog/openai-baselines-ppo/
https://openai.com/blog/openai-baselines-ppo/
https://openai.com/blog/openai-baselines-ppo/
https://openai.com/blog/openai-five/
https://openai.com/blog/openai-five/
https://openai.com/blog/openai-five/
https://openai.com/blog/openai-five/
https://openai.com/blog/openai-five/
https://openai.com/blog/openai-five/
https://openai.com/blog/openai-five/
https://openai.com/blog/openai-five/
https://openai.com/blog/openai-five/
https://openai.com/blog/openai-five/
https://openai.com/blog/openai-five/
https://openai.com/blog/openai-five/
https://openai.com/blog/openai-five/

8
DDPG and TD3 Applications

In the previous chapter, we concluded a comprehensive overview of all the major policy
gradient algorithms. Due to their capacity to deal with continuous action spaces, they are
applied to very complex and sophisticated control systems. Policy gradient methods can
also use a second-order derivative, as is done in TRPO, or use other strategies, in order to
limit the policy update by preventing unexpected bad behaviors. However, the main
concern when dealing with this type of algorithm is their poor efficiency, in terms of the
quantity of experience needed to hopefully master a task. This drawback comes from the
on-policy nature of these algorithms, which makes them require new experiences each time
the policy is updated. In this chapter, we will introduce a new type of off-policy actor-critic
algorithm that learns a target deterministic policy, while exploring the environment with a
stochastic policy. We call these methods deterministic policy gradient methods, due to their
characteristic of learning a deterministic policy. We'll first show how these algorithms
work, and we will also show their close relationship with Q-learning methods. Then, we'll
present two deterministic policy gradient algorithms: deep deterministic policy gradient
(DDPG), and a successive version of it, known as twin delayed deep deterministic policy
gradient (TD3). You'll get a sense of their capabilities by implementing and applying them
to a new environment.

DDPG and TD3 Applications Chapter 8

[196]

The following topics will be covered in this chapter:

Combining policy gradient optimization with Q-learning
Deep deterministic policy gradient
Twin delayed deep deterministic policy gradient (TD3)

Combining policy gradient optimization with
Q-learning
Throughout this book, we approach two main types of model-free algorithms: the ones
based on the gradient of the policy, and the ones based on the value function. From the first
family, we saw REINFORCE, actor-critic, PPO, and TRPO. From the second, we saw Q-
learning, SARSA, and DQN. As well as the way in which the two families learn a policy
(that is, policy gradient algorithms use stochastic gradient ascent toward the steepest
increment on the estimated return, and value-based algorithms learn an action value for
each state-action to then build a policy), there are key differences that let us prefer one
family over the other. These are the on-policy or off-policy nature of the algorithms, and
their predisposition to manage large action spaces. We already discussed the differences
between on-policy and off-policy in the previous chapters, but it is important to understand
them well, in order to actually appreciate the algorithms that will be introduced in this
chapter.

Off-policy learning is able to use previous experiences in order to refine the current policy,
despite the fact that that experience comes from a different distribution. DQN benefits from
this by storing all the memories that the agent had throughout its life in a replay buffer, and
by sampling mini-batches from the buffer to update the target policy. At the opposite end
of the spectrum, there is on-policy learning, which requires experience to be gained from
the current policy. This means that old experiences cannot be used, and every time the
policy is updated, the old data has to be discarded. As a result, because off-policy
learning can reuse data multiple times, it requires fewer interactions with the environment
in order to learn a task. In cases where the acquisition of new samples is expensive or very
difficult to do, this difference matters a lot, and choosing off-policy algorithms could be
vital.

DDPG and TD3 Applications Chapter 8

[197]

The second factor is a matter of action spaces. As we saw in Chapter 7, TRPO and PPO
Implementation, policy gradient algorithms have the ability to deal with very large and
continuous action spaces. Unfortunately, the same does not hold true for Q-learning
algorithms. To choose an action, they have to perform maximization across all the action
space, and whenever this is very large or continuous, it is intractable. Thus, Q-learning
algorithms can be applied to arbitrarily complex problems (with a very large state space)
but their action space has to be limited.

In conclusion, none of the previous algorithms are always preferred over others, and the
choice is mostly task dependent. Nevertheless, their advantages and disadvantages are
quite complementary, and thus the question arises: Is it possible to combine the benefits of
both families into a single algorithm?

Deterministic policy gradient
Designing an algorithm that is both off-policy and able to learn stable policies in high-
dimensional action spaces is challenging. DQN already solves the problem of learning a
stable deep neural network policy in off-policy settings. An approach to making DQN also
suitable for continuous actions is to discretize the action space. For example, if an action has
values between 0 and 1, a solution could be to discretize it in 11 values (0, 0.1, 0.2,.., 0.9, 1.0),
and predict their probabilities using DQN. However, this solution is not manageable with a
lot of actions, because the number of possible discrete actions increases exponentially with
the degree of freedom of the agent. Moreover, this technique isn't applicable in tasks that
need more fine-grained control. Thus, we need to find an alternative.

A valuable idea is to learn a deterministic actor-critic. It has a close relationship with Q-
learning. If you remember, in Q-learning, the best action is chosen in order to maximize the
approximated Q-function among all of the possible actions:

DDPG and TD3 Applications Chapter 8

[198]

The idea is to learn a deterministic policy that approximates . This
overcomes the problem of computing a global maximization at every step, and opens up
the possibility of extending it to very high-dimensional and continuous actions.
Deterministic policy gradient (DPG) applies this concept successfully to some simple
problems such as Mountain Car, Pendulum, and an octopus arm. After DPG, DDPG
expands the ideas of DPG, using deep neural networks as policies and adopting some more
careful design choices in order to make the algorithm more stable. A further algorithm,
TD3, addresses the problems of high variance, and the overestimation bias that is common
in DPG and DDPG. Both DDPG and TD3 will be explained and developed in the following
sections. When we construct a map that categorizes RL algorithms, we place DPG, DDPG,
and TD3 in the intersection between policy gradient and Q-learning algorithms, as in the
following diagram. For now, let's focus on the foundation of DPGs and how they work:

Categorization of the model-free RL algorithms developed so far

DDPG and TD3 Applications Chapter 8

[199]

The new DPG algorithms combine both Q-learning and policy gradient methods. A
parametrized deterministic policy only outputs deterministic values. In continuous
contexts, these can be the mean of the actions. The parameters of the policy can then be
updated by solving the following equation:

 is the parametrized action-value function. Note that deterministic approaches differ
from stochastic approaches in the absence of additional noise added to the actions. In PPO
and TRPO, we were sampling from a normal distribution, with a mean and a standard
deviation. Here, the policy has only a deterministic mean. Going back to the update (8.1), as
always, maximization is done with stochastic gradient ascent, which will incrementally
improve the policy with small updates. Then, the gradient of the objective function can be
computed as follows:

 is the state distribution following the policy. This formulation comes from the
deterministic policy gradient theorem. It says that the gradient of the objective function is
obtained in expectation by following the chain rule that is applied to the Q-function, which
is taken with respect to the policy parameters. Using automated differentiable software
such as TensorFlow, it's very easy to compute. In fact, the gradient is estimated just by
computing the gradient, starting from the Q-values, all the way through the policy, but
updating only the parameters of the latter, as shown here:

An illustration of the DPG theorem

The gradient is computed starting from the Q-values, but only the policy
is updated.

DDPG and TD3 Applications Chapter 8

[200]

This is a more theoretical result. As we know, deterministic policies don't explore the
environment, and thus, they won't find a good solution. To make the DPG off-policy, we
need to take a step further, and define the gradient of the objective function in such a way
that the expectation follows the distribution of a stochastic exploratory policy:

 is an exploratory policy, also called a behavior policy. This equation gives the off-policy
deterministic policy gradient and gives the estimated gradient with respect to a deterministic
policy (), while generating trajectories that follow a behavior policy (). Note that, in
practice, the behavior policy is just the deterministic policy with additional noise.

Though we have talked about deterministic actor-critic previously, until now, we have only
shown how the policy learning takes place. Instead, we are learning both the actor that is
represented by the deterministic policy (), and the critic that is represented by the Q-
function (). The differentiable action-value function () can easily be learned with the
Bellman updates that minimize the Bellman error
(), as done in Q-learning algorithms.

Deep deterministic policy gradient
If you implemented DPG with the deep neural networks that were presented in the
previous section, the algorithm would be very unstable and it wouldn't be capable of
learning anything. We encountered a similar problem when we extended Q-learning with
deep neural networks. Indeed, to combine DNN and Q-learning in the DQN algorithm, we
had to employ some other tricks to stabilize learning. The same holds true for DPG
algorithms. These methods are off-policy, just like Q-learning, and as we'll soon see, some
ingredients that make deterministic policies work with DNN are similar to the ones used in
DQN.

DDPG (Continuous Control with Deep Reinforcement Learning by Lillicrap, and others:
https://arxiv.org/ pdf/ 1509. 02971. pdf) is the first deterministic actor-critic that employs
deep neural networks, for learning both the actor and the critic. This model-free, off-policy,
actor-critic algorithm extends both DQN and DPG, in that it uses some insight from DQN,
such as the replay buffer and the target network, to make DPG work with deep neural
networks.

https://arxiv.org/pdf/1509.02971.pdf
https://arxiv.org/pdf/1509.02971.pdf
https://arxiv.org/pdf/1509.02971.pdf
https://arxiv.org/pdf/1509.02971.pdf
https://arxiv.org/pdf/1509.02971.pdf
https://arxiv.org/pdf/1509.02971.pdf
https://arxiv.org/pdf/1509.02971.pdf
https://arxiv.org/pdf/1509.02971.pdf
https://arxiv.org/pdf/1509.02971.pdf
https://arxiv.org/pdf/1509.02971.pdf
https://arxiv.org/pdf/1509.02971.pdf
https://arxiv.org/pdf/1509.02971.pdf
https://arxiv.org/pdf/1509.02971.pdf
https://arxiv.org/pdf/1509.02971.pdf
https://arxiv.org/pdf/1509.02971.pdf

DDPG and TD3 Applications Chapter 8

[201]

The DDPG algorithm
DDPG uses two key ideas, both borrowed from DQN but adapted for the actor-critic case:

Replay buffer: All the transitions acquired during the lifetime of the agent are
stored in a replay buffer, also called experienced replay. Then, this is used for
training the actor and the critic by sampling mini-batches from it.
Target network: Q-learning is unstable, since the network that is updated is also
the one that is used for computing the target values. If you remember, DQN
mitigates this problem by employing a target network that is updated every N
iterations (copying the parameters of the online network in the target network).
In the DDQN paper, they show that a soft target update works better in this
context. With a soft update, the parameters of the target network, , are partially
updated on each step with the parameters of the online network, :

 with . Yes, it may slow the learning, as the target network
is changed only partially, but it outweighs the benefit that is derived from the
increased instability. The trick of using a target network is used for both the actor
and the critic, thereby the parameters of the target critic will also be updated
following the soft update: .

Note that, from now on, we'll refer to and as the parameters of the online actor and the
online critic, and to and as the parameters of the target actor and the target critic.

A characteristic that DDPG inherits from DQN is the ability to update the actor and the
critic for each step taken in the environment. This follows on from the fact that DDPG is off-
policy, and learns from the mini-batches that were sampled from the replay buffer. DDPG
doesn't have to wait until a sufficiently large batch is gathered from the environment, as
would be the case in on-policy stochastic policy gradient methods.

Previously, we saw how DPG acts according to an exploratory behavior policy, despite that
fact that it is still learning a deterministic policy. But, how is this exploratory policy built?
In DDPG, the policy is constructed by adding noise that is sampled from a noise process
():

The process will make sure that the environment is sufficiently explored.

DDPG and TD3 Applications Chapter 8

[202]

Wrapping up, DDPG learns by cyclically repeating these three steps until convergence
occurs:

The behavior policy interacts with the environment, collecting observations
and rewards from it by storing them in a buffer.
At each step, the actor and the critic are updated, based on the information held
in the mini-batch that was sampled from the buffer. Specifically, the critic is
updated by minimizing the mean squared error (MSE) loss between the values
that were predicted by the online critic (), and the target values that were
computed using the target policy () and the target critic (). Instead, the actor
is updated following formula (8.3).
The target network parameters are updated following the soft update.

The whole algorithm is summarized in this pseudocode:

DDPG Algorithm

Initialize online networks and

Initialize target networks and with the same weights as the online
networks
Initialize empty replay buffer

Initialize environment

for do
 > Run an episode
 while not d:

 > Store the transition in the buffer

 > Sample a minibatch

 > Calculate the target value for every i in b

 (8.4)

 > Update the critic

DDPG and TD3 Applications Chapter 8

[203]

 (8.5)

 > Update the policy

 (8.6)

 > Targets update

 if :

With a more clear understanding of the algorithm, we can now start implementing it.

DDPG implementation
The pseudocode that was given in the preceding section already provides a comprehensive
view of the algorithm, but from an implementation standpoint, there are a few things that
are worth looking at in more depth. Here, we'll show the more interesting features that
could also recur in other algorithms. The full code is available in the GitHub repository of
the book: https:/ /github. com/ PacktPublishing/ Reinforcement- Learning- Algorithms-
with-Python.

Specifically, we'll focus on a few main parts:

How to build a deterministic actor-critic
How to do soft updates
How to optimize a loss function, with respect to only some parameters
How to calculate the target values

We defined a deterministic actor and a critic inside a function called
deterministic_actor_critic. This function will be called twice, as we need to create
both an online and a target actor-critic. The code is as follows:

def deterministic_actor_critic(x, a, hidden_sizes, act_dim, max_act):
 with tf.variable_scope('p_mlp'):
 p_means = max_act * mlp(x, hidden_sizes, act_dim,
last_activation=tf.tanh)
 with tf.variable_scope('q_mlp'):

https://github.com/PacktPublishing/Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Reinforcement-Learning-Algorithms-with-Python

DDPG and TD3 Applications Chapter 8

[204]

 q_d = mlp(tf.concat([x,p_means], axis=-1), hidden_sizes, 1,
last_activation=None)
 with tf.variable_scope('q_mlp', reuse=True): # reuse the weights
 q_a = mlp(tf.concat([x,a], axis=-1), hidden_sizes, 1,
last_activation=None)
 return p_means, tf.squeeze(q_d), tf.squeeze(q_a)

There are three interesting things happening inside this function. The first is that we are
distinguishing between two types of input for the same critic. One that takes a state as the
input, and a p_means deterministic action is returned by the policy; and the other that takes
a state and an arbitrary action as the input. This distinction is needed, because one critic
will be used for optimizing the actor, while the other is used for optimizing the critic.
Nevertheless, despite these two critics having two different inputs, they are the same neural
network, meaning that they share the same parameters. This different use case is
accomplished by defining the same variable scope for both instances of the critic, and
setting reuse=True on the second one. This will make sure that the parameters are the
same for both definitions, in practice creating only one critic.

The second observation is that we are defining the actor inside a variable scope
called p_mlp. This is because, later on, we'll need to retrieve only these parameters, and
not those of the critic.

The third observation is that, because the policy has a tanh function as its final activation
layer (to constrain the values to be between -1 and 1) but our actor may need values out of
this range, we have to multiply the output by a max_act factor (this assumes that the
minimum and maximum values are opposite, that is, if the maximum allowed value is 3,
the minimum is -3).

Nice! Let's now have a look through the remaining of the computational graph, where we
define the placeholders; create the online and target actors, as well as the online and target
critics; define the losses; implement the optimizers; and update the target networks.

We'll start from the creation of the placeholders that we'll need for the observations, the
actions, and the target values:

obs_dim = env.observation_space.shape
act_dim = env.action_space.shape

obs_ph = tf.placeholder(shape=(None, obs_dim[0]), dtype=tf.float32,
name='obs')
act_ph = tf.placeholder(shape=(None, act_dim[0]), dtype=tf.float32,
name='act')
y_ph = tf.placeholder(shape=(None,), dtype=tf.float32, name='y')

DDPG and TD3 Applications Chapter 8

[205]

In the preceding code, y_ph is the placeholder for the target Q-values, obs_ph for the
observations, and act_ph for the actions.

We then call the previously defined deterministic_actor_critic function inside an
online and target variable scope, so as to differentiate the four neural networks:

with tf.variable_scope('online'):
 p_onl, qd_onl, qa_onl = deterministic_actor_critic(obs_ph, act_ph,
hidden_sizes, act_dim[0], np.max(env.action_space.high))

with tf.variable_scope('target'):
 _, qd_tar, _ = deterministic_actor_critic(obs_ph, act_ph, hidden_sizes,
act_dim[0], np.max(env.action_space.high))

The loss of the critic is the MSE loss between the Q-values of the qa_onl online network,
and the y_ph target action value:

q_loss = tf.reduce_mean((qa_onl - y_ph)**2)

This will be minimized with the Adam optimizer:

q_opt = tf.train.AdamOptimizer(cr_lr).minimize(q_loss)

With regard to the actor's loss function, it is the opposite sign of the online Q-network. In
this case, the online Q-network has the actions chosen by the online deterministic actor as
the input (as from formula (8.6), which was defined in the pseudocode of The DDPG
algorithm section). Thus, the Q-values are represented by qd_onl, and the policy loss
function is written as follows:

p_loss = -tf.reduce_mean(qd_onl)

We took the opposite sign of the objective function, because we have to convert it to a loss
function, considering that the optimizers need to minimize a loss function.

Now, the most important thing to remember here is that, despite computing the gradient
from the p_loss loss function that depends on both the critic and the actor, we only need
to update the actor. Indeed, from DPG we know that

.

DDPG and TD3 Applications Chapter 8

[206]

This is accomplished by passing p_loss to the minimize method of the optimizer, which
specifies the variables that need updating. In this case, we need to update only the variables
of the online actor that was defined in the online/m_mlp variable scope:

p_opt = tf.train.AdamOptimizer(ac_lr).minimize(p_loss,
var_list=variables_in_scope('online/p_mlp'))

In this way, the computation of the gradient will start from p_loss, go through the critic's
network, and then the actor's network. By the end, only the parameters of the actor will be
optimized.

Now, we have to define the variable_in_scope(scope) function that returns the
variables in the scope named scope:

def variables_in_scope(scope):
 return tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope)

It's now time to look at how the target networks are updated. We can use
variable_in_scope to get the target and online variables of both the actors and the
critics, and use the TensorFlow assign function on the target variables to update them,
following the soft update formula:

 This is done in the following snippet of code:

update_target = [target_var.assign(tau*online_var + (1-tau)*target_var) for
target_var, online_var in zip(variables_in_scope('target'),
variables_in_scope('online'))]
update_target_op = tf.group(*update_target)

That's it! For the computational graph, that's everything. Pretty straightforward,
right? Now we can take a quick look at the main cycle, where the parameters are updated,
following the estimated gradient on a finite batch of samples. The interaction of the policy
with the environment is standard, with the exception that now the actions that are returned
by the policy are deterministic, and we have to add a certain amount of noise in order
to adequately explore the environment. Here, we don't provide this part of the code, but
you can find the full implementation on GitHub.

DDPG and TD3 Applications Chapter 8

[207]

When a minimum amount of experience has been acquired, and the buffer has reached a
certain threshold, the optimization of the policy and the critic starts. The steps that follow
are those that are summarized in the DDPG pseudocode that was provided in The DDPG
algorithm section. These are as follows:

Sample a mini-batch from the buffer1.
Calculate the target action values2.
Optimize the critic3.
Optimize the actor4.
Update the target networks5.

All these operations are executed in just a few lines of code:

 ...
 mb_obs, mb_rew, mb_act, mb_obs2, mb_done =
buffer.sample_minibatch(batch_size)

 q_target_mb = sess.run(qd_tar, feed_dict={obs_ph:mb_obs2})
 y_r = np.array(mb_rew) + discount*(1-np.array(mb_done))*q_target_mb

 _, q_train_loss = sess.run([q_opt, q_loss], feed_dict={obs_ph:mb_obs,
y_ph:y_r, act_ph: mb_act})

 _, p_train_loss = sess.run([p_opt, p_loss], feed_dict={obs_ph:mb_obs})

 sess.run(update_target_op)

 ...

The first line of code samples a mini-batch of size batch_size, the second and third lines
compute the target action values, as defined in equation (8.4), by running the critic and
actor target networks on mb_obs2, which contains the next states. The fourth line optimizes
the critic by feeding the dictionary with the target action values that were just computed, as
well as the observations and actions. The fifth line optimizes the actor, and the last one
updates the target networks by running update_target_op.

DDPG and TD3 Applications Chapter 8

[208]

Appling DDPG to BipedalWalker-v2
Let's now apply DDPG to a continuous task called BipedalWalker-v2, that is, one of the
environments provided by Gym that uses Box2D, a 2D physical engine. A screenshot of this
environment follows. The goal is to make the agent walk as fast as possible in rough
terrains. A score of 300+ is given for moving until the end, but every application of the
motors costs a small amount. The more optimally the agent moves, the less it costs.
Furthermore, if the agent falls, it receives a reward of -100. The state consists of 24 float
numbers that represent the speeds and the positions of the joints and the hull, and
LiDar rangefinder measurements. The agent is controlled by four continuous actions, with
the range [-1,1]. The following is a screenshot of BipedalWalker 2D environment:

Screenshot of BipedalWalker2d environment

We run DDPG with the hyperparameters that are given in the following table. In the first
row, the hyperparameters that are needed to run DDPG are listed, while the corresponding
values that are used in this particular case are listed in the second row. Let's refer to the
following table:

Hyperparameter Actor Learning
Rate

Critic Learning
Rate DNN architecture Buffer Size Batch Size Tau

Value 3e-4 4e-4 [64,relu,64,relu] 200000 64 0.003

DDPG and TD3 Applications Chapter 8

[209]

During training, we added extra noise in the actions that were predicted by the policy,
however, to measure the performance of the algorithm, we run 10 games on a pure
deterministic policy (without extra noise) every 10 episodes. The cumulative rewards that is
averaged across the 10 games in the function of the timesteps is plotted in the following
diagram:

Performance of the DDPG algorithm on BipedalWalker2d-v2

From the results, we can see that the performance is quite unstable, ranging from 250 to less
than -100, after only a few thousand steps. It is known that DDPG is unstable and very
sensitive to the hyperparameters, but with more careful fine-tuning, the results may be
smoother. Nonetheless, we can see that the performance increases in the first 300k steps,
reaching an average score of about 100, with peaks of up to 300.

Additionally, BipedalWalker-v2 is a notoriously difficult environment to solve. Indeed, it is
considered solved when the agent obtains an average reward of at least 300 points, on 100
consecutive episodes. With DDPG, we aren't able to reach those performances, but still, we
obtained a good policy that is able to make the agent run fairly fast.

DDPG and TD3 Applications Chapter 8

[210]

In our implementation, we used a constant exploratory factor. By using a
more sophisticated function, you could probably reach a higher
performance in fewer iterations. For example, in the DDPG paper, they
use an Ornstein-Uhlenbeck process. You can start from this process, if you
wish to.

DDPG is a beautiful example of how deterministic policy can be used in contraposition to
stochastic policies. However, because it's been the first of its kind to deal with complex
problems, there are many further adjustments that can be applied to it. The next algorithm
that is proposed in this chapter, takes DDPG one step further.

Twin delayed deep deterministic policy
gradient (TD3)
DDPG is regarded as one of the most sample-efficient actor-critic algorithms, but it has
been demonstrated to be brittle and sensitive to hyperparameters. Further studies have
tried to alleviate these problems, by introducing novel ideas, or by using tricks from other
algorithms on top of DDPG. Recently, one algorithm has taken over as a replacement of
DDPG: twin delayed deep deterministic policy gradient, or for short, TD3 (the paper is
Addressing Function Approximation Error in Actor-Critic Methods: https:/ /arxiv. org/pdf/
1802.09477.pdf). We have used the word replacement here, because it's actually a
continuation of the DDPG algorithms, with some more ingredients that make it more
stable, and more performant.

TD3 focuses on some of the problems that are also common in other off-policy algorithms.
These problems are the overestimation of the value estimate, and high-variance estimates of
the gradient. For the former problem, they employ a solution similar to the one used in
DQN, and for the latter, they employ two novel solutions. Let's first consider the
overestimation bias problem.

Addressing overestimation bias
Overestimation bias means that the action values that are predicted by the approximated
Q-function are higher than what they should be. Having been widely studied in Q-learning
algorithms with discrete actions, this often leads to bad predictions that affect the end
performance. Despite being less affected, this problem is also present in DDPG.

https://arxiv.org/pdf/1802.09477.pdf
https://arxiv.org/pdf/1802.09477.pdf
https://arxiv.org/pdf/1802.09477.pdf
https://arxiv.org/pdf/1802.09477.pdf
https://arxiv.org/pdf/1802.09477.pdf
https://arxiv.org/pdf/1802.09477.pdf
https://arxiv.org/pdf/1802.09477.pdf
https://arxiv.org/pdf/1802.09477.pdf
https://arxiv.org/pdf/1802.09477.pdf
https://arxiv.org/pdf/1802.09477.pdf
https://arxiv.org/pdf/1802.09477.pdf
https://arxiv.org/pdf/1802.09477.pdf
https://arxiv.org/pdf/1802.09477.pdf
https://arxiv.org/pdf/1802.09477.pdf

DDPG and TD3 Applications Chapter 8

[211]

If you remember, the DQN variant that reduces the overestimation of the action values is
called double DQN and it proposes two neural networks; one for choosing the action, and
one for calculating the Q-value. In particular, the work of the second neural network is
done by a frozen target network. This is a sound idea, but as explained in the TD3 paper, it
isn't effective on actor-critic methods, as in these methods, the policy changes too slowly.
So, they propose a variation called clipped double Q-learning that takes the minimum
between the estimates of two different critics (). Thus, the target value is computed
as follows:

On the opposite side, this doesn't prevent an underestimation bias, but it is way less
harmful than its overestimation. Clipped double Q-learning can be used in any actor-critic
method, and it works following the assumption that the two critics will have different
biases.

Implementation of TD3
To put this strategy into code, we have to create two critics with different initializations,
compute the target action value as in (8.7), and optimize both critics.

TD3 is applied on the DDPG implementation that we discussed in the
previous section. The following snippets are only a portion of the
additional code that is needed to implement TD3. The complete
implementation is available in the GitHub repository of the book: https:/
/github. com/ PacktPublishing/ Hands- On- Reinforcement- Learning-
Algorithms- with- Python.

With regard to the double critic, you have just to create them
by calling deterministic_actor_double_critic twice, once for the target and once for
the online networks, as done in DDPG. The code will be similar to this:

def deterministic_actor_double_critic(x, a, hidden_sizes, act_dim,
max_act):
 with tf.variable_scope('p_mlp'):
 p_means = max_act * mlp(x, hidden_sizes, act_dim,
last_activation=tf.tanh)
 # First critic
 with tf.variable_scope('q1_mlp'):
 q1_d = mlp(tf.concat([x,p_means], axis=-1), hidden_sizes, 1,
last_activation=None)
 with tf.variable_scope('q1_mlp', reuse=True): # Use the weights of the

https://github.com/PacktPublishing/Hands-On-Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Hands-On-Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Hands-On-Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Hands-On-Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Hands-On-Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Hands-On-Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Hands-On-Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Hands-On-Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Hands-On-Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Hands-On-Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Hands-On-Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Hands-On-Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Hands-On-Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Hands-On-Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Hands-On-Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Hands-On-Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Hands-On-Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Hands-On-Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Hands-On-Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Hands-On-Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Hands-On-Reinforcement-Learning-Algorithms-with-Python

DDPG and TD3 Applications Chapter 8

[212]

mlp just defined
 q1_a = mlp(tf.concat([x,a], axis=-1), hidden_sizes, 1,
last_activation=None)

 # Second critic
 with tf.variable_scope('q2_mlp'):
 q2_d = mlp(tf.concat([x,p_means], axis=-1), hidden_sizes, 1,
last_activation=None)
 with tf.variable_scope('q2_mlp', reuse=True):
 q2_a = mlp(tf.concat([x,a], axis=-1), hidden_sizes, 1,
last_activation=None)

 return p_means, tf.squeeze(q1_d), tf.squeeze(q1_a), tf.squeeze(q2_d),
tf.squeeze(q2_a)

The clipped target value ((8.7)) is implemented by first
running the two target critics that we called qa1_tar and qa2_tar, and then calculating
the minimum between the estimated values, and finally, using it to estimate the target
values:

 ...
 double_actions = sess.run(p_tar, feed_dict={obs_ph:mb_obs2})

 q1_target_mb, q2_target_mb = sess.run([qa1_tar,qa2_tar],
feed_dict={obs_ph:mb_obs2, act_ph:double_actions})
 q_target_mb = np.min([q1_target_mb, q2_target_mb], axis=0)
 y_r = np.array(mb_rew) + discount*(1-
np.array(mb_done))*q_target_mb
 ..

Next, the critics can be optimized as usual:

 ...
 q1_train_loss, q2_train_loss = sess.run([q1_opt, q2_opt],
feed_dict={obs_ph:mb_obs, y_ph:y_r, act_ph: mb_act})
 ...

An important observation to make is that the policy is optimized with respect to only one
approximated Q-function, in our case, . In fact, if you look at the full code, you'll see that
p_loss is defined as p_loss = -tf.reduce_mean(qd1_onl).

DDPG and TD3 Applications Chapter 8

[213]

Addressing variance reduction
The second, and last, contribution by TD3, is the reduction of the variance. Why is high
variance a problem? Well, it provides a noisy gradient, which involves a wrong policy
update impacting the performance of the algorithm. The complication of high variance
arises in the TD error, which estimates the action values from subsequent states.

To mitigate this problem, TD3 introduces a delayed policy update, and a target
regularization technique. Let's see what they are, and why they work so well.

