

A Concise Introduction to
Robot Programming

with ROS2

A Concise Introduction to Robot Programming with ROS2 provides the reader with the con-
cepts and tools necessary to bring a robot to life through programming. It will equip the reader
with the skills necessary to undertake projects with ROS2, the new version of ROS. It is not
necessary to have previous experience with ROS2 as it will describe its concepts, tools, and
methodologies from the beginning.

Key Features

•	 Uses the two programming languages officially supported in ROS2 (C++, mainly, and Py-
thon)

•	 Approaches ROS2 from three different but complementary dimensions: the Community,
Computation Graph, and the Workspace

•	 Includes a complete simulated robot, development and testing strategies, Behavior Trees,
and Nav2 description, setup, and use

•	 A GitHub repository with code to assist readers

It will appeal to motivated engineering students, engineers, and professionals working with ro-
bot programming.

Francisco Martín Rico, Doctor Engineer in Robotics, is an Associate Professor at the Rey Juan
Carlos University, where he leads the Intelligent Robotics Lab and teaches courses on Software
Architectures and Middlewares for Robots, Mobile Robotics, Planning or Cognitive Systems. He
is a reputed member of the ROS community, authoring and contributing to reference packages
like ROS2 Planning System (PlanSys2) and Nav2. He has recently received the Best ROS Devel-
oper 2022 award.

https://taylorandfrancis.com

A Concise Introduction to
Robot Programming

with ROS2

Francisco Martín Rico

First edition published 2023
by CRC Press
6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742

and by CRC Press
4 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

CRC Press is an imprint of Taylor & Francis Group, LLC

© 2023 Francisco Martín Rico

Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot as-
sume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have
attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders
if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please
write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or
utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including pho-
tocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission
from the publishers.

For permission to photocopy or use material electronically from this work, access www.copyright.com or contact the
Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. For works that are
not available on CCC please contact mpkbookspermissions@tandf.co.uk

Trademark notice: Product or corporate names may be trademarks or registered trademarks and are used only for
identification and explanation without intent to infringe.

ISBN: 978-1-032-26720-3 (hbk)
ISBN: 978-1-032-26465-3 (pbk)
ISBN: 978-1-003-28962-3 (ebk)

DOI: 10.1201/9781003289623

Typeset in Minion
by KnowledgeWorks Global Ltd.

Publisher’s note: This book has been prepared from camera-ready copy provided by the authors.

Access the Support Material: https://github.com/fmrico/book ros2

mailto:mpkbookspermissions@tandf.co.uk
https://www.copyright.com
https://github.com/fmrico/bookros2
https://doi.org/10.1201/9781003289623

Contents

List of Figures ix

Chapter 1 � Introduction 1

1.1 ROS2 OVERVIEW 2

1.1.1 The ROS Community 3
1.1.2 The Computation Graph 5
1.1.3 The Workspace 10

1.2 THE ROS2 DESIGN 13

1.3 ABOUT THIS BOOK 15

Chapter 2 � First Steps with ROS2 19

2.1 FIRST STEPS WITH ROS2 19

2.2 DEVELOPING THE FIRST NODE 24

2.3 ANALYZING THE BR2 BASICS PACKAGE 27

2.3.1 Controlling the Iterative Execution 28
2.3.2 Publishing and Subscribing 32
2.3.3 Launchers 35
2.3.4 Parameters 37
2.3.5 Executors 39

2.4 SIMULATED ROBOT SETUP 41

Chapter 3 � First Behavior: Avoiding Obstacles with Finite States
Machines 47

3.1 PERCEPTION AND ACTUATION MODELS 48

3.2 COMPUTATION GRAPH 51

3.3 BUMP AND GO IN C++ 53

3.3.1 Execution Control 53

v

vi � Contents

3.3.2 Implementing a FSM 55
3.3.3 Running the Code 57

3.4 BUMP AND GO BEHAVIOR IN PYTHON 58

3.4.1 Execution Control 59
3.4.2 Implementing the FSM 60
3.4.3 Running the Code 61

Chapter 4 � The TF Subsystem 63

4.1 AN OBSTACLE DETECTOR THAT USES TF2 67

4.2 COMPUTATION GRAPH 68

4.3 BASIC DETECTOR 68

4.3.1 Obstacle Detector Node 70
4.3.2 Obstacle Monitor Node 72
4.3.3 Running the Basic Detector 74

4.4 IMPROVED DETECTOR 76

4.4.1 Running the Improved Detector 78

Chapter 5 � Reactive Behaviors 81

5.1 AVOIDING OBSTACLES WITH VFF 81

5.1.1 The Computation Graph 82
5.1.2 Package Structure 83
5.1.3 Control Logic 84
5.1.4 Calculation of the VFF Vectors 85
5.1.5 Debugging with Visual Markers 86
5.1.6 Running the AvoidanceNode 88

89
5.2 TRACKING OBJECTS 95

5.2.1 Perception and Actuation Models 95
5.2.2 Computation Graph 100
5.2.3 Lifecycle Nodes 101
5.2.4 Creating Custom Messages 102
5.2.5 Tracking Implementation 103
5.2.6 Executing the Tracker 111

5.1.7 Testing During Development

Contents � vii

Chapter 6 � Programming Robot Behaviors with Behavior Trees 115

6.1 BEHAVIOR TREES 115

6.2 BUMP AND GO WITH BEHAVIOR TREES 122

6.2.1 Using Groot to Create the Behavior Tree 124
6.2.2 BT Nodes Implementation 126
6.2.3 Running the Behavior Tree 129
6.2.4 Testing the BT Nodes 131

6.3 PATROLLING WITH BEHAVIOR TREES 134

6.3.1 Nav2 Description 135
6.3.2 Setup Nav2 139
6.3.3 Computation Graph and Behavior Tree 144
6.3.4 Patrolling Implementation 146
6.3.5 Running Patrolling 153

Appendix A � Source Code 155

A.1 PACKAGE BR2 BASICS 155

A.2 PACKAGE BR2 FSM BUMPGO CPP 163

A.3 PACKAGE BR2 FSM BUMPGO PY 168

A.4 PACKAGE BR2 TF2 DETECTOR 171

A.5 PACKAGE BR2 VFF AVOIDANCE 179

A.6 PACKAGE BR2 TRACKING MSGS 189

A.7 PACKAGE BR2 TRACKING 190

A.8 PACKAGE BR2 BT BUMPGO 202

A.9 PACKAGE BR2 BT PATROLLING 216

Bibliography 247

Index 249

https://taylorandfrancis.com

List of Figures

1.1 Representation of software layers in a robot. 1
1.2 ROS2 distributions delivered until Aug 2021. 5
1.3 Description of symbols used in computer graph diagrams. 7
1.4 Computing graph of a simple control for the Kobuki robot. The con-

trol application publishes speeds computed from the information of
the bumper to which it subscribes. 7

1.5 Computing graph of a control application that uses the laser data
and preprocessed information (people and objects) obtained from the
robot’s RGBD camera. 9

1.6 Computing graph of behavior-based application for the Tiago robot
that uses a navigation subsystem. 10

1.7 ROS2 layered design. 14

2.1 Computation Graph for the Talker node. 21
2.2 Computation Graph for the Listener node. 23
2.3 Program rqt graph. 23
2.4 Computation Graph for the Simple node. 27
2.5 Computation Graph for the Logger node. 29
2.6 rqt console subscribes to /rosout, receiving the messages produced

by the Logger node. 30
2.7 rqt console program. 30
2.8 Computation Graph for the Publisher node. 33
2.9 Computation Graph for the Publisher and Subscriber nodes. 35
2.10 Computation Graph for the Publisher and Subscriber nodes,

running in the same process. 40
2.11 Simulating Tiago robot in Gazebo. 41
2.12 Connection between the Tiago and the teleoperator velocity topics,

using a remap. 43
2.13 RViz2 visualizing TFs and the sensor information of the Tiago robot. 45
2.14 Computation Graph for the Tiago robot, displaying the relevant topics. 46

ix

x � List of Figures

3.1 States and Transitions for solving the Bump and Go problem using a
FSM. 48

3.2 Axis and angles conventions in ROS. 49
3.3 Laser scan interpretation in the simulated Tiago (left). Laser frame

50
3.4 Computation Graph for Bump and Go project. 52

4.1 Portion of the TF tree of the simulated Tiago and the TF display in
RViz2. 65

4.2 The mnemonic rule for naming and operating TFs. Based on their
name, we can know if two TFs can be multiplied and the name of the
resulting TF. 67

4.3 Robot Tiago detecting obstacles with the laser sensor. The red arrow
highlights the obstacle detected with the center reading. 67

4.4 Visual markers available for visual debugging. 68
4.5 Computation Graph of the exercise. The /obstacle detector node

collaborates with the /obstacle monitor node using the TF
subsystem. 69

the red arrow marker published to visualize the detection. 75
4.7 Diagram showing the problem when publishing TFs in the local frame.

position. 76
4.8 Diagram showing how to correctly maintain the obstacle position, by

publishing the TF in a fixed frame. The calculated TF (thick blue
arrow) takes into account the robot displacement. 77

5.1 Examples of VFF vectors produced by the same obstacle. Blue vector
is attractive, red vector is repulsive, and green vector is the resulting
vector. 82

5.2 Computation Graph for obstacle avoidance. 83
5.3 Execution of avoidance behavior. 89
5.4 Object detection by color using an HSV range filter. 98
5.5 Head controller topics. 99
5.6 trajectory msgs/msg/JointTrajectory message format. 99
5.7 Diagram for pan/tilt control. E indicates the desired position. error *

indicates the difference between the current position and the desired
pan/tilt position. 100

5.8 Computation Graph for Object Tracking project. 101
5.9 Diagram of states and transitions in Lifecycle Nodes. 102

with respect to other main frames (right).

4.6 Visualization in RViz2 of the TF corresponding to the detection, and

When the robot moves, the TF no longer represents the right obstacle

List of Figures � xi

5.10 Diagram for PID for one joint. 111
5.11 Project tracking running. 114

6.1 Simple Behavior Tree with various types of Nodes. 116
6.2 BT where the leaves control a robot by publish/subscribe (one-way

dotted arrow) or ROS2 actions (two-way dotted arrow). 117
6.3 BT with a fallback strategy for charging battery. 118
6.4 Ports connection using a blackboard key. 119
6.5 Example of Sequence node. 121
6.6 Example of ReactiveSequence node. 121
6.7 Example of ReactiveStar node. 121
6.8 Example of ReactiveFallback node. 122
6.9 Action nodes for Bump and Go. 122
6.10 Complete Behavior Tree for Bump and Go. 123
6.11 Specification of IsObstacle BT node. 124
6.12 Action nodes for Bump and Go. 125
6.13 Monitoring the execution of a Behavior Tree with Groot. 132
6.14 Waypoints at the simulated home, with the path followed during

patrolling. 134
6.15 Waypoints at the simulated home, with the path followed during

patrolling. 135
6.16 2D costmaps used by the Nav2 components. 136
6.17 Behavior Tree simple example inside BT Navigator Server, with BT

nodes calling ROS2 actions to coordinate other Nav2 components. 138
6.18 Nav2 in action 139
6.19 Simulated turtlebot 3. 140
6.20 SLAM with Tiago simulated. 142
6.21 Computation Graph for the Patrolling Project. Subsystems have been

simplified for clarity. 144
6.22 Behavior Tree for Patrolling project. 145

https://taylorandfrancis.com

C H A P T E R 1

Introduction

ROBOTS must be programmed to be useful. It is useless for a robot to be
a mechanical prodigy without providing it with software that processes the

information from the sensors to send the correct commands to the actuators to fulfill
the mission for which it was created. This chapter introduces the middlewares for
programming robots and, in particular, to ROS2 [8], which will be the one used in
this book.

First of all, nobody starts programming a robot from scratch. Robot software is
very complex since we have to face the problem that a robot performs tasks in a real,
dynamic, and sometimes unpredictable world. It also must deal with a wide variety
of models and types of sensors and actuators. Implementing the necessary drivers or
adapting to new hardware components is a titanic effort doomed to failure.

Middleware is a layer of software between the operating system and user appli-
cations to carry out the programming of applications in some domains. Middleware
usually contains more than libraries, including development and monitoring tools, and
a development methodology. Figure 1.1 shows a schematic of a system that includes
middleware for developing applications for robots.

Robot programming middlewares provide drivers, libraries, and methodologies.
They also usually offer development, integration, execution, and monitoring tools.
Throughout the history of Robotics, a multitude of robot programming middlewares
have emerged. Few of them have survived the robot for which they were designed or
have expanded from the laboratories where they were implemented. There are no-
table examples (Yarp[5], Carmen[6], Player/Stage[2], etc), although without a doubt
the most successful in the last decade has been ROS[7], which is currently considered

Robot/Computer Hardware

Operating System

Middleware for Robots

Robotic
Application Tools

Other
Applications

Figure 1.1: Representation of software layers in a robot.

DOI: 10.1201/9781003289623-1 1

https://doi.org/10.1201/9781003289623-1

a standard in the world of robot programming. Technically, there are similarities
between the different middlewares: most are based on Open Source, many provide
communication mechanisms for distributed components, compilation systems, mon-
itoring tools, etc. The big difference is the ROS developers community around the
world. There are also leading companies, international organizations, and universi-
ties worldwide in this community, providing a vast collection of software, drivers,
documentation, or questions already resolved to almost any problem that may arise.
Robotics can been defined as “the art of integration”, and ROS offers a lot of software
to integrate, as well as the tools to do so.

This book will provide the skills necessary to undertake projects in ROS2, the
new version of ROS. It is unnecessary to have previous experience in ROS2 since we
will describe its concepts, tools, and methodologies from the beginning without the
need of previous experience. We will assume average Linux and programming skills.
We will use the two programming languages officially supported in ROS2 (C++ and
Python), which coincide with the languages most used in general in Robotics.

1.1 ROS2 OVERVIEW

The meaning of the acronym ROS is Robot Operating System. It is not an operating
system that replaces Linux or Windows but a middleware that increases the system’s
capabilities to develop Robotic applications. The number 2 indicates that it is the
second generation of this middleware. The reader who already knows the first version
of ROS (sometimes referred to as ROS1) will find many similar concepts, and there
are already several teaching resources1 for the ROS1 programmer who lands on ROS2.
In this book, we will assume no previous knowledge of ROS. It will be more and more
common for this to happen, as there are now more and more reasons to learn ROS2
directly instead of going through ROS1 first.

Also, there are already some excellent official ROS2 tutorials, so the approach
in this book is intended to be different. The description will be complete and with
a methodology oriented to developing robotic applications that make the robot do
something “smart”, from robotic engineer to robotic engineer, emphasizing essential
issues that come from experience in the development of software in robots. It will not
hurt for the reader to explore the tutorials available to complete their training and
fill in the gaps that do not fit in this book:

• Official ROS2 tutorials: https://docs.ros.org/en/foxy/Tutorials.html

• The Robotics Back-End tutorials: https://roboticsbackend.com/category/ros2/

• ROS2 for ROS2 developers: https://github.com/fmrico/ros to ros2 talk examples

The starting point is a Linux Ubuntu 20.04 LTS system installed on a computer
with an AMD64-bit architecture, the most extended one in a personal laptop or
desktop computer. The Linux distribution is relevant since ROS2 is organized in
distributions. A distribution is a collection of libraries, tools, and applications whose

1https://github.com/fmrico/ros to ros2 talk examples

2 � A Concise Introduction to Robot Programming with ROS2

https://docs.ros.org/en/foxy/Tutorials.html
https://roboticsbackend.com
https://github.com
https://github.com

Introduction � 3

versions are verified to work together correctly. Each distribution has a name and
is linked to a version of Ubuntu. The software in a distribution is also guaranteed
to work correctly with the software version present on the system. It is possible
to use another Linux distribution (Ubuntu, Fedora, Red Hat ...), but the reference
is Ubuntu. ROS2 also works on Windows and Mac, but this document focuses on
Linux development. We will use the ROS2 Foxy Fitzroy version, which corresponds
to Ubuntu 20.04.

In this book, we will approach ROS2 from three different but complementary
dimensions:

• The Community: The ROS community is a fundamental element when de-
veloping applications for robots with this middleware. In addition to providing
technical documentation, there is a vast community of developers who con-
tribute with their own applications and utilities through public repositories, to
which other developers can contribute. Another member of the community may
have already developed something you need.

• Computation Graph: The Computational Graph is a running ROS2 appli-
cation. This graph is made up of nodes and arcs. The Node, the primary com-
puting units in ROS2, can collaborate with other nodes using several different
communication paradigms to compose a ROS2 application. This dimension also
addresses the monitoring tools, which are also nodes that are inserted in this
graph.

• The Workspace: The Workspace is the set of software installed on the robot
or computer, and the programs that the user develops. In contrast to the Com-
putational Graph, which has a dynamic nature, the Workspace is static. This
dimension also addresses the development tools to build the elements of the
Computational Graph.

1.1.1 The ROS Community

The first dimension of ROS2 to consider is the ROS Community. The Open Source
Robotics Foundation2 greatly enhanced the community of users and developers. ROS2
is not only a robot programming middleware, but it is also a development methodol-
ogy, a established software delivery mechanisms, and a set of resources made available
to members of the ROS community.

ROS2 is fundamentally Open Source, which means that it is software released
under a license in which the user has rights of use, study, change, and redistribu-
tion. Many Open Source licenses modulate certain freedoms on this software, but
essentially we can assume these rights. The most common licenses for ROS2 software
packages are Apache 2 and BSD, although developers are free to use others.

ROS2 organizes the software following a federal model, providing the technical
mechanisms that make it possible. Each developer, company, or institution can de-
velop their software freely, responsible for managing it. It is also widespread that small

2https://www.openrobotics.org

https://www.openrobotics.org

projects create a community around it, and this community can organize decision-
making on releasing issues. These entities create software packages for ROS2 that
they can make available in public repositories or be part of a ROS2 distribution as
binaries. Nobody can force these entities to migrate their software to new versions
of ROS2. However, the inertia of many essential and popular packages is enough to
guarantee their continuity.

The importance of this development modeling is that it fosters the growth of the
ROS community. From a practical point of view, this is key to the success of a robot
programming middleware. One of the desirable characteristics of this type of middle-
ware is its support for many sensors and actuators. Nowadays, many manufacturers
of these components officially support their drivers for ROS2 since they know that
there are many potential customers and that there are many developers who check
if a specific component is supported in ROS2 before buying them. In addition, these
companies usually develop this software in open repositories where users communi-
ties can be created reporting bugs and even sending their patches. If you want your
library or tool for robots to be widely used, supporting ROS2 may be the way.

The packages in ROS2 are organized in distributions. A ROS2 distribution is
made up of a multitude of packages that can work well together. Usually, this implies
that it is tied to a specific version of a base system. ROS2 uses Ubuntu Linux versions
as reference. This guarantees stability since otherwise, the dependencies of versions
of different packages and libraries would make ROS2 a real mess. When an entity
releases specific software, it does so for a given distribution. It is common to maintain
multiple development branches for each distribution.

ROS2 has released a total of seven distributions to date (January’22), which we
can see in Figure 1.2. Each distribution has a name whose initial increases and a
different logo (and a different T-shirt model!). An eighth distribution, which is a bit
special, called Rolling Ridley, serves as a staging area for future stable distributions
of ROS2 and as a collection of the most recent development releases.

Distro name Release Data EOL date Ubuntu version
Galactic Geochelone May 23rd, 2021 November 2022
Foxy Fitzroy June 5th, 2020 May 2023 (LTS) Ubuntu 20.04

Eloquent Elusor November 22nd, 2019 November 2020
Dashing Diademata May 31st, 2019 May 2021 (LTS)
Crystal Clemmys December 14th, 2018 December 2019

Ubuntu 18.04

Bouncy Bolson July 2nd, 2018 July 2019
Ardent Apalone December 8th, 2017 December 2018 Ubuntu 16.04

If you want to contribute your software to a distribution, you should visit the
rosdistro repository (https://github.com/ros/rosdistro), and a couple of useful links:

• Contributing: https://github.com/ros/rosdistro/blob/master/
CONTRIBUTING.md

• Releasing your package: https://docs.ros.org/en/rolling/How-To-Guides/
Releasing/Releasing-a-Package.html

4 � A Concise Introduction to Robot Programming with ROS2

https://github.com
https://github.com
https://docs.ros.org/en/rolling/How-To-Guides/Releasing/Releasing-a-Package.html
https://github.com
https://docs.ros.org/en/rolling/How-To-Guides/Releasing/Releasing-a-Package.html

Introduction � 5

Figure 1.2: ROS2 distributions delivered until Aug 2021.

The Open Source Robotics Foundation makes many resources available to the
community, among which we highlight:

• ROS official page. http://ros.org

• ROS2 Documentation Page: https://docs.ros.org/. Each distro has its docu-
mentation. For example, at https://docs.ros.org/en/foxy/ you can find instal-
lation guides, tutorials, and guides, among others.

• ROS Answers (https://answers.ros.org/). A place to ask questions and prob-
lems with ROS.

• ROS Discourse (https://discourse.ros.org/). It is a discussion forum for the ROS
community, where you can keep up to date with the community, view release
announcements, or discuss design issues. They also have ROS2 user groups in
multiple languages.

1.1.2 The Computation Graph

In this second dimension, we will analyze what a robot’s software looks like during
its execution. This vision will give us an idea of the goal, and we will be able to
understand better the why of many of the contents that will follow. This dimension
is what we call Computation Graph.

A Computation Graph contains ROS2 nodes that communicate with each other
so that the robot can carry out some tasks. The logic of the application is in the
nodes, as the primary elements of execution in ROS2.

http://ros.org
https://docs.ros.org
https://docs.ros.org/en/foxy
https://answers.ros.org
https://discourse.ros.org

ROS2 makes intensive use of Object-Oriented Programming. A node is an object
of class Node, in general, whether it is written in C++ or Python.

A node can access the Computation Graph and provides mechanisms to commu-
nicate with other nodes through 3 types of paradigms:

• Publication/Subscription: It is an asynchronous communication, where N
nodes publish messages to a topic that reaches its M subscribers. A topic is like
a communication channel that accepts messages of a unique type. This type
of communication is the most common in ROS2. A very representative case is
the node that contains the driver of a camera that publishes images in a topic.
All the nodes in a system needing images from the camera to carry out their
function subscribe to this topic.

• Services: It is a synchronous communication in which a node requests another
node and waits for the response. This communication usually requires an im-
mediate response so as not to affect the control cycle of the node that calls
the service. An example could be the request to the mapping service to reset a
map, with a response indicating if the call succeeded.

• Actions: These are asynchronous communications in which a node makes a
request to another node. These requests usually take time to complete, and the
calling node may periodically receive feedback or the notification that it has fin-
ished successfully or with some error. A navigation request is an example of this
type of communication. This request is possibly time-consuming, whereby the
node requesting the robot to navigate should not be blocked while completing.

The function of a node in a computational graph is to perform processing or
control. Therefore, they are considered active elements with some alternatives in
terms of their execution model:

• Iterative execution: It is popular in the control software for a node to execute
its control cycle at a specific frequency. This approach allows controlling how
many computational resources a node requires, and the output flow remains
constant. For example, a node calculating motion commands to actuators at
20 Hz based on their status.

• Event-oriented execution: The execution of these nodes is determined by the
frequency at which certain events occur, in this case, the arrival of messages
at this node. For example, a node that, for each image it receives, performs
detection on it and produces an output. The frequency at which an output
occurs depends on the frequency at which images arrive. If no images reach it,
it produces no output.

Next, we will show several examples of computational graphs. The legend in
Figure 1.3 shows the elements used in these examples.

6 � A Concise Introduction to Robot Programming with ROS2

Introduction � 7

node name ROS2 Node

Process

Topic

Publication

topic name
topic msg type

Subscription

Action

Figure 1.3: Description of symbols used in computer graph diagrams.

Robot Hardware

Kobuki Node

Control
Application

/mobile_base/event/bumper /mobile_base/commands/velocity
kobuki_msgs/msg/BumperEvent geometry_msgs/msg/Twist

10 Hz

Figure 1.4: Computing graph of a simple control for the Kobuki robot. The control
application publishes speeds computed from the information of the bumper to which
it subscribes.

The first Computation Graph, shown in Figure 1.4, is a simple example of a
program that interacts with a Kobuki3 robot.

The Kobuki robot driver is a node that communicates with the robot’s hardware,
probably using a native driver. Its functionality is exposed to the user through various
topics. In this case, we have shown only two topics:

• /mobile base/event/bumper: It is a topic in which the kobuki driver pub-
lishes a kobuki msgs/msg/BumperEvent message every time one of the bumpers
changes state (whether or not it is pressed). All nodes of the system interested
on detecting collision with this sensor subscribe to this topic.

• /mobile base/commands/velocity: It is a topic to which the kobuki driver
subscribes to adjust its speed. If it does not receive any command in a second,
it stops. This topic is of type geometry msgs/msg/Twist. Virtually all robots
in ROS2 receive these types of messages to control their speed.

3http://kobuki.yujinrobot.com/about2

http://kobuki.yujinrobot.com

8 � A Concise Introduction to Robot Programming

Deeping into: Names in ROS2

The names of the resources in ROS2 follow a convention very similar to the filesystem in
Unix. When creating a resource, for example, a publisher, we can specify its name relative,
absolute (begins with “/”), or privately (begins with “∼”). Furthermore, we can define
a namespace whose objective is to isolate resources from other namespaces by adding the
workspace’s name as the first component of the name. Namespaces are helpful, for example,
in multirobot applications. Let’s see an example of the resulting name of a topic based on
the node name and the namespace:

name Result: (node: my node / ns: none) Result: (node: my node / ns: my ns)
my topic /my topic /my ns/my topic
/my topic /my topic /my topic
∼my topic /my node/my topic /my ns/my node/my topic

Further readings:
• http://wiki.ros.org/Names
• https://design.ros2.org/articles/topic and service names.html

This node runs inside a separate process. The Computation Graph shows another
process that subscribes to the bumper’s topic, and based on the information it re-
ceives, it publishes the speed at which the robot should move. We have set the node’s
execution frequency to indicate that it makes a control decision at 10 Hz, whether or
not it receives messages about the status of the bumper.

This Computation Graph comprises two nodes and two topics, with their respec-
tive publication/subscription connections.

Let’s evolve the robot and the application. Let’s add a laser and a 3D camera (also
called RGBD camera). For each sensor, a node must access the sensor and present it
with a ROS2 interface. As we said earlier, publishing the data from a sensor is the
most convenient way to make this data available in a computational graph.

The application now makes the robot move towards people or objects detected
from the 3D image of an RGBD camera. A laser sensor avoids colliding as we move.
The Computation Graph shown in Figure 1.5 summarizes the application:

• The control node runs at 20 Hz sending control commands to the robot base.
It subscribes to the topic /scan to check the obstacles around it.

• The process contains two nodes that detect people and objects, respectively.
Both need the image and depth information from the camera to determine the
position of detected objects. Each detection is published in two different topics,
using a standard message designed for 3D detection.

• The control node subscribes to these topics to carry out its task.

In the last example, the robot used is Tiago4. Let’s assume that there is only one
node that provides its functionality. We use in this example two subscribers (speed
commands to move its base and trajectory commands to move its neck) and two
publishers (laser information and the 3D image from a RGBD camera).

4https://pal-robotics.com/es/robots/tiago/

with ROS2

http://wiki.ros.org
https://design.ros2.org
https://pal-robotics.com

Introduction � 9

RGBD Sensor
NodeLaser Node

Robot Hardware

Kobuki Node

Control
Application

/mobile_base/commands/velocity
geometry_msgs/msg/Twist

/scan
sensor_msgs/msg/LaserScan

/camera/rgb/image_raw
sensor_msgs/msg/Image

/camera/depth/points
sensor_msgs/msg/PointCloud2

20 Hz

People
Perception

Object
Perception

/detected_people

/detected_objects
vision_msgs/msg/Detection3D

vision_msgs/msg/Detection3D

Figure 1.5: Computing graph of a control application that uses the laser data and
preprocessed information (people and objects) obtained from the robot’s RGBD cam-
era.

The application (Figure 1.6) is divided into two subsystems, each one in a different
process that contains the nodes of each subsystem (we have omitted the details of
the topics of each subsystem):

• Behavior subsystem: It comprises two nodes that collaborate to generate
the robot’s behavior. There is behavior coordinator (Coordinator) and a node
that implements an active vision system (HeadController). Coordinator de-
termines where to look at and which points the robot should visit on a map.

• Navigation Subsystem: This example of a navigation subsystem consists of
several nodes. The navigation manager coordinates the planner (in charge of
creating routes from the robot’s position to the destination) and the controller
(which makes the robot follow the created route). The planner needs the map
provided by a node that loads the environment map and the robot’s position
that calculates a location node.

• Communication between both subsystems is done using ROS2 actions. The
Navigation Behavior sets a goal and is notified when it is complete. It also
periodically receives progress toward the destination. Actions are also used to
coordinate the planner and controller within the navigation system.

Throughout this subsection, we have shown computation graphs. Every time we
implement an application in ROS2, we design a computational graph. We establish
which nodes we need and what their interactions are. We must decide if a node is
executed at a specific frequency or if some event causes its execution (request or
message). We can develop all the nodes, or include in the Computation Graph nodes
developed by third parties.

10 � A Concise Introduction to Robot Programming

Robot Hardware

Tiago Nodes

/nav_vel

geometry_msgs/msg/Twist
control_msgs/msg/JointTrajectoryControllerState

/scan_raw

sensor_msgs/msg/LaserScan

/head_controller/joint_trajectory
trajectory_msgs/msg/JointTrajectory

/joint_command

/head_controller/state

/joint_state

Navigation System

Map Server Localization

Planner

ControllerNavigation
Manager

HeadController

10 Hz

Coordinator

Behavior System

/camera/depth/points

sensor_msgs/msg/PointCloud2

Figure 1.6: Computing graph of behavior-based application for the Tiago robot that
uses a navigation subsystem.

Although we can define new message types in our application, ROS2 has defined
a set of standard message types that facilitate the interaction of nodes from different
developers. It does not make sense, for example, to define a new type of message
for images, since there are a lot of third-party software, processing and monitoring
tools that consume and produce the type of message considered standard for im-
ages, (sensor msgs/msg/Image). Always use existing standard messages whenever
possible.

1.1.3 The Workspace

The Workspace dimension approaches ROS2 software from a static point of view.
It refers to where the ROS2 software is installed, organized, and all the tools and
processes that allow us to launch a computing graph. This includes the build system
and node startup tools.

The fundamental element in this dimension is the package. A package contains
executables, libraries, or message definitions with a common purpose. Usually, a pack-
age depends on other packages to run or be built.

Another element of this dimension is the workspace itself. A workspace is a di-
rectory that contains packages. This workspace has to be activated so that what it
contains is available to use.

with ROS2

Introduction � 11

There can be several workspaces active at the same time. This activation process
is accumulative. We can activate an initial workspace, that we call underlay. Later,
we can activate another workspace that we will call overlay because it overlays the
previous underlay workspace. The overlay package dependencies should be satisfied
in the underlay. If a package in the overlay already exists in the underlay, the overlay
package hides the one in the underlay.

Usually, the workspace containing the basic ROS2 installation is activated ini-
tially. This is the most common underlay in a ROS2 system. Then, the workspace,
where the user is developing their own packages, is activated.

Packages can be installed from sources or with the system installation system.
On Ubuntu Linux 20.04, which is the reference in this book, it is carried out with deb
packages using tools like apt. Each ROS2 package is packaged in a deb package. The
names of deb packages in a distribution are easily identifiable because their names
start with ros-<distro>-<ros2 package name>. In order to access these packages,
configure the APT ROS2 repository:
$ sudo apt update && sudo apt install curl gnupg2 lsb-release

$ sudo curl -sSL https://raw.githubusercontent.com/ros/rosdistro/master/ros.key
-o /usr/share/keyrings/ros-archive-keyring.gpg

$ echo "deb [arch=$(dpkg --print-architecture)
signed-by=/usr/share/keyrings/ros-archive-keyring.gpg]
http://packages.ros.org/ros2/ubuntu $(source /etc/os-release && echo
$UBUNTU CODENAME) main" | sudo tee /etc/apt/sources.list.d/ros2.list > /dev/null

$ sudo apt-get update

Of course, the installation dependencies of the Deb packages are those of the ROS2
package. The following command shows the ROS2 packages available to install:
$ apt-cache search ros-foxy

ROS2 Foxy installation. Instructions are located at https://docs.ros.org/
en/foxy/Installation/Ubuntu-Install-Debians.html. Basically, ROS2 Foxy is
installed just typing:
$ sudo apt update

$ sudo apt install ros-foxy-desktop

All the ROS2 software installed by apt is in /opt/ros/foxy. On an Ubuntu
20.04 system, installing the ROS2 Galactic version or the ROS Noetic Ninjemys
version is also possible. If both are installed, they are in /opt/ros/galactic and
/opt/ros/noetic, respectively. We could even install one of these ROS distributions
by compiling its source code in some other location. Because of this, and because it is
not recommended (unless you know what you are doing) to mix ROS distributions,
installing a distribution does not “activate” it. The activation is done by executing
in a terminal:
$ source /opt/ros/foxy/setup.bash

https://raw.githubusercontent.com
http://packages.ros.org
https://docs.ros.org/en/foxy/Installation/Ubuntu-Install-Debians.html
https://docs.ros.org/en/foxy/Installation/Ubuntu-Install-Debians.html

12 � A Concise Introduction to Robot Programming

This command “activates” the software in /opt/ros/foxy. It is common to in-
clude this line in $HOME/.bashrc so that it is activated by default when opening a
terminal:
$ echo "source /opt/ros/foxy/setup.bash" >> /.bashrc

It is also convenient to install and configure the rosdep5 tool. This tool discov-
ers dependencies not satisfied in a set of source packages and installs them as deb
packages. We only need to run these commands once after installation:
$ sudo rosdep init

$ rosdep update

Typically, the user creates a directory in his $HOME directory that contains the
sources of the packages he is developing. Let’s create a workspace only by creating a
directory with a src directory within. Then, add the example packages that we will
use throughout this book.
$ cd

$ mkdir -p bookros2 ws/src

$ cd bookros2 ws/src

$ git clone-b foxy-devel https://github.com/fmrico/book ros2.git

If we explore the content that we have added under src, we will be able to see
a collection of directories. Packages are those that have a package.xml file in their
root directory.

In this workspace, there are many packages with dependencies on other packages
not part of the ROS2 Foxy distribution. To add the sources of these packages to the
workspace, we will use the vcstool6:
$ cd ∼/bookros2 ws/src

$ vcs import . < book ros2/third parties.repos

The command vcs reads a list of repositories from a .repos file and clones them
into the specified directory. Before building, let’s use rosdep to install any package
missing to build the entire workspace:
$ cd ∼/bookros2 ws

$ rosdep install --from-paths src --ignore-src -r -y

Once the sources of the example packages with their dependencies are in the
working workspace, build the workspace, always from its root, using the colcon7

command:
5http://wiki.ros.org/rosdep
6https://github.com/dirk-thomas/vcstool
7https://colcon.readthedocs.io/en/released/index.html

with ROS2

https://github.com
http://wiki.ros.org
https://github.com
https://colcon.readthedocs.io

Introduction � 13

$ cd ∼/bookros2 ws

$ colcon build --symlink-install

Check that three directories have been created in the worspace root:

• build: It contains the intermediate files of the compilation, as well as the tests,
and temporary files.

• install: It contains the compilation results, along with all the files necessary
to execute them (specific configuration files, node startup scripts, maps ...).
Building the workspace using the --symlink-install option, creates a symlink
to their original locations (in src or build), instead of copying. This way, we
save space and can modify certain configuration files directly in src.

• log: Contains a log of the compilation or testing process.

Deeping into: colcon

colcon (collective construction) is a command line tool for building, testing, and using
multiple software packages. With colcon, you can compile ROS1, ROS2 and even plain
cmake packages. It automates the process of building and set up the environment to use
the packages.
Further readings:

• https://design.ros2.org/articles/build tool.html
• https://colcon.readthedocs.io/
• https://vimeopro.com/osrfoundation/roscon-2019/video/379127725

To clean/reset a workspace, simply delete these three directories. A new compi-
lation will regenerate them.

In order to use the content of the workspace, activate it as an overlay, in a similar
way to how the underlay was activated:
$ source ∼/bookros2 ws/install/setup.bash

It is common to include this line, as well as the underlay, in $HOME/.bashrc so
that it is activated by default when opening a terminal:
$ echo "source ∼/bookros2 ws/install/setup.bash" >> /.bashrc

1.2 THE ROS2 DESIGN

Figure 1.7 shows the layers that compose the design of ROS2. The layer immediately
below the nodes developed by the users provides the programmer with the API to
interact with ROS2. Packages which nodes and programs are implemented in C++
use the C++ client libraries, rclcpp. Packages in python use rclpy.

Rclcpp and rclpy are not completely independent ROS2 implementations. If so, a
node in Python could have different behavior than one written in C++. Both rclcpp
and rclpy use rcl, which implements the basic functionality of all ROS2 elements.

https://design.ros2.org
https://colcon.readthedocs.io
https://vimeopro.com

14 � A Concise Introduction to Robot Programming

User Code

ROS Client Layer
(RCL)

User Nodes

rclcpp rclpy Other APIs rclc

rcl (ROS2 C Implementation)

ROS Middleware
Layer (RMW)

rmw (DDS API)

Cyclone
DDS DDS

OS Layer

Figure 1.7: ROS2 layered design.

Rclcpp and rclpy adapt this functionality to the particularities of each language,
along with certain things that must be done at that level, such as the threads model.

Any client library for another language (Rust8, Go9, Java10, .NET11, ...), should
be built on top of rcl.

Rcl is the core of ROS2. No one uses it directly for their programs. There is a C
client library for ROS2 called rclc if the user want to develop C nodes. Although it
is written in the same language as rcl, it still has to complete some functionality and
make ROS2 programming less arid than programming using rcl directly.

A crucial component of ROS2 is communications. ROS2 is a distributed system
whose computing graph has nodes that can be spread over several machines. Even
with all the software running on a single robot, nodes are running on the operator’s
PC to monitor and control the robot’s operation.

ROS2 has chosen Data Distribution Service (DDS)12 for its communications layer,
a next-generation communications middleware implemented over UDP. It allows the
exchange of information between processes with real-time characteristics, security
capabilities, and custom quality of service of each connection. DDS provides a pub-
lication/subscription communications paradigm, providing a mechanism to discover

8https://github.com/ros2-rust/ros2 rust
9https://github.com/tiiuae/rclgo

10https://github.com/ros2-java/ros2 java
11https://github.com/ros2-dotnet/ros2 dotnet
12https://www.omg.org/omg-dds-portal/

with ROS2

https://github.com
https://github.com
https://github.com
https://github.com
https://www.omg.org

Introduction � 15

publishers and subscribers without needing a centralized service automatically. This
discovery is made using multicast, although subsequent connections are unicast.

There are several DDS vendors, including FastDDS13, CycloneDDS14, or RTI15

Connext. All of them fully or partially implement the DDS standard defined by the
OMG16. ROS2 can use all of these DDS implementations. Very few ROS2 developers
could notice when using one or the other. Still, when we begin to require high per-
formance in latency, amount of data, or resources used, we can find some differences
that make us choose one with objective criteria.

The APIs of these DDS implementations do not have to be the same. In fact, they
are not. For this reason, and to simplify the rcl layer, an underlying layer called rmw
has been implemented, which presents the rcl programmer with a unified API to ac-
cess the functionality of each supported DDS implementation. Selecting which DDS to
use is trivial, requiring just modifying an environment variable, RMW IMPLEMENTATION.

The official version of DDS in the Foxy distribution is FastDDS, while in Galactic,
it is CycloneDDS. These vendors compete (in what ironically came to be called the
DDS Wars) to be the predominant implementation. Hopefully, the main beneficiary
of this competition will be the ROS2 community.

1.3 ABOUT THIS BOOK

This book is intended to be a journey through programming robots in ROS2, present-
ing several projects where the main ROS2 concepts are applied. Prior knowledge of
ROS/ROS2 is not needed. Many of the concepts we will see will sound very familiar
to ROS1 programmers. They will find interesting the changes that ROS2 presents
concerning the previous version.

We will use C++ as a vehicular language, although we will include one in Python
in our first examples. We can develop complex and powerful projects in Python but
in my experience with robots, I prefer to use a compiled language rather than an
interpreted one. Similarly, the concepts explained with C++ are equally valid with
Python. Another decision is to use Linux (specifically Ubuntu GNU / Linux 20.04
LTS) instead of Windows or Mac since it is the reference platform in ROS2 and the
one that I consider predominant in Robotics.

I will assume that the reader is a motivated engineering student or an experi-
mented engineer/professional. We will be using many C++ features up to C++17, in-
cluding smart pointers (shared ptr and unique ptr), containers (vector, list, map),
generic programming, and more. I will try to explain complex code parts from a
language point of view, but the less advanced reader may need to consult some ref-
erences17,18. I also count on the reader to know CMake, Git, gdb, and other common
tools developers use in Linux environments. It can be a great time to learn it if you

13https://github.com/eProsima/Fast-DDS
14https://github.com/eclipse-cyclonedds/cyclonedds
15https://www.rti.com/products/dds-standard
16https://www.omg.org/
17https://en.cppreference.com/w/
18https://www.cplusplus.com/

https://github.com
https://www.rti.com
https://www.omg.org
https://en.cppreference.com
https://www.cplusplus.com
https://github.com

16 � A Concise Introduction to Robot Programming

do not know it because everything used in this book is what a robot programmer is
expected to know.

This book is mainly read sequentially. It would be difficult for a beginner in ROS2
to follow the concepts if chapters were skipped. At some points, I will include a text
box like this:

Deeping into: Some topic

Some explanation.

This box indicates that in the first reading, it can be skipped and returned later
to deepen in some concepts.

Throughout the book, I will type shell commands. ROS2 is used from the shell
mainly, and it is important that the user master these commands. I will use these
text boxes for commands in the terminal:
$ ls /usr/lib

This book is not intended to be a new ROS2 tutorial. The ones on the official
website are great! In fact, there are many concepts (services and actions) that are
best learned in these tutorials. This book wants to teach ROS2 by applying concepts
to examples in which a simulated robot performs some mission. Also, we want to
teach not only ROS2 but also some general concepts in Robotics and how they are
applied in ROS2.

Therefore, in this book, we will analyze much code. I have prepared a repository
with all the code that we will use in:

https://github.com/fmrico/book ros2

At the end of each chapter, I will propose exercises or improvements to deepen
the subject. If you manage to solve it, it can be uploaded to the official repository of
the book, in a separate branch with a description and with your authorship. Do this
by making a pull request to the official book repository. If I have time (I hope so), I
would be happy to review it and discuss it with you.

Even the existence of this repository, in order to make the book self-contained,
I have added the source code of all this software in Annex A. When it comes to
indicating what the structure of a package is, I will use this box:

Package my package

my_package/
CMakeLists.txt
src

hello_ros.cpp

To show source code I will use this other box:

with ROS2

https://github.com

Introduction � 17

src/hello ros.cpp

1 #include <iostream>
2
3 int main(int argc, char * argv[]) {
4 std::cout << "hello ROS2" << std::endl;
5
6 return 0;
7 }

Moreover, when it’s just snippet of code, I will use this kind of box, unnumbered:

std::cout << "hello ROS2" << std::endl;

I hope you enjoy this book. Let’s start our journey along programming robots
with ROS2.

https://taylorandfrancis.com

C H A P T E R 2

First Steps with ROS2

THE previous chapter introduced the fundamental theoretical concepts of ROS2,
in addition to installing ROS2. In this chapter, we begin to practice with ROS2

and learn the first ROS2 concepts.

2.1 FIRST STEPS WITH ROS2

ROS2 has been already installed, and it is activated both the underlay
(/opt/ros/foxy) and the overlay (∼/bookros2 ws), by adding a source instruction
to ∼/.bashrc. Check it typing:
$ ros2

usage: ros2 [-h] Call ‘ros2 <command> -h‘ for more detailed usage. ...
ros2 is an extensible command-line tool for ROS 2.

...

If the underlay is activated, this command will be found.
ros2 is the main command in ROS2. It allows to interact with the ROS2 system

to obtain information or carry out actions.
ros2 <command> <verb> [<params>|<option>]*

To obtain the list of available packages, type:
$ ros2 pkg list

ackermann msgs
action msgs
action tutorials cpp

...

In this case, pkg manages ROS2 packages. The list verb obtains the list of
packages in the underlay or any overlay.

DOI: 10.1201/9781003289623-2 19

https://doi.org/10.1201/9781003289623-2

20 � A Concise Introduction to Robot Programming

Deeping into: roscli

ros2cli is the ROS2 command line interface tool. It is modular and extensible, so that more
functionality can be added by adding new actions. The standard actions currently are:

action extension points node test
bag extensions param topic
component interface pkg wtf
launch run daemon lifecycle
security doctor multicast service

Further readings:
• https://github.com/ros2/ros2cli
• https://github.com/ubuntu-robotics/ros2 cheats sheet/blob/master/cli/

cli cheats sheet.pdf

The ros2 command supports tab-key autocompletion. Type ros2 and then hit
the tab key twice to see the possible verbs. The arguments of a verb can also be
discovered with the tab key.

It is also possible to obtain information on a specific package. For example, to
get the executable programs from the demo nodes cpp package:
$ ros2 pkg executables demo nodes cpp

demo nodes cpp add two ints client
demo nodes cpp add two ints client async
demo nodes cpp add two ints server
demo nodes cpp allocator tutorial
...
demo nodes cpp talker

...

Execute one of them with the command using the run verb, which requires two
arguments: the package where the executable is and the name of the executable
program: The name of this package indicates that all the programs it contains are
written in C++.
$ ros2 run demo nodes cpp talker

[INFO] [1643218362.316869744] [talker]: Publishing: ’Hello World: 1’
[INFO] [1643218363.316915225] [talker]: Publishing: ’Hello World: 2’
[INFO] [1643218364.316907053] [talker]: Publishing: ’Hello World: 3’
...

As can be seen, when specifying the program to be executed with the package
name and executable name, it is not necessary to know exactly where the programs
are, nor to execute them in any specific location.

If everything went well, “Hello world” messages appear in the terminal with a
counter. Keep this command running and open another terminal to see what this
executable is doing. It is common in ROS2 to have several terminals open simultane-
ously, so it is essential to organize them well on the screen to avoid getting lost. The
small Computation Graph that has been created is shown in Figure 2.1.

Check the nodes that are currently running using the node verb and its list
argument, executing in another terminal:

with ROS2

https://github.com
https://github.com
https://github.com

First Steps with ROS2 � 21

/talker

1 Hz
/chatter

std_msgs/msg/String

Figure 2.1: Computation Graph for the Talker node.

$ ros2 node list

/talker

This command confirms that there is only one node called /talker. The names
of the resources in ROS2, as is the case of the nodes, have a similar format to the
files in a Linux system. The slash separates parts of the name, starting with the /
root.

The node /talker does not just print an information message through the ter-
minal. It is also publishing messages on a topic.

Check, while the node /talker is running, what topics are in the system. For
this, use the topic verb with its list argument.
$ ros2 topic list

/chatter
/parameter events

/rosout

There are several topics, including /chatter, which is the one that publishes
/talker. Use the info parameter of the node verb to get more information:
$ ros2 node info /talker

/talker
Subscribers:

/parameter events: rcl interfaces/msg/ParameterEvent
Publishers:

/chatter: std msgs/msg/String
/parameter events: rcl interfaces/msg/ParameterEvent
/rosout: rcl interfaces/msg/Log

Service Servers:

...

The output shows several publishers, which coincide with the topics shown by the
previous command since there are no more nodes in the system.

As we have said, each topic supports messages of only one type. The previous
commands already showed the type, although it can be verified by asking the topic
action directly for the information of a specific topic:
$ ros2 topic info /chatter

Type: std msgs/msg/String
Publisher count: 1

Subscription count: 0

22 � A Concise Introduction to Robot Programming

Messages are defined in packages that, by convention, end in msgs.
std msgs/msg/String is the String message defined in the std msgs package. To
check what messages are valid in the system, use the interfaces action and its list
argument.
$ ros2 interface list

Messages:
ackermann msgs/msg/AckermannDrive
ackermann msgs/msg/AckermannDriveStamped
...
visualization msgs/msg/MenuEntry

Services:
action msgs/srv/CancelGoal
...
visualization msgs/srv/GetInteractiveMarkers

Actions:
action tutorials interfaces/action/Fibonacci

...

The output shows all the types of interfaces through which the nodes can com-
municate in ROS2. Adding the -m option, you can filter only the messages. Note that
there are more interfaces than just messages. Services and actions also have a format
that we can also inspect with ros2 interface.

Check the message format to get the fields contained in the message, and their
type:
$ ros2 interface show std msgs/msg/String

... comments

string data

This message format has only one field called data, of string type.
Deeping into: interfaces

A message is made up of fields. Each field has a different type, which can be a basic type
(bool, string, float64) or a message type. In this way, It is usual to create more complex
messages from simpler messages.

An example is the stamped messages. A series of messages, whose name ends in Stamped,
add a header to an existing message. Check the difference between these two messages:

geometry msgs/msg/Point
geometry msgs/msg/PointStamped

Further readings:
• https://docs.ros.org/en/foxy/Concepts/About-ROS-Interfaces.html

Check the messages currently being published (/talker should be still running
in the other terminal) in the topic just typing:

with ROS2

https://docs.ros.org/en/foxy/Concepts/About-ROS-Interfaces.html

First Steps with ROS2 � 23

$ ros2 topic echo /chatter

data: ’Hello World: 1578’

data: ’Hello World: 1579’

...

Next, execute a program that contains a node that subscribes to the topic
/chatter and displays the messages it receives on the screen. To execute it, with-
out stopping the program that contains the /talker node, we run the /listener
node, which is in the homonymous program. Although there is a listener node in
the demo nodes cpp package, for variety, run the listener from a package where the
nodes are implemented in Python:
$ ros2 run demo nodes py listener

[INFO] [1643220136.232617223] [listener]: I heard: [Hello World: 1670]
[INFO] [1643220137.197551366] [listener]: I heard: [Hello World: 1671]
[INFO] [1643220138.198640098] [listener]: I heard: [Hello World: 1672]

...

Now the Computation Graph is made up of two nodes that communicate through
the topic /chatter. The Computation Graph would look like as shown in Figure 2.2.

/talker

1 Hz
/chatter

std_msgs/msg/String

/listener

Figure 2.2: Computation Graph for the Listener node.

It is also possible to visualize the Computation Graph by running the rqt graph
tool (Figure 2.3), which is in the rqt graph package:
$ ros2 run rqt graph rqt graph

Figure 2.3: Program rqt graph.

24 � A Concise Introduction to Robot Programming

Now stop all the programs simply by pressing Ctrl+C in the terminals where they
are running.

2.2 DEVELOPING THE FIRST NODE

Up to this point, we have only used software from the packages that are part of the
ROS2 base installation. In this section, we will create a package to develop the first
node.

The new package will be created in the overlay (cd ∼/bookros2 ws) to practice
creating packages from scratch.

All packages must be in the src directory. This time, we use the ros2 command
and the pkg verb with the create option. In ROS2 packages, it is necessary to declare
what other packages they depend on, either on this workspace or another, so that
the compilation tool knows the order they have to be built. Go to the src directory
and run:
$ cd ∼/bookros2 ws/src

$ ros2 pkg create my package --dependencies rclcpp std msgs

This command creates the skeleton of the basics package, with some empty di-
rectories to host the source files of our programs and libraries. ROS2 recognizes that
a directory contains a package because it has an XML file called package.xml. The
--dependencies option allows you to add the dependencies of this package. For now,
we will use rclcpp, which are the C++ client libraries.

package.xml

1 <?xml version="1.0"?>
2 <?xml-model href="http://download.ros.org/schema/package_format3.xsd"
3 schematypens="http://www.w3.org/2001/XMLSchema"?>
4 <package format="3">
5 <name>my_package</name>
6 <version>0.0.0</version>
7 <description>TODO: Package description</description>
8 <maintainer email="john.doe@evilrobot.com">johndoe</maintainer>
9 <license>TODO: License declaration</license>

10
11 <buildtool_depend>ament_cmake</buildtool_depend>
12
13 <depend>rclcpp</depend>
14 <depend>std_msgs</depend>
15
16 <test_depend>ament_lint_auto</test_depend>
17 <test_depend>ament_lint_common</test_depend>
18
19 <export>
20 <build_type>ament_cmake</build_type>
21 </export>
22 </package>

Although ros2 pkg create is a good starting point for creating a new package, in
practice, it is usually made by duplicating an existing package, immediately changing
the name of the package, and later adapt it to its purpose.

As the example is a C++ package, since we have indicated that it depends on
rclcpp, in its root, a CMakeLists.txt file has also been created that establishes the

with ROS2

mailto:john.doe@evilrobot.com
http://download.ros.org
http://www.w3.org

First Steps with ROS2 � 25

rules to compile it. We will analyze its content as soon as we add something to
compile.

First, Create the program in ROS2, as simple as possible, and call it
src/simple.cpp. Next boxes contains the package structure, and the source code
of src/simple.cpp:

Package my package

my_package/
CMakeLists.txt
include

my_package
package.xml
src

simple.cpp

src/simple.cpp

1 #include "rclcpp/rclcpp.hpp"
2
3 int main(int argc, char * argv[]) {
4 rclcpp::init(argc, argv);
5
6 auto node = rclcpp::Node::make_shared("simple_node");
7
8 rclcpp::spin(node);
9

10 rclcpp::shutdown();
11
12 return 0;
13 }

• #include "rclcpp/rclcpp.hpp" allows access to most of the ROS2 types and
functions in C++.

• rclcpp::init(argc, argv) extracts from the arguments with which this pro-
cess was launched any option that should be taken into account by ROS2.

• Line 6 creates a ROS2 node. node is a std::shared ptr to a ROS2 node whose
name is simple node.
The rclcpp::Node class is equipped with many aliases and static functions to
simplify the code. SharedPtr is an alias for std::shared ptr<rclcpp::Node>,
and make shared is a static method for std::make shared<rclcpp::Node>.
The following lines are equivalent, going from a pure C++ statement to one
that takes advantage of ROS2 facilities:

26 � A Concise Introduction to Robot Programming

1. std::shared_ptr<rclcpp::Node> node = std::shared_ptr<rclcpp::Node>(
new rclcpp::Node("simple_node"));

2. std::shared_ptr<rclcpp::Node> node = std::make_shared<rclcpp::Node>(
"simple_node");

3. rclcpp::Node::SharedPtr node = std::make_shared<rclcpp::Node>(
"simple_node");

4. auto node = std::make_shared<rclcpp::Node>("simple_node");

5. auto node = rclcpp::Node::make_shared("simple_node");

• In this code, spin blocks the execution of the program so that it does not
terminate immediately. Its important functionality will be explained in the
following examples.

• shutdown manages the shutdown of a node, prior to the end of the program in
the next line.

Examine the CMakeLists.txt file, already prepared to compile the program.
Some parts that are not relevant now have been removed for clarity:

CMakeLists.txt

1 cmake_minimum_required(VERSION 3.5)
2 project(basics)
3
4 find_package(ament_cmake REQUIRED)
5 find_package(rclcpp REQUIRED)
6
7 set(dependencies
8 rclcpp
9)

10
11 add_executable(simple src/simple.cpp)
12 ament_target_dependencies(simple ${dependencies})
13
14 install(TARGETS
15 simple
16 ARCHIVE DESTINATION lib
17 LIBRARY DESTINATION lib
18 RUNTIME DESTINATION lib/${PROJECT_NAME}
19)
20
21 if(BUILD_TESTING)
22 find_package(ament_lint_auto REQUIRED)
23 ament_lint_auto_find_test_dependencies()
24 endif()
25
26 ament_export_dependencies(${dependencies})
27 ament_package()

Identify several parts in this file:

• In the first part, the packages needed are specified with find package. Apart of
ament cmake, always needed by colcon, just rclcpp is especified. It is a good
habit to create a dependencies variable with the packages that this package
depends on since we will have to use this list several times.

• For each executable:

with ROS2

First Steps with ROS2 � 27

Compile it: Do it with add executable, indicating the name of the re-
sult and its sources. Also, use ament target dependencies to make
headers and libraries from other packages accessible for the current
target. There is no dependencies with extra libraries, so just using
ament target dependencies is fine.

Install it: Indicate where to install the program produced, which generally
does not vary. A single install instruction will be valid for programs and
libraries of the package.
In general, install everything needed to deploy and run the program. If it
is not installed, it does not exist.

Compile the workspace:
cd ∼/bookros2 ws

colcon build --symlink-install

As we said before, currently, we must re-source the workspace since we have
created a new program, so we open a new terminal and execute:
$ ros2 run my package simple

And let’s see what happens: absolutely nothing (Figure 2.4).

/simple_node

Figure 2.4: Computation Graph for the Simple node.

Internally, our program is in the spin statement, blocked, waiting for us to finish
our program by pressing Ctrl+C. Before doing so, check that the node has been
created executing in another terminal:
$ ros2 node list

/simple node

Once described how to create a package from scratch. From now on, we will use
the packages downloaded from the repository of this book in the previous chapter.
This will allow moving faster without getting blocked in small mistakes when building
the package, which at this point can prove insurmountable.

2.3 ANALYZING THE BR2 BASICS PACKAGE

Once this process has been seen in detail, continue analyzing the content of the
br2 basics package, which contains more interesting nodes. The structure of this
package is shown in the following box, and the complete source code can be found in
the annexes and in the book repository:

28 � A Concise Introduction to Robot Programming

Package br2 basics

br2_basics
CMakeLists.txt
config

params.yaml
launch

includer_launch.py
param_node_v1_launch.py
param_node_v2_launch.py
pub_sub_v1_launch.py
pub_sub_v2_launch.py

package.xml
src

executors.cpp
logger_class.cpp
logger.cpp
param_reader.cpp
publisher_class.cpp
publisher.cpp
subscriber_class.cpp

2.3.1 Controlling the Iterative Execution

The previous section described a program containing a node that literally did not
do much beyond existing. Program src/logger.cpp is more interesting, as it shows
some more activity:

src/logger.cpp

auto node = rclcpp::Node::make_shared("logger_node");

rclcpp::Rate loop_rate(500ms);
int counter = 0;

while (rclcpp::ok()) {
RCLCPP_INFO(node->get_logger(), "Hello %d", counter++);

rclcpp::spin_some(node);
loop_rate.sleep();

}

This code shows the first of the typical strategy to perform a task at a fixed
frequency, which is common in any program that performs some control. The control
loop is made in a while loop, controlling the rate with an rclcpp::Rate object that
makes the control loop stop long enough to adapt to the selected rate.

This code uses spin some instead of spin, as used so far. Both are to manage
the messages that arrive at the node, calling the functions that should handle them.
While spin blocks waiting for new messages, spin some returns once there are no
messages left to handle.

As for the rest of the code, RCLCPP INFO is used, which is a macro that prints
information. It’s very similar to printf, passing as first parameter the node’s logger
(an object inside nodes to log, got with get logger method). These messages are
displayed on the screen and are also published in the topic /rosout.

Run this program by typing:

with ROS2

First Steps with ROS2 � 29

$ ros2 run br2 basics logger

[INFO] [1643264508.056814169] [logger node]: Hello 0
[INFO] [1643264508.556910295] [logger node]: Hello 1

...

The program begins to show messages containing the criticality level of the mes-
sage, timestamp, the node that produced it, and the message.

As we said before, RCLCPP INFO also publishes a message of type rcl interfaces/
msg/Log in the topic /rosout, as shown in Figure 2.5. All nodes have a publisher to
send the output we generate to this node. It is quite useful when we do not have a
console to see these messages.

/logger_node

2 Hz
/rosout

rcl_interfaces/msg/Log

Figure 2.5: Computation Graph for the Logger node.

Take this opportunity to see how to see the messages that are published on a
topic:
$ ros2 topic echo /rosout

stamp:
sec: 1643264511
nanosec: 556908791

level: 20
name: logger node
msg: Hello 7
file: /home/fmrico/ros/ros2/bookros2 ws/src/book ros2/br2 basics/src/logger.cpp
function: main
line: 27

stamp:

sec: 1643264512
nanosec: 57037520

level: 20
...

Check the definition of the rcl interfaces/msg/Log message to verify that the
fields shown are the fields of this type of message. In the line field, we have our
message:
$ ros2 interface show rcl interfaces/msg/Log

Finally, use the rqt console tool to see the messages that are published in
/rosout, as shown in Figure 2.6. This tool, shown in Figure 2.7, is useful when
many nodes are generating messages to /rosout, and is useful to filter it by node,
by the level of criticality, etc.
$ ros2 run rqt console rqt console

30 � A Concise Introduction to Robot Programming

/logger_node

2 Hz
/rosout

rcl_interfaces/msg/Log

rqt_console

Figure 2.6: rqt console subscribes to /rosout, receiving the messages produced by
the Logger node.

Figure 2.7: rqt console program.

Test different frequencies by changing the time that object loop rate is created,
changing to 100 ms or 1 s, so that the control loop runs at 10 Hz or 1 Hz, respectively.

Do not forget to compile after every change. Use the option --packages-select
to compile only the package that we have changed, thus saving some time:
$ cd ∼/bookros2 ws

$ colcon build --symlink-install --packages-select br2 basics

From here on, the cd command will be omitted. It has become clear that the
directory from which all the compilations of a workspace must be carried out is its
root.

with ROS2

First Steps with ROS2 � 31

Deeping into: logging

ROS2 has a logging system that allows generating log messages with increasing severity
levels: DEBUG, INFO, WARN, ERROR or FATAL. For this, use the macro RCLCPP [LEVEL] or
RCLCPP [LEVEL] STREAM to use text streams.
By default, in addition to being sent to /rosout, severity levels INFO or higher will be dis-
played on the standard output. You can configure the logger to establish another minimum
level of severity to be displayed on the standard output:
$ ros2 run br2 basics logger --ros-args --log-level debug

When there are many nodes in an application, it is recommended to use tools such as
rqt console that allows selecting nodes and severities.
Further readings:

• https://docs.ros.org/en/foxy/Tutorials/Logging-and-logger-configuration.html
• https://docs.ros.org/en/foxy/Concepts/About-Logging.html

The second strategy to iteratively execute a task can be seen in the
src/logger class.cpp program. In addition, we show something widespread in
ROS2, which is to implement the nodes inheriting from rclcpp::Node. This ap-
proach allows to have a cleaner code and opens the door to many possibilities that
will be shown later:

src/logger class.cpp

class LoggerNode : public rclcpp::Node
{
public:
LoggerNode() : Node("logger_node")
{
counter_ = 0;
timer_ = create_wall_timer(
500ms, std::bind(&LoggerNode::timer_callback, this));

}

void timer_callback()
{
RCLCPP_INFO(get_logger(), "Hello %d", counter_++);

}

private:
rclcpp::TimerBase::SharedPtr timer_;
int counter_;

};

int main(int argc, char * argv[]) {
rclcpp::init(argc, argv);

auto node = std::make_shared<LoggerNode>();

rclcpp::spin(node);

rclcpp::shutdown();
return 0;

}

A timer controls the control loop. This timer produces an event at the desired
frequency. When this event happens, it calls the callback that handles it. The advan-
tage is that the node internally adjusts the frequency at which it should be executed
without delegating this decision to external code. Schedule the nodes to know how
often they should run.

https://docs.ros.org/en/foxy/Tutorials/Logging-and-logger-configuration.html
https://docs.ros.org/en/foxy/Concepts/About-Logging.html

32 � A Concise Introduction to Robot Programming

To compile these program, the relevant lines in CMakeLists.txt are:

• For each executable, an add executable and its corresponding ament target
dependencies.

• An install instruction, with all the executables.

CMakeLists.txt

1 add_executable(logger_class src/logger.cpp)
2 ament_target_dependencies(logger ${dependencies})
3
4 add_executable(logger_class src/logger_class.cpp)
5 ament_target_dependencies(logger_class ${dependencies})
6
7 install(TARGETS
8 logger
9 logger_class

10 ...
11 ARCHIVE DESTINATION lib
12 LIBRARY DESTINATION lib
13 RUNTIME DESTINATION lib/${PROJECT_NAME}
14)

$ ros2 run br2 basics logger class

Build the package and run this program to see that the effect is the same as the
previous program. Try to modify the frequencies by setting a different time when
creating the timer, in create wall timer.

2.3.2 Publishing and Subscribing

Now extend the node so that, instead of writing a message on the screen, it publishes
a message on a topic (Figure 2.8), posting consecutive numbers in a topic called
/counter. An exploration using the ros2 interface command with the list and
show options, lets to find the message that best suits this duty: std msgs/msg/Int32.

It is necessary to include the headers where it is defined to use a message. Since
the type of the message to use is std msgs/msg/Int32, notice how from the name
of the message we can easily extract which header to include. Just type it, inserting
one space before any existing uppercase, and converting all to lowercase. The name
of the type is also straightforwards:

// For std_msgs/msg/Int32
#include "std_msgs/msg/int32.hpp"

std_msgs::msg::Int32 msg_int32;

// For sensor_msgs/msg/LaserScan
#include "sensor_msgs/msg/laser_scan.hpp"

sensor_msgs::msg::LaserScan msg_laserscan;

Focus on the source code of PublisherNode:

with ROS2

First Steps with ROS2 � 33

src/publisher class.cpp

class PublisherNode : public rclcpp::Node
{
public:
PublisherNode() : Node("publisher_node")
{
publisher_ = create_publisher<std_msgs::msg::Int32>("int_topic", 10);
timer_ = create_wall_timer(
500ms, std::bind(&PublisherNode::timer_callback, this));

}

void timer_callback()
{
message_.data += 1;
publisher_->publish(message_);

}

private:
rclcpp::Publisher<std_msgs::msg::Int32>::SharedPtr publisher_;
rclcpp::TimerBase::SharedPtr timer_;
std_msgs::msg::Int32 message_;

};

/publisher_node

2 Hz
/int_topic

std_msgs/msg/Int32

Figure 2.8: Computation Graph for the Publisher node.

Let’s discuss the important aspects:

• We will use the std msgs/msg/Int32 message. From this name, we can deduce
that:

– Its header is std msgs/msg/int32.hpp.
– The data type is std msgs::msg::Int32.

• Create a publisher, the object in charge of creating the topic (if it does not
exist) and publishing the messages. It is possible to obtain more information
through this object, such as how many subscribers are on a topic. We use
create publisher, which is a public method of rclcpp::Node, and it returns
a shared ptr to an rclcpp::Publisher object. The arguments are the name of
the topic and an rclcpp::QoS object. This class has a constructor that receives
an integer that is the size of the output message queue for that topic so that
we can put this size directly, and the C++ compiler will do its magic. We will
see later that here we can select different QoS.

• We create a std msgs::msg::Int32 message, which we can verify that it only
has one data field. Every 500 ms, in the timer callback, we increment the
message field and call the publisher’s publish method to publish the message.

34 � A Concise Introduction to Robot Programming

Deeping into: QoS in ROS2

The QoS in ROS2 is an essential and valuable feature in ROS2 and a point of failure, so it
must be well understood. In the references at the bottom of this table, you can see what
QoS policies can be established and their meaning. The following is an example of how to
set QoS policies in C++:

publisher = node->create_publisher<std_msgs::msg::String>(
"chatter", rclcpp::QoS(100).transient_local().best_effort());

Default Reliable Volatile Keep Last
Services Reliable Volatile Normal Queue
Sensor Best Effort Volatile Small Queue
DParameters Reliable Volatile Large Queue

Each publisher specifies its QoS, and each publisher can specify its QoS as well. The problem
comes because there are QoS that are not compatible, and this will make the subscriber
not receive messages:

SubscriberCompatibility of QoS durability profiles Volatile Transient Local
Volatile Volatile No ConnectionPublisher Transient Local Volatile Transient Local

SubscriberCompatibility of QoS reliability profiles Best Effort Reliable
Best Effort Best Effort No ConnectionPublisher Reliable Best Effort Reliable

The criteria really should be that the publisher should have a less restrictive QoS policy
than the subscriber. For example, the driver of a sensor should publish its readings with a
reliable QoS policy. The subscribers decide if they want the communication to be effectively
reliable or prefer Best Effort. In this case, these publishers could be:

publisher_ = create_publisher<sensor_msgs::msg::LaserScan>(
"scan", rclcpp::SensorDataQoS().reliable());

and the subscribers could use the same QoS, or remove the reliable part.
Further readings:

• https://docs.ros.org/en/foxy/Concepts/About-Quality-of-Service-Settings.html
• https://design.ros2.org/articles/qos.html
• https://discourse.ros.org/t/about-qos-of-images/18744/16

Run the program:
$ ros2 run br2 basics publisher class

And see what we are publishing in the topic:

with ROS2

https://docs.ros.org/en/foxy/Concepts/About-Quality-of-Service-Settings.html
https://design.ros2.org
https://discourse.ros.org

First Steps with ROS2 � 35

$ ros2 topic echo /int topic

data: 16

data: 17

data: 18

...

We should see messages with std msgs/msg/Int32 messages whose data field is
increasing.

Now implement the Node that subscribes to this message:
src/subscriber class.cpp

class SubscriberNode : public rclcpp::Node
{
public:
SubscriberNode() : Node("subscriber_node")
{
subscriber_ = create_subscription<std_msgs::msg::Int32>("int_topic", 10,
std::bind(&SubscriberNode::callback, this, _1));

}

void callback(const std_msgs::msg::Int32::SharedPtr msg)
{
RCLCPP_INFO(get_logger(), "Hello %d", msg->data);

}

private:
rclcpp::Subscription<std_msgs::msg::Int32>::SharedPtr subscriber_;

};

In this code, we have created an rclcpp::Subscription to the same topic, with
the same type of messages. When creating it, we have indicated that for each message
published on this topic, the callback function is called, which receives the message in
its msg parameter as a shared ptr.

Add this program to CMakeLists.txt, build, and run publisher class in one
terminal and this program in another, composing the Computation Graph shown in
Figure 2.9. We will see how the messages you receive on the topic are displayed on
the screen.
$ ros2 run br2 basics subscriber class

/publisher_node

2 Hz
/int_topic

std_msgs/msg/Int32

/subscriber_node

Figure 2.9: Computation Graph for the Publisher and Subscriber nodes.

2.3.3 Launchers

Up to this point, we have seen that to run a program, we used ros2 run. In ROS2,
there is also another way to run programs, which is through the command ros2

36 � A Concise Introduction to Robot Programming

launch, and using a file, called launcher, that specifies which programs should be
run.

The launcher files are written in Python1, and their function is declaring which
programs to execute with which options or arguments. A launcher can, in turn,
include another launcher, allowing you to reuse existing ones.

The need for launchers comes from the fact that a robotic application has many
nodes, and they should all be launched simultaneously. Launching one by one and
adjusting specific parameters to each one so that the nodes cooperate can be tedious.

Launchers for a package are located in the launch directory of a package, and their
name usually ends in launch.py. Just as ros2 run completed with the programs
available in a package, ros2 launch does the same with the available launchers.

From an implementation point of view, a launcher is a python pro-
gram that contains a generate launch description() function that returns a
LaunchDescription object. A LaunchDescription object contains actions, among
which we highlight:

• Node action: to run a program.

• IncludeLaunchDescription action: to include another launcher.

• DeclareLaunchArgument action: to declare launcher parameters.

• SetEnvironmentVariable action: to set an environment variable.

See how we can launch the publisher and subscriber at the same time. Analyze
the first launcher in the basics package:

launch/pub sub v1 launch.py

1 from launch import LaunchDescription
2 from launch_ros.actions import Node
3
4 def generate_launch_description():
5 pub_cmd = Node(
6 package='basics',
7 executable='publisher',
8 output='screen'
9)

10
11 sub_cmd = Node(
12 package='basics',
13 executable='subscriber_class',
14 output='screen'
15)
16
17 ld = LaunchDescription()
18 ld.add_action(pub_cmd)
19 ld.add_action(sub_cmd)
20
21 return ld

There is another implementation alternative of this file in launch/pub sub v2
launch.py which behavior is the same. Check it to see the differences. To use launch-
ers, we must install the launchers directory:

1Last ROS2 distros lets to create launchers written in Yaml and XML

with ROS2

First Steps with ROS2 � 37

CMakeLists.txt

install(DIRECTORY launch DESTINATION share/${PROJECT_NAME})

Build and launch this file:
$ ros2 launch br2 basics pub sub v2 launch.py

In this section, we have seen very simple launchers with very few options. As we
progress, we will see more options in increasingly complicated launchers.

2.3.4 Parameters

A node uses the parameters to configure its operation. When your program need
configuration files, use parameters. These parameters can be boolean, integer, string,
or arrays of any of these types. Parameters are read at run time, usually when a node
starts, and their operation depends on these values.

Imagine that a node is in charge of locating a robot using a Particle Filter [9] and
requires several parameters, such as a maximum number of particles or the topics
from which to receive sensory information. This should not be written in the source
code since, if we change the robot or environment, these values may be required to
be different.

Look at a node that reads these parameters on startup. Create a param reader.cpp
file in the basics package:

src/param reader.cpp

class LocalizationNode : public rclcpp::Node
{
public:
LocalizationNode() : Node("localization_node")
{
declare_parameter<int>("number_particles", 200);
declare_parameter<std::vector<std::string>>("topics", {});
declare_parameter<std::vector<std::string>>("topic_types", {});

get_parameter("number_particles", num_particles_);
RCLCPP_INFO_STREAM(get_logger(), "Number of particles: " << num_particles_);

get_parameter("topics", topics_);
get_parameter("topic_types", topic_types_);

if (topics_.size() != topic_types_.size()) {
RCLCPP_ERROR(get_logger(), "Number of topics (%zu) != number of types (%zu)",
topics_.size(), topic_types_.size());

} else {
RCLCPP_INFO_STREAM(get_logger(), "Number of topics: " << topics_.size());
for (size_t i = 0; i < topics_.size(); i++) {
RCLCPP_INFO_STREAM(
get_logger(),
"\t" << topics_[i] << "\t - " << topic_types_[i]);

}
}

}

private:
int num_particles_;
std::vector<std::string> topics_;
std::vector<std::string> topic_types_;

};

38 � A Concise Introduction to Robot Programming

• All parameters of a node must be declared using methods like declare
parameter. In the declaration, we specify the parameter name and the default
value.

• We obtain its value with functions like get parameter, specifying the name of
the parameter and where to store its value.

• There are methods to do this in blocks.

• The parameters can be read at any time, even subscribe to modifications in real-
time. However, reading them to the startup makes your code more predictable.

If we run our program without assigning a value to the parameters, we will see
how the default values take value:
$ ros2 run br2 basics param reader

Stop executing the program, and execute our program assigning value to one of
the parameters. We can do this in setting arguments, starting with --ros-args, and
-p for setting a parameter:
$ ros2 run br2 basics param reader --ros-args -p number particles:=300

Now pass in values for the remaining parameters. In this case, the two string
arrays:
$ ros2 run br2 basics param reader --ros-args -p number particles:=300
-p topics:= ’[scan, image]’ -p topic types:=’[sensor msgs/msg/LaserScan,
sensor msgs/msg/Image]’

If we want to set the parameter values in a launch, we can do it as follows:
launch/param node v1 launch.py

from launch import LaunchDescription
from launch_ros.actions import Node

def generate_launch_description():
param_reader_cmd = Node(

package='basics',
executable='param_reader',
parameters=[{

'particles': 300,
'topics': ['scan', 'image'],
'topic_types': ['sensor_msgs/msg/LaserScan', 'sensor_msgs/msg/Image']

}],
output='screen'

)

ld = LaunchDescription()
ld.add_action(param_reader_cmd)

return ld

Although this method may be suitable for assigning values to a few parameters,
it is usually convenient to use a file containing the parameters’ values with which
we want to execute a node. This is the way to have configuration files in ROS2.
The chosen format is YAML. Usually, these configuration files are stored in the con-
fig directory of our packages, and it is mandatory to mark them to install in the
CMakeLists.txt, as it was done with the launch directory:

with ROS2

First Steps with ROS2 � 39

CMakeLists.txt

install(DIRECTORY launch config DESTINATION share/${PROJECT_NAME})

Let’s discuss an important point: what would prevent someone from using a dif-
ferent organization in their packages? Why is the config directory and not set up or
startup instead of launch? And why put the source file in another structure? Why
use YAML/parameters and not text files or XML and a custom configuration reader?
Why use launchers and not a bash script? And why not an application that launches
all the necessary nodes?

Of course, a ROS2 developer could make other decisions, but there is a general
agreement on doing things. This agreement has the advantage that when another
developer tries to use your code, it is much easier to find and identify the critical
elements. My recommendation is to follow these conventions. This way, your code
can be used by more people, it will be more maintainable in the long term, and
receive more collaborations. A company will make this more critical because it will
be easier to inherit software when incorporating or replacing developers.

Continue with our example. A file with the parameters with our node could look
like this:

config/params.yaml

localization_node:
ros__parameters:
number_particles: 300
topics: [scan, image]
topic_types: [sensor_msgs/msg/LaserScan, sensor_msgs/msg/Image]

And execute indicating specifying the location of our file. If we have installed the
config directory and compiled it, we can execute:
$ ros2 run br2 basics param reader --ros-args --params-file
install/basics/share/basics/config/params.yaml

If we want it to be read in a launcher, we will use:
launch/param node v1 launch.py

1 def generate_launch_description():
2 ...
3 param_reader_cmd = Node(
4 package='basics',
5 executable='param_reader',
6 parameters=[param_file],
7 output='screen'
8)

2.3.5 Executors

As the nodes in ROS2 are C ++ objects, a process can have more than one node.
In fact, in many cases, it can be very beneficial to do so since communications can
be accelerated by using shared memory strategies when communication is within the

40 � A Concise Introduction to Robot Programming

same process. Another benefit is that it can simplify the deployment of nodes if they
are all in the same program. The drawback is that a failure in one node could cause
all nodes of the same process to terminate.

ROS2 offers you several ways to run multiple nodes in the same process. The most
recommended is to make use of the Executors. An Executor is an object to which
nodes are added to execute them together. See an example:
Single thread executor

int main(int argc, char * argv[]) {
rclcpp::init(argc, argv);

auto node_pub = std::make_shared<PublisherNode>();
auto node_sub = std::make_shared<SubscriberNode>();

rclcpp::executors::SingleThreadedExecutor executor;

executor.add_node(node_pub);
executor.add_node(node_sub);

executor.spin();

rclcpp::shutdown();
return 0;

}

Multi thread executor

auto node_pub = std::make_shared<PublisherNode>();
auto node_sub = std::make_shared<SubscriberNode>();

rclcpp::executors::MultiThreadedExecutor executor(
rclcpp::executor::ExecutorArgs(), 8);

executor.add_node(node_pub);
executor.add_node(node_sub);

executor.spin();
}

In both codes, we create an executor to which we add the two nodes (Figure 2.10)
so that the spin call handles both nodes. The difference between the two is using a
single thread for this management, or using eight threads to optimize the processor
capabilities.

/publisher_node

2 Hz
/int_topic

std_msgs/msg/Int32

/subscriber_node

Figure 2.10: Computation Graph for the Publisher and Subscriber nodes, running
in the same process.

with ROS2

First Steps with ROS2 � 41

2.4 SIMULATED ROBOT SETUP

So far we have seen the basics package, which shows us basic elements of ROS2,
how to create nodes, publications, and subscriptions. ROS2 is not a communications
middleware, but a robot programming middleware, and this book tries to create
behaviors for robots. Therefore, we need a robot. Robots are relatively expensive. It
is possible to have a real robot, such as the Kobuki (turtlebot 2) equipped with a
laser and an RGBD camera for around 1000€. A robot considered professional can
go to several tens of thousands of euros. As not all readers have plans to acquire a
robot to run ROS2, we are going to use the Tiago robot in a simulator.

The Tiago robot (“iron” model) from Pal Robotics is formed by a differential
base with distance sensors and a torso with an arm, an RGBD camera located on its
head.

Among the packages that we have already added to the worskspace, there were
already those necessary to simulate the Tiago robot in Gazebo (one of the reference
simulator in ROS2). So we will only have to use a launcher that we have created in
the br2 tiago package:
$ ros2 launch br2 tiago sim.launch.py

Figure 2.11: Simulating Tiago robot in Gazebo.

There are several worlds available (you can examine ThirdParty/pal gazebo
worlds/worlds). By default, the world that is loaded is home.world. If you want
to use a different one, you can use the launcher world parameter, as shown in the
following examples:

42 � A Concise Introduction to Robot Programming

$ ros2 launch br2 tiago sim.launch.py world:=factory
$ ros2 launch br2 tiago sim.launch.py world:=featured
$ ros2 launch br2 tiago sim.launch.py world:=pal office
$ ros2 launch br2 tiago sim.launch.py world:=small factory
$ ros2 launch br2 tiago sim.launch.py world:=small office
$ ros2 launch br2 tiago sim.launch.py world:=willow garage

One of the first things you can do when you use a robot for the first time and
have just launched its driver or simulation is to see what topics it provides, either as a
publisher or a subscriber. That will be the interface we will use to receive information
from the robot and send it commands. Open a new terminal and execute:
$ ros2 topic list

This will be the main interface with the robot’s sensors and actuators. Figure
2.14 shows a non-exhaustive way the nodes and topics that are available to the
programmer to interact with the simulated robot:

• Virtually all nodes are within the Gazebo simulator process. Outside there are
only two of them:

/twist mux Create several subscribers to topics that receive robot speeds, but
from different sources (mobile, tablet, keys, navigation, among others).

/robot state publisher It is a standard node in ROS2 that reads the de-
scription of a robot from a URDF file and subscribes to the status of each
of the robot’s joints. In addition to publishing this description in URDF,
it creates and updates the robot frames in the TFs system (we will explain
the TF system in the next chapters), a system to represent and link the
different geometric axes of reference in the robot.

• The nodes on the left take care of the sensors. They publish information from
the robot’s camera, imu, laser, and sonar. The most complex node is the camera
node, an RGBD sensor, since it publishes the depth and RGB images separately.
Each image has associated a topic camera info that contains the intrinsic
values of the robot’s camera. For each sensor, the standard message types are
used for the information provided.

• The nodes at the bottom use the same interface to move the head and the
torso. They all use the joint trajectory controller from the ros2 control
package.

• The nodes on the right are responsible for the following:

/joint state broadcaster Publish the status of each of the joints of the
robot.

/mobile base controller Makes the robot base move with the speed com-
mands it receives. In addition, it publishes the estimated displacement of
the base.

with ROS2

First Steps with ROS2 � 43

First, teleoperate the robot to move it. For this, ROS2 has several packages that
take commands from the keyboard, from a PS or XBox controller, or a mobile phone,
and publish geometry msgs/msg/Twist messages in a topic. In this case we will
use teleop twist keyboard. This program receives keystrokes by stdin in publishes
/cmd vel movement commands.

As the topic /cmd vel of teleop twist keyboard does not match any input topic
of our robot, we must do a remap. A remap (Figure 2.12) allows you to change the
name of one of its topics when executing (at deployment time). In this case, we are
going to execute teleop twist keyboard indicating that instead of publishing in
/cmd vel, publish in the topic /key vel of the robot:
$ ros2 run teleop twist keyboard teleop twist keyboard --ros-args -r
cmd vel:=key vel

Now we can use the keys indicated by teleop twist keyboard to move the robot.
Remapping a topic is an important feature of ROS2 that allows different ROS2

programs from other developers to work together.

/twist_mux/key_vel
geometry_msgs/msg/Twist

/teleop_twist_keyboard /cmd_vel
geometry_msgs/msg/Twist

remap

Figure 2.12: Connection between the Tiago and the teleoperator velocity topics, using
a remap.

Now is the time to see the robot’s sensory information. Until now, we could use
ros2 topic to see the topics of the camera or the laser with one of these commands:
$ ros2 topic echo /scan raw

$ ros2 topic echo /head front camera/rgb/image raw

But it is hard to show sensory information, especially if it is so complex. Use the
--no-arr option so that it does not display the content of the data arrays.
$ ros2 topic echo --no-arr /scan raw

$ ros2 topic echo --no-arr /head front camera/rgb/image raw

Analyze the information it shows. There is a common field in both messages,
which is common in messages with perceptual information and is repeated in many
types of messages, especially those that end in the adjective “*Stamped”. It has a
header of type std msgs/msg/Header. As we have just seen, Messages can be defined
by composing basic types (int32, Float64, String) or already existing messages, like
this one.

The header is tremendously helpful for handling sensory information in ROS2.
When a sensor driver publishes messages with its data, it uses the header to tag this
reading with:

• The data capture timestamp. Even if a message is received or processed late,
the reading can be placed at its corresponding capture moment, supporting
some latencies.

44 � A Concise Introduction to Robot Programming

• The frame in which it was taken. A frame is an axis of references in which
the spatial information (coordinates, distances, etc) contained in the message
makes sense. Usually, each sensor has its frame (even several).

A robot is geometrically modeled using a tree whose tree nodes are the frames of
a robot. By convention, a frame should have a single parent frame and all required
child frames. The parent-child relationship is through a geometric transformation
that includes a translation and a rotation. The frames usually appear at points on
the robot subject to variation, as in the case of the motors joining the robot’s parts.

ROS2 has a system called TF, which we will explain in next chapters, which
maintains these relationships through two topics /tf, for geometric transformations
that vary, and /tf static if they are fixed.

ROS2 has several tools that help us display sensory and geometric information,
and perhaps the most popular is RViz2. Start by running it by typing in a terminal:
$ ros2 run rviz2 rviz2

RViz2 is a viewer that allows to display information contained in the topics. If
this is your first time opening RViz2, it will probably appear quite empty; only a grid
through which we can navigate using the keys and the mouse. We will discover the
information about our robot step by step, as shown in Figure 2.13:

1. On the left, in the Displays panel, RViz2 has some global options in which we
have to specify what our Fixed Frame is, that is, the coordinate axis of the 3D vi-
sualization shown on the right. For now, we are going to select base footprint.
By convention in ROS2, this frame is a frame that is in the center of the robot,
on the ground, and is a good starting point for our exploration.

2. In the Displays Panel, we are going to add different visualizations. The first will
be to see the frames of the robot. Press the Add button, and look in the “By
display type” tab, the TF element. All the robot frames will appear instantly.
If they seem like a lot to you, display the TF component in the Displays Panel,
uncheck the “All Enabled” box and start adding or removing the frames you
want.

3. Add several elements to Gazebo, as seen in Figure below. If not, we will not
perceive much either.

4. Add the laser information of the robot. Press Add again and in the “By Topic”
tab, select the topic /scan raw, which already indicates that it is a LaserScan.
In the LaserScan element that has been added in the Display Panel, we can
see information and change the display options. Display the options for this
element:

• The Status should show ok and have a counter that goes up as it receives
messages. If it displays an error, it usually contains information that can
help us figure out how to fix it.

with ROS2

First Steps with ROS2 � 45

• The Topic has to do with the topic to show and the QoS with which RViz2
subscribes to that topic. If we do not see anything, it may be that we have
not selected a QoS compatible.
• From here on, the rest of the options are specific to this type of message.

We can change the size of the dots that represent laser readings, their
color, or even the visual element used.

5. As done with the laser, add a visualization of the topic that contains the Point-
Cloud2 (head front camera → depth registered → points).

Figure 2.13: RViz2 visualizing TFs and the sensor information of the Tiago robot.

Use the teleoperator to move the robot. In RViz2, the movement of the robot
is not appreciated, only the frame odom moving. This is because the center of this
visualization is always the Fixed Frame, which we now have as base footprint.
Change the Fixed Frame to odom, which is a Frame that represents the position
of the robot when it started. Now we can appreciate the robot’s movement around
its environment. The odom → base footprint transform, by convention in ROS2,
collects the translation and rotation calculated by the robot driver from its starting
point.

With this, we have explored the capabilities of the simulator robot and various
tools for managing our robot.

46 � A Concise Introduction to Robot Programming

Si
m

ul
at

ed
 ro

bo
t a

t G
az

eb
o

/ro
bo

t_
st

at
e_

pu
bl

is
he

r

/tw
is

t_
m

ux
/jo

in
t_

st
at

e_
br

oa
dc

as
te

r

/jo
in

t_
st

at
es

se
ns

or
_m

sg
s/

m
sg

/J
oi

nt
St

at
e

/d
yn

am
ic

_j
oi

nt
_s

ta
te

s
se

ns
or

_m
sg

s/
m

sg
/J

oi
nt

St
at

e

/m
ob

ile
_b

as
e_

co
nt

ro
lle

r

/m
ob

ile
_b

as
e_

co
nt

ro
lle

r/c
m

d_
ve

l_
un

st
am

pe
d

ge
om

et
ry

_m
sg

s/
m

sg
/T

w
is

t

/o
do

m
na

v_
m

sg
s/

m
sg

/O
do

m
et

ry

/tf
tf2

_m
sg

s/
m

sg
/T

FM
es

sa
ge

/tf
_s

ta
tic

tf2
_m

sg
s/

m
sg

/T
FM

es
sa

ge

/b
as

e_
im

u
/b

as
e_

im
u

se
ns

or
_m

sg
s/

m
sg

/Im
u

/h
ea

d_
co

nt
ro

lle
r

/h
ea

d_
co

nt
ro

lle
r/

jo
in

t_
tr

aj
ec

to
ry

tra
je

ct
or

y_
m

sg
s/

m
sg

/J
oi

nt
Tr

aj
ec

to
ry

/h
ea

d_
co

nt
ro

lle
r/

st
at

e

co
nt

ro
l_

m
sg

s/
m

sg
/J

oi
nt

Tr
aj

ec
to

ry
C

on
tro

lle
rS

ta
te

/to
rs

o_
co

nt
ro

lle
r

/t
or

so
_c

on
tr

ol
le

r/
jo

in
t_

tr
aj

ec
to

ry

tra
je

ct
or

y_
m

sg
s/

m
sg

/J
oi

nt
Tr

aj
ec

to
ry

/to
rs

o_
co

nt
ro

lle
r/s

ta
te

co
nt

ro
l_

m
sg

s/
m

sg
/J

oi
nt

Tr
aj

ec
to

ry
C

on
tro

lle
rS

ta
te

/b
yt

es
_l

as
er

sc
an

/s
ca

n_
ra

w

se
ns

or
_m

sg
s/

m
sg

/L
as

er
Sc

an

/h
ea

d_
fr

on
t_

ca
m

er
a_

fr
am

e_
co

nt
ro

lle
r

/h
ea

d_
fr

on
t_

ca
m

er
a/

de
pt

h_
re

gi
st

er
ed

/c
am

er
a_

in
fo

se
ns

or
_m

sg
s/

m
sg

/C
am

er
aI

nf
o

/h
ea

d_
fro

nt
_c

am
er

a/
de

pt
h_

re
gi

st
er

ed
/im

ag
e_

ra
w

se
ns

or
_m

sg
s/

m
sg

/Im
ag

e

/h
ea

d_
fr

on
t_

ca
m

er
a/

de
pt

h_
re

gi
st

er
ed

/p
oi

nt
s

se
ns

or
_m

sg
s/

m
sg

/P
oi

nt
C

lo
ud

2

/h
ea

d_
fr

on
t_

ca
m

er
a/

rg
b/

ca
m

er
a_

in
fo

se
ns

or
_m

sg
s/

m
sg

/C
am

er
aI

nf
o

/h
ea

d_
fr

on
t_

ca
m

er
a/

rg
b/

ca
m

er
a_

ra
w

se
ns

or
_m

sg
s/

m
sg

/Im
ag

e

/d
ist

an
ce

/s
on

ar
_b

as
e

se
ns

or
_m

sg
s/

m
sg

/R
an

ge

/d
is

ta
nc

e/
ba

se
_s

on
ar

_0
3_

ga
ze

bo
_r

os
_r

an
ge

 /ro
bo

t_
de

sc
rp

tio
n

st
d_

m
sg

s/
m

sg
/S

tri
ng

/k
ey

_v
el

ge
om

et
ry

_m
sg

s/
m

sg
/T

w
is

t

/n
av

_v
el

ge
om

et
ry

_m
sg

s/
m

sg
/T

w
is

t

/d
is

ta
nc

e/
ba

se
_s

on
ar

_0
3_

ga
ze

bo
_r

os
_r

an
ge

/d
is

ta
nc

e/
ba

se
_s

on
ar

_0
3_

ga
ze

bo
_r

os
_r

an
ge

Figure 2.14: Computation Graph for the Tiago robot, displaying the relevant topics.

with ROS2

C H A P T E R 3

First Behavior: Avoiding
Obstacles with Finite States
Machines

THIS section aims to apply everything shown until now to create seemingly
“smart” behavior. This exercise will put together many things we have pre-

sented and show how effective it is to program a robot using ROS2. In addition, we
will address some issues in robot programming.

The Bump and Go behavior uses the robot’s sensor to detect nearby obstacles
in front of the robot. The robot moves forward, and when it detects an obstacle, it
goes back and turns for a fixed time to move forward again. Although it is a simple
behavior, some decision-making approach is recommended since our code, even if it
is simple, can start to grow out of order as we solve the problems that may arise. In
this case, we will use a Finite State Machine (FSM).

An FSM is a mathematical computational model that we can use to define the
behavior of a robot. It is made up of states and transitions. A robot keeps producing
an output in one state until the condition of an outgoing transition is fulfilled and it
transits to the target state of this transition.

Applying an FSM can significantly reduce the complexity of solving a problem
when we implement simple behaviors. For a moment, try to think about how to
approach the Bump and Go problem using loops, ifs, temporary variables, counters,
timers. It would be a complex program to understand and follow its logic. Once
finished, adding some additional conditions will probably make to throw away what
we have done and start over.

Applying an FSM-based solution to the Bump and Go problem is straightforward.
Think about the different outputs that the robot must produce (stop, move forward,
go back, and turn). Each of these actions will have its own state. Now think about the
transitions between states (connection and condition), and we will obtain an FSM
like the one shown in Figure 3.1.

DOI: 10.1201/9781003289623-3 47

https://doi.org/10.1201/9781003289623-3

48 � A Concise Introduction to Robot Programming

Forward Back

TurnStop

obstacle
detected

2 secs
2 secs

laser
active

laser
inactive

Figure 3.1: States and Transitions for solving the Bump and Go problem using a
FSM.

3.1 PERCEPTION AND ACTUATION MODELS

This section analyzes what perceptions we use to solve the problem and what actions
we can produce.

In both models, first of all, we must define the used geometric conventions:

• ROS2 uses the metric International System of Measurements (SI). For different
dimensions, we will consider the units of meters, seconds, and radians. Linear
speeds should be m/s, rotational speeds rad/s, linear accelerations m/s2, and
so on.

• In ROS2 we are right-handed (left part of Figure 3.2): x grows forward, y to
the left, and z grows up. If we establish the reference origin on our chest, a
coordinate whose x is negative would be behind us, and a positive z would be
above us.

• Angles are defined as rotations around the axes. Rotation around x is sometimes
called the roll, y pitch, and z yaw.

• Angles grow by turning to the left (right part of Figure 3.2). Angle 0 is forward,
π is back, and π/2 is left.

In this problem, we will use the information of the laser sensor, which we saw
in the previous chapter that was in the topic /scan raw, and whose type was
sensor msgs/msg/LaserScan. Check this message format by typing:

with ROS2

First Behavior: Avoiding Obstacles with Finite States Machines � 49

X

Y

0

-

Figure 3.2: Axis and angles conventions in ROS.

$ ros2 interface show /sensor msgs/msg/LaserScan

Single scan from a planar laser range-finder
#
If you have another ranging device with different behavior (e.g. a sonar
array), please find or create a different message, since applications
will make fairly laser-specific assumptions about this data

std msgs/Header header # timestamp in the header is the acquisition time of
the first ray in the scan.
#
in frame frame id, angles are measured around
the positive Z axis (counterclockwise, if Z is up)
with zero angle being forward along the x axis

float32 angle min # start angle of the scan [rad]
float32 angle max # end angle of the scan [rad]
float32 angle increment # angular distance between measurements [rad]

float32 time increment # time between measurements [seconds] - if your scanner
is moving, this will be used in interpolating pos
of 3d points

float32 scan time # time between scans [seconds]

float32 range min # minimum range value [m]
float32 range max # maximum range value [m]

float32[] ranges # range data [m]
(Note: values < range min or > range max should be
discarded)

float32[] intensities # intensity data [device-specific units]. If your
device does not provide intensities, please leave

the array empty.

To see one of these laser messages (without showing the content of the readings),
launch the simulator and type:

50 � A Concise Introduction to Robot Programming

$ ros2 topic echo /scan raw --no-arr

header:

stamp:
sec: 11071
nanosec: 445000000

frame id: base laser link
angle min: -1.9198600053787231
angle max: 1.9198600053787231
angle increment: 0.005774015095084906
time increment: 0.0
scan time: 0.0
range min: 0.05000000074505806
range max: 25.0
ranges: ’<sequence type: float, length: 666>’
intensities: ’<sequence type: float, length: 666>’

In figure 3.3 we can see the interpretation of this message. The key is that in the
ranges field are the distances to obstacles. Position 0 of this std::vector (arrays
in messages are represented as std::vector in C++) corresponds to angle −1.9198,
position 1 is this angle plus the increment, until this vector is completed. It is easy
to check that if we divide the range (maximum angle minus minimum angle) by the
increment, we get these 666 readings, which is the size of the ranges vector.

Most messages, especially if they contain spatially interpretable information, have
a header containing the timestamp and the sensor frame. Note that a sensor can be
mounted in any position on the robot and any orientation, even in some moving parts.
The sensor frame must have a geometric connection (a rotation and translation) to
the rest. On many occasions, we will need to transform the coordinates of the sensory
information to the same frame to fuse it, which is usually base footprint (the center
of the robot, at ground level, pointing forward). These geometric manipulations are
explained in next chapter.

Figure 3.3: Laser scan interpretation in the simulated Tiago (left). Laser frame with

In our problem, we are only interested in whether there is an obstacle in front of
the robot, which is angle 0, and this corresponds exactly to the content of the middle

with ROS2

respect to other main frames (right).

First Behavior: Avoiding Obstacles with Finite States Machines � 51

position of the vector of ranges. We can use the original frame of the sensor since it
is aligned, a little forward and up, with base footprint.