Delayed policy updates
Since high variance is attributed to an inaccurate critic, TD3 proposes to delay the update of
the policy until the critic error is small enough. TD3 delays the update in an empirical way,
by updating the policy only after a fixed number of iterations. In this manner, the critic has
time to learn and stabilize itself, before the policy's optimization takes place. In practice, the
policy remains fixed only for a few iterations, typically between 1 and 6. If set to 1, then it is
the same as in DDPG. The delayed policy updates can be implemented as follows:

 ...
 q1_train_loss, q2_train_loss = sess.run([q1_opt, q2_opt],
feed_dict={obs_ph:mb_obs, y_ph:y_r, act_ph: mb_act})
 if step_count % policy_update_freq == 0:
 sess.run(p_opt, feed_dict={obs_ph:mb_obs})
 sess.run(update_target_op)
 ...

Target regularization
Critics that update from deterministic actions tend to overfit in narrow peaks. The
consequence is an increase in variance. TD3 presents a smoothing regularization technique
that adds a clipped noise to a small area near the target action:

The regularization can be implemented in a function that takes a vector and a scale as
arguments:

def add_normal_noise(x, noise_scale):
 return x + np.clip(np.random.normal(loc=0.0, scale=noise_scale,
size=x.shape), -0.5, 0.5)

DDPG and TD3 Applications Chapter 8

[214]

Then, add_normal_noise is called after running the target policy, as shown in the
following lines of code (the changes with respect to the DDPG implementation are written
in bold):

 ...
 double_actions = sess.run(p_tar, feed_dict={obs_ph:mb_obs2})
 double_noisy_actions = np.clip(add_normal_noise(double_actions,
target_noise), env.action_space.low, env.action_space.high)

 q1_target_mb, q2_target_mb = sess.run([qa1_tar,qa2_tar],
feed_dict={obs_ph:mb_obs2, act_ph:double_noisy_actions})
 q_target_mb = np.min([q1_target_mb, q2_target_mb], axis=0)
 y_r = np.array(mb_rew) + discount*(1-
np.array(mb_done))*q_target_mb
 ..

We clipped the actions, after having added the extra noise, to make sure that they don't
exceed the ranges that were set by the environment.

Putting everything together, we obtain the algorithm that is shown in the following
pseudocode:

TD 3 Algorithm

Initialize online networks and

Initialize target networks and with the same weights as the
online networks
Initialize empty replay buffer

Initialize environment

for do
 > Run an episode
 while not d:

 > Store the transition in the buffer

 > Sample a minibatch

DDPG and TD3 Applications Chapter 8

[215]

 > Calculate the target value for every i in b

 > Update the critics

 if iter % policy_update_frequency == 0:
 > Update the policy

 > Targets update

 if :

That's everything for the TD3 algorithm. Now, you have a clear understanding of all the
deterministic and non-deterministic policy gradient methods. Almost all of the model-free
algorithms are based on the principles that we explained in these chapters, and if you
master them, you will be able to understand and implement all of them.

Applying TD3 to BipedalWalker
For a direct comparison of TD3 and DDPG, we tested TD3 in the same environment that we
used for DDPG: BipedalWalker-v2.

The best hyperparameters for TD3 for this environment are listed in this table:

Hyperparameter Actor l.r. Critic l.r. DNN Architecture Buffer Size Batch
Size Tau Policy

Update Freq Sigma

Value 4e-4 4e-4 [64,relu,64,relu] 200000 64 0.005 2 0.2

DDPG and TD3 Applications Chapter 8

[216]

The result is plotted in the following diagram. The curve has a smooth trend, and reaches
good results after about 300K steps, with top peaks at 450K steps of training. It arrives very
close to the goal of 300 points, but it does not actually gain them:

Performance of the TD3 algorithm on BipedalWalker-v2

The time spent finding a good set of hyperparameters for TD3 was less compared to DDPG.
And, despite the fact that we are comparing the two algorithms on only one game, we think
that it is a good first insight into their differences, in terms of stability and performance.
The performance of both DDPG and TD3 on BipedalWalker-v2 are shown here:

DDPG and TD3 Applications Chapter 8

[217]

DDPG versus TD3 performance comparison

If you want to train the algorithms in a harder environment, you can try
BipedalWalkerHardcore-v2. It is very similar to BipedalWalker-v2, with
the exception that it has ladders, stumps, and pitfalls. Very few algorithms
are able to finish and solve this environment. It's also funny to see how the
agent fails to pass the obstacles!

The superiority of TD3 compared to DDPG is immediately clear, both in terms of the end
performance, the rate of improvement, and the stability of the algorithm.

For all the color references mentioned in the chapter, please refer to the
color images bundle at http:/ /www. packtpub. com/sites/ default/ files/
downloads/ 9781789131116_ ColorImages. pdf.

http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf

DDPG and TD3 Applications Chapter 8

[218]

Summary
In this chapter, we approached two different ways in which to solve an RL problem. The
first is through the estimation of state-action values that are used to choose the best next
action, so-called Q-learning algorithms. The second involves the maximization of the
expected reward policy through its gradient. In fact, these methods are called policy
gradient methods. In this chapter, we showed the advantages and disadvantages of such
approaches, and demonstrated that many of these are complementary. For example, Q-
learning algorithms are sample efficient but cannot deal with continuous action. Instead,
policy gradient algorithms require more data, but are able to control agents with
continuous actions. We then introduced DPG methods that combine Q-learning and policy
gradient techniques. In particular, these methods overcome the global maximization of the
Q-learning algorithms by predicting a deterministic policy. We also saw how the DPG
theorem defines the deterministic policy update through the gradient of the Q-function.

We learned and implemented two DPG algorithms: DDPG and TD3. Both are off-policy,
actor-critic algorithms that can be used in environments with continuous action spaces. TD3
is an upgrade of DDPG that encapsulates a few tricks for the reduction of variance, and to
limit the overestimation bias that is common in Q-learning algorithms.

This chapter concludes the overview of the model-free reinforcement learning algorithms.
We took a look at all the best, and most influential algorithms known so far, from SARSA to
DQN, and from REINFORCE to PPO, and combined them in algorithms such as DDPG and
TD3. These algorithms alone are capable of amazing things, with the right fine-tuning and a
large amount of data (see OpenAI Five and AlphaStar). However, this isn't all there is to
know about RL. In the next chapter, we move away from model-free algorithms, showing a
model-based algorithm whose intent is to reduce the amount of data that is required for
learning a task, by learning a model of the environment. In subsequent chapters, we'll also
show more advanced techniques, such as imitation learning, new useful RL algorithms
such as ESBAS, and non-RL algorithms such as evolutional strategies.

DDPG and TD3 Applications Chapter 8

[219]

Questions
What is the primary limitation of Q-learning algorithms?1.
Why are stochastic gradient algorithms sample inefficient?2.
How does DPG overcome the maximization problem?3.
How does DPG guarantee enough exploration?4.
What does DDPG stand for? And what is its main contribution?5.
What problems does TD3 propose to minimize?6.
What new mechanisms does TD3 employ?7.

Further reading
You can use the following links to learn more:

If you are interested in the paper that introduced the Deterministic Policy
Gradient (DPG) algorithm, read: http:/ /proceedings. mlr.press/ v32/
silver14. pdf.
If you are interested in the paper that introduced the Deep Deterministic Policy
Gradient (DDPG) algorithm, read: https:/ /arxiv. org/ pdf/ 1509. 02971. pdf.
The paper that presented Twin Delayed Deep Deterministic Policy Gradient
(TD3) can be found here: https:/ /arxiv. org/ pdf/ 1802. 09477. pdf

For a brief overview of all the main policy gradient algorithms, checkout this
article by Lilian Weng: https:/ /lilianweng. github. io/lil- log/ 2018/ 04/08/
policy-gradient- algorithms. html.

http://proceedings.mlr.press/v32/silver14.pdf
http://proceedings.mlr.press/v32/silver14.pdf
http://proceedings.mlr.press/v32/silver14.pdf
http://proceedings.mlr.press/v32/silver14.pdf
http://proceedings.mlr.press/v32/silver14.pdf
http://proceedings.mlr.press/v32/silver14.pdf
http://proceedings.mlr.press/v32/silver14.pdf
http://proceedings.mlr.press/v32/silver14.pdf
http://proceedings.mlr.press/v32/silver14.pdf
http://proceedings.mlr.press/v32/silver14.pdf
http://proceedings.mlr.press/v32/silver14.pdf
http://proceedings.mlr.press/v32/silver14.pdf
http://proceedings.mlr.press/v32/silver14.pdf
http://proceedings.mlr.press/v32/silver14.pdf
https://arxiv.org/pdf/1509.02971.pdf
https://arxiv.org/pdf/1509.02971.pdf
https://arxiv.org/pdf/1509.02971.pdf
https://arxiv.org/pdf/1509.02971.pdf
https://arxiv.org/pdf/1509.02971.pdf
https://arxiv.org/pdf/1509.02971.pdf
https://arxiv.org/pdf/1509.02971.pdf
https://arxiv.org/pdf/1509.02971.pdf
https://arxiv.org/pdf/1509.02971.pdf
https://arxiv.org/pdf/1509.02971.pdf
https://arxiv.org/pdf/1509.02971.pdf
https://arxiv.org/pdf/1509.02971.pdf
https://arxiv.org/pdf/1509.02971.pdf
https://arxiv.org/pdf/1509.02971.pdf
https://arxiv.org/pdf/1509.02971.pdf
https://arxiv.org/pdf/1802.09477.pdf
https://arxiv.org/pdf/1802.09477.pdf
https://arxiv.org/pdf/1802.09477.pdf
https://arxiv.org/pdf/1802.09477.pdf
https://arxiv.org/pdf/1802.09477.pdf
https://arxiv.org/pdf/1802.09477.pdf
https://arxiv.org/pdf/1802.09477.pdf
https://arxiv.org/pdf/1802.09477.pdf
https://arxiv.org/pdf/1802.09477.pdf
https://arxiv.org/pdf/1802.09477.pdf
https://arxiv.org/pdf/1802.09477.pdf
https://arxiv.org/pdf/1802.09477.pdf
https://arxiv.org/pdf/1802.09477.pdf
https://arxiv.org/pdf/1802.09477.pdf
https://arxiv.org/pdf/1802.09477.pdf
https://lilianweng.github.io/lil-log/2018/04/08/policy-gradient-algorithms.html
https://lilianweng.github.io/lil-log/2018/04/08/policy-gradient-algorithms.html
https://lilianweng.github.io/lil-log/2018/04/08/policy-gradient-algorithms.html
https://lilianweng.github.io/lil-log/2018/04/08/policy-gradient-algorithms.html
https://lilianweng.github.io/lil-log/2018/04/08/policy-gradient-algorithms.html
https://lilianweng.github.io/lil-log/2018/04/08/policy-gradient-algorithms.html
https://lilianweng.github.io/lil-log/2018/04/08/policy-gradient-algorithms.html
https://lilianweng.github.io/lil-log/2018/04/08/policy-gradient-algorithms.html
https://lilianweng.github.io/lil-log/2018/04/08/policy-gradient-algorithms.html
https://lilianweng.github.io/lil-log/2018/04/08/policy-gradient-algorithms.html
https://lilianweng.github.io/lil-log/2018/04/08/policy-gradient-algorithms.html
https://lilianweng.github.io/lil-log/2018/04/08/policy-gradient-algorithms.html
https://lilianweng.github.io/lil-log/2018/04/08/policy-gradient-algorithms.html
https://lilianweng.github.io/lil-log/2018/04/08/policy-gradient-algorithms.html
https://lilianweng.github.io/lil-log/2018/04/08/policy-gradient-algorithms.html
https://lilianweng.github.io/lil-log/2018/04/08/policy-gradient-algorithms.html
https://lilianweng.github.io/lil-log/2018/04/08/policy-gradient-algorithms.html
https://lilianweng.github.io/lil-log/2018/04/08/policy-gradient-algorithms.html
https://lilianweng.github.io/lil-log/2018/04/08/policy-gradient-algorithms.html
https://lilianweng.github.io/lil-log/2018/04/08/policy-gradient-algorithms.html
https://lilianweng.github.io/lil-log/2018/04/08/policy-gradient-algorithms.html
https://lilianweng.github.io/lil-log/2018/04/08/policy-gradient-algorithms.html
https://lilianweng.github.io/lil-log/2018/04/08/policy-gradient-algorithms.html
https://lilianweng.github.io/lil-log/2018/04/08/policy-gradient-algorithms.html
https://lilianweng.github.io/lil-log/2018/04/08/policy-gradient-algorithms.html
https://lilianweng.github.io/lil-log/2018/04/08/policy-gradient-algorithms.html

3
Section 3: Beyond Model-Free
Algorithms and Improvements

In this section, you will implement model-based algorithms, imitation learning,
evolutionary strategies, and learn about some ideas that could further improve RL
algorithms.

This section includes the following chapters:

Chapter 9, Model-Based RL
Chapter 10, Imitation Learning with the DAgger Algorithm
Chapter 11, Understanding Black-box Optimization Algorithms
Chapter 12, Developing the ESBAS Algorithm
Chapter 13, Practical Implementation to Resolve RL Challenges

9
Model-Based RL

Reinforcement learning algorithms are divided into two classes—model-free methods and
model-based methods. These two classes differ by the assumption made about the model of
the environment. Model-free algorithms learn a policy from mere interactions with the
environment without knowing anything about it, whereas model-based algorithms
already have a deep understanding of the environment and use this knowledge to take the
next actions according to the dynamics of the model.

In this chapter, we'll give you a comprehensive overview of model-based approaches,
highlighting their advantages and disadvantages vis-à-vis model-free approaches, and the
differences that arise when the model is known or has to be learned. This latter division is
important because it influences how problems are approached and the tools used to solve
them. After this introduction, we'll talk about more advanced cases where model-based
algorithms have to deal with high-dimensional observation spaces such as images.

Furthermore, we'll look at a class of algorithms that combine both model-based and model-
free methods to learn both a model and a policy in high dimensional spaces. We'll learn
their inner workings and give the reasons for using such methods. Then, to deepen our
understanding of model-based algorithms, and especially of algorithms that combine both
model-based and model-free approaches, we'll develop a state-of-the-art algorithm called
model-ensemble trust region policy optimization (ME-TRPO) and apply it to a
continuous inverted pendulum.

The following topics will be covered in this chapter:

Model-based methods
Combining model-based with model-free learning
ME-TRPO applied to an inverted pendulum

Model-Based RL Chapter 9

[222]

Model-based methods
Model-free algorithms are a formidable kind of algorithm that have the ability to learn very
complex policies and accomplish objectives in complicated and composite environments.
As demonstrated in the latest works by OpenAI (https:/ / openai. com/ five/) and
DeepMind (https:/ /deepmind. com/ blog/ article/ alphastar- mastering- real- time-
strategy-game-starcraft- ii), these algorithms can actually show long-term planning,
teamwork, and adaptation to unexpected situations in challenge games such as StarCraft
and Dota 2.

Trained agents have been able to beat top professional players. However, the biggest
downside is in the huge number of games that need to be played in order to train agents to
master these games. In fact, to achieve these results, the algorithms have been scaled
massively to let the agents play hundreds of years' worth of games against themselves. But,
what's the problem with this approach?

Well, until you are training an agent for a simulator, you can gather as much experience as
you want. The problem arises when you are running the agents in an environment as slow
and complex as the world you live in. In this case, you cannot wait hundreds of years
before seeing some interesting capabilities. So, can we develop an algorithm that uses fewer
interactions with the real environment? Yes. And, as you probably remember, we already
tackled this question in model-free algorithms.

The solution was to use off-policy algorithms. However, the gains were relatively marginal
and not substantial enough for many real-world problems.

As you might expect, the answer (or at least one possible answer) is in model-based
reinforcement learning algorithms. You have already developed a model-based algorithm.
Do you remember which one? In Chapter 3, Solving Problems with Dynamic Programming,
we used a model of the environment in conjunction with dynamic programming to train an
agent to navigate a map with pitfalls. And because DP uses a model of the environment, it
is considered a model-based algorithm.

Unfortunately, DP isn't usable in moderate or complex problems. So, we need to explore
other types of model-based algorithms that can scale up and be useful in more challenging
environments.

https://openai.com/five/
https://openai.com/five/
https://openai.com/five/
https://openai.com/five/
https://openai.com/five/
https://openai.com/five/
https://openai.com/five/
https://openai.com/five/
https://openai.com/five/
https://openai.com/five/
https://deepmind.com/blog/article/alphastar-mastering-real-time-strategy-game-starcraft-ii
https://deepmind.com/blog/article/alphastar-mastering-real-time-strategy-game-starcraft-ii
https://deepmind.com/blog/article/alphastar-mastering-real-time-strategy-game-starcraft-ii
https://deepmind.com/blog/article/alphastar-mastering-real-time-strategy-game-starcraft-ii
https://deepmind.com/blog/article/alphastar-mastering-real-time-strategy-game-starcraft-ii
https://deepmind.com/blog/article/alphastar-mastering-real-time-strategy-game-starcraft-ii
https://deepmind.com/blog/article/alphastar-mastering-real-time-strategy-game-starcraft-ii
https://deepmind.com/blog/article/alphastar-mastering-real-time-strategy-game-starcraft-ii
https://deepmind.com/blog/article/alphastar-mastering-real-time-strategy-game-starcraft-ii
https://deepmind.com/blog/article/alphastar-mastering-real-time-strategy-game-starcraft-ii
https://deepmind.com/blog/article/alphastar-mastering-real-time-strategy-game-starcraft-ii
https://deepmind.com/blog/article/alphastar-mastering-real-time-strategy-game-starcraft-ii
https://deepmind.com/blog/article/alphastar-mastering-real-time-strategy-game-starcraft-ii
https://deepmind.com/blog/article/alphastar-mastering-real-time-strategy-game-starcraft-ii
https://deepmind.com/blog/article/alphastar-mastering-real-time-strategy-game-starcraft-ii
https://deepmind.com/blog/article/alphastar-mastering-real-time-strategy-game-starcraft-ii
https://deepmind.com/blog/article/alphastar-mastering-real-time-strategy-game-starcraft-ii
https://deepmind.com/blog/article/alphastar-mastering-real-time-strategy-game-starcraft-ii
https://deepmind.com/blog/article/alphastar-mastering-real-time-strategy-game-starcraft-ii
https://deepmind.com/blog/article/alphastar-mastering-real-time-strategy-game-starcraft-ii
https://deepmind.com/blog/article/alphastar-mastering-real-time-strategy-game-starcraft-ii
https://deepmind.com/blog/article/alphastar-mastering-real-time-strategy-game-starcraft-ii
https://deepmind.com/blog/article/alphastar-mastering-real-time-strategy-game-starcraft-ii
https://deepmind.com/blog/article/alphastar-mastering-real-time-strategy-game-starcraft-ii
https://deepmind.com/blog/article/alphastar-mastering-real-time-strategy-game-starcraft-ii
https://deepmind.com/blog/article/alphastar-mastering-real-time-strategy-game-starcraft-ii

Model-Based RL Chapter 9

[223]

A broad perspective on model-based learning
Let's first remember what a model is. A model consists of the transition dynamics and
rewards of an environment. Transition dynamics are a mapping from a state, s, and an
action, a, to the next state, s'.

Having this information, the environment is fully represented by the model that can be
used in its place. And if an agent has access to it, then the agent has the ability to predict its
own future.

In the following sections, we'll see that a model can be either known or unknown. In the
former case, the model is used as it is to exploit the dynamics of the environment; that is,
the model provides a representation that is used in place of the environment. In the latter
case, where the model of the environment is unknown, it can be learned by direct
interaction with the environment. But since, in most cases, only an approximation of the
environment is learned, additional factors have to be taken into account when using it.

Now that we have explained what a model is, we can see how can we use one and how it
can help us to reduce the number of interactions with the environment. The way in which a
model is used depends on two very important factors—the model itself and the way in
which actions are chosen.

Indeed, as we just noted, the model can be known or unknown, and actions can be planned
or chosen by a learned policy. The algorithms vary a lot depending on each case, so let's
first elaborate on the approaches used when the model is known (meaning that we already
have the transition dynamics and rewards of the environment).

A known model
When a model is known, it can be used to simulate complete trajectories and compute the
return for each of them. Then, the actions that yield the highest reward are chosen. This
process is called planning, and the model of the environment is indispensable as it
provides the information required to produce the next state (given a state and an action)
and reward.

Planning algorithms are used everywhere, but the ones we are interested in differ from the
type of action space on which they operate. Some of them work with discrete actions, others
with continuous actions.

Model-Based RL Chapter 9

[224]

Planning algorithms for discrete actions are usually search algorithms that build a decision
tree, such as the one illustrated in the following diagram:

The current state is the root, the possible actions are represented by the arrows, and the
other nodes are the states that are reached following a sequence of actions.

You can see that by trying every possible sequence of actions, you'll eventually find the
optimal one. Unfortunately, in most problems, this procedure is intractable as the number
of possible actions increases exponentially. Planning algorithms used for complex problems
adopt strategies that allow planning by relying on a limited number of trajectories.

An algorithm of these, adopted also in AlphaGo, is called Monte Carlo Tree Search (MCTS).
MCTS iteratively builds a decision tree by generating a finite series of simulated games,
while sufficiently exploring parts of the tree that haven't been visited yet. Once a simulated
game or trajectory reaches a leaf (that is, it ends the game), it backpropagates the results on
the states visited and updates the information of win/loss or reward held by the nodes.
Then, the action that yields to the next state with the higher win/loss ratio or reward is
taken.

On the opposite side, planning algorithms that operate with continuous actions involve
trajectory optimization techniques. These are much more difficult to solve than their
counterpart with discrete actions, as they deal with an infinite-dimensional optimization
problem.

Model-Based RL Chapter 9

[225]

Furthermore, many of them require the gradient of the model. An example is Model
Predictive Control (MPC), which optimizes for a finite time horizon, but instead of
executing the trajectory found, it only executes the first action. Doing so, MPC has a faster
response compared to other methods with infinite time horizon planning.

Unknown model
What should you do when the model of the environment is unknown? Learn it! Almost
everything we have seen so far involves learning. So, is it the best approach? Well, if you
actually want to use a model-based approach, the answer is yes, and soon we'll see how to
do it. However, this isn't always the best way to proceed.

In reinforcement learning, the end goal is to learn an optimal policy for a given task.
Previously in this chapter, we said that the model-based approach is primarily used to
reduce the number of interactions with the environment, but is this always true? Imagine
your goal is to prepare an omelet. Knowing the exact breaking point of the egg isn't useful
at all; you just need to know approximately how to break it. Thus, in this situation, a
model-free algorithm that doesn't deal with the exact structure of the egg is more
appropriate.

However, this shouldn't lead you to think that model-based algorithms are not worth it. For
example, model-based approaches outweigh model-free approaches in situations where the
model is much easier to learn than the policy.

The only way to learn a model is (unfortunately) through interactions with the
environment. This is an obligatory step, as it allows us to acquire and create a dataset about
the environment. Usually, the learning process takes place in a supervised fashion, where a
function approximator (such as a deep neural network) is trained to minimize a loss
function, such as the mean squared error loss between the transitions obtained from the
environment and the prediction. An example of this is shown in the following diagram,
where a deep neural network is trained to model the environment by predicting the next
state, s', and the reward, r, from a state, s and an action, a:

Model-Based RL Chapter 9

[226]

There are other options besides neural networks, such as Gaussian processes, and Gaussian
mixture models. In particular, Gaussian processes have the particularity of taking into
account the uncertainty of the model and are regarded as being very data efficient. In fact,
until the advent of deep neural networks, they were the most popular choice.

However, the main drawback of Gaussian processes is that they are slow with large
datasets. Indeed, to learn more complex environments (thereby requiring bigger datasets),
deep neural networks are preferred. Furthermore, deep neural networks can learn models
of environments that have images as observations.

There are two main ways to learn a model of the environment; one in which the model is
learned once and then kept fixed, and one in which the model is learned at the beginning
but retrained once the plan or policy has changed. The two options are illustrated in the
following diagram:

In the top half of the diagram, a sequential model-based algorithm is shown, where the
agent interacts with the environment only before learning the model. In the bottom half, a
cyclic approach to model-based learning is shown, where the model is refined with
additional data from a different policy.

To understand how an algorithm can benefit from the second option, we have to define a
key concept. In order to collect the dataset for learning the dynamics of the environment,
you need a policy that lets you navigate it. But in the beginning, the policy may be
deterministic or completely random. Thus, with a limited number of interactions, the space
explored will be very restricted.

Model-Based RL Chapter 9

[227]

This precludes the model from learning those parts of the environment that are needed to
plan or learn optimal trajectories. But if the model is retrained with new interactions
coming from a newer and better policy, it will iteratively adapt to the new policy and
capture all the parts of the environment (from a policy perspective) that haven't been
visited yet. This is called data aggregation.

In practice, in most cases, the model is unknown and is learned using data aggregation
methods to adapt to the new policy produced. However, learning a model can be
challenging, and the potential problems are the following:

Overfitting the model: The learned model overfits on a local region of the
environment, missing its global structure.
Inaccurate model: Planning or learning a policy on top of an imperfect model
may induce a cascade of errors with potentially catastrophic conclusions.

Good model-based algorithms that learn a model have to deal with those problems. A
potential solution may be to use algorithms that estimate the uncertainty, such as Bayesian
neural networks, or by using an ensemble of models.

Advantages and disadvantages
When developing a reinforcement learning algorithm (all kinds of RL algorithms), there are
three basic aspects to consider:

Asymptotical performance: This is the maximum performance that an algorithm
can achieve if it has infinite resources available in terms of both time and
hardware.
Wall clock time: This is the learning time required for an algorithm to reach a
given performance with a given computational power.
Sample efficiency: This is the number of interactions with the environment to
reach a given performance.

We already explored sample efficiency in both model-free and model-based RL, and we
saw how the latter is much more sample efficient. But what about wall clock time and
performance? Well, model-based algorithms usually have lower asymptotic performance
and are slower to train than model-free algorithms. Generally, higher data efficiency occurs
to the detriment of performance and speed.

Model-Based RL Chapter 9

[228]

One of the reasons behind the lower performance of model-based learning can be attributed
to model inaccuracies (if it's learned) that introduce additional errors into the policies. The
higher learning wall clock time is due to the slowness of the planning algorithm or to the
higher number of interactions needed to learn the policy in an inaccurate learned
environment. Furthermore, planning model-based algorithms experience slower inference
time due to the high computational cost of planning, which still has to be done on each
step.

In conclusion, you have to take into account the extra time required to train a model-based
algorithm and recognize the lower asymptotical performance of these approaches.
However, model-based learning is extremely useful when the model is easier to learn than
the policy itself and when interactions with the environment are costly or slow.

From the two sides, we have model-free learning and model-based learning, both with
compelling characteristics but distinct disadvantages. Can we take the best from both
worlds?

Combining model-based with model-free
learning
We just saw how planning can be computationally expensive both during training and
runtime, and how, in more complex environments, planning algorithms aren't able to
achieve good performances. The other strategy that we briefly hinted at is to learn a policy.
A policy is certainly much faster in inference as it doesn't have to plan at each step.

A simple, yet effective, way to learn a policy is to combine model-based with model-
free learning. With the latest innovations in model-free algorithms, this combination has
gained in popularity and is the most common approach to date. The algorithm we'll
develop in the next section, ME-TRPO, is one such method. Let's dive further into these
algorithms.

A useful combination
As you know, model-free learning has good asymptotic performance but poor sample
complexity. On the other side, model-based learning is efficient from a data standpoint, but
struggles when it comes to more complex tasks. By combining model-based and model-free
approaches, it is possible to reach a smooth spot where sample complexity decreases
consistently, while achieving the high performance of model-free algorithms.

Model-Based RL Chapter 9

[229]

There are many ways to integrate both worlds, and the algorithms that propose to do it are
very different from one another. For example, when the model is given (as they are in the
games of Go and Chess), search tree and value-based algorithms can help each other to
produce a better action value estimate.

Another example is to combine the learning of the environment and the policy directly in a
deep neural network architecture so that the learned dynamics can contribute to the
planning of a policy. Another strategy used by a fair number of algorithms is to use a
learned model of the environment to generate additional samples to optimize the policy.

To put it in another way, the policy is trained by playing simulated games inside the
learned model. This can be done in multiple ways, but the main recipe is shown in the
pseudocode that follows:

while not done:

 > collect transitions from the real environment using a
policy
 > add the transitions to the buffer

 > learn a model that minimizes in a supervised way
using data in

 > (optionally learn)

 repeat K times:

 > sample an initial state

 > simulate transitions from the model using
a policy
 > update the policy using a model-free RL

This blueprint involves two cycles. The outermost cycle collects data from the real
environment to train the model, while, in the innermost cycle, the model generates
simulated samples that are used to optimize the policy using model-free algorithms.
Usually, the dynamics model is trained to minimize the MSE loss in a supervised
fashion. The more precise the predictions made by the model, the more accurate the policy
can be.

Model-Based RL Chapter 9

[230]

In the innermost cycle, either full or fixed-length trajectories can be simulated. In practice,
the latter option can be adopted to mitigate the imperfections of the model. Furthermore,
the trajectories can start from a random state sampled from the buffer that contains real
transitions or from an initial state. The former option is preferred in situations where the
model is inaccurate, because that prevents the trajectory from diverging too much from the
real one. To illustrate this situation, take the following diagram. The trajectories that have
been collected in the real environment are colored black, while those simulated are colored
blue:

You can see that the trajectories that start from an initial state are longer, and thus will
diverge more rapidly as the errors of the inaccurate model propagate in all the subsequent
predictions.

Note that you could do only a single iteration of the main cycle and gather
all the data required to learn a decent approximated model of the
environment. However, for the reasons outlined previously, it's better to
use iterative data aggregation methods to cyclically retrain the model with
transitions that come from the newer policy.

Model-Based RL Chapter 9

[231]

Building a model from images
The methods seen so far that combine model-based and model-free learning have been
designed especially to work with low-dimensional state spaces. So, how do we deal with
high-dimensional observation spaces as images?

One choice is to learn in latent space. Latent space is a low-dimensional representation, also
called embedding, g(s), of a high-dimensional input, s, such as an image. It can be produced
by neural networks such as autoencoders. An example of an autoencoder is shown in the
following diagram:

It comprises an encoder that maps the image to a small latent space, g(s), and the decoder
that maps the latent space to the reconstructed image. As a result of the autoencoder, the
latent space should represent the main features of an image in a constrained space so that
two similar images are also similar in latent space.