An essential feature of ROS is standardization. Once a consensus has been reached
in the community on the format in which the information produced by a laser sensor
is encoded, all laser driver developers should use this format. This consensus means
that the message format must be general enough to support any laser sensor. In the
same way, an application developer must exploit the information in this message for
his program to function correctly regardless of the characteristics of the sensor that
produced the sensory reading. The great advantage of this approach is that we can
make any ROS program work with any ROS-supported laser, allowing the software
to be truly portable between robots. Also, an experienced ROS developer does not
have to learn new, manufacturer-defined formats. Finally, using this format puts at
your disposal a wide variety of utilities to filter or monitor laser information. This
approach applies to all types of sensors and actuators in ROS, which may be one
reason for the success of this framework.

Regarding the action model in this problem, we will send the robot translation
and rotation speeds to topic /nav vel, which is of type geometry msgs/msg/Twist.
Let’s see this message format:
$ ros2 interface show geometry msgs/msg/Twist

Vector3 linear
Vector3 angular

$ ros2 interface show geometry msgs/msg/Vector3

float64 x
float64 y

float64 z

All robots use this message format to receive speeds, allowing generic teleopera-
tion programs (with keyboard, joystick, mobiles, etc.) and navigation in ROS. Once
again, we are talking about standardization.

The geometry msgs/msg/Twist message is much more generic than what our
robot supports. We cannot make it move in Z (it cannot fly) or move laterally with
just two wheels. It is a differential robot. We could probably do more translations and
rotations if we had a quadcopter. We can only make it go forward or backward, rotate,
or combine both. For this reason, we can only use the fields linear.x and angular.z
(rotation to the Z-axis, positive velocities to the left, as indicated in Figure 3.2).

3.2 COMPUTATION GRAPH

The Computation Graph of this application will be pretty simple: A single node that
subscribes to the laser topic publishes speed commands to the robot.

The control logic interprets the input sensory information and produces the con-
trol commands. This logic is what we are going to implement with an FSM. The logic
control will run iteratively at 20 Hz. The execution frequencies depend on publishing
the control commands. If it is not published above 20 Hz, some robots stop, which
is very convenient so that there are no robots without control in the laboratory.

52 � A Concise Introduction to Robot Programming

/nav_vel
geometry_msgs/msg/Twist

/bump_go

/output_vel
geometry_msgs/msg/Twist

/tiago_nodes

/scan_raw

sensor_msgs/msg/LaserScan

/input_scan
sensor_msgs/msg/LaserScan

20 Hz

Figure 3.4: Computation Graph for Bump and Go project.

Commonly, the frequency at which we receive information is not the same as the
frequency we must publish it. You have to deal with this. Engineers do not complain
about problem conditions – they fix them.

If we want our software to run on different robots, we must not specify specific
topics for a robot. In our case, the topic that it subscribes to is /input scan, and
it publishes in /output vel. These topics do not exist or correspond to those of
our simulated robot. When executing it (at deployment), we will remap the ports to
connect them to the real topics of the specific robot.

Let’s discuss a point here. Why are we using remaps instead of passing the name
of the topics as parameters? Well, it is an alternative that many ROS2 developers
advocate. Perhaps this alternative is more convenient when a node does not always
have the same subscribers/publishers, and this can only be specified in a YAML file
of configuration parameters.

A good approach is that if the number of publishers and subscribers in a node is
known, use generic topic names, like the ones used in this example, and perform a
remap. It may even be better to use common topic names (/cmd vel is a common
topic for many robots). A seasoned ROS2 programmer will read in the documentation
what topics it uses, find out with a ros2 node info, and quickly make it work with
remaps, instead of looking for the correct parameters to be set up in the configuration
files.

Although this book primarily uses C++, in this chapter we will provide two sim-
ilar implementations, one in C++ and other in Python, each in different packages:
br2 fsm bumpgo cpp and br2 fsm bumpgo py. Both are already in the workspace cre-
ated in previous chapters and the annex to this book. Let’s start with the C++
implementation.

with ROS2

First Behavior: Avoiding Obstacles with Finite States Machines � 53

3.3 BUMP AND GO IN C++

The br2 fsm bumpgo cpp package has the following structure:
Package br2 fsm bumpgo cpp

br2_fsm_bumpgo_cpp
CMakeLists.txt
include

br2_fsm_bumpgo_cpp
BumpGoNode.hpp

launch
bump_and_go.launch.py

package.xml
src

br2_fsm_bumpgo_cpp
BumpGoNode.cpp

bumpgo_main.cpp

The usual way for nodes to be implemented as classes that inherit from
rclcpp::Node, separating declaration and definition, within a namespace that
matches the package name. In our case, the definition (BumpGoNode.cpp) will
be in src/br2 fsm bumpgo cpp, and the header (BumpGoNode.hpp) will be in
include/br2 fsm bumpgo cpp. In this way, we separate the implementation
of the programs from the implementation of the nodes. This strategy al-
lows having several programs with different strategies for creating nodes. The
main program, whose function is to instantiate the node and call to the
spin() function, is in src/bumpgo main.cpp. We have also included a launcher
(launch/bump and go.launch.py) to facilitate its execution.

In this book, we will analyze partial pieces of the code of a package, focusing
on different concrete aspects to teach interesting concepts. We will not exhaustively
show all the code since the reader has it available in his workspace, the repository,
and the annexes.

3.3.1 Execution Control

The node execution model consists of calling the control cycle method at a fre-
quency of 20 Hz. For this, we declare a timer and start it in the constructor to call the
control cycle method every 50 ms. The control logic, implemented with an FSM,
will publish the commands in speeds.
include/bump go cpp/BumpGoNode.hpp

class BumpGoNode : public rclcpp::Node
{
...
private:

void scan_callback(sensor_msgs::msg::LaserScan::UniquePtr msg);
void control_cycle();

rclcpp::Publisher<geometry_msgs::msg::Twist>::SharedPtr vel_pub_;
rclcpp::Subscription<sensor_msgs::msg::LaserScan>::SharedPtr scan_sub_;
rclcpp::TimerBase::SharedPtr timer_;

sensor_msgs::msg::LaserScan::UniquePtr last_scan_;
};

54 � A Concise Introduction to Robot Programming

Look at the detail of the laser callback header. We have used UniquePtr (an alias
for std::unique ptr) instead of SharedPtr, as we have seen so far. The Callbacks
in ROS2 can have different signatures, depending on the needs. These are different
alternatives for the callbacks:

1. void scan_callback(const sensor_msgs::msg::LaserScan & msg);
2. void scan_callback(sensor_msgs::msg::LaserScan::UniquePtr msg);
3. void scan_callback(sensor_msgs::msg::LaserScan::SharedConstPtr msg);
4. void scan_callback(const sensor_msgs::msg::LaserScan::SharedConstPtr & msg);
5. void scan_callback(sensor_msgs::msg::LaserScan::SharedPtr msg);

Some other signatures allow to obtain information about the message (timestamp
in origin and destination, and identifier of the sender) and even the serialized message,
but that is only used in very specialized cases.

Up to this point, we had used signature 1, but now we use signature 2. Check
out the implementation of the laser callback at scan callback. Instead of making a
copy of the message (which could be computationally expensive for large messages)
or sharing the pointer, we will acquire this message in property, and we will store the
reference to the data in last scan . This way, rclcpp queues will no longer need to
manage their lifecycle, saving time. We recommend using UniquePtr when possible
to improve the performance of your nodes.
src/bump go cpp/BumpGoNode.cpp

BumpGoNode::BumpGoNode()
: Node("bump_go")
{

scan_sub_ = create_subscription<sensor_msgs::msg::LaserScan>(
"input_scan", rclcpp::SensorDataQoS(),
std::bind(&BumpGoNode::scan_callback, this, _1));

vel_pub_ = create_publisher<geometry_msgs::msg::Twist>("output_vel", 10);
timer_ = create_wall_timer(50ms, std::bind(&BumpGoNode::control_cycle, this));

}

void
BumpGoNode::scan_callback(sensor_msgs::msg::LaserScan::UniquePtr msg)
{

last_scan_ = std::move(msg);
}

void
BumpGoNode::control_cycle()
{

// Do nothing until the first sensor read
if (last_scan_ == nullptr)
return;

vel_pub_->publish(...);
}

Another noteworthy detail about this constructor is that the publication use
the default QoS, which is reliable + volatile. In case of subscriptions, we will use
rclcpp::SensorDataQoS() (a packed QoS definition using best effort, volatile, and
appropiate queue size for sensors).

As a general rule, for a communication to be compatible, the quality of service
of the publisher should be reliable, and it is the subscriber who can choose to relax
it to be the best effort. When creating sensor drivers, publishing their readings using

with ROS2

First Behavior: Avoiding Obstacles with Finite States Machines � 55

rclcpp::SensorDataQoS() is not a good idea because if a subscriber requires reliable
QoS and publisher is best effort, communication will fail.

Finally, the first thing to do in control cycle is to check if last scan is valid.
This method may be executed before the first message arrives with a laser scan. In
this case, this iteration is skipped.

3.3.2 Implementing a FSM

Implementing an FSM in a C++ class is not complicated. It is enough to have a
member variable state that stores the current state, which we can encode as a
constant or an enum. In addition, it is helpful to have a variable state ts that
indicates the time when transit to the current state, allowing to transit from states
using timeouts.
include/bump go cpp/BumpGoNode.hpp

class BumpGoNode : public rclcpp::Node
{
...
private:

void control_cycle();

static const int FORWARD = 0;
static const int BACK = 1;
static const int TURN = 2;
static const int STOP = 3;
int state_;
rclcpp::Time state_ts_;

};

Remember that the control logic is in method control cycle, which runs at
20 Hz. There can be no infinite loops or long waits in this method. It must be
designed to iteratively call this method to accomplish its task.

Control logic is typically implemented with a switch statement, with a state in
each case. In the following code, we have only shown the case of the FORWARD state.
There is also a structure in this case: first, the output computation in the current
state (setting speeds to publish) and then check every transition condition. If any
returns true (the condition is met), the state is set to the new state and state ts
is updated.

When declaring a message type variable, all its fields are set by default to their
default value, or 0 or empty depending on their type. That is why in the complete
code, we only assign the field that is not 0.

56 � A Concise Introduction to Robot Programming

src/bump go cpp/BumpGoNode.cpp

BumpGoNode::BumpGoNode()
: Node("bump_go"),

state_(FORWARD)
{

...
state_ts_ = now();

}

void
BumpGoNode::control_cycle()
{

switch (state_) {
case FORWARD:

// Do whatever you should do in this state.
// In this case, set the output speed.

// Checking the condition to go to another state in the next iteration
if (check_forward_2_stop())
go_state(STOP);

if (check_forward_2_back())
go_state(BACK);

break;
...

}
}

void
BumpGoNode::go_state(int new_state)
{

state_ = new_state;
state_ts_ = now();

}

Look at three methods with interesting code from the implementation point of
view. The first is the code of the forward → back transition that checks if there is
an obstacle in front of the robot. As we said before, this is done by accessing the
central element of the vector that contains the distances in the laser reading:
src/bump go cpp/BumpGoNode.cpp

bool
BumpGoNode::check_forward_2_back()
{

// going forward when deteting an obstacle
// at 0.5 meters with the front laser read
size_t pos = last_scan_->ranges.size() / 2;
return last_scan_->ranges[pos] < OBSTACLE_DISTANCE;

}

The second interesting snippet is the transition from forward → stop when the
last laser read is considered too old. The now method of rclcpp::Node returns the
current time as an rclcpp::Time. From the time that is in the header of the last
reading we can create another rclcpp::Time. Its difference is a rclcpp::Duration.
To make comparisons, we can use its seconds method, which returns the time in
seconds as a double, or we can, as we have done, directly compare it with another
rclcpp::Duration.

with ROS2

First Behavior: Avoiding Obstacles with Finite States Machines � 57

src/bump go cpp/BumpGoNode.cpp

bool
BumpGoNode::check_forward_2_stop()
{

// Stop if no sensor readings for 1 second
auto elapsed = now() - rclcpp::Time(last_scan_->header.stamp);
return elapsed > SCAN_TIMEOUT;

}

The last snippet is similar to the previous one, but now we take advantage of
having the state ts variable updated, and we can transition from back → turn
after 2 s.
src/bump go cpp/BumpGoNode.cpp

bool
BumpGoNode::check_back_2_turn()
{

// Going back for 2 seconds
return (now() - state_ts_) > BACKING_TIME;

}

3.3.3 Running the Code

So far, we have limited ourselves to the class that implements the BumpGoNode node.
Now we have to see where we create an object of this class to execute it. We do this in
the main program that creates a node and passes it to a blocking call to rclcpp::spin
that will manage the messages and timer events calling to their callbacks.
src/bumpgo main.cpp

int main(int argc, char * argv[])
{

rclcpp::init(argc, argv);

auto bumpgo_node = std::make_shared<br2_fsm_bumpgo_cpp::BumpGoNode>();
rclcpp::spin(bumpgo_node);

rclcpp::shutdown();

return 0;
}

Now run the program. Open a terminal to run the simulator:
$ ros2 launch br2 tiago sim.launch.py

Next, Open another terminal and run the program, taking into account that there
are arguments to specify in the command line:

• Remap input scan to /scan raw, and ouput vel to /nav vel (-r option).

• When using a simulator, set the use sim time parameter to true. This causes
the time to be taken from the topic /clock, published by the simulator, instead
of the current one from the computer.

58 � A Concise Introduction to Robot Programming

$ ros2 run br2 fsm bumpgo cpp bumpgo --ros-args -r output vel:=/nav vel -r
input scan:=/scan raw -p use sim time:=true

See how the robot moves forward until it detects an obstacle then does an avoid-
ance maneuver.

Because it is tedious to put so many remapping arguments in the command line,
we have created a launcher that specifies the necessary arguments and remaps to the
node.
launch/bump and go.launch.py

bumpgo_cmd = Node(package='br2_fsm_bumpgo_cpp',
executable='bumpgo',
output='screen',
parameters=[{

'use_sim_time': True
}],
remappings=[
('input_scan', '/scan_raw'),
('output_vel', '/nav_vel')

])

Use this launcher instead of the last ros2 run, only by typing:
$ ros2 launch br2 fsm bumpgo cpp bump and go.launch.py

3.4 BUMP AND GO BEHAVIOR IN PYTHON

In addition to C++, Python is one of the languages officially supported in ROS2
through the rclpy client library. This section will reproduce what we have done in
the previous section, but with Python. Verify by comparison the differences and
similarities in the development of both languages. Also, once the principles of ROS2
have been explained throughout the previous chapters, the reader will recognize the
elements of ROS2 in Python code, as the principles are the same.

Although we provided the complete package, if we had wanted to create a package
from scratch, we could have used the ros2 pkg command to create a skeleton.
$ ros2 pkg create --build-type ament python br2 fsm bumpgo py --dependencies
sensor msgs geometry msgs

As it is a ROS2 package, there is still a package.xml similar to the C++ version,
but there is no longer a CMakeLists.txt, but a setup.cfg and setup.py, typical of
Python packages that use distutils1.

At the root of this package, there is a homonymous directory that only has a file
init .py which indicates that there will be files with Python code. Let’s create the

file bump go main.py there. While in C++, it is common and convenient to separate
the source code into several files. In this case, everything is in the same file.

1https://docs.python.org/3/library/distutils.html

with ROS2

https://docs.python.org/3/library/distutils.html

First Behavior: Avoiding Obstacles with Finite States Machines � 59

3.4.1 Execution Control

As in the previous example, we will first show the code ignoring the details of the
behavior, only those related to the ROS2 concepts to handle:

bump go py/bump go main.py

import rclpy

from rclpy.duration import Duration
from rclpy.node import Node
from rclpy.qos import qos_profile_sensor_data
from rclpy.time import Time

from geometry_msgs.msg import Twist
from sensor_msgs.msg import LaserScan

class BumpGoNode(Node):
def __init__(self):

super().__init__('bump_go')

...

self.last_scan = None
self.scan_sub = self.create_subscription(

LaserScan,
'input_scan',
self.scan_callback,
qos_profile_sensor_data)

self.vel_pub = self.create_publisher(Twist, 'output_vel', 10)
self.timer = self.create_timer(0.05, self.control_cycle)

def scan_callback(self, msg):
self.last_scan = msg

def control_cycle(self):
if self.last_scan is None:

return

out_vel = Twist()

FSM

self.vel_pub.publish(out_vel)

def main(args=None):
rclpy.init(args=args)

bump_go_node = BumpGoNode()

rclpy.spin(bump_go_node)

bump_go_node.destroy_node()
rclpy.shutdown()

if __name__ == '__main__':
main()

Recall that the goal is to create a node that subscribes to the laser readings and
issues speed commands. The control cycle executes at 20 Hz to calculate the robot
control based on the last reading received. Therefore, our code will have a subscriber,
a publisher, and a timer.

This code is similar to the one developed in C++: define a class that inherits
from Node, and in the main, it is instantiated and called spin with it. Let’s see some
details:

60 � A Concise Introduction to Robot Programming

• Inheriting from Node, we call the base class constructor to assign the node
name. The Node class and all associated data types (Time, Duration, QoS,...)
are in rclpy, imported at startup, and these items separately.

• The types of messages are also imported, as seen in the initial part.

• We create the publisher, the subscriber, and the timer in the constructor. Note
that the API is practically similar to C++. Also, in Python, we can access
predefined qualities of service (qos profile sensor data).

• In the callback of the laser messages, we store the last message received in the
variable self.last scan, which was initialized to None in the constructor. In
this way, verify in the control cycle (control cycle) that no laser reading has
reached us.

3.4.2 Implementing the FSM

The direct translation of the FSM in C++ from the previous section to Python has
nothing interesting. The only detail is that to obtain the current time, we have to
ask for the clock first through the get clock method:

bump go py/bump go main.py

class BumpGoNode(Node):
def __init__(self):

super().__init__('bump_go')

self.FORWARD = 0
self.BACK = 1
self.TURN = 2
self.STOP = 3
self.state = self.FORWARD
self.state_ts = self.get_clock().now()

def control_cycle(self):

if self.state == self.FORWARD:
out_vel.linear.x = self.SPEED_LINEAR

if self.check_forward_2_stop():
self.go_state(self.STOP)

if self.check_forward_2_back():
self.go_state(self.BACK)

self.vel_pub.publish(out_vel)

def go_state(self, new_state):
self.state = new_state
self.state_ts = self.get_clock().now()

Perhaps the most remarkable aspect in this code, similar to its version in C++,
is the treatment of time and durations:

with ROS2

First Behavior: Avoiding Obstacles with Finite States Machines � 61

bump go py/bump go main.py

def check_forward_2_back(self):
pos = round(len(self.last_scan.ranges) / 2)
return self.last_scan.ranges[pos] < self.OBSTACLE_DISTANCE

def check_forward_2_stop(self):
elapsed = self.get_clock().now() - Time.from_msg(self.last_scan.header.stamp)
return elapsed > Duration(seconds=self.SCAN_TIMEOUT)

def check_back_2_turn(self):
elapsed = self.get_clock().now() - self.state_ts
return elapsed > Duration(seconds=self.BACKING_TIME)

• The Time.from msg function allows to create a Time object from the timestamp
of a message.

• The current time is obtained with Node’s get clock().now() method.

• The operation between time has as a result an object of type Duration,
which can be compared with another object of type Duration, such as
Duration(seconds = self.BACKING TIME) that represents the duration of
2 s.

3.4.3 Running the Code

Let’s see how to build and install the code in the workspace. First, Modify setup.py
for our new program:

setup.py

import os
from glob import glob

from setuptools import setup

package_name = 'br2_fsm_bumpgo_py'

setup(
name=package_name,
version='0.0.0',
packages=[package_name],
data_files=[

('share/ament_index/resource_index/packages',
['resource/' + package_name]),

('share/' + package_name, ['package.xml']),
(os.path.join('share', package_name, 'launch'), glob('launch/*.launch.py'))

],
install_requires=['setuptools'],
zip_safe=True,
maintainer='johndoe',
maintainer_email='john.doe@evilrobot.com',
description='BumpGo in Python package',
license='Apache 2.0',
tests_require=['pytest'],
entry_points={

'console_scripts': [
'bump_go_main = br2_fsm_bumpgo_py.bump_go_main:main'

],
},

)

mailto:john.doe@evilrobot.com

62 � A Concise Introduction to Robot Programming

The important part right now is the entry points argument. As shown in the
code above, add the new program shown previously. With this, we can already build
our package.
$ colcon build --symlink-install

In order to run the program, first launch the simuladtor by typing in the terminal:
$ ros2 launch br2 tiago sim.launch.py

Open another terminal, and run the program:
$ ros2 run br2 fsm bumpgo py bump go main --ros-args -r output vel:=/nav vel -r
input scan:=/scan raw -p use sim time:=true

We can also use a launcher similar to the one in the C++ version, just by typing:
$ ros2 launch br2 fsm bumpgo py bump and go.launch.py

PROPOSED EXERCISES:

1. Modify the Bump and Go project so that the robot perceives an obstacle in
front, on its left and right diagonal. Instead of always turning to the same side,
it turns to the side with no obstacle.

2. Modify the Bump and Go project so that the robot turns exactly to the angle
with no obstacles or the more far perceived obstacle. Try two approaches:

• Open-loop: Calculate before turning time and speed to turn.
• Closed-loop: Turns until a clear space in front is detected.

with ROS2

C H A P T E R 4

The TF Subsystem

ONE of the greatest hidden treasures in ROS is its geometric transformation sub-
system TF (or TFs in short). This subsystem allows defining different reference

axes (also called frames) and the geometric relationship between them, even when this
relationship is constantly changing. Any coordinate in a frame can be recalculated to
another frame without the need for tedious manual calculations.

In my experience teaching ROS courses, who has had to deal with similar calcu-
lations without TFs, shows a big surprise and happiness when they meet them.

Its importance in ROS is due to the need to model the parts and components of
a robot geometrically. It has many applications in navigation and location, as well
as manipulation. They have been used to position several cameras in a building or
motion capture systems1.

A robot perceives the environment through sensors placed somewhere on the
robot and performs actions for which it needs to specify some spatial position. For
instance:

• A distance sensor (laser or RGBD) generates a set of points (x, y, z) that indi-
cate the detected obstacles.

• A robot moves its end effector by specifying a target position (x, y, z, roll,
pitch, yaw).

• A robot moves to a point (x, y, yaw) on a map.

All these coordinates are references to a frame. In a robot, there are multiple
frames (for sensors, actuators, etc). The relationship between these frames must be
known to reason, for example, the coordinate of an obstacle detected by the laser
on the arm reference axis to avoid it. Frames relationships are the displacement and
rotation of a frame to another frame. Algebraically, this is done using homogeneous
coordinates for the coordinates and RT transformation matrices for relations. Having
the coordinates of a point P in frame A, this is PA, we can calculate PB in frame B
using the transformation matrix RTA→B as follows:

1https://github.com/MOCAP4ROS2-Project

DOI: 10.1201/9781003289623-4 63

https://github.com
https://doi.org/10.1201/9781003289623-4

64 � A Concise Introduction to Robot Programming

PB = RTA→B ∗ PA (4.1)

xB
yB
zB
1

 =

RxxA→B RxyA→B RxzA→B T xA→B
RyxA→B RyyA→B RyzA→B T yA→B
RzxA→B RzyA→B RzzA→B T zA→B

0 0 0 1

 ∗

xA
yA
zA
1

 (4.2)

In addition to the complexity of these operations, it is remarkable that these
relationships are highly dynamic in an articulated robot. It would be an error to
transform the points perceived by a sensor at time t using the transformation at t +
0.01 s if it varies dynamically at high speed.

ROS2 implements the TF transform system (now called TF2, the second
version) using two topics that receives transformations, as messages of type
tf2 msgs/msg/TFMessage;
$ ros2 interface show tf2 msgs/msg/TFMessage

geometry msgs/TransformStamped[] transforms
std msgs/Header header
string child frame id
Transform transform

Vector3 translation
float64 x
float64 y
float64 z

Quaternion rotation
float64 x 0
float64 y 0
float64 z 0

float64 w 1

• /tf for transforms that vary dynamically, like the joints of a robot are specified
here. By default, they are valid for a short time (10 s). For example, frames
relation linked by motorized joints are published here.

• /tf static for transforms that do not vary over time. This topic has a QoS
transient local, so any node that subscribes to this topic receives all the trans-
forms published so far. Typically, the transforms published in this topic do not
change over time, like the robot geometry.

The frames of a robot are organized as a tree of TFs, in which each TF should has
at most one parent and can have several children. If this is not true, or several trees
are not connected, the robot is not well modeled. By convention, there are several
important axes:

• /base footprint is usually the root of a robot’s TFs, and corresponds to the
center of the robot on the ground. It is helpful to transform the information
from the robot’s sensors to this axis to relate them to each other.

with ROS2

The TF Subsystem � 65

• /base link is usually the child of /base footprint, and is typically the center
of the robot, already above ground level.

• /odom is the parent frame of /base footprint, and the transformation that
relates them indicates the robot’s displacement since the robot driver started.

Figure 4.1 shows partially the TF tree of the simulated Tiago. If it is needed to
obtain it, launch the simulation and type2:
$ ros2 run rqt tf tree rqt tf tree

Figure 4.1: Portion of the TF tree of the simulated Tiago and the TF display in
RViz2.

When a node wants to use this system, it does not subscribe directly to these
topics but uses TFListeners, which are objects that update a buffer where are stored
all the latest published TFs, and that has an API that lets, for example:

• To know if there is a TF from one frame to another at time t.

• To know what is the rotation from frame A to frame B at time t.

• To ask to transform a coordinate that is in frame A and to frame B in an
arbitrary time t.

The buffer may not contain just the TF at time t, but if it has an earlier and
a later one, it performs the interpolation. Likewise, frames A and B may not be
directly connected, but more frames are in between, performing the necessary matrix
operations automatically.

2It is needed to have installed the package ros-foxy-rqt-tf-tree

66 � A Concise Introduction to Robot Programming

Without going into much detail, for now, publishing a transform to a ROS2 node
is very straightforward. Just have a transform broadcaster and send transforms to
the TF system:

geometry_msgs::msg::TransformStamped detection_tf;

detection_tf.header.frame_id = "base_footprint";
detection_tf.header.stamp = now();
detection_tf.child_frame_id = "detected_obstacle";
detection_tf.transform.translation.x = 1.0;

tf_broadcaster_->sendTransform(detection_tf);

Getting a transform is easy too. Having a TF buffer that a transform listener
updates, we can ask for the geometric transformation from one frame to another. Not
even these frames need to be directly connected. Any calculation is done transparently
for the developer:

tf2_ros::Buffer tfBuffer;
tf2_ros::TransformListener tfListener(tfBuffer);

...

geometry_msgs::msg::TransformStamped odom2obstacle;
odom2obstacle = tfBuffer_.lookupTransform("odom", "detected_obstacle", tf2::TimePointZero);

The above code calculates odom → base footprint → detected obstacle au-
tomatically. The third argument of lookupTransform indicates the instant of time
from which we want to obtain the transform. tf2::TimePointZero indicates the lat-
est available. If we are transforming points of a laser, for example, we should use the
timestamp that appears in the header of the laser message, because if a robot or the
laser has moved since then, the transformation in another instant will not be exact
(much can change in few milliseconds in a robot). Finally, be careful about asking for
the transforms with now(), because it will not have information yet at this moment in
time, and it cannot be extrapolated into the future, and an exception can be raised.

We can operate with transforms, multiplying them or calculating their inverse.
From here, we will establish a nomenclature convention in our codes. This will help
us to operate with TFs:

• If an object represent a transformation from frame origin to frame target,
we call it origin2target.

• If want multiply two TFs, as shown in Figure 4.2.

1. We only can operate it if the frame names near operator * are equal. In
this case, the frame names are equals (robot).

2. The result frame id must be the outer part of the operators (odom from
first operator and object from second).

3. If we invert a TF (they are invertibles), we invert the frame ids in this
name.

with ROS2

The TF Subsystem � 67

odom2object = odom2robot * robot2object

compatibility

result

result

Figure 4.2: The mnemonic rule for naming and operating TFs. Based on their name,
we can know if two TFs can be multiplied and the name of the resulting TF.

4.1 AN OBSTACLE DETECTOR THAT USES TF2

This section will analyze a project to see in practice the application of the concepts
on TFs set out above.

This project makes the robot detect obstacles right in front of it using the laser
sensor, as shown in Figure 4.3.

Figure 4.3: Robot Tiago detecting obstacles with the laser sensor. The red arrow
highlights the obstacle detected with the center reading.

We will apply TFs concepts following a common practice in many ROS2 packages
to publish the perceptions as TFs. The advantage of doing this is that we can easily
reason its position geometrically for any frame, even if it is not currently perceived.

We will not introduce a new perception model, but we will use the same one
from the previous chapter: we will detect obstacles in front of the robot using the
laser. We will use the same speed-based actuation model, although we will teleoperate
the robot manually in this case.

68 � A Concise Introduction to Robot Programming

Figure 4.4: Visual markers available for visual debugging.

In this project, apart from using the concepts about TFs, we will show a powerful
debugging tool called Visual Markers3, which allows us to publish 3D visual elements
that can be viewed in RViz2 from a node. This mechanism allows us to show at
a glance part of the internal state of the robot without limiting ourselves to the
debugging messages that are generated with the macros RCLCPP *. Markers include
arrows, lines, cylinders, spheres, lines, shapes, text, and others in any size or color.
Figure 4.4 shows an example of available markers.

4.2 COMPUTATION GRAPH

The Computation Graph (Figure 4.5) of our application is shown in the Figure 4.5.
The node uses a laser sensor of the simulated robot in the scan raw topic. The

detection node subscribes to the laser topic and publishes the transform in the ROS2
TF subsystem. Our node subscribes to /input scan, so we will have to remap from
/scan raw.

We will create a node /obstacle monitor that reads the transform corresponding
to the detection and shows in console its position with respect to the general frame
of the robot, base footprint.

The node /obstacle monitor publishes also a visual marker. In our case, we will
publish a red arrow that connects the robot’s base with the frame’s position of the
obstacle that we are publishing.

In this project, we will make two versions: a basic one and an improved one. The
reason is to see a small detail about the use of TFs that significantly impact the final
result, as we will explain later.

4.3 BASIC DETECTOR

We use the same package for both versions. The structure of the package can be seen
in the following box:

3http://wiki.ros.org/rviz/DisplayTypes/Marker

with ROS2

http://wiki.ros.org

The TF Subsystem � 69

/obstacle_detector

/tf
geometry_msgs/msg/TransformStamped

/input_scan
sensor_msgs/msg/LaserScan TransformBroadcaster

TF

/tf_static

/obstacle_monitor
TransformListener

Buffer

/bytes_laserscan

/scan_raw

sensor_msgs/msg/LaserScan

/obstacle_marker
visualization_msgs/msg/Marker

RViz2 /rosout
rcl_interfaces/msg/Log

2 Hz

Figure 4.5: Computation Graph of the exercise. The /obstacle detector node col-
laborates with the /obstacle monitor node using the TF subsystem.

Package br2 tf2 detector

br2_tf2_detector
CMakeLists.txt
include

br2_tf2_detector
ObstacleDetectorImprovedNode.hpp
ObstacleDetectorNode.hpp
ObstacleMonitorNode.hpp

launch
detector_basic.launch.py
detector_improved.launch.py

package.xml
src

br2_tf2_detector
ObstacleDetectorImprovedNode.cpp
ObstacleDetectorNode.cpp
ObstacleMonitorNode.cpp

detector_improved_main.cpp
detector_main.cpp

We will ignore in this section the files that contain the word "Improved" in the
name. We will see them in the next section.

The reader can see how the package structure is similar to the previous chapter.
The nodes are separated in their declaration and definition, in directories whose name
matches the package. In addition, everything will be defined within a namespace that
matches the package’s name. This package will take a small step forward in this struc-
ture: now, we will compile the nodes as a dynamic library linked by the executables.
Perhaps in this project we will not notice the difference, but we save space, it is more

70 � A Concise Introduction to Robot Programming

convenient, and it could allow (it is not the case) to export it to other packages. The
name of the library will be the name of the package (${PROJECT NAME}), as usual
when creating a support library in a package. Let’s see what this looks like in the
CMakeLists.txt file:

include/br2 tf2 detector/ObstacleDetectorNode.hpp

project(br2_tf2_detector)

find_package(...)
...

set(dependencies
...
)

include_directories(include)

add_library(${PROJECT_NAME} SHARED
src/br2_tf2_detector/ObstacleDetectorNode.cpp
src/br2_tf2_detector/ObstacleMonitorNode.cpp
src/br2_tf2_detector/ObstacleDetectorImprovedNode.cpp

)
ament_target_dependencies(${PROJECT_NAME} ${dependencies})

add_executable(detector src/detector_main.cpp)
ament_target_dependencies(detector ${dependencies})
target_link_libraries(detector ${PROJECT_NAME})

add_executable(detector_improved src/detector_improved_main.cpp)
ament_target_dependencies(detector_improved ${dependencies})
target_link_libraries(detector_improved ${PROJECT_NAME})

install(TARGETS
${PROJECT_NAME}
detector
detector_improved
ARCHIVE DESTINATION lib
LIBRARY DESTINATION lib
RUNTIME DESTINATION lib/${PROJECT_NAME}

)

Note that now it is needed to add a target link libraries statement and install
the library in the same place as the executables. When specifying the files of each
executable, it is no longer necessary to specify more than the main cpp program file.

4.3.1 Obstacle Detector Node

Analyze the obstacle detector node. Its execution follows an event-oriented model
rather than an iterative one. Every message the node receives will produce an output,
so it makes sense that the node’s logic resides in the laser callback.

include/br2 tf2 detector/ObstacleDetectorNode.hpp

class ObstacleDetectorNode : public rclcpp::Node
{
public:
ObstacleDetectorNode();

private:
void scan_callback(sensor_msgs::msg::LaserScan::UniquePtr msg);

rclcpp::Subscription<sensor_msgs::msg::LaserScan>::SharedPtr scan_sub_;
std::shared_ptr<tf2_ros::StaticTransformBroadcaster> tf_broadcaster_;

};

with ROS2

The TF Subsystem � 71

Since the node must publish transforms to the TF subsystem, we declare a
StaticTransformBroadcaster, that publish in /tf static. We could also declare a
TransformBroadcaster, that publish in /tf. Apart from the durability QoS, the dif-
ference is that we want transforms to persist beyond the 10 s by default of non-static
transforms.

We use a shared ptr for tf broadcaster , since its constructor requires
an rclcpp::Node∗, and we will not have it until we are already inside the
constructor4:

src/br2 tf2 detector/ObstacleDetectorNode.hpp

ObstacleDetectorNode::ObstacleDetectorNode()
: Node("obstacle_detector")
{
scan_sub_ = create_subscription<sensor_msgs::msg::LaserScan>(
"input_scan", rclcpp::SensorDataQoS(),
std::bind(&ObstacleDetectorNode::scan_callback, this, _1));

tf_broadcaster_ = std::make_shared<tf2_ros::TransformBroadcaster>(*this);
}

The tf broadcaster object manages the publication of static TFs. The message
type of a TF is geometry msgs/msg/TransformStamped. Let’s see how it is used:

src/br2 tf2 detector/ObstacleDetectorNode.hpp

void
ObstacleDetectorNode::scan_callback(sensor_msgs::msg::LaserScan::UniquePtr msg)
{
double dist = msg->ranges[msg->ranges.size() / 2];

if (!std::isinf(dist)) {
geometry_msgs::msg::TransformStamped detection_tf;

detection_tf.header = msg->header;
detection_tf.child_frame_id = "detected_obstacle";
detection_tf.transform.translation.x = msg->ranges[msg->ranges.size() / 2];

tf_broadcaster_->sendTransform(detection_tf);
}

}

• The header of the output message will be the header of the input laser message.
We will do this because the timestamp must be when the sensory reading was
taken. If we used now(), depending on the latency in the messages and the
load of the computer, the transform would not be precise, and synchronization
errors could occur.
The frame id is the source frame (or parent frame) of the transformation,
already in this header. In this case, it is the sensor frame since the perceived
coordinates of the object are in this frame.

• The child frame id field is the id of the new frame that we are going to create,
and that represents the perceived obstacle.

4In fact, some C++ developers recommend avoiding using this in constructors, as the object
has not completely initialized until the constructor finishes.

72 � A Concise Introduction to Robot Programming

• The transform field contains a translation and a rotation applied in this order,
from the parent frame to the child frame that we want to create. Since the
X-axis of the laser frame is aligned with the laser beam that we are measuring,
the translation in X is the distance read.
Rotation refers to the rotation of the frame after translation is applied. As this
value is not relevant here (detection is a point) we use the default quaternion
values (0, 0, 0, 1) set by the message constructor.

• Finally, use the sendTransform() method of tf broadcaster to send the
transform to the TF subsystem.

4.3.2 Obstacle Monitor Node

The /obstacle monitor node extracts the transform to the detected object from the
TFs system and shows it to the user in two ways:

• The standard output on the console indicates where the obstacle is with respect
to the robot at all times, even if it is no longer being detected.

• Using a visual marker, specifically an arrow, which starts from the robot toward
the obstacle that was detected.

Analyze the header to see what elements this node has:
include/br2 tf2 detector/ObstacleMonitorNode.hpp

class ObstacleMonitorNode : public rclcpp::Node
{
public:
ObstacleMonitorNode();

private:
void control_cycle();
rclcpp::TimerBase::SharedPtr timer_;

tf2::BufferCore tf_buffer_;
tf2_ros::TransformListener tf_listener_;

rclcpp::Publisher<visualization_msgs::msg::Marker>::SharedPtr marker_pub_;
};

• The execution model of this node is iterative, so we declare timer and its
callback control cycle.

• To access the TF system, use a tf2 ros::TransformListener that update the
buffer tf buffer to which we can make the queries we need.

• We only need one publisher for visual markers.

In the case of the class definition, we ignore the part dedicated to visual markers,
for now, showing only the part related to TFs.

with ROS2

The TF Subsystem � 73

src/br2 tf2 detector/ObstacleMonitorNode.cpp

1 ObstacleMonitorNode::ObstacleMonitorNode()
2 : Node("obstacle_monitor"),
3 tf_buffer_(),
4 tf_listener_(tf_buffer_)
5 {
6 marker_pub_ = create_publisher<visualization_msgs::msg::Marker>(
7 "obstacle_marker", 1);
8
9 timer_ = create_wall_timer(

10 500ms, std::bind(&ObstacleMonitorNode::control_cycle, this));
11 }
12
13 void
14 ObstacleMonitorNode::control_cycle()
15 {
16 geometry_msgs::msg::TransformStamped robot2obstacle;
17
18 try {
19 robot2obstacle = tf_buffer_.lookupTransform(
20 "base_footprint", "detected_obstacle", tf2::TimePointZero);
21 } catch (tf2::TransformException & ex) {
22 RCLCPP_WARN(get_logger(), "Obstacle transform not found: %s", ex.what());
23 return;
24 }
25
26 double x = robot2obstacle.transform.translation.x;
27 double y = robot2obstacle.transform.translation.y;
28 double z = robot2obstacle.transform.translation.z;
29 double theta = atan2(y, x);
30
31 RCLCPP_INFO(get_logger(), "Obstacle detected at (%lf m, %lf m, , %lf m) = %lf rads",
32 x, y, z, theta);
33 }

• Notice how tf listener is initialized, simply specifying the buffer to update.
Later, the queries will be made directly to the buffer.

• We observe that the control loop runs at 2 Hz, showing us information with
RCLCPP INFO (to /ros out and stdout).

• The most relevant function is lookupTransform, which calculates the geometric
transformation from one frame to another, even if there is no direct relationship.
We can specify a specific timestamp or, on the contrary, we want the last one
available by indicating tf2::TimePointZero. This call can throw an exception
if it does not exist, or we require a transform on a timestamp in the future, so
a try/catch should be used to handle possible errors.

• Note that the TF we published in ObstacleDetectorNode was base laser
link → detected obstacle, and now we are requiring base footprint →
detected obstacle. As the robot is well modeled and the geometric relation-
ship between base laser link and base footprint can be calculated, there
will be no problem for lookupTransform to return the correct information.

Let’s see the part related to the generation of the visual marker. The goal is
to show the coordinates of the obstacle to the robot on the screen and show a ge-
ometric shape in RViz2 that allows us to debug the application visually. In this
case, it will be a red arrow from the robot to the obstacle. To do this, create an
visualization msgs/msg/Marker message and fill in its fields to obtain this arrow:

74 � A Concise Introduction to Robot Programming

src/br2 tf2 detector/ObstacleMonitorNode.cpp

visualization_msgs::msg::Marker obstacle_arrow;
obstacle_arrow.header.frame_id = "base_footprint";
obstacle_arrow.header.stamp = now();
obstacle_arrow.type = visualization_msgs::msg::Marker::ARROW;
obstacle_arrow.action = visualization_msgs::msg::Marker::ADD;
obstacle_arrow.lifetime = rclcpp::Duration(1s);

geometry_msgs::msg::Point start;
start.x = 0.0;
start.y = 0.0;
start.z = 0.0;
geometry_msgs::msg::Point end;
end.x = x;
end.y = y;
end.z = z;
obstacle_arrow.points = {start, end};

obstacle_arrow.color.r = 1.0;
obstacle_arrow.color.g = 0.0;
obstacle_arrow.color.b = 0.0;
obstacle_arrow.color.a = 1.0;

obstacle_arrow.scale.x = 0.02;
obstacle_arrow.scale.y = 0.1;
obstacle_arrow.scale.z = 0.1;

In the reference document5 for visual markers is documented the meaning of every
field for every type of marker. In the case of an arrow, the points field will be filled
with the starting point (0, 0, 0) and the ending point corresponding to the detection,
both in base footprint. Do not forget to assign a color, especially the alpha, since
we will not see anything if we let it be 0, the default value.

4.3.3 Running the Basic Detector

We instantiate both in the same process to test our nodes, and we use a
SingleThreadedExecutor. That would be enough to spin both:

src/br2 tf2 detector/src/detector main.cpp

int main(int argc, char * argv[]) {
rclcpp::init(argc, argv);

auto obstacle_detector = std::make_shared<br2_tf2_detector::ObstacleDetectorNode>();
auto obstacle_monitor = std::make_shared<br2_tf2_detector::ObstacleMonitorNode>();

rclcpp::executors::SingleThreadedExecutor executor;
executor.add_node(obstacle_detector->get_node_base_interface());
executor.add_node(obstacle_monitor->get_node_base_interface());

executor.spin();

rclcpp::shutdown();
return 0;

}

Follow the next commands to test our nodes:
Terminal 1: The Tiago simulation

$ ros2 launch br2 tiago sim.launch.py world:=empty

5http://wiki.ros.org/rviz/DisplayTypes/Marker

with ROS2

http://wiki.ros.org

The TF Subsystem � 75

Terminal 2: Launch our nodes

$ ros2 launch br2 tf2 detector detector basic.launch.py

Terminal 3: Keyboard teleoperation

$ ros2 run teleop twist keyboard teleop twist keyboard --ros-args -r
cmd vel:=/key vel

Terminal 4: RViz2

$ ros2 run rviz2 rviz2 --ros-args -p use sim time:=true

In Gazebo, add an obstacle in front of the robot. Start watching in the terminal
the information about the detection. In Rviz2, change the fixed frame to odom. Add

visual marker. Also, add the TF Display if it is not added yet. Figure 4.6 shows the
TF to the obstacle and also the red arrow.

red arrow marker published to visualize the detection.

Do a quick exercise: with the teleoperator, move the robot forward and to the
side, so it no longer perceives the obstacle. Keep moving the robot and realize that
the information returned by lookupTransform is no longer correct. It continues to
indicate that the obstacle is ahead, although this is no longer true. What has hap-
pened? We probably wanted the arrow to point to the obstacle position, but now the
arrow travels fixed with the robot.

Let’s explain it with a diagram in Figure 4.7. As long as the robot perceives the
obstacle, the transform requested (pink arrow) is correct. It is a transform from the
robot’s laser to the obstacle. When we stop updating the transform (thick blue arrow)
because the obstacle is gone, the transform continues to exist. If we move the robot,
lookupTransform keeps returning the last valid transform: in front fo the robot. This
makes the visual marker wrong as well. The following section presents a strategy to
fix this undesirable situation.

a Markers display to RViz2 specifying the topic that we have created to publish the

Figure 4.6: Visualization in RViz2 of the TF corresponding to the detection, and the

76 � A Concise Introduction to Robot Programming

odom

base_footprint
base_laser_link

odom

detected_obstacle

detected_obstacle

base_footprint
base_laser_link

Published TF

Extternally managed TF

Requested TF

Robot movement

Figure 4.7: Diagram showing the problem when publishing TFs in the local frame.

4.4 IMPROVED DETECTOR

The solution is to publish the detection TF in a fixed frame that is not affected by
the robot’s movement, for example, odom (or map if your robot is navigating). If we do
it like this, when we require the transform base footprint → detected obstacle
(pink arrow), this transform will be calculated taking into account the movement of
the robot, collected in the transformation odom → base footprint. It is shown in
the diagram in Figure 4.8.

ObstacleDetectorImprovedNode is the modification of ObstacleDetectorNode
to implement this improvement. This new node operates with TFs, so at some point,
it consult the value of an existing TF. For this reason, in addition to having a
StaticTransformPublisher, it instantiates a TransformListener with its related
Buffer.

include/br2 tf2 detector/ObstacleMonitorNode.hpp

class ObstacleDetectorImprovedNode : public rclcpp::Node
{
...
private:
...
tf2::BufferCore tf_buffer_;
tf2_ros::TransformListener tf_listener_;

};

Let the implementation of this node. In this program, check the two data struc-
tures that are related but are not the same:

• geometry msgs::msg::TransformStamped is a message type, and is used to
post TFs, and is the returned result of lookupTransform.

with ROS2

When the robot moves, the TF no longer represents the right obstacle position.

The TF Subsystem � 77

odom

base_footprint
base_laser_link

odom

detected_obstacle

base_footprint
base_laser_link

detected_obstacle

Published TF

Extternally managed TF

Requested TF

Robot movement

Figure 4.8: Diagram showing how to correctly maintain the obstacle position, by
publishing the TF in a fixed frame. The calculated TF (thick blue arrow) takes into
account the robot displacement.

• tf2::Transform It is a data type of the TF2 library that allows to perform
operations.

• tf2::Stamped<tf2::Transform> is similar to the previous one, but with a
header that indicates a timestamp. It will be necessary to comply with the
types in the transformation functions.

• tf2::fromMsg/tf2::toMsg are transformation functions that allow transform-
ing from a message type to a TF2 type, and vice versa.

As a general tip, do not use message types inside the node to operate on them.
Apply this advice for TFs, images, point clouds, and more data type. Messages are
good for communicating nodes but very limited in functionality. If there is a li-
brary that offers a native type, use it, as it will be much more useful. Commonly,
there are functions to pass from message type to native type. In this case, we use
geometry msgs::msg::TransformStamped to send and receive TFs, but we use the
TF2 library to operate on them.

Considering the convention established previously, let’s see how we can carry
out the improvement. Our goal, as we saw before, is to create the TF odom2object
(object is the detected obstacle). The observation is represented as the transform
laser2object, so we have to find X in the following equation:

odom2object = X ∗ laser2object

By deduction from the rules that we stated above, X must be odom2laser, which is
a TF that can be requested from lookupTransform.

78 � A Concise Introduction to Robot Programming

include/br2 tf2 detector/ObstacleMonitorNode.hpp

double dist = msg->ranges[msg->ranges.size() / 2];

if (!std::isinf(dist)) {
tf2::Transform laser2object;
laser2object.setOrigin(tf2::Vector3(dist, 0.0, 0.0));
laser2object.setRotation(tf2::Quaternion(0.0, 0.0, 0.0, 1.0));

geometry_msgs::msg::TransformStamped odom2laser_msg;
tf2::Stamped<tf2::Transform> odom2laser;
try {
odom2laser_msg = tf_buffer_.lookupTransform(
"odom", "base_laser_link", msg->header.stamp, rclcpp::Duration(200ms));

tf2::fromMsg(odom2laser_msg, odom2laser);
} catch (tf2::TransformException & ex) {
RCLCPP_WARN(get_logger(), "Obstacle transform not found: %s", ex.what());
return;

}

tf2::Transform odom2object = odom2laser * laser2object;

geometry_msgs::msg::TransformStamped odom2object_msg;
odom2object_msg.transform = tf2::toMsg(odom2object);

odom2object_msg.header.stamp = msg->header.stamp;
odom2object_msg.header.frame_id = "odom";
odom2object_msg.child_frame_id = "detected_obstacle";

tf_broadcaster_->sendTransform(odom2object_msg);
}

• laser2object stores the perception to the detected object. It is just a trans-
lation in the X-axis corresponding to the distance to the obstacle.

• To get odom2laser, we need to use query the TF subsystem with
lookupTransform, transforming the resulting transform message to the needed
type to operate with transforms.

• At this point, we have everything to calculate odom2object, this is, the obstacle
position with respect to the fixed frame odom.

• Finally, we compound the output message and publish to the TF subsystem.

It is not necessary to make any changes to the ObstacleMonitorNode as
lookupTransform will calculate the TF base footprint → obstacle since the TF
system knows the TFs odom → base footprint and odom → obstacle.

4.4.1 Running the Improved Detector

The process of executing the nodes is similar to the basic case. In this case, the main
program and a launcher is similar to the one in the basic case, but with the new
improved node, so we will skip showing it here. Let’s follow similar commands to
execute it:
Terminal 1: The Tiago simulation

$ ros2 launch br2 tiago sim.launch.py world:=empty

Terminal 2: Launch our nodes

$ ros2 launch br2 tf2 detector detector improved.launch.py

with ROS2

The TF Subsystem � 79

Terminal 3: Keyboard teleoperation

$ ros2 run teleop twist keyboard teleop twist keyboard --ros-args -r
cmd vel:=/key vel

Terminal 4: RViz2

$ ros2 run rviz2 rviz2 --ros-args -p use sim time:=true

Add the obstacle in Gazebo so the robot can detect it. Watch the console output
and the visual marker in RViz2. Move the robot so the obstacle is not detected, and
see how the marker and the output are correct now. The displacement, coded as the
transform odom → base footprint is used to update the information correctly.

PROPOSED EXERCISES:

1. Make a node that shows every second how much the robot has moved. You can
do this by saving (odom→ base footprint)t, and subtracting it from (odom→
base footprint)t+1

2. In ObstacleDetectorNode, change the arrow’s color depending on the distance
to the obstacle: green is far, and red is near.

3. In ObstacleDetectorNode, show in the terminal the obstacle’s position in the
odom frame, in base footprint, and head 2 link.

https://taylorandfrancis.com

C H A P T E R 5

Reactive Behaviors

REACTIVE behaviors tightly couples perception to action without the use of in-
tervening abstract representation. As Brooks demonstrated in his Subsumption

Architectures[1], relatively complex behaviors can be created with simple reactive
behaviors that are activated or inhibited by higher layers.

We will not discuss the development of sumbsumption architectures in this
chapter. By the way, the reader can refer to the Cascade Lifecycle1 package and
rqt cascade hfsm2, which provide some building blocks to build subsumption archi-
tectures. The objective of this chapter is to show a couple of reactive behaviors that
use different resources to advance the knowledge of ROS2.

This chapter will first look at a simple local navigation algorithm, Virtual Force
Field (VFF), that uses the laser to avoid obstacles. This example will establish some
knowledge about visual markers and introduce some test-driven development method-
ology.

Second, we will see reactive tracking behavior based on information from the
camera. We will see how images are processed and how the joints of a robot are
controlled. In addition, we will see an advantageous type of node called Lifecycle
Node.

5.1 AVOIDING OBSTACLES WITH VFF

This section will show how to implement a simple reactive behavior that makes the
Tiago robot move forward, avoiding obstacles using a simple VFF algorithm. This
simple algorithm is based on using three 2D vectors to calculate the control speed:

• Attractive vector: This vector always points forward since the robot wants
to move in a straight line in the absence of obstacles.

• Repulsive vector: This vector is calculated from the laser sensor readings. In
our basic version, the obstacle closest to the robot produces a repulsion vector,
inversely proportional to its distance.

1https://github.com/fmrico/cascade lifecycle
2https://github.com/fmrico/rqt cascade hfsm

DOI: 10.1201/9781003289623-5 81

https://github.com
https://github.com
https://doi.org/10.1201/9781003289623-5

82 � A Concise Introduction to Robot Programming

• Result vector: This vector is the sum of the two previous vectors and will cal-
culate the control speed. Linear speed depends on the resulting vector module,
and the angle to turn depends on the resulting vector angle.

Figure 5.1 shows examples of these vectors depending on the position of the
obstacles.

Figure 5.1: Examples of VFF vectors produced by the same obstacle. Blue vector is
attractive, red vector is repulsive, and green vector is the resulting vector.

5.1.1 The Computation Graph

First, see what the computational graph of this problem looks like. As shown in
Figure 5.2, we have a single node within a process, with the following elements and
characteristics:

• The node subscribes to a message topic with the perception information and
publishes it to a speed message topic. These will be the main input and outputs.
As discussed in the previous chapter, we will use generic names for these topics,
which will be remapped at deployment.

• It is crucial to have enough information to determine why a robot behaves in
a certain way. ROS2 offers many debugging tools. Using /rosout is a good
alternative. It is also handy to use the LEDs equipped by a robot. With an
LED that could change color, we could already color-code the robot’s state or
perception. At a glance, we could have much information about why the robot
makes its decisions.
In this case, in addition to the input and output topics above, we have added
the debugging topic /vff debug, that publish Visual Markers to visualize the

with ROS2

Reactive Behaviors � 83

/nav_vel
geometry_msgs/msg/Twist

/avoidance_vff

/output_vel
geometry_msgs/msg/Twist

tiago_nodes

/scan_raw

sensor_msgs/msg/LaserScan

/input_scan
sensor_msgs/msg/LaserScan

20 Hz

/vff_debug
visualization_msgs/msg/MarkerArray

Figure 5.2: Computation Graph for obstacle avoidance.

different vectors of VFF. The color vectors in Figure 5.1 are visual markers
published by the node and visualized in RViz2.

• In this case, we will choose an iterative execution controlled internally by the
node using a timer, to run the control logic at 20 Hz.

5.1.2 Package Structure

See that the organization the package, in the next box, is already standard in our
packages: Each node with its declaration and its different definition in its .hpp and
its .cpp, and the main program that will instantiate it. We have a launch directory
with a launcher to easily execute our project. Notice that we have now added a tests
directory in which we will have our files with the tests, as we will explain later.

Package br2 vff avoidance

br2_vff_avoidance
CMakeLists.txt
include

br2_vff_avoidance
AvoidanceNode.hpp

launch
avoidance_vff.launch.py

package.xml
src

avoidance_vff_main.cpp
br2_vff_avoidance

AvoidanceNode.cpp
tests

CMakeLists.txt
vff_test.cpp

84 � A Concise Introduction to Robot Programming

5.1.3 Control Logic

The AvoidanceNode implements the VFF algorithm to generate the control com-
mands based on the laser readings. The main elements are similar to the previous
examples:

• A subscriber for the laser readings, whose function will be to update the last
reading in last scan .

• A publisher for speeds.

• A get vff function for calculating the three vectors on which the VFF al-
gorithm is based, given a reading from the laser. We declare a new type
VFFVectors to pack them.

• As this node executes iteratively, we use a timer and use the method
control cycle as a callback.

include/br2 vff avoidance/AvoidanceNode.hpp

struct VFFVectors
{

std::vector<float> attractive;
std::vector<float> repulsive;
std::vector<float> result;

};

class AvoidanceNode : public rclcpp::Node
{
public:

AvoidanceNode();

void scan_callback(sensor_msgs::msg::LaserScan::UniquePtr msg);
void control_cycle();

protected:
VFFVectors get_vff(const sensor_msgs::msg::LaserScan & scan);

private:
rclcpp::Publisher<geometry_msgs::msg::Twist>::SharedPtr vel_pub_;
rclcpp::Subscription<sensor_msgs::msg::LaserScan>::SharedPtr scan_sub_;
rclcpp::TimerBase::SharedPtr timer_;

sensor_msgs::msg::LaserScan::UniquePtr last_scan_;
};

In the control cycle, initially check if the laser has new data. If not, or if this data
is old (if we have not received information from the laser in the last second), do not
generate control commands. The robot should stop if the robot driver is correctly
implemented and does not move when it stops receiving commands. On the contrary
(not our case), you should send speeds with all fields to 0 to stop the robot.

Once the resulting vector has been calculated, its transformation at speeds is
direct by calculating modulus and angle. It is convenient to control that the speed
ranges are in safe ranges with std::clamp, as can be seen in the following code:

with ROS2

Reactive Behaviors � 85

src/br2 vff avoidance/AvoidanceNode.cpp

void
AvoidanceNode::scan_callback(sensor_msgs::msg::LaserScan::UniquePtr msg)
{

last_scan_ = std::move(msg);
}

void
AvoidanceNode::control_cycle()
{

// Skip cycle if no valid recent scan available
if (last_scan_ == nullptr || (now() - last_scan_->header.stamp) > 1s) {
return;

}

// Get VFF vectors
const VFFVectors & vff = get_vff(*last_scan_);

// Use result vector to calculate output speed
const auto & v = vff.result;
double angle = atan2(v[1], v[0]);
double module = sqrt(v[0] * v[0] + v[1] * v[1]);

// Create ouput message, controlling speed limits
geometry_msgs::msg::Twist vel;
vel.linear.x = std::clamp(module, 0.0, 0.3); // linear vel to [0.0, 0.3] m/s
vel.angular.z = std::clamp(angle, -0.5, 0.5); // rotation vel to [-0.5, 0.5] rad/s

vel_pub_->publish(vel);
}

5.1.4 Calculation of the VFF Vectors

The objective of the function get vff is to obtain the three vectors: attractive, re-
pulsive, and resulting:
src/br2 vff avoidance/AvoidanceNode.cpp

VFFVectors
AvoidanceNode::get_vff(const sensor_msgs::msg::LaserScan & scan)
{

// This is the obstacle radious in which an obstacle affects the robot
const float OBSTACLE_DISTANCE = 1.0;

// Init vectors
VFFVectors vff_vector;
vff_vector.attractive = {OBSTACLE_DISTANCE, 0.0}; // Robot wants to go forward
vff_vector.repulsive = {0.0, 0.0};
vff_vector.result = {1.0, 0.0};

// Get the index of nearest obstacle
int min_idx = std::min_element(scan.ranges.begin(), scan.ranges.end())
- scan.ranges.begin();

// Get the distance to nearest obstacle
float distance_min = scan.ranges[min_idx];

// If the obstacle is in the area that affects the robot, calculate repulsive vector
if (distance_min < OBSTACLE_DISTANCE) {
float angle = scan.angle_min + scan.angle_increment * min_idx;

float oposite_angle = angle + M_PI;
// The module of the vector is inverse to the distance to the obstacle
float complementary_dist = OBSTACLE_DISTANCE - distance_min;

// Get cartesian (x, y) components from polar (angle, distance)
vff_vector.repulsive[0] = cos(oposite_angle) * complementary_dist;
vff_vector.repulsive[1] = sin(oposite_angle) * complementary_dist;

}

86 � A Concise Introduction to Robot Programming

src/br2 vff avoidance/AvoidanceNode.cpp

// Calculate resulting vector adding attractive and repulsive vectors
vff_vector.result[0] = (vff_vector.repulsive[0] + vff_vector.attractive[0]);
vff_vector.result[1] = (vff_vector.repulsive[1] + vff_vector.attractive[1]);

return vff_vector;
}

• The attractive vector will always be (1, 0), since the robot will always try to
move forward. Initialize the rest of the vectors assuming there are no nearby
obstacles.

• The repulsive vector is calculated from the lower laser reading. By calculating
min idx as the index of the vector with a smaller value, we are able to get the
distance (the value in the ranges vector) and the angle (from angle min, the
angle increment and the min idx).

• The margnitude of the repulsive vector has to be inversely proportional to the
distance to the obstacle. Closer obstacles have to generate more repulse than
those close.

• The angle of the repulsive vector must be in the opposite direction to the angle
of the detected obstacle, so add π to it.

• After calculating the repulsive vector’s cartesian coordinates, we add it with
the attractive vector to obtain its resultant.

5.1.5 Debugging with Visual Markers

In the previous chapter we used visual markers to visually debug the robot’s behav-
ior. The arrows in Figure 5.1 are visual markers generated by AvoidanceNode for de-
bugging. The difference is using visualization msgs::msg::MarkerArray instead
of visualization msgs::msg::Marker. Basically, a visualization msgs::msg::
MarkerArray contains a std::vector of visualization msgs::msg::Marker in its
field markers. Let’s see how the message that will be published as debugging infor-
mation is composed. For details of these messages check the message definitions, and
the reference page3:
$ ros2 interface show visualization msgs/msg/MarkerArray

Marker[] markers

$ ros2 interface show visualization msgs/msg/Marker

The AvoidanceNode header contains what you need to compose and publish the
visual markers. We have a publisher of visualization msgs::msg::MarkerArray
and two functions that will help us to compose the vectors. get debug vff returns
the complete message formed by the three arrows that represent the three vectors.

3http://wiki.ros.org/rviz/DisplayTypes/Marker

with ROS2

http://wiki.ros.org

Reactive Behaviors � 87

To avoid repeating code in this function, make marker creates a marker with the
specified color as the input parameter.
include/br2 vff avoidance/AvoidanceNode.hpp

typedef enum {RED, GREEN, BLUE, NUM_COLORS} VFFColor;

class AvoidanceNode : public rclcpp::Node
{
public:

AvoidanceNode();

protected:
visualization_msgs::msg::MarkerArray get_debug_vff(const VFFVectors & vff_vectors);
visualization_msgs::msg::Marker make_marker(
const std::vector<float> & vector, VFFColor vff_color);

private:
rclcpp::Publisher<visualization_msgs::msg::MarkerArray>::SharedPtr vff_debug_pub_;

};

The markers are published in control cycle, as long as there is a subscriber
interested in this information, which, in this case, will be RViz2.

void
AvoidanceNode::control_cycle()
{

// Get VFF vectors
const VFFVectors & vff = get_vff(*last_scan_);

// Produce debug information, if any interested
if (vff_debug_pub_->get_subscription_count() > 0) {
vff_debug_pub_->publish(get_debug_vff(vff));

}
}

For each of the vectors, create a visualization msgs::msg::Marker with a dif-
ferent color. base fooprint is the frame that is on the ground, in the center of the
robot, facing forward. So, the arrow’s origin is (0, 0) in this frame, and the arrow’s
end is what each vector indicates. Each vector must have a different id since a marker
will replace another with the same id in RViz2.

visualization_msgs::msg::MarkerArray
AvoidanceNode::get_debug_vff(const VFFVectors & vff_vectors)
{
visualization_msgs::msg::MarkerArray marker_array;

marker_array.markers.push_back(make_marker(vff_vectors.attractive, BLUE));
marker_array.markers.push_back(make_marker(vff_vectors.repulsive, RED));
marker_array.markers.push_back(make_marker(vff_vectors.result, GREEN));

return marker_array;
}

visualization_msgs::msg::Marker
AvoidanceNode::make_marker(const std::vector<float> & vector, VFFColor vff_color)
{

visualization_msgs::msg::Marker marker;

marker.header.frame_id = "base_footprint";
marker.header.stamp = now();
marker.type = visualization_msgs::msg::Marker::ARROW;
marker.id = visualization_msgs::msg::Marker::ADD;

geometry_msgs::msg::Point start;
start.x = 0.0;

88 � A Concise Introduction to Robot Programming

start.y = 0.0;
geometry_msgs::msg::Point end;
start.x = vector[0];
start.y = vector[1];
marker.points = {end, start};

marker.scale.x = 0.05;
marker.scale.y = 0.1;

switch (vff_color) {
case RED:
marker.id = 0;
marker.color.r = 1.0;
break;

case GREEN:
marker.id = 1;
marker.color.g = 1.0;
break;

case BLUE:
marker.id = 2;
marker.color.b = 1.0;
break;

}
marker.color.a = 1.0;

return marker;
}

5.1.6 Running the AvoidanceNode

The main program that runs this node should now be pretty trivial to the reader.
Just instantiate the node and call with it to spin:
src/avoidance vff main.cpp

int main(int argc, char * argv[])
{

rclcpp::init(argc, argv);

auto avoidance_node = std::make_shared<br2_reactive_behaviors::AvoidanceNode>();
rclcpp::spin(avoidance_node);

rclcpp::shutdown();

return 0;
}

To run this node, we must first run the simulator:
$ ros2 launch mr2 tiago sim.launch.py

Next, execute the node setting remaps and parameters:
$ ros2 run br2 vff avoidance avoidance vff --ros-args -r input scan:=/scan raw -r
output vel:=/key vel -p use sim time:=true

Or using the launcher:
$ ros2 launch br2 vff avoidance avoidance vff.launch.py

If everything goes well, the robot starts to move forward. Use the buttons to
move objects in the simulator to put obstacles to the robot. Open RViz2 and add the
visualization of topic /vff debug of type visualization msgs::msg::MarkerArray,
as shown in Figure 5.3. See how the visual information of the node’s markers helps
us better understand what the robot is doing.

with ROS2

Reactive Behaviors � 89

Figure 5.3: Execution of avoidance behavior.

The code shown in the previous sections may contain calculation errors that can be
detected before running it on a real robot and even before running it on a simulator.
A very convenient strategy is, taking some (not all) concepts of test-driven develop-
ment, doing tests simultaneously as the code is developed. This strategy has several
advantages:

• Ensure that once a part of the software has been tested, other parts’ changes
do not negatively affect what has already been developed. The tests are incre-
mental. All tests are always passed, assessing the new functionality and the
validity of previously existing code, making development faster.

• The revision task is greatly simplified if the package receives contributions
from other developers. Activating a CI (Continous Integration) system in your
repository allows that each contribution has to compile correctly and pass all
the tests, both functional and stylish. In this way, the reviewer focuses on
verifying that the code does its job correctly.

• Many quality assurance procedures require the software to be tested. Saying “I
will do the tests when I finish” is a fallacy: You will not do them, or it will be a
tedious process that will not help you, so they are likely to be incomplete and
ineffective.

ROS2 provides many testing tools that we can use easily. Let’s start with the unit
tests. ROS2 uses GoogleTest4 to test C++ code. In order to use tests in the package,
include some packages in the package.xml:
package.xml

<test_depend>ament_lint_auto</test_depend>
<test_depend>ament_lint_common</test_depend>
<test_depend>ament_cmake_gtest</test_depend>

4https://github.com/google/googletest

5.1.7 Testing During Development

https://github.com

90 � A Concise Introduction to Robot Programming

The <test depend> tag contains those dependencies only needed to test the pack-
age. It is possible to compile a workspace, in this case only the package, excluding
the tests, so these packages will not be taken into account in the dependencies:
$ colcon build --symlink-install --packages-select br2 vff avoidance
--cmake-args -DBUILD TESTING=off

As shown in the package structure, there is a tests directory with a C++
file (vff test.cpp) that contains tests. To compile it, these sentences should be
in CMakeLists.txt:
CMakeLists.txt

if(BUILD_TESTING)
find_package(ament_lint_auto REQUIRED)
ament_lint_auto_find_test_dependencies()

set(ament_cmake_cpplint_FOUND TRUE)
ament_lint_auto_find_test_dependencies()

find_package(ament_cmake_gtest REQUIRED)
add_subdirectory(tests)

endif()

tests/CMakeLists.txt

ament_add_gtest(vff_test vff_test.cpp)
ament_target_dependencies(vff_test ${dependencies})
target_link_libraries(vff_test ${PROJECT_NAME})

Once introduced the testing infrastructure in a package, see how to do unit tests.
While developing the method AvoidanceNode::get vff it is possible to check that
it works correctly. Just create several synthetic sensor msgs::msg::LaserScan mes-
sages and then check that this function returns correct values in all cases. In this file,
it has been developed eight different cases. Let’s see some of them:
tests/vff test.cpp

sensor_msgs::msg::LaserScan get_scan_test_1(rclcpp::Time ts)
{

sensor_msgs::msg::LaserScan ret;
ret.header.stamp = ts;
ret.angle_min = -M_PI;
ret.angle_max = M_PI;
ret.angle_increment = 2.0 * M_PI / 16.0;
ret.ranges = std::vector<float>(16, std::numeric_limits<float>::infinity());

return ret;
}

sensor_msgs::msg::LaserScan get_scan_test_5(rclcpp::Time ts)
{

sensor_msgs::msg::LaserScan ret;
ret.header.stamp = ts;
ret.angle_min = -M_PI;
ret.angle_max = M_PI;
ret.angle_increment = 2.0 * M_PI / 16.0;
ret.ranges = std::vector<float>(16, 5.0);
ret.ranges[10] = 0.3;

return ret;
}

with ROS2

Reactive Behaviors � 91

Each function returns a sensor msgs::msg::LaserScan message as if it had been
generated by a laser with 16 different values, regularly distributed in the range [−π, π].
In get scan test 1 it simulates the case that no obstacles are detected in any case.
At get scan test 5 it simulates that there is an obstacle at position 10, which cor-
responds to angle −π + 10 ∗ 2π

16 = 0.785.
In order to access the method to be tested, since it is not public, it is convenient

to make it protected and implement a class to access these functions:
tests/vff test.cpp

class AvoidanceNodeTest : public br2_vff_avoidance::AvoidanceNode
{
public:

br2_vff_avoidance::VFFVectors
get_vff_test(const sensor_msgs::msg::LaserScan & scan)
{
return get_vff(scan);

}

visualization_msgs::msg::MarkerArray
get_debug_vff_test(const br2_vff_avoidance::VFFVectors & vff_vectors)
{
return get_debug_vff(vff_vectors);

}
};

It is possible to have all the needed tests in the same file. Each of them is defined
using the macro TEST(id, sub id), and inside, as if it were a function, write a pro-
gram whose objective is to test the functionality of the code. In the case of get vff,
these are the unitary tests:
tests/vff test.cpp

TEST(vff_tests, get_vff)
{

auto node_avoidance = AvoidanceNodeTest();

rclcpp::Time ts = node_avoidance.now();

auto res1 = node_avoidance.get_vff_test(get_scan_test_1(ts));
ASSERT_EQ(res1.attractive, std::vector<float>({1.0f, 0.0f}));
ASSERT_EQ(res1.repulsive, std::vector<float>({0.0f, 0.0f}));
ASSERT_EQ(res1.result, std::vector<float>({1.0f, 0.0f}));

auto res2 = node_avoidance.get_vff_test(get_scan_test_2(ts));
ASSERT_EQ(res2.attractive, std::vector<float>({1.0f, 0.0f}));
ASSERT_NEAR(res2.repulsive[0], 1.0f, 0.00001f);
ASSERT_NEAR(res2.repulsive[1], 0.0f, 0.00001f);
ASSERT_NEAR(res2.result[0], 2.0f, 0.00001f);
ASSERT_NEAR(res2.result[1], 0.0f, 0.00001f);

auto res5 = node_avoidance.get_vff_test(get_scan_test_5(ts));
ASSERT_EQ(res5.attractive, std::vector<float>({1.0f, 0.0f}));
ASSERT_LT(res5.repulsive[0], 0.0f);
ASSERT_LT(res5.repulsive[1], 0.0f);
ASSERT_GT(atan2(res5.repulsive[1], res5.repulsive[0]), -M_PI);
ASSERT_LT(atan2(res5.repulsive[1], res5.repulsive[0]), -M_PI_2);
ASSERT_LT(atan2(res5.result[1], res5.result[0]), 0.0);
ASSERT_GT(atan2(res5.result[1], res5.result[0]), -M_PI_2);

}

int main(int argc, char ** argv)
{

rclcpp::init(argc, argv);

testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();

}

92 � A Concise Introduction to Robot Programming

The ASSERT * macros check the expected values based on the input. ASSERT EQ
verifies that the two values are equal. When comparing floats, it is preferable to use
ASSERT NEAR, which checks that two values are equal with a specified margin in its
third parameter. ASSERT LT verifies that the first value is “Less Than” the second.
ASSERT GT verifies that the first value is “Greater Than” the second, and so on.

For example, case 5 (obstacle at angle 0.785) verifies that the coordinates of the
repulsive vector are negative, both its angle is in the range [−π,−π

2] (it is a vector
opposite to angle 0.785) and that the resulting vector is in the range [0,−π

2]. If this
is true, the algorithm is correct. Do these checks for each reading, with its expected
values, and pay attention to extreme and unexpected cases, such as test 1.

It is also possible to do integration tests. Since nodes are objects, instanti-
ate them and simulate their operation. For example, test the speeds published by
AvoidanceNode when receiving the test messages. Let’s see how to do it:
tests/vff test.cpp

TEST(vff_tests, ouput_vels)
{

auto node_avoidance = std::make_shared<AvoidanceNodeTest>();

// Create a testing node with a scan publisher and a speed subscriber
auto test_node = rclcpp::Node::make_shared("test_node");
auto scan_pub = test_node->create_publisher<sensor_msgs::msg::LaserScan>(
"input_scan", 100);

geometry_msgs::msg::Twist last_vel;
auto vel_sub = test_node->create_subscription<geometry_msgs::msg::Twist>(
"output_vel", 1, [&last_vel] (geometry_msgs::msg::Twist::SharedPtr msg) {
last_vel = *msg;

});

ASSERT_EQ(vel_sub->get_publisher_count(), 1);
ASSERT_EQ(scan_pub->get_subscription_count(), 1);

rclcpp::Rate rate(30);
rclcpp::executors::SingleThreadedExecutor executor;
executor.add_node(node_avoidance);
executor.add_node(test_node);

// Test for scan test #1
auto start = node_avoidance->now();
while (rclcpp::ok() && (node_avoidance->now() - start) < 1s) {
scan_pub->publish(get_scan_test_1(node_avoidance->now()));
executor.spin_some();
rate.sleep();

}
ASSERT_NEAR(last_vel.linear.x, 0.3f, 0.0001f);
ASSERT_NEAR(last_vel.angular.z, 0.0f, 0.0001f);

// Test for scan test #2
}

1. Create an AvoidanceNodeTest (AvoidanceNode is also possible) node to test
it.

2. Make a generic node called test node to create a laser scan publisher and a
speed subscriber.

3. When creating the speed subscriber, a lambda function has especified as a
callback. This lambda function accesses the last vel variable to update it
with the last message received in the topic output vel.

with ROS2

Reactive Behaviors � 93

4. Create an executor and add both nodes to it to execute them.

5. During a second post at 30 Hz on input scan a sensor reading corresponding
to the synthetic readings.

6. In the end, verify that the published speeds are correct.

To run just these gtest tests, do it by running the binary that is in the tests
directory of the package, in the build directory:
$ cd /bookros2 ws

$ build/br2 vff avoidance/tests/vff test

[==========] Running 2 tests from 1 test case.
[----------] Global test environment set-up.
[----------] 2 tests from vff tests
[RUN] vff tests.get vff
[OK] vff tests.get vff (18 ms)
[RUN] vff tests.ouput vels
[OK] vff tests.ouput vels (10152 ms)
[----------] 2 tests from vff tests (10170 ms total)

[----------] Global test environment tear-down
[==========] 2 tests from 1 test case ran. (10170 ms total)
[PASSED] 2 tests.

To run all the tests for this package, even the style ones, use colcon:
$ colcon test --packages-select br2 vff avoidance

If the test has finished with failures, go to check what has failed to the directory
log/latest test/br2 vff avoidance/stdout stderr.log. At the end of the file,
there is a summary of the failed tests. For example, this message at the end indicates
that tests 3, 4, 5, and 7 failed (errors were intentionally added for this explanation):
log/latest test/br2 vff avoidance/stdout stderr.log

56% tests passed, tests failed out of 9

Label Time Summary:
copyright = 0.37 sec*proc (1 test)
cppcheck = 0.44 sec*proc (1 test)
cpplint = 0.45 sec*proc (1 test)
flake8 = 0.53 sec*proc (1 test)
gtest = 10.22 sec*proc (1 test)
lint_cmake = 0.34 sec*proc (1 test)
linter = 3.88 sec*proc (8 tests)
pep257 = 0.38 sec*proc (1 test)
uncrustify = 0.38 sec*proc (1 test)
xmllint = 0.99 sec*proc (1 test)

Total Test time (real) = 14.11 sec

The following tests FAILED:
[3 - cpplint (Failed)]
[4 - flake8 (Failed)]
[5 - lint_cmake (Failed)]
[7 - uncrustify (Failed)]

Errors while running CTest

94 � A Concise Introduction to Robot Programming

Each line in this file begins with the section number corresponding to a test. Go,
for example, to sections 3, 4, and 7 to see some of these errors:
log/latest test/br2 vff avoidance/stdout stderr.log

3: br2_vff_avoidance/tests/vff_test.cpp:215: Add #include <memory> for
make_shared<> [build/include_what_you_use] [4]

3: br2_vff_avoidance/include/br2_vff_avoidance/AvoidanceNode.hpp:15: #ifndef header
guard has wrong style, please use: BR2_VFF_AVOIDANCE__AVOIDANCENODE_HPP_
[build/header_guard] [5]

4: ./launch/avoidance_vff.launch.py:34:3: E111 indentation is not a multiple of four
4: ld.add_action(vff_avoidance_cmd)
4: ˆ

7: --- src/br2_vff_avoidance/AvoidanceNode.cpp
7: +++ src/br2_vff_avoidance/AvoidanceNode.cpp.uncrustify
7: @@ -100,2 +100 @@
7: - if (distance_min < OBSTACLE_DISTANCE)
7: - {
7: + if (distance_min < OBSTACLE_DISTANCE) {
7: @@ -109 +108 @@
7: - vff_vector.repulsive[0] = cos(oposite_angle)*complementary_dist;
7: + vff_vector.repulsive[0] = cos(oposite_angle) * complementary_dist;
7:
7: Code style divergence in file 'tests/vff_test.cpp':

• The errors in Section 3 correspond to cpplint, a C++ linter. The first error
indicates that a header must be added since there are functions that are de-
clared in it. In the second, it indicates that the style of the header guard in
AvoidanceNode.hpp is incorrect, indicating which one should be used.

• The errors in section 4 correspond to flake8, a Python linter. This error indicates
that the launcher file uses an incorrect indentation since it should be space,
multiples of 4.

• The errors labeled with 7 correspond to uncrustify, another C++ linter. In
a format similar to the output of the diff command, it tells the difference
between the code that is written and the one that should be in good style. In this
case, it indicates that the start of an if block on line 100 of AvoidanceNode.cpp
should be on the same line as if. The second error indicates that there should
be spaces on both sides of an operator.

The first time facing solving style problems, it can seem like a daunting task
without much meaning. You would wonder why the style that it indicates is better
than yours. Indeed you have been using this style for years, and you are very proud
of how your source code looks like. You will not understand why you have to use two
spaces in C++ to indent, and not the tab, for example, or why open the blocks in
the same line of a while if you always opened in the next line.

The first reason is that it indicates a good style. Cpplint, for example, uses the
Google C++ Style Guide5, which is a widely accepted style guide adopted by most
software development companies.

5https://google.github.io/styleguide/cppguide.html

with ROS2

https://google.github.io

Reactive Behaviors � 95

The second is because you have to follow this style if you want to contribute to a
ROS2 project or repository. Rarely a repository that accepts contributions does not
have a continuous integration system that passes these tests. Imagine that you are
the one who maintains a project. You’ll want all of your code to have a consistent
style. It would be a nightmare to make your own style guide or discuss with each
contributor at every pull request style issues rather to focus on their contribution.
The worst discussion I can recall with a colleague was using tabs against spaces. It
is a discussion that will have no solution because it is like talking about religions.
Using a standard solves these problems.

Furthermore, the last reason is that it will make you a better programmer. Most
of the style rules have a practical reason. Over time, you will automatically apply the
style you have corrected so many times when passing the tests, and your code will
have a good style as you write it.

5.2 TRACKING OBJECTS

This section analyzes a project that contains other reactive behavior. In this case,
the behavior tracks the objects that match a specific color with the robot’s head.

There are several new concepts that are introduced in this project:

• Image analysis: So far, we have used a relatively simple sensor. Images provide
more complex perceptual information from which a lot of information can be
extracted. Remember that there is an essential part of Artificial Intelligence
that deals with Artificial Vision, and it is one of the primary sensors in robots.
We will show how to process these images with OpenCV, the reference library
in this area.

• Control at joint level: In the previous projects, the commands were speeds
sent to the robot. In this case, we will see how to command positions directly
to the joints of the robot’s neck.

• Lifecycle Nodes: ROS2 provides a particular type of Node called Lifecycle
Node. This node is very useful to control the life cycle, including its startup,
activation, and deactivation.

5.2.1 Perception and Actuation Models

This project uses the images from the robot’s camera as a source of information.
Whenever a node transmits an (non-compressed) image in ROS2 it uses the same
type of message: sensor msgs/msg/Image. All the drivers of all cameras supported
in ROS2 use it. See what the message format is:

96 � A Concise Introduction to Robot Programming

$ ros2 interface show sensor msgs/msg/image

This message contains an uncompressed image
This message contains an uncompressed

std msgs/Header header # Header timestamp should be acquisition time of image
Header frame id should be optical frame of camera
origin of frame should be optical center of camera
+x should point to the right in the image
+y should point down in the image
+z should point into to plane of the image
If the frame id and the frame id of the CameraInfo
message associated with the image conflict
the behavior is undefined

uint32 height # image height, that is, number of rows
uint32 width # image width, that is, number of columns

The legal values for encoding are in file src/image encodings.cpp
If you want to standardize a new string format, join
ros-users@lists.ros.org and send an email proposing a new encoding.

string encoding # Encoding of pixels -- channel meaning, ordering, size
from the list in include/sensor msgs/image encodings.hpp

uint8 is bigendian # is this data bigendian?
uint32 step # Full row length in bytes

uint8[] data # actual matrix data, size is (step * rows)

Camera drivers often publish (only once, in transient local QoS) information
about camera parameters as a sensor msgs/msg/CameraInfo message, which in-
cludes intrinsic and distortion parameters, projection matrix, and more. With this
information, we can work with stereo images, for example, or we can combine this in-
formation with a depth image to reconstruct the 3D scene. The process of calibrating
a camera6 has to do with calculating the values that are published in this message. A
good exercise is reading this message format, although it is not used in this chapter.

Although it is possible to use a simple sensor msgs/msg/Image publisher or
subscriber, it is usual when working with images using different transport strate-
gies (compression, streaming codecs ...) using specific publishers/subscribers. The
developer uses them and ignores how the images are transported – he just sees an
sensor msgs/msg/Image. Check available transport plugins typing:

6http://wiki.ros.org/image pipeline

with ROS2

mailto:ros-users@lists.ros.org
http://wiki.ros.org

Reactive Behaviors � 97

$ ros2 run image transport list transports

Declared transports:
image transport/compressed
image transport/compressedDepth
image transport/raw
image transport/theora

Details:

...

Run the simulated Tiago and check the topics to see that there is more than one
topic for 2D images:
$ ros2 topic list

/head front camera/image raw/compressed
/head front camera/image raw/compressedDepth
/head front camera/image raw/theora
/head front camera/rgb/camera info

/head front camera/rgb/image raw

The developer has not created all these topics one by one, but has used an
image transport::Publisher that has generated all these topics taking into ac-
count the available transport plugins. In the same way, to obtain the images, it is
convinient to use a image transport::Subscriber, as we will see below. Using com-
pressed images may be good if the image is big or the network reliability is not the
best. The trade-off is a bit more CPU load on the source and destination.

The image message format is for transporting images, not for processing them.
It is not common to work directly with images as raw byte sequences. The usual
way is to use some image processing library, and the most widely used is OpenCV7.
OpenCV provides several hundreds of computer vision algorithms.

The main data type that OpenCV uses to work with images is cv::Mat. ROS2
provides tools to transform sensor msgs/msg/Image into cv::Mat, and vice versa:

void image_callback(const sensor_msgs::msg::Image::ConstSharedPtr & msg)
{

cv_bridge::CvImagePtr cv_ptr;
cv_ptr = cv_bridge::toCvCopy(msg, sensor_msgs::image_encodings::BGR8);
cv::Mat & image_src = cv_ptr->image;

sensor_msgs::msg::Image image_out = *cv_ptr->toImageMsg();
}

In the perception model of our project, the segmentation of an image will be done
by color. It is convenient to work in HSV8, instead of RGB, which is the encoding in
which we receive the messages. HSV encoding represents a pixel in color with three
components: Hue, Saturation, and Value. Working in HSV allows us to establish color
ranges more robustly to lighting changes since this is what the V component is mainly

7https://docs.opencv.org/5.x/d1/dfb/intro.html
8https://en.wikipedia.org/wiki/HSL and HSV

https://docs.opencv.org/5.x/d1/dfb/intro.html
https://en.wikipedia.org

98 � A Concise Introduction to Robot Programming

responsible for, and if the range is wider, we can continue to detect the same color
even if the illumination changes.

The following code transforms a cv::mat to HSV and calculates an image mask
with the pixels that match the color of the furniture in the default simulated world
of Tiago in Gazebo, as shown in Figure 5.4:

cv::Mat img_hsv;
cv::cvtColor(cv_ptr->image, img_hsv, cv::COLOR_BGR2HSV);

cv::Mat1b filtered;
cv::inRange(img_hsv, cv::Scalar(15, 50, 20), cv::Scalar(20, 200, 200), filtered);

Figure 5.4: Object detection by color using an HSV range filter.

Finally, the output of the processing of an image in this project is a message of
type vision msgs/msg/Detection2D (examine the fields in this message for yourself),
from which we use its header, bbox, and source img field. It is not required to use
all the fields. The original image is included to have the image’s dimensions where
the detection is made, whose importance will be shown below.

with ROS2

Reactive Behaviors � 99

The action model is a position control of the robot head. The robot has two
joints that control the position the camera is pointing at: head 1 joint for horizontal
control (pan) and head 2 joint for vertical control (tilt).

In ROS2 the control of the joints is done by the framework ros2 control9.
The developers of the simulated Tiago robot have used a trajectory controller
(joint trajectory controller) for the two joints of the robot’s neck. Through two top-
ics (as shown in Figure 5.5), it allows reading the state of the joints, and sending
commands in the form of a set of waypoints (Figure 5.6) to be reached at specific
time instants. Waypoints consist of positions and optionally velocities, accelerations,
and effort, as well as a time from start to be applied.

/head_controller

/head_controller/joint_trajectory

trajectory_msgs/msg/JointTrajectory

/head_controller/state

control_msgs/msg/JointTrajectoryControllerState

Figure 5.5: Head controller topics.

Header

jo
in
t_
na

m
es

[]

points[]

po
s

ve
l

ac
c

ef
fo

po
s

ve
l

ac
c

ef
fo

tim
e_

fro
m

st

ar
t po

s
ve

l
ac

c
ef

fo

po
s

ve
l

ac
c

ef
fo

tim
e_

fro
m

st

ar
t po

s
ve

l
ac

c
ef

fo

po
s

ve
l

ac
c

ef
fo

tim
e_

fro
m

st

ar
t

WP 0 WP 1 WP 2

head_1_joint

head_2_joint

trajectory_msgs/msg/JointTrajectory

Figure 5.6: trajectory msgs/msg/JointTrajectory message format.

Obtaining the 3D position of the object to the robot and calculating the position
of the neck joints to center it in the image would probably be an adequate solution
in a real active vision system, but quite complex at the moment. We will simply
implement a control in the image domain.

The node that controls the robot’s neck receives two values (called error) that
indicate the difference between the current position and the desired position for pan
and tilt, respectively. If a value is 0, it indicates that it is in the desired position. If
it is less than 0, the joint has to move in one direction, and greater than zero has to
move in the other direction. The range of values is [−1,+1] for each joint, as shown
in Figure 5.7. As this node performs iterative control and neck movements can be
very fast, a PID controller will control the position to which each joint is commanded
to correct its speed.

9http://control.ros.org/index.html

http://control.ros.org

100 � A Concise Introduction to Robot Programming

(0, 0)(-1, 0) (1, 0)

(0, -1)

(0, 1)

error_pan

error_tilt
pan

tilt

E

Figure 5.7: Diagram for pan/tilt control. E indicates the desired position. error *
indicates the difference between the current position and the desired pan/tilt position.

5.2.2 Computation Graph

The Computation Graph of this project (Figure 5.8) shows how this problem is
divided into three nodes within the same process. The reason is that each node
(ObjectDetector and HeadController) can be executed separately, and be reused
in other problems (we will do it in next chapters). Each one has been designed in
this way to be reusable, with inputs and outputs that try to be generic, not strongly
coupled to this problem.

In this Computation Graph, the HeadController has been represented differently
from the rest of the nodes. This node will be implemented as LifeCycle Node, which
we will explain in the Section 5.2.3. For now, we will say that it is like a standard
node but that it can be activated and deactivated during its operation.

The HeadController receives a pan/tilt speed, each in the range [−1, 1]. Note
that since there is no standard ROS2 message that fits our problem (we could have
used geometry msgs/msg/Pose2D, ignoring the field theta), we have created a custom
br2 tracking msgs/msg/PanTiltCommand message containing the needed informa-
tion. We will see below how we have done to create our custom message.

The ObjectDetector publishes, for each image, the result of the detection of the
furniture in the image. It will return the coordinate, in pixels, of the detection, as
well as the bounding box of the object.

The output of the ObjectDetector does not completely match the input of the
HeadController. ObjectDetector publishes its output in pixels. In this case, the
image resolution is 640× 480 so its range is [0, 640] for the horizontal X component
and [0, 480] for the vertical Y component. Therefore, we create a node, tracker, with
a straightforward task, which is to adapt the output of the ObjectDetector to the
input of the HeadController, to make a control in the image, moving the head so
that the detected object is always in the center of the image.

with ROS2

Reactive Behaviors � 101

/head_controller/joint_trajectory /head_controller/state /head_front_camera/rgb/image_raw

joint_command

trajectory_msgs/msg/JointTrajectory

joint_state

control_msgs/msg/JointTrajectoryControllerState

input_image

sensor_msgs/msg/Image

tracker ObjectDetectorcommand detection

br2_tracking_msgs/msg/PanTiltCommand vision_msgs/msg/Detection2D

10 Hz

HeadController

Figure 5.8: Computation Graph for Object Tracking project.

5.2.3 Lifecycle Nodes

So far, we have seen that the nodes in ROS2 are objects of class Node that inherit
methods that allow us to communicate with other nodes or obtain information. In
ROS2, there is a type of node, the LifeCycleNode, whose lifetime is defined using
states and the transitions between them:

• When a LifeCycleNode is created, it is in Unconfigured state, and it must
trigger the configure transition to enter the Inactive state.

• A LifeCycleNode is working when it is in the Active state, from which it can
transition from the Inactive state through the activate transition. It is also
possible to transition from the Active to Inactive state through the deactivate
transition.

• The necessary tasks and checks can be performed at each transition. Even a
transition can fail and not transit if the conditions specified in the code of its
transition are not met.

• In case of error, the node can go to Finalized state.

• When a node has completed its task, it can transition to Finalized.

See a diagram of these states and transitions in Figure 5.9.
Lifecycle nodes provide a node execution model that allows:

• Make them predictable. For example, in ROS2, the parameters should be read
only in the configuring transition.

• When there are multiple Nodes, we can coordinate their startup. We can define
that specific nodes are not activated until they are configured. We also can
specify some orders in the startup.

• Programmatically, it allows having another option beyond the constructor to
start its components. Remember that in C++, a Node is not completely built
until its constructor has finished. This usually brings problems if we require a
shared ptr to this.

102 � A Concise Introduction to Robot Programming

Unconfigured

Inactive

Active

on_configure()on_cleanup()

on_activate()on_deactivate()

Finalized

on_error() on_shutdown()

configure

cleanup

activate

shutdown

shutdown

shutdown

deactivate

State

Requested
transition

on success

callback() Transition
Callback

on failure

Figure 5.9: Diagram of states and transitions in Lifecycle Nodes.

An example could be a sensor driver. If the physical device cannot be accessed,
it cannot transit to the Inactive state. In addition, all the initial setup time of the
device would be set to this state so that its activation would be immediate. Another
example is the startup of a robot driver. It would not boot until all its sensor/actuator
nodes are in the Active state.

5.2.4 Creating Custom Messages

We have previously specified that the input of node HeadController is of type
br2 tracking msgs/msg/PanTiltCommand because there was no type of message that
conformed to what we needed. One golden rule in ROS2 is not to create a message
if there is already a standard available, as we can benefit from available tools for
this message. In this case, no standard will serve our purposes. In addition, it is the
perfect excuse to show how to create custom messages.

First of all, when creating new messages (new interfaces, in general), even in
the context of a specific package, it is highly recommended that you make a separate
package, ending in msgs. Tools may exist in the future that needs to receive messages
of this new type, but we do not necessarily have to depend on the packages for which
they were created.

Next we show the structure of package br2 tracking msgs that contains only
the definition of message br2 tracking msgs/msg/PanTiltCommand:

Package br2 tracking msgs

br2_tracking_msgs/
CMakeLists.txt
msg

PanTiltCommand.msg
package.xml

with ROS2

Reactive Behaviors � 103

Packages that contain interfaces have, besides a package.xml and a
CMakeLists.txt, a directory for each type of interface (message, service, or action)
that is being defined. In our case, it is a message, so we will have a msg directory
that contains a .msg file for each new message to define. Let’s see the the definition
of the PanTiltCommand message:
msg/PanTiltCommand.msg

float64 pan
float64 tilt

The important part in the CMakeLists.txt is the rosidl generate interfaces
statement, in which we specify where the interface definitions are:
CMakeLists.txt

find_package(ament_cmake REQUIRED)
find_package(builtin_interfaces REQUIRED)
find_package(rosidl_default_generators REQUIRED)

rosidl_generate_interfaces(${PROJECT_NAME}
"msg/PanTiltCommand.msg"
DEPENDENCIES builtin_interfaces

)

ament_export_dependencies(rosidl_default_runtime)
ament_package()

5.2.5 Tracking Implementation

The structure of the br2 tracking package, shown below, follows the guidelines
already recommended above.

Package br2 vff avoidance

br2_tracking
CMakeLists.txt
config

detector.yaml
include

br2_tracking
HeadController.hpp
ObjectDetector.hpp
PIDController.hpp

launch
tracking.launch.py

package.xml
src

br2_tracking
HeadController.cpp
ObjectDetector.cpp
PIDController.cpp

object_tracker_main.cpp
tests

CMakeLists.txt
pid_test.cpp

• The HeadController and ObjectDetector nodes will be compiled as libraries
independently of the main program object tracker main.cpp. The latter will

104 � A Concise Introduction to Robot Programming

be in src, while the nodes will have their headers in include/br2 tracking
and their definitions in src/br2 tracking.

• The library also includes a class to use PID controllers, used in
HeadController.

• A launcher will launch the executable with the necessary parameters and
remaps.

• There is a config directory that contains a YAML file with the HSV range
that ObjectDetector will use to detect in the image the furniture of Tiago’s
default stage in Gazebo.

• The tests directory includes tests for the PID controller.

The reader will have noticed that there is no file for a tracker node in this struc-
ture. This node, being so simple, has been implemented in object tracker main.cpp
as follows:
src/object tracker main.cpp

auto node_detector = std::make_shared<br2_tracking::ObjectDetector>();
auto node_head_controller = std::make_shared<br2_tracking::HeadController>();
auto node_tracker = rclcpp::Node::make_shared("tracker");

auto command_pub = node_tracker->create_publisher<br2_tracking_msgs::msg::PanTiltCommand>(
"/command", 100);

auto detection_sub = node_tracker->create_subscription<vision_msgs::msg::Detection2D>(
"/detection", rclcpp::SensorDataQoS(),
[command_pub](vision_msgs::msg::Detection2D::SharedPtr msg) {
br2_tracking_msgs::msg::PanTiltCommand command;
command.pan = (msg->bbox.center.x / msg->source_img.width) * 2.0 - 1.0;
command.tilt = (msg->bbox.center.y / msg->source_img.height) * 2.0 - 1.0;
command_pub->publish(command);

});

rclcpp::executors::SingleThreadedExecutor executor;
executor.add_node(node_detector);
executor.add_node(node_head_controller->get_node_base_interface());
executor.add_node(node_tracker);

node tracker is a generic ROS2 node, from which we construct a publisher to the
/command topic, and a subscriber to the /detection. We have specified the subscriber
callback as a lambda function that takes from the input message the position in pixels
of the detected object, together with the size of the image, and generates the inputs
for node HeadController, following the scheme already shown in Figure 5.7.

Notice that when adding the node node head controller to executor, we have
used the get node base interface method. This is because it is a LifeCycleNode,
as we introduced earlier, and add node does not yet support adding this type of node
directly. Fortunately, we can do it through a basic interface supported by LifeCy-
cleNode and regular nodes using this method.

The ObjectDetector will be a rclcpp::Node, with an image subscriber (using
image transport) and a 2D detection message publisher. There are two member
variables that will be used in the detection process.

with ROS2

Reactive Behaviors � 105

include/br2 tracking/ObjectDetector.hpp

class ObjectDetector : public rclcpp::Node
{
public:

ObjectDetector();

void image_callback(const sensor_msgs::msg::Image::ConstSharedPtr & msg);

private:
image_transport::Subscriber image_sub_;
rclcpp::Publisher<vision_msgs::msg::Detection2D>::SharedPtr detection_pub_;

// HSV ranges for detection [h - H] [s - S] [v - V]
std::vector<double> hsv_filter_ranges_ {0, 180, 0, 255, 0, 255};
bool debug_ {true};

};

These variables, with a default value, will be initialized using parameters. They
are the HSV color ranges and a variable that, by default, causes a window to be
displayed with the detection result for debugging purposes.
src/br2 tracking/ObjectDetector.cpp

ObjectDetector::ObjectDetector()
: Node("object_detector")
{

declare_parameter("hsv_ranges", hsv_filter_ranges_);
declare_parameter("debug", debug_);

get_parameter("hsv_ranges", hsv_filter_ranges_);
get_parameter("debug", debug_);

}

When executing the program with all the nodes, a parameter file in the config
directory will be specified to set the color filter.
config/detector.yaml

/object_detector:
ros__parameters:
debug: true
hsv_ranges:
- 15.0
- 20.0
- 50.0
- 200.0
- 20.0
- 200.0

This node is designed to obtain a result for each image that arrives, so the pro-
cessing is done directly in the callback, as long as there is a subscriber to this result.