In RL, the autoencoder may be trained to reconstruct the input, S, or trained to predict the
next frame observation, S', (along with the reward, if needed). Then, we can use the latent
space to learn both the dynamic model and the policy. The main benefit arising from this
approach is the big gain in speed due to the smaller representation of the image. However,
the policy learned in the latent space may suffer from severe deficits when the autoencoder
isn't able to recover the right representation.

Model-based learning on high-dimensional spaces is still a very active area of research.

If you are interested in model-based algorithms that learn from image
observation, you may find the paper entitled Model-Based Reinforcement
Learning for Atari, by Kaiser, quite interesting (https:/ /arxiv. org/pdf/
1903. 00374. pdf).

https://arxiv.org/pdf/1903.00374.pdf
https://arxiv.org/pdf/1903.00374.pdf
https://arxiv.org/pdf/1903.00374.pdf
https://arxiv.org/pdf/1903.00374.pdf
https://arxiv.org/pdf/1903.00374.pdf
https://arxiv.org/pdf/1903.00374.pdf
https://arxiv.org/pdf/1903.00374.pdf
https://arxiv.org/pdf/1903.00374.pdf
https://arxiv.org/pdf/1903.00374.pdf
https://arxiv.org/pdf/1903.00374.pdf
https://arxiv.org/pdf/1903.00374.pdf
https://arxiv.org/pdf/1903.00374.pdf
https://arxiv.org/pdf/1903.00374.pdf
https://arxiv.org/pdf/1903.00374.pdf

Model-Based RL Chapter 9

[232]

So far, we have covered model-based learning and its combination with model-free
learning in a more figurative and theoretical way. Although it's indispensable in terms of
understanding these paradigms, we want to put them into practice. So, without further
ado, let's focus on the details and implementation of our first model-based algorithm.

ME-TRPO applied to an inverted pendulum
Many variants exist of the vanilla model-based and model-free algorithms introduced in
the pseudocode in the A useful combination section. Pretty much all of them propose
different ways to deal with the imperfections of the model of the environment.

This is a key problem to address in order to reach the same performance as model-free
methods. Models learned from complex environments will always have some inaccuracies.
So, the main challenge is to estimate or control the uncertainty of the model to stabilize and
accelerate the learning process.

ME-TRPO proposes the use of an ensemble of models to maintain the model uncertainty
and regularize the learning process. The models are deep neural networks with different
weight initialization and training data. Together, they provide a more robust general model
of the environment that is less prone to exploit regions where insufficient data is available.

Then, the policy is learned from trajectories simulated with the ensemble. In particular, the
algorithm chosen to learn the policy is trust region policy optimization (TRPO), which
was explained in Chapter 7, TRPO and PPO Implementation.

Understanding ME-TRPO
In the first part of ME-TRPO, the dynamics of the environment (that is, the ensemble of
models) are learned. The algorithm starts by interacting with the environment with a
random policy, , to collect a dataset of transitions, . This dataset is then used to
train all the dynamic models, , in a supervised fashion. The models, , are initialized
with different random weights and are trained with different mini-batches. To avoid
overfitting issues, a validation set is created from the dataset. Also, a mechanism of early
stopping (a regularization technique widely used in machine learning) interrupts the
training process whenever the loss on the validation set stops improving.

Model-Based RL Chapter 9

[233]

In the second part of the algorithm, the policy is learned with TRPO. Specifically, the policy
is trained on the data gathered from the learned models, which we'll also call the simulated
environment, instead of the real environment. To avoid the policy exploiting inaccurate
regions of a single learned model, the policy, , is trained using the predicted transitions
from the whole ensemble of models, . In particular, the policy is trained on the simulated
dataset composed of transitions acquired from the models, , randomly chosen among the
ensemble. During training, the policy is monitored constantly, and the process stops as
soon as the performance stops improving.

Finally, the cycle constituted by the two parts is repeated until convergence. However, at
each new iteration, the data from the real environment is collected by running the newly
learned policy, , and the data collected is aggregated with the dataset of the previous
iterations. The ME-TRPO algorithm is briefly summarized in the following pseudocode:

Initialize randomly policy and models
Initialize empty buffer

while not done:

 > populate buffer with transitions from the real
environment using policy (or random)

 > learn models that minimize in a
supervised way using data in

 until convergence:

 > sample an initial state

 > simulate transitions using models and the
policy
 > take a TRPO update to optimize policy

An important note to make here is that, unlike most model-based algorithms, the reward is
not embedded in the model of the environment. Therefore, ME-TRPO assumes that the
reward function is known.

Implementing ME-TRPO
The code of ME-TRPO is quite long and, in this section, we won't give you the full code.
Also, many parts are not interesting, and all the code concerning TRPO has already been
discussed in Chapter 7, TRPO and PPO Implementation. However, if you are interested in
the complete implementation, or if you want to play with the algorithm, the full code is
available in the GitHub repository of this chapter.

Model-Based RL Chapter 9

[234]

Here, we'll provide an explanation and the implementation of the following:

The inner cycle, where the games are simulated and the policy is optimized
The function that trains the models

The remaining code is very similar to that of TRPO.

The following steps will guide us through the process of building and implementing the
core of ME-TRPO:

Changing the policy: The only change in the interaction procedure with the real1.
environment is the policy. In particular, the policy will act randomly on the first
episode but, on the others, it will sample the actions from a Gaussian distribution
with a random standard deviation fixed at the start of the algorithm. This change
is done by replacing the line, act, val = sess.run([a_sampl, s_values],
feed_dict={obs_ph:[env.n_obs]}), in the TRPO implementation with the
following lines of code:

...
if ep == 0:
 act = env.action_space.sample()
else:
 act = sess.run(a_sampl, feed_dict={obs_ph:[env.n_obs],
log_std:init_log_std})
...

Fitting the deep neural networks, : The neural networks learn the model of2.
the environment with the dataset acquired in the preceding step. The dataset is
divided into a training and a validation set, wherein the validation set is used by
the early stopping technique to determine whether it is worth continuing with
the training:

...
model_buffer.generate_random_dataset()
train_obs, train_act, _, train_nxt_obs, _ =
model_buffer.get_training_batch()
valid_obs, valid_act, _, valid_nxt_obs, _ =
model_buffer.get_valid_batch()
print('Log Std policy:', sess.run(log_std))
for i in range(num_ensemble_models):
train_model(train_obs, train_act, train_nxt_obs, valid_obs,
valid_act, valid_nxt_obs, step_count, i)

Model-Based RL Chapter 9

[235]

model_buffer is an instance of the FullBuffer class that contains the samples
generated by the environment, and generate_random_dataset creates two
partitions for training and validation, which are then returned by calling
get_training_batch and get_valid_batch.

In the next lines, each model is trained with the train_model function by
passing the datasets, the current number of steps, and the index of the model that
has to be trained. num_ensemble_models is the total number of models that
populate the ensemble. In the ME-TRPO paper, it is shown that 5 to 10 models are
sufficient. The argument, i, establishes which model of the ensemble has to be
optimized.

Generating fictitious trajectories in the simulated environments and fitting the3.
policy:

 best_sim_test = np.zeros(num_ensemble_models)
 for it in range(80):
 obs_batch, act_batch, adv_batch, rtg_batch =
simulate_environment(sim_env, action_op_noise, simulated_steps)

 policy_update(obs_batch, act_batch, adv_batch, rtg_batch)

This is repeated 80 times or at least until the policy continues improving.
simulate_environment collects a dataset (constituted by observations, actions,
advantages, values, and return values) by rolling the policy in the simulated
environment (represented by the learned models). In our case, the policy is
represented by the function, action_op_noise, which, when given a state,
returns an action following the learned policy. Instead, the
environment, sim_env, is a model of the environment, , chosen randomly at
each step among those in the ensemble. The last argument passed to the
simulated_environment function is simulated_steps, which establishes the
number of steps to take in the fictitious environments.

Ultimately, the policy_update function does a TRPO step to update the policy
with the data collected in the fictitious environments.

Model-Based RL Chapter 9

[236]

Implementing the early step mechanism and evaluating the policy: The early4.
stopping mechanism prevents the policy from overfitting on the models of the
environment. It works by monitoring the performance of the policy on each
separate model. If the percentage of models on which the policy improved
exceeds a certain threshold, then the cycle is terminated. This should be a good
indication of whether the policy has started to overfit. Note that, unlike the
training, during testing, the policy is tested on one model at a time. During
training, each trajectory is produced by all the learned models of the
environment:

 if (it+1) % 5 == 0:
 sim_rewards = []

 for i in range(num_ensemble_models):
 sim_m_env = NetworkEnv(gym.make(env_name), model_op,
pendulum_reward, pendulum_done, i+1)
 mn_sim_rew, _ = test_agent(sim_m_env, action_op,
num_games=5)
 sim_rewards.append(mn_sim_rew)

 sim_rewards = np.array(sim_rewards)
 if (np.sum(best_sim_test >= sim_rewards) >
int(num_ensemble_models*0.7)) \
 or (len(sim_rewards[sim_rewards >= 990]) >
int(num_ensemble_models*0.7)):
 break
 else:
 best_sim_test = sim_rewards

The evaluation of the policy is done every five training iterations. For each model
of the ensemble, a new object of the NetworkEnv class is instantiated. It provides
the same functionalities of a real environment but, under the hood, it returns
transitions from a learned model of the environment. NetworkEnv does this by
inheriting Gym.wrapper and overriding the reset and step functions. The first
parameter of the constructor is a real environment that is used merely to get a real
initial state, while model_os is a function that, when given a state and action,
produces the next state. Lastly, pendulum_reward and pendulum_done are
functions that return the reward and the done flag. These two functions are built
around the particular functionalities of the environment.

Model-Based RL Chapter 9

[237]

Training the dynamic model: The train_model function optimizes a model to5.
predict the future state. It is very simple to understand. We used this function in
step 2, when we were training the ensemble of models. train_model is an inner
function and takes the arguments that we saw earlier. On each ME-TRPO
iteration of the outer loop, we retrain all the models, that is, we train the models
starting from their random initial weights; we don't resume from the preceding
optimization. Hence, every time train_model is called and before the training
takes place, we restore the initial random weights of the model. The following
code snippet restores the weights and computes the loss before and after this
operation:

 def train_model(tr_obs, tr_act, tr_nxt_obs, v_obs, v_act, v_nxt_obs,
step_count, model_idx):
 mb_valid_loss1 = run_model_loss(model_idx, v_obs, v_act, v_nxt_obs)

 model_assign(model_idx, initial_variables_models[model_idx])

 mb_valid_loss = run_model_loss(model_idx, v_obs, v_act, v_nxt_obs)

run_model_loss returns the loss of the current model, and model_assign
restores the parameters that are in initial_variables_models[model_idx].

We then train the model, as long as the loss on the validation set improved in the
last model_iter iterations. But because the best model may not be the last one,
we keep track of the best one and restore its parameters at the end of the training.
We also randomly shuffle the dataset and divide it into mini-batches. The code is
as follows:

 acc_m_losses = []
 last_m_losses = []
 md_params = sess.run(models_variables[model_idx])
 best_mb = {'iter':0, 'loss':mb_valid_loss, 'params':md_params}
 it = 0

 lb = len(tr_obs)
 shuffled_batch = np.arange(lb)
 np.random.shuffle(shuffled_batch)

 while best_mb['iter'] > it - model_iter:
 # update the model on each mini-batch
 last_m_losses = []
 for idx in range(0, lb, model_batch_size):
 minib = shuffled_batch[idx:min(idx+minibatch_size,lb)]
 if len(minib) != minibatch_size:
 _, ml = run_model_opt_loss(model_idx, tr_obs[minib],

Model-Based RL Chapter 9

[238]

tr_act[minib], tr_nxt_obs[minib])
 acc_m_losses.append(ml)
 last_m_losses.append(ml)

 # Check if the loss on the validation set has improved
 mb_valid_loss = run_model_loss(model_idx, v_obs, v_act,
v_nxt_obs)
 if mb_valid_loss < best_mb['loss']:
 best_mb['loss'] = mb_valid_loss
 best_mb['iter'] = it
 best_mb['params'] = sess.run(models_variables[model_idx])

 it += 1

 # Restore the model with the lower validation loss
 model_assign(model_idx, best_mb['params'])

 print('Model:{}, iter:{} -- Old Val loss:{:.6f} New Val loss:{:.6f}
-- New Train loss:{:.6f}'.format(model_idx, it, mb_valid_loss1,
best_mb['loss'], np.mean(last_m_losses)))

run_model_opt_loss is a function that executes the optimizer of the model with the
model_idx index.

This concludes the implementation of ME-TRPO. In the next section, we'll see how it
performs.

Experimenting with RoboSchool
Let's test ME-TRPO on RoboSchoolInvertedPendulum, a continuous inverted pendulum
environment similar to the well-known discrete control counterpart, CartPole. A screenshot
of RoboSchoolInvertedPendulum-v1 is shown here:

Model-Based RL Chapter 9

[239]

The goal is to keep the pole upright by moving the cart. A reward of +1 is obtained for
every step that the pole points upward.

Considering that ME-TRPO needs the reward function and, consequently, a done function,
we have to define both for this task. To this end, we defined pendulum_reward, which
returns 1 no matter what the observation and actions are:

def pendulum_reward(ob, ac):
 return 1

 pendulum_done returns True if the absolute value of the angle of the pole is higher than a
fixed threshold. We can retrieve the angle directly from the state. In fact, the third and
fourth elements of the state are the cosine and sine of the angle, respectively. We can then
arbitrarily choose one of the two to compute the angle. Hence, pendulum_done is as
follows:

def pendulum_done(ob):
 return np.abs(np.arcsin(np.squeeze(ob[3]))) > .2

Besides the usual hyperparameters of TRPO that remain almost unchanged compared to
the ones used in Chapter 7, TRPO and PPO Implementation, ME-TRPO asks for the
following:

The learning rate of the dynamic models' optimizer, mb_lr
The mini-batch size, model_batch_size, which is used to train the dynamic
models
The number of simulated steps to execute on each iteration, simulated_steps
(this is also the batch size used to train the policy)
The number of models that constitute the ensemble, num_ensemble_models
The number of iterations to wait before interrupting the model_iter training of
the model if the validation hasn't decreased

The values of these hyperparameters used in this environment are as follows:

Hyperparameters Values
Learning rate (mb_lr) 1e-5

Model batch size (model_batch_size) 50
Number of simulated steps (simulated_steps) 50000

Number of models (num_ensemble_models) 10
Early stopping iterations (model_iter) 15

Model-Based RL Chapter 9

[240]

Results on RoboSchoolInvertedPendulum
The performance graph is shown in the following diagram:

The reward is plotted as a function of the number of interactions with the real environment.
After 900 steps and about 15 games, the agent achieves the top performance of 1,000. The
policy updated itself 15 times and learned from 750,000 simulated steps. From a
computational point of view, the algorithm trained for about 2 hours on a mid-range
computer.

We noted that the results have very high variability and, if trained with different random
seeds, you can obtain very different performance curves. This is also true for model-free
algorithms, but here, the differences are more acute. One reason for this may be the
different data collected in the real environment.

Model-Based RL Chapter 9

[241]

Summary
In this chapter, we took a break from model-free algorithms and started discussing and
exploring algorithms that learn from a model of the environment. We looked at the key
reasons behind the change of paradigm that inspired us to develop this kind of
algorithm. We then distinguished two main cases that can be found when dealing with a
model, the first in which the model is already known, and the second in which the model
has to be learned.

Moreover, we learned how the model can either be used to plan the next actions or to learn
a policy. There's no fixed rule to choose one over the other, but generally, it is related to the
complexity of the action and observation space and the inference speed. We then
investigated the advantages and disadvantages of model-free algorithms and deepened our
understanding of how to learn a policy with model-free algorithms by combining them
with model-based learning. This revealed a new way to use models in very high-
dimensional observation spaces such as images.

Finally, to better grasp all the material related to model-based algorithms, we developed
ME-TRPO. This proposed dealing with the uncertainty of the model by using an ensemble
of models and trust region policy optimization to learn the policy. All the models are used
to predict the next states and thus create simulated trajectories on which the policy is
learned. As a consequence, the policy is trained entirely on the learned model of the
environment.

This chapter concludes the arguments about model-based learning and, in the next one,
we'll introduce new genera of learning. We'll talk about algorithms that learn by imitation.
Moreover, we'll develop and train an agent that, by following the behavior of an expert,
will be able to play FlappyBird.

Model-Based RL Chapter 9

[242]

Questions
Would you use a model-based or a model-free algorithm if you had only 101.
games in which to train your agent to play checkers?
What are the disadvantages of model-based algorithms?2.
If a model of the environment is unknown, how can it be learned?3.
Why are data aggregation methods used?4.
How does ME-TRPO stabilize training?5.
How does using an ensemble of models improve policy learning?6.

Further reading
To expand your knowledge of model-based algorithms that learn policies from
image observations, read the paper Model-Based Reinforcement Learning for
Atari: https:/ / arxiv. org/ pdf/ 1903. 00374. pdf.
To read the original paper relating to ME-TRPO, follow this link: https:/ /arxiv.
org/pdf/ 1802. 10592. pdf.

https://arxiv.org/pdf/1903.00374.pdf
https://arxiv.org/pdf/1903.00374.pdf
https://arxiv.org/pdf/1903.00374.pdf
https://arxiv.org/pdf/1903.00374.pdf
https://arxiv.org/pdf/1903.00374.pdf
https://arxiv.org/pdf/1903.00374.pdf
https://arxiv.org/pdf/1903.00374.pdf
https://arxiv.org/pdf/1903.00374.pdf
https://arxiv.org/pdf/1903.00374.pdf
https://arxiv.org/pdf/1903.00374.pdf
https://arxiv.org/pdf/1903.00374.pdf
https://arxiv.org/pdf/1903.00374.pdf
https://arxiv.org/pdf/1903.00374.pdf
https://arxiv.org/pdf/1903.00374.pdf
https://arxiv.org/pdf/1903.00374.pdf
https://arxiv.org/pdf/1802.10592.pdf
https://arxiv.org/pdf/1802.10592.pdf
https://arxiv.org/pdf/1802.10592.pdf
https://arxiv.org/pdf/1802.10592.pdf
https://arxiv.org/pdf/1802.10592.pdf
https://arxiv.org/pdf/1802.10592.pdf
https://arxiv.org/pdf/1802.10592.pdf
https://arxiv.org/pdf/1802.10592.pdf
https://arxiv.org/pdf/1802.10592.pdf
https://arxiv.org/pdf/1802.10592.pdf
https://arxiv.org/pdf/1802.10592.pdf
https://arxiv.org/pdf/1802.10592.pdf
https://arxiv.org/pdf/1802.10592.pdf
https://arxiv.org/pdf/1802.10592.pdf

10
Imitation Learning with the

DAgger Algorithm
The ability of an algorithm to learn only from rewards is a very important characteristic
that led us to develop reinforcement learning algorithms. This enables an agent to learn and
improve its policy from scratch without additional supervision. Despite this, there are
situations where other expert agents are already employed in a given environment.
Imitation learning (IL) algorithms leverage the expert by imitating their actions and
learning the policy from them.

This chapter focuses on imitation learning. Although different to reinforcement learning,
imitation learning offers great opportunities and capabilities, especially in environments
with very large state spaces and sparse rewards. Obviously, imitation learning is possible
only when a more expert agent to imitate is available.

The chapter will focus on the main concepts and features of imitation learning methods.
We'll implement an imitation learning algorithm called DAgger, and teach an agent to play
Flappy Bird. This will help you to master this new family of algorithms and appreciate their
basic principles.

In the last section of this chapter, we'll introduce inverse reinforcement learning (IRL). IRL
is a method that extracts and learns the behaviors of another agent in terms of values and
rewards; that is, IRL learns the reward function.

The following topics will be covered in this chapter:

The imitation approach
Playing with Flappy Bird
Understanding the dataset aggregation algorithm
IRL

Imitation Learning with the DAgger Algorithm Chapter 10

[244]

Technical requirements
After a brief theoretical introduction to grasp the core concepts behind the imitation
learning algorithms, we'll implement a real IL algorithm. However, we'll provide only the
main and most interesting parts. Thus, if you are interested in the full implementation, you
can find it in the GitHub repository of this book: https:/ /github. com/PacktPublishing/
Reinforcement-Learning- Algorithms- with- Python.

Installation of Flappy Bird
Later, we'll run our IL algorithm on a revisited version of a famous game called Flappy Bird
(https://en.wikipedia. org/ wiki/ Flappy_ Bird). In this section, we'll give you all the
commands needed to install it.

But before installing the environment of the game, we need to take care of a few additional
libraries:

In Ubuntu, the procedure is as follows:

$ sudo apt-get install git python3-dev python3-numpy libsdl-
image1.2-dev libsdl-mixer1.2-dev libsdl-ttf2.0-dev libsmpeg-dev
libsdl1.2-dev libportmidi-dev libswscale-dev libavformat-dev
libavcodec-dev libfreetype6-dev
$ sudo pip install pygame

If you are a Mac user, you can install the libraries with the following commands:

$ brew install sdl sdl_ttf sdl_image sdl_mixer portmidi
$ pip install -c https://conda.binstar.org/quasiben pygame

Then, for both Ubuntu and Mac users, the procedure is the following:

First, you have to clone PLE. The cloning is done with the following line of code:1.

git clone https://github.com/ntasfi/PyGame-Learning-Environment

PLE is a set of environments that also includes Flappy Bird. Thus, by installing
PLE, you'll obtain Flappy Bird.

Then, you have to enter the PyGame-Learning-Environment folder:2.

cd PyGame-Learning-Environment

https://github.com/PacktPublishing/Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Reinforcement-Learning-Algorithms-with-Python
https://en.wikipedia.org/wiki/Flappy_Bird
https://en.wikipedia.org/wiki/Flappy_Bird
https://en.wikipedia.org/wiki/Flappy_Bird
https://en.wikipedia.org/wiki/Flappy_Bird
https://en.wikipedia.org/wiki/Flappy_Bird
https://en.wikipedia.org/wiki/Flappy_Bird
https://en.wikipedia.org/wiki/Flappy_Bird
https://en.wikipedia.org/wiki/Flappy_Bird
https://en.wikipedia.org/wiki/Flappy_Bird
https://en.wikipedia.org/wiki/Flappy_Bird
https://en.wikipedia.org/wiki/Flappy_Bird
https://en.wikipedia.org/wiki/Flappy_Bird
https://en.wikipedia.org/wiki/Flappy_Bird
https://en.wikipedia.org/wiki/Flappy_Bird
https://en.wikipedia.org/wiki/Flappy_Bird

Imitation Learning with the DAgger Algorithm Chapter 10

[245]

And finally, run the installation with the following command:3.

sudo pip install -e .

Now, you should be able to use Flappy Bird.

The imitation approach
IL is the art of acquiring a new skill by emulating an expert. This property of learning from
imitation is not strictly necessary for learning sequential decision-making policies but
nowadays, it is essential in plenty of problems. Some tasks cannot be solved through mere
reinforcement learning, and bootstrapping a policy from the enormous spaces of complex
environments is a key factor. The following diagram represents a high-level view of the
core components involved in the imitation learning process:

If intelligent agents (the experts) already exist in an environment, they can be used to
provide a huge amount of information to a new agent (the learner) about the behaviors
needed to accomplish the task and navigate the environment. In this situation, the newer
agent can learn much faster without the need to learn from scratch. The expert agent can
also be used as a teacher to instruct and feed back to the new agent on its performing. Note
the difference here. The expert can be used both as a guide to follow and as a supervisor to
correct the mistakes of the student.

Imitation Learning with the DAgger Algorithm Chapter 10

[246]

If either the model of the guide, or the supervisor, is available, an imitation learning
algorithm can leverage them. You can now understand why imitation learning plays such
an important role and why we cannot leave it out of this book.

The driving assistant example
To grasp these key concepts better, we can use the example of a teenager learning to drive.
Let's assume that they have never been in a car, that this is the first time they are seeing
one, and that they don't have any knowledge of how it works. There are three approaches
to learning:

They are given the keys and have to learn all by themselves, with no supervision1.
at all.
Before being given the keys, they sit in the passenger seat for 100 hours and look2.
at the expert driving in different weather conditions and on different roads.
They observe the expert driving but, most importantly, they have sessions where3.
the expert provides feedback while driving. For example, the expert can give
real-time instructions on how to park the car, and give direct feedback on how to
stay in a lane.

As you may have guessed, the first case is a reinforcement learning approach where the
agent has only sparse rewards from not breaking the car, pedestrians not yelling at them,
and so on.

Regarding the second case, this is a passive IL approach with the competence that is
acquired from the pure reproduction of the expert's actions. Overall, it's very close to a
supervised learning approach.

The third and final case is an active IL approach that gives rise to a real imitation learning
approach. In this case, it is required that, during the training phase, the expert instructs the
learner on every move the learner makes.

Comparing IL and RL
Let's go more in-depth with the IL approach by highlighting the differences vis-à-vis RL.
This contrast is very important. In imitation learning, the learner is not aware of any
reward. This constraint can have very big implications.

Imitation Learning with the DAgger Algorithm Chapter 10

[247]

Going back to our example, the apprentice can only replicate the expert's moves as closely
as possible, be it in a passive or an active way. Not having objective rewards from the
environment, they are constrained to the subjective supervision of the expert. Thus, even if
they wanted to, they aren't able to improve and understand the teacher's reasoning.

So, IL should be seen as a way to copy the moves of the expert but without knowing its
main goal. In our example, it's as if the young driver assimilates the trajectories of the
teacher very well but, still, they don't know the motivations that made the teacher choose
them. Without being aware of the reward, an agent trained with imitation learning cannot
maximize the total reward as executed in RL.

This highlights the main differences between IL and RL. The former lacks the
understanding of the main objective, and thus cannot surpass the teacher. The latter instead
lacks a direct supervision signal and, in most cases, has access only to a sparse reward. This
situation is clearly depicted in the following diagram:

Imitation Learning with the DAgger Algorithm Chapter 10

[248]

The diagram on the left represents the usual RL cycle, while on the right, the imitation
learning cycle is represented. Here, the learner doesn't receive any reward; just the state
and action given by the expert.

The role of the expert in imitation learning
The terms expert, teacher, and supervisor refer to the same concept when speaking of
imitation learning algorithms. They express a figure from which the new agent (the learner)
can learn.

Fundamentally, the expert can be of any form, from a real human expert to an expert
system. The first case is more obvious and adopted. What you are doing is teaching an
algorithm to perform a task that a human is already able to do. The advantages are evident
and it can be employed in a vast number of tasks.

The second case may not be so common. One of the valid motivations behind choosing a
new algorithm trained with IL can be attributed to a slow expert system that, due to
technical limitations, cannot be improved. For example, the teacher could be an accurate,
but slow, tree search algorithm that is not able to perform at a decent speed at inference
time. A deep neural network could be employed in its place. The training of the neural
network under the supervision of the tree search algorithm could take some time but, once
trained, it could perform much faster during runtime.

By now, it should be clear that the quality of the policy coming from the learner is largely
due to the quality of the information provided by the expert. The performance of the
teacher is an upper limit to the final performances of the scholar. A poor teacher will
always provide bad data to the learner. Thus, the expert is a key component that sets the
bar for the quality of the final agent. With a weak teacher, we cannot pretend to obtain
good policies.

The IL structure
Now that all the ingredients of imitation learning have been tackled, we can elaborate on
the algorithms and approaches that can be used in order to design a full imitation learning
algorithm.

The most straightforward way to tackle the imitation problem is shown in the following
diagram:

Imitation Learning with the DAgger Algorithm Chapter 10

[249]

The preceding diagram can be summarized in two main steps:

An expert collects data from the environment.
A policy is learned through supervised learning on the dataset.

Unfortunately, despite supervised learning being the imitation algorithm for excellence,
most of the time, it doesn't work.

To understand why the supervised learning approach isn't a good alternative, we have to
recall the foundations of supervised learning. We are mostly interested in two basic
principles: the training and test set should belong to the same distribution, and the data
should be independent and identically distributed (i.i.d). However, a policy should be
tolerant of different trajectories and be robust to eventual distribution shifts.

If an agent is trained using only a supervised learning approach to drive a car, whenever it
shifts a little bit from the expert trajectories, it will be in a new state never seen before, and
that will create a distribution mismatch. In this new state, the agent will be uncertain about
the next action to take. In a usual supervised learning problem, it doesn't matter too much.
If a prediction is missed, this will not have an influence on the next prediction. However, in
an imitation learning problem, the algorithm is learning a policy and the i.i.d property is no
longer valid because subsequent actions are strictly correlated to each other. Thus, they will
have consequences and a compounding effect on all the others.

In our example of the self-driving car, once the distribution has changed from that of the
expert, the correct path will be very difficult to recover, since bad actions will accumulate
and lead to dramatic consequences. The longer the trajectory, the worse the effect of
imitation learning. To clarify, supervised learning problems with i.i.d. data can be seen as
having a trajectory of length 1. No consequences on the next actions are found. The
paradigm we have just presented is what we referred to previously as passive learning.

Imitation Learning with the DAgger Algorithm Chapter 10

[250]

To overcome the distributional shift that can have catastrophic effects on policies learned
using passive imitation, different techniques can be adopted. Some are hacks, while others
are more algorithmic variations. Two of these strategies that work well are the following:

Learning a model that generalizes very well on the data without overfitting
Using an active imitation in addition to the passive one

Because the first is more of a broad challenge, we will concentrate on the second strategy.

Comparing active with passive imitation
We introduced the term active imitation in the previous example, with the teenager learning
to drive a car. Specifically, we referred to it in the situation in which the learner was driving
with additional feedback from the expert. In general, for active imitation, we mean learning
from on-policy data with the actions assigned by the expert.