Creating an image transport::Subscriber is very similar to a rclcpp::
Subscription. The first parameter is a rclcpp::Node*, so we use this. The fourth
parameter indicates the transport method, in this case raw. We adjust the quality of
service in the last parameters to the usual in sensors.

106 � A Concise Introduction to Robot Programming

src/br2 tracking/ObjectDetector.cpp

ObjectDetector::ObjectDetector()
: Node("object_detector")
{

image_sub_ = image_transport::create_subscription(
this, "input_image", std::bind(&ObjectDetector::image_callback, this, _1),
"raw", rclcpp::SensorDataQoS().get_rmw_qos_profile());

detection_pub_ = create_publisher<vision_msgs::msg::Detection2D>("detection", 100);
}

void
ObjectDetector::image_callback(const sensor_msgs::msg::Image::ConstSharedPtr & msg)
{

if (detection_pub_->get_subscription_count() == 0) {return;}
...

vision_msgs::msg::Detection2D detection_msg;
...
detection_pub_->publish(detection_msg);

}

Image processing was already introduced in the previous sections. Once the image
message has been transformed to a cv::Mat, we proceed to transform it from RGB to
HSV, and we do a color filter. The cv::boundingRect function calculates a bounding
box from the mask resulting from the color filtering. The cv::moments function
calculates the center of mass of these pixels.
src/br2 tracking/ObjectDetector.cpp

const float & h = hsv_filter_ranges_[0];
const float & H = hsv_filter_ranges_[1];
const float & s = hsv_filter_ranges_[2];
const float & S = hsv_filter_ranges_[3];
const float & v = hsv_filter_ranges_[4];
const float & V = hsv_filter_ranges_[5];

cv_bridge::CvImagePtr cv_ptr;
try {

cv_ptr = cv_bridge::toCvCopy(msg, sensor_msgs::image_encodings::BGR8);
} catch (cv_bridge::Exception & e) {
RCLCPP_ERROR(get_logger(), "cv_bridge exception: %s", e.what());
return;

}

cv::Mat img_hsv;
cv::cvtColor(cv_ptr->image, img_hsv, cv::COLOR_BGR2HSV);

cv::Mat1b filtered;
cv::inRange(img_hsv, cv::Scalar(h, s, v), cv::Scalar(H, S, V), filtered);

auto moment = cv::moments(filtered, true);
cv::Rect bbx = cv::boundingRect(filtered);

auto m = cv::moments(filtered, true);
if (m.m00 < 0.000001) {return;}
int cx = m.m10 / m.m00;
int cy = m.m01 / m.m00;

vision_msgs::msg::Detection2D detection_msg;
detection_msg.header = msg->header;
detection_msg.bbox.size_x = bbx.width;
detection_msg.bbox.size_y = bbx.height;
detection_msg.bbox.center.x = cx;
detection_msg.bbox.center.y = cy;
detection_msg.source_img = *cv_ptr->toImageMsg();
detection_pub_->publish(detection_msg);

with ROS2

Reactive Behaviors � 107

In the previous code, the image is processed, the bounding box bbx of the filtered
pixels in filtered is obtained, and it is published, together with the center of mass
(cx, cy). In addition, the optional source img field is filled in, since we require the
size of the image in object tracker main.cpp.

The HeadController implementation is a bit more complex. Let’s focus first on
the fact that it is a Lifecycle node, and that its control loop is only called when
it is active. Let’s look at the declaration of the node, just the part of its control
infrastructure:
include/br2 tracking/HeadController.hpp

class HeadController : public rclcpp_lifecycle::LifecycleNode
{
public:

HeadController();

CallbackReturn on_configure(const rclcpp_lifecycle::State & previous_state);
CallbackReturn on_activate(const rclcpp_lifecycle::State & previous_state);
CallbackReturn on_deactivate(const rclcpp_lifecycle::State & previous_state);

void control_sycle();

private:
rclcpp_lifecycle::LifecyclePublisher<trajectory_msgs::msg::JointTrajectory>::SharedPtr
joint_pub_;

rclcpp::TimerBase::SharedPtr timer_;
};

The LifecycleNode::create subscription method returns an rclcpp
lifecycle:: LifecyclePublisher instead of an rclcpp::Publisher. Although its
functionality is similar, it is necessary to activate it so that it can be used.

A LifeCycleNode can redefine the functions that are called when a transition be-
tween states is triggered in the derived class. These functions can return SUCCESS or
FAILURE. If it returns SUCCESS, the transition is allowed. If FAILURE is returned,
it is not transitioned to the new state. All of these methods return SUCCESS in the
base class, but the developer can redefine them to establish the rejection conditions.

In this case, the transitions leading to the inactive state (on configure) and
those that transition between active and inactive (on activate and on deactivate)
are redefined:
src/br2 tracking/HeadController.cpp

HeadController::HeadController()
: LifecycleNode("head_tracker")
{

joint_pub_ = create_publisher<trajectory_msgs::msg::JointTrajectory>(
"joint_command", 100);

}

CallbackReturn
HeadController::on_configure(const rclcpp_lifecycle::State & previous_state)
{

return CallbackReturn::SUCCESS;
}
CallbackReturn
HeadController::on_activate(const rclcpp_lifecycle::State & previous_state)
{

joint_pub_->on_activate();
timer_ = create_wall_timer(100ms, std::bind(&HeadController::control_sycle, this));

108 � A Concise Introduction to Robot Programming

src/br2 tracking/HeadController.cpp

return CallbackReturn::SUCCESS;
}

CallbackReturn
HeadController::on_deactivate(const rclcpp_lifecycle::State & previous_state)
{

joint_pub_->on_deactivate();
timer_ = nullptr;

return CallbackReturn::SUCCESS;
}

void
HeadController::control_sycle()
{
}

All previous transitions return SUCCESS, so all transitions are carried out. In the
case of developing a laser driver, for example, some transition (configure or activate)
would fail if the device is not found or cannot be accessed.

The above code has two aspects that are interesting to explain:

• The control cycle method contains our control logic and is set to run at
10 Hz. Note that the timer is created at on activate, which is when the active
state is transitioned. Likewise, disabling this timer is simply destroying it by
going inactive. This way control cycle will not be called and the control logic
will only be executed when the node is active.

• The publisher must be activated in on activate and deactivated in
on deactivate.

The HeadController node will execute iteratively, receiving the current state of
the neck joints through the topic /joint state, and of the move commands through
the /command topic. As usual in this schematic, both values in last state and
last command are stored to be used when we execute the next cycle of the control
logic. Also, the timestamp of the last received command is saved. When stopping
receiving commands, the robot should return to the initial position.
include/br2 tracking/HeadController.hpp

class HeadController : public rclcpp_lifecycle::LifecycleNode
{
public:

void joint_state_callback(
control_msgs::msg::JointTrajectoryControllerState::UniquePtr msg);

void command_callback(br2_tracking_msgs::msg::PanTiltCommand::UniquePtr msg);

private:
rclcpp::Subscription<br2_tracking_msgs::msg::PanTiltCommand>::SharedPtr command_sub_;
rclcpp::Subscription<control_msgs::msg::JointTrajectoryControllerState>::SharedPtr
joint_sub_;

rclcpp_lifecycle::LifecyclePublisher<trajectory_msgs::msg::JointTrajectory>::SharedPtr
joint_pub_;

control_msgs::msg::JointTrajectoryControllerState::UniquePtr last_state_;
br2_tracking_msgs::msg::PanTiltCommand::UniquePtr last_command_;
rclcpp::Time last_command_ts_;

};

with ROS2

Reactive Behaviors � 109

src/br2 tracking/HeadController.cpp

void
HeadController::joint_state_callback(

control_msgs::msg::JointTrajectoryControllerState::UniquePtr msg)
{

last_state_ = std::move(msg);
}

void
HeadController::command_callback(br2_tracking_msgs::msg::PanTiltCommand::UniquePtr msg)
{

last_command_ = std::move(msg);
last_command_ts_ = now();

}

The format of control msgs::msg::JointTrajectoryControllerState is de-
signed to report the name of the controlled joints, as well as the desired, current, and
error trajectories:
$ ros2 interface show control msgs/msg/JointTrajectoryControllerState

std msgs/Header header
string[] joint names
trajectory msgs/JointTrajectoryPoint desired
trajectory msgs/JointTrajectoryPoint actual

trajectory msgs/JointTrajectoryPoint error # Redundant, but useful

Using a trajectory msgs::msg::JointTrajectory may seem complicated at
first, but it is not if we analyze the following code, which is a command to put the
robot’s neck in the initial state while looking at Figure 5.6:
src/br2 tracking/HeadController.cpp

CallbackReturn
HeadController::on_deactivate(const rclcpp_lifecycle::State & previous_state)
{

trajectory_msgs::msg::JointTrajectory command_msg;
command_msg.header.stamp = now();
command_msg.joint_names = last_state_->joint_names;
command_msg.points.resize(1);
command_msg.points[0].positions.resize(2);
command_msg.points[0].velocities.resize(2);
command_msg.points[0].accelerations.resize(2);
command_msg.points[0].positions[0] = 0.0;
command_msg.points[0].positions[1] = 0.0;
command_msg.points[0].velocities[0] = 0.1;
command_msg.points[0].velocities[1] = 0.1;
command_msg.points[0].accelerations[0] = 0.1;
command_msg.points[0].accelerations[1] = 0.1;
command_msg.points[0].time_from_start = rclcpp::Duration(1s);

joint_pub_->publish(command_msg);

return CallbackReturn::SUCCESS;
}

• The joint names field is a std::vector<std::string> containing the name
of the joints being controlled. In this case, there are two, and they are the same
ones that are already in the state message.

• A single waypoint will be sent (for this reason, the points field is resized to 1),
in which a position, speed, and acceleration must be specified for each joint

110 � A Concise Introduction to Robot Programming

(since there are two joints, each of these fields is resized to two). Position 0
corresponds to the joint that in joint names is at 0, and so on.

• time from start indicates the time required to reach the commanded position.
As it is the last command sent before deactivating (that is why its desired
positions are 0), one second will be enough not to force the neck motors.

The controller of the neck joints is controlled by sending commands containing
positions, but what is received from the ObjectDetector is the speed control that
should be done to center the detected object in the image.

The first implementation could be to send as position, the current position com-
bined with the received control:
src/br2 tracking/HeadController.cpp

command_msg.points[0].positions[0] = last_state_->actual.positions[0] - last_command_->pan;
command_msg.points[0].positions[1] = last_state_->actual.positions[1] -last_command_->tilt;

If the reader uses this implementation, he would see that if we want to be reac-
tive enough, even if the difference between the ObjectDetector and HeadDetector
frequencies were small, the robot’s head might start to oscillate, trying to center the
image on the detected object. It is difficult for the robot to maintain a stable focus
on the detected object. This problem is solved in engineering using a PID controller,
one per joint that limits the speed while also absorbing small unwanted oscillations
of the neck.
include/br2 tracking/HeadController.hpp

class HeadController : public rclcpp_lifecycle::LifecycleNode
{
private:

PIDController pan_pid_, tilt_pid_;
};

For each PID, define a value for the proportional component Kp, the integrating
component Ki, and the derivative component Kd. Without going into details, since
it is not the objective of this book to describe in-depth the underlying control the-
ory, intuitively, the proportional component brings us closer to the objective. The
integrator component compensates for persistent deviations that move us away from
the objective. The derivative component tries to damp minor variations when close
to the control objective.

Figure 5.10 shows a diagram of this PID controller.
The control command coming from the tracker is the value that the PID should

try to keep at 0, so it is the error in t, e(t). Each component of the PID is computed
separately and then added to obtain the control to apply u(t). The position sent to
the joints will be the current position of the joint plus u(t). The system feeds back
since at t+ 1 the effect of the control is reflected in a change in the object’s position
in the image towards its center.

with ROS2

Reactive Behaviors � 111

P

I

D

/command pos = u(t) + state
e(t)

tracker

Joint

/joint_command/joint_state

u(t)

Figure 5.10: Diagram for PID for one joint.

Our PID starts by specifying four values: the minimum and maximum input
reference expected in the PID and the minimum and maximum output produced.
Negative input produces negative outputs:
src/br2 tracking/PIDController.hpp

class PIDController
{
public:

PIDController(double min_ref, double max_ref, double min_output, double max_output);

void set_pid(double n_KP, double n_KI, double n_KD);
double get_output(double new_reference);

};

src/br2 tracking/HeadController.cpp

HeadController::HeadController()
: LifecycleNode("head_tracker"),

pan_pid_(0.0, 1.0, 0.0, 0.3),
tilt_pid_(0.0, 1.0, 0.0, 0.3)

{
}
CallbackReturn
HeadController::on_configure(const rclcpp_lifecycle::State & previous_state)
{

pan_pid_.set_pid(0.4, 0.05, 0.55);
tilt_pid_.set_pid(0.4, 0.05, 0.55);

}
void
HeadController::control_sycle()
{

double control_pan = pan_pid_.get_output(last_command_->pan);
double control_tilt = tilt_pid_.get_output(last_command_->tilt);

command_msg.points[0].positions[0] = last_state_->actual.positions[0] - control_pan;
command_msg.points[0].positions[1] = last_state_->actual.positions[1] - control_tilt;

}

5.2.6 Executing the Tracker

In the main program object tracker main.cpp all the nodes are created and added
to an executor. Just before starting spinning the nodes, we trigger the configure

112 �

transition for node node head controller. The node will be ready to be activated
when requested.
src/object tracker main.cpp

rclcpp::executors::SingleThreadedExecutor executor;
executor.add_node(node_detector);
executor.add_node(node_head_controller->get_node_base_interface());
executor.add_node(node_tracker);

node_head_controller->trigger_transition(
lifecycle_msgs::msg::Transition::TRANSITION_CONFIGURE);

A launcher remaps the topics and loads the file with the HSV filter parameters:
launch/tracking.launch.py

params_file = os.path.join(
get_package_share_directory('br2_tracking'),
'config',
'detector.yaml'
)

object_tracker_cmd = Node(
package='br2_tracking',
executable='object_tracker',
parameters=[{

'use_sim_time': True
}, params_file],
remappings=[
('input_image', '/head_front_camera/rgb/image_raw'),
('joint_state', '/head_controller/state'),
('joint_command', '/head_controller/joint_trajectory')

],
output='screen'

)

Start the Tiago simulated (the home world, by default) gazebo:
$ ros2 launch br2 tiago sim.launch.py

In another terminal, launch the project:
$ ros2 launch br2 tracking tracking.launch.py

The detection windows are not shown until the first object is detected, but
HeadController is in Inactive state, and no tracking will be done.

See how we can manage the LifeCycleNode at runtime, such as head tracker
(the name of the HeadController node). Keep our project running, with the robot
tracking an object.

Using the following command, check what LifeCycle nodes are currently running:
$ ros2 lifecycle nodes

/head tracker

Now verify the state it is currently in:
$ ros2 lifecycle get /head tracker

inactive [3]

A Concise Introduction to Robot Programming with ROS2

Reactive Behaviors � 113

Good. The LifeCycleNode is in the Inactive state, just as expected. Obtain what
transitions can be triggered from the current state:
$ ros2 lifecycle list /head tracker

- cleanup [2]
Start: inactive
Goal: cleaningup

- activate [3]
Start: inactive
Goal: activating

- shutdown [6]
Start: inactive
Goal: shuttingdown

Activate the node to start tracking the detected object:
$ ros2 lifecycle set /head tracker activate

Transitioning successful

Run a teleoperator in a third terminal to teleoperate the robot toward the furni-
ture. Then, the robot will move (when HeadController is Active) the head to center
the furniture in the image. As soon as the robot does not perceive the objects, it will
move the head to the initial position:
$ ros2 run teleop twist keyboard teleop twist keyboard --ros-args -r
cmd vel:=key vel

Deactivate the node and check how the neck of the robot returns to its ini-
tial position. Remember that it was what was commanded in this transition, in the
on deactivate method.
$ ros2 lifecycle set /head tracker deactivate

Transitioning successful

To activate it again, type:
$ ros2 lifecycle set /head tracker activate

Transitioning successful

PROPOSED EXERCISES:

1. In AvoidanceNodeNode, instead of using the nearest obstacle, uses all nearby
detected obstacles to compute the repulsion vector.

2. In ObjectDetector, instead of calculating a building block that encloses all
the pixels that pass the filter, calculate a bounding box for each independent
object. Publish the bounding boxes corresponding to the object most recently
detected.

3. Try to make HeadController more reactive.

114 � A Concise Introduction to Robot Programming

Figure 5.11: Project tracking running.

with ROS2

C H A P T E R 6

Programming Robot
Behaviors with Behavior
Trees

BEHAVIOR Trees for robot control [4] have become very popular in recent
years. They have been used in various applications, mainly in video games and

robots. They are usually compared to finite state machines, but the reality is that
they are different approximations. When developing robotic behaviors with (Finite
State Machines) FSMs, we think about states and transitions. When we use Behavior
Trees, we think of sequences, fallbacks, and many flow resources that give them great
expressiveness. In this chapter, as an illustrative example, we will implement the
Bump and Go that we did with FSMs in the Chapter 3, and we will see how much
the two approaches differ.

6.1 BEHAVIOR TREES

A Behavior Tree (BT) is a mathematical model to encode the control of a system.
A BT is a way to structure the switching between different tasks in an autonomous
agent, such as a robot or a virtual entity in a computer game. It is a hierarchical data
structure defined recursively from a root node with several child nodes. Each child
node, in turn, can have more children, and so on. Nodes that do not have children
are usually called leaves of the tree.

The basic operation of a node is the tick. When a node is ticked, it can return
three different values:

• SUCCESS: The node has completed its mission successfully.

• FAILURE: The node has failed in its mission.

• RUNNING: The node has not yet completed its mission.

A BT has four different types of nodes:

DOI: 10.1201/9781003289623-6 115

https://doi.org/10.1201/9781003289623-6

116 � A Concise Introduction to Robot Programming

• Control: These types of nodes have 1-N children. Its function is to spread the
tick to their children.

• Decorators: They are control nodes with only one child.

• Action: They are the leaves of the tree. The user must implement action nodes
since they must generate the control required by the application.

• Condition: They are action nodes that cannot return RUNNING. In this case,
the value SUCCESS is understood as the condition it encodes is met, and
FAILURE if it is not.

Figure 6.1 shows a simple BT. When a BT is executed, the root node is ticked
until it finishes executing, that is, until it returns SUCCESS or FAILURE.

Sequence

Go Forward
1 meter

EnoughBattery? Turn
2 radians

RateController
5Hz

Control Node

Action Node

Decorator Node

Condition Node

Figure 6.1: Simple Behavior Tree with various types of Nodes.

• The root node is a control node of type Sequence. This node ticks its children
in order, starting from left. When a child returns SUCCESS, the sequence node
ticks the next one. If the child node returns something else, the sequence node
returns this value.

• The first child, EnoughtBattery?, is a Condition node. If it returns SUCCESS,
it indicates that there is enough battery for the robot to carry out its mission so
that the sequence node can advance to the next child. If it returned FAILURE,
the mission would be aborted, as the result of executing the BT would be
FAILURE.

• The Go Forward action node commands the robot to advance. As long as it
has not traveled 1 m, the node returns RUNNING with each tick. When it has
traveled the specified distance, it will return SUCCESS.

• The Go Forward action node has as its parent a Decorator node that controls
that the frequency at which its child ticks is not greater than 5 Hz. Meanwhile,
each tick returns the value returned by the child in the last tick.

• The Turn action node is similar to Go Forward, but spinning the robot 2 radi-
ans.

with ROS2

Programming Robot Behaviors with Behavior Trees � 117

The library of available nodes can be extended with nodes created by the user. As
we have said before, the user must implement the action nodes, but if we need any
other type of node that is not available, we can implement it. In the above example,
the RateController decorator node is not part of the Behavior Tree core library but
can be implemented by the user.

A Behavior Tree controls the action decision flow. Leaves are not intended to
implement complex algorithms or subsystems. The BT leaves should coordinate other
subsystems in the robot. In ROS2, this is done by publishing or subscribing to topics
or using ROS2 services/actions. Figure 6.2 shows a BT in which the nodes are used
to coordinate the actions of a robot. Observe how the complexity is in the subsystem
that coordinates, not in the BT leaves.

Sequence

EnoughBattery? Approach
Cup

Grasp
Cup

NavigateTo
Kitchen

Navigation
Subsystem

Manipulation
Subsystem

Robot Driver

Figure 6.2: BT where the leaves control a robot by publish/subscribe (one-way dotted
arrow) or ROS2 actions (two-way dotted arrow).

The second control node that we will present is the Fallback. This node can
express fallback strategies, that is, what to do if a node returns FAILURE. Figure
6.3 shows an example of the use of this node.

1. The Fallback node ticks the first child. If it returns FAILURE, it ticks the
next child.

2. If the second child returns SUCCESS, the Fallback node returns SUCCESS.
Otherwise, it ticks the next child.

3. If all children have returned FAILURE, the Fallback node returns FAILURE.

In the development cycle with Behavior Trees, we can identify two phases:

• Node Development:Action nodes and any other node that the user requires
for their application are designed, developed, and compiled in this phase. These
nodes become part of the library of available nodes at the same category as the
core nodes of Behavior Trees.

118 � A Concise Introduction to Robot Programming

Fallback

Sequence

EnoughBattery?

NavigateTo
Kitchen

Sequence

Charging
Point near?

NavigateTo
Charging Point Charge

Ask Human to
manually charge

Figure 6.3: BT with a fallback strategy for charging battery.

• Deployment: In this phase, the Behavior Tree is composed using the available
nodes. It is important to note that multiple different Behavior Trees can be
created with the same nodes. If the nodes have been designed sufficiently gen-
erally, in this phase, very different behaviors of the robot can be defined using
the same nodes.

A Behavior Tree has a blackboard, a key/value storage that all nodes in a tree
can access. Nodes can have input ports and output ports to exchange information
between them. The output ports of one node are connected to the input ports of
another node using a key from the blackboard. While the ports of the nodes (their
type and port class) have to be known at compile-time, the connections are established
at deployment-time.

Figure 6.4 shows an example of connecting nodes through ports. A DetectObject
action node is in charge of detecting some object so that the InformHuman node com-
municates it to the robot operator. DetectObject uses its output port detected id
to send the identifier of the detected object to InformHuman through its port
object id. For this, they use the input of the blackborad whose key objID currently
has the value cup. Using keys from the blackboard is not mandatory. At deployment
time, the value could be a constant value.

Behavior Trees are specified in XML. Although editing tools such as Groot1 are
used, they generate a BT in XML format. If this BT is saved to disk and this file
is loaded from an application, any change to the BT does not require recompiling.
The format is easy to understand, and it is widespread for BTs to be designed di-
rectly in XML. The following code shows two equally valid alternatives for the BT in
Figure 6.1.

1https://github.com/BehaviorTree/Groot

with ROS2

https://github.com

Programming Robot Behaviors with Behavior Trees � 119

Sequence

InformHuman
grasp_id = {objID}

DetectObject
detected_id = {objID}

objID cup

Figure 6.4: Ports connection using a blackboard key.

Compact XML syntax

<BehaviorTree ID="BehaviorTree">
<Sequence>

<EnoughBattery/>
<RateController Rate="5Hz">

<GoForward distance="1.0"/>
</RateController>
<Turn angle="2.0"/>

</Sequence>
</BehaviorTree>

Extended XML syntax

<?xml version="1.0"?>
<root main_tree_to_execute="BehaviorTree">

<BehaviorTree ID="BehaviorTree">
<Sequence>

<Condition ID="EnoughBattery"/>
<Decorator ID="RateController" Rate="5Hz">

<Action ID="GoForward" distance="1.0"/>
</Decorator>
<Action ID="Turn" angle="2.o"/>

</Sequence>
</BehaviorTree>

<TreeNodesModel>
<Condition ID="EnoughBattery"/>
<Action ID="GoForward">

<input_port name="distance"/>
</Action>
<Decorator ID="RateController">

<input_port name="Rate"/>
</Decorator>
<Action ID="Turn">

<input_port name="angle"/>
</Action>

</TreeNodesModel>
</root>

Table 6.1 shows a summary of the commonly available control nodes. This table
shows what a control node returns when ticked, based on what the ticked child

120 � A Concise Introduction to Robot Programming

Table 6.1: Summary of the behavior of the control nodes. Cell color groups into
sequence, fallback, and decorator nodes.

Value returned by child
Control Node Type FAILURE SUCCESS RUNNING

Sequence
Return FAILURE
and restart sequence

Tick next child.
Return SUCCESS
if no more child

Return RUNNING
and tick again

ReactiveSequence
Return FAILURE
and restart sequence

Tick next child.
Return SUCCESS
if no more child

Return RUNNING
and restart sequence

SequenceStar
Return FAILURE
and tick again

Tick next child.
Return SUCCESS
if no more child

Return RUNNING
and tick again

Fallback
Tick next child.
Return FAILURE
if no more child

Return SUCCESS Return RUNNING
and tick again

ReactiveFallback
Tick next child.
Return FAILURE
if no more child

Return SUCCESS Return RUNNING
and restart sequence

InverterNode Return SUCCESS Return FAILURE Return RUNNING
ForceSuccessNode Return SUCCESS Return SUCCESS Return RUNNING
ForceFailureNode Return FAILURE Return FAILURE Return RUNNING

RepeatNode (N) Return FAILURE
Return RUNNING
N timesbefore
returning SUCCESS

Return RUNNING

RetryNode (N)
Return RUNNING
N times before
returning FAILURE

Return SUCCESS Return RUNNING

returns. In the case of sequences and fallbacks, it also shows what it does if this
control node is ticked again: tick the next, restart the first child, or insist on the
same child.

Let’s analyze in detail some of these control nodes:

• Sequence nodes: In the previous section, we have used the basic sequence
node. Behavior Trees allow sequence nodes with different behavior, which is
helpful in some applications.

– Sequence:As explained in the previous section, this node ticks its first
child. When it returns SUCCESS, the ticks are made to the next child,
and so on. If any child returns FAILURE, this node returns FAILURE
and, if ticked again, starts over from the first child.
Figure 6.5 shows an example of a sequence in which to take an image, it
must check that the object is close and that the camera is ready. Once
the camera is pointed at the subject, a picture can be taken. If any of the
above children fail, the sequence fails. No child repeats its execution if it
has already indicated that it has finished successfully.

with ROS2

Programming Robot Behaviors with Behavior Trees � 121

Sequence

isObjectNear? PointToObjectisCameraready? TakeImage

Figure 6.5: Example of Sequence node.

ReactiveSequence

ObjectNear? GraspObject

Figure 6.6: Example of ReactiveSequence node.

– ReactiveSequence: this sequence is commonly used when it is necessary
to check conditions continuously. If any child returns RUNNING, the se-
quence restarts from the beginning. In this way, all nodes are always ticked
up to the one returned by RUNNING on the previous tick.

– SequenceStar: This sequence is used to avoid restarting a sequence if, at
some point, it has returned a FAILURE child. If this sequence is ticked
again after a failure, the failed node is ticked directly.

ReactiveSequence

enoughBattery? SequenceStar

Patrol
waypoint=wp1

Patrol
waypoint=wp2

Patrol
waypoint=wp3

Figure 6.7: Example of ReactiveStar node.

• Fallback nodes: As we presented previously, fallback nodes allow us to execute
different strategies to satisfy a condition until we find a successful one.

– Fallback: It is the basic version of this control node. The children tick
in sequence. When one returns FAILURE, it moves on to the next. The
moment one returns SUCCESS, the fallback node returns SUCCESS.

– ReactiveFallback: This alternative version of fallback has the difference
that if a node returns RUNNING, the sequence is restarted from the be-
ginning. The next tick will be made again to the first child. It is useful
when the first node is a condition, and it must be checked while executing
the action that tries to satisfy it. For example, in Figure 6.8, the action of
charging the robot is running while the battery is not charged.

122 � A Concise Introduction to Robot Programming

ReactiveFallback

isBatteryFul? ChargeBattery

Figure 6.8: Example of ReactiveFallback node.

• Decorator nodes: They modify the return value of their only child. In the
case of RepeatNode and RetryNode, they receive the N repetitions or retries
through their input port.

6.2 BUMP AND GO WITH BEHAVIOR TREES

In this section we will show how to implement action nodes within our ROS2 packages,
and how these nodes can access the Computation Graph to communicate with other
nodes. To do this, we will reimplement the Bump and Go example that we did with
state machines in Chapter 3, and thus we will see the differences that exist.

Let’s start with the design of the Behavior Tree (Figure 6.10). It seems clear that
we will need the following BT nodes (Figure 6.9):

• A condition node that indicates whether there is an obstacle (SUCCESS) or
not (FAILURE) depending on the information received from the laser.

• Three action nodes that make the robot turn, move or go forward publishing
speed messages. Back and Turn will return RUNNING for 3 s before returning
SUCCESS. Forward will return RUNNING in all ticks.

Obstacle? Back Turn Forward

sensor_msgs/msg/LaserScan

geometry_msgs/msg/Twist

Figure 6.9: Action nodes for Bump and Go.

The Computation Graph is similar to the one in Figure 3.4, so we will skip its
explanation. Let’s focus on the workspace:

with ROS2

Programming Robot Behaviors with Behavior Trees � 123

Forward

ReactiveSequence

Fallback

Inverter

Obstacle?

Sequence

Back Turn

Figure 6.10: Complete Behavior Tree for Bump and Go.

Package br2 bt bumpgo

br2_bt_bumpgo
behavior_tree_xml

bumpgo.xml
cmake

FindZMQ.cmake
CMakeLists.txt
include

br2_bt_bumpgo
Back.hpp
Forward.hpp
IsObstacle.hpp
Turn.hpp

package.xml
src

br2_bt_bumpgo
Back.cpp
Forward.cpp
IsObstacle.cpp
Turn.cpp

bt_bumpgo_main.cpp
tests

bt_action_test.cpp
CMakeLists.txt

• Each of the BT nodes is a C++ class. Just like when we implement ROS2
nodes, we create a directory with the package name in src for sources and a
directory with the same name in include for headers.

• A tests directory where there will be tests with gtest and a program to man-
ually test a BT node, as we will explain later.

• A cmake directory contains a cmake file to find the ZMQ2 library needed to
debug Behavior Trees at runtime.

• A behavior tree xml directory with XML files containing the structure of the
behavior trees that we will use in this package.

2https://zeromq.org/

https://zeromq.org

124 � A Concise Introduction to Robot Programming

Figure 6.11: Specification of IsObstacle BT node.

6.2.1 Using Groot to Create the Behavior Tree

This section introduces a tool for developing and monitoring Behavior Trees, which is
Groot. The behavior trees in this package are already created, but we find it helpful
to explain how this tool works. It is useful for monitoring runtime performance, or
perhaps the reader wants to make modifications.

Groot is included in the repository dependencies, so to execute it, simply type:
$ ros2 run groot Groot

After selecting the editor, follow next steps:

• Add the nodes Turn, Forward, Back, and IsObstacle to the palette. All are
Action Nodes except IsObstacle, for which add an input port, as shown in
Figure 6.11.

• Save the palette.

• Create the Behavior Tree as shown in Figure 6.12.

• Save the Behavior Tree in mr2 bt bumpgo/behavior tree xml/bumpgo.xml.

with ROS2

Programming Robot Behaviors with Behavior Trees � 125

Figure 6.12: Action nodes for Bump and Go.

behavior tree xml/bumpgo.xml

<?xml version="1.0"?>
<root main_tree_to_execute="BehaviorTree">

<BehaviorTree ID="BehaviorTree">
<ReactiveSequence>

<Fallback>
<Inverter>

<Condition ID="IsObstacle" distance="1.0"/>
</Inverter>
<Sequence>

<Action ID="Back"/>
<Action ID="Turn"/>

</Sequence>
</Fallback>
<Action ID="Forward"/>

</ReactiveSequence>
</BehaviorTree>
<TreeNodesModel>

<Action ID="Back"/>
<Action ID="Forward"/>
<Condition ID="IsObstacle">

<input_port default="1.0" name="distance">Dist to consider obst</input_port>
</Condition>
<Action ID="Turn"/>

</TreeNodesModel>
</root>

The Behavior Tree specification in XML is straightforward. There are two parts:

• BehaviorTree: It is the specification of the tree structure. The XML tags
match the type of BT node specified, and the child nodes are within their
parents.

• TreeNodesModel: Define the custom nodes we have created, indicating their
input and output ports.

126 � A Concise Introduction to Robot Programming

There is a valid alternative to this structure, which is ignoring the TreeN-
odesModel and directly using the name of the custom BT nodes:

<?xml version="1.0"?>
<root main_tree_to_execute="BehaviorTree">

<BehaviorTree ID="BehaviorTree">
<ReactiveSequence>

<Fallback>
<Inverter>

<IsObstacle distance="1.0"/>
</Inverter>
<Sequence>

<Back/>
<Turn/>

</Sequence>
</Fallback>
<Forward/>

</ReactiveSequence>
</BehaviorTree>

</root>

6.2.2 BT Nodes Implementation

We will use the Behavior Trees library behaviortree.CPP3, which is pretty standard
in ROS/ROS2. Let’s look at the Forward implementation to get an idea of how simple
it is to implement a BT node:

include/mr2 bt bumpgo/Forward.hpp

class Forward : public BT::ActionNodeBase
{
public:
explicit Forward(
const std::string & xml_tag_name,
const BT::NodeConfiguration & conf);

BT::NodeStatus tick();

static BT::PortsList providedPorts()
{
return BT::PortsList({});

}

private:
rclcpp::Node::SharedPtr node_;
rclcpp::Time start_time_;
rclcpp::Publisher<geometry_msgs::msg::Twist>::SharedPtr vel_pub_;

};

As shown in the previous code, when a Behavior Tree is created, an instance of
each class of a BT node is constructed for each one that appears in the Behavior
Tree. An action node inherits from BT::ActionNodeBase, having to implement three
methods and setting the constructor arguments:

• The constructor receives the content of the name field (which is optional) in the
XML, as well as a BT::NodeConfiguration that contains, among other things,
a pointer to the blackboard shared by all the nodes of a tree.

3https://www.behaviortree.dev/

with ROS2

https://www.behaviortree.dev

Programming Robot Behaviors with Behavior Trees � 127

• The halt method is called when the tree finishes its execution, and it is used
to carry out any cleanup that the node requires. We will define void, as it is a
pure virtual method.

• The tick method implements the tick operation that we have already described
in this chapter.

• A static method that returns the ports of the node. In this case, Forward has
no ports, so we return an empty list of ports.

The class definition is also straightforward:
src/mr2 bt bumpgo/Forward.cpp

Forward::Forward(
const std::string & xml_tag_name,
const BT::NodeConfiguration & conf)

: BT::ActionNodeBase(xml_tag_name, conf)
{
config().blackboard->get("node", node_);

vel_pub_ = node_->create_publisher<geometry_msgs::msg::Twist>("/output_vel", 100);
}

BT::NodeStatus
Forward::tick()
{
geometry_msgs::msg::Twist vel_msgs;
vel_msgs.linear.x = 0.3;
vel_pub_->publish(vel_msgs);

return BT::NodeStatus::RUNNING;
}

} // namespace br2_bt_bumpgo

#include "behaviortree_cpp_v3/bt_factory.h"
BT_REGISTER_NODES(factory)
{
factory.registerNodeType<br2_bt_bumpgo::Forward>("Forward");

}

• In the constructor, after calling the constructor of the base class, we will get the
pointer to the ROS2 node of the blackboard. We will see soon that when the
tree is created, the pointer to the ROS2 node is inserted into the blackboard
with the key “node” so that it is available to any BT node that requires it to
create publishers, subscribers, get the time, or any related task to ROS2.

• The tick method is quite obvious: each time the node is ticked, it publishes a
speed message to go forward, and return RUNNING.

• In the last part of the previous code, we register this class as implementing the
Forward BT node. This part will be used when creating the tree.

128 � A Concise Introduction to Robot Programming

Once the BT node Forward has been analyzed, the rest of the nodes are imple-
mented similarly. Let’s see some peculiarities:

• The BT node Turn performs its task for 3 s, so it saves the timestamp of its
first tick, which is identifiable because its state is still IDLE:

src/mr2 bt bumpgo/Turn.cpp

BT::NodeStatus
Turn::tick()
{
if (status() == BT::NodeStatus::IDLE) {
start_time_ = node_->now();

}

geometry_msgs::msg::Twist vel_msgs;
vel_msgs.angular.z = 0.5;
vel_pub_->publish(vel_msgs);

auto elapsed = node_->now() - start_time_;

if (elapsed < 3s) {
return BT::NodeStatus::RUNNING;

} else {
return BT::NodeStatus::SUCCESS;

}
}

• The BT node isObstacle saves the laser readings and compares them to the
distance set on its input port:

src/mr2 bt bumpgo/isObstacle.cpp

void
IsObstacle::laser_callback(sensor_msgs::msg::LaserScan::UniquePtr msg)
{
last_scan_ = std::move(msg);

}

BT::NodeStatus
IsObstacle::tick()
{
double distance = 1.0;
getInput("distance", distance);

if (last_scan_->ranges[last_scan_->ranges.size() / 2] < distance) {
return BT::NodeStatus::SUCCESS;

} else {
return BT::NodeStatus::FAILURE;

}
}

Each of the BT nodes will be compiled as a separate library. Later we will see
that, when creating the Behavior Tree that contains them, we can load these libraries
as plugins, quickly locating the implementation of the custom BT nodes.

with ROS2

Programming Robot Behaviors with Behavior Trees � 129

CMakeLists.txt

add_library(br2_forward_bt_node SHARED src/br2_bt_bumpgo/Forward.cpp)
add_library(br2_back_bt_node SHARED src/br2_bt_bumpgo/Back.cpp)
add_library(br2_turn_bt_node SHARED src/br2_bt_bumpgo/Turn.cpp)
add_library(br2_is_obstacle_bt_node SHARED src/br2_bt_bumpgo/IsObstacle.cpp)

list(APPEND plugin_libs
br2_forward_bt_node
br2_back_bt_node
br2_turn_bt_node
br2_is_obstacle_bt_node

)

foreach(bt_plugin ${plugin_libs})
ament_target_dependencies(${bt_plugin} ${dependencies})
target_compile_definitions(${bt_plugin} PRIVATE BT_PLUGIN_EXPORT)

endforeach()

install(TARGETS
${plugin_libs}
ARCHIVE DESTINATION lib
LIBRARY DESTINATION lib
RUNTIME DESTINATION lib/${PROJECT_NAME}

)

6.2.3 Running the Behavior Tree

Running a Behavior Tree is easy. A program should build a tree and start
ticking its root until it returns SUCCESS. Behavior trees are created using a
BehaviorTreeFactory, specifying an XML file or directly a string that contains
the XML. BehaviorTreeFactory needs to load the libraries of the custom nodes as
plugins and needs the blackboard to be shared among the BT nodes.

To integrate behavior trees with ROS2, create a ROS2 node and put it on the
blackboard. As shown before, BT nodes can extract it from the blackboard to create
publishers/subscribers or clients/servers of services or actions. Along with the tick at
the root of the tree, a spin some manages the arrival of messages to the ROS2 node.

See how it looks like the program that carries out the tree creation and execution:
src/mr2 bt bumpgo/isObstacle.cpp

int main(int argc, char * argv[])
{
rclcpp::init(argc, argv);

auto node = rclcpp::Node::make_shared("patrolling_node");

BT::BehaviorTreeFactory factory;
BT::SharedLibrary loader;

factory.registerFromPlugin(loader.getOSName("br2_forward_bt_node"));
factory.registerFromPlugin(loader.getOSName("br2_back_bt_node"));
factory.registerFromPlugin(loader.getOSName("br2_turn_bt_node"));
factory.registerFromPlugin(loader.getOSName("br2_is_obstacle_bt_node"));

std::string pkgpath = ament_index_cpp::get_package_share_directory("br2_bt_bumpgo");
std::string xml_file = pkgpath + "/behavior_tree_xml/bumpgo.xml";

130 � A Concise Introduction to Robot Programming

src/mr2 bt bumpgo/isObstacle.cpp

auto blackboard = BT::Blackboard::create();
blackboard->set("node", node);
BT::Tree tree = factory.createTreeFromFile(xml_file, blackboard);

auto publisher_zmq = std::make_shared<BT::PublisherZMQ>(tree, 10, 1666, 1667);

rclcpp::Rate rate(10);

bool finish = false;
while (!finish && rclcpp::ok()) {
finish = tree.rootNode()->executeTick() != BT::NodeStatus::RUNNING;

rclcpp::spin_some(node);
rate.sleep();

}

rclcpp::shutdown();
return 0;

}

1. At the beginning of the main function, we create a generic ROS2 node which
we then insert into the blackboard. This is the node that we have seen that is
pulled from the blackboard in Forward to create the speed message publisher.

2. The tree is created by a BT::BehaviorTreeFactory from an XML, BT action
nodes that we will be implemented, and a blackboard.

(a) As we will see below, each BT node will be compiled as an independent
library. The loader object helps to find the library in the system to load
the BT Node as a plugin. The BT REGISTER NODES macro that we saw
earlier in the BT nodes definition allows the BT node name to be connected
with its implementation within the library.

BT::BehaviorTreeFactory factory;
BT::SharedLibrary loader;

factory.registerFromPlugin(loader.getOSName("br2_forward_bt_node"));

(b) Function get package share directory from package ament index cpp
lets to obtain the full path of installed package, in order to read any
file within. Remember that this is a package included in the package
dependencies.

std::string pkgpath = ament_index_cpp::get_package_share_directory(
"br2_bt_bumpgo");

std::string xml_file = pkgpath + "/behavior_tree_xml/forward.xml";

(c) Finally, after creating the blackboard and inserting the shared pointer to
the ROS2 node there, the factory builds the tree to execute.

auto blackboard = BT::Blackboard::create();
blackboard->set("node", node);
BT::Tree tree = factory.createTreeFromFile(xml_file, blackboard);

with ROS2

Programming Robot Behaviors with Behavior Trees � 131

(d) To debug the Behavior Tree at runtime, create PublisherZMQ object that
publishes all the necessary information. To create it, indicate the tree, the
maximum messages per second, and the network ports to use.

auto publisher_zmq = std::make_shared<BT::PublisherZMQ>(
tree, 10, 1666, 1667);

3. In this last part, the tree’s root is ticked at 10 Hz while the tree returns
RUNNING while handling any pending work in the node, such as the delivery
of messages that arrive at subscribers.

Once compiled, execute the simulator and the node and run the program. The
robot should move forward.
$ ros2 launch br2 tiago sim.launch.py

$ ros2 run br2 bt bumpgo bt bumpgo --ros-args -r input scan:=/scan raw -r
output vel:=/key vel -p use sim time:=true

During program execution, it is possible to use Groot to monitor the state of
the Behavior Tree to know which nodes are being ticked and the values they return.
Simply boot up Groot and select Monitor instead of Editor. Once pressed connect,
monitor the execution, as shown in Figure 6.13.

6.2.4 Testing the BT Nodes

Two types of tests have been included in this package that has been useful during
this project’s development. They are all in the tests directory of the package.

The first type of test has been to manually test each node separately, running
behavior trees that only contain one type of node to see if they work correctly in
isolation. We have included only the verification of the BT node Forward:

tests/bt forward main.cpp

factory.registerFromPlugin(loader.getOSName("br2_forward_bt_node"));

std::string xml_bt =
R"(
<root main_tree_to_execute = "MainTree" >
<BehaviorTree ID="MainTree">

<Forward />
</BehaviorTree>

</root>)";

auto blackboard = BT::Blackboard::create();
blackboard->set("node", node);
BT::Tree tree = factory.createTreeFromText(xml_bt, blackboard);

rclcpp::Rate rate(10);
bool finish = false;
while (!finish && rclcpp::ok()) {
finish = tree.rootNode()->executeTick() != BT::NodeStatus::RUNNING;

rclcpp::spin_some(node);
rate.sleep();

}

132 � A Concise Introduction to Robot Programming

Figure 6.13: Monitoring the execution of a Behavior Tree with Groot.

Start the simulator and run:
$ build/br2 bt bumpgo/tests/bt forward --ros-args -r input scan:=/scan raw -r
output vel:=/key vel -p use sim time:=true

Check that the robot will go forward forever. Do the same with the rest of the
BT nodes.

The second type of test is the one recommended in the previous chapter, which
is using GoogleTest. It is easy to define a ROS2 node that records what speeds have
been sent to the speed topic.

with ROS2

Programming Robot Behaviors with Behavior Trees � 133

tests/bt action test.cpp

class VelocitySinkNode : public rclcpp::Node
{
public:
VelocitySinkNode()
: Node("VelocitySink")
{
vel_sub_ = create_subscription<geometry_msgs::msg::Twist>(
"/output_vel", 100, std::bind(&VelocitySinkNode::vel_callback, this, _1));

}

void vel_callback(geometry_msgs::msg::Twist::SharedPtr msg)
{
vel_msgs_.push_back(*msg);

}

std::list<geometry_msgs::msg::Twist> vel_msgs_;

private:
rclcpp::Subscription<geometry_msgs::msg::Twist>::SharedPtr vel_sub_;

};

It is possible to execute a tree for a few cycles, checking that the speeds that were
sent were correct:

tests/bt action test.cpp

TEST(bt_action, forward_btn)
{
auto node = rclcpp::Node::make_shared("forward_btn_node");
auto node_sink = std::make_shared<VelocitySinkNode>();

// Creation the Behavior Tree only with the Forward BT node

rclcpp::Rate rate(10);
auto current_status = BT::NodeStatus::FAILURE;
int counter = 0;
while (counter++ < 30 && rclcpp::ok()) {
current_status = tree.rootNode()->executeTick();
rclcpp::spin_some(node_sink);
rate.sleep();

}

ASSERT_EQ(current_status, BT::NodeStatus::RUNNING);
ASSERT_FALSE(node_sink->vel_msgs_.empty());
ASSERT_NEAR(node_sink->vel_msgs_.size(), 30, 1);

geometry_msgs::msg::Twist & one_twist = node_sink->vel_msgs_.front();

ASSERT_GT(one_twist.linear.x, 0.1);
ASSERT_NEAR(one_twist.angular.z, 0.0, 0.0000001);

}

In this case, after ticking the root of the tree 30 times, see how the node is still
returning RUNNING, 30 speed messages have been advertised, and the speeds are
correct (they move the robot forward). We could have examined all of them, but we
have only done this case for the first one.

Examine the tests of the other nodes. In the case of Turn and Back, it is checked
that they do so for the appropriate time before returning success. In the case of
isObstacle, we create synthetic laser readings to see if the output is correct in all
cases.

134 � A Concise Introduction to Robot Programming

6.3 PATROLLING WITH BEHAVIOR TREES

In this section, we will address a more complex and ambitious project. We have
previously said that Behavior Tree action nodes help control other subsystems. In
the project of the previous section, we have done it in a pretty basic way, processing
sensory information and sending speeds. In this section, we will carry out a project
in which a Behavior Tree will control more complex subsystems, such as the Nav2
Navigation subsystem and the active vision subsystem that we developed in the
previous chapter.

The goal of the project in this section is that of a robot patrolling the simulated
house in Gazebo:

• The robot patrols three waypoints in the house (Figure 6.14). Upon reach-
ing each waypoint, the robot turns on itself for a few seconds to perceive its
surroundings.

• While the robot goes from one waypoint to another, the robot perceives and
tracks the detected objects.

• The robot keeps track (simulated) of the battery level it has. When low, it goes
to a recharge point to recharge for a few seconds.

wp_1

wp_2

wp_3

wp_
recharge

Figure 6.14: Waypoints at the simulated home, with the path followed during
patrolling.

Since we are using such a complex and important subsystem as Nav2, the nav-
igation system in ROS2, we will first describe it in Section 6.3.1. The Section 6.3.2
describes the steps to set up Nav2 for a particular robot and environment. It is
possible to skip this section since the br2 navigation package already contains the
environment map and configuration files for the simulated Tiago scenario in the
house. The following sections already focus on implementing the Behavior Tree and
the patrolling nodes.

with ROS2

Programming Robot Behaviors with Behavior Trees � 135

6.3.1 Nav2 Description

Nav24[3] is the ROS2 navigation system designed to be modular, configurable, and
scalable. Like its predecessor in ROS, it aspires to be the most widely used naviga-
tion software, so it supports major robot types: holonomic, differential-drive, legged,
and Ackermann (car-like) while allowing information from lasers and 3D cameras to
be merged, among others. Nav2 incorporates multiple plugins for local and global
navigation and allows custom plugins to be easily used.

The inputs to Nav2 are TF transformations (conforming to REP-105), a map5,
any relevant sensor data sources. It also requires the navigation logic, coded as a BT
XML file coded, adapting it to specific problems if needed. Nav2 outputs are the
speed sent to the robot base.

BT Navigator
Server

Planner
Server

Controller
Server

Recovery
Server

Local
Costmap

Global
Costmap

Map
Server

AMCLTF

Sensor 1 Sensor 2 Sensor N

sensor_msgs/LaserScan
sensor_msgs/LaserScan

map

navigate_to_pose

geometry_msgs/Twist

nav2_msgs/action/NavigateToPose

BT XML

Map.pgm

Map.yaml

Figure 6.15: Waypoints at the simulated home, with the path followed during
patrolling.

Nav2 has the modular architecture shown in Figure 6.15. Let’s describe what each
of the components that appear in the figure are:

• Map Server: This component reads a map from two files and publishes it as a
nav msgs/msg/OccupancyGrid, which nodes internally handle as a costmap2D.
The maps in Nav2 are grids whose cells encode whether the space is free (0),
unknown (255), or occupied (254). Values between 1 and 253 encode different
occupation degrees or cost to cross this area. Figure 6.16b shown the map coded
as a costmap2D.

• AMCL: This component implements a localization algorithm based on Adap-
tive Monte-Carlo (AMCL) [9]. It uses sensory information, primarily distance

4https://navigation.ros.org/
5if using the Static Costmap Layer

https://navigation.ros.org

136 � A Concise Introduction to Robot Programming

(a) Global costmap used by the Planner
Server.

(b) Original map and the local costmap used
by the Controller Server.

Figure 6.16: 2D costmaps used by the Nav2 components.

readings from a laser and the map, to calculate the robot’s position. The
output is a geometric transformation indicating the position of the robot.
Since one frames should not have two parents, instead of posting a map →
base footprint transform, this component computes and publishes the map
→ odom transform.

• Planner Server: The function of this component is to calculate a route from
the origin to the destination. It takes as input the destination, the current
position of the robot, and the map of the environment. The Planner Server
builds a costmap from the original map, whose walls are fattened with the
radius of the robot and a certain safety margin. The idea is that the robot uses
the free space (or with low cost) to calculate the routes, as shown in Figure
6.16a. Route planning and costmap updating algorithms are loaded as plugins.
Like the following two components, this component receives requests through
ROS2 actions.

• Controller Server: This component receives the route calculated by the Plan-
ner Server and publishes the speeds sent to the robot base. It uses a costmap of
the robot’s surroundings (see Figure 6.16b), where nearby obstacles are encoded
and used by algorithms (loaded as plugins) to calculate speeds.

• Recovery Server: This component has several helpful recovery strategies if
the robot gets lost, gets stuck, or cannot calculate routes to the destination.
These strategies are turning, clearing costmaps, slow-moving, among others.

with ROS2

Programming Robot Behaviors with Behavior Trees � 137

• BT Navigator Server: This is the component that orchestrates the rest
of the navigation components. It receives navigation requests in the form
of ROS2 actions. The action name is navigate to pose and the type is
nav2 msgs/action/NavigateToPose. Therefore, if we want to make a robot
go from one point to another, we must use this ROS2 action. Check out what
this action looks like:
ros2 interface show nav2 msgs/action/NavigateToPose

#goal definition
geometry msgs/PoseStamped pose
string behavior tree

#result definition
std msgs/Empty result

geometry msgs/PoseStamped current pose
builtin interfaces/Duration navigation time
int16 number of recoveries

float32 distance remaining

– The request section comprises a target position and, optionally, a custom
Behavior Tree to be used in this action instead of the default one. This last
feature allows special requests to be made that are not normal navigation
behavior, such as following a moving object or approaching an obstacle in
a particular way.

– The result of the action, when finished.
– The robot continuously returns the current position and the distance to

the target and statistical data such as the navigation time or the times it
has recovered from undesirable situations.

BT Navigator uses Behavior Trees to orchestrate robot navigation. The Behav-
ior Tree nodes make requests to the other components of Nav2 so that they
carry out their task.
When this component accepts a navigation action, it starts executing a Be-
havior Tree like the one shown in Figure 6.17. Nav2’s default Behavior Tree is
quite a bit more complex, including calls to recoveries, but the one in the figure
is quite illustrative of BT Navigator Server’s use of them. First, the goal that
arrives in the ROS2 action is put on the blackboard. ComputePathToPose uses
this goal to call the Planner Server action, which returns a route to it. This
path is the output of this BT node which is input to the BT node FollowPath,
which sends it to the Controller Server.

To use Nav2, it is enough to install the packages that contain it:
$ sudo apt install ros-foxy-navigation2 ros-foxy-nav2-bringup
ros-foxy-turtlebot3*

138 � A Concise Introduction to Robot Programming

PipelineSequence

RateController
hz=1.0

ComputePathToPose

FollowPath

goal={goal}
 path={path}
planner_id=Gridbased

path={path}
 controller_id=FollowPath

Planner
Server

Controller
Server

BT Navigator Server

Figure 6.17: Behavior Tree simple example inside BT Navigator Server, with BT
nodes calling ROS2 actions to coordinate other Nav2 components.

In the br2 navigation package, we have prepared the necessary launchers, maps,
and configuration files for the simulated Tiago robot to navigate in the home scenario.
Let’s test navigation:

1. Launch the simulator:
$ ros2 launch br2 tiago sim.launch.py

2. Launch navigation:

$ ros2 launch br2 navigation tiago navigation.launch.py

3. Open RViz2 and display (see Figure 6.18):

• TF: To display the robot. Observe the transformation map → odom.
• Map: Display the topic /map, which QoS is reliable and transient local.
• Global Costmap: Display the topic /global costmap/costmap with de-

fault QoS (Reliable and Volatile).
• Local Costmap: Display the topic /local costmap/costmap with default

QoS.
• LaserScan: To see how it matches with obstacles.

with ROS2

Programming Robot Behaviors with Behavior Trees � 139

• It is interesting to display the AMCL particles. Each one is a hypothesis
about the robot’s position. The final robot position is the mean of all
these particles. As much concentrated is this population of arrows, better
localized is the robot. It is in the /particlecloud with which QoS is best
effort + volatile.

Figure 6.18: Nav2 in action

4. Use the “2D Goal Pose” button to command a goal position to the robot.

5. In obtaining a map position, use the “Publish Point” button. Then click
in any position on the map. This position will be published in the topic
/clicked point.

6.3.2 Setup Nav2

This section describes the Nav2 setup process for a new environment and a specific
robot. It is possible to can skip it, as the br2 navigation package already contains
everything you need to make the simulated Tiago navigate in the house scenario.
Keep reading for using another scenario or another robot.

140 � A Concise Introduction to Robot Programming

If Nav2 is installed from packages, it is in /opt/ros/foxy/. In particular, in
/opt/ros/foxy/share/nav2 bringup is the Nav2 bringup package with launchers,
maps, and parameters for a simulated Turtlebot36 that comes by default and that
you can launch by typing:
$ ros2 launch nav2 bringup tb3 simulation launch.py

It starts a simulation with a Turtlebot3 in a small world. Use the “2D Pose
Estimate” button to put where the robot is (see Figure 6.19), as the navigation will
not be activated until then.

Figure 6.19: Simulated turtlebot 3.

The package for the Tiago simulation has been created copying some elements
from nav2 bringup, since some extra remap in the launchers is needed, and thus
having the configuration files and the maps together. This package has the following
structure:

Package br2 navigation

br2_navigation/
CMakeLists.txt
launch

navigation_launch.py
tiago_navigation.launch.py

maps
home.pgm
home.yaml

package.xml
params

mapper_params_online_async.yaml
tiago_nav_params.yaml

Start by looking at how to map the environment. We will use the slam toolbox
package. We will use a custom param file to specify the particular topics and frames:

6https://emanual.robotis.com/docs/en/platform/turtlebot3/overview/

with ROS2

https://emanual.robotis.com

Programming Robot Behaviors with Behavior Trees � 141

params/mapper params online async.yaml

ROS Parameters
odom_frame: odom
map_frame: map
base_frame: base_footprint
scan_topic: /scan_raw
mode: mapping #localization

Run these commands, each in a different terminal:

1. Tiago simulated with the home scenario.

$ ros2 launch br2 tiago sim.launch.py

2. RViz2 to visualize the mapping progress (see Figure 6.20).

$ rviz2 --ros-args -p use sim time:=true

3. Launch the SLAM node. It will publish in /map the map as far as it is being
built.
$ ros2 launch slam toolbox online async launch.py params file:=[Full path
to bookros2 ws/src/book ros2/br2 navigation/params/mapper params online async
.yaml] use sim time:=true

4. Launch the map saver server. This node will subscribe to /map, and it will save
it to disk when requested.

$ ros2 launch nav2 map server map saver server.launch.py

5. Run the teleoperator to move the robot along the scenario.

6.
$ ros2 run teleop twist keyboard teleop twist keyboard --ros-args --remap
/cmd vel:=/key vel -p use sim time:=true

Run these commands, each in a different terminal:
As soon as the robot starts moving around the stage using the teleoperator, run

RViz2 and check how the map is built. When the map is completed, ask the map
server saver to save the map to disk:
$ ros2 run nav2 map server map saver cli --ros-args -p use sim time:=true

Note that when mapping/navigating with a real robot, the use sim time param-
eters, both in launchers and nodes, must be false.

At this point, two files will have been created. A PGM image file (which you can
modify if you need to do any fix) and a YAML file containing enough information to
interpret the image as a map. Remember that if modifying the name of the files, this
YAML should be modified too:

142 � A Concise Introduction to Robot Programming

Figure 6.20: SLAM with Tiago simulated.

image: home.pgm
mode: trinary
resolution: 0.05
origin: [-2.46, -13.9, 0]
negate: 0
occupied_thresh: 0.65
free_thresh: 0.25

Move this file to the br2 navigation package and continue to the next setup
step. In this step, the launchers copied from nav2 bringup needs to be modified.
tiago navigation.launch launch navigation and localization by including their
launchers. We don’t use directly the launchers in nav2 bringup because some ex-
tra remaps in navigation.launch has to be done.
br2 navigation/launch/navigation launch.py

remappings = [('/tf', 'tf'),
('/tf_static', 'tf_static'),
('/cmd_vel', '/nav_vel')
]

Regarding the parameter files, start from the ones in the package nav2 bringup.
Let’s see some details on the configuration:

with ROS2

Programming Robot Behaviors with Behavior Trees � 143

• First, and most important, set all the parameters that contain a sensor topic
to the correct ones, and ensure that all the frames exist in our robot and are
correct.

• If the initial position is known, set it in the AMCL configuration. If you start
the robot in the same pose as you started when mapping, this is the (0, 0, 0)
position.

br2 navigation/params/tiago nav params

amcl:
ros__parameters:
scan_topic: scan_raw
set_initial_pose: true
initial_pose:
x: 0.0
y: 0.0
z: 0.0
yaw: 0.0

• Set the speeds and acceleration depending on the robot’s capabilities:

br2 navigation/params/tiago nav params

controller_server:
ros__parameters:
use_sim_time: False
FollowPath:
plugin: "dwb_core::DWBLocalPlanner"
min_vel_x: 0.0
min_vel_y: 0.0
max_vel_x: 0.3
max_vel_y: 0.0
max_vel_theta: 0.5
min_speed_xy: 0.0
max_speed_xy: 0.5
min_speed_theta: 0.0
acc_lim_x: 1.5
acc_lim_y: 0.0
acc_lim_theta: 2.2
decel_lim_x: -2.5
decel_lim_y: 0.0
decel_lim_theta: -3.2

• Set the robot radius to inflate walls and obstacles and a scaling factor in setting
how far navigate from them. These settings are held by the inflation layer
costmap plugin, applicable to local and global costmap:

br2 navigation/params/tiago nav params

local_costmap:
local_costmap:
ros__parameters:
robot_radius: 0.3
plugins: ["voxel_layer", "inflation_layer"]
inflation_layer:
plugin: "nav2_costmap_2d::InflationLayer"
cost_scaling_factor: 3.0
inflation_radius: 0.55

144 � A Concise Introduction to Robot Programming

6.3.3 Computation Graph and Behavior Tree

The Computation Graph (Figure 6.21) of this project is made up of the node
patrolling node and the nodes that belong to the two subsystems that are being
controlled: Nav2 and the active vision system developed in the last chapter.

• Nav2 is controlled using ROS2 actions, sending the goal poses that make up
the patrol route.

• Regarding the active vision system during navigation, the HeadController node,
a LifeCycleNode, will be activated (using ROS2 services).

• Also, upon arrival at a waypoint, to make the robot rotate on its own,
patrolling node will post velocities directly to the robot’s base.

/head_controller/joint_trajectory /head_controller/state /head_front_camera/rgb/image_raw

joint_command joint_state input_image

tracker ObjectDetector
10 Hz

HeadController

patrolling_node

/nav_vel

cmd_vel

/scan_raw

bt_navigator

controller_server planner_server amcl

recovery_server map_server

output_vel

Figure 6.21: Computation Graph for the Patrolling Project. Subsystems have been
simplified for clarity.

The patrolling node node in the Computation Graph is shown to be quite sim-
ple. Perhaps it is more interesting to analyze the Behavior Tree that it contains, which
is the one that controls its control logic. Figure 6.22 shows its complete structure.
Analyze each one of its action and condition nodes:

with ROS2

Programming Robot Behaviors with Behavior Trees � 145

• Move: This node is in charge of sending a navigation request to Nav2 through
a ROS2 action. The navigation goal is received through an input port, in its
goal port, which is a coordinate that contains an (x, y) position and a theta
orientation. This node returns RUNNING until it is informed that the naviga-
tion action is complete, in which case it returns SUCCESS. The case in which
it returns FAILURE has not been contemplated, although it would have been
convenient.

ReactiveSequence

Fallback

BatteryChecker
Sequence

GetWaypoint Move

wp_id=recharge
waypoint={recharge_wp}

goal={recharge_wp}
Recharge

Sequence

GetWaypoint

wp_id=next
waypoint={next_wp}

Parallel

TrackObjectsMove
goal={next_wp}

Patrol

to HeadController
to Nav2 to Nav2

to /nav_vel

success_thrld = 1
failure_thrld= 1

from /nav_vel

Figure 6.22: Behavior Tree for Patrolling project.

• GetWaypoint: This node is used to obtain the geometric coordinates used by
Move. It has a waypoint output port with the geometric coordinates, which are
then used by the BT node as input. The GetWayPoint input is an id indicating
which waypoint is desired. If this input is “recharge”, its output is the coor-
dinates of the recharge point. If the input is “next”, it returns the geometric
coordinates of the next waypoint to navigate.
This node exists because it simplifies the Behavior Tree since otherwise, the
right branch of the tree would have to be repeated three times, once for each
waypoint. The second is to delegate to another BT node the choice of the target
point and thus simplify Move, not needing to maintain the coordinates of all the
waypoints internally. There are many more alternatives, but this one is pretty
clean and scalable.

• BatteryChecker: This node simulates the battery level of the robot. It keeps
the battery level on the blackboard, decreasing over time and with the robot’s
movement (that is why it subscribes to the topic of commanded speeds). If the
battery level drops below a certain level, it returns FAILURE. If not, return
SUCCESS.

• Patrol: This node simply spins the robot around for a few seconds to control
the environment. When it has finished, it returns SUCCESS.

146 � A Concise Introduction to Robot Programming

• TrackObjects: This node always returns RUNNING. When it is first ticked,
it activates, if it was not already, the HeadController node. This node runs in
parallel with Move. The Parallel control node is configured so that when one of
the two (and it can only be Move) returns SUCCESS, it considers that the task
of all its children has finished, halting the nodes whose status is still RUNNING.
When TrackObjects receives a halt, it disables the HeadController.

6.3.4 Patrolling Implementation

The structure of the br2 bt patrolling package is similar to the one in the previous
section: it implements each BT node separately, in the usual places for class definitions
and declarations. It has a main program that creates the tree and executes it, and it
has some tests for each of the implemented BT nodes.

Package br2 bt patrolling

br2_bt_patrolling/
behavior_tree_xml

patrolling.xml
cmake

FindZMQ.cmake
CMakeLists.txt
include

br2_bt_patrolling
BatteryChecker.hpp
ctrl_support

BTActionNode.hpp
BTLifecycleCtrlNode.hpp

GetWaypoint.hpp
Move.hpp
Patrol.hpp
Recharge.hpp
TrackObjects.hpp

launch
patrolling.launch.py

package.xml
src

br2_bt_patrolling
BatteryChecker.cpp
GetWaypoint.cpp
Move.cpp
Patrol.cpp
Recharge.cpp
TrackObjects.cpp

patrolling_main.cpp
tests

bt_action_test.cpp
CMakeLists.txt

From an implementation point of view, the most interesting are two classes that
simplify the BT nodes that use ROS2 actions and those that activate a LifeCy-
cleNode. They are in include/br2 bt patrolling/ctrl support, and have been
implemented in a general way so that they can be reused for other projects.

The BTActionNode class has been borrowed from Nav2, where the BT Navigator
Server used it to control the rest of its servers. It is quite a complex class since
it considers many more cases than we use in this project, such as cancellation and
resends of actions. We do not want to go into details about its implementation. I
recommend the ROS2 actions tutorial on the official ROS2 page to learn more about
ROS2 actions. When completed, come back to this class to explore this class.

with ROS2

Programming Robot Behaviors with Behavior Trees � 147

BT nodes that wish to control a subsystem with ROS2 actions inherit this class.
Let’s analyze its interface to its derived class. Original comments will help us to
understand their utility:

include/br2 bt patrolling/ctrl support/BTActionNode.hpp

template<class ActionT, class NodeT = rclcpp::Node>
class BtActionNode : public BT::ActionNodeBase
{
public:
BtActionNode(
const std::string & xml_tag_name,
const std::string & action_name,
const BT::NodeConfiguration & conf)

: BT::ActionNodeBase(xml_tag_name, conf), action_name_(action_name)
{
node_ = config().blackboard->get<typename NodeT::SharedPtr>("node");
...

}

// Could do dynamic checks, such as getting updates to values on the blackboard
virtual void on_tick()
{
}

// Called upon successful completion of the action. A derived class can override this
// method to put a value on the blackboard, for example.
virtual BT::NodeStatus on_success()
{
return BT::NodeStatus::SUCCESS;

}

// Called when a the action is aborted. By default, the node will return FAILURE.
// The user may override it to return another value, instead.
virtual BT::NodeStatus on_aborted()
{
return BT::NodeStatus::FAILURE;

}

// The main override required by a BT action
BT::NodeStatus tick() override
{
...

}

// The other (optional) override required by a BT action. In this case, we
// make sure to cancel the ROS2 action if it is still running.
void halt() override
{
...

}
protected:
typename ActionT::Goal goal_;

};

It is a template class because each action has a different type. In the case of
Move, the action type is nav2 msgs/action/NavigateToPose. The class is also pa-
rameterized with the ROS2 node type because it may also be instantiated with
LifeCycleNodes.

The tick and halt methods are handled by class BtActionNode, so they should
not be defined in the derived class. The other methods can be overridden in the
derived class to do something, like notifying when the action completes or fails. The
derived class overrides on tick, which is called once at startup, to set the goal. Let’s
see the implementation of Move inheriting from BtActionNode:

148 � A Concise Introduction to Robot Programming

include/br2 bt patrolling/Move.hpp

class Move : public br2_bt_patrolling::BtActionNode<nav2_msgs::action::NavigateToPose>
{
public:
explicit Move(
const std::string & xml_tag_name,
const std::string & action_name,
const BT::NodeConfiguration & conf);

void on_tick() override;
BT::NodeStatus on_success() override;

static BT::PortsList providedPorts()
{
return {
BT::InputPort<geometry_msgs::msg::PoseStamped>("goal")

};
}

};

src/br2 bt patrolling/Move.cpp

Move::Move(
const std::string & xml_tag_name,
const std::string & action_name,
const BT::NodeConfiguration & conf)

: br2_bt_patrolling::BtActionNode<nav2_msgs::action::NavigateToPose>(xml_tag_name,
action_name, conf)

{
}

void
Move::on_tick()
{
geometry_msgs::msg::PoseStamped goal;
getInput("goal", goal);

goal_.pose = goal;
}

BT::NodeStatus
Move::on_success()
{
RCLCPP_INFO(node_->get_logger(), "navigation Suceeded");

return BT::NodeStatus::SUCCESS;
}

#include "behaviortree_cpp_v3/bt_factory.h"
BT_REGISTER_NODES(factory)
{
BT::NodeBuilder builder =
[](const std::string & name, const BT::NodeConfiguration & config)
{
return std::make_unique<br2_bt_patrolling::Move>(

name, "navigate_to_pose", config);
};

factory.registerBuilder<br2_bt_patrolling::Move>(
"Move", builder);

}

• The BT Node Move implements on success to report that the navigation has
finished.

• The on tick method gets the goal from the input port and assigns it to goal .
This variable will be the one that will be sent directly to Nav2.

with ROS2

Programming Robot Behaviors with Behavior Trees � 149

• When building this BT node, the second argument is the name of the ROS2
action. In the case of Nav2, it is navigate to pose.

BTLifecycleCtrlNode is a class from which a BT Node is derived to acti-
vate/deactivate LifeCycle nodes. It is created specifying the name of the node to
control. In the case of the HeadTracker, it will be with /head tracker. All Life-
CycleNodes have various services to be managed. In this, we will be interested in
two:

• [node name]/get state: Returns the status of a LifeCycleNode.

• [node name]/set state: Sets the state of a LifeCycleNode.

Let’s see code snippets of the BTLifecycleCtrlNode implementation:
include/br2 bt patrolling/ctrl support/BTLifecycleCtrlNode.hpp

class BtLifecycleCtrlNode : public BT::ActionNodeBase
{
public:
BtLifecycleCtrlNode(...)
: BT::ActionNodeBase(xml_tag_name, conf), ctrl_node_name_(node_name)
{
}

template<typename serviceT>
typename rclcpp::Client<serviceT>::SharedPtr createServiceClient(
const std::string & service_name)

{
auto srv = node_->create_client<serviceT>(service_name);
while (!srv->wait_for_service(1s)) {
...

}
return srv;

}

BT::NodeStatus tick() override
{
if (status() == BT::NodeStatus::IDLE) {
change_state_client_ = createServiceClient<lifecycle_msgs::srv::ChangeState>(
ctrl_node_name_ + "/change_state");

get_state_client_ = createServiceClient<lifecycle_msgs::srv::GetState>(
ctrl_node_name_ + "/get_state");

}

if (ctrl_node_state_ != lifecycle_msgs::msg::State::PRIMARY_STATE_ACTIVE) {
ctrl_node_state_ = get_state();
set_state(lifecycle_msgs::msg::State::PRIMARY_STATE_ACTIVE);

}

return BT::NodeStatus::RUNNING;
}

void halt() override
{
if (ctrl_node_state_ == lifecycle_msgs::msg::State::PRIMARY_STATE_ACTIVE) {
set_state(lifecycle_msgs::msg::State::PRIMARY_STATE_INACTIVE);

}
}

// Get the state of the controlled node
uint8_t get_state(){...}

// Get the state of the controlled node. Ot can fail, if not transition possible
bool set_state(uint8_t state) {...}

std::string ctrl_node_name_;
uint8_t ctrl_node_state_;

};

150 � A Concise Introduction to Robot Programming

Two clients are instantiated: one to query the state and one to set the state.
They will be used in get state and set state, respectively. When the node is first
ticked, the controlled node is requested to go to the active state. When halted, its
deactivation is requested.

The BT node TrackObjects only needs to inherit from this class by specifying the
name of the node:

include/br2 bt patrolling/TrackObjects.hpp

class TrackObjects : public br2_bt_patrolling::BtLifecycleCtrlNode
{
public:
explicit TrackObjects(
const std::string & xml_tag_name,
const std::string & node_name,
const BT::NodeConfiguration & conf);

static BT::PortsList providedPorts()
{
return BT::PortsList({});

}
};

src/br2 bt patrolling/TrackObjects.cpp

TrackObjects::TrackObjects(...)
: br2_bt_patrolling::BtLifecycleCtrlNode(xml_tag_name, action_name, conf)
{
}

#include "behaviortree_cpp_v3/bt_factory.h"
BT_REGISTER_NODES(factory)
{
BT::NodeBuilder builder =
[](const std::string & name, const BT::NodeConfiguration & config)
{
return std::make_unique<br2_bt_patrolling::TrackObjects>(
name, "/head_tracker", config);

};

factory.registerBuilder<br2_bt_patrolling::TrackObjects>(
"TrackObjects", builder);

}

Take into account that TrackObjects always returns RUNNING. That is why we
have used it as a child of a parallel control node.

Check out how the rest of the BT nodes functionality has been implemented:

• BatteryChecker: The first difference between this BT node and the others is
that it is a condition node. It does not have a halt method and cannot return
RUNNING.
This node checks the battery level stored on the blackboard at each tick. If it
is less than a certain level, it returns FAILURE.

with ROS2

Programming Robot Behaviors with Behavior Trees � 151

src/br2 bt patrolling/BatteryChecker.cpp

const float MIN_LEVEL = 10.0;

BT::NodeStatus
BatteryChecker::tick()
{
update_battery();

float battery_level;
config().blackboard->get("battery_level", battery_level);

if (battery_level < MIN_LEVEL) {
return BT::NodeStatus::FAILURE;

} else {
return BT::NodeStatus::SUCCESS;

}
}

The update battery method takes the battery level from the blackboard and
decreases it in the function of time and the total amount of speed (last twist)
currently requested. It is just a simulation of battery consumption.

src/br2 bt patrolling/BatteryChecker.cpp

const float DECAY_LEVEL = 0.5; // 0.5 * |vel| * dt
const float EPSILON = 0.01; // 0.01 * dt

void
BatteryChecker::update_battery()
{
float battery_level;
if (!config().blackboard->get("battery_level", battery_level)) {
battery_level = 100.0f;

}

float dt = (node_->now() - last_reading_time_).seconds();
last_reading_time_ = node_->now();

float vel = sqrt(last_twist_.linear.x * last_twist_.linear.x +
last_twist_.angular.z * last_twist_.angular.z);

battery_level = std::max(0.0f, battery_level - (vel * dt * DECAY_LEVEL) -
EPSILON * dt);

config().blackboard->set("battery_level", battery_level);
}

It is always useful to control de range of some calculus using std::max and
std::min. In this case, we control that battery level is never negative.

• Recharge: This BT node is related to the previous one. It takes some time to
recharge the battery. Note that using blackboard lets some nodes collaborate
to update and test some values.

src/br2 bt patrolling/BatteryChecker.cpp

BT::NodeStatus
Recharge::tick()
{
if (counter_++ < 50) {
return BT::NodeStatus::RUNNING;

} else {
counter_ = 0;
config().blackboard->set<float>("battery_level", 100.0f);
return BT::NodeStatus::SUCCESS;

}
}

152 � A Concise Introduction to Robot Programming

Each BT node in the tree is a different instance of the same class, but be
ready to be ticked even if the BT node returned once SUCCESS. In this case,
restarting counter to 0.

• Patrol: This node just makes the robot spin for 15 s. The only interesting
aspect of this node is how it controls how long executing since the first tick
until the it return SUCCESS. Take into account that a node status is IDLE
the first tick, so it’s possible to store this timestamp.

src/br2 bt patrolling/Patrol.cpp

BT::NodeStatus
Patrol::tick()
{
if (status() == BT::NodeStatus::IDLE) {
start_time_ = node_->now();

}

geometry_msgs::msg::Twist vel_msgs;
vel_msgs.angular.z = 0.5;
vel_pub_->publish(vel_msgs);

auto elapsed = node_->now() - start_time_;

if (elapsed < 15s) {
return BT::NodeStatus::RUNNING;

} else {
return BT::NodeStatus::SUCCESS;

}
}

• GetWaypoint: This node stores the waypoint coordinates. If the input port
wp id is the string “recharge”, its output is a coordinate, in frame map, cor-
responding to the position where it is supposed to be the robot charger. In
another case, each time it is ticked, it returns the coordinates of a different
waypoint.

src/br2 bt patrolling/GetWaypoint.cpp

GetWaypoint::GetWaypoint(...)
{
geometry_msgs::msg::PoseStamped wp;
wp.header.frame_id = "map";
wp.pose.orientation.w = 1.0;

// recharge wp
wp.pose.position.x = 3.67;
wp.pose.position.y = -0.24;
recharge_point_ = wp;

// wp1
wp.pose.position.x = 1.07;
wp.pose.position.y = -12.38;
waypoints_.push_back(wp);

// wp2
wp.pose.position.x = -5.32;
wp.pose.position.y = -8.85;
waypoints_.push_back(wp);

}

with ROS2

Programming Robot Behaviors with Behavior Trees � 153

src/br2 bt patrolling/GetWaypoint.cpp

BT::NodeStatus
GetWaypoint::tick()
{
std::string id;
getInput("wp_id", id);

if (id == "recharge") {
setOutput("waypoint", recharge_point_);

} else {
setOutput("waypoint", waypoints_[current_++]);
current_ = current_ % waypoints_.size();

}

return BT::NodeStatus::SUCCESS;
}

6.3.5 Running Patrolling

From an implementation point of view, the only relevant thing is that we will use
a launcher for the active vision system and the patrolling node. Navigation and the
simulator could have been included in the launcher, but they generate so much output
on the screen that we run them manually in other terminals. The launcher looks like
this:
br2 navigation/launch/patrolling launch.py

def generate_launch_description():
tracking_dir = get_package_share_directory('br2_tracking')

tracking_cmd = IncludeLaunchDescription(
PythonLaunchDescriptionSource(os.path.join(tracking_dir, 'launch',
'tracking.launch.py')))

patrolling_cmd = Node(
package='br2_bt_patrolling',
executable='patrolling_main',
parameters=[{

'use_sim_time': True
}],
remappings=[
('input_scan', '/scan_raw'),
('output_vel', '/nav_vel')

],
output='screen'

)

ld = LaunchDescription()
ld.add_action(tracking_cmd)
ld.add_action(patrolling_cmd)

return ld

So type these commands, each one in a separate terminal:
$ ros2 launch br2 tiago sim.launch.py

$ ros2 launch br2 navigation tiago navigation.launch.py

Nav2 also uses Behavior Trees and activates a server to debug its operation with
Groot. It does this on Groot’s default ports (1666 and 1667). For this reason, we have
started it in 2666 and 2667. If we put them on the same, the program would fail.

154 � A Concise Introduction to Robot Programming

Before connecting to the patrolling Behavior Tree, correctly set the ports to 2666 and
2667.

src/patrolling main.cpp

BT::Tree tree = factory.createTreeFromFile(xml_file, blackboard);
auto publisher_zmq = std::make_shared<BT::PublisherZMQ>(tree, 10, 2666, 2667);

At this point, optionally open RViz2 to monitor navigation or Groot to monitor
Behavior Tree execution. For the latter, wait to launch the patrol program to connect
to the Behavior Tree:
$ rviz2 --ros-args -p use sim time:=true

Try sending a navigation position to make sure the navigation starts correctly.
$ ros2 run groot Groot

Finally, launch the patrol program together with the active vision system:
$ ros2 launch br2 bt patrolling patrolling.launch.py

If everything has gone well, the robot, after recharging its battery, patrols the
three waypoints established in the environment. While patrolling, observe how the
robot tracks the objects it detects. When it reaches a waypoint and turns around,
notice how tracking is no longer active. After a while of operation, the robot will run
out of battery again, going to the recharging point again before continuing patrolling.

PROPOSED EXERCISES:

1. Make a program using Behavior Trees that makes the robot move continuously
to the space without obstacles.

2. Explore the Nav2 functionality:

• Mark forbidden areas in the center of each room in which the robot should
not enter.
• Modify the Behavior tree inside BT Navigator to finish navigation always

one meter before the goal.
• Try different Controller/Planner algorithms.

3. Publish the detected objects while patrolling as a 3D bounding box. You could
do it by:

• Using the pointcloud.
• Using the depth image and the CameraInfo information. Like is done in:

https://github.com/gentlebots/gb perception/blob/main/
gb perception utils/src/gb perception utils/Perceptor3D.cpp

with ROS2

https://github.com
https://github.com

A P P E N D I X A

Source Code

Complete list of source code used in the book, also available in:

https://github.com/fmrico/book ros2

A.1 PACKAGE BR2 BASICS
Package br2 basics

br2_basics
CMakeLists.txt
config

params.yaml
launch

includer_launch.py
param_node_v1_launch.py
param_node_v2_launch.py
pub_sub_v1_launch.py
pub_sub_v2_launch.py

package.xml
src

executors.cpp
logger_class.cpp
logger.cpp
param_reader.cpp
publisher_class.cpp
publisher.cpp
subscriber_class.cpp

DOI: 10.1201/9781003289623-A 155

https://github.com
https://doi.org/10.1201/9781003289623-A

156 � A Concise Introduction to Robot Programming

br2 basics/CMakeLists.txt

cmake_minimum_required(VERSION 3.5)
project(br2_basics)

find_package(ament_cmake REQUIRED)
find_package(rclcpp REQUIRED)
find_package(std_msgs REQUIRED)

set(dependencies
rclcpp
std_msgs

)

add_executable(publisher src/publisher.cpp)
ament_target_dependencies(publisher ${dependencies})

add_executable(publisher_class src/publisher_class.cpp)
ament_target_dependencies(publisher_class ${dependencies})

add_executable(subscriber_class src/subscriber_class.cpp)
ament_target_dependencies(subscriber_class ${dependencies})

add_executable(executors src/executors.cpp)
ament_target_dependencies(executors ${dependencies})

add_executable(logger src/logger.cpp)
ament_target_dependencies(logger ${dependencies})

add_executable(logger_class src/logger_class.cpp)
ament_target_dependencies(logger_class ${dependencies})

add_executable(param_reader src/param_reader.cpp)
ament_target_dependencies(param_reader ${dependencies})

install(TARGETS
publisher
publisher_class
subscriber_class
executors
logger
logger_class
param_reader
ARCHIVE DESTINATION lib
LIBRARY DESTINATION lib
RUNTIME DESTINATION lib/${PROJECT_NAME}

)

install(DIRECTORY launch config DESTINATION share/${PROJECT_NAME})

if(BUILD_TESTING)
find_package(ament_lint_auto REQUIRED)
ament_lint_auto_find_test_dependencies()

endif()

ament_export_dependencies(${dependencies})
ament_package()

with ROS2

Source Code � 157

br2 basics/launch/param node v2 launch.py

import os

from ament_index_python.packages import get_package_share_directory

from launch import LaunchDescription
from launch_ros.actions import Node

def generate_launch_description():

pkg_dir = get_package_share_directory('basics')
param_file = os.path.join(pkg_dir, 'config', 'params.yaml')

param_reader_cmd = Node(
package='basics',
executable='param_reader',
parameters=[param_file],
output='screen'

)

ld = LaunchDescription()
ld.add_action(param_reader_cmd)

return ld

br2 basics/launch/pub sub v2 launch.py

from launch import LaunchDescription
from launch_ros.actions import Node

def generate_launch_description():

return LaunchDescription([
Node(
package='basics',
executable='publisher',
output='screen'

),
Node(
package='basics',
executable='subscriber_class',
output='screen'

)
])

br2 basics/launch/pub sub v1 launch.py

from launch import LaunchDescription
from launch_ros.actions import Node

def generate_launch_description():

pub_cmd = Node(
package='basics',
executable='publisher',
output='screen'

)
sub_cmd = Node(
package='basics',
executable='subscriber_class',
output='screen'

)

ld = LaunchDescription()
ld.add_action(pub_cmd)
ld.add_action(sub_cmd)

return ld

158 � A Concise Introduction to Robot Programming

br2 basics/launch/includer launch.py

import os

from ament_index_python.packages import get_package_share_directory
from launch import LaunchDescription
from launch.actions import IncludeLaunchDescription
from launch.launch_description_sources import PythonLaunchDescriptionSource

def generate_launch_description():

return LaunchDescription([
IncludeLaunchDescription(
PythonLaunchDescriptionSource(os.path.join(
get_package_share_directory('basics'),

'launch',
'pub_sub_v2_launch.py'))

)
])

br2 basics/launch/param node v1 launch.py

from launch import LaunchDescription
from launch_ros.actions import Node

def generate_launch_description():

param_reader_cmd = Node(
package='basics',
executable='param_reader',
parameters=[{

'particles': 300,
'topics': ['scan', 'image'],
'topic_types': ['sensor_msgs/msg/LaserScan', 'sensor_msgs/msg/Image']

}],
output='screen'

)

ld = LaunchDescription()
ld.add_action(param_reader_cmd)

return ld

br2 basics/package.xml

<?xml version="1.0"?>
<?xml-model href="http://download.ros.org/schema/package_format3.xsd"

schematypens="http://www.w3.org/2001/XMLSchema"?>
<package format="3">
<name>br2_basics</name>
<version>0.0.0</version>
<description>Basic nodes for ROS2 introduction</description>
<maintainer email="fmrico@gmail.com">Francisco Martin</maintainer>
<license>Apache 2</license>

<buildtool_depend>ament_cmake</buildtool_depend>

<depend>rclcpp</depend>
<depend>std_msgs</depend>

<test_depend>ament_lint_auto</test_depend>
<test_depend>ament_lint_common</test_depend>

<export>
<build_type>ament_cmake</build_type>

</export>

with ROS2

mailto:fmrico@gmail.com
http://download.ros.org
http://www.w3.org

Source Code � 159

br2 basics/config/params.yaml

localization_node:
ros__parameters:
number_particles: 300
topics: [scan, image]
topic_types: [sensor_msgs/msg/LaserScan, sensor_msgs/msg/Image]

br2 basics/src/logger class.cpp

#include "rclcpp/rclcpp.hpp"

using namespace std::chrono_literals;

class LoggerNode : public rclcpp::Node
{
public:

LoggerNode() : Node("logger_node")
{
counter_ = 0;
timer_ = create_wall_timer(
500ms, std::bind(&LoggerNode::timer_callback, this));

}

void timer_callback()
{
RCLCPP_INFO(get_logger(), "Hello %d", counter_++);

}

private:
rclcpp::TimerBase::SharedPtr timer_;
int counter_;

};

int main(int argc, char * argv[]) {
rclcpp::init(argc, argv);

auto node = std::make_shared<LoggerNode>();

rclcpp::spin(node);

rclcpp::shutdown();
return 0;

br2 basics/src/subscriber class.cpp

#include "rclcpp/rclcpp.hpp"
#include "std_msgs/msg/int32.hpp"

using std::placeholders::_1;

class SubscriberNode : public rclcpp::Node
{
public:

SubscriberNode() : Node("subscriber_node")
{
subscriber_ = create_subscription<std_msgs::msg::Int32>("int_topic", 10,
std::bind(&SubscriberNode::callback, this, _1));

}

void callback(const std_msgs::msg::Int32::SharedPtr msg)
{
RCLCPP_INFO(get_logger(), "Hello %d", msg->data);

}

160 � A Concise Introduction to Robot Programming

br2 basics/src/subscriber class.cpp

private:
rclcpp::Subscription<std_msgs::msg::Int32>::SharedPtr subscriber_;

};

int main(int argc, char * argv[]) {
rclcpp::init(argc, argv);

auto node = std::make_shared<SubscriberNode>();

rclcpp::spin(node);

rclcpp::shutdown();
return 0;

br2 basics/src/publisher.cpp

#include "rclcpp/rclcpp.hpp"
#include "std_msgs/msg/int32.hpp"

using namespace std::chrono_literals;

int main(int argc, char * argv[]) {
rclcpp::init(argc, argv);

auto node = rclcpp::Node::make_shared("publisher_node");
auto publisher = node->create_publisher<std_msgs::msg::Int32>(
"int_topic", 10);

std_msgs::msg::Int32 message;
message.data = 0;

rclcpp::Rate loop_rate(500ms);
while (rclcpp::ok()) {
message.data += 1;
publisher->publish(message);

rclcpp::spin_some(node);
loop_rate.sleep();

}

rclcpp::shutdown();
return 0;

br2 basics/src/param reader.cpp

#include <vector>
#include <string>

#include "rclcpp/rclcpp.hpp"

class LocalizationNode : public rclcpp::Node
{
public:

LocalizationNode() : Node("localization_node")
{
declare_parameter<int>("number_particles", 200);
declare_parameter<std::vector<std::string>>("topics", {});
declare_parameter<std::vector<std::string>>("topic_types", {});

get_parameter("number_particles", num_particles_);
RCLCPP_INFO_STREAM(get_logger(), "Number of particles: " << num_particles_);

get_parameter("topics", topics_);
get_parameter("topic_types", topic_types_);

with ROS2

Source Code � 161

br2 basics/src/param reader.cpp

if (topics_.size() != topic_types_.size()) {
RCLCPP_ERROR(get_logger(), "Number of topics (%zu) != number of types (%zu)",
topics_.size(), topic_types_.size());

} else {
RCLCPP_INFO_STREAM(get_logger(), "Number of topics: " << topics_.size());
for (size_t i = 0; i < topics_.size(); i++) {
RCLCPP_INFO_STREAM(get_logger(), "\t" << topics_[i] << "\t - " << topic_types_[i]);

}
}

}

private:
int num_particles_;
std::vector<std::string> topics_;
std::vector<std::string> topic_types_;

};

int main(int argc, char * argv[]) {
rclcpp::init(argc, argv);

auto node = std::make_shared<LocalizationNode>();

rclcpp::spin(node);

rclcpp::shutdown();
return 0;

}

br2 basics/src/executors.cpp

#include "rclcpp/rclcpp.hpp"

#include "std_msgs/msg/int32.hpp"

using namespace std::chrono_literals;
using std::placeholders::_1;

class PublisherNode : public rclcpp::Node
{
public:

PublisherNode() : Node("publisher_node")
{
publisher_ = create_publisher<std_msgs::msg::Int32>("int_topic", 10);
timer_ = create_wall_timer(
500ms, std::bind(&PublisherNode::timer_callback, this));

}

void timer_callback()
{
message_.data += 1;
publisher_->publish(message_);

}

162 � A Concise Introduction to Robot Programming

br2 basics/src/executors.cpp

private:
rclcpp::Publisher<std_msgs::msg::Int32>::SharedPtr publisher_;
rclcpp::TimerBase::SharedPtr timer_;
std_msgs::msg::Int32 message_;

};

class SubscriberNode : public rclcpp::Node
{
public:

SubscriberNode() : Node("subscriber_node")
{
subscriber_ = create_subscription<std_msgs::msg::Int32>("int_topic", 10,
std::bind(&SubscriberNode::callback, this, _1));

}

void callback(const std_msgs::msg::Int32::SharedPtr msg)
{
RCLCPP_INFO(get_logger(), "Hello %d", msg->data);

}

private:
rclcpp::Subscription<std_msgs::msg::Int32>::SharedPtr subscriber_;

};

int main(int argc, char * argv[]) {
rclcpp::init(argc, argv);

auto node_pub = std::make_shared<PublisherNode>();
auto node_sub = std::make_shared<SubscriberNode>();

rclcpp::executors::SingleThreadedExecutor executor;
// rclcpp::executors::MultiThreadedExecutor executor(
// rclcpp::executor::ExecutorArgs(), 8);

executor.add_node(node_pub);
executor.add_node(node_sub);

executor.spin();

rclcpp::shutdown();
return 0;

br2 basics/src/publisher class.cpp

#include "rclcpp/rclcpp.hpp"

#include "std_msgs/msg/int32.hpp"

using namespace std::chrono_literals;
using std::placeholders::_1;

class PublisherNode : public rclcpp::Node
{
public:

PublisherNode() : Node("publisher_node")
{
publisher_ = create_publisher<std_msgs::msg::Int32>("int_topic", 10);
timer_ = create_wall_timer(
500ms, std::bind(&PublisherNode::timer_callback, this));

}

void timer_callback()
{
message_.data += 1;
publisher_->publish(message_);

}

with ROS2

Source Code � 163

br2 basics/src/publisher class.cpp

private:
rclcpp::Publisher<std_msgs::msg::Int32>::SharedPtr publisher_;
rclcpp::TimerBase::SharedPtr timer_;
std_msgs::msg::Int32 message_;

};

int main(int argc, char * argv[]) {
rclcpp::init(argc, argv);

auto node = std::make_shared<PublisherNode>();

rclcpp::spin(node);

rclcpp::shutdown();
return 0;

br2 basics/src/logger.cpp

#include "rclcpp/rclcpp.hpp"

using namespace std::chrono_literals;

int main(int argc, char * argv[]) {
rclcpp::init(argc, argv);

auto node = rclcpp::Node::make_shared("logger_node");

rclcpp::Rate loop_rate(500ms);
int counter = 0;
while (rclcpp::ok()) {
RCLCPP_INFO(node->get_logger(), "Hello %d", counter++);

rclcpp::spin_some(node);
loop_rate.sleep();

}

rclcpp::shutdown();
return 0;

A.2 PACKAGE BR2 FSM BUMPGO CPP
Package br2 fsm bumpgo cpp

br2_fsm_bumpgo_cpp
CMakeLists.txt
include

br2_fsm_bumpgo_cpp
BumpGoNode.hpp

launch
bump_and_go.launch.py

package.xml
src

br2_fsm_bumpgo_cpp
BumpGoNode.cpp

164 � A Concise Introduction to Robot Programming

br2 fsm bumpgo cpp/CMakeLists.txt

cmake_minimum_required(VERSION 3.5)
project(br2_fsm_bumpgo_cpp)

set(CMAKE_CXX_STANDARD 17)

find_package(ament_cmake REQUIRED)
find_package(rclcpp REQUIRED)
find_package(sensor_msgs REQUIRED)
find_package(geometry_msgs REQUIRED)

set(dependencies
rclcpp
sensor_msgs
geometry_msgs

)

include_directories(include)

add_executable(bumpgo
src/br2_fsm_bumpgo_cpp/BumpGoNode.cpp
src/bumpgo_main.cpp

)
ament_target_dependencies(bumpgo ${dependencies})

install(TARGETS
bumpgo
ARCHIVE DESTINATION lib
LIBRARY DESTINATION lib
RUNTIME DESTINATION lib/${PROJECT_NAME}

)

install(DIRECTORY launch DESTINATION share/${PROJECT_NAME})

if(BUILD_TESTING)
find_package(ament_lint_auto REQUIRED)
ament_lint_auto_find_test_dependencies()

set(ament_cmake_cpplint_FOUND TRUE)
ament_lint_auto_find_test_dependencies()

endif()

ament_package()

br2 fsm bumpgo cpp/launch/bump and go.launch.py

from launch import LaunchDescription
from launch_ros.actions import Node

def generate_launch_description():

bumpgo_cmd = Node(package='br2_fsm_bumpgo_cpp',
executable='bumpgo',
output='screen',
parameters=[{

'use_sim_time': True
}],
remappings=[
('input_scan', '/scan_raw'),
('output_vel', '/nav_vel')

])

ld = LaunchDescription()
ld.add_action(bumpgo_cmd)

return ld

with ROS2

Source Code � 165

br2 fsm bumpgo cpp/package.xml

<?xml version="1.0"?>
<?xml-model href="http://download.ros.org/schema/package_format3.xsd"

schematypens="http://www.w3.org/2001/XMLSchema"?>
<package format="3">

<name>br2_fsm_bumpgo_cpp</name>
<version>0.1.0</version>
<description>in C++</description>
<maintainer email="fmrico@gmail.com">Francisco Martin</maintainer>
<license>Apache 2.0</license>

<buildtool_depend>ament_cmake</buildtool_depend>

<depend>rclcpp</depend>
<depend>geometry_msgs</depend>
<depend>sensor_msgs</depend>

<test_depend>ament_lint_auto</test_depend>
<test_depend>ament_lint_common</test_depend>

<export>
<build_type>ament_cmake</build_type>

</export>
</package>

br2 fsm bumpgo cpp/include/br2 fsm bumpgo cpp/BumpGoNode.hpp

#ifndef BR2_BT_BUMPGO__BUMPGONODE_HPP_
#define BR2_BT_BUMPGO__BUMPGONODE_HPP_

#include "sensor_msgs/msg/laser_scan.hpp"
#include "geometry_msgs/msg/twist.hpp"

#include "rclcpp/rclcpp.hpp"

namespace br2_fsm_bumpgo_cpp
{

using namespace std::chrono_literals;

class BumpGoNode : public rclcpp::Node
{
public:

BumpGoNode();

private:
void scan_callback(sensor_msgs::msg::LaserScan::UniquePtr msg);
void control_cycle();

static const int FORWARD = 0;
static const int BACK = 1;
static const int TURN = 2;
static const int STOP = 3;
int state_;
rclcpp::Time state_ts_;

void go_state(int new_state);
bool check_forward_2_back();
bool check_forward_2_stop();
bool check_back_2_turn();
bool check_turn_2_forward();
bool check_stop_2_forward();

const rclcpp::Duration TURNING_TIME {2s};
const rclcpp::Duration BACKING_TIME {2s};
const rclcpp::Duration SCAN_TIMEOUT {1s};

mailto:fmrico@gmail.com
http://download.ros.org
http://www.w3.org

166 � A Concise Introduction to Robot Programming

br2 fsm bumpgo cpp/include/br2 fsm bumpgo cpp/BumpGoNode.hpp

static constexpr float SPEED_LINEAR = 0.3f;
static constexpr float SPEED_ANGULAR = 0.3f;
static constexpr float OBSTACLE_DISTANCE = 1.0f;

rclcpp::Subscription<sensor_msgs::msg::LaserScan>::SharedPtr scan_sub_;
rclcpp::Publisher<geometry_msgs::msg::Twist>::SharedPtr vel_pub_;
rclcpp::TimerBase::SharedPtr timer_;

sensor_msgs::msg::LaserScan::UniquePtr last_scan_;
};

} // namespace br2_fsm_bumpgo_cpp

#endif // BR2_BT_BUMPGO__BUMPGONODE_HPP_

br2 fsm bumpgo cpp/src/bumpgo main.cpp

#include <memory>

#include "br2_fsm_bumpgo_cpp/BumpGoNode.hpp"
#include "rclcpp/rclcpp.hpp"

int main(int argc, char * argv[])
{

rclcpp::init(argc, argv);

auto bumpgo_node = std::make_shared<br2_fsm_bumpgo_cpp::BumpGoNode>();
rclcpp::spin(bumpgo_node);

rclcpp::shutdown();

return 0;
}

br2 fsm bumpgo cpp/src/br2 fsm bumpgo cpp/BumpGoNode.cpp

#include <utility>
#include "br2_fsm_bumpgo_cpp/BumpGoNode.hpp"