Speaking in terms of input s (the state or observation) and output a (the action), in passive
learning, s and a both come from the expert. In active learning, s is sampled from the
learner, and a is the action that the expert would have taken in state s. The objective of the
newbie agent is to learn a mapping, .

Active learning with on-policy data allows the learner to fix small deviations from the
expert trajectory that the learner wouldn't know how to correct with only passive
imitation.

Playing Flappy Bird
Later in this chapter, we'll develop and test an IL algorithm called DAgger on a new
environment. The environment named Flappy Bird emulates the famous Flappy Bird game.
Here, our mission is to give you the tools needed to implement code using this
environment, starting from the explanation of the interface.

Flappy Bird belongs to the PyGame Learning Environment (PLE), a set of environments
that mimic the Arcade Learning Environment (ALE) interface. This is similar to the Gym
interface, and later we'll see the differences, although it's simple to use.

The goal of Flappy Bird is to make the bird fly through vertical pipes without hitting them.
It is controlled by only one action that makes it flap its wings. If it doesn't fly, it progresses
in a decreasing trajectory determined by gravity. A screenshot of the environment is shown
here:

Imitation Learning with the DAgger Algorithm Chapter 10

[251]

How to use the environment
In the following steps, we will see how to use the environment.

In order to use Flappy Bird in our Python scripts, firstly, we need to import PLE1.
and Flappy Bird:

from ple.games.flappybird import FlappyBird
from ple import PLE

Then, we instance a FlappyBird object and pass it to PLE with a few parameters:2.

game = FlappyBird()
p = PLE(game, fps=30, display_screen=False)

Here, with display_screen, you can choose whether to display the screen.

The environment is initialized by calling the init() method:3.

p.init()

Imitation Learning with the DAgger Algorithm Chapter 10

[252]

To interact and get the state of the environment, we primarily use four functions:

p.act(act), to execute the act action in the game. act(act)
returns the reward obtained from the action performed.
p.game_over(), to check whether the game reached a final state.
p.reset_game(), to reset the game to the initial conditions.
p.getGameState(), to obtain the current state of the
environment. We could also use p.getScreenRGB() if we want to
obtain the RGB observations (that is, the full screen) of the
environment.

Putting everything together, a simple script that plays Flappy Bird for five games4.
can be designed as in the following code snippet. Note that in order to make it
work, you still have to define the get_action(state) function that returns an
action given a state:

from ple.games.flappybird import FlappyBird
from ple import PLE

game = FlappyBird()
p = PLE(game, fps=30, display_screen=False)
p.init()

reward = 0

for _ in range(5):
 reward += p.act(get_action(p.getGameState()))

 if p.game_over():
 p.reset_game()

A couple of things to point out here are as follows:

getGameState() returns a dictionary with the position, velocity, and the
distance of the player, as well as the position of the next pipe and the following
one. Before giving the state to the policymaker that we represented here with the
get_action function, the dictionary is converted to a NumPy array and
normalized.
act(action) expects None as input if no action has to be performed, or 119 if
the bird has to flap its wings in order to fly higher.

Imitation Learning with the DAgger Algorithm Chapter 10

[253]

Understanding the dataset aggregation
algorithm
One of the most successful algorithms that learns from demonstrations is Dataset
Aggregation (DAgger). This is an iterative policy meta-algorithm that performs well under
the distribution of states induced. The most notable feature of DAgger is that it addresses
the distribution mismatch by proposing an active method in which the expert teaches the
learner how to recover from the learner's mistakes.

A classic IL algorithm learns a classifier that predicts expert behaviors. This means that
the model fits a dataset consisting of training examples, observed by an expert. The inputs
are the observations, and the actions are the desired output values. However, following the
previous reasoning, the predictions of the learner affect the future state or observation
visited, violating the i.i.d assumption.

DAgger deals with the change in distribution by iterating a pipeline of aggregation of new
data sampled from the learner multiple times, and training with the aggregated dataset. A
simple diagram of the algorithm is shown here:

The expert populates the dataset used by the classifier, but, depending on the iteration, the
action performed in the environment may come from the expert or the learner.

Imitation Learning with the DAgger Algorithm Chapter 10

[254]

The DAgger algorithm
Specifically, DAgger proceeds by iterating the following procedure. At the first iteration, a
dataset D of trajectories is created from the expert policy and used to train a first policy
that best fits those trajectories without overfitting them. Then, during iteration i, new
trajectories are collected with the learned policy and added to the dataset D. After that,
the aggregated dataset D with the new and old trajectories is used to train a new policy,

.

As per the report in the Dagger paper (https:/ /arxiv. org/pdf/ 1011. 0686. pdf), there is an
active on-policy learning that outperforms many other imitation learning algorithms, and
it's also able to learn very complex policies with the help of deep neural networks.

Additionally, at iteration i, the policy can be modified so that the expert takes control of a
number of actions. This technique better leverages the expert and lets the learner
gradually assume control over the environment.

The pseudocode of the algorithm can clarify this further:

Initialize

Initialize (is the expert policy)

for i :

 > Populate dataset with . States are given by (sometimes
the expert could take the control over it) and actions are given by the
expert

 > Train a classifier on the aggregate dataset

Implementation of DAgger
The code is divided into three main parts:

Load the expert inference function to predict an action given a state.
Create a computational graph for the learner.
Create the DAgger iterations to build the dataset and train the new policy.

Here, we'll explain the most interesting parts, leaving the others for your personal interest.
You can check the remaining code and the complete version in the book's GitHub
repository.

https://arxiv.org/pdf/1011.0686.pdf
https://arxiv.org/pdf/1011.0686.pdf
https://arxiv.org/pdf/1011.0686.pdf
https://arxiv.org/pdf/1011.0686.pdf
https://arxiv.org/pdf/1011.0686.pdf
https://arxiv.org/pdf/1011.0686.pdf
https://arxiv.org/pdf/1011.0686.pdf
https://arxiv.org/pdf/1011.0686.pdf
https://arxiv.org/pdf/1011.0686.pdf
https://arxiv.org/pdf/1011.0686.pdf
https://arxiv.org/pdf/1011.0686.pdf
https://arxiv.org/pdf/1011.0686.pdf
https://arxiv.org/pdf/1011.0686.pdf
https://arxiv.org/pdf/1011.0686.pdf
https://arxiv.org/pdf/1011.0686.pdf

Imitation Learning with the DAgger Algorithm Chapter 10

[255]

Loading the expert inference model
The expert should be a policy that takes a state as input and returns the best action. Despite
this, it can be anything. In particular, for these experiments, we used an agent trained with
Proximal Policy Optimization (PPO) as the expert. In principle, this doesn't make any sense,
but we adopted this solution for academic purposes, to facilitate integration with the
imitation learning algorithms.

The expert's model trained with PPO has been saved on file so that we can easily restore it
with its trained weights. Three steps are required to restore the graph and make it usable:

Import the meta graph. The computational graph can be restored1.
with tf.train.import_meta_graph.
Restore the weights. Now, we have to load the pretrained weights on the2.
computational graph we have just imported. The weights have been saved in the
latest checkpoint and they can be restored
with tf.train.latest_checkpoint(session, checkpoint).
Access the output tensors. The tensors of the restored graph are accessed with3.
graph.get_tensor_by_name(tensor_name), where tensor_name is the
tensor's name in the graph.

The following lines of code summarize the entire process:

def expert():
 graph = tf.get_default_graph()
 sess_expert = tf.Session(graph=graph)

 saver = tf.train.import_meta_graph('expert/model.ckpt.meta')
 saver.restore(sess_expert,tf.train.latest_checkpoint('expert/'))

 p_argmax = graph.get_tensor_by_name('actor_nn/max_act:0')
 obs_ph = graph.get_tensor_by_name('obs:0')

Then, because we are only interested in a simple function that returns an expert action
given a state, we can design the expert function in such a way that it returns that function.
Thus, inside expert(), we define an inner function called expert_policy(state) and
return it as output of expert():

 def expert_policy(state):
 act = sess_expert.run(p_argmax, feed_dict={obs_ph:[state]})
 return np.squeeze(act)

 return expert_policy

Imitation Learning with the DAgger Algorithm Chapter 10

[256]

Creating the learner's computational graph
All the following code is located inside a function called DAgger, which takes some
hyperparameters that we'll see throughout the code as arguments.

The learner's computational graph is simple as its only goal is to build a classifier. In our
case, there are only two actions to predict, one for doing nothing, and the other to make the
bird flap its wings. We can instantiate two placeholders, one for the input state, and one for
the ground-truth actions that are those of the expert. The actions are an integer
corresponding to the action taken. In the case of two possible actions, they are just 0 (do
nothing) or 1 (fly).

The steps to build such a computational graph are the following:

Create a deep neural network, specifically, a fully connected multilayer1.
perceptron with a ReLu activations function in the hidden layers and a linear
function on the final layer.
For every input state, take the action with the highest value. This is done using2.
the tf.math.argmax(tensor,axis) function with axis=1.
Convert the action's placeholders in a one-hot tensor. This is needed because the3.
logits and labels that we'll use in the loss function should have
dimensions, [batch_size, num_classes]. However, our labels named
act_ph have shapes, [batch_size]. Therefore, we convert them to the desired
shape with one-hot encoding. tf.one_hot is the TensorFlow function that does
just that.
Create the loss function. We use the softmax cross-entropy loss function. This is a4.
standard loss function used for discrete classification with mutually exclusive
classes, just like in our case. The loss function is computed
using softmax_cross_entropy_with_logits_v2(labels,
logits) between the logits and the labels.
Lastly, the mean of the softmax cross-entropy is computed across the batch and5.
minimized using Adam.

These five steps are implemented in the following lines:

 obs_ph = tf.placeholder(shape=(None, obs_dim), dtype=tf.float32,
name='obs')
 act_ph = tf.placeholder(shape=(None,), dtype=tf.int32, name='act')
 p_logits = mlp(obs_ph, hidden_sizes, act_dim, tf.nn.relu,
last_activation=None)
 act_max = tf.math.argmax(p_logits, axis=1)
 act_onehot = tf.one_hot(act_ph, depth=act_dim)
 p_loss =

Imitation Learning with the DAgger Algorithm Chapter 10

[257]

tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(labels=act_onehot
, logits=p_logits))
 p_opt = tf.train.AdamOptimizer(p_lr).minimize(p_loss)

We can then initialize a session, the global variables, and define a
function, learner_policy(state). This function, given a state, returns the action with a
higher probability chosen by the learner (this is the same thing we did for the expert):

 sess = tf.Session()
 sess.run(tf.global_variables_initializer())

 def learner_policy(state):
 action = sess.run(act_max, feed_dict={obs_ph:[state]})
 return np.squeeze(action)

Creating a DAgger loop
It's now time to set up the core of the DAgger algorithm. The outline has already been
defined in the pseudocode in The DAgger algorithm section, but let's take a more in-depth
look at how it works:

Initialize the dataset composed of two lists, X and y, where we'll put the states1.
visited and the expert target actions. We also initialize the environment:

 X = []
 y = []

 env = FlappyBird()
 env = PLE(env, fps=30, display_screen=False)
 env.init()

Iterate across all the DAgger iterations. At the beginning of every DAgger2.
iteration, we have to reinitialize the learner computational graph (because we
retrain the learner on every iteration on the new dataset), reset the environment,
and run a number of random actions. At the start of each game, we run a few
random actions to add a stochastic component to the deterministic environment.
The result will be a more robust policy:

 for it in range(dagger_iterations):
 sess.run(tf.global_variables_initializer())
 env.reset_game()
 no_op(env)

 game_rew = 0
 rewards = []

Imitation Learning with the DAgger Algorithm Chapter 10

[258]

Collect new data by interacting with the environment. As we said previously, the3.
first iteration contains the expert that has to choose the actions by calling
expert_policy, but, in the following iterations, the learner progressively takes
control. The learned policy is executed by the learner_policy function. The
dataset is collected by appending to X (the input variable) the current state of the
game, and by appending to y (the output variable) the actions that the expert
would have taken in that state. When the game is over, the game is reset and
game_rew is set to 0. The code is as follows:

 for _ in range(step_iterations):
 state = flappy_game_state(env)

 if np.random.rand() < (1 - it/5):
 action = expert_policy(state)
 else:
 action = learner_policy(state)

 action = 119 if action == 1 else None

 rew = env.act(action)
 rew += env.act(action)

 X.append(state)
 y.append(expert_policy(state))
 game_rew += rew

 if env.game_over():
 env.reset_game()
 np_op(env)

 rewards.append(game_rew)
 game_rew = 0

Note that the actions are performed twice. This is done to reduce the number of
actions every second to 15 instead of 30, as required by the environment.

Train the new policy on the aggregated dataset. The pipeline is standard. The4.
dataset is shuffled and divided into mini-batches of length batch_size. Then,
the optimization is repeated by running p_opt for a number of epochs equals
to train_epochs on each mini-batch. This is done with the following code:

 n_batches = int(np.floor(len(X)/batch_size))
 shuffle = np.arange(len(X))
 np.random.shuffle(shuffle)
 shuffled_X = np.array(X)[shuffle]
 shuffled_y = np.array(y)[shuffle]

Imitation Learning with the DAgger Algorithm Chapter 10

[259]

 ep_loss = []
 for _ in range(train_epochs):

 for b in range(n_batches):
 p_start = b*batch_size
 tr_loss, _ = sess.run([p_loss, p_opt], feed_dict=
 obs_ph:shuffled_X[p_start:p_start+batch_size],
 act_ph:shuffled_y[p_start:p_start+batch_size]})

 ep_loss.append(tr_loss)
 print('Ep:', it, np.mean(ep_loss), 'Test:',
np.mean(test_agent(learner_policy)))

test_agent tests learner_policy on a few games to understand how well the
learner is performing.

Analyzing the results on Flappy Bird
Before showing the results of the imitation learning approach, we want to provide some
numbers so that you can compare these with those of a reinforcement learning algorithm.
We know that this is not a fair comparison (the two algorithms work on very different
conditions), but nevertheless, they underline why imitation learning can be rewarding
when an expert is available.

The expert has been trained with proximal policy optimization for about 2 million steps
and, after about 400,000 steps, reached a plateau score of about 138.

We tested DAgger on Flappy Bird with the following hyperparameters:

Hyperparameter Variable name Value
Learner hidden layers hidden_sizes 16,16

DAgger iterations dagger_iterations 8
Learning rate p_lr 1e-4

Number of steps for every DAgger
iteration step_iterations 100

Mini-batch size batch_size 50
Training epochs train_epochs 2000

Imitation Learning with the DAgger Algorithm Chapter 10

[260]

The plot in the following screenshot shows the trend of the performance of DAgger with
respect to the number of steps taken:

The horizontal line represents the average performance reached by the expert. From the
results, we can see that a few hundred steps are sufficient to reach the performance of the
expert. However, compared with the experience required by PPO to train the expert, this
represents about a 100-fold increase in sample efficiency.

Again, this is not a fair comparison as the methods are in different contexts, but it
highlights that whenever an expert is available, it is suggested that you use an imitation
learning approach (perhaps at least to learn a starting policy).

IRL
One of the biggest limitations of IL lies in its inability to learn other trajectories to reach a
goal, except those learned from the expert. By imitating an expert, the learner is constrained
to the range of behaviors of its teacher. They are not aware of the end goal that the expert is
trying to reach. Thus, these methods are only useful when there's no intention to perform
better than the teacher.

Imitation Learning with the DAgger Algorithm Chapter 10

[261]

IRL is an RL algorithm, such as IL, that uses an expert to learn. The difference is that IRL
uses the expert to learn its reward function. Therefore, instead of copying the
demonstrations, as is done in imitation learning, IRL figures out the goal of the expert.
Once the reward function is learned, the agent uses it to learn the policy.

With the demonstrations used only to understand the goal of the expert, the agent is not
bound to the actions of the teacher and can finally learn better strategies. For example, a
self-driving car that learns by IRL would understand that the goal is to go from point A to
point B in the minimum amount of time, while reducing the damage to things and people.
The car would then learn a policy by itself (for example, with an RL algorithm) that
maximizes this reward function.

However, IRL also has a number of challenges that limit its applicability. The expert's
demonstration may not be optimal, and, as a result, the learner may not be able to achieve
its full potential and may remain stuck in the wrong reward function. The other challenge
lies in the evaluation of the learned reward function.

Summary
In this chapter, we took a break from reinforcement learning algorithms and explored a
new type of learning called imitation learning. The novelty of this new paradigm lies in the
way in which the learning takes place; that is, the resulting policy imitates the behavior of
an expert. This paradigm differentiates from reinforcement learning in the absence of a
reward signal and in its ability to leverage the incredible source of information brought by
the expert entity.

We saw that the dataset from which the learner learns can be expanded with additional
state action pairs to increase the confidence of the learner in new situations. This process is
called data aggregation. Moreover, new data could come from the new learned policy and,
in this case, we talked about on-policy data (as it comes from the same policy learned). This
integration of on-policy states with expert feedback is a very valuable approach that
increases the quality of the learner.

We then explored and developed one of the most successful imitation learning algorithms,
called DAgger, and applied it to learn the Flappy Bird game.

However, because imitation learning algorithms only copy the behavior of an expert, these
systems cannot do better than the expert. Therefore, we introduced inverse reinforcement
learning, which overcomes this problem by inferring the reward function from the expert.
In this way, the policy can be learned independently of the teacher.

Imitation Learning with the DAgger Algorithm Chapter 10

[262]

In the next chapter, we'll take a look at another set of algorithms for solving sequential
tasks; namely, evolutionary algorithms. You'll learn the mechanisms and advantages of
these black-box optimization algorithms so that you'll be able to adopt them in challenging
environments. Furthermore, we'll delve into an evolutionary algorithm called evolution
strategy in greater depth and implement it.

Questions
Is imitation learning considered a reinforcement learning technique?1.
Would you use imitation learning to build an unbitable agent in Go?2.
What's the full name of DAgger?3.
What's the main strength of DAgger?4.
Where would you use IRL instead of IL?5.

Further reading
To read the original paper that introduced DAgger, checkout the following
paper, A Reduction of Imitation Learning and Structured Prediction to No-Regret
Online Learning: https:/ /arxiv. org/ pdf/1011. 0686. pdf.
To learn more about imitation learning algorithms, checkout the following paper,
Global Overview of Imitation Learning: https:/ /arxiv. org/ pdf/ 1801. 06503. pdf.
To learn more about inverse reinforcement learning, checkout the following
survey, A Survey of Inverse Reinforcement Learning: Challenges, Methods and
Progress: https:/ / arxiv. org/ pdf/ 1806. 06877. pdf.

https://arxiv.org/pdf/1011.0686.pdf
https://arxiv.org/pdf/1011.0686.pdf
https://arxiv.org/pdf/1011.0686.pdf
https://arxiv.org/pdf/1011.0686.pdf
https://arxiv.org/pdf/1011.0686.pdf
https://arxiv.org/pdf/1011.0686.pdf
https://arxiv.org/pdf/1011.0686.pdf
https://arxiv.org/pdf/1011.0686.pdf
https://arxiv.org/pdf/1011.0686.pdf
https://arxiv.org/pdf/1011.0686.pdf
https://arxiv.org/pdf/1011.0686.pdf
https://arxiv.org/pdf/1011.0686.pdf
https://arxiv.org/pdf/1011.0686.pdf
https://arxiv.org/pdf/1011.0686.pdf
https://arxiv.org/pdf/1011.0686.pdf
https://arxiv.org/pdf/1801.06503.pdf
https://arxiv.org/pdf/1801.06503.pdf
https://arxiv.org/pdf/1801.06503.pdf
https://arxiv.org/pdf/1801.06503.pdf
https://arxiv.org/pdf/1801.06503.pdf
https://arxiv.org/pdf/1801.06503.pdf
https://arxiv.org/pdf/1801.06503.pdf
https://arxiv.org/pdf/1801.06503.pdf
https://arxiv.org/pdf/1801.06503.pdf
https://arxiv.org/pdf/1801.06503.pdf
https://arxiv.org/pdf/1801.06503.pdf
https://arxiv.org/pdf/1801.06503.pdf
https://arxiv.org/pdf/1801.06503.pdf
https://arxiv.org/pdf/1801.06503.pdf
https://arxiv.org/pdf/1801.06503.pdf
https://arxiv.org/pdf/1806.06877.pdf
https://arxiv.org/pdf/1806.06877.pdf
https://arxiv.org/pdf/1806.06877.pdf
https://arxiv.org/pdf/1806.06877.pdf
https://arxiv.org/pdf/1806.06877.pdf
https://arxiv.org/pdf/1806.06877.pdf
https://arxiv.org/pdf/1806.06877.pdf
https://arxiv.org/pdf/1806.06877.pdf
https://arxiv.org/pdf/1806.06877.pdf
https://arxiv.org/pdf/1806.06877.pdf
https://arxiv.org/pdf/1806.06877.pdf
https://arxiv.org/pdf/1806.06877.pdf
https://arxiv.org/pdf/1806.06877.pdf
https://arxiv.org/pdf/1806.06877.pdf
https://arxiv.org/pdf/1806.06877.pdf

11
Understanding Black-Box

Optimization Algorithms
In the previous chapters, we looked at reinforcement learning algorithms, ranging from
value-based to policy-based methods and from model-free to model-based methods. In this
chapter, we'll provide another solution for solving sequential tasks, that is, with a class of
black-box algorithms evolutionary algorithms (EA). EAs are driven by evolutionary
mechanisms and are sometimes preferred to reinforcement learning (RL) as they don't
require backpropagation. They also offer other complementary benefits to RL. We'll start
this chapter by giving you a brief recap of RL algorithms so that you'll better understand
how EA fits into these sets of problems. Then, you'll learn about the basic building blocks of
EA and how those algorithms work. We'll also take advantage of this introduction and look
at one of the most well-known EAs, namely evolution strategies (ES), in more depth.

A recent algorithm that was developed by OpenAI caused a great boost in the adoption of
ES for solving sequential tasks. They showed how ES algorithms can be massively
parallelized and scaled linearly on a number of CPUs while achieving high performance.
After an explanation of evolution strategies, we'll take a deeper look at this algorithm and
develop it in TensorFlow so that you'll be able to apply it to the tasks you care about.

The following topics will be covered in this chapter:

Beyond RL
The core of EAs
Scalable evolution strategies
Scalable ES applied to LunarLander

Understanding Black-Box Optimization Algorithms Chapter 11

[264]

Beyond RL
RL algorithms are the usual choice when we're faced with sequential decision problems.
Usually, it's difficult to find other ways to solve these tasks other than using RL. Despite the
hundreds of different optimization methods that are out there, so far, only RL has worked
well on problems for sequential decision-making. But this doesn't mean it's the only
option.

We'll start this chapter by recapping on the inner workings of RL algorithms and
questioning the usefulness of their components for solving sequential tasks. This brief
summary will help us introduce a new type of algorithm that offers many advantages (as
well as some disadvantages) that could be used as a replacement for RL.

A brief recap of RL
In the beginning, a policy is initialized randomly and used to interact with the environment
for either a given number of steps, or entire trajectories, to collect data. On each
interaction, the state visited, the action taken, and the reward obtained are recorded. This
information provides a full description of the influence of the agent in the environment.
Then, in order to improve the policy, the backpropagation algorithm (based on the loss
function, in order to move the predictions to a better estimate) computes the gradient of
each weight of the network. These gradients are then applied with a stochastic gradient
descent optimizer. This process (gathering data from the environment and optimizing the
neural network with stochastic gradient descent (SGD)) is repeated until a convergence
criterion is met.

There are two important things to note here that will be useful in the following discussion:

Temporal credit assignment: Because RL algorithms optimize the policy on each
step, allocating the quality of each action and state is required. This is done by
assigning a value to each state-action pair. Moreover, a discount factor is used to
minimize the influence of distant actions and to give more weight to the last
actions. This will help us solve the problem of assigning the credit to the actions,
but will also introduce inaccuracies in the system.

Understanding Black-Box Optimization Algorithms Chapter 11

[265]

Exploration: In order to maintain a degree of exploration in the
actions, additional noise is injected into the policy of RL algorithms. The way in
which the noise is injected depends on the algorithm, but usually, the actions are
sampled from a stochastic distribution. By doing so, if the agent is in the same
situation twice, it may take different actions that would lead to two different
paths. This strategy also encourages exploration in deterministic
environments. By deviating the path each time, the agent may discover
different – and potentially better – solutions. With this additional noise that
asymptotically tends to 0, the agent is then able to converge to a better and final
deterministic policy.

But are backpropagation, temporal credit assignment, and stochastic actions actually a
prerequisite for learning and building complex policies?

The alternative
The answer to this question is no.

As we learned in Chapter 10, Imitation Learning with the DAgger Algorithm, by reducing
policy learning to an imitation problem using backpropagation and SGD, we can learn
about a discriminative model from an expert in order to predict which actions to take next.
Still, this involves backpropagation and requires an expert that may not always be
available.

Another general subset of algorithms for global optimization does exist. They are called
EAs, and they aren't based on backpropagation and don't require any of the other two
principles, namely temporal credit assignment and noisy actions. Furthermore, as we said
in the introduction to this chapter, these evolutionary algorithms are very general and can
be used in a large variety of problems, including sequential decision tasks.

EAs
As you may have guessed, EAs differ in many aspects from RL algorithms and are
principally inspired by biological evolution. EAs include many similar methods such as,
genetic algorithms, evolution strategies, and genetic programming, which vary in their
implementation details and in the nature of their representation. However, they are all
mainly based on four basic mechanisms – reproductions, mutation, crossover, and
selection – that are cycled in a guess-and-check process. We'll see what this means as we
progress through this chapter.

Understanding Black-Box Optimization Algorithms Chapter 11

[266]

Evolutionary algorithms are defined as black-box algorithms. These are algorithms that
optimize a function, , with respect to without making any assumption about .
Hence, can be anything you want. We only care about the output of . This has many
advantages, as well as some disadvantages. The primary advantage is that we don't have to
care about the structure of and we are free to use what is best for us and for the problem
at hand. On the other hand, the main disadvantage is that these optimization methods
cannot be explained and thus their mechanism cannot be interpreted. In problems where
interpretability is of great importance, these methods are not appealing.

Reinforcement learning has almost always been preferred for solving sequential tasks,
especially for medium to difficult tasks. However, a recent paper from OpenAI highlights
that the evolution strategy, which is an evolutionary algorithm, can be used as an
alternative to RL. This statement is mainly due to the performance that's reached
asymptotically by the algorithm and its incredible ability to be scaled across thousands of
CPUs.

Before we look at how this algorithm is able to scale so well while learning good policies on
difficult tasks, let's take a more in-depth look at EAs.

The core of EAs
EAs are inspired by biological evolution and implement techniques and mechanisms that
simulate biological evolution. This means that EAs go through many trials to create a
population of new candidate solutions. These solutions are also called individuals (in RL
problems, a candidate solution is a policy) that are better than the previous generation, in a
similar way to the process within nature wherein only the strongest survive and have the
possibility to procreate.

One of the advantages of EAs is that they are derivative-free methods, meaning that they
don't use the derivative to find the solution. This allows EAs to work very well with all
sorts of differentiable and non-differentiable functions, including deep neural networks.
This combination is schematized in the following diagram. Note that each individual is a
separate deep neural network, and so we'll have as many neural networks as the number of
individuals at any given moment. In the following diagram, the population is composed of
five individuals:

Understanding Black-Box Optimization Algorithms Chapter 11

[267]

Figure 11.1. Optimization of deep neural networks through evolutionary algorithms

The specificity of each type of evolutionary algorithm differs from the others, but the
underlying cycle is common to all the EAs and works as follows:

A population of individuals (also called candidate solutions or phenotypes) is1.
created so that each of them has a set of different properties (called chromosomes
or genotypes). The initial population is initialized randomly.
Each candidate solution is evaluated independently by a fitness function that2.
determines its quality. The fitness function is usually related to the objective
function and, using the terminology we've used so far, the fitness function could
be the total reward accumulated by the agent (that is, the candidate solution)
throughout its life.
Then, the fitter individuals of the population are selected, and their genome is3.
modified in order to produce the new generation. In some cases, the less fit
candidate solution can be used as a negative example to generate the next
generation. This whole step varies largely, depending on the algorithm. Some
algorithms, such as genetic algorithms, breed new individuals through two
processes called crossover and mutation, which give birth to new individuals
(called offspring). Others, such as evolution strategies, breed new individuals
through mutation only. We'll explain crossover and mutation in more depth later
in this chapter, but generally speaking, crossover is the process that combines
genetic information from two parents, while mutation only alters some gene
values in the offspring.
Repeat the whole process, going through steps 1-3 until a terminal condition is4.
met. On each iteration, the population that's created is also called a generation.

Understanding Black-Box Optimization Algorithms Chapter 11

[268]

This iterative process, as shown in the following diagram, terminates when a given fitness
level has been reached or a maximum number of generations have been produced. As we
can see, the population is created by crossover and mutation, but as we habe already
explained, these processes may vary, depending on the specific algorithm:

Figure 11.2. The main cycle of evolutionary algorithms

The main body of a general EA is very simple and can be written in just a few lines of code,
as shown here. To summarize this code, on each iteration, and until a fitted generation has
been produced, new candidates are generated and evaluated. The candidates are created
from the best-fitted individuals of the previous generation:

solver = EvolutionaryAlgortihm()

while best_fitness < required_fitness:
 candidates = solver.generate_candidates() # for example from crossover
and mutation

 fitness_values = []
 for candidate in candidates:
 fitness_values.append(evaluate(candidate))

 solver.set_fitness_values(fitness_values)

 best_fitness = solver.evaluate_best_candidate()

Understanding Black-Box Optimization Algorithms Chapter 11

[269]

Note that the implementation details of the solver are dependent on the
algorithm that's used.

The applications of EAs are actually spread across many fields and problems, from
economy to biology, and from computer program optimization to ant colony optimization.

Since we are mostly interested in the application of evolutionary algorithms for solving
sequential decision-making tasks, we will explain the two most common EAs that are used
to solve these kinds of jobs. They are known as genetic algorithms (GAs) and evolution
strategies (ESes). Later, we'll take a step further with ES by developing a highly scalable
version of it.