#include "sensor_msgs/msg/laser_scan.hpp"
#include "geometry_msgs/msg/twist.hpp"

#include "rclcpp/rclcpp.hpp"

namespace br2_fsm_bumpgo_cpp
{

using namespace std::chrono_literals;
using std::placeholders::_1;

BumpGoNode::BumpGoNode()
: Node("bump_go"),

state_(FORWARD)
{

scan_sub_ = create_subscription<sensor_msgs::msg::LaserScan>(
"input_scan", rclcpp::SensorDataQoS(),
std::bind(&BumpGoNode::scan_callback, this, _1));

vel_pub_ = create_publisher<geometry_msgs::msg::Twist>("output_vel", 10);
timer_ = create_wall_timer(50ms, std::bind(&BumpGoNode::control_cycle, this));

state_ts_ = now();
}

void
BumpGoNode::scan_callback(sensor_msgs::msg::LaserScan::UniquePtr msg)
{

last_scan_ = std::move(msg);
}

with ROS2

Source Code � 167

br2 fsm bumpgo cpp/src/br2 fsm bumpgo cpp/BumpGoNode.cpp

void
BumpGoNode::control_cycle()
{

// Do nothing until the first sensor read
if (last_scan_ == nullptr)
return;

geometry_msgs::msg::Twist out_vel;

switch (state_) {
case FORWARD:
out_vel.linear.x = SPEED_LINEAR;

if (check_forward_2_stop())
go_state(STOP);

if (check_forward_2_back())
go_state(BACK);

break;
case BACK:
out_vel.linear.x = -SPEED_LINEAR;

if (check_back_2_turn())
go_state(TURN);

break;
case TURN:
out_vel.angular.z = SPEED_ANGULAR;

if (check_turn_2_forward())
go_state(FORWARD);

break;
case STOP:
if (check_stop_2_forward())
go_state(FORWARD);

break;
}

vel_pub_->publish(out_vel);
}

void
BumpGoNode::go_state(int new_state)
{

state_ = new_state;
state_ts_ = now();

}

bool
BumpGoNode::check_forward_2_back()
{

// going forward when deteting an obstacle
// at 0.5 meters with the front laser read
size_t pos = last_scan_->ranges.size() / 2;
return last_scan_->ranges[pos] < OBSTACLE_DISTANCE;

}

bool
BumpGoNode::check_forward_2_stop()
{

// Stop if no sensor readings for 1 second
auto elapsed = now() - rclcpp::Time(last_scan_->header.stamp);
return elapsed > SCAN_TIMEOUT;

}

bool
BumpGoNode::check_stop_2_forward()
{

// Going forward if sensor readings are available
// again
auto elapsed = now() - rclcpp::Time(last_scan_->header.stamp);
return elapsed < SCAN_TIMEOUT;

}

168 � A Concise Introduction to Robot Programming

br2 fsm bumpgo cpp/src/br2 fsm bumpgo cpp/BumpGoNode.cpp

bool
BumpGoNode::check_back_2_turn()
{

// Going back for 2 seconds
return (now() - state_ts_) > BACKING_TIME;

}

bool
BumpGoNode::check_turn_2_forward()
{

// Turning for 2 seconds
return (now() - state_ts_) > TURNING_TIME;

}

A.3 PACKAGE BR2 FSM BUMPGO PY
Package br2 fsm bumpgo py

br2_fsm_bumpgo_py
br2_fsm_bumpgo_py

bump_go_main.py
__init__.py

launch
bump_and_go.launch.py

package.xml
resource

br2_fsm_bumpgo_py
setup.cfg
setup.py
test

test_copyright.py
test_flake8.py
test_pep257.py

br2 fsm bumpgo py/launch/bump and go.launch.py

from launch import LaunchDescription
from launch_ros.actions import Node

def generate_launch_description():

kobuki_cmd = Node(package='br2_fsm_bumpgo_py',
executable='bump_go_main',
output='screen',
parameters=[{

'use_sim_time': True
}],
remappings=[
('input_scan', '/scan_raw'),
('output_vel', '/nav_vel')

])

ld = LaunchDescription()
ld.add_action(kobuki_cmd)

return ld

with ROS2

Source Code � 169

br2 fsm bumpgo py/package.xml

<?xml version="1.0"?>
<?xml-model href="http://download.ros.org/schema/package_format3.xsd"

schematypens="http://www.w3.org/2001/XMLSchema"?>
<package format="3">

<name>br2_fsm_bumpgo_py</name>
<version>0.0.0</version>
<description>Bump and Go behavior based on Finite State Machines in Python</description>
<maintainer email="fmrico@gmail.com">Francisco Martin</maintainer>
<license>Apache 2.0</license>

<depend>rclcpy</depend>
<depend>sensor_msgs</depend>
<depend>geometry_msgs</depend>

<test_depend>ament_copyright</test_depend>
<test_depend>ament_flake8</test_depend>
<test_depend>ament_pep257</test_depend>
<test_depend>python3-pytest</test_depend>

<export>
<build_type>ament_python</build_type>

</export>
</package>

br2 fsm bumpgo py/setup.py

import os
from glob import glob

from setuptools import setup

package_name = 'br2_fsm_bumpgo_py'

setup(
name=package_name,
version='0.0.0',
packages=[package_name],
data_files=[

('share/ament_index/resource_index/packages',
['resource/' + package_name]),

('share/' + package_name, ['package.xml']),
(os.path.join('share', package_name, 'launch'), glob('launch/*.launch.py'))

],
install_requires=['setuptools'],
zip_safe=True,
maintainer='fmrico',
maintainer_email='fmrico@gmail.com',
description='Bump and Go behavior based on Finite State Machines in Python',
license='Apache 2.0',
tests_require=['pytest'],
entry_points={

'console_scripts': [
'bump_go_main = br2_fsm_bumpgo_py.bump_go_main:main'

],
},

)

mailto:fmrico@gmail.com
mailto:fmrico@gmail.com
http://download.ros.org
http://www.w3.org

170 � A Concise Introduction to Robot Programming

br2 fsm bumpgo py/bump go py.py

import rclpy

from rclpy.duration import Duration
from rclpy.node import Node
from rclpy.qos import qos_profile_sensor_data
from rclpy.time import Time

from geometry_msgs.msg import Twist
from sensor_msgs.msg import LaserScan

class BumpGoNode(Node):
def __init__(self):

super().__init__('bump_go')

self.FORWARD = 0
self.BACK = 1
self.TURN = 2
self.STOP = 3
self.state = self.FORWARD
self.state_ts = self.get_clock().now()

self.TURNING_TIME = 2.0
self.BACKING_TIME = 2.0
self.SCAN_TIMEOUT = 1.0

self.SPEED_LINEAR = 0.3
self.SPEED_ANGULAR = 0.3
self.OBSTACLE_DISTANCE = 1.0

self.last_scan = None

self.scan_sub = self.create_subscription(
LaserScan,
'input_scan',
self.scan_callback,
qos_profile_sensor_data)

self.vel_pub = self.create_publisher(Twist, 'output_vel', 10)
self.timer = self.create_timer(0.05, self.control_cycle)

def scan_callback(self, msg):
self.last_scan = msg

def control_cycle(self):
if self.last_scan is None:

return

out_vel = Twist()

if self.state == self.FORWARD:
out_vel.linear.x = self.SPEED_LINEAR

if self.check_forward_2_stop():
self.go_state(self.STOP)

if self.check_forward_2_back():
self.go_state(self.BACK)

elif self.state == self.BACK:
out_vel.linear.x = -self.SPEED_LINEAR

if self.check_back_2_turn():
self.go_state(self.TURN)

elif self.state == self.TURN:
out_vel.angular.z = self.SPEED_ANGULAR

if self.check_turn_2_forward():
self.go_state(self.FORWARD)

elif self.state == self.STOP:
if self.check_stop_2_forward():
self.go_state(self.FORWARD)

self.vel_pub.publish(out_vel)

def go_state(self, new_state):
self.state = new_state
self.state_ts = self.get_clock().now()

with ROS2

Source Code � 171

br2 fsm bumpgo py/setup.py

def check_forward_2_back(self):
pos = round(len(self.last_scan.ranges) / 2)
return self.last_scan.ranges[pos] < self.OBSTACLE_DISTANCE

def check_forward_2_stop(self):
elapsed = self.get_clock().now() - Time.from_msg(self.last_scan.header.stamp)
return elapsed > Duration(seconds=self.SCAN_TIMEOUT)

def check_stop_2_forward(self):
elapsed = self.get_clock().now() - Time.from_msg(self.last_scan.header.stamp)
return elapsed < Duration(seconds=self.SCAN_TIMEOUT)

def check_back_2_turn(self):
elapsed = self.get_clock().now() - self.state_ts
return elapsed > Duration(seconds=self.BACKING_TIME)

def check_turn_2_forward(self):
elapsed = self.get_clock().now() - self.state_ts
return elapsed > Duration(seconds=self.TURNING_TIME)

def main(args=None):
rclpy.init(args=args)

bump_go_node = BumpGoNode()

rclpy.spin(bump_go_node)

bump_go_node.destroy_node()
rclpy.shutdown()

if __name__ == '__main__':
main()

A.4 PACKAGE BR2 TF2 DETECTOR
Package br2 tf2 detector

br2_tf2_detector
CMakeLists.txt
include

br2_tf2_detector
ObstacleDetectorImprovedNode.hpp
ObstacleDetectorNode.hpp
ObstacleMonitorNode.hpp

launch
detector_basic.launch.py
detector_improved.launch.py

package.xml
src

br2_tf2_detector
ObstacleDetectorImprovedNode.cpp
ObstacleDetectorNode.cpp
ObstacleMonitorNode.cpp

detector_improved_main.cpp

172 � A Concise Introduction to Robot Programming

br2 tf2 detector/CMakeLists.txt

cmake_minimum_required(VERSION 3.5)
project(br2_tf2_detector)

set(CMAKE_CXX_STANDARD 17)

find dependencies
find_package(ament_cmake REQUIRED)
find_package(rclcpp REQUIRED)
find_package(tf2_ros REQUIRED)
find_package(geometry_msgs REQUIRED)
find_package(sensor_msgs REQUIRED)
find_package(visualization_msgs REQUIRED)

set(dependencies
rclcpp
tf2_ros
geometry_msgs
sensor_msgs
visualization_msgs

)

include_directories(include)

add_library(${PROJECT_NAME} SHARED
src/br2_tf2_detector/ObstacleDetectorNode.cpp
src/br2_tf2_detector/ObstacleMonitorNode.cpp
src/br2_tf2_detector/ObstacleDetectorImprovedNode.cpp

)
ament_target_dependencies(${PROJECT_NAME} ${dependencies})

add_executable(detector src/detector_main.cpp)
ament_target_dependencies(detector ${dependencies})
target_link_libraries(detector ${PROJECT_NAME})

add_executable(detector_improved src/detector_improved_main.cpp)
ament_target_dependencies(detector_improved ${dependencies})
target_link_libraries(detector_improved ${PROJECT_NAME})

install(TARGETS
${PROJECT_NAME}
detector
detector_improved
ARCHIVE DESTINATION lib
LIBRARY DESTINATION lib
RUNTIME DESTINATION lib/${PROJECT_NAME}

)

install(DIRECTORY launch DESTINATION share/${PROJECT_NAME})

if(BUILD_TESTING)
find_package(ament_lint_auto REQUIRED)
ament_lint_auto_find_test_dependencies()

endif()

ament_package()

with ROS2

Source Code � 173

br2 tf2 detector/launch/detector improved.launch.py

from launch import LaunchDescription
from launch_ros.actions import Node

def generate_launch_description():

detector_cmd = Node(package='br2_tf2_detector',
executable='detector_improved',
output='screen',
parameters=[{

'use_sim_time': True
}],
remappings=[
('input_scan', '/scan_raw')

])

ld = LaunchDescription()
ld.add_action(detector_cmd)

return ld

br2 tf2 detector/launch/detector basic.launch.py

from launch import LaunchDescription
from launch_ros.actions import Node

def generate_launch_description():

detector_cmd = Node(package='br2_tf2_detector',
executable='detector',
output='screen',
parameters=[{

'use_sim_time': True
}],
remappings=[
('input_scan', '/scan_raw')

])

ld = LaunchDescription()
ld.add_action(detector_cmd)

return ld

174 � A Concise Introduction to Robot Programming

br2 tf2 detector/package.xml

<?xml version="1.0"?>
<?xml-model href="http://download.ros.org/schema/package_format3.xsd"

schematypens="http://www.w3.org/2001/XMLSchema"?>
<package format="3">
<name>br2_tf2_detector</name>
<version>0.0.0</version>
<description>TF detector package</description>
<maintainer email="fmrico@gmail.com">Francisco Martı́n</maintainer>
<license>Apache 2.0</license>

<buildtool_depend>ament_cmake</buildtool_depend>

<depend>rclcpp</depend>
<depend>tf2_ros</depend>
<depend>geometry_msgs</depend>
<depend>sensor_msgs</depend>

<test_depend>ament_lint_auto</test_depend>
<test_depend>ament_lint_common</test_depend>

<export>
<build_type>ament_cmake</build_type>

</export>
</package>

br2 tf2 detector/include/br2 tf2 detector/ObstacleDetectorImprovedNode.hpp

#ifndef BR2_TF2_DETECTOR__OBSTACLEDETECTORIMPROVEDNODE_HPP_
#define BR2_TF2_DETECTOR__OBSTACLEDETECTORIMPROVEDNODE_HPP_

#include <tf2_ros/static_transform_broadcaster.h>
#include <tf2_ros/buffer.h>
#include <tf2_ros/transform_listener.h>

#include <memory>

#include "sensor_msgs/msg/laser_scan.hpp"

#include "rclcpp/rclcpp.hpp"

namespace br2_tf2_detector
{

class ObstacleDetectorImprovedNode : public rclcpp::Node
{
public:

ObstacleDetectorImprovedNode();

private:
void scan_callback(sensor_msgs::msg::LaserScan::UniquePtr msg);

rclcpp::Subscription<sensor_msgs::msg::LaserScan>::SharedPtr scan_sub_;
std::shared_ptr<tf2_ros::StaticTransformBroadcaster> tf_broadcaster_;

tf2::BufferCore tf_buffer_;
tf2_ros::TransformListener tf_listener_;

};

} // namespace br2_tf2_detector
#endif // BR2_TF2_DETECTOR__OBSTACLEDETECTORIMPROVEDNODE_HPP_

with ROS2

mailto:fmrico@gmail.com
http://download.ros.org
http://www.w3.org

Source Code � 175

br2 tf2 detector/include/br2 tf2 detector/ObstacleMonitorNode.hpp

#ifndef BR2_TF2_DETECTOR__OBSTACLEMONITORNODE_HPP_
#define BR2_TF2_DETECTOR__OBSTACLEMONITORNODE_HPP_

#include <tf2_ros/buffer.h>
#include <tf2_ros/transform_listener.h>

#include <memory>

#include "sensor_msgs/msg/laser_scan.hpp"
#include "visualization_msgs/msg/marker.hpp"

#include "rclcpp/rclcpp.hpp"

namespace br2_tf2_detector
{

class ObstacleMonitorNode : public rclcpp::Node
{
public:

ObstacleMonitorNode();

private:
void control_cycle();
rclcpp::TimerBase::SharedPtr timer_;

tf2::BufferCore tf_buffer_;
tf2_ros::TransformListener tf_listener_;

rclcpp::Publisher<visualization_msgs::msg::Marker>::SharedPtr marker_pub_;
};

} // namespace br2_tf2_detector
#endif // BR2_TF2_DETECTOR__OBSTACLEMONITORNODE_HPP_

br2 tf2 detector/include/br2 tf2 detector/ObstacleDetectorNode.hpp

#ifndef BR2_TF2_DETECTOR__OBSTACLEDETECTORNODE_HPP_
#define BR2_TF2_DETECTOR__OBSTACLEDETECTORNODE_HPP_

#include <tf2_ros/static_transform_broadcaster.h>

#include <memory>

#include "sensor_msgs/msg/laser_scan.hpp"

#include "rclcpp/rclcpp.hpp"

namespace br2_tf2_detector
{

class ObstacleDetectorNode : public rclcpp::Node
{
public:

ObstacleDetectorNode();

private:
void scan_callback(sensor_msgs::msg::LaserScan::UniquePtr msg);

rclcpp::Subscription<sensor_msgs::msg::LaserScan>::SharedPtr scan_sub_;
std::shared_ptr<tf2_ros::StaticTransformBroadcaster> tf_broadcaster_;

};

} // namespace br2_tf2_detector
#endif // BR2_TF2_DETECTOR__OBSTACLEDETECTORNODE_HPP_

176 � A Concise Introduction to Robot Programming

br2 tf2 detector/src/detector main.cpp

#include <memory>

#include "br2_tf2_detector/ObstacleDetectorNode.hpp"
#include "br2_tf2_detector/ObstacleMonitorNode.hpp"

#include "rclcpp/rclcpp.hpp"

int main(int argc, char * argv[])
{

rclcpp::init(argc, argv);

auto obstacle_detector = std::make_shared<br2_tf2_detector::ObstacleDetectorNode>();
auto obstacle_monitor = std::make_shared<br2_tf2_detector::ObstacleMonitorNode>();

rclcpp::executors::SingleThreadedExecutor executor;
executor.add_node(obstacle_detector->get_node_base_interface());
executor.add_node(obstacle_monitor->get_node_base_interface());

executor.spin();

rclcpp::shutdown();
return 0;

}

br2 tf2 detector/src/detector improved main.cpp

#include <memory>

#include "br2_tf2_detector/ObstacleDetectorImprovedNode.hpp"
#include "br2_tf2_detector/ObstacleMonitorNode.hpp"

#include "rclcpp/rclcpp.hpp"

int main(int argc, char * argv[])
{

rclcpp::init(argc, argv);

auto obstacle_detector = std::make_shared<br2_tf2_detector::
ObstacleDetectorImprovedNode>();

auto obstacle_monitor = std::make_shared<br2_tf2_detector::ObstacleMonitorNode>();

rclcpp::executors::SingleThreadedExecutor executor;
executor.add_node(obstacle_detector->get_node_base_interface());
executor.add_node(obstacle_monitor->get_node_base_interface());

executor.spin();

rclcpp::shutdown();
return 0;

}

with ROS2

Source Code � 177

br2 tf2 detector/src/br2 tf2 detector/ObstacleMonitorNode.cpp

#include <tf2/transform_datatypes.h>
#include <tf2/LinearMath/Quaternion.h>
#include <tf2_geometry_msgs/tf2_geometry_msgs.h>

#include <memory>

#include "br2_tf2_detector/ObstacleMonitorNode.hpp"

#include "geometry_msgs/msg/transform_stamped.hpp"

#include "rclcpp/rclcpp.hpp"

namespace br2_tf2_detector
{

using namespace std::chrono_literals;

ObstacleMonitorNode::ObstacleMonitorNode()
: Node("obstacle_monitor"),

tf_buffer_(),
tf_listener_(tf_buffer_)

{
marker_pub_ = create_publisher<visualization_msgs::msg::Marker>("obstacle_marker", 1);

timer_ = create_wall_timer(
500ms, std::bind(&ObstacleMonitorNode::control_cycle, this));

}

void
ObstacleMonitorNode::control_cycle()
{

geometry_msgs::msg::TransformStamped robot2obstacle;

try {
robot2obstacle = tf_buffer_.lookupTransform(
"base_footprint", "detected_obstacle", tf2::TimePointZero);

} catch (tf2::TransformException & ex) {
RCLCPP_WARN(get_logger(), "Obstacle transform not found: %s", ex.what());
return;

}

double x = robot2obstacle.transform.translation.x;
double y = robot2obstacle.transform.translation.y;
double z = robot2obstacle.transform.translation.z;
double theta = atan2(y, x);

RCLCPP_INFO(
get_logger(), "Obstacle detected at (%lf m, %lf m, , %lf m) = %lf rads",
x, y, z, theta);

visualization_msgs::msg::Marker obstacle_arrow;
obstacle_arrow.header.frame_id = "base_footprint";
obstacle_arrow.header.stamp = now();
obstacle_arrow.type = visualization_msgs::msg::Marker::ARROW;
obstacle_arrow.action = visualization_msgs::msg::Marker::ADD;
obstacle_arrow.lifetime = rclcpp::Duration(1s);

geometry_msgs::msg::Point start;
start.x = 0.0;
start.y = 0.0;
start.z = 0.0;
geometry_msgs::msg::Point end;
end.x = x;
end.y = y;
end.z = z;
obstacle_arrow.points = {start, end};

obstacle_arrow.color.r = 1.0;
obstacle_arrow.color.g = 0.0;
obstacle_arrow.color.b = 0.0;
obstacle_arrow.color.a = 1.0;

obstacle_arrow.scale.x = 0.02;
obstacle_arrow.scale.y = 0.1;
obstacle_arrow.scale.z = 0.1;

178 � A Concise Introduction to Robot Programming

br2 tf2 detector/src/br2 tf2 detector/ObstacleMonitorNode.cpp

marker_pub_->publish(obstacle_arrow);
}

} // namespace br2_tf2_detector

br2 tf2 detector/src/br2 tf2 detector/ObstacleDetectorNode.cpp

#include <memory>

#include "br2_tf2_detector/ObstacleDetectorNode.hpp"

#include "sensor_msgs/msg/laser_scan.hpp"
#include "geometry_msgs/msg/transform_stamped.hpp"

#include "rclcpp/rclcpp.hpp"

namespace br2_tf2_detector
{

using std::placeholders::_1;

ObstacleDetectorNode::ObstacleDetectorNode()
: Node("obstacle_detector")
{

scan_sub_ = create_subscription<sensor_msgs::msg::LaserScan>(
"input_scan", rclcpp::SensorDataQoS(),
std::bind(&ObstacleDetectorNode::scan_callback, this, _1));

tf_broadcaster_ = std::make_shared<tf2_ros::StaticTransformBroadcaster>(*this);
}

void
ObstacleDetectorNode::scan_callback(sensor_msgs::msg::LaserScan::UniquePtr msg)
{

double dist = msg->ranges[msg->ranges.size() / 2];

if (!std::isinf(dist)) {
geometry_msgs::msg::TransformStamped detection_tf;

detection_tf.header = msg->header;
detection_tf.child_frame_id = "detected_obstacle";
detection_tf.transform.translation.x = msg->ranges[msg->ranges.size() / 2];

tf_broadcaster_->sendTransform(detection_tf);
}

}

} // namespace br2_tf2_detector

br2 tf2 detector/src/br2 tf2 detector/ObstacleDetectorImprovedNode.cpp

#include <tf2/transform_datatypes.h>
#include <tf2/LinearMath/Quaternion.h>
#include <tf2_geometry_msgs/tf2_geometry_msgs.h>

#include <memory>

#include "br2_tf2_detector/ObstacleDetectorImprovedNode.hpp"

#include "sensor_msgs/msg/laser_scan.hpp"
#include "geometry_msgs/msg/transform_stamped.hpp"

#include "rclcpp/rclcpp.hpp"

namespace br2_tf2_detector
{

using std::placeholders::_1;
using namespace std::chrono_literals;

with ROS2

Source Code � 179

br2 tf2 detector/src/br2 tf2 detector/ObstacleDetectorImprovedNode.cpp

ObstacleDetectorImprovedNode::ObstacleDetectorImprovedNode()
: Node("obstacle_detector_improved"),

tf_buffer_(),
tf_listener_(tf_buffer_)

{

scan_sub_ = create_subscription<sensor_msgs::msg::LaserScan>(
"input_scan", rclcpp::SensorDataQoS(),
std::bind(&ObstacleDetectorImprovedNode::scan_callback, this, _1));

tf_broadcaster_ = std::make_shared<tf2_ros::StaticTransformBroadcaster>(*this);
}

void
ObstacleDetectorImprovedNode::scan_callback(sensor_msgs::msg::LaserScan::UniquePtr msg)
{

double dist = msg->ranges[msg->ranges.size() / 2];

if (!std::isinf(dist)) {
tf2::Transform laser2object;
laser2object.setOrigin(tf2::Vector3(dist, 0.0, 0.0));
laser2object.setRotation(tf2::Quaternion(0.0, 0.0, 0.0, 1.0));

geometry_msgs::msg::TransformStamped odom2laser_msg;
tf2::Stamped<tf2::Transform> odom2laser;
try {
odom2laser_msg = tf_buffer_.lookupTransform(
"odom", "base_laser_link",
tf2::timeFromSec(rclcpp::Time(msg->header.stamp).seconds()));

tf2::fromMsg(odom2laser_msg, odom2laser);
} catch (tf2::TransformException & ex) {
RCLCPP_WARN(get_logger(), "Obstacle transform not found: %s", ex.what());
return;

}

tf2::Transform odom2object = odom2laser * laser2object;

geometry_msgs::msg::TransformStamped odom2object_msg;
odom2object_msg.transform = tf2::toMsg(odom2object);

odom2object_msg.header.stamp = msg->header.stamp;
odom2object_msg.header.frame_id = "odom";
odom2object_msg.child_frame_id = "detected_obstacle";

tf_broadcaster_->sendTransform(odom2object_msg);
}

}

} // namespace br2_tf2_detector

A.5 PACKAGE BR2 VFF AVOIDANCE
Package br2 vff avoidance

br2_vff_avoidance
CMakeLists.txt
include

br2_vff_avoidance
AvoidanceNode.hpp

launch
avoidance_vff.launch.py

package.xml
src

avoidance_vff_main.cpp
br2_vff_avoidance

AvoidanceNode.cpp
tests

CMakeLists.txt
vff_test.cpp

180 � A Concise Introduction to Robot Programming

br2 vff avoidance/CMakeLists.txt

cmake_minimum_required(VERSION 3.5)
project(br2_vff_avoidance)

set(CMAKE_CXX_STANDARD 17)
set(CMAKE_BUILD_TYPE Debug)

find_package(ament_cmake REQUIRED)
find_package(rclcpp REQUIRED)
find_package(sensor_msgs REQUIRED)
find_package(geometry_msgs REQUIRED)
find_package(visualization_msgs REQUIRED)

set(dependencies
rclcpp
sensor_msgs
geometry_msgs
visualization_msgs

)

include_directories(include)

add_library(${PROJECT_NAME} SHARED src/br2_vff_avoidance/AvoidanceNode.cpp)
ament_target_dependencies(${PROJECT_NAME} ${dependencies})

add_executable(avoidance_vff src/avoidance_vff_main.cpp)
ament_target_dependencies(avoidance_vff ${dependencies})
target_link_libraries(avoidance_vff ${PROJECT_NAME})

install(TARGETS
${PROJECT_NAME}
avoidance_vff
ARCHIVE DESTINATION lib
LIBRARY DESTINATION lib
RUNTIME DESTINATION lib/${PROJECT_NAME}

)

install(DIRECTORY launch DESTINATION share/${PROJECT_NAME})

if(BUILD_TESTING)
find_package(ament_lint_auto REQUIRED)
ament_lint_auto_find_test_dependencies()

set(ament_cmake_cpplint_FOUND TRUE)
ament_lint_auto_find_test_dependencies()

find_package(ament_cmake_gtest REQUIRED)
add_subdirectory(tests)

endif()

ament_export_dependencies(${dependencies})
ament_package()

with ROS2

Source Code � 181

br2 vff avoidance/launch/avoidance vff.launch.py

from launch import LaunchDescription
from launch_ros.actions import Node

def generate_launch_description():

vff_avoidance_cmd = Node(
package='br2_vff_avoidance',
executable='avoidance_vff',
parameters=[{

'use_sim_time': True
}],
remappings=[
('input_scan', '/scan_raw'),
('output_vel', '/nav_vel')

],
output='screen'

)

ld = LaunchDescription()
ld.add_action(vff_avoidance_cmd)

return ld

br2 vff avoidance/package.xml

<?xml version="1.0"?>
<?xml-model href="http://download.ros.org/schema/package_format3.xsd"

schematypens="http://www.w3.org/2001/XMLSchema"?>
<package format="3">

<name>br2_vff_avoidance</name>
<version>0.1.0</version>
<description>VFF Avoidance package</description>
<maintainer email="fmrico@gmail.com">Francisco Martı́n</maintainer>
<license>Apache 2.0</license>

<buildtool_depend>ament_cmake</buildtool_depend>

<depend>rclcpp</depend>
<depend>geometry_msgs</depend>
<depend>sensor_msgs</depend>
<depend>visualization_msgs</depend>

<test_depend>ament_lint_auto</test_depend>
<test_depend>ament_lint_common</test_depend>
<test_depend>ament_cmake_gtest</test_depend>

<export>
<build_type>ament_cmake</build_type>

</export>
</package>

br2 vff avoidance/include/br2 vff avoidance/AvoidanceNode.hpp

#ifndef BR2_VFF_AVOIDANCE__AVOIDANCENODE_HPP_
#define BR2_VFF_AVOIDANCE__AVOIDANCENODE_HPP_

#include <memory>
#include <vector>

#include "geometry_msgs/msg/twist.hpp"
#include "sensor_msgs/msg/laser_scan.hpp"
#include "visualization_msgs/msg/marker_array.hpp"

#include "rclcpp/rclcpp.hpp"

namespace br2_vff_avoidance
{

mailto:fmrico@gmail.com
http://download.ros.org
http://www.w3.org

182 � A Concise Introduction to Robot Programming

br2 vff avoidance/include/br2 vff avoidance/AvoidanceNode.hpp

struct VFFVectors
{

std::vector<float> attractive;
std::vector<float> repulsive;
std::vector<float> result;

};

typedef enum {RED, GREEN, BLUE, NUM_COLORS} VFFColor;

class AvoidanceNode : public rclcpp::Node
{
public:

AvoidanceNode();

void scan_callback(sensor_msgs::msg::LaserScan::UniquePtr msg);
void control_cycle();

protected:
VFFVectors get_vff(const sensor_msgs::msg::LaserScan & scan);

visualization_msgs::msg::MarkerArray get_debug_vff(const VFFVectors & vff_vectors);
visualization_msgs::msg::Marker make_marker(
const std::vector<float> & vector, VFFColor vff_color);

private:
rclcpp::Publisher<geometry_msgs::msg::Twist>::SharedPtr vel_pub_;
rclcpp::Publisher<visualization_msgs::msg::MarkerArray>::SharedPtr vff_debug_pub_;
rclcpp::Subscription<sensor_msgs::msg::LaserScan>::SharedPtr scan_sub_;
rclcpp::TimerBase::SharedPtr timer_;

sensor_msgs::msg::LaserScan::UniquePtr last_scan_;
};

} // namespace br2_vff_avoidance

#endif // BR2_VFF_AVOIDANCE__AVOIDANCENODE_HPP_

br2 vff avoidance/src/br2 vff avoidance/AvoidanceNode.cpp

#include <memory>
#include <utility>
#include <algorithm>
#include <vector>

#include "geometry_msgs/msg/twist.hpp"
#include "sensor_msgs/msg/laser_scan.hpp"
#include "visualization_msgs/msg/marker_array.hpp"

#include "br2_vff_avoidance/AvoidanceNode.hpp"

#include "rclcpp/rclcpp.hpp"

using std::placeholders::_1;
using namespace std::chrono_literals;

namespace br2_vff_avoidance
{

AvoidanceNode::AvoidanceNode()
: Node("avoidance_vff")
{

vel_pub_ = create_publisher<geometry_msgs::msg::Twist>("output_vel", 100);
vff_debug_pub_ = create_publisher<visualization_msgs::msg::MarkerArray>("vff_debug",
100);

scan_sub_ = create_subscription<sensor_msgs::msg::LaserScan>(
"input_scan", rclcpp::SensorDataQoS(), std::bind(&AvoidanceNode::scan_callback,
this, _1));

timer_ = create_wall_timer(50ms, std::bind(&AvoidanceNode::control_cycle, this));
}

with ROS2

Source Code � 183

br2 vff avoidance/src/br2 vff avoidance/AvoidanceNode.cpp

void
AvoidanceNode::scan_callback(sensor_msgs::msg::LaserScan::UniquePtr msg)
{

last_scan_ = std::move(msg);
}

void
AvoidanceNode::control_cycle()
{

// Skip cycle if no valid recent scan available
if (last_scan_ == nullptr || (now() - last_scan_->header.stamp) > 1s) {
return;

}

// Get VFF vectors
const VFFVectors & vff = get_vff(*last_scan_);

// Use result vector to calculate output speed
const auto & v = vff.result;
double angle = atan2(v[1], v[0]);
double module = sqrt(v[0] * v[0] + v[1] * v[1]);

// Create ouput message, controlling speed limits
geometry_msgs::msg::Twist vel;
vel.linear.x = std::clamp(module, 0.0, 0.3); // truncate linear vel to [0.0, 0.3] m/s
vel.angular.z = std::clamp(angle, -0.5, 0.5); // truncate rot vel to [-0.5, 0.5] rad/s

vel_pub_->publish(vel);

// Produce debug information, if any interested
if (vff_debug_pub_->get_subscription_count() > 0) {
vff_debug_pub_->publish(get_debug_vff(vff));

}
}

VFFVectors
AvoidanceNode::get_vff(const sensor_msgs::msg::LaserScan & scan)
{

// This is the obstacle radious in which an obstacle affects the robot
const float OBSTACLE_DISTANCE = 1.0;

// Init vectors
VFFVectors vff_vector;
vff_vector.attractive = {OBSTACLE_DISTANCE, 0.0}; // Robot wants to go forward
vff_vector.repulsive = {0.0, 0.0};
vff_vector.result = {0.0, 0.0};

// Get the index of nearest obstacle
int min_idx = std::min_element(scan.ranges.begin(), scan.ranges.end()) -
scan.ranges.begin();

// Get the distance to nearest obstacle
float distance_min = scan.ranges[min_idx];

// If the obstacle is in the area that affects the robot, calculate repulsive vector
if (distance_min < OBSTACLE_DISTANCE) {
float angle = scan.angle_min + scan.angle_increment * min_idx;

float oposite_angle = angle + M_PI;
// The module of the vector is inverse to the distance to the obstacle
float complementary_dist = OBSTACLE_DISTANCE - distance_min;

// Get cartesian (x, y) components from polar (angle, distance)
vff_vector.repulsive[0] = cos(oposite_angle) * complementary_dist;
vff_vector.repulsive[1] = sin(oposite_angle) * complementary_dist;

}

// Calculate resulting vector adding attractive and repulsive vectors
vff_vector.result[0] = (vff_vector.repulsive[0] + vff_vector.attractive[0]);
vff_vector.result[1] = (vff_vector.repulsive[1] + vff_vector.attractive[1]);

return vff_vector;
}

visualization_msgs::msg::MarkerArray
AvoidanceNode::get_debug_vff(const VFFVectors & vff_vectors)
{

visualization_msgs::msg::MarkerArray marker_array;

184 � A Concise Introduction to Robot Programming

br2 vff avoidance/src/br2 vff avoidance/AvoidanceNode.cpp

marker_array.markers.push_back(make_marker(vff_vectors.attractive, BLUE));
marker_array.markers.push_back(make_marker(vff_vectors.repulsive, RED));
marker_array.markers.push_back(make_marker(vff_vectors.result, GREEN));

return marker_array;
}

visualization_msgs::msg::Marker
AvoidanceNode::make_marker(const std::vector<float> & vector, VFFColor vff_color)
{

visualization_msgs::msg::Marker marker;

marker.header.frame_id = "base_footprint";
marker.header.stamp = now();
marker.type = visualization_msgs::msg::Marker::ARROW;
marker.id = visualization_msgs::msg::Marker::ADD;

geometry_msgs::msg::Point start;
start.x = 0.0;
start.y = 0.0;
geometry_msgs::msg::Point end;
start.x = vector[0];
start.y = vector[1];
marker.points = {end, start};

marker.scale.x = 0.05;
marker.scale.y = 0.1;

switch (vff_color) {
case RED:
marker.id = 0;
marker.color.r = 1.0;
break;

case GREEN:
marker.id = 1;
marker.color.g = 1.0;
break;

case BLUE:
marker.id = 2;
marker.color.b = 1.0;
break;

}
marker.color.a = 1.0;

return marker;
}

} // namespace br2_vff_avoidance

br2 vff avoidance/src/avoidance vff main.cpp

#include <memory>

#include "br2_vff_avoidance/AvoidanceNode.hpp"
#include "rclcpp/rclcpp.hpp"

int main(int argc, char * argv[])
{

rclcpp::init(argc, argv);

auto avoidance_node = std::make_shared<br2_vff_avoidance::AvoidanceNode>();
rclcpp::spin(avoidance_node);

rclcpp::shutdown();

return 0;
}

with ROS2

Source Code � 185

br2 vff avoidance/tests/vff test.cpp

#include <limits>
#include <vector>
#include <memory>

#include "sensor_msgs/msg/laser_scan.hpp"
#include "br2_vff_avoidance/AvoidanceNode.hpp"

#include "gtest/gtest.h"

using namespace std::chrono_literals;

class AvoidanceNodeTest : public br2_vff_avoidance::AvoidanceNode
{
public:

br2_vff_avoidance::VFFVectors
get_vff_test(const sensor_msgs::msg::LaserScan & scan)
{
return get_vff(scan);

}

visualization_msgs::msg::MarkerArray
get_debug_vff_test(const br2_vff_avoidance::VFFVectors & vff_vectors)
{
return get_debug_vff(vff_vectors);

}
};

sensor_msgs::msg::LaserScan get_scan_test_1(rclcpp::Time ts)
{

sensor_msgs::msg::LaserScan ret;
ret.header.stamp = ts;
ret.angle_min = -M_PI;
ret.angle_max = M_PI;
ret.angle_increment = 2.0 * M_PI / 16.0;
ret.ranges = std::vector<float>(16, std::numeric_limits<float>::infinity());

return ret;
}

sensor_msgs::msg::LaserScan get_scan_test_2(rclcpp::Time ts)
{

sensor_msgs::msg::LaserScan ret;
ret.header.stamp = ts;
ret.angle_min = -M_PI;
ret.angle_max = M_PI;
ret.angle_increment = 2.0 * M_PI / 16.0;
ret.ranges = std::vector<float>(16, 0.0);

return ret;
}

sensor_msgs::msg::LaserScan get_scan_test_3(rclcpp::Time ts)
{

sensor_msgs::msg::LaserScan ret;
ret.header.stamp = ts;
ret.angle_min = -M_PI;
ret.angle_max = M_PI;
ret.angle_increment = 2.0 * M_PI / 16.0;
ret.ranges = std::vector<float>(16, 5.0);
ret.ranges[2] = 0.3;

return ret;
}

sensor_msgs::msg::LaserScan get_scan_test_4(rclcpp::Time ts)
{

sensor_msgs::msg::LaserScan ret;
ret.header.stamp = ts;
ret.angle_min = -M_PI;
ret.angle_max = M_PI;
ret.angle_increment = 2.0 * M_PI / 16.0;
ret.ranges = std::vector<float>(16, 5.0);
ret.ranges[6] = 0.3;

return ret;
}

186 � A Concise Introduction to Robot Programming

br2 vff avoidance/tests/vff test.cpp

sensor_msgs::msg::LaserScan get_scan_test_5(rclcpp::Time ts)
{

sensor_msgs::msg::LaserScan ret;
ret.header.stamp = ts;
ret.angle_min = -M_PI;
ret.angle_max = M_PI;

ret.angle_increment = 2.0 * M_PI / 16.0;
ret.ranges = std::vector<float>(16, 5.0);
ret.ranges[10] = 0.3;

return ret;
}

sensor_msgs::msg::LaserScan get_scan_test_6(rclcpp::Time ts)
{

sensor_msgs::msg::LaserScan ret;
ret.header.stamp = ts;
ret.angle_min = -M_PI;
ret.angle_max = M_PI;
ret.angle_increment = 2.0 * M_PI / 16.0;
ret.ranges = std::vector<float>(16, 0.5);
ret.ranges[10] = 0.3;

return ret;
}

sensor_msgs::msg::LaserScan get_scan_test_7(rclcpp::Time ts)
{

sensor_msgs::msg::LaserScan ret;
ret.header.stamp = ts;
ret.angle_min = -M_PI;
ret.angle_max = M_PI;
ret.angle_increment = 2.0 * M_PI / 16.0;
ret.ranges = std::vector<float>(16, 5.0);
ret.ranges[14] = 0.3;

return ret;
}

sensor_msgs::msg::LaserScan get_scan_test_8(rclcpp::Time ts)
{

sensor_msgs::msg::LaserScan ret;
ret.header.stamp = ts;
ret.angle_min = -M_PI;
ret.angle_max = M_PI;
ret.angle_increment = 2.0 * M_PI / 16.0;
ret.ranges = std::vector<float>(16, 5.0);
ret.ranges[8] = 0.01;

return ret;
}

TEST(vff_tests, get_vff)
{

auto node_avoidance = AvoidanceNodeTest();

rclcpp::Time ts = node_avoidance.now();

auto res1 = node_avoidance.get_vff_test(get_scan_test_1(ts));
ASSERT_EQ(res1.attractive, std::vector<float>({1.0f, 0.0f}));
ASSERT_EQ(res1.repulsive, std::vector<float>({0.0f, 0.0f}));
ASSERT_EQ(res1.result, std::vector<float>({1.0f, 0.0f}));

auto res2 = node_avoidance.get_vff_test(get_scan_test_2(ts));
ASSERT_EQ(res2.attractive, std::vector<float>({1.0f, 0.0f}));
ASSERT_NEAR(res2.repulsive[0], 1.0f, 0.00001f);
ASSERT_NEAR(res2.repulsive[1], 0.0f, 0.00001f);
ASSERT_NEAR(res2.result[0], 2.0f, 0.00001f);
ASSERT_NEAR(res2.result[1], 0.0f, 0.00001f);

auto res3 = node_avoidance.get_vff_test(get_scan_test_3(ts));
ASSERT_EQ(res3.attractive, std::vector<float>({1.0f, 0.0f}));
ASSERT_GT(res3.repulsive[0], 0.0f);
ASSERT_GT(res3.repulsive[1], 0.0f);
ASSERT_GT(atan2(res3.repulsive[1], res3.repulsive[0]), 0.1);
ASSERT_LT(atan2(res3.repulsive[1], res3.repulsive[0]), M_PI_2);
ASSERT_GT(atan2(res3.result[1], res3.result[0]), 0.1);
ASSERT_LT(atan2(res3.result[1], res3.result[0]), M_PI_2);

with ROS2

Source Code � 187

br2 vff avoidance/tests/vff test.cpp

auto res4 = node_avoidance.get_vff_test(get_scan_test_4(ts));
ASSERT_EQ(res4.attractive, std::vector<float>({1.0f, 0.0f}));
ASSERT_LT(res4.repulsive[0], 0.0f);
ASSERT_GT(res4.repulsive[1], 0.0f);
ASSERT_GT(atan2(res4.repulsive[1], res4.repulsive[0]), M_PI_2);
ASSERT_LT(atan2(res4.repulsive[1], res4.repulsive[0]), M_PI);
ASSERT_GT(atan2(res4.result[1], res4.result[0]), 0.0);
ASSERT_LT(atan2(res4.result[1], res4.result[0]), M_PI_2);

auto res5 = node_avoidance.get_vff_test(get_scan_test_5(ts));
ASSERT_EQ(res5.attractive, std::vector<float>({1.0f, 0.0f}));
ASSERT_LT(res5.repulsive[0], 0.0f);
ASSERT_LT(res5.repulsive[1], 0.0f);
ASSERT_GT(atan2(res5.repulsive[1], res5.repulsive[0]), -M_PI);
ASSERT_LT(atan2(res5.repulsive[1], res5.repulsive[0]), -M_PI_2);
ASSERT_LT(atan2(res5.result[1], res5.result[0]), 0.0);
ASSERT_GT(atan2(res5.result[1], res5.result[0]), -M_PI_2);

auto res6 = node_avoidance.get_vff_test(get_scan_test_6(ts));
ASSERT_EQ(res6.attractive, std::vector<float>({1.0f, 0.0f}));
ASSERT_LT(res6.repulsive[0], 0.0f);
ASSERT_LT(res6.repulsive[1], 0.0f);
ASSERT_GT(atan2(res6.repulsive[1], res6.repulsive[0]), -M_PI);
ASSERT_LT(atan2(res6.repulsive[1], res6.repulsive[0]), -M_PI_2);
ASSERT_LT(atan2(res6.result[1], res6.result[0]), 0.0);
ASSERT_GT(atan2(res6.result[1], res6.result[0]), -M_PI_2);

auto res7 = node_avoidance.get_vff_test(get_scan_test_7(ts));
ASSERT_EQ(res7.attractive, std::vector<float>({1.0f, 0.0f}));
ASSERT_GT(res7.repulsive[0], 0.0f);
ASSERT_LT(res7.repulsive[1], 0.0f);
ASSERT_LT(atan2(res7.repulsive[1], res7.repulsive[0]), 0.0f);
ASSERT_GT(atan2(res7.repulsive[1], res7.repulsive[0]), -M_PI_2);
ASSERT_LT(atan2(res7.result[1], res7.result[0]), 0.0);
ASSERT_GT(atan2(res7.result[1], res7.result[0]), -M_PI_2);

auto res8 = node_avoidance.get_vff_test(get_scan_test_8(ts));
ASSERT_EQ(res8.attractive, std::vector<float>({1.0f, 0.0f}));
ASSERT_NEAR(res8.repulsive[0], -1.0f, 0.1f);
ASSERT_NEAR(res8.repulsive[1], 0.0f, 0.0001f);
ASSERT_NEAR(res8.result[0], 0.0f, 0.01f);
ASSERT_NEAR(res8.result[1], 0.0f, 0.01f);

}

TEST(vff_tests, ouput_vels)
{

auto node_avoidance = std::make_shared<AvoidanceNodeTest>();

// Create a testing node with a scan publisher and a speed subscriber
auto test_node = rclcpp::Node::make_shared("test_node");
auto scan_pub = test_node->create_publisher<sensor_msgs::msg::LaserScan>(
"input_scan", 100);

geometry_msgs::msg::Twist last_vel;
auto vel_sub = test_node->create_subscription<geometry_msgs::msg::Twist>(
"output_vel", 1, [&last_vel](geometry_msgs::msg::Twist::SharedPtr msg) {
last_vel = *msg;

});

ASSERT_EQ(vel_sub->get_publisher_count(), 1);
ASSERT_EQ(scan_pub->get_subscription_count(), 1);

rclcpp::Rate rate(30);
rclcpp::executors::SingleThreadedExecutor executor;
executor.add_node(node_avoidance);
executor.add_node(test_node);

// Test for scan test #1
auto start = node_avoidance->now();
while (rclcpp::ok() && (node_avoidance->now() - start) < 1s) {
scan_pub->publish(get_scan_test_1(node_avoidance->now()));
executor.spin_some();
rate.sleep();

}
ASSERT_NEAR(last_vel.linear.x, 0.3f, 0.0001f);
ASSERT_NEAR(last_vel.angular.z, 0.0f, 0.0001f);

188 � A Concise Introduction to Robot Programming

br2 vff avoidance/tests/vff test.cpp

// Test for scan test #2
start = node_avoidance->now();
while (rclcpp::ok() && (node_avoidance->now() - start) < 1s) {
scan_pub->publish(get_scan_test_2(node_avoidance->now()));
executor.spin_some();
rate.sleep();

}
ASSERT_NEAR(last_vel.linear.x, 0.3f, 0.0001f);
ASSERT_NEAR(last_vel.angular.z, 0.0f, 0.0001f);

// Test for scan test #3
start = node_avoidance->now();
while (rclcpp::ok() && (node_avoidance->now() - start) < 1s) {
scan_pub->publish(get_scan_test_3(node_avoidance->now()));
executor.spin_some();
rate.sleep();

}
ASSERT_LT(last_vel.linear.x, 0.3f);
ASSERT_GT(last_vel.linear.x, 0.0f);
ASSERT_GT(last_vel.angular.z, 0.0f);
ASSERT_LT(last_vel.angular.z, M_PI_2);

// Test for scan test #4
start = node_avoidance->now();
while (rclcpp::ok() && (node_avoidance->now() - start) < 1s) {
scan_pub->publish(get_scan_test_4(node_avoidance->now()));
executor.spin_some();
rate.sleep();

}
ASSERT_LT(last_vel.linear.x, 0.3f);
ASSERT_GT(last_vel.linear.x, 0.0f);
ASSERT_GT(last_vel.angular.z, 0.0f);
ASSERT_LT(last_vel.angular.z, M_PI_2);

// Test for scan test #5
start = node_avoidance->now();
while (rclcpp::ok() && (node_avoidance->now() - start) < 1s) {
scan_pub->publish(get_scan_test_5(node_avoidance->now()));
executor.spin_some();
rate.sleep();

}
ASSERT_LT(last_vel.linear.x, 0.3f);
ASSERT_GT(last_vel.linear.x, 0.0f);
ASSERT_LT(last_vel.angular.z, 0.0f);
ASSERT_GT(last_vel.angular.z, -M_PI_2);