Genetic algorithms
The idea of GAs is very straightforward—evaluate the current generations, use only the
top-performing individuals to generate the next candidate solutions, and discard the other
individuals. This is shown in the preceding diagram. The survivors will generate the next
population by crossover and mutation. These two processes are represented in the
following diagram. Crossover is done by selecting two solutions among the survivors and
combining their parameters. Mutation, on the other hand, involves changing a few random
parameters on the offspring's genotype:

Figure 11.3. Visual illustration of mutation and crossover

Understanding Black-Box Optimization Algorithms Chapter 11

[270]

Crossover and mutation can be approached in many different ways. In the simpler version,
crossover is done by choosing parts from the two parents randomly, and mutation is done
by mutating the solution that's obtained by adding Gaussian noise with a fixed standard
deviation. By only keeping the best individuals and injecting their genes into the newly
born individuals, the solutions will improve over time until a condition is met. However,
on complex problems, this simple solution is prone to be stuck in a local optimum (meaning
that the solution is only within a small set of candidate solutions). In this case, a more
advanced genetic algorithm such as NeroEvolution of Augmenting Topologies (NEAT) is
preferred. NEAT not only alters the weights of the network but also its structure.

Evolution strategies
Evolution strategies (ESes) are even easier than GAs as they are primarily based on
mutation to create a new population.

Mutation is performed by adding values that have been sampled from a normal
distribution to the genotype. A very simple version of ES is obtained by just selecting the
most performant individual across the whole population and sampling the next generation
from a normal distribution with a fixed standard deviation and a mean equal to that of the
best-performing individual.

Outside of the sphere of small problems, using this algorithm is not recommended. This is
because following only a single leader and using a fixed standard deviation could prevent
potential solutions from exploring a more diverse search space. As a consequence, the
solution to this method would probably end in a narrow local minimum. An immediate
and better strategy would be to generate the offspring by combining the top performing
candidate solutions and weighing them by their fitness rank. Ranking the individuals
according to their fitness values is called fitness ranking. This strategy is preferred to using
the actual fitness values as it is invariant to the transformation of the objective function and
it prevents the new generation from moving too much toward a possible outlier.

CMA-ES
The Covariance Matrix Adaptation Evolution Strategy, or CMA-ES for short, is an
evolutionary strategy algorithm. Unlike the simpler version of the evolution strategy, it
samples the new candidate solution according to a multivariate normal distribution. The
name CMA comes from the fact that the dependencies between the variables are kept in a
covariance matrix that has been adapted to increase or decrease the search space on the
next generation.

Understanding Black-Box Optimization Algorithms Chapter 11

[271]

Put simply, CMA-ES shrinks the search space by incrementally decreasing the covariance
matrix in a given direction when it's confident of the space around it. Instead, CMA-
ES increases the covariance matrix and thus enlarges the possible search space when it's
less confident.

ES versus RL
ESes are an interesting alternative to RL. Nonetheless, the pros and cons must be evaluated
so that we can pick the correct approach. Let's briefly look at the main advantages of ES:

Derivative-free methods: There's no need for backpropagation. Only the
forward pass is performed for estimating the fitness function (or equivalently,
the cumulative reward). This opens the door to all the non-differentiable
functions, for example; hard attention mechanisms. Moreover, by avoiding
backpropagation, the code gains efficiency and speed.
Very general: The generality of ES is mainly due to its property of being a black-
box optimization method. Because we don't care about the agent, the actions that
it performs, or the states visited, we can abstract these and concentrate only on its
evaluation. Furthermore, ES allows learning without explicit targets and also
with extremely sparse feedback. Additionally, ESes are more general in the sense
that they can optimize a much larger set of functions.
Highly parallelizable and robust: As we'll soon see, ES is much easier to
parallelize than RL, and the computations can be spread across thousands of
workers. The robustness of evolution strategies is due to the few
hyperparameters that are required to make the algorithms work. For example, in
comparison to RL, there's no need to specify the length of the trajectories, the
lambda value, the discount factor, the number of frames to skip, and so on. Also,
the ES is very attractive for tasks with a very long horizon.

On the other hand, reinforcement learning is preferred for the following key aspects:

Sample efficiency: RL algorithms make better use of the information that's
acquired from the environment and as a consequence, they require less data and
fewer steps to learn the tasks.
Excellent performance: Overall, reinforcement learning algorithms outperform
performance evolution strategies.

Understanding Black-Box Optimization Algorithms Chapter 11

[272]

Scalable evolution strategies
Now that we've introduced black-box evolutionary algorithms and evolution strategies in
particular, we are ready to put what we have just learned into practice. The paper
called Evolution Strategies as a Scalable Alternative to Reinforcement Learning by OpenAI
made a major contribution to the adoption of evolution strategies as an alternative to
reinforcement learning algorithms.

The main contribution of this paper is in the approach that scales ES extremely well with a
number of CPUs. In particular, the new approach uses a novel communication strategy
across CPUs that involves only scalars, and so it is able to scale across thousands of parallel
workers.

Generally, ES requires more experience and thus is less efficient than RL. However, by
spreading the computation across so many workers (thanks to the adoption of this new
strategy), the task can be solved in less wall clock time. As an example, in the paper, the
authors solve the 3D Humanoid Walking pattern in just 10 minutes with 1,440 CPUs, with a
linear speedup in the number of CPU cores. Because usual RL algorithms cannot reach this
level of scalability, they take hours to solve the same task.

Let's look at how they are able to scale so well.

The core
In the paper, a version of ES is used that maximizes the average objective value, as follows:

It does this by searching over a population, , that's parameterized by with stochastic
gradient ascent. is the objective function (or fitness function) while is the parameters of
the actor. In our problems, is simply the stochastic return that's obtained by the agent
with in the environment.

The population distribution, ,is a multivariate Gaussian with a mean, , and fixed
standard deviation, , as follows:

Understanding Black-Box Optimization Algorithms Chapter 11

[273]

From here, we can define the step update by using the stochastic gradient estimate, as
follows:

With this update, we can estimate the stochastic gradient (without performing
backpropagation) using the results of the episodes from the population. We can update the
parameters using one of the well-known update methods, such as Adam or RMSProp as
well.

Parallelizing ES
It's easy to see how ES can be scaled across multiple CPUs: each worker is assigned to a
separate candidate solution of the population. The evaluation can be done in complete
autonomy, and as described in the paper, optimization can be done in parallel on each
worker, with only a few scalars shared between each CPU unit.

Specifically, the only information that's shared between workers is the scalar return,
, of an episode and the random seed that has been used to sample . The amount

of data can be further shrunk by sending only the return, but in this case, the random seed
of each worker has to be synchronized with all the others. We decided to adopt the first
technique, while the paper used the second one. In our simple implementation, the
difference is negligible and both techniques require extremely low bandwidth.

Other tricks
Two more techniques are used to improve the performance of the algorithm:

Fitness shaping – objective ranking: We discussed this technique previously. It's
very simple. Instead of using the raw returns to compute the update, a rank
transformation is used. The rank is invariant to the transformation of the
objective function and thus performs better with spread returns. Additionally, it
removes the noise of the outliers.
Mirror noise: This trick reduces the variance and involves the evaluation of the
network with both noise and ; that is, for each individual, we'll have two
mutations: and .

Understanding Black-Box Optimization Algorithms Chapter 11

[274]

Pseudocode
The parallelized evolution strategy that combines all of these features is summarized in the
following pseudocode:

Parallelized Evolution Strategy

Initialize parameters on each worker
Initialize random seed on each worker

for do:
 for do:

 Sample

 Evaluate individuals and

 Spread returns to each other worker

 for do:
 Compute normalized rank from the returns
 Reconstruct from the random seeds of the other workers

 (maybe using Adam)

Now, all that remains is to implement this algorithm.

Scalable implementation
To simplify the implementation and to make the parallelized version of ES work well with
a limited number of workers (and CPUs), we will develop a structure similar to the one
that's shown in the following diagram. The main process creates one worker for each CPU
core and executes the main cycle. On each iteration, it waits until a given number of new
candidates are evaluated by the workers. Different from the implementation provided in
the paper, each worker evaluates more than one agent on each iteration. So, if we have four
CPUs, four workers will be created. Then, if we want a total batch size bigger than the
number of workers on each iteration of the main process, let's say, 40, each worker will
create and evaluate 10 individuals each time. The return values and seeds are returned to
the main application, which waits for results from all 40 individuals, before continuing with
the following lines of code.

Understanding Black-Box Optimization Algorithms Chapter 11

[275]

Then, these results are propagated in a batch to all the workers, which optimize the neural
network seperately, following the update provided in the formula (11.2):

Figure 11.4. Diagram showing the main components involved in the parallel version of ES

Following what we just described, the code is divided into three main buckets:

The main process that creates and manages the queues and the workers.
A function that defines the task of the workers.
Additionally, there are some functions that perform simple tasks, such as ranking
the returns and evaluating the agent.

Let's explain the code of the main process so that you have a broad view of the algorithm
before going into detail about the workers.

Understanding Black-Box Optimization Algorithms Chapter 11

[276]

The main function
This is defined in a function called ES that has the following arguments: the name of the
Gym environment, the size of the neural network's hidden layers, the total number of
generations, the number of workers, the Adam learning rate, the batch size, and the
standard deviation noise:

def ES(env_name, hidden_sizes=[8,8], number_iter=1000, num_workers=4,
lr=0.01, batch_size=50, std_noise=0.01):

Then, we set an initial seed that is shared among the workers to initialize the parameters
with the same weights. Moreover, we calculate the number of individuals that a worker has
to generate and evaluate on each iteration and create two multiprocessing.Queue
queues. These queues are the entry and exit points for the variables that are passed to and
from the workers:

 initial_seed = np.random.randint(1e7)
indiv_per_worker = int(batch_size / num_workers)
 output_queue = mp.Queue(maxsize=num_workers*indiv_per_worker)
 params_queue = mp.Queue(maxsize=num_workers)

Next, the multiprocessing processes, multiprocessing.Process, are instantiated. These
will run the worker function, which is given as the first argument to the Process
constructor in an asynchronous way. All the other variables that are passed to the
worker function are assigned to args and are pretty much the same as the parameters
taken by ES, with the addition of the two queues. The processes start running when the
start() method is called:

 processes = []

 for widx in range(num_workers):

 p = mp.Process(target=worker, args=(env_name, initial_seed,
hidden_sizes, lr, std_noise, indiv_per_worker, str(widx), params_queue,
output_queue))
 p.start()
 processes.append(p)

Understanding Black-Box Optimization Algorithms Chapter 11

[277]

Once the parallel workers have started, we can iterate across the generations and wait until
all the individuals have been generated and evaluated separately in each worker.
Remember that the total number of individuals that are created on every generation is the
number of workers, num_workers, multiplied by the individuals generated on each
worker, indiv_per_worker. This architecture is unique to our implementation as we have
only four CPU cores available, compared to the implementation in the paper, which
benefits from thousands of CPUs. Generally, the population that's created on every
generation is usually between 20 and 1,000:

 for n_iter in range(number_iter):
 batch_seed = []
 batch_return = []

 for _ in range(num_workers*indiv_per_worker):
 p_rews, p_seed = output_queue.get()
 batch_seed.append(p_seed)
 batch_return.extend(p_rews)

In the previous snippet, output_queue.get() gets an element from output_queue,
which is populated by the workers. In our implementation, output_queue.get() returns
two elements. The first element, p_rews, is the fitness value (the return value) of the agent
that's generated using p_seed, which is given as the second element.

When the for cycle terminates, we rank the returns and put the batch returns and seeds on
the params_queue queue, which will be read by all the workers to optimize the agent. The
code for this is as follows:

 batch_return = normalized_rank(batch_return)

 for _ in range(num_workers):
 params_queue.put([batch_return, batch_seed])

Finally, when all the training iterations have been executed, we can terminate the workers:

 for p in processes:
 p.terminate()

This concludes the main function. Now, all we need to do is implement the workers.

Understanding Black-Box Optimization Algorithms Chapter 11

[278]

Workers
The workers' functionalities are defined in the worker function, which was previously
passed as an argument to mp.Process. We cannot go through all the code because it'd take
too much time and space to explain, but we'll explain the core components here. As always,
the full implementation is available in this book's repository on GitHub. So, if you are
interested in looking at it in more depth, take the time to examine the code on GitHub.

In the first few lines of worker, the computational graph is created to run the policy and
optimize it. Specifically, the policy is a multi-layer perceptron with tanh nonlinearities as
the activation function. In this case, Adam is used to apply the expected gradient that's
computed following the second term of (11.2).

Then, agent_op(o) and evaluation_on_noise(noise) are defined. The former runs
the policy (or candidate solution) to obtain the action for a given state or observation, o,
and the latter evaluates the new candidate solution that is obtained by adding the
perturbation noise (that has the same shape as the policy) to the current policy's
parameters.

Jumping directly to the most interesting part, we create a new session by specifying that it
can rely on, at most, 4 CPUs and initialize the global variables. Don't worry if you don't
have 4 CPUs available. Setting allow_soft_placement to True tells TensorFlow to use
only the supported devices:

 sess = tf.Session(config=tf.ConfigProto(device_count={'CPU': 4},
allow_soft_placement=True))
 sess.run(tf.global_variables_initializer())

Despite using all 4 CPUs, we allocate only one to each worker. In the definition of the
computational graph, we set the device on which the computation will be performed. For
example, to specify that the worker has to use only CPU 0, you can put the graph inside a
with statement, which defines the device to use:

with tf.device("/cpu:0"):
 # graph to compute on the CPUs 0

Going back to our implementation, we can loop forever, or at least until the worker has
something to do. This condition is checked later, inside the while cycle.

Understanding Black-Box Optimization Algorithms Chapter 11

[279]

An important thing to note is that because we perform many calculations on the weights of
the neural network, it is much easier to deal with flattened weights. So, for example, instead
of dealing with a list of the form [8,32,32,4], we'll perform computations on a one-
dimensional array of length 8*32*32*4. The functions that perform the conversion from the
former to the latter, and vice versa, are defined in TensorFlow (take a look at the full
implementation on GitHub if you are interested in knowing how this is done).

Also, before starting the while loop, we retrieve the shape of the flattened agent:

 agent_flatten_shape = sess.run(agent_variables_flatten).shape

 while True:

In the first part of the while loop, the candidates are generated and evaluated. The
candidate solutions are built by adding a normal perturbation to the weights; that is, .
This is done by choosing a new random seed every time, which will uniquely sample the
perturbation (or noise), , from a normal distribution. This is a key part of the algorithm
because, later, the other workers will have to regenerate the same perturbation from the
same seed. After that, the two new offspring (there are two because we are using mirror
sampling) are evaluated and the results are put in the output_queue queue:

 for _ in range(indiv_per_worker):
 seed = np.random.randint(1e7)

 with temp_seed(seed):
 sampled_noise = np.random.normal(size=agent_flatten_shape)

 pos_rew= evaluation_on_noise(sampled_noise)
 neg_rew = evaluation_on_noise(-sampled_noise)

 output_queue.put([[pos_rew, neg_rew], seed])

Note that the following snippet (which we used previously), is just a way to set the NumPy
random seed, seed, locally:

with temp_seed(seed):
 ..

Outside the with statement, the seed that's used to generate random values will not
be seed anymore.

Understanding Black-Box Optimization Algorithms Chapter 11

[280]

The second part of the while loop involves the acquisition of all the returns and seeds, the
reconstruction of the perturbations from those seeds, the computation of the stochastic
gradient estimate following the formula (11.2), and the policy's optimization. The
params_queue queue is populated by the main process, which we saw earlier. It does this
by sending the normalized ranks and seeds of the population that were generated by the
workers in the first phase. The code is as follows:

 batch_return, batch_seed = params_queue.get()
 batch_noise = []

 # reconstruction of the perturbations used to generate the
individuals
 for seed in batch_seed:
 with temp_seed(seed):
 sampled_noise = np.random.normal(size=agent_flatten_shape)

 batch_noise.append(sampled_noise)
 batch_noise.append(-sampled_noise)

 # Computation of the gradient estimate following the formula (11.2)
 vars_grads = np.zeros(agent_flatten_shape)
 for n, r in zip(batch_noise, batch_return):
 vars_grads += n * r

 vars_grads /= len(batch_noise) * std_noise

 sess.run(apply_g, feed_dict={new_weights_ph:-vars_grads})

The last few lines in the preceding code compute the gradient estimate; that is, they
calculate the second term of formula (11.2):

Here, is the normalized rank of and candidates their perturbation.

Understanding Black-Box Optimization Algorithms Chapter 11

[281]

apply_g is the operation that applies the vars_grads gradient (11.3) using Adam. Note
that we pass -var_grads as we want to perform gradient ascent and not gradient descent.

That's all for the implementation. Now, we have to apply it to an environment and test it to
see how it performs.

Applying scalable ES to LunarLander
How well will the scalable version of evolution strategies perform in the LunarLander
environment? Let's find out!

As you may recall, we already used LunarLander against A2C and REINFORCE in Chapter
6, Learning Stochastic and PG optimization. This task consists of landing a lander on the moon
through continuous actions. We decided to use this environment for its medium difficulty
and to compare the ES results to those that were obtained with A2C.

The hyperparameters that performed the best in this environment are as follows:

Hyperparameter Variable name Value
Neural network size hidden_sizes [32, 32]

Training iterations (or
generations) number_iter 200

Worker's number num_workers 4
Adam learning rate lr 0.02

Individuals per worker indiv_per_worker 12
Standard deviation std_noise 0.05

The results are shown in the following graph. What immediately catches your eye is that
the curve is very stable and smooth. Furthermore, notice that it reaches an average score of
about 200 after 2.5-3 million steps. Comparing the results with those obtained with A2C (in
Figure 6.7), you can see that the evolution strategy took almost 2-3 times more steps than
A2C and REINFORCE.

Understanding Black-Box Optimization Algorithms Chapter 11

[282]

As demonstrated in the paper, by using massive parallelization (using at least hundreds of
CPUs), you should be able to obtain very good policies in just minutes. Unfortunately, we
don't have such computational power. However, if you do, you may want to try it for
yourself:

Figure 11.5 The performance of scalable evolution strategies

Overall, the results are great and show that ES is a viable solution for very long horizon
problems and tasks with very sparse rewards.

Summary
In this chapter, you learned about EAs, a new class of black-box algorithms inspired by
biological evolution that can be applied to RL tasks. EAs solve these problems from a
different perspective compared to reinforcement learning. You saw that many
characteristics that we have to deal with when we design RL algorithms are not valid in
evolutionary methods. The differences are in both the intrinsic optimization method and
the underlying assumptions. For example, because EAs are black-box algorithms, we can
optimize whatever function we want as we are no longer constrained to using differentiable
functions, like we were with RL. EAs have many other advantages, as we saw throughout
this chapter, but they also have numerous downsides.

Understanding Black-Box Optimization Algorithms Chapter 11

[283]

Next, we looked at two evolutionary algorithms: genetic algorithms and evolution
strategies. Genetic algorithms are more complex as they create offspring from two parents
through crossover and mutation. Evolution strategies select the best-performing
individuals from a population that has been created only by mutation from the previous
generation. The simplicity of ES is one of the key elements that enables the immense
scalability of the algorithm across thousands of parallel workers. This scalability has been
demonstrated in the paper by OpenAI, showing the ability of ES to perform at the levels of
RL algorithms in complex environments.

To get hands-on with evolutionary algorithms, we implemented the scalable evolution
strategy from the paper we cited throughout this chapter. Furthermore, we tested it on
LunarLander and saw that ES is able to solve the environment with high performance.
Though the results are great, ES used two to three times more steps than AC and
REINFORCE to learn the task. This is the main drawback of ESes: they need a lot of
experience. Despite this, thanks to their capacity to scale linearly to the number of workers,
with enough computational power, you might be able to solve this task in a fraction of the
time compared to reinforcement learning algorithms.

In the next chapter, we'll go back to reinforcement learning and talk about a problem
known as the exploration-exploitation dilemma. We'll see what it is and why it's crucial in
online settings. Then, we'll use a potential solution to the problem to develop a meta-
algorithm called ESBAS, which chooses the most appropriate algorithm for each situation.

Questions
What are two alternative algorithms to reinforcement learning for solving1.
sequential decision-making problems?
What are the processes that give birth to new individuals in evolutionary2.
algorithms?
What is the source of inspiration for evolutionary algorithms such as genetic3.
algorithms?
How does CMA-ES evolve evolution strategies?4.
What's one advantage and one disadvantage of evolution strategies?5.
What's the trick that's used in the Evolution Strategies as a Scalable Alternative to6.
Reinforcement Learning paper to reduce the variance?

Understanding Black-Box Optimization Algorithms Chapter 11

[284]

Further reading
To read the original paper of OpenAI that proposed the scalable version of ES,
that is, the Evolution Strategies as a Scalable Alternative to Reinforcement Learning
paper, go to https:/ /arxiv. org/ pdf/ 1703. 03864. pdf.
To read the paper that presented NEAT, that is, Evolving Neural Networks through
Augmenting Topologies, go to http:/ /nn. cs.utexas. edu/downloads/ papers/
stanley. ec02. pdf.

https://arxiv.org/pdf/1703.03864.pdf
https://arxiv.org/pdf/1703.03864.pdf
https://arxiv.org/pdf/1703.03864.pdf
https://arxiv.org/pdf/1703.03864.pdf
https://arxiv.org/pdf/1703.03864.pdf
https://arxiv.org/pdf/1703.03864.pdf
https://arxiv.org/pdf/1703.03864.pdf
https://arxiv.org/pdf/1703.03864.pdf
https://arxiv.org/pdf/1703.03864.pdf
https://arxiv.org/pdf/1703.03864.pdf
https://arxiv.org/pdf/1703.03864.pdf
https://arxiv.org/pdf/1703.03864.pdf
https://arxiv.org/pdf/1703.03864.pdf
https://arxiv.org/pdf/1703.03864.pdf
https://arxiv.org/pdf/1703.03864.pdf
http://nn.cs.utexas.edu/downloads/papers/stanley.ec02.pdf
http://nn.cs.utexas.edu/downloads/papers/stanley.ec02.pdf
http://nn.cs.utexas.edu/downloads/papers/stanley.ec02.pdf
http://nn.cs.utexas.edu/downloads/papers/stanley.ec02.pdf
http://nn.cs.utexas.edu/downloads/papers/stanley.ec02.pdf
http://nn.cs.utexas.edu/downloads/papers/stanley.ec02.pdf
http://nn.cs.utexas.edu/downloads/papers/stanley.ec02.pdf
http://nn.cs.utexas.edu/downloads/papers/stanley.ec02.pdf
http://nn.cs.utexas.edu/downloads/papers/stanley.ec02.pdf
http://nn.cs.utexas.edu/downloads/papers/stanley.ec02.pdf
http://nn.cs.utexas.edu/downloads/papers/stanley.ec02.pdf
http://nn.cs.utexas.edu/downloads/papers/stanley.ec02.pdf
http://nn.cs.utexas.edu/downloads/papers/stanley.ec02.pdf
http://nn.cs.utexas.edu/downloads/papers/stanley.ec02.pdf
http://nn.cs.utexas.edu/downloads/papers/stanley.ec02.pdf
http://nn.cs.utexas.edu/downloads/papers/stanley.ec02.pdf
http://nn.cs.utexas.edu/downloads/papers/stanley.ec02.pdf
http://nn.cs.utexas.edu/downloads/papers/stanley.ec02.pdf
http://nn.cs.utexas.edu/downloads/papers/stanley.ec02.pdf
http://nn.cs.utexas.edu/downloads/papers/stanley.ec02.pdf

12
Developing the ESBAS

Algorithm
By now, you are capable of approaching RL problems in a systematic and concise way. You
are able to design and develop RL algorithms specifically for the problem at hand and get
the most from the environment. Moreover, in the previous two chapters, you learned about
algorithms that go beyond RL, but that can be used to solve the same set of tasks.

At the beginning of this chapter, we'll present a dilemma that we have already encountered
in many of the previous chapters; namely, the exploration-exploitation dilemma. We have
already presented potential solutions for the dilemma throughout the book (such as the -
greedy strategy), but we want to give you a more comprehensive outlook on the problem,
and a more concise view of the algorithms that solve it. Many of them, such as the upper
confidence bound (UCB) algorithm, are more sophisticated and better than the simple
heuristics that we have used so far, such as the -greedy strategy. We'll illustrate these
strategies on a classic problem, known as multi-armed bandit. Despite being a simple
tabular game, we'll use it as a starting point to then illustrate how these strategies can also
be employed on non-tabular and more complex tasks.

This introduction to the exploration-exploitation dilemma offers a general overview of the
main methods that many recent RL algorithms employ in order to solve very hard
exploration environments. We'll also provide a broader view of the applicability of this
dilemma when solving other kinds of problems. As proof of that, we'll develop a meta-
algorithm called epochal stochastic bandit algorithm selection, or ESBAS, which tackles
the problem of online algorithm selection in the context of RL. ESBAS does this by using the
ideas and strategies that emerged from the multi-armed bandit problem to select the best
RL algorithm that maximizes the expected return on each episode.

Developing the ESBAS Algorithm Chapter 12

[286]

The following topics will be covered in this chapter:

Exploration versus exploitation
Approaches to exploration
Epochal stochastic bandit algorithm selection

Exploration versus exploitation
The exploration-exploitation trade-off dilemma, or exploration-exploitation problem,
affects many important domains. Indeed, it's not only restricted to the RL context, but
applies to everyday life. The idea behind this dilemma is to establish whether it is better to
take the optimal solution that is known so far, or if it's worth trying something new. Let's
say you are buying a new book. You could either choose a title from your favorite author,
or buy a book of the same genre that Amazon is suggesting to you. In the first case, you are
confident about what you're getting, but by selecting the second option, you don't know
what to expect. However, in the latter case, you could be incredibly pleased, and end up
reading a very good book that is indeed better than the one written by your favorite author.

This conflict between exploiting what you have already learned and taking advantage of it
or exploring new options and taking some risks, is very common in reinforcement learning
as well. The agent may have to sacrifice a short-term reward, and explore a new space, in
order to achieve a higher long-term reward in the future.

All this may not sound new to you. In fact, we started dealing with this problem when we
developed the first RL algorithm. Up until now, we have primarily adopted simple
heuristics, such as the -greedy strategy, or followed a stochastic policy to decide whether
to explore or exploit. Empirically, these strategies work very well, but there are some other
techniques that can achieve theoretical optimal performance.

In this chapter, we'll start with an explanation of the exploration-exploitation dilemma from
the ground up, and introduce some exploration algorithms that achieve nearly-optimal
performance on tabular problems. We'll also show how the same strategies can be adapted
to non-tabular and more complex tasks.

Developing the ESBAS Algorithm Chapter 12

[287]

For an RL algorithm, one of the most challenging Atari games to solve is Montezuma's
Revenge, rendered in the following screenshot. The objective of the game is to score points
by gathering jewels and killing enemies. The main character has to find all the keys in order
to navigate the rooms in the labyrinth, and gather the tools that are needed to move
around, while avoiding obstacles. The sparse reward, the long-term horizon, and the partial
rewards, which are not correlated with the end goal, make the game very challenging for
every RL algorithm. Indeed, these four characteristics make Montezuma's Revenge one of
the best environments for testing exploration algorithms:

Screenshot of Montezuma's Revenge

Let's start from the ground up, in order to give a complete overview of this area.

Multi-armed bandit
The multi-armed bandit problem is the classic RL problem that is used to illustrate the
exploration-exploitation trade-off dilemma. In the dilemma, an agent has to choose from a
fixed set of resources, in order to maximize the expected reward. The name multi-armed
bandit comes from a gambler that is playing multiple slot machines, each with a stochastic
reward from a different probability distribution. The gambler has to learn the best strategy
in order to achieve the highest long-term reward.

Developing the ESBAS Algorithm Chapter 12

[288]

This situation is illustrated in the following diagram. In this particular example, the
gambler (the ghost) has to choose one of the five slot machines, all with different and
unknown reward probabilities, in order to win the highest amount of money:

Example of a five-armed bandit problem

If you are questioning how the multi-armed bandit problem relates to more interesting
tasks such as Montezuma's Revenge, the answer is that they are all about deciding whether,
in the long run, the highest reward is yielded when new behaviors are attempted (pulling a
new arm), or when continuing to do the best thing done so far (pulling the best-known
arm). However, the main difference between the multi-armed bandit and Montezuma's
Revenge is that, in the latter, the state of the agent changes every time. In the multi-armed
bandit problem, there's only one state, and there's no sequential structure, meaning that
past actions will not influence the future.

So, how can we find the right balance between exploration and exploitation in the multi-
armed bandit problem?

Developing the ESBAS Algorithm Chapter 12

[289]

Approaches to exploration
Put simply, the multi-armed bandit problem, and in general every exploration problem, can
be solved either through random strategies, or through smarter techniques. The most
notorious algorithm that belongs to the first category, is called -greedy; whereas optimistic
exploration, such as UCB, and posterior exploration, such as Thompson sampling, belong
to the second category. In this section, we'll take a look particularly at the -greedy and
UCB strategies.

It's all about balancing the risk and the reward. But, how can we measure the quality of an
exploration algorithm? Through regret. Regret is defined as the opportunity lost in one step
that is, the regret, , at time, , is as follows:

Here, denotes the optimal value, and the action-value of .

Thus, the goal is to find a trade-off between exploration and exploitation, by minimizing
the total regret over all the actions:

Note that the minimization of the total regret is equivalent to the maximization of the
cumulative reward. We'll use this idea of regret to show how exploration algorithms
perform.

The ∈-greedy strategy
We have already expanded the ideas behind the -greedy strategy and implemented it to
help our exploration in algorithms such as Q-learning and DQN. It is a very simple
approach, and yet it achieves very high performance in non-trivial jobs as well. This is the
main reason behind its widespread use in many deep learning algorithms.

To refresh your memory, -greedy takes the best action most of the time, but from time to
time, it selects a random action. The probability of choosing a random action is dictated by
the value, which ranges from 0 to 1. That is, with probability, the algorithm will exploit
the best action, and with probability, it will explore the alternatives with a random
selection.

Developing the ESBAS Algorithm Chapter 12

[290]

In the multi-armed bandit problem, the action values are estimated based on past
experiences, by averaging the reward obtained by taking those actions:

In the preceding equation, is the number of times that the action has been picked,
and is a Boolean that indicates whether at time , action has been chosen. The bandit
will then act according to the -greedy algorithm, and explore by choosing a random action,
or exploit by picking the action with the higher value.

A drawback of -greedy, is that it has an expected linear regret. But, for the law of large
numbers, the optimal expected total regret should be logarithmic to the number of
timesteps. This means that the -greedy strategy isn't optimal.

A simple way to reach optimality involves the use of an value that decays as time goes by.
By doing this, the overall weight of the exploration will vanish, until only greedy actions
will be chosen. Indeed, in deep RL algorithms -greedy is almost always combined with a
linear, or exponential decay of .

That being said, and its decay rate is difficult to choose, and there are other strategies that
solve the multi-armed bandit problem optimally.

The UCB algorithm
The UCB algorithm is related to a principle known as optimism in the face of uncertainty,
a statistics-based principle based on the law of large numbers. UCB constructs an optimistic
guess, based on the sample mean of the rewards, and on the estimation of the upper
confidence bound of the reward. The optimistic guess determines the expected pay-off of
each action, also taking into consideration the uncertainty of the actions. Thus, UCB is
always able to pick the action with the higher potential reward, by balancing the risk and
the reward. Then, the algorithm switches to another one when the optimistic estimate of the
current action is lower than the others.

Specifically, UCB keeps track of the average reward of each action with , and the
UCB (hence the name) for each action. Then, the algorithm picks the arm which maximizes
the following:

 (12.1)

Developing the ESBAS Algorithm Chapter 12

[291]

In this formula, the role of is to provide an additional argument to the average reward
that accounts for the uncertainty of the action.

UCB1
UCB1 belongs to the UCB family, and its contribution is in the selection of .

In UCB1, the UCB is computed by keeping track of the number of times an action, (),
has been selected, along with , and the total number of actions that are selected with ,
as represented in the following formula:

 (12.2)

The uncertainty of an action, is thus related to the number of times it has been selected. If
you think about it, this makes sense as, according to the law of large numbers, with an
infinite number of trials, you'd be sure about the expected value. On the contrary, if you
tried an action only a few times, you'd be uncertain about the expected reward, and only
with more experience, would you be able to say whether it is a good or a bad action.
Therefore, we'll incentivize the exploration of actions that have been chosen only few times,
and that therefore have a high uncertainty. The main takeaway is that if is small,
meaning that the action has been experienced only occasionally, then will be large,
with an overall high uncertain estimate. However, if is large, then will be small,
and the estimate will be accurate. We'll then follow only if it has a high mean reward.

The main advantage of UCB compared to -greedy, is actually due to the counting of the
actions. Indeed, the multi-armed bandit problem can be easily solved with this method, by
keeping a counter for each action that is taken, and its average reward. These two pieces of
information can be integrated into formula (12.1) and formula (12.2), in order to get the best
action to take at time (); that is:

 (12.3)

Developing the ESBAS Algorithm Chapter 12

[292]

UCB is a very powerful method for exploration, and it achieves a logarithmic expected total
regret on the multi-armed bandit problem, therefore reaching an optimal trend. It is worth
noting that -greedy exploration could also obtain a logarithmic regret, but it would
require careful design, together with a finely-tuned exponential decay, and thus it would be
harder to balance.

There are additional variations of UCB, such as UCB2, UCB-Tuned, and
KL-UCB.

Exploration complexity
We saw how UCB, and in particular UCB1, can reduce the overall regret and accomplish an
optimal convergence on the multi-armed bandit problem with a relatively easy algorithm.
However, this is a simple stateless task.

So, how will UCB perform on more complex tasks? To answer this question, we can
oversimplify the division and group all of the problems in these three main categories:

Stateless problems: An instance of these problems is the multi-armed bandit.
The exploration in such cases can be handled with a more sophisticated
algorithm, such as UCB1.
Small-to-medium tabular problems: As a basic rule, exploration can still be
approached with more advanced mechanisms, but in some cases, the overall
benefit is small, and is not worth the additional complexity.
Large non-tabular problems: We are now in more complex environments. In
these settings, the outlook isn't yet well defined, and researchers are still actively
working to find the best exploration strategy. The reason for this is that as the
complexity increases, optimal methods such as UCB are intractable. For example,
UCB cannot deal with problems with continuous states. However, we don't have
to throw everything away, and we can use the exploration algorithms that were
studied in the multi-armed bandit context as inspiration. That said, there are
many approaches that approximate optimal exploration methods, and that work
well in continuous environments, as well. For example, counting-based
approaches, such as UCB, have been adapted with infinite state problems, by
providing similar counts for similar states. An algorithm of these has also been
capable of achieving significant improvement in very difficult environments,
such as Montezuma's Revenge. Still, in the majority of RL contexts, the additional
complexity that these more complex approaches involve is not worth it, and
simpler random strategies such as -greedy work just fine.

Developing the ESBAS Algorithm Chapter 12

[293]

It's also worth noting that, despite the fact that we outlined only a count-
based approach to exploration such as UCB1, there are two other
sophisticated ways in which to deal with exploration, which achieve
optimal value in regret. The first is called posterior sampling (an example
of this is Thompson sampling), and is based on a posterior distribution,
and the second is called information gain, and relies upon an internal
measurement of the uncertainty through the estimation of entropy.

Epochal stochastic bandit algorithm
selection
The main use of exploration strategies in reinforcement learning is to help the agent in the
exploration of the environment. We saw this use case in DQN with -greedy, and in other
algorithms with the injection of additional noise into the policy. However, there are other
ways of using exploration strategies. So, to better grasp the exploration concepts that have
been presented so far, and to introduce an alternative use case of these algorithms, we will
present and develop an algorithm called ESBAS. This algorithm was introduced in the
paper, Reinforcement Learning Algorithm Selection.

ESBAS is a meta-algorithm for online algorithm selection (AS) in the context of
reinforcement learning. It uses exploration methods in order to choose the best algorithm to
employ during a trajectory, so as to maximize the expected reward.

In order to better explain ESBAS, we'll first explain what algorithm selection is and how it
can be used in machine learning and reinforcement learning. Then, we'll focus on ESBAS,
and give a detailed description of its inner workings, while also providing its pseudocode.
Finally, we'll implement ESBAS and test it on an environment called Acrobot.

Unboxing algorithm selection
To better understand what ESBAS does, let's first focus on what algorithm selection (AS) is.
In normal settings, a specific and fixed algorithm is developed and trained for a given task.
The problem is that if the dataset changes over time, the dataset overfits, or another
algorithm works better in some restricted contexts, there's no way of changing it. The
chosen algorithm will remain the same forever. The task of algorithm selection overcomes
this problem.

Developing the ESBAS Algorithm Chapter 12

[294]

AS is an open problem in machine learning. It is about designing an algorithm called a
meta-algorithm that always chooses the best algorithm from a pool of different options,
called a portfolio, which is based on current needs. A representation of this is shown in the
following diagram. AS is based on the assumption that different algorithms in the portfolio
will outperform the others in different parts of the problem space. Thus, it is important to
have algorithms with complementary capabilities.

For example, in the following diagram, the meta-algorithm chooses which algorithm (or
agent) among those available in the portfolio (such as PPO and TD3) will act on the
environment at a given moment. These algorithms are not complementary to each other,
but each one provides different strengths that the meta-algorithm can choose in order to
better perform in a specific situation:

Representation of an algorithm selection method for RL

For example, if the task involves designing a self-driving car that drives on all kinds of
terrains, then it may be useful to train one algorithm that is capable of amazing
performance on the road, in the desert, and on ice. Then, AS could intelligently choose
which one of these three versions to employ in each situation. For instance, AS may find
that on rainy days, the policy that has been trained on ice works better than the others.

In RL, the policy changes with a very high frequency, and the dataset increases
continuously over time. This means that there can be big differences in the optimal neural
network size and the learning rate between the starting point, when the agent is in an
embryonic state, compared to the agent in an advanced state. For example, an agent may
start learning with a high learning rate, and decrease it as more experience is accumulated.
This highlights how RL is a very interesting playground for algorithm selection. For this
reason, that's exactly where we'll test our AS.

Developing the ESBAS Algorithm Chapter 12

[295]

Under the hood of ESBAS
The paper that proposes ESBAS, tests the algorithm on batch and online settings. However,
in the remainder of the chapter, we'll focus primarily on the former. The two algorithms are
very similar, and if you are interested in the pure online version, you can find a further
explanation of it in the paper. The AS in true online settings is renamed as sliding
stochastic bandit AS (SSBAS), as it learns from a sliding window of the most recent
selections. But let's start from the foundations.

The first thing to say about ESBAS, is that it is based on the UCB1 strategy, and that it uses
this bandit-style selection for choosing an off-policy algorithm from the fixed portfolio. In
particular, ESBAS can be broken down into three main parts that work as follows:

It cycles across many epochs of exponential size. Inside each epoch, the first thing1.
that it does is update all of the off-policy algorithms that are available in the
portfolio. It does this using the data that has been collected until that point in
time (at the first epoch the dataset will be empty). The other thing that it does, is
reset the meta-algorithm.
Then, during the epoch, the meta-algorithm computes the optimistic guess,2.
following the formula (12.3), in order to choose the off-policy algorithm (among
those in the portfolio) that will control the next trajectory, so as to minimize the
total regret. The trajectory is then run with that algorithm. Meanwhile, all the
transitions of the trajectory are collected and added to the dataset that will be
later used by the off-policy algorithms to train the policies.
When a trajectory has come to an end, the meta-algorithm updates the mean3.
reward of that particular off-policy algorithm with the RL return that is obtained
from the environment, and increases the number of occurrences. The average
reward, and the number of occurrences, will be used by UCB1 to compute the
UCB, as from formula (12.2). These values are used to choose the next off-policy
algorithm that will roll out the next trajectory.

To give you a better view of the algorithm, we also provided the pseudocode of ESBAS in
the code block, here:

ESBAS

Initialize policy for every algorithm in the portfolio
Initialize empty dataset

Developing the ESBAS Algorithm Chapter 12

[296]

for do
 for in do

 Learn policy on with algortihm

 Initialize AS variables: and for every :

 for do
 > Select the best algorithm according to UCB1

 Generate trajectory with policy and add transitions to
 > Update the average return and the counter of

 (12.4)

Here, is a hyperparameter, is the RL return obtained during the trajectory, is the
counter of algorithm , and is its mean return.

As explained in the paper, online AS addresses four practical problems that are inherited
from RL algorithms:

Sample efficiency: The diversification of the policies provides an additional1.
source of information that makes ESBAS sample efficient. Moreover, it combines
properties from curriculum learning and ensemble learning.
Robustness: The diversification of the portfolio provides robustness against bad2.
algorithms.
Convergence: ESBAS guarantees the minimization of the regret.3.
Curriculum learning: AS is able to provide a sort of curriculum strategy,4.
for example, by choosing easier, shallow models at the beginning, and deep
models toward the end.

Implementation
The implementation of ESBAS is easy, as it involves the addition of only a few components.
The most substantial part is in the definition and the optimization of the off-policy
algorithms of the portfolio. Regarding these, ESBAS does not bind the choice of the
algorithms. In the paper, both Q-learning and DQN are used. We have decided to use
DQN, so as to provide an algorithm that is capable of dealing with more complex tasks that
can be used with environments with the RGB state space. We went through DQN in great
detail in Chapter 5, Deep Q-Network, and for ESBAS, we'll use the same implementation.

Developing the ESBAS Algorithm Chapter 12

[297]

The last thing that we need to specify before going through the implementation is the
portfolio's composition. We created a diversified portfolio, as regards the neural network
architecture, but you can try with other combinations. For example, you could compose the
portfolio with DQN algorithms of different learning rates.

The implementation is divided as follows:

The DQN_optimization class builds the computational graph, and optimizes a
policy with DQN.
The UCB1 class defines the UCB1 algorithm.
The ESBAS function implements the main pipeline for ESBAS.

We'll provide the implementation of the last two bullet points, but you can find the full
implementation on the GitHub repository of the book: https:/ /github. com/
PacktPublishing/Reinforcement- Learning- Algorithms- with- Python.

Let's start by going through ESBAS(..). Besides the hyperparameters of DQN, there's only
an additional xi argument that represents the hyperparameter. The main outline of the
ESBAS function is the same as the pseudocode that was given previously, so we can quickly
go through it.

After having defined the function with all the arguments, we can reset the default graph of
TensorFlow, and create two Gym environments (one for training, and one for testing). We
can then create the portfolio, by instantiating a DQN_optimization object for each of the
neural network sizes, and appending them on a list:

def ESBAS(env_name, hidden_sizes=[32], lr=1e-2, num_epochs=2000,
buffer_size=100000, discount=0.99, render_cycle=100,
update_target_net=1000, batch_size=64, update_freq=4, min_buffer_size=5000,
test_frequency=20, start_explor=1, end_explor=0.1, explor_steps=100000,
xi=16000):
 tf.reset_default_graph()

 env = gym.make(env_name)
 env_test = gym.wrappers.Monitor(gym.make(env_name),
"VIDEOS/TEST_VIDEOS"+env_name+str(current_milli_time()),force=True,
video_callable=lambda x: x%20==0)
 dqns = []
 for l in hidden_sizes:
 dqns.append(DQN_optimization(env.observation_space.shape,
env.action_space.n, l, lr, discount))

https://github.com/PacktPublishing/Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Reinforcement-Learning-Algorithms-with-Python
https://github.com/PacktPublishing/Hands-On-Reinforcement-Learning-Algorithms-with-Python

Developing the ESBAS Algorithm Chapter 12

[298]

Now, we define an inner function, DQNs_update, that trains the policies in the portfolio in
a DQN way. Take into consideration that all the algortihms in the portfolio are DQN, and
that the only difference is in their neural network size. The optimization is done by the
optimize and update_target_network methods of the DQN_optimization class:

 def DQNs_update(step_counter):
 if len(buffer) > min_buffer_size and (step_counter % update_freq ==
0):
 mb_obs, mb_rew, mb_act, mb_obs2, mb_done =
buffer.sample_minibatch(batch_size)
 for dqn in dqns:
 dqn.optimize(mb_obs, mb_rew, mb_act, mb_obs2, mb_done)
 if len(buffer) > min_buffer_size and (step_counter %
update_target_net == 0):
 for dqn in dqns:
 dqn.update_target_network()

As always, we need to initialize some (self-explanatory) variables: resetting the
environment, instantiating an object of ExperienceBuffer (using the same classes that we
used in others chapters), and setting up the exploration decay:

 step_count = 0
 batch_rew = []
 episode = 0
 beta = 1
 buffer = ExperienceBuffer(buffer_size)
 obs = env.reset()
 eps = start_explor
 eps_decay = (start_explor - end_explor) / explor_steps

We can finally start the loop that iterates across the epochs. As for the preceding
pseudocode, during each epoch, the following things occur:

The policies are trained on the experience buffer1.
The trajectories are run by the policy that is chosen by UCB12.

The first step is done by invoking DQNs_update, which we defined earlier, for the entire
length of the epoch (which has an exponential length):

 for ep in range(num_epochs):
 # policies training
 for i in range(2**(beta-1), 2**beta):
 DQNs_update(i)

Developing the ESBAS Algorithm Chapter 12

[299]

With regard to the second step, just before the trajectories are run, a new object of the UCB1
class is instantiated and initialized. Then, a while loop iterates over the episodes of
exponential size, inside of which, the UCB1 object chooses which algorithm will run the next
trajectory. During the trajectory, the actions are selected by dqns[best_dqn]:

 ucb1 = UCB1(dqns, xi)
 list_bests = []
 beta += 1
 ep_rew = []

 while step_count < 2**beta:
 best_dqn = ucb1.choose_algorithm()
 list_bests.append(best_dqn)

 g_rew = 0
 done = False

 while not done:
 # Epsilon decay
 if eps > end_explor:
 eps -= eps_decay

 act = eps_greedy(np.squeeze(dqns[best_dqn].act(obs)),
eps=eps)
 obs2, rew, done, _ = env.step(act)
 buffer.add(obs, rew, act, obs2, done)

 obs = obs2
 g_rew += rew
 step_count += 1

After each rollout, ucb1 is updated with the RL return that was obtained in the last
trajectory. Moreover, the environment is reset, and the reward of the current trajectory is
appended to a list in order to keep track of all the rewards:

 ucb1.update(best_dqn, g_rew)

 obs = env.reset()
 ep_rew.append(g_rew)
 g_rew = 0
 episode += 1

That's all for the ESBAS function.

Developing the ESBAS Algorithm Chapter 12

[300]

UCB1 is made up of a constructor that initializes the attributes that are needed for
computing (12.3); a choose_algorithm() method that returns the current best algorithm
among the ones in the portfolio, as in (12.3); and update(idx_algo, traj_return) ,
which updates the average reward of the idx_algo algorithm with the last reward that
was obtained, as understood from (12.4). The code is as follows:

class UCB1:
 def __init__(self, algos, epsilon):
 self.n = 0
 self.epsilon = epsilon
 self.algos = algos
 self.nk = np.zeros(len(algos))
 self.xk = np.zeros(len(algos))

 def choose_algorithm(self):
 return np.argmax([self.xk[i] + np.sqrt(self.epsilon *
np.log(self.n) / self.nk[i]) for i in range(len(self.algos))])

 def update(self, idx_algo, traj_return):
 self.xk[idx_algo] = (self.nk[idx_algo] * self.xk[idx_algo] +
traj_return) / (self.nk[idx_algo] + 1)
 self.nk[idx_algo] += 1
 self.n += 1

With the code at hand, we can now test it on an environment and see how it performs.

Solving Acrobot
We'll test ESBAS on yet another Gym environment—Acrobot-v1. As described in the
OpenAI Gym documentation, the Acrobot system includes two joints and two links, where the
joint between the two links is actuated. Initially, the links are hanging downward, and the goal is to
swing the end of the lower link up to a given height. The following diagram shows the
movement of the acrobot in a brief sequence of timesteps, from the start to an end position:

Sequence of the acrobot's movement

Developing the ESBAS Algorithm Chapter 12

[301]

The portfolio comprises three deep neural networks of different sizes. One small neural
network with only one hidden layer of size 64, one medium neural network with two
hidden layers of size 16, and a large neural network with two hidden layers of size 64.
Furthermore, we set the hyperparameter of (the same value that is used in the
paper).

Results
The following diagram shows the results. This plot presents both the learning curve of
ESBAS: the complete portfolio (comprising the three neural networks that were listed
previously) in the darker shade; and the learning curve of ESBAS, with only one best
performing neural network (a deep neural network with two hidden layers of size 64) in
orange. We know that ESBAS with only one algorithm in the portfolio will not really
leverage the potential of the meta-algorithm, but we introduced it in order to have a
baseline with which to compare the results. The plot speaks for itself, showing the blue line
always above the orange, thus proving that ESBAS actually chooses the best available
option. The unusual shape is due to the fact that we are training the DQN algorithms
offline:

The performance of ESBAS with a portfolio of three algorithms in a dark shade, and with only one algorithm in a lighter shade

Developing the ESBAS Algorithm Chapter 12

[302]

For all the color references mentioned in the chapter, please refer to the
color images bundle at http:/ /www. packtpub. com/sites/ default/ files/
downloads/ 9781789131116_ ColorImages. pdf.

Also, the spikes that you see at the start of the training, and then at around steps, 20K, 65K,
and, 131K, are the points at which the policies are trained, and the meta-algorithm is reset.

We can now ask ourselves at which point in time ESBAS prefers one algorithm, compared
to the others. The answer is shown in the plot of the following diagram. In this plot, the
small neural network is characterized by the value 0, the medium one by the value 1, and
the large by the value 2. The dots show the algorithms that are chosen on each trajectory.
We can see that, right at the beginning, the larger neural network is preferred, but that this
immediately changes toward the medium, and then to the smaller one. After about 64K
steps, the meta-algorithm switches back to the larger neural network:

The plot shows the preferences of the meta-algorithm

http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf

Developing the ESBAS Algorithm Chapter 12

[303]

From the preceding plot, we can also see that both of the ESBAS versions converge to the
same values, but with very different speeds. Indeed, the version of ESBAS that leverages
the true potential of AS (that is, the one with three algorithms in the portfolio) converges
much faster. Both converge to the same values because, in the long run, the best neural
network is the one that is used in the ESBAS version with the single option (the deep neural
network with two hidden layers of size 64).

Summary
In this chapter, we addressed the exploration-exploitation dilemma. This problem has
already been tackled in previous chapters, but only in a light way, by employing simple
strategies. In this chapter, we studied this dilemma in more depth, starting from the
notorious multi-armed bandit problem. We saw how more sophisticated counter-based
algorithms, such as UCB, can actually reach optimal performance, and with the expected
logarithmic regret.

We then used exploration algorithms for AS. AS is an interesting application of exploratory
algorithms, because the meta-algorithm has to choose the algorithm that best performs the
task at hand. AS also has an outlet in reinforcement learning. For example, AS can be used
to pick the best policy that has been trained with different algorithms from the portfolio, in
order to run the next trajectory. That's also what ESBAS does. It tackles the problem of the
online selection of off-policy RL algorithms by adopting UCB1. We studied and
implemented ESBAS in depth.

Now, you know everything that is needed to design and develop highly performant RL
algorithms that are capable of balancing between exploration and exploitation. Moreover,
in the previous chapters, you have acquired the skills that are needed in order to
understand which algorithm to employ in many different landscapes. However, until now,
we have overlooked some more advanced RL topics and issues. In the next and final
chapter, we'll fill these gaps, and talk about unsupervised learning, intrinsic motivation, RL
challenges, and how to improve the robustness of algorithms. We will also see how it's
possible to use transfer learning to switch from simulations to reality. Furthermore, we'll
give some additional tips and best practices for training and debugging deep reinforcement
learning algorithms.

Developing the ESBAS Algorithm Chapter 12

[304]

Questions
What's the exploration-exploitation dilemma?1.
What are two exploration strategies that we have already used in previous RL2.
algorithms?
What's UCB?3.
Which problem is more difficult to solve: Montezuma's Revenge or the multi-4.
armed bandit problem?
How does ESBAS tackle the problem of online RL algorithm selection?5.

Further reading
For a more comprehensive survey about the multi-armed bandit problem, read A
Survey of Online Experiment Design with Stochastic Multi-Armed Bandit: https:/ /
arxiv.org/ pdf/ 1510. 00757. pdf.

For reading the paper that leverages intrinsic motivation for playing
Montezuma's Revenge, refer to Unifying Count-Based Exploration and Intrinsic
Motivation: https:/ / arxiv. org/ pdf/1606. 01868. pdf.

For the original ESBAS paper, follow this link: https:/ /arxiv. org/ pdf/ 1701.
08810.pdf.

https://arxiv.org/pdf/1510.00757.pdf
https://arxiv.org/pdf/1510.00757.pdf
https://arxiv.org/pdf/1510.00757.pdf
https://arxiv.org/pdf/1510.00757.pdf
https://arxiv.org/pdf/1510.00757.pdf
https://arxiv.org/pdf/1510.00757.pdf
https://arxiv.org/pdf/1510.00757.pdf
https://arxiv.org/pdf/1510.00757.pdf
https://arxiv.org/pdf/1510.00757.pdf
https://arxiv.org/pdf/1510.00757.pdf
https://arxiv.org/pdf/1510.00757.pdf
https://arxiv.org/pdf/1510.00757.pdf
https://arxiv.org/pdf/1510.00757.pdf
https://arxiv.org/pdf/1510.00757.pdf
https://arxiv.org/pdf/1510.00757.pdf
https://arxiv.org/pdf/1606.01868.pdf
https://arxiv.org/pdf/1606.01868.pdf
https://arxiv.org/pdf/1606.01868.pdf
https://arxiv.org/pdf/1606.01868.pdf
https://arxiv.org/pdf/1606.01868.pdf
https://arxiv.org/pdf/1606.01868.pdf
https://arxiv.org/pdf/1606.01868.pdf
https://arxiv.org/pdf/1606.01868.pdf
https://arxiv.org/pdf/1606.01868.pdf
https://arxiv.org/pdf/1606.01868.pdf
https://arxiv.org/pdf/1606.01868.pdf
https://arxiv.org/pdf/1606.01868.pdf
https://arxiv.org/pdf/1606.01868.pdf
https://arxiv.org/pdf/1606.01868.pdf
https://arxiv.org/pdf/1606.01868.pdf
https://arxiv.org/pdf/1606.01868.pdf
https://arxiv.org/pdf/1701.08810.pdf
https://arxiv.org/pdf/1701.08810.pdf
https://arxiv.org/pdf/1701.08810.pdf
https://arxiv.org/pdf/1701.08810.pdf
https://arxiv.org/pdf/1701.08810.pdf
https://arxiv.org/pdf/1701.08810.pdf
https://arxiv.org/pdf/1701.08810.pdf
https://arxiv.org/pdf/1701.08810.pdf
https://arxiv.org/pdf/1701.08810.pdf
https://arxiv.org/pdf/1701.08810.pdf
https://arxiv.org/pdf/1701.08810.pdf
https://arxiv.org/pdf/1701.08810.pdf
https://arxiv.org/pdf/1701.08810.pdf
https://arxiv.org/pdf/1701.08810.pdf

13
Practical Implementation for

Resolving RL Challenges
In this chapter, we will wrap up some of the concepts behind deep reinforcement learning
(deep RL) algorithms that we explained in the previous chapters to give you a broad view
of their use and establish a general rule for choosing the most suitable one for a given
problem. Moreover, we will propose some guidelines so that you can start the development
of your own deep RL algorithm. This guideline shows the steps you need to take from the
start of development so that you can easily experiment without losing too much time on
debugging. In the same section, we also list the most important hyperparameters to tune
and additional normalization processes to take care of.

Then, we'll address the main challenges of this field by addressing issues such as stability,
efficiency, and generalization. We'll use these three main problems as a pivotal point to
transition to more advanced reinforcement learning techniques such as unsupervised RL
and transfer learning. Unsupervised RL and transfer learning are of fundamental
importance for deploying and solving demanding RL tasks. This is because they are
techniques that address the three challenges we mentioned previously.

We will also look into how we can apply RL to real-world problems and how RL
algorithms can be used for bridging the gap between simulation and the real world.

To conclude this chapter and this book as a whole, we'll discuss the future of reinforcement
learning from both a technical and social perspective.

Practical Implementation for Resolving RL Challenges Chapter 13

[306]

The following topics will be covered in this chapter:

Best practices of deep RL
Challenges in deep RL
Advanced techniques
RL in the real world
Future of RL and its impact on society

Best practices of deep RL
Throughout this book, we covered plenty of reinforcement learning algorithms, some of
which are only upgrades (for example TD3, A2C, and so on), while others were
fundamentally different from the others (such as TRPO and DPG) and propose an
alternative way to reach the same objective. Moreover, we addressed non-RL optimization
algorithms such as imitation learning and evolution strategies to solve sequential decision-
making tasks. All of these alternatives may have created confusion and you may not know
exactly which algorithm is best for a particular problem. If that is the case, don't worry, as
we'll now go through some rules that you can use in order to decide which is the best
algorithm to use for a given task.

Also, if you implemented some of the algorithms we went through in this book, you might
find it hard to put all the pieces together to make the algorithm work properly. Deep RL
algorithms are notoriously difficult to debug and train, and the training time is very long.
As a result, the whole training process is very slow and arduous. Luckily, there are a few
strategies that you can adopt that will prevent some terrible headaches while developing
deep RL algorithms. But before looking at what these strategies are, let's deal with choosing
the appropriate algorithm.

Choosing the appropriate algorithm
The main driving force that differentiates the various types of RL algorithms is sample
efficiency and training time.

Practical Implementation for Resolving RL Challenges Chapter 13

[307]

We consider sample efficiency as the number of interactions with the
environment that an agent has to make in order to learn the task. The
numbers that we'll provide are an indication of the efficiency of the
algorithm and are measured with respect to other algorithms on typical
environments.

Clearly, there are other parameters that influence this choice, but usually, they have a
minor impact and are of less importance. Just to give you an idea, the other parameters to
be evaluated are the availability of CPUs and GPUs, the type of reward function, the
scalability, and the complexity of the algorithm, as well as that of the environment.

For this comparison, we will take into consideration gradient-free black-box algorithms
such as evolution strategies, model-based RL such as DAgger, and model-free RL. Of the
latter, we will differentiate between policy gradient algorithms such as DDPG and TRPO
and value-based algorithms such as DQN.

The following diagram shows the data efficiency of these four categories of algorithms
(note that the leftmost methods are less sample efficient than the rightmost methods). In
particular, the efficiency of the algorithm increases as you move to the right of the diagram.
So, you can see that gradient-free methods are those that require more data points from the
environment, followed by policy gradient methods, value-based methods, and finally
model-based RL, which are the most sample efficient:

Figure 13.1. Sample efficiency comparison between model-based RL methods, policy gradient algorithms, value-based algorithms, and gradient-free algorithms (the leftmost
methods are less efficient than the rightmost methods)

Conversely, the training time of these algorithms is inversed related to their sample
efficiency. This relationship is summarized in the following diagram (note that the leftmost
methods are slower to train than the rightmost methods). We can see that Model-based
algorithms are way slower to train than Value-based algorithms, almost by a factor of 5,
which in turn almost quintuples the time of policy gradient algorithms, which are about
5x slower to train than gradient-free methods.

Practical Implementation for Resolving RL Challenges Chapter 13

[308]

Be aware that these numbers are just to highlight the average case, and the training time is
only related to the speed at which the algorithm is trained, and not to the time needed to
acquire new transitions from the environment:

Figure 13.2. Training time efficiency comparison between model-based RL methods, policy gradient algorithms, value-based algorithms, and gradient-free algorithms (the leftmost
methods are slower to train than the rightmost methods)

We can see that the sample efficiency of an algorithm is complementary to its training time,
meaning that an algorithm that is data efficient is slow to train and vice versa. Thus,
because the overall learning time of an agent takes into account both the training time and
the speed of the environment, you have to find a trade-off between sample efficiency and
training time that meet your needs. In fact, the main purpose of model-based and more
efficient model-free algorithms is to reduce the number of steps with the environment so
that these algorithms are easier to deploy and train in the real world, where the interactions
are slower than in simulators.

From zero to one
Once you have defined the algorithm that best fits your needs, whether that's one of the
well-known algorithms or a new one, you have to develop it. As you saw throughout this
book, reinforcement learning algorithms don't have much in common with supervised
learning algorithms. For this reason, there are different aspects that are worth pointing out
in order to facilitate the debugging, experimentation, and tuning of the algorithm:

Start with easy problems: Initially, you would want to experiment with a
workable version of the code as fast as possible. However, it would be advisable
to gradually proceed with increasingly complex environments. This will greatly
help to reduce the overall training and debugging time. Let me present an
example. You can start with CartPole-v1 or RoboschoolInvertedPendulum-v1 if
you need a discrete or continuous environment, respectively. Then, you can
move to a medium-complexity environment such as RoboschoolHopper-v1,
LunarLander-v2, or a related environment with RGB images. At this point, you
should have a bug-free code that you can finally train and tune on your final
task. Moreover, you should be as familiar as possible with the easier tasks so that
you know what to look for if something is not working.

Practical Implementation for Resolving RL Challenges Chapter 13

[309]

Training is slow: Training deep reinforcement learning algorithms takes time
and the learning curve can follow any kind of shape. As we saw in the previous
chapters, the learning curves (that is, the cumulative reward of the trajectories
with respect to the number of steps) can resemble a logarithm function, a
hyperbolic tangent function, as shown in the following diagram, or a more
complex function. The possible shapes depend on the reward function, its
sparsity, and the complexity of the environment. If you are working on a new
environment and you don't know what to expect, the suggestion here is to be
patient and leave it running until you are sure that the progress has stopped.
Also, don't get too involved with the plots while training.

Develop some baselines: For new tasks, the suggestion is to develop at least two
baselines so that you can compare your algorithm with them. One baseline could
simply be a random agent, with the other being an algorithm such as
REINFORCE or A2C. These baselines can then be used as a lower bound for
performance and efficiency.
Plots and histograms: To monitor the progress of the algorithm and to help
during the debugging phase, an important factor is to plot and display
histograms of key parameters such as the loss function, the cumulative reward,
the actions (if possible), the length of the trajectories, the KL penalty, the entropy,
and the value function. In addition to plotting the means, you can add the
minimum and maximum values and the standard deviation. In this book, we
primarily used TensorBoard to visualize this information, but you can use any
tool you want.
Use multiple seeds: Deep reinforcement learning embeds stochasticity both in
the neural networks and in the environments, which often makes the results
incoherent between different runs. So, to ensure consistency and stability, it's
better to use multiple random seeds.
Normalization: Depending on the design of the environment, it could be helpful
to normalize the rewards, the advantage, and the observations. The advantage
values (for example, in TRPO and PPO) can be normalized in a batch to have a
mean of 0 and a standard deviation of 1. Additionally, the observations can be
normalized using a set of initial random steps. Instead, the rewards can be
normalized by a running estimate of the mean and standard deviation of the
discounted or undiscounted reward.

Practical Implementation for Resolving RL Challenges Chapter 13

[310]

Hyperparameter tuning: Hyperparameters change a lot based on the class and
type of algorithm. For example, value-based methods have multiple distinct
hyperparameters compared to policy gradients, but also instances of these classes
such as TRPO and PPO have many unique hyperparameters. That being said, for
each algorithm that was introduced throughout this book, we specified the
hyperparameters that were used and the most important ones to tune. Among
them, there are at least two hyperparameters that are used by all the RL
algorithms: learning rate and discount factor. The former is slightly less
important than in supervised learning, but nevertheless, it remains one of the
first hyperparameters to tune so that we have a working algorithm. The discount
factor is unique to RL algorithms. The introduction of a discount factor may
introduce bias as it modifies the objective function. However, in practice, it
produces a better policy. Thus, to a certain degree, the shorter the horizon, the
better it is, as it reduces instability:

Figure 13.3. Example of a logarithmic and hyperbolic tangent function

For all the color references mentioned in the chapter, please refer to the
color images bundle at http:/ /www. packtpub. com/sites/ default/ files/
downloads/ 9781789131116_ ColorImages. pdf.

Adopt these techniques and you'll be able to train, develop, and deploy your algorithms
much more easily. Furthermore, you'll have algorithms that are more stable and robust.

http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789131116_ColorImages.pdf

Practical Implementation for Resolving RL Challenges Chapter 13

[311]

Having a critical view and understanding of the drawbacks of deep reinforcement learning
is a key factor when it comes to actually pushing the boundaries on what RL algorithms can
do to design better state-of-the-art algorithms. In the following section, we'll present the
main challenges of deep RL in a more concise view.

Challenges in deep RL
The efforts that have been put into the research of reinforcement learning algorithms in
recent years has been huge. Especially since the introduction of the deep neural network as
a function approximation, the advancement and results have been outstanding. Yet some
major issues remain unsolved. These limit the applicability of RL algorithms to more
extensive and interesting tasks. We are talking about the issues of stability, reproducibility,
efficiency, and generalization, although scalability and the exploration problem could be
added to this list.

Stability and reproducibility
Stability and reproducibility are somehow interconnected with each other as the goal is to
design an algorithm that is capable of consistency across multiple runs and that is not too
invariant to small tweaks. For example, the algorithm shouldn't be too sensitive to changes
in the values of the hyperparameters.

The main factor that makes deep RL algorithms difficult to replicate is intrinsic to the
nature of deep neural networks. This is mainly due to random initialization of the deep
neural networks and the stochasticity of optimization. Moreover, this situation is
exacerbated in RL, considering that the environments are stochastic. Combined, these
factors are also to the detriment of the interpretability of results.

Stability is also put to the test by the high instability of RL algorithms, as we saw in Q-
learning and REINFORCE. For example, in value-based algorithms, there isn't any
guarantee of convergence and the algorithms suffer from high bias and instability. DQN
uses many tricks to stabilize the learning process, such as an experienced replay and a
delay in the update of the target network. Though these strategies can alleviate the
instability problems, they don't go away.

Practical Implementation for Resolving RL Challenges Chapter 13

[312]

To overcome any constraints that are intrinsic to the algorithm in terms of stability and
reproducibility, we need to intervene outside of it. To this end, many different benchmarks
and some rules of thumb can be employed to ensure a good level of reproducibility and
consistency of results. These are as follows:

Whenever possible, test the algorithms on multiple but similar environments. For
example, test it on a suite of environments such as Roboschool or Atari Gym
where the tasks are comparable to each other in terms of action and state spaces
but have different goals.

Run many trials across different random seeds. The results may vary
significantly by changing the seeds. As an example of this, the following diagram
shows two runs of the exact same algorithm with the same hyperparameters, but
with a different seed. You can see that the differences are large. So, depending on
your goal, it could be helpful to use multiple random seeds, generally between
three and five. For example, in academic papers, it is good practice to average all
the results across five runs and take the standard deviation into account as well.
If the results are unsteady, consider using a more stable algorithm or employing
some further strategies. Also, keep in mind that the effects in the changes of the
hyperparameters can vary significantly across algorithms and environments:

Figure 13.4. Performance of two trials of the same algorithm with different random seeds

Practical Implementation for Resolving RL Challenges Chapter 13

[313]

Efficiency
In the previous section, Choosing the appropriate algorithm, we saw that the sample efficiency
between the algorithms is highly variable. Moreover, from the previous chapters, we saw
that more efficient methods, such as value-based learning, still require a substantial number
of interactions with the environment to learn. Maybe only model-based RL can save itself
from the hunger of data. Unfortunately, model-based methods have other downsides, such
as a lower performance bound.

For this reason, hybrid model-based and model-free approaches have been built. However,
these are difficult to engineer and are impractical for use in real-world problems. As you
can see, the efficiency-related problem is very hard to solve but at the same time very
important to address so that we can deploy RL methods in the real world.

There are two alternative ways to deal with very slow environments such as the physical
world. One is to use a lower-fidelity simulator in the first place and then fine-tune the agent
in the final environment. The other is to train the agent directly in the final environment,
but transferring some prior related knowledge so as to avoid learning the task from scratch.
It's like learning to drive when you've already trained your sensory system. In both cases,
because we are transferring knowledge from one environment to another, we talk about a
methodology called transfer learning. We'll elaborate on this methodology very soon in the
Advanced techniques section.

Generalization
The concept of generalization refers to two aspects that are different, but somehow related.
In general terms, the concept of generalization in reinforcement learning refers to the
capability of an algorithm to obtain good performance in a related environment. For
example, if an agent has been trained to walk on dirty roads, we might expect that the same
agent will perform well on paved roads. The better the generalization capabilities, the
better the agent will perform in different environments. The second and lesser-used means
of generalization refers to the property of the algorithm to achieve good performance in an
environment where only limited data can be gathered.

In RL, the agent can choose the states to visit by itself and do so for as long as it wants so
that it can also overfit on a certain problem space. However, if good generalization
capabilities are required, a trade-off has to be found. This is only partially true if the agent
is allowed to gather potentially infinite data for the environment as it will act as a sort of
self-regularization method.

Practical Implementation for Resolving RL Challenges Chapter 13

[314]

Nonetheless, to help with generalization across other environments, an agent must be
capable of abstract reasoning to discern from the mere state-action mapping and interpret
the task using multiple factors. Examples of abstract reasoning can be found in model-
based reinforcement learning, transfer learning, and in the use of auxiliary tasks. We'll
cover the latter topic later, but in brief, it is a technique that's used to improve
generalization and sample efficiency by augmenting an RL agent with auxiliary tasks that
were learned jointly with the main task.

Advanced techniques
The challenges we listed previously have no simple solutions. However, there has been an
effort in trying to overcome them and to come up with novel strategies to improve
efficiency, generalization, and stability. Two of the most widespread and promising
techniques that focus on efficiency and generalization are unsupervised reinforcement
learning and transfer learning. In most cases, these strategies work in symbiosis with the
deep reinforcement learning algorithms that we developed in the previous chapters.

Unsupervised RL
Unsupervised RL is related to the usual unsupervised learning in how both methods don't
use any source of supervision. While in unsupervised learning the data isn't labeled, in the
reinforced counterpart, the reward is not given. That is, given an action, the environment
returns only the next state. Both the reward and the done status are removed.

Unsupervised RL can be helpful in many occurrences, for example, when the annotation of
the environment with hand-designed rewards is not scalable, or when an environment can
serve multiple tasks. In the latter case, unsupervised learning can be employed so that we
can learn about the dynamics of the environment. Methods that are able to learn from
unsupervised sources can also be used as an additional source of information in
environments with very sparse rewards.

How can we design an algorithm that can learn about the environment without any source
of supervision? Can't we just employ model-based learning? Well, model-based RL still
needs the reward signal to plan or infer the next actions. Therefore, a different solution is
required.

Practical Implementation for Resolving RL Challenges Chapter 13

[315]

Intrinsic reward
A potential fair alternative is to develop a reward function that is intrinsic to the agent,
meaning that it's controlled exclusively by the belief of the agent. This method comes close
to the approach that's used by newborns to learn. In fact, they employ a pure explorative
paradigm to navigate the world without an immediate benefit. Nonetheless, the knowledge
that's acquired may be useful later in life.

The intrinsic reward is a sort of exploration bonus based on the estimation of the novelty of
a state. The more unfamiliar a state is, the higher the intrinsic reward. Thus, with it, the
agent is incentivized to explore new spaces of the environment. It may have become clear
by now that the intrinsic reward can be used as an alternative exploration strategy. In fact,
many algorithms use it in combination with the extrinsic reward (that is the usual reward
that's returned by the environment) to boost the exploration in very sparse environments
such as Montezuma's revenge. However, though the methods to estimate the intrinsic
reward are very similar to those we studied in Chapter 12, Developing ESBAS Algorithm, to
incentivize policy exploration (these exploration strategies were still related to the extrinsic
reward), here, we are only concentrating on pure unsupervised exploration methods.

Two primary curiosity-driven strategies that provide rewards on unfamiliar states and
explore the environment efficiently are count-based and dynamics-based:

Count-based strategies (also known as visitation counts strategies) aim to count
or estimate the visitation count of each state and encourage the exploration of
those states with low visitation, assigning a high intrinsic reward to them.
Dynamics-based strategies train a dynamic model of the environment, along
with the agent's policy, and compute the intrinsic reward either on the prediction
error, on the prediction uncertainty, or on the prediction improvement. The
underlying idea is that by fitting a model on the states visited, the new and
unfamiliar states will have a higher uncertainty or estimation error. These values
are then used to compute the intrinsic reward and incentivize the exploration of
unknown states.

Practical Implementation for Resolving RL Challenges Chapter 13

[316]

What happens if we apply only curiosity-driven approaches to the usual environments?
The paper Large-scale study of curiosity-driven learning addressed this question and found
that, on Atari games, pure curiosity-driven agents can learn and master the tasks without
any external reward. Furthermore, they noted that, on Roboschool, walking behavior
emerged purely out of these unsupervised algorithms based on intrinsic reward. The
authors of the paper also suggested that these findings were due to the way in which the
environments have been designed. Indeed, in human-designed environments (such as
games), the extrinsic reward is often aligned with the objective of seeking novelty.
Nonetheless, in environments that are not gamified, pure curiosity-driven unsupervised
approaches are able to explore and learn about the environment exclusively by themselves
without any need for supervision whatsoever. Alternatively, RL algorithms can also benefit
from a huge boost in exploration and consequently in performance by combining the
intrinsic with the extrinsic reward.

Transfer learning
Transferring knowledge between two environments, especially if these environments are
similar to each other, is a hard task. Transfer learning strategies propose to bridge the
knowledge gap so that the transition from an initial environment to a new one is as easy
and smooth as possible. Specifically, transfer learning is the task of efficiently transferring
knowledge from a source environment (or multiple environments) to a target environment.
Thus, the more experience that has been acquired from a set of source tasks and transferred
to a new target task, the faster the agent will learn and the better it will perform on the
target task.

Generally speaking, when you think about an agent that hasn't been trained yet, you have
to imagine a system that does not have any kind of information in it. Instead, when you
play a game, you use a lot of prior knowledge. For example, you may guess the meaning of
the enemies from their shapes and colors, as well as their dynamics. This implies that you
are able to recognize the enemies when they shoot you, like in the Space Invaders game
that's shown in the following diagram. Also, you can easily guess the general dynamics of
the game. Instead, at the start of the training, an RL agent won't know anything. This
comparison is important because it provides valuable insight into the importance of
transferring knowledge between multiple environments. An agent that has the ability to
use the experience that was acquired from a source task can learn exponentially faster on
the target environment. For example, if the source environment is Pong and the target
environment is Breakout, then many of the visual components could be reused, saving a lot
of time for computation. To have an accurate understanding of its overall importance,
imagine the efficiency that's gained in much more complex environments:

Practical Implementation for Resolving RL Challenges Chapter 13

[317]

Figure 13.5. A screenshot of Space Invaders. Are you able to infer the role of the sprites?

When speaking about transfer learning, we refer to 0-shot learning, 1-shot learning, and so
on, as the number of attempts required in the target domain. For example, 0-shot learning
means that the policy that has been trained on a source domain is directly employed on the
target domain without further training. In this case, the agent must develop strong
generalization capabilities to adjust itself to the new task.

Types of transfer learning
Many types of transfer learning exist, and their usage depends on the specific case and
needs. One of the distinctions is related to the number of source environments. Obviously,
the more source environments you are training the agent on, the more diversity it has, and
the more experience can be used in the target domain. Transfer learning from multiple
source domains is called multi-task learning.

Practical Implementation for Resolving RL Challenges Chapter 13

[318]

1-task learning
1-task learning or simply transfer learning is the task of training the policy on one domain
and transferring it onto a new one. Three major techniques can be employed to do that.
These are as follows:

Fine-tuning: This involves the refinement of the learned model on the target
task. If you get involved in machine learning, and especially in computer vision
or natural language processing, you have probably used this technique already.
Unfortunately, in reinforcement learning, fine-tuning is not as easy as it is in the
aforementioned fields, as it requires more careful engineering and generally has
lower benefits. The reason for this is that, in general, the gap between the two RL
tasks is bigger than the gap between two different image domains. For example,
the differences between the classification of a cat and a dog are minor compared
to the differences between Pong and Breakout. Nonetheless, fine-tuning can also
be used in RL and tuning just the last few layers (or substituting them if the
action space is totally different) could give better generalization properties.
Domain randomization: This is based on the idea that the diversification of the
dynamics on a source domain increases the robustness of the policy on a new
environment. Domain randomization works by manipulating the source domain,
for example, by varying the physics of the simulator, so that the policy that has
been trained on multiple randomly modified source domains is robust enough to
perform well on a target domain. This strategy is more effective for training
agents that need to be employed in the real world. In such circumstances, the
policy is more robust and the simulation doesn't have to be exactly the same as
the physical world to provide the required levels of performance.

Domain Adaptation: This is another process that's used, especially to map a
policy from a simulation-based source domain to a target physical world.
Domain adaptation consists of changing the data distribution of the source
domain to match that of the target. It is mainly used in image-based tasks, and
the models usually make use of generative adversarial networks (GANs) to turn
synthetic images into realistic ones.

Practical Implementation for Resolving RL Challenges Chapter 13

[319]

Multi-task learning
In multi-task learning, the higher the number of environments the agent has been trained
on, the more diversity and the better performance the agent will achieve on the target
environment. The multiple source tasks can either be learned by one or multiple agents. If
only one agent has been trained, then its deployment on the target task is easy. Otherwise,
if multiple agents learned separate tasks, then the resulting policies can either be used as an
ensemble, and the predictions on the target task averaged, or an intermediate step called
distillation is employed to merge the policies into one. Specifically, the process of
distillation compresses the knowledge of an ensemble of models into a single one that is
easier to deploy and that infers faster.

RL in the real world
So far, in this chapter, we went through the best practices when developing deep RL
algorithms and the challenges behind RL. We also saw how unsupervised RL and meta-
learning can alleviate the problem of low efficiency and bad generalization. Now, we want
to show you the problems that need to be addressed when employing an RL agent in the
real world, and how the gap within a simulated environment can be bridged.

Designing an agent that is capable of performing actions in the real world is demanding.
But most reinforcement learning applications need to be deployed in the world. Thus, we
have to understand the main challenges that we face when dealing with the complexity of
the physical world and consider some useful techniques.

Facing real-world challenges
Besides the big problems of sample-efficiency and generalization, when dealing with the
real world, we need to face problems such as safety and domain constraints. In fact, the
agent is often not free to interact with the world due to safety and cost constraints. A
solution may come from the use of constraint algorithms such as TRPO and PPO, which are
embedded into the system mechanisms to limit the change of actions while training. This
could prevent the agent from a drastic change in its behavior. Unfortunately, in highly
sensitive domains, this is not enough. For example, nowadays, you cannot start training a
self-driving car on the road straight away. The policy may take hundreds or thousands of
cycles to understand that falling off a cliff leads to a bad conclusion and learn to avoid it.
The alternative option of training the policy in a simulation first is a viable option.
Nevertheless, when employed in cities, more safety-related decisions have to be made.

Practical Implementation for Resolving RL Challenges Chapter 13

[320]

As we just hinted at, a simulation-first solution is a feasible approach and depending on the
complexity of the real task, it may lead to good performance. However, the simulator has to
mimic the real-world environment as closely as possible. For example, the simulator on the
left-hand side of the following image cannot be used if the world resembles the right-hand
side of the same image. This gap between the real and the simulated world is known as the
reality gap:

Figure 13.6. Comparison between an artificial world and the physical world

On the other hand, using a highly accurate and realistic environment may not be feasible
either. The bottleneck is now the computation power that's required by the simulator. This
limitation can be partially overcome by starting with a faster and less accurate simulator,
and then progressively increasing the fidelity so as to decrease the reality gap. Eventually,
this is to the detriment of the speed, but at this point, the agent should have already learned
most of the tasks and may need only a few iterations to fine-tune itself. However, it is very
difficult to develop highly accurate simulators that mimic the physical world. Thus, in
practice, the reality gap will remain and techniques that improve generalization will have
the responsibility to handle the situation.

Practical Implementation for Resolving RL Challenges Chapter 13

[321]

Bridging the gap between simulation and the real
world
To seamlessly transition from the simulation to the real world and thus overtake the reality
gap, some generalization techniques that we presented earlier, such as domain adaptation
and domain randomization, could be used. For example, in the paper Learning Dexterous In-
Hand Manipulation, the authors trained a human-like robot to manipulate physical objects
with incredible dexterity using domain randomization. The policy learned from many
different parallel simulations that were designed to provide a variety of experiences with
random physical and visual attributes. This mechanism that prefers generalization over
realism overall has been key, considering that the system, when deployed, showed a rich
set of in-hand dexterous manipulation strategies, many of which are used by humans as
well.

Creating your own environment
For educational purposes, in this book, we have predominantly used fast and small-scale
tasks that could best fit our needs. However, there are plenty of simulators in existence for
locomotion tasks (such as Gazebo, Roboschool, and Mujoco), mechanical engineering,
transportation, self-driving cars, security, and many more. These existing environments are
diverse, but there isn't one for every possible application. Thus, in some situations, you
may find yourself in charge of creating your own.

The reward function by itself is difficult to design, but it is a key part of RL. With the wrong
reward function, the environment can be impossible to solve and the agent may learn the
wrong behaviors. In Chapter 1, The Landscape of Reinforcement Learning, we gave the
example of the boat-racing game, in which the boat maximized the reward by driving in a
circle to capture repopulating targets instead of running toward the end of the trajectory as
fast as possible. These are the kinds of behaviors to avoid while designing the reward
function.

The general advice for designing the reward function (that can be applied in any
environment) is to use positive rewards to incentive exploration and discourage the
terminal states or negative rewards if the goal is to reach a terminal state as quickly as
possible. The shape of the reward function is important to consider. Throughout this book,
we have warned against sparse rewards. An optimal reward function should offer a
smooth and dense function.

Practical Implementation for Resolving RL Challenges Chapter 13

[322]

If, for some reason, the reward function is very difficult to put into formulas, there are two
additional ways in which a supervision signal can be provided:

Give a demonstration of the task using imitation learning or inverse
reinforcement learning.
Use human preferences to provide feedback about the agent's behavior.

The latter point is still a novel approach and if you are interested in it, you
may find the paper Deep Reinforcement Learning from Policy-Dependent
Human Feedback an interesting read (https:/ /arxiv. org/ abs/ 1902.
04257).

Future of RL and its impact on society
The first foundations of AI were built more than 50 years ago, but only in the last few years
has the innovation brought by AI spread through the world as a mainstream technology.
This new wave of innovation is mainly due to the evolution of deep neural networks in
supervised learning systems. However, the most recent breakthrough in artificial
intelligence involves reinforcement learning, and most notably, deep reinforcement
learning. Results like the ones that were obtained in the game of Go and Dota highlight the
impressive quality of RL algorithms that are able to show long-term planning, ability in
teamwork, and discover new game strategies that are difficult to comprehend even for
humans.

The remarkable results that were obtained in the simulated environments started a new
wave of applications of reinforcement learning in the physical world. We are only at the
beginning, but many areas are and will be impacted, bringing with it profound
transformations. RL agents that are embedded in our everyday life can enhance the quality
of life by automating tedious work, addressing world-level challenges, and discovering
new drugs – just to name a few possibilities. However, these systems, which will populate
both our world and our lives, need to be safe and reliable. We aren't at this point yet, but
we are on the right track.

The ethical use of AI has become a broad concern, such as in the employment of
autonomous weapons. With this rapid technological progress, it is hard for the
policymakers and the population to be at the forefront of creating open discussions about
these issues. Many influential and reputable people also suggest that AI is a potential threat
to humanity. But the future is impossible to predict, and the technology has a long way to
go before developing agents that can actually show abilities that are comparable to those of
humans. We have creativity, emotions, and adaptability that, for now, cannot be emulated
by RL.

https://arxiv.org/abs/1902.04257
https://arxiv.org/abs/1902.04257
https://arxiv.org/abs/1902.04257
https://arxiv.org/abs/1902.04257
https://arxiv.org/abs/1902.04257
https://arxiv.org/abs/1902.04257
https://arxiv.org/abs/1902.04257
https://arxiv.org/abs/1902.04257
https://arxiv.org/abs/1902.04257
https://arxiv.org/abs/1902.04257
https://arxiv.org/abs/1902.04257
https://arxiv.org/abs/1902.04257

Practical Implementation for Resolving RL Challenges Chapter 13

[323]

With careful attention, the near-term benefits brought by RL can dramatically outweigh the
negative side. But to embed sophisticated RL agents in the physical environment, we need
to work on the RL challenges we outlined previously. These are solvable and, once
addressed, reinforcement learning has the potential to decrease social inequalities, improve
the quality of our life, and the quality of our planet.

Summary
Throughout this book, we learned and implemented many reinforcement learning
algorithms, but all this variety can be quite confusing when it comes to choosing one. For
this reason, in this final chapter, we provided a rule of thumb that can be used to pick the
class of RL algorithms that best fits your problem. It mainly considers the computational
time and the sample efficiency of the algorithm. Furthermore, we provided some tips and
tricks so that you can train and debug deep reinforcement learning algorithms better so as
to make the process easier.

We also discussed the hidden challenges of reinforcement learning: stability and
reproducibility, efficiency, and generalization. These are the main issues that have to be
overcome in order to employ RL agents in the physical world. In fact, we detailed
unsupervised reinforcement learning and transfer learning, two strategies that can be used
to greatly improve generalization and sample efficiency.

Additionally, we detailed the most critical open problems and the cultural and
technological impacts that reinforcement learning may have on our lives.

We hope that this book has provided you with a comprehensive understanding of
reinforcement learning and piqued your interest in this fascinating field.

Questions
How would you rank DQN, A2C, and ES based on their sample efficiency?1.
What would their rank be if they were rated on the training time and 100 CPUs2.
were available?
Would you start debugging an RL algorithm on CartPole or3.
MontezumaRevenge?
Why is it better to use multiple seeds when comparing multiple deep RL4.
algorithms?

Practical Implementation for Resolving RL Challenges Chapter 13

[324]

Does the intrinsic reward help with the exploration of an environment?5.
What's transfer learning?6.

Further reading
For an approach that uses a pure curiosity-driven approach in the Atari games,
read the paper Large-scale study of curiosity-driven learning (https:/ /arxiv. org/
pdf/1808. 04355. pdf).
For practical use of domain randomization for learning dexterous in-hand
manipulation, read the paper Learning Dexterous In-Hand Manipulation (https:/ /
arxiv.org/ pdf/ 1808. 00177. pdf).
For some work that shows how human feedback can be applied as an alternative
to the reward function, read the paper Deep Reinforcement Learning from Policy-
Dependent Human Feedback (https:/ /arxiv. org/ pdf/ 1902. 04257. pdf).

https://arxiv.org/pdf/1808.04355.pdf
https://arxiv.org/pdf/1808.04355.pdf
https://arxiv.org/pdf/1808.04355.pdf
https://arxiv.org/pdf/1808.04355.pdf
https://arxiv.org/pdf/1808.04355.pdf
https://arxiv.org/pdf/1808.04355.pdf
https://arxiv.org/pdf/1808.04355.pdf
https://arxiv.org/pdf/1808.04355.pdf
https://arxiv.org/pdf/1808.04355.pdf
https://arxiv.org/pdf/1808.04355.pdf
https://arxiv.org/pdf/1808.04355.pdf
https://arxiv.org/pdf/1808.04355.pdf
https://arxiv.org/pdf/1808.04355.pdf
https://arxiv.org/pdf/1808.04355.pdf
https://arxiv.org/pdf/1808.00177.pdf
https://arxiv.org/pdf/1808.00177.pdf
https://arxiv.org/pdf/1808.00177.pdf
https://arxiv.org/pdf/1808.00177.pdf
https://arxiv.org/pdf/1808.00177.pdf
https://arxiv.org/pdf/1808.00177.pdf
https://arxiv.org/pdf/1808.00177.pdf
https://arxiv.org/pdf/1808.00177.pdf
https://arxiv.org/pdf/1808.00177.pdf
https://arxiv.org/pdf/1808.00177.pdf
https://arxiv.org/pdf/1808.00177.pdf
https://arxiv.org/pdf/1808.00177.pdf
https://arxiv.org/pdf/1808.00177.pdf
https://arxiv.org/pdf/1808.00177.pdf
https://arxiv.org/pdf/1902.04257.pdf
https://arxiv.org/pdf/1902.04257.pdf
https://arxiv.org/pdf/1902.04257.pdf
https://arxiv.org/pdf/1902.04257.pdf
https://arxiv.org/pdf/1902.04257.pdf
https://arxiv.org/pdf/1902.04257.pdf
https://arxiv.org/pdf/1902.04257.pdf
https://arxiv.org/pdf/1902.04257.pdf
https://arxiv.org/pdf/1902.04257.pdf
https://arxiv.org/pdf/1902.04257.pdf
https://arxiv.org/pdf/1902.04257.pdf
https://arxiv.org/pdf/1902.04257.pdf
https://arxiv.org/pdf/1902.04257.pdf
https://arxiv.org/pdf/1902.04257.pdf
https://arxiv.org/pdf/1902.04257.pdf

Assessments
Chapter 3

What's a stochastic policy?
It's a policy defined in terms of a probability distribution

How can a return be defined in terms of the return at the next time step?

Why is the Bellman equation so important?
Because it provides a general formula to compute the value of a
state using the current reward and the value of the subsequent
state.

Which are the limiting factors of DP algorithms?
Due to a complexity explosion with the number of states, they
have to be limited. The other constraint is that the dynamics of the
system have to be fully known.

What's policy evaluation?
Is an iterative method to compute the value function for a given
policy using the Bellman equations.

How does policy iteration and value iteration differs?
Policy iteration alternate between policy evaluation and policy
improvement, value iteration instead, combine the two in a single
update using the max function.

Chapter 4

What's the main property of the MC method used in RL?
The estimation of the value function as the average return from a
state.

Why are MC methods offline?
Because they update the state value only when the complete
trajectory is available. Thus they have to wait until the end of the
episode.

What are the two main ideas of TD learning?
They combine the ideas of sampling and bootstrapping

Assessments

[326]

What are the differences between MC and TD?
MC learn from the full trajectory, whereas TD learn at every step
acquiring knowledge also from an incomplete trajectory.

Why is exploration important in TD learning?
Because the TD update is done only on the action-state visited, so if
some of them has not been discovered, in the absence of an
exploration strategy they will never be visited. Thus, some good
policy may not be discovered.

Why Q-learning is off-policy?
Because the Q-learning update is done independently of the
behavior policy. It uses the greedy policy of the max operation.

Chapter 5

What arise of the deadly triad problem?
When off-policy learning are combined with function
approximation and boostrapping.

How DQN overcome the instabilities?
Using a replay buffer and a separate online and target network.

What's the moving target problem?
It's a problem that arises when the target values aren't fixed and
they change as the network is optimized.

How the moving target problem is mitigated in DQN?
Introducing a target network that is updated less frequently than
the online network.

What's the optimization procedure used in DQN?
A mean square error loss function is optimized through stochastic
gradient descent, an iterative method that performs gradient
descent on a batch.

What's the definition of a state-action advantage value function?

Chapter 6

How PG algorithms maximize the objective function?
They do it by taking a step in the opposite direction of the objective
function's derivative. The step is proportional to the return.

Assessments

[327]

What's the main intuition behind PG algorithms?
Encourage good actions and dissuade the agent from the bad ones.

Why introducing a baseline in REINFORCE it remains unbiased?
Because in expectation

To which broader class of algorithms belong to REINFORCE?
It is a Monte Carlo method as it relies on full trajectories like MC
methods do.

How the critic in AC methods differs from a value function used as a baseline in
REINFORCE?

Besides the learned function is the same, the critic uses the
approximated value function for bootstrap the action-state
value instead in REINFORCE (but also in AC) it is used as a
baseline to reduce the variance.

If you had to develop an algorithm for an agent that has to learn to move, would
you prefer REINFORCE or AC?

You should first try an actor-critic algorithm as the agent has to
learn a continuous task.

Could you use an n-step Actor-Critic algorithm as a REINFORCE algorithm?
Yes, you could as far as is greater than the maximum possible
number of steps in the environment.

Chapter 7

How can a policy neural network control a continuous agent?
One way to do it is to predict the mean and the standard deviation
that describe a Gaussian distribution. The standard deviation
could either be conditioned on a state (the input of the neural
network) or be a standalone parameter.

What's the KL divergence?
Is a measure of proximity of two probability distributions.

What's the main idea behind TRPO?
To optimize the new objective function in a region near the old
probability distribution.

How is the KL divergence used in TRPO?
It is used as a hard constraint to limit the digression between an
old and a new policy.

Assessments

[328]

What's the main benefit of PPO?
It uses only a first-order optimization that increase the simplicity of
the algorithm and has a better sample efficiency and performance.

How does PPO achieve good sample efficiency?
It run minibatch updates several times exploiting better the data.

Chapter 8

Which is the primary limitation of Q-learning algorithms?
Ther action space has to be discrete and small in order to compute
the global maximum.

Why are stochastic gradient algorithms sample inefficient?
Because the are on-policy and need new data every time the policy
changes.

How does deterministic policy gradient overcome the maximization problem?
DPG model the policy as a deterministic function predicting only a
deterministic action and the deterministic policy gradient theorem
gives a way to compute the gradient used to update the policy.

How does DPG guarantee enough exploration?
By adding noise into the deterministic policy or by learning a
different behavior policy.

What DDPG stands for? And what is its main contribution?
DDPG stands for Deep Deterministic Policy Gradient and is an
algorithm that adapts the deterministic policy gradient to work
with deep neural networks. They use new strategies to stabilize
and speed up learning.

Which problems does TD3 propose to minimize?
Overestimation bias common in Q-learning and high variance
estimates.

What new mechanisms does TD3 employ?
To reduce the overestimation bias, they use a Clipped Double Q-
learning while they address the variance problem with a delayed
policy update and a smoothing regularization technique.

Assessments

[329]

Chapter 9

Would you use a model-based or a model-free algorithm if you had only 10
games to train your agent to play checkers?

I would use a model-based algorithm. The model of checkers is
known and plan on is a feasible task.

What are the disadvantages of model-based algorithms?
Overall, they require more computational power and achieve
lower asymptotical performance with respect to model-free
algorithms.

If a model of the environment is unknown, how can it be learned?
Once a dataset is collected through interactions with the real
environment, the dynamics model can be learned in a usual
supervised way.

Why data-aggregation methods are used?
Because usually the first interactions with the environment are
done with a naive policy that doesn't explore all of it. Further
interactions with a more defined policy are required to affine the
model of the environment.

How does ME-TRPO stabilize training?
ME-TRPO employs two main features: an ensemble of models and
early stopping techniques.

Why an ensemble of models improve policy learning?
Because predictions that are done by an ensemble of models take
into account any uncertainty of the single model.

Chapter 10

Is imitation learning considered a reinforcement learning technique?
No, because the underlying frameworks are different. The
objective of IL isn't to maximize the reward as in RL.

Would you use imitation learning to build a unbitable agent in Go?
Probably not, because it requires an expert from which to
learn. And if the agent has to be the best player in the world means
that there's no worthy expert.

What's the full name of DAgger?
Dataset aggregations

Assessments

[330]

What's the main strength of DAgger?
It overcomes the problem of distribution mismatch by employing
the expert to teach actively the learner to recover from errors.

Where would you use IRL instead of IL?
In problems where the reward function is easier to learn and
where there's the necessity to learn a policy better than that of the
expert.

Chapter 11

What are two alternative algorithms to reinforcement learning for solving
sequential decision problems?

evolution strategies and genetic algorithms
What are the processes that give birth to new individuals in evolutionary
algorithms?

The mutation that mutates the gene of a parent and crossover that
combines genetic information from two parents.

What is the source of inspiration of evolutionary algorithms like genetic
algorithms?

Evolutionary algorithms are principally inspired by biological
evolution.

How does CMA-ES evolve evolution strategies?
CMA-ES samples new candidate from a multivariate normal
distribution with the covariance matrix that is adapted to the
population.

What's one advantage and one disadvantage of evolution strategies?
One advantage is that they are derivative-free methods while a
disadvantage is that of being sample inefficient.

What's the trick used in the "Evolution Strategies as Scalable Alternative to
Reinforcement Learning" paper to reduce the variance?

They propose to use mirroring noise and generate an additional
mutation with a perturbation with the opposite sign.

Assessments

[331]

Chapter 12

What's the exploration-exploitation dilemma?
Is a decision problem of whether it's better to explore in order to
make better decisions in the future or exploit the best current
option.

What are two exploration strategies that we already used in previous RL
algorithms?

-greedy and a strategy that introduces some additional noise into
the policy.

 What's UCB?
Upper Confidence Bound is an optimistic exploration algorithm
that estimates an upper confidence bound for each value and
selects the action that maximizes (12.3)

Is Montezuma's Revenge or Multi-armed bandit problem more difficult to solve?
Montezuma's Revenge is much more difficult than the multi-
armed bandit problem just for the fact that the latter is stateless
while the former has an astronomical number of possible states.
Montezuma's Revenge has also more complexity intrinsic in the
game.

How ESBAS tackle the problem of online RL algorithm selection?
By employing a meta-algorithm that learns which algorithm
among a fixed portfolio performs better in a given circumstance.

Chapter 13

How would you rank DQN, A2C, and ES based on their sample efficiency?
DQN is the most sample-efficiency followed by A2C and ES.

What would their rank be if rated on the training time and 100 CPUs are
available?

ES probably would be the faster to train, then A2C and DQN.
Would you start debugging an RL algorithm on CartPole or
MontezumaRevenge?

CartPole. You should start the debug of an algorithm with an easy
task.

Assessments

[332]

Why is it better to use multiple seeds when comparing multiple deep RL
algorithms?

The results from a single trial can be highly volatile due to the
stochasticity of the neural network and environment. By averaging
multiple random seeds the results would approximate the average
case.

Does the intrinsic reward help the exploration of an environment?
Yes, this's because the intrinsic reward is a sort of exploration
bonus that would increase the curiosity of the agent to visit novel
states.

What's transfer learning?
Is the task of efficiently transfer knowledge between two
environments.

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Hands-On Reinforcement Learning with Python
Sudharsan Ravichandiran

ISBN: 978-1-78883-652-4

Understand the basics of reinforcement learning methods, algorithms, and
elements
Train an agent to walk using OpenAI Gym and Tensorflow
Understand the Markov Decision Process, Bellman’s optimality, and TD learning
Solve multi-armed-bandit problems using various algorithms
Master deep learning algorithms, such as RNN, LSTM, and CNN with
applications
Build intelligent agents using the DRQN algorithm to play the Doom game
Teach agents to play the Lunar Lander game using DDPG
Train an agent to win a car racing game using dueling DQN

https://www.packtpub.com/big-data-and-business-intelligence/hands-reinforcement-learning-python

Other Books You May Enjoy

[334]

Python Reinforcement Learning Projects
Rajalingappaa Shanmugamani, Sean Saito, Et al

ISBN: 978-1-78899-161-2

Train and evaluate neural networks built using TensorFlow for RL
Use RL algorithms in Python and TensorFlow to solve CartPole balancing
Create deep reinforcement learning algorithms to play Atari games
Deploy RL algorithms using OpenAI Universe
Develop an agent to chat with humans
Implement basic actor-critic algorithms for continuous control
Apply advanced deep RL algorithms to games such as Minecraft
Autogenerate an image classifier using RL

https://www.packtpub.com/big-data-and-business-intelligence/python-reinforcement-learning-projects

Other Books You May Enjoy

[335]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

A
Action 9
action-value function 18, 56
action-value method (value-function methods) 19
active imitation
 versus passive imitation 250
Actor-Critic (AC) algorithms
 about 60, 155
 advancements 162
 implementation 157, 158, 159
 tips 162
 tricks 162
 used, for helping actor 155
 used, for landing spacecraft 160, 161
actor-critic methods 19
Advantage Actor-Critic (A2C) 162
Agent 9
algorithm selection (AS) 293
applications, RL
 economics and finance 23
 energy optimization 23
 games 21, 22
 healthcare 23
 industrial robotics 22
 Industry 4.0 22
 intelligent transportation systems 23
 machine learning 22
 smart grid 23
approaches, exploration
 about 289
 element of-greedy strategy 289
 UCB algorithm 290
Arcade Learning Environment (ALE) 109, 250
Asynchronous Advantage Actor-Critic (A3C) 162
Atari games 109, 110

B
behavior policy 17
Bellman equation 56
BipedalWalker-v2
 DDPG, applying to 208, 209
BipedalWalker
 TD3, applying to 215, 216
bootstrapping 62, 79

C
candidate solutions 267
chromosomes 267
CoinRun
 reference link 49
Conjugate Gradient (CG) method 176
continuous system
 controlling 166, 167, 168
convolutional neural network (CNN) 15
core, scalable evolution strategies
 ES, parallelizing 273
 pseudocode 274
 techniques 273
Covariance Matrix Adaptation Evolution Strategy

(CMA-ES) 270, 271
crossover 267
curse of dimensionality problem 13

D
Dataset Aggregation (DAgger) algorithm
 about 253, 254
 DAgger loop, creating 257, 258
 expert inference model, loading 255
 implementing 254
 learner's computational graph, creating 256, 257
DDPG algorithm
 about 201, 202

[337]

 replay buffer 201
 target network 201
DDQN
 implementation 126
 implementation, results 127, 128
deep deterministic policy gradient (DDPG)
 about 195, 200
 applying, to BipedalWalker-v2 208, 209
 implementing 203, 204, 205, 206, 207
deep neural networks (DNNs) 99, 100
deep q network (DQN) 14
deep Q-learning
 instabilities 102, 103
deep reinforcement learning (deep RL)
 about 14, 15
 best practices 306
 challenges 16
deep RL algorithms
 creating, tools 26
 drawbacks 308, 311
 selecting 306, 308
deep RL, challenges
 about 311
 efficiency 313
 generalization 313
 reproducibility 311, 312
 stability 311, 312
DeepMind Lab 49
DeepMind PySC2 49
DeepMind
 reference link 222
dense reward 20
deterministic policy 53
deterministic policy gradient (DPG) 197, 198, 199,

200

discount factor 54
domain adaptation 321
domain randomization 321
done variable 30
Double DQN 125, 126
DQN algorithm
 about 104, 105
 loss function 105
 pseudocode 106, 107
DQN code, components

 computational graph 116, 117, 119, 121
 DNNs 114, 115
 experienced buffer 115
 training loop 116, 117, 119, 121
DQN variations
 about 124
 Double DQN 125, 126
 dueling DQN 128, 129
 N-step DQN 130
DQN, applying to Pong
 about 109
 Atari games 109, 110
 preprocessing 110, 111, 113
 testing results 121, 123
DQN, solution
 about 103
 replay memory 104
 target network 104
DQN
 about 103
 architecture 108
 implementation 113
Duckietown
 reference link 48
dueling DQN
 about 128, 129
 implementation 129
 test rewards, results 130
dynamic programming (DP)
 about 13, 61, 74
 policy evaluation 62, 64
 policy improvement 62, 64
 policy iteration 64
 value iteration 68

E
element of-greedy strategy 289, 290
elements, RL
 model 20
 policy 16
 reward 19
 value function 18
episodic 55
epochal stochastic bandit algorithm selection

(ESBAS)

[338]

 about 285, 295, 296
 Acrobot, solving 300, 301
 implementation 296, 298, 300
 practical problems 296
 selection 293
 selection, unboxing 293, 294
 testing, result 301, 303
epsilon-decay 78
ES function 276
evolution strategies (ES), advantages
 derivative-free methods 271
 generality 271
 highly parallelizable 271
 robust 271
evolution strategies (ES)
 about 263, 270
 parallelizing 273
 versus reinforcement learning (RL) 271
evolutionary algorithms (EAs)
 about 263, 265, 266
 core 266, 267, 268, 269
 Covariance Matrix Adaptation Evolution Strategy

(CMA-ES) 270, 271
 evolution strategies (ES), versus reinforcement

learning (RL) 271
 evolution strategies (ESes) 270
 genetic algorithms (GAs) 269, 270
exploration complexity
 large non-tabular problems 292
 small-to-medium tabular problem 292
 stateless problems 292
exploration problem
 about 77
 dealing with 78
 deterministic policy 78
exploration, versus exploitation
 about 286
 multi-armed bandit problem 287
exploration
 approaches 289
 complexity 292
 versus exploitation 286

F
features 15
feedforward neural network (FNN) 15
FIFO (First In, First Out) 115
Fisher Information Matrix (FIM) divergence 172,

173

fitness shaping
 objective ranking 273
Flappy Bird
 environment, using 251, 252
 installation link 244
 installing 244, 245
 playing 250
 results, analyzing 259, 260
FrozenLake game
 policy iteration, applying 65, 66, 67
 value iteration, applying 68, 70
fully observable property 53
function approximation 99, 100

G
Generalized Advantage Estimation (GAE) 188
generation 267
generative adversarial networks (GANs) 318
genetic algorithms (GAs) 269, 270
genotypes 267
gradient
 computing 139, 140
Gym Atari
 reference link 48
Gym Classic control
 reference link 48
Gym interface 250
Gym MuJoCo
 reference link 48

H
has distribution 53
hybrid algorithms 60

I
images
 model, building from 231
imitation approach

[339]

 about 245, 246
 driving assistant example 246
imitation learning (IL)
 about 20, 243
 active, versus passive imitation 250
 expert 248
 structure 248, 250
 versus reinforcement learning (RL) 246, 248
inaccurate model 227
independent and identically distributed (IID) 102
individuals 266
info 30
inverse RL 20
IRL 260

K
known model 223, 224, 225
Kullback-Leibler (KL) divergence 172, 173

L
learning, without model
 about 75
 exploration problem 77
 policy evaluation 77
 user experience 76, 77
linear regression example 39, 41, 42
LunarLander
 scalable ES, applying 281

M
MalmoEnv
 reference link 48
Markov decision process (MDP)
 about 13, 51, 52, 53
 Bellman equation 56
 policy 53
 return 54
 value functions 55
Markov property 53
mean squared error (MSE) 41, 101
mirror noise 273
ML models
 developing, with TensorFlow 33
model-based learning
 about 223

 advantages 227
 combining, with model-free learning 228, 229,

230

 disadvantages 228
model-based methods 20, 222
model-ensemble trust region policy optimization

(ME-TRPO)
 about 221, 232, 233
 applying, to inverted pendulum 232
 implementing 233, 234, 235, 236, 237
model-free (MF) algorithms
 about 58
 hybrid algorithms 60
 policy gradient algorithms 59
 value-based algorithms 59
model
 building, from images 231
 overfitting 227
Monte Carlo methods 77
move 37 14
multi-armed bandit problem 287, 288
mutation 267

N
n-step AC model 156, 157
N-step DQN
 about 130
 implementation 131
 implementation results 131
natural language processing (NLP) 22
Natural Policy Gradient (NPG)
 about 169, 170
 complications 174
 Fisher Information Matrix (FIM) divergence 173
 intuition 171, 172
 issues 169
 Kullback-Leibler (KL) divergence 174
NeroEvolution of Augmenting Topologies (NEAT)

270

neural architecture design (NAD) 23
neural networks
 Q-learning, using with 100, 102

[340]

O
observation 29, 30, 53, 99
off-policy algorithm 17
offspring 267
on-policy algorithm 17
on-policy PG 142
OpenAI Gym
 and RL cycles 28
 installing 27
OpenAI
 reference link 222
optimal policy
 about 53
 policy iteration 64
 value iteration 64

P
partially observable system 53
passive target policy 17
phenotypes 267
planning process 223
PLE
 reference link 49
policy 16, 140, 142
policy gradient (PG) theorem 138, 139
policy gradient (PG)
 about 136, 137, 138
 methods 136
policy gradient algorithms
 about 59
 Actor-Critic (AC) algorithms 60
policy gradient optimization
 combining, with Q-learning 196, 197
policy iteration
 about 64
 applying, to FrozenLake game 65
policy-gradient method 18
Pommerman
 reference link 48
Pong
 DQN, applying to 109
PPO algorithm 188
Proximal Policy Optimization (PPO)
 about 187

 application 192
 implementing 188, 189, 191
 overview 187
 versus trust region policy optimization (TRPO)

192

pseudocode 274
PyGame Learning Environment (PLE) 250

Q
Q-function 56
Q-learning 99
 about 90, 99
 algorithm 91, 92
 applying, to Taxi-v2 92, 93, 95
 policy gradient optimization, combining 196, 197
 theory 90
 using, with neural networks 100, 102
 versus SARSA 95, 96

R
recurrent neural network (RNN) 15
REINFORCE, used for landing spacecraft
 about 149
 result, analyzing 150, 151
REINFORCE
 about 143, 144
 implementing 145, 146, 148
 implementing, with baseline 153, 155
 with baseline 151, 153
reinforcement learning (RL), key aspects
 excellent performance 271
 sample efficiency 271
reinforcement learning (RL)
 about 8, 9, 11, 14, 25, 263, 264
 alternative 265
 applications 20
 characteristic 11, 12
 elements 16
 example 11
 exploration 265
 future 322, 323
 history 13, 14
 impact, on society 322, 323
 in real world 319
 overview 264, 265

[341]

 real-world challenges 319, 320
 real-world problems 11
 temporal credit assignment 264
 versus evolution strategies (ES) 271
 versus imitation learning (IL) 246, 248
 versus supervised learning 12
reward 19, 30
reward function 321
RL algorithms
 categorizing 57, 58
 diversity 61
 model-based RL 60
 model-free (MF) algorithms 58
RL cycle
 about 28
 developing 28, 29, 30, 32
RL environments, characteristics
 action space 46
 complexity 46
 observation space 46
 reward function 47
RL environments
 need for 46
 open source environments 47, 48
 types 46
Roboschool
 about 165
 installing 27
 reference link 48
 working with 238, 239
RoboSchoolInvertedPendulum
 results 240
rollout 54

S
SARSA
 about 81
 algorithm 82, 83
 applying, to Taxi-v2 83, 85, 89
 versus Q-learning 95, 96
scalable evolution strategies
 about 272
 applying, to LunarLander 281, 282
 core 272, 273
 hyperparameters 281

 implementing 274, 275
 main function 276, 277
 workers 278, 279, 280, 281
self-play 21
sliding stochastic bandit AS (SSBAS) 295
spacecraft
 landing, with AC algorithm 160, 161
 landing, with REINFORCE 149
spaces 32, 33
sparse reward 20
state 29
state-value function 18
stochastic gradient descent (SGD) 264
stochastic policies 53
supervised learning
 versus reinforcement learning (RL) 12

T
tabular methods 13
target policy 17
Taxi-v2
 Q-learning, applying 92, 93, 95
 SARSA, applying to 83, 85, 87, 89
TD target 80
techniques, for 1-task learning
 domain adaptation 318
 domain randomization 318
 fine-tuning 318
temporal difference learning (TD learning)
 about 13, 74, 79
 policy improvement 81
 update 80
tensor
 about 35
 constant 35
 placeholder 36, 37
 variable 37
TensorBoard
 about 42, 43, 44, 45
 reference link 45
TensorFlow
 graph, creating 38, 39
 linear regression example 39
 tensor 35
 used, for developing ML models 33

tools, for creating deep RL algorithms
 deep learning framework 26
 environment 26
 programming language 26
trajectory 54
transfer learning 316, 317
transfer learning, types
 1-task learning 318
 about 317
 multi-task learning 319
TRPO algorithm
 about 175, 176, 177
 implementing 179, 180, 182, 183, 184
trust region policy optimization (TRPO)
 about 175, 232
 application 184, 185, 186, 187
 versus Proximal Policy Optimization (PPO) 192
twin delayed deep deterministic policy gradient

(TD3)
 about 195, 210
 applying, to BipedalWalker 215, 216
 delayed policy updates 213
 implementing 211, 212
 overestimation bias, addressing 210

 target regularization 213
 variance reduction, addressing 213

U
Unity ML-Agents
 reference link 49
unknown model 225, 226
unsupervised learning 12
unsupervised RL
 about 12, 314
 intrinsic reward 315, 316
upper confidence bound (UCB) algorithm
 about 285, 290
 UCB1 291, 292

V
V-function 56
value function 16, 18, 19
value iteration
 applying, to FrozenLake game 68, 70
value-based algorithms 59
variable 37
visitation counts strategies 315

	Cover
	Title Page
	Copyright and Credits
	Dedication
	About Packt
	Contributors
	Table of Contents
	Preface
	Section 1: Algorithms and Environments
	Chapter 1: The Landscape of Reinforcement Learning
	An introduction to RL
	Comparing RL and supervised learning
	History of RL
	Deep RL

	Elements of RL
	Policy
	The value function
	Reward
	Model

	Applications of RL
	Games
	Robotics and Industry 4.0
	Machine learning
	Economics and finance
	Healthcare
	Intelligent transportation systems
	Energy optimization and smart grid

	Summary
	Questions
	Further reading

	Chapter 2: Implementing RL Cycle and OpenAI Gym
	Setting up the environment
	Installing OpenAI Gym
	Installing Roboschool

	OpenAI Gym and RL cycles
	Developing an RL cycle
	Getting used to spaces

	Development of ML models using TensorFlow
	Tensor
	Constant
	Placeholder
	Variable

	Creating a graph
	Simple linear regression example

	Introducing TensorBoard
	Types of RL environments
	Why different environments?
	Open source environments

	Summary
	Questions
	Further reading

	Chapter 3: Solving Problems with Dynamic Programming
	MDP
	Policy
	Return
	Value functions
	Bellman equation

	Categorizing RL algorithms
	Model-free algorithms
	Value-based algorithms
	Policy gradient algorithms
	Actor-Critic algorithms

	Hybrid algorithms

	Model-based RL
	Algorithm diversity

	Dynamic programming
	Policy evaluation and policy improvement
	Policy iteration
	Policy iteration applied to FrozenLake

	Value iteration
	Value iteration applied to FrozenLake

	Summary
	Questions
	Further reading

	Section 2: Model-Free RL Algorithms
	Chapter 4: Q-Learning and SARSA Applications
	Learning without a model
	User experience
	Policy evaluation
	The exploration problem
	Why explore?
	How to explore

	TD learning
	TD update
	Policy improvement
	Comparing Monte Carlo and TD

	SARSA
	The algorithm

	Applying SARSA to Taxi-v2
	Q-learning
	Theory
	The algorithm

	Applying Q-learning to Taxi-v2
	Comparing SARSA and Q-learning

	Summary
	Questions

	Chapter 5: Deep Q-Network
	Deep neural networks and Q-learning
	Function approximation
	Q-learning with neural networks
	Deep Q-learning instabilities

	DQN
	The solution
	Replay memory
	The target network

	The DQN algorithm
	The loss function
	Pseudocode

	Model architecture

	DQN applied to Pong
	Atari games
	Preprocessing
	DQN implementation
	DNNs
	The experienced buffer
	The computational graph and training loop

	Results

	DQN variations
	Double DQN
	DDQN implementation
	Results

	Dueling DQN
	Dueling DQN implementation
	Results

	N-step DQN
	Implementation
	Results

	Summary
	Questions
	Further reading

	Chapter 6: Learning Stochastic and PG Optimization
	Policy gradient methods
	The gradient of the policy
	Policy gradient theorem
	Computing the gradient
	The policy
	On-policy PG

	Understanding the REINFORCE algorithm
	Implementing REINFORCE
	Landing a spacecraft using REINFORCE
	Analyzing the results

	REINFORCE with baseline
	Implementing REINFORCE with baseline

	Learning the AC algorithm
	Using a critic to help an actor to learn
	The n-step AC model
	The AC implementation
	Landing a spacecraft using AC
	Advanced AC, and tips and tricks

	Summary
	Questions
	Further reading

	Chapter 7: TRPO and PPO Implementation
	Roboschool
	Control a continuous system

	Natural policy gradient
	Intuition behind NPG
	A bit of math
	FIM and KL divergence

	Natural gradient complications

	Trust region policy optimization
	The TRPO algorithm
	Implementation of the TRPO algorithm
	Application of TRPO

	Proximal Policy Optimization
	A quick overview
	The PPO algorithm
	Implementation of PPO
	PPO application

	Summary
	Questions
	Further reading

	Chapter 8: DDPG and TD3 Applications
	Combining policy gradient optimization with Q-learning
	Deterministic policy gradient

	Deep deterministic policy gradient
	The DDPG algorithm
	DDPG implementation
	Appling DDPG to BipedalWalker-v2

	Twin delayed deep deterministic policy gradient (TD3)
	Addressing overestimation bias
	Implementation of TD3

	Addressing variance reduction
	Delayed policy updates
	Target regularization

	Applying TD3 to BipedalWalker

	Summary
	Questions
	Further reading

	Section 3: Beyond Model-Free Algorithms and Improvements
	Chapter 9: Model-Based RL
	Model-based methods
	A broad perspective on model-based learning
	A known model
	Unknown model

	Advantages and disadvantages

	Combining model-based with model-free learning
	A useful combination
	Building a model from images

	ME-TRPO applied to an inverted pendulum
	Understanding ME-TRPO
	Implementing ME-TRPO
	Experimenting with RoboSchool
	Results on RoboSchoolInvertedPendulum

	Summary
	Questions
	Further reading

	Chapter 10: Imitation Learning with the DAgger Algorithm
	Technical requirements
	Installation of Flappy Bird

	The imitation approach
	The driving assistant example
	Comparing IL and RL
	The role of the expert in imitation learning
	The IL structure
	Comparing active with passive imitation

	Playing Flappy Bird
	How to use the environment

	Understanding the dataset aggregation algorithm
	The DAgger algorithm
	Implementation of DAgger
	Loading the expert inference model
	Creating the learner's computational graph
	Creating a DAgger loop

	Analyzing the results on Flappy Bird

	IRL
	Summary
	Questions
	Further reading

	Chapter 11: Understanding Black-Box Optimization Algorithms
	Beyond RL
	A brief recap of RL
	The alternative
	EAs

	The core of EAs
	Genetic algorithms
	Evolution strategies
	CMA-ES
	ES versus RL

	Scalable evolution strategies
	The core
	Parallelizing ES
	Other tricks
	Pseudocode

	Scalable implementation
	The main function
	Workers

	Applying scalable ES to LunarLander
	Summary
	Questions
	Further reading

	Chapter 12: Developing the ESBAS Algorithm
	Exploration versus exploitation
	Multi-armed bandit

	Approaches to exploration
	The ∈-greedy strategy
	The UCB algorithm
	UCB1

	Exploration complexity

	Epochal stochastic bandit algorithm selection
	Unboxing algorithm selection
	Under the hood of ESBAS
	Implementation
	Solving Acrobot
	Results

	Summary
	Questions
	Further reading

	Chapter 13: Practical Implementation for Resolving RL Challenges
	Best practices of deep RL
	Choosing the appropriate algorithm
	From zero to one

	Challenges in deep RL
	Stability and reproducibility
	Efficiency
	Generalization

	Advanced techniques
	Unsupervised RL
	Intrinsic reward

	Transfer learning
	Types of transfer learning
	1-task learning
	Multi-task learning

	RL in the real world
	Facing real-world challenges
	Bridging the gap between simulation and the real world
	Creating your own environment

	Future of RL and its impact on society
	Summary
	Questions
	Further reading

	Assessments
	Other Books You May Enjoy
	Index