// Test for scan test #6
start = node_avoidance->now();
while (rclcpp::ok() && (node_avoidance->now() - start) < 1s) {
scan_pub->publish(get_scan_test_6(node_avoidance->now()));
executor.spin_some();
rate.sleep();

}
ASSERT_LT(last_vel.linear.x, 0.3f);
ASSERT_GT(last_vel.linear.x, 0.0f);
ASSERT_LT(last_vel.angular.z, 0.0f);
ASSERT_GT(last_vel.angular.z, -M_PI_2);

// Test for scan test #7
start = node_avoidance->now();
while (rclcpp::ok() && (node_avoidance->now() - start) < 1s) {
scan_pub->publish(get_scan_test_7(node_avoidance->now()));
executor.spin_some();
rate.sleep();

}
ASSERT_LT(last_vel.linear.x, 0.3f);
ASSERT_GT(last_vel.linear.x, 0.0f);
ASSERT_LT(last_vel.angular.z, 0.0f);
ASSERT_GT(last_vel.angular.z, -M_PI_2);

with ROS2

Source Code � 189

br2 vff avoidance/tests/vff test.cpp

// Test for scan test #8
start = node_avoidance->now();
while (rclcpp::ok() && (node_avoidance->now() - start) < 2s) {
scan_pub->publish(get_scan_test_8(node_avoidance->now()));
executor.spin_some();
rate.sleep();

}
ASSERT_NEAR(last_vel.linear.x, 0.0f, 0.1f);
ASSERT_LT(last_vel.angular.z, 0.0f);
ASSERT_GT(last_vel.angular.z, -M_PI_2);

// Test for stooping when scan is too old
last_vel = geometry_msgs::msg::Twist();
while (rclcpp::ok() && (node_avoidance->now() - start) < 3s) {
scan_pub->publish(get_scan_test_6(start));
executor.spin_some();
rate.sleep();

}
ASSERT_NEAR(last_vel.linear.x, 0.0f, 0.01f);
ASSERT_NEAR(last_vel.angular.z, 0.0f, 0.01f);

}

int main(int argc, char ** argv)
{

rclcpp::init(argc, argv);

testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();

}

br2 vff avoidance/tests/CMakeLists.txt

ament_add_gtest(vff_test vff_test.cpp)
ament_target_dependencies(vff_test ${dependencies})
target_link_libraries(vff_test ${PROJECT_NAME})

A.6 PACKAGE BR2 TRACKING MSGS
Package br2 tracking msgs

br2_tracking_msgs
CMakeLists.txt
msg

PanTiltCommand.msg

br2 tracking msgs/CMakeLists.txt

project(br2_tracking_msgs)

cmake_minimum_required(VERSION 3.5)

find_package(ament_cmake REQUIRED)
find_package(builtin_interfaces REQUIRED)
find_package(rosidl_default_generators REQUIRED)

rosidl_generate_interfaces(${PROJECT_NAME}
"msg/PanTiltCommand.msg"
DEPENDENCIES builtin_interfaces

)

ament_export_dependencies(rosidl_default_runtime)
ament_package()

190 � A Concise Introduction to Robot Programming

br2 tracking msgs/package.xml

<?xml version="1.0"?>
<?xml-model href="http://download.ros.org/schema/package_format3.xsd"

schematypens="http://www.w3.org/2001/XMLSchema"?>
<package format="3">
<name>br2_tracking_msgs</name>
<version>0.0.0</version>

<description>Messages for br2_tracking</description>

<maintainer email="fmrico@gmail.com">Francisco Martı́n</maintainer>

<license>Apache 2.0</license>

<buildtool_depend>ament_cmake</buildtool_depend>

<depend>rclcpp</depend>
<depend>builtin_interfaces</depend>
<depend>rosidl_default_generators</depend>

<member_of_group>rosidl_interface_packages</member_of_group>

<export>
<build_type>ament_cmake</build_type>

</export>
</package>

A.7 PACKAGE BR2 TRACKING
Package br2 tracking

br2_tracking
CMakeLists.txt
config

detector.yaml
include

br2_tracking
HeadController.hpp
ObjectDetector.hpp
PIDController.hpp

launch
tracking.launch.py

package.xml
src

br2_tracking
HeadController.cpp
ObjectDetector.cpp
PIDController.cpp

object_detector_main.cpp
object_tracker_main.cpp

tests
CMakeLists.txt

with ROS2

mailto:fmrico@gmail.com
http://download.ros.org
http://www.w3.org

Source Code � 191

br2 tracking/CMakeLists.txt

cmake_minimum_required(VERSION 3.5)
project(br2_tracking)

set(CMAKE_CXX_STANDARD 17)
set(CMAKE_BUILD_TYPE Debug)

find_package(ament_cmake REQUIRED)
find_package(rclcpp REQUIRED)
find_package(rclcpp_lifecycle REQUIRED)
find_package(br2_tracking_msgs REQUIRED)
find_package(sensor_msgs REQUIRED)
find_package(geometry_msgs REQUIRED)
find_package(vision_msgs REQUIRED)
find_package(control_msgs REQUIRED)
find_package(image_transport REQUIRED)
find_package(cv_bridge REQUIRED)

find_package(OpenCV REQUIRED)

set(dependencies
rclcpp
rclcpp_lifecycle
br2_tracking_msgs
sensor_msgs
geometry_msgs
vision_msgs
control_msgs
image_transport
cv_bridge
OpenCV

)

include_directories(include)

add_library(${PROJECT_NAME} SHARED
src/br2_tracking/ObjectDetector.cpp
src/br2_tracking/HeadController.cpp
src/br2_tracking/PIDController.cpp

)
ament_target_dependencies(${PROJECT_NAME} ${dependencies})

add_executable(object_detector src/object_detector_main.cpp)
ament_target_dependencies(object_detector ${dependencies})
target_link_libraries(object_detector ${PROJECT_NAME})

add_executable(object_tracker src/object_tracker_main.cpp)
ament_target_dependencies(object_tracker ${dependencies})
target_link_libraries(object_tracker ${PROJECT_NAME})

install(TARGETS
${PROJECT_NAME}
object_detector
object_tracker
ARCHIVE DESTINATION lib
LIBRARY DESTINATION lib
RUNTIME DESTINATION lib/${PROJECT_NAME}

)

install(
DIRECTORY include
DESTINATION include

)

install(DIRECTORY launch config DESTINATION share/${PROJECT_NAME})

if(BUILD_TESTING)
find_package(ament_lint_auto REQUIRED)
ament_lint_auto_find_test_dependencies()

set(ament_cmake_cpplint_FOUND TRUE)
ament_lint_auto_find_test_dependencies()

find_package(ament_cmake_gtest REQUIRED)
add_subdirectory(tests)

endif()

192 � A Concise Introduction to Robot Programming

br2 tracking/CMakeLists.txt

ament_export_include_directories(include)
ament_export_libraries(${PROJECT_NAME})
ament_export_dependencies(${dependencies})
ament_package()

br2 tracking/launch/tracking.launch.py

import os

from ament_index_python.packages import get_package_share_directory

from launch import LaunchDescription
from launch_ros.actions import Node

def generate_launch_description():

params_file = os.path.join(
get_package_share_directory('br2_tracking'),
'config',
'detector.yaml'
)

object_tracker_cmd = Node(
package='br2_tracking',
executable='object_tracker',
parameters=[{

'use_sim_time': True
}, params_file],
remappings=[
('input_image', '/head_front_camera/rgb/image_raw'),
('joint_state', '/head_controller/state'),
('joint_command', '/head_controller/joint_trajectory')

],
output='screen'

)

ld = LaunchDescription()

Add any actions
ld.add_action(object_tracker_cmd)

return ld

with ROS2

Source Code � 193

br2 tracking/package.xml

<?xml version="1.0"?>
<?xml-model href="http://download.ros.org/schema/package_format3.xsd"

schematypens="http://www.w3.org/2001/XMLSchema"?>
<package format="3">

<name>br2_tracking</name>
<version>0.0.0</version>
<description>Tracking package</description>
<maintainer email="fmrico@gmail.com">Francisco Martı́n</maintainer>
<license>Apache 2.0</license>

<buildtool_depend>ament_cmake</buildtool_depend>

<depend>rclcpp</depend>
<depend>rclcpp_lifecycle</depend>
<depend>geometry_msgs</depend>
<depend>br2_tracking_msgs</depend>
<depend>sensor_msgs</depend>
<depend>vision_msgs</depend>
<depend>control_msgs</depend>
<depend>image_transport</depend>
<depend>cv_bridge</depend>

<test_depend>ament_lint_auto</test_depend>
<test_depend>ament_lint_common</test_depend>
<test_depend>ament_cmake_gtest</test_depend>

<export>
<build_type>ament_cmake</build_type>

</export>
</package>

br2 tracking/include/br2 tracking/PIDController.hpp

#ifndef BR2_TRACKING__PIDCONTROLLER_HPP_
#define BR2_TRACKING__PIDCONTROLLER_HPP_

#include <cmath>

namespace br2_tracking
{

class PIDController
{
public:

PIDController(double min_ref, double max_ref, double min_output, double max_output);

void set_pid(double n_KP, double n_KI, double n_KD);
double get_output(double new_reference);

private:
double KP_, KI_, KD_;

double min_ref_, max_ref_;
double min_output_, max_output_;
double prev_error_, int_error_;

};

} // namespace br2_tracking

#endif // BR2_TRACKING__PIDCONTROLLER_HPP_

mailto:fmrico@gmail.com
http://download.ros.org
http://www.w3.org

194 � A Concise Introduction to Robot Programming

br2 tracking/include/br2 tracking/ObjectDetector.hpp

#ifndef BR2_TRACKING__OBJECTDETECTOR_HPP_
#define BR2_TRACKING__OBJECTDETECTOR_HPP_

#include <memory>
#include <vector>

#include "vision_msgs/msg/detection2_d.hpp"

#include "image_transport/image_transport.hpp"
#include "rclcpp/rclcpp.hpp"

namespace br2_tracking
{

class ObjectDetector : public rclcpp::Node
{
public:

ObjectDetector();

void image_callback(const sensor_msgs::msg::Image::ConstSharedPtr & msg);

private:
image_transport::Subscriber image_sub_;
rclcpp::Publisher<vision_msgs::msg::Detection2D>::SharedPtr detection_pub_;

// HSV ranges for detection [h - H] [s - S] [v - V]
std::vector<double> hsv_filter_ranges_ {0, 180, 0, 255, 0, 255};
bool debug_ {true};

};

} // namespace br2_tracking

#endif // BR2_TRACKING__OBJECTDETECTOR_HPP_

with ROS2

Source Code � 195

br2 tracking/include/br2 tracking/HeadController.hpp

#ifndef BR2_TRACKING__HEADCONTROLLER_HPP_
#define BR2_TRACKING__HEADCONTROLLER_HPP_

#include <memory>

#include "br2_tracking_msgs/msg/pan_tilt_command.hpp"
#include "control_msgs/msg/joint_trajectory_controller_state.hpp"
#include "trajectory_msgs/msg/joint_trajectory.hpp"

#include "br2_tracking/PIDController.hpp"

#include "image_transport/image_transport.hpp"

#include "rclcpp_lifecycle/lifecycle_node.hpp"
#include "rclcpp/rclcpp.hpp"

namespace br2_tracking
{

using CallbackReturn =
rclcpp_lifecycle::node_interfaces::LifecycleNodeInterface::CallbackReturn;

class HeadController : public rclcpp_lifecycle::LifecycleNode
{
public:

HeadController();

CallbackReturn on_configure(const rclcpp_lifecycle::State & previous_state);
CallbackReturn on_activate(const rclcpp_lifecycle::State & previous_state);
CallbackReturn on_deactivate(const rclcpp_lifecycle::State & previous_state);

void control_sycle();

void joint_state_callback(
control_msgs::msg::JointTrajectoryControllerState::UniquePtr msg);

void command_callback(br2_tracking_msgs::msg::PanTiltCommand::UniquePtr msg);

private:
rclcpp::Subscription<br2_tracking_msgs::msg::PanTiltCommand>::SharedPtr command_sub_;
rclcpp::Subscription<control_msgs::msg::JointTrajectoryControllerState>::SharedPtr
joint_sub_;

rclcpp_lifecycle::LifecyclePublisher<trajectory_msgs::msg::JointTrajectory>::SharedPtr
joint_pub_;

rclcpp::TimerBase::SharedPtr timer_;

control_msgs::msg::JointTrajectoryControllerState::UniquePtr last_state_;
br2_tracking_msgs::msg::PanTiltCommand::UniquePtr last_command_;
rclcpp::Time last_command_ts_;

PIDController pan_pid_, tilt_pid_;
};

} // namespace br2_tracking

#endif // BR2_TRACKING__HEADCONTROLLER_HPP_

br2 tracking/config/detector.yaml

/object_detector:
ros__parameters:
debug: true
hsv_ranges:
- 15.0
- 20.0
- 50.0
- 200.0
- 20.0
- 200.0

196 � A Concise Introduction to Robot Programming

br2 tracking/src/br2 tracking/PIDController.cpp

#include <algorithm>

#include "br2_tracking/PIDController.hpp"

namespace br2_tracking
{

PIDController::PIDController(
double min_ref, double max_ref, double min_output, double max_output)

{
min_ref_ = min_ref;
max_ref_ = max_ref;
min_output_ = min_output;
max_output_ = max_output;
prev_error_ = int_error_ = 0.0;

KP_ = 0.41;
KI_ = 0.06;
KD_ = 0.53;

}

void
PIDController::set_pid(double n_KP, double n_KI, double n_KD)
{

KP_ = n_KP;
KI_ = n_KI;
KD_ = n_KD;

}

double
PIDController::get_output(double new_reference)
{

double ref = new_reference;
double output = 0.0;

// Proportional Error
double direction = 0.0;
if (ref != 0.0) {
direction = ref / fabs(ref);

}

if (fabs(ref) < min_ref_) {
output = 0.0;

} else if (fabs(ref) > max_ref_) {
output = direction * max_output_;

} else {
output = direction * min_output_ + ref * (max_output_ - min_output_);

}

// Integral Error
int_error_ = (int_error_ + output) * 2.0 / 3.0;

// Derivative Error
double deriv_error = output - prev_error_;
prev_error_ = output;

output = KP_ * output + KI_ * int_error_ + KD_ * deriv_error;

return std::clamp(output, -max_output_, max_output_);
}

} // namespace br2_tracking

with ROS2

Source Code � 197

br2 tracking/src/br2 tracking/HeadController.cpp

#include <algorithm>
#include <utility>

#include "br2_tracking/HeadController.hpp"
#include "br2_tracking/PIDController.hpp"

#include "br2_tracking_msgs/msg/pan_tilt_command.hpp"
#include "control_msgs/msg/joint_trajectory_controller_state.hpp"
#include "trajectory_msgs/msg/joint_trajectory.hpp"

#include "rclcpp_lifecycle/lifecycle_node.hpp"
#include "rclcpp/rclcpp.hpp"

namespace br2_tracking
{

using std::placeholders::_1;
using namespace std::chrono_literals;
using CallbackReturn = rclcpp_lifecycle::node_interfaces::LifecycleNodeInterface::

CallbackReturn;

HeadController::HeadController()
: LifecycleNode("head_tracker"),

pan_pid_(0.0, 1.0, 0.0, 0.3),
tilt_pid_(0.0, 1.0, 0.0, 0.3)

{
command_sub_ = create_subscription<br2_tracking_msgs::msg::PanTiltCommand>(
"command", 100,
std::bind(&HeadController::command_callback, this, _1));

joint_sub_ = create_subscription<control_msgs::msg::JointTrajectoryControllerState>(
"joint_state", rclcpp::SensorDataQoS(),
std::bind(&HeadController::joint_state_callback, this, _1));

joint_pub_ = create_publisher<trajectory_msgs::msg::JointTrajectory>("joint_command",
10);

}

CallbackReturn
HeadController::on_configure(const rclcpp_lifecycle::State & previous_state)
{

RCLCPP_INFO(get_logger(), "HeadController configured");

pan_pid_.set_pid(0.4, 0.05, 0.55);
tilt_pid_.set_pid(0.4, 0.05, 0.55);

return CallbackReturn::SUCCESS;
}

CallbackReturn
HeadController::on_activate(const rclcpp_lifecycle::State & previous_state)
{

RCLCPP_INFO(get_logger(), "HeadController activated");

joint_pub_->on_activate();
timer_ = create_wall_timer(100ms, std::bind(&HeadController::control_sycle, this));

return CallbackReturn::SUCCESS;
}

CallbackReturn
HeadController::on_deactivate(const rclcpp_lifecycle::State & previous_state)
{

RCLCPP_INFO(get_logger(), "HeadController deactivated");

trajectory_msgs::msg::JointTrajectory command_msg;
command_msg.header.stamp = now();
command_msg.joint_names = last_state_->joint_names;
command_msg.points.resize(1);
command_msg.points[0].positions.resize(2);
command_msg.points[0].velocities.resize(2);
command_msg.points[0].accelerations.resize(2);
command_msg.points[0].positions[0] = 0.0;
command_msg.points[0].positions[1] = 0.0;
command_msg.points[0].velocities[0] = 0.1;
command_msg.points[0].velocities[1] = 0.1;
command_msg.points[0].accelerations[0] = 0.1;
command_msg.points[0].accelerations[1] = 0.1;
command_msg.points[0].time_from_start = rclcpp::Duration(1s);

198 � A Concise Introduction to Robot Programming

br2 tracking/src/br2 tracking/HeadController.cpp

joint_pub_->publish(command_msg);

joint_pub_->on_deactivate();
timer_ = nullptr;

return CallbackReturn::SUCCESS;
}

void
HeadController::joint_state_callback(

control_msgs::msg::JointTrajectoryControllerState::UniquePtr msg)
{

last_state_ = std::move(msg);
}

void
HeadController::command_callback(br2_tracking_msgs::msg::PanTiltCommand::UniquePtr msg)
{

last_command_ = std::move(msg);
last_command_ts_ = now();

}

void
HeadController::control_sycle()
{

if (last_state_ == nullptr) {return;}

trajectory_msgs::msg::JointTrajectory command_msg;
command_msg.header.stamp = now();
command_msg.joint_names = last_state_->joint_names;
command_msg.points.resize(1);
command_msg.points[0].positions.resize(2);
command_msg.points[0].velocities.resize(2);
command_msg.points[0].accelerations.resize(2);
command_msg.points[0].time_from_start = rclcpp::Duration(200ms);

if (last_command_ == nullptr || (now() - last_command_ts_) > 100ms) {
command_msg.points[0].positions[0] = 0.0;
command_msg.points[0].positions[1] = 0.0;
command_msg.points[0].velocities[0] = 0.1;
command_msg.points[0].velocities[1] = 0.1;
command_msg.points[0].accelerations[0] = 0.1;
command_msg.points[0].accelerations[1] = 0.1;
command_msg.points[0].time_from_start = rclcpp::Duration(1s);

} else {
double control_pan = pan_pid_.get_output(last_command_->pan);
double control_tilt = tilt_pid_.get_output(last_command_->tilt);

command_msg.points[0].positions[0] = last_state_->actual.positions[0] - control_pan;
command_msg.points[0].positions[1] = last_state_->actual.positions[1] - control_tilt;

command_msg.points[0].velocities[0] = 0.5;
command_msg.points[0].velocities[1] = 0.5;
command_msg.points[0].accelerations[0] = 0.5;
command_msg.points[0].accelerations[1] = 0.5;

}

joint_pub_->publish(command_msg);
}

} // namespace br2_tracking

with ROS2

Source Code � 199

br2 tracking/src/br2 tracking/ObjectDetector.cpp

#include <vector>

#include "opencv2/opencv.hpp"
#include "cv_bridge/cv_bridge.h"

#include "br2_tracking/ObjectDetector.hpp"
#include "geometry_msgs/msg/pose2_d.hpp"

#include "image_transport/image_transport.hpp"
#include "rclcpp/rclcpp.hpp"

namespace br2_tracking
{
using std::placeholders::_1;

ObjectDetector::ObjectDetector()
: Node("object_detector")
{

image_sub_ = image_transport::create_subscription(
this, "input_image", std::bind(&ObjectDetector::image_callback, this, _1),
"raw", rclcpp::SensorDataQoS().get_rmw_qos_profile());

detection_pub_ = create_publisher<vision_msgs::msg::Detection2D>("detection", 100);

declare_parameter("hsv_ranges", hsv_filter_ranges_);
declare_parameter("debug", debug_);
get_parameter("hsv_ranges", hsv_filter_ranges_);
get_parameter("debug", debug_);

}

void
ObjectDetector::image_callback(const sensor_msgs::msg::Image::ConstSharedPtr & msg)
{

if (detection_pub_->get_subscription_count() == 0) {return;}

const float & h = hsv_filter_ranges_[0];
const float & H = hsv_filter_ranges_[1];
const float & s = hsv_filter_ranges_[2];
const float & S = hsv_filter_ranges_[3];
const float & v = hsv_filter_ranges_[4];
const float & V = hsv_filter_ranges_[5];

cv_bridge::CvImagePtr cv_ptr;
try {
cv_ptr = cv_bridge::toCvCopy(msg, sensor_msgs::image_encodings::BGR8);

} catch (cv_bridge::Exception & e) {
RCLCPP_ERROR(get_logger(), "cv_bridge exception: %s", e.what());
return;

}

cv::Mat img_hsv;
cv::cvtColor(cv_ptr->image, img_hsv, cv::COLOR_BGR2HSV);

cv::Mat1b filtered;
cv::inRange(img_hsv, cv::Scalar(h, s, v), cv::Scalar(H, S, V), filtered);

auto moment = cv::moments(filtered, true);
cv::Rect bbx = cv::boundingRect(filtered);

auto m = cv::moments(filtered, true);
if (m.m00 < 0.000001) {return;}
int cx = m.m10 / m.m00;
int cy = m.m01 / m.m00;

vision_msgs::msg::Detection2D detection_msg;
detection_msg.header = msg->header;
detection_msg.bbox.size_x = bbx.width;
detection_msg.bbox.size_y = bbx.height;
detection_msg.bbox.center.x = cx;
detection_msg.bbox.center.y = cy;
detection_msg.source_img = *cv_ptr->toImageMsg();
detection_pub_->publish(detection_msg);

if (debug_) {
cv::rectangle(cv_ptr->image, bbx, cv::Scalar(0, 0, 255), 3);
cv::circle(cv_ptr->image, cv::Point(cx, cy), 3, cv::Scalar(255, 0, 0), 3);
cv::imshow("cv_ptr->image", cv_ptr->image);

200 � A Concise Introduction to Robot Programming

br2 tracking/src/br2 tracking/ObjectDetector.cpp

cv::waitKey(1);
}

}

} // namespace br2_tracking

br2 tracking/src/object tracker main.cpp

#include <memory>

#include "br2_tracking/ObjectDetector.hpp"
#include "br2_tracking/HeadController.hpp"

#include "br2_tracking_msgs/msg/pan_tilt_command.hpp"

#include "lifecycle_msgs/msg/transition.hpp"
#include "rclcpp/rclcpp.hpp"

int main(int argc, char * argv[])
{

rclcpp::init(argc, argv);

auto node_detector = std::make_shared<br2_tracking::ObjectDetector>();
auto node_head_controller = std::make_shared<br2_tracking::HeadController>();
auto node_tracker = rclcpp::Node::make_shared("tracker");

auto command_pub =
node_tracker->create_publisher<br2_tracking_msgs::msg::PanTiltCommand>("/command", 100);
auto detection_sub = node_tracker->create_subscription<vision_msgs::msg::Detection2D>(
"/detection", rclcpp::SensorDataQoS(),
[command_pub](vision_msgs::msg::Detection2D::SharedPtr msg) {
br2_tracking_msgs::msg::PanTiltCommand command;
command.pan = (msg->bbox.center.x / msg->source_img.width) * 2.0 - 1.0;
command.tilt = (msg->bbox.center.y / msg->source_img.height) * 2.0 - 1.0;
command_pub->publish(command);

});

rclcpp::executors::SingleThreadedExecutor executor;
executor.add_node(node_detector);
executor.add_node(node_head_controller->get_node_base_interface());
executor.add_node(node_tracker);

node_head_controller->trigger_transition(
lifecycle_msgs::msg::Transition::TRANSITION_CONFIGURE);

executor.spin();

rclcpp::shutdown();
return 0;

}

br2 tracking/src/object detector main.cpp

#include <memory>

#include "br2_tracking/ObjectDetector.hpp"
#include "rclcpp/rclcpp.hpp"

int main(int argc, char * argv[])
{

rclcpp::init(argc, argv);

auto node_detector = std::make_shared<br2_tracking::ObjectDetector>();

rclcpp::spin(node_detector);

rclcpp::shutdown();
return 0;

}

with ROS2

Source Code � 201

br2 tracking/tests/CMakeLists.txt

ament_add_gtest(pid_test pid_test.cpp)
ament_target_dependencies(pid_test ${dependencies})
target_link_libraries(pid_test ${PROJECT_NAME})

br2 tracking/tests/pid test.cpp

#include <random>

#include "br2_tracking/PIDController.hpp"

#include "gtest/gtest.h"

TEST(pid_tests, pid_test_1)
{

br2_tracking::PIDController pid(0.0, 1.0, 0.0, 1.0);

ASSERT_NEAR(pid.get_output(0.0), 0.0, 0.05);
ASSERT_LT(pid.get_output(0.1), 0.099);
ASSERT_GT(pid.get_output(0.1), -0.4);
ASSERT_LT(pid.get_output(0.1), 0.3);

}

TEST(pid_tests, pid_test_2)
{

br2_tracking::PIDController pid(0.0, 1.0, 0.0, 1.0);
pid.set_pid(1.0, 0.0, 0.0);

std::random_device rd;
std::mt19937 gen(rd());
std::uniform_real_distribution<> dis(-5.0, 5.0);

for (int n = 0; n < 100000; n++) {
double random_number = dis(gen);
double output = pid.get_output(random_number);

ASSERT_LE(output, 1.0);
ASSERT_GE(output, -1.0);

if (output < -2.0) {
ASSERT_NEAR(output, -1.0, 0.01);

}
if (output > 2.0) {
ASSERT_NEAR(output, 1.0, 0.01);

}
if (output > 0.0) {
ASSERT_GT(output, 0.0);

}
if (output < 0.0) {
ASSERT_LT(output, 0.0);

}
}

}

int main(int argc, char ** argv)
{

testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();

}

202 � A Concise Introduction to Robot Programming

A.8 PACKAGE BR2 BT BUMPGO
Package br2 bt bumpgo

br2_bt_bumpgo
behavior_tree_xml

bumpgo.xml
cmake

FindZMQ.cmake
CMakeLists.txt
include

br2_bt_bumpgo
Back.hpp
Forward.hpp
IsObstacle.hpp
Turn.hpp

package.xml
src

br2_bt_bumpgo
Back.cpp
Forward.cpp
IsObstacle.cpp
Turn.cpp

bt_bumpgo_main.cpp
tests

bt_action_test.cpp
bt_forward_main.cpp

br2 bt bumpgo/behavior tree xml/bumpgo.xml

<?xml version="1.0"?>
<root main_tree_to_execute="BehaviorTree">

<!-- ////////// -->
<BehaviorTree ID="BehaviorTree">

<ReactiveSequence>
<Fallback>

<Inverter>
<Condition ID="IsObstacle" distance="1.0"/>

</Inverter>
<Sequence>

<Action ID="Back"/>
<Action ID="Turn"/>

</Sequence>
</Fallback>
<Action ID="Forward"/>

</ReactiveSequence>
</BehaviorTree>
<!-- ////////// -->
<TreeNodesModel>

<Action ID="Back"/>
<Action ID="Forward"/>
<Condition ID="IsObstacle">

<input_port default="1.0" name="distance">
Distance to consider obstacle

</input_port>
</Condition>
<Action ID="Turn"/>

</TreeNodesModel>
<!-- ////////// -->

</root>

with ROS2

Source Code � 203

br2 bt bumpgo/CMakeLists.txt

cmake_minimum_required(VERSION 3.5)
project(br2_bt_bumpgo)

set(CMAKE_CONFIG_PATH ${CMAKE_MODULE_PATH} "${CMAKE_CURRENT_LIST_DIR}/cmake")
list(APPEND CMAKE_MODULE_PATH "${CMAKE_CONFIG_PATH}")

find_package(ament_cmake REQUIRED)
find_package(rclcpp REQUIRED)
find_package(behaviortree_cpp_v3 REQUIRED)
find_package(sensor_msgs REQUIRED)
find_package(geometry_msgs REQUIRED)
find_package(ament_index_cpp REQUIRED)

find_package(ZMQ)
if(ZMQ_FOUND)

message(STATUS "ZeroMQ found.")
add_definitions(-DZMQ_FOUND)

else()
message(WARNING "ZeroMQ NOT found. Not including PublisherZMQ.")

endif()

set(CMAKE_CXX_STANDARD 17)

set(dependencies
rclcpp
behaviortree_cpp_v3
sensor_msgs
geometry_msgs
ament_index_cpp

)

include_directories(include ${ZMQ_INCLUDE_DIRS})

add_library(br2_forward_bt_node SHARED src/br2_bt_bumpgo/Forward.cpp)
add_library(br2_back_bt_node SHARED src/br2_bt_bumpgo/Back.cpp)
add_library(br2_turn_bt_node SHARED src/br2_bt_bumpgo/Turn.cpp)
add_library(br2_is_obstacle_bt_node SHARED src/br2_bt_bumpgo/IsObstacle.cpp)

list(APPEND plugin_libs
br2_forward_bt_node
br2_back_bt_node
br2_turn_bt_node
br2_is_obstacle_bt_node

)

foreach(bt_plugin ${plugin_libs})
ament_target_dependencies(${bt_plugin} ${dependencies})
target_compile_definitions(${bt_plugin} PRIVATE BT_PLUGIN_EXPORT)

endforeach()

add_executable(bt_bumpgo src/bt_bumpgo_main.cpp)
ament_target_dependencies(bt_bumpgo ${dependencies})
target_link_libraries(bt_bumpgo ${ZMQ_LIBRARIES})

install(TARGETS
${plugin_libs}
bt_bumpgo
ARCHIVE DESTINATION lib
LIBRARY DESTINATION lib
RUNTIME DESTINATION lib/${PROJECT_NAME}

)

install(DIRECTORY include/
DESTINATION include/

)

install(DIRECTORY behavior_tree_xml
DESTINATION share/${PROJECT_NAME}

)

if(BUILD_TESTING)
find_package(ament_lint_auto REQUIRED)
ament_lint_auto_find_test_dependencies()

set(ament_cmake_cpplint_FOUND TRUE)
ament_lint_auto_find_test_dependencies()

204 � A Concise Introduction to Robot Programming

br2 bt bumpgo/CMakeLists.txt

find_package(ament_cmake_gtest REQUIRED)

add_subdirectory(tests)
endif()

ament_export_include_directories(include)
ament_export_dependencies(${dependencies})

ament_package()

br2 bt bumpgo/package.xml

<?xml version="1.0"?>
<?xml-model href="http://download.ros.org/schema/package_format3.xsd"

schematypens="http://www.w3.org/2001/XMLSchema"?>
<package format="3">

<name>br2_bt_bumpgo</name>
<version>0.0.0</version>
<description>BumpGo with Bhehavior Trees package</description>
<maintainer email="fmrico@gmail.com">fmrico</maintainer>
<license>Apache 2.0</license>

<buildtool_depend>ament_cmake</buildtool_depend>

<depend>rclcpp</depend>
<depend>behaviortree_cpp_v3</depend>
<depend>sensor_msgs</depend>
<depend>geometry_msgs</depend>
<depend>libzmq3-dev</depend>
<depend>ament_index_cpp</depend>

<test_depend>ament_lint_auto</test_depend>
<test_depend>ament_lint_common</test_depend>
<test_depend>ament_cmake_gtest</test_depend>

<export>
<build_type>ament_cmake</build_type>

</export>
</package>

br2 bt bumpgo/include/br2 bt bumpgo/Turn.hpp

#ifndef BR2_BT_BUMPGO__TURN_HPP_
#define BR2_BT_BUMPGO__TURN_HPP_

#include <string>

#include "behaviortree_cpp_v3/behavior_tree.h"
#include "behaviortree_cpp_v3/bt_factory.h"

#include "geometry_msgs/msg/twist.hpp"
#include "rclcpp/rclcpp.hpp"

namespace br2_bt_bumpgo
{

class Turn : public BT::ActionNodeBase
{
public:

explicit Turn(
const std::string & xml_tag_name,
const BT::NodeConfiguration & conf);

void halt();
BT::NodeStatus tick();

static BT::PortsList providedPorts()
{
return BT::PortsList({});

}

with ROS2

mailto:fmrico@gmail.com
http://download.ros.org
http://www.w3.org

Source Code � 205

br2 bt bumpgo/include/br2 bt bumpgo/Turn.hpp

private:
rclcpp::Node::SharedPtr node_;
rclcpp::Time start_time_;
rclcpp::Publisher<geometry_msgs::msg::Twist>::SharedPtr vel_pub_;

};

} // namespace br2_bt_bumpgo

#endif // BR2_BT_BUMPGO__TURN_HPP_

br2 bt bumpgo/include/br2 bt bumpgo/IsObstacle.hpp

#ifndef BR2_BT_BUMPGO__ISOBSTACLE_HPP_
#define BR2_BT_BUMPGO__ISOBSTACLE_HPP_

#include <string>

#include "behaviortree_cpp_v3/behavior_tree.h"
#include "behaviortree_cpp_v3/bt_factory.h"

#include "sensor_msgs/msg/laser_scan.hpp"
#include "rclcpp/rclcpp.hpp"

namespace br2_bt_bumpgo
{

class IsObstacle : public BT::ConditionNode
{
public:

explicit IsObstacle(
const std::string & xml_tag_name,
const BT::NodeConfiguration & conf);

BT::NodeStatus tick();

static BT::PortsList providedPorts()
{
return BT::PortsList(
{
BT::InputPort<double>("distance")

});
}

void laser_callback(sensor_msgs::msg::LaserScan::UniquePtr msg);

private:
rclcpp::Node::SharedPtr node_;
rclcpp::Time last_reading_time_;
rclcpp::Subscription<sensor_msgs::msg::LaserScan>::SharedPtr laser_sub_;
sensor_msgs::msg::LaserScan::UniquePtr last_scan_;

};

} // namespace br2_bt_bumpgo

#endif // BR2_BT_BUMPGO__ISOBSTACLE_HPP_

206 � A Concise Introduction to Robot Programming

br2 bt bumpgo/include/br2 bt bumpgo/Back.hpp

#ifndef BR2_BT_BUMPGO__BACK_HPP_
#define BR2_BT_BUMPGO__BACK_HPP_

#include <string>

#include "behaviortree_cpp_v3/behavior_tree.h"
#include "behaviortree_cpp_v3/bt_factory.h"

#include "geometry_msgs/msg/twist.hpp"
#include "rclcpp/rclcpp.hpp"

namespace br2_bt_bumpgo
{

class Back : public BT::ActionNodeBase
{
public:

explicit Back(
const std::string & xml_tag_name,
const BT::NodeConfiguration & conf);

void halt();
BT::NodeStatus tick();

br2 bt bumpgo/include/br2 bt bumpgo/Back.hpp

static BT::PortsList providedPorts()
{
return BT::PortsList({});

}

private:
rclcpp::Node::SharedPtr node_;
rclcpp::Time start_time_;
rclcpp::Publisher<geometry_msgs::msg::Twist>::SharedPtr vel_pub_;

};

} // namespace br2_bt_bumpgo

#endif // BR2_BT_BUMPGO__BACK_HPP_

br2 bt bumpgo/include/br2 bt bumpgo/Forward.hpp

#ifndef BR2_BT_BUMPGO__FORWARD_HPP_
#define BR2_BT_BUMPGO__FORWARD_HPP_

#include <string>

#include "behaviortree_cpp_v3/behavior_tree.h"
#include "behaviortree_cpp_v3/bt_factory.h"

#include "geometry_msgs/msg/twist.hpp"
#include "rclcpp/rclcpp.hpp"

namespace br2_bt_bumpgo
{

class Forward : public BT::ActionNodeBase
{
public:

explicit Forward(
const std::string & xml_tag_name,
const BT::NodeConfiguration & conf);

void halt() {}
BT::NodeStatus tick();

with ROS2

Source Code � 207

br2 bt bumpgo/include/br2 bt bumpgo/Forward.hpp

static BT::PortsList providedPorts()
{
return BT::PortsList({});

}

private:
rclcpp::Node::SharedPtr node_;
rclcpp::Publisher<geometry_msgs::msg::Twist>::SharedPtr vel_pub_;

};

} // namespace br2_bt_bumpgo

#endif // BR2_BT_BUMPGO__FORWARD_HPP_

br2 bt bumpgo/src/bt bumpgo main.cpp

#include <string>
#include <memory>

#include "behaviortree_cpp_v3/behavior_tree.h"
#include "behaviortree_cpp_v3/bt_factory.h"
#include "behaviortree_cpp_v3/utils/shared_library.h"
#include "behaviortree_cpp_v3/loggers/bt_zmq_publisher.h"

#include "ament_index_cpp/get_package_share_directory.hpp"

#include "rclcpp/rclcpp.hpp"

int main(int argc, char * argv[])
{

rclcpp::init(argc, argv);

auto node = rclcpp::Node::make_shared("patrolling_node");

BT::BehaviorTreeFactory factory;
BT::SharedLibrary loader;

factory.registerFromPlugin(loader.getOSName("br2_forward_bt_node"));
factory.registerFromPlugin(loader.getOSName("br2_back_bt_node"));
factory.registerFromPlugin(loader.getOSName("br2_turn_bt_node"));
factory.registerFromPlugin(loader.getOSName("br2_is_obstacle_bt_node"));

std::string pkgpath = ament_index_cpp::get_package_share_directory("br2_bt_bumpgo");
std::string xml_file = pkgpath + "/behavior_tree_xml/bumpgo.xml";

auto blackboard = BT::Blackboard::create();
blackboard->set("node", node);
BT::Tree tree = factory.createTreeFromFile(xml_file, blackboard);

auto publisher_zmq = std::make_shared<BT::PublisherZMQ>(tree, 10, 1666, 1667);

rclcpp::Rate rate(10);

bool finish = false;
while (!finish && rclcpp::ok()) {
finish = tree.rootNode()->executeTick() != BT::NodeStatus::RUNNING;

rclcpp::spin_some(node);
rate.sleep();

}

rclcpp::shutdown();
return 0;

}

208 � A Concise Introduction to Robot Programming

br2 bt bumpgo/src/br2 bt bumpgo/Back.cpp

#include <string>
#include <iostream>

#include "br2_bt_bumpgo/Back.hpp"

#include "behaviortree_cpp_v3/behavior_tree.h"

#include "geometry_msgs/msg/twist.hpp"
#include "rclcpp/rclcpp.hpp"

namespace br2_bt_bumpgo
{

using namespace std::chrono_literals;

Back::Back(
const std::string & xml_tag_name,
const BT::NodeConfiguration & conf)

: BT::ActionNodeBase(xml_tag_name, conf)
{

config().blackboard->get("node", node_);

vel_pub_ = node_->create_publisher<geometry_msgs::msg::Twist>("/output_vel", 100);
}

void
Back::halt()
{
}

BT::NodeStatus
Back::tick()
{

if (status() == BT::NodeStatus::IDLE) {
start_time_ = node_->now();

}

geometry_msgs::msg::Twist vel_msgs;
vel_msgs.linear.x = -0.3;
vel_pub_->publish(vel_msgs);

auto elapsed = node_->now() - start_time_;

if (elapsed < 3s) {
return BT::NodeStatus::RUNNING;

} else {
return BT::NodeStatus::SUCCESS;

}
}

} // namespace br2_bt_bumpgo

#include "behaviortree_cpp_v3/bt_factory.h"
BT_REGISTER_NODES(factory)
{

factory.registerNodeType<br2_bt_bumpgo::Back>("Back");
}

with ROS2

Source Code � 209

br2 bt bumpgo/src/br2 bt bumpgo/Forward.cpp

#include <string>
#include <iostream>

#include "br2_bt_bumpgo/Forward.hpp"

#include "behaviortree_cpp_v3/behavior_tree.h"

#include "geometry_msgs/msg/twist.hpp"
#include "rclcpp/rclcpp.hpp"

namespace br2_bt_bumpgo
{

using namespace std::chrono_literals;

Forward::Forward(
const std::string & xml_tag_name,
const BT::NodeConfiguration & conf)

: BT::ActionNodeBase(xml_tag_name, conf)
{

config().blackboard->get("node", node_);

vel_pub_ = node_->create_publisher<geometry_msgs::msg::Twist>("/output_vel", 100);
}

BT::NodeStatus
Forward::tick()
{

geometry_msgs::msg::Twist vel_msgs;
vel_msgs.linear.x = 0.3;
vel_pub_->publish(vel_msgs);

return BT::NodeStatus::RUNNING;
}

} // namespace br2_bt_bumpgo

#include "behaviortree_cpp_v3/bt_factory.h"
BT_REGISTER_NODES(factory)
{

factory.registerNodeType<br2_bt_bumpgo::Forward>("Forward");
}

br2 bt bumpgo/src/br2 bt bumpgo/IsObstacle.cpp

#include <string>
#include <utility>

#include "br2_bt_bumpgo/IsObstacle.hpp"

#include "behaviortree_cpp_v3/behavior_tree.h"

#include "sensor_msgs/msg/laser_scan.hpp"
#include "rclcpp/rclcpp.hpp"

namespace br2_bt_bumpgo
{

using namespace std::chrono_literals;
using namespace std::placeholders;

IsObstacle::IsObstacle(
const std::string & xml_tag_name,
const BT::NodeConfiguration & conf)

: BT::ConditionNode(xml_tag_name, conf)
{

210 � A Concise Introduction to Robot Programming

br2 bt bumpgo/src/br2 bt bumpgo/IsObstacle.cpp

config().blackboard->get("node", node_);

laser_sub_ = node_->create_subscription<sensor_msgs::msg::LaserScan>(
"/input_scan", 100, std::bind(&IsObstacle::laser_callback, this, _1));

last_reading_time_ = node_->now();
}

void
IsObstacle::laser_callback(sensor_msgs::msg::LaserScan::UniquePtr msg)
{

last_scan_ = std::move(msg);
}

BT::NodeStatus
IsObstacle::tick()
{

if (last_scan_ == nullptr) {
return BT::NodeStatus::FAILURE;

}

double distance = 1.0;
getInput("distance", distance);

if (last_scan_->ranges[last_scan_->ranges.size() / 2] < distance) {
return BT::NodeStatus::SUCCESS;

} else {
return BT::NodeStatus::FAILURE;

}
}

} // namespace br2_bt_bumpgo

#include "behaviortree_cpp_v3/bt_factory.h"
BT_REGISTER_NODES(factory)
{

factory.registerNodeType<br2_bt_bumpgo::IsObstacle>("IsObstacle");
}

br2 bt bumpgo/src/br2 bt bumpgo/Turn.cpp

#include <string>
#include <iostream>

#include "br2_bt_bumpgo/Turn.hpp"

#include "behaviortree_cpp_v3/behavior_tree.h"

#include "geometry_msgs/msg/twist.hpp"
#include "rclcpp/rclcpp.hpp"

namespace br2_bt_bumpgo
{

using namespace std::chrono_literals;

Turn::Turn(
const std::string & xml_tag_name,
const BT::NodeConfiguration & conf)

: BT::ActionNodeBase(xml_tag_name, conf)
{

config().blackboard->get("node", node_);

vel_pub_ = node_->create_publisher<geometry_msgs::msg::Twist>("/output_vel", 100);
}

void
Turn::halt()
{
}

with ROS2

Source Code � 211

br2 bt bumpgo/src/br2 bt bumpgo/Turn.cpp

BT::NodeStatus
Turn::tick()
{

if (status() == BT::NodeStatus::IDLE) {
start_time_ = node_->now();

}

geometry_msgs::msg::Twist vel_msgs;
vel_msgs.angular.z = 0.5;
vel_pub_->publish(vel_msgs);

auto elapsed = node_->now() - start_time_;

if (elapsed < 3s) {
return BT::NodeStatus::RUNNING;

} else {
return BT::NodeStatus::SUCCESS;

}
}

} // namespace br2_bt_bumpgo

#include "behaviortree_cpp_v3/bt_factory.h"
BT_REGISTER_NODES(factory)
{

factory.registerNodeType<br2_bt_bumpgo::Turn>("Turn");
}

br2 bt bumpgo/tests/bt action test.cpp

#include <string>
#include <list>
#include <memory>
#include <vector>
#include <set>

#include "behaviortree_cpp_v3/behavior_tree.h"
#include "behaviortree_cpp_v3/bt_factory.h"
#include "behaviortree_cpp_v3/utils/shared_library.h"

#include "ament_index_cpp/get_package_share_directory.hpp"

#include "geometry_msgs/msg/twist.hpp"
#include "sensor_msgs/msg/laser_scan.hpp"

#include "rclcpp/rclcpp.hpp"
#include "rclcpp_action/rclcpp_action.hpp"

#include "gtest/gtest.h"

using namespace std::placeholders;
using namespace std::chrono_literals;

class VelocitySinkNode : public rclcpp::Node
{
public:

VelocitySinkNode()
: Node("VelocitySink")
{
vel_sub_ = create_subscription<geometry_msgs::msg::Twist>(
"/output_vel", 100, std::bind(&VelocitySinkNode::vel_callback, this, _1));

}

void vel_callback(geometry_msgs::msg::Twist::SharedPtr msg)
{
vel_msgs_.push_back(*msg);

}

212 � A Concise Introduction to Robot Programming

br2 bt bumpgo/tests/bt action test.cpp

std::list<geometry_msgs::msg::Twist> vel_msgs_;

private:
rclcpp::Subscription<geometry_msgs::msg::Twist>::SharedPtr vel_sub_;

};

TEST(bt_action, turn_btn)
{

auto node = rclcpp::Node::make_shared("turn_btn_node");
auto node_sink = std::make_shared<VelocitySinkNode>();

BT::BehaviorTreeFactory factory;
BT::SharedLibrary loader;

factory.registerFromPlugin(loader.getOSName("br2_turn_bt_node"));

std::string xml_bt =
R"(
<root main_tree_to_execute = "MainTree" >
<BehaviorTree ID="MainTree">

<Turn />
</BehaviorTree>

</root>)";

auto blackboard = BT::Blackboard::create();
blackboard->set("node", node);
BT::Tree tree = factory.createTreeFromText(xml_bt, blackboard);

rclcpp::Rate rate(10);
bool finish = false;
while (!finish && rclcpp::ok()) {
finish = tree.rootNode()->executeTick() == BT::NodeStatus::SUCCESS;
rclcpp::spin_some(node_sink);
rate.sleep();

}

ASSERT_FALSE(node_sink->vel_msgs_.empty());
ASSERT_NEAR(node_sink->vel_msgs_.size(), 30, 1);

geometry_msgs::msg::Twist & one_twist = node_sink->vel_msgs_.front();

ASSERT_GT(one_twist.angular.z, 0.1);
ASSERT_NEAR(one_twist.linear.x, 0.0, 0.0000001);

}

TEST(bt_action, back_btn)
{

auto node = rclcpp::Node::make_shared("back_btn_node");
auto node_sink = std::make_shared<VelocitySinkNode>();

BT::BehaviorTreeFactory factory;
BT::SharedLibrary loader;

factory.registerFromPlugin(loader.getOSName("br2_back_bt_node"));

std::string xml_bt =gte_node
R"(
<root main_tree_to_execute = "MainTree" >
<BehaviorTree ID="MainTree">

<Back />
</BehaviorTree>

</root>)";

auto blackboard = BT::Blackboard::create();
blackboard->set("node", node);
BT::Tree tree = factory.createTreeFromText(xml_bt, blackboard);

rclcpp::Rate rate(10);
bool finish = false;
while (!finish && rclcpp::ok()) {
finish = tree.rootNode()->executeTick() == BT::NodeStatus::SUCCESS;
rclcpp::spin_some(node_sink);
rate.sleep();

}

with ROS2

Source Code � 213

br2 bt bumpgo/tests/bt action test.cpp

ASSERT_FALSE(node_sink->vel_msgs_.empty());
ASSERT_NEAR(node_sink->vel_msgs_.size(), 30, 1);

geometry_msgs::msg::Twist & one_twist = node_sink->vel_msgs_.front();

ASSERT_LT(one_twist.linear.x, -0.1);
ASSERT_NEAR(one_twist.angular.z, 0.0, 0.0000001);

}

TEST(bt_action, forward_btn)
{

auto node = rclcpp::Node::make_shared("forward_btn_node");
auto node_sink = std::make_shared<VelocitySinkNode>();

BT::BehaviorTreeFactory factory;
BT::SharedLibrary loader;

factory.registerFromPlugin(loader.getOSName("br2_forward_bt_node"));

std::string xml_bt =
R"(
<root main_tree_to_execute = "MainTree" >
<BehaviorTree ID="MainTree">

<Forward />
</BehaviorTree>

</root>)";

auto blackboard = BT::Blackboard::create();
blackboard->set("node", node);
BT::Tree tree = factory.createTreeFromText(xml_bt, blackboard);

rclcpp::Rate rate(10);
auto current_status = BT::NodeStatus::FAILURE;
int counter = 0;
while (counter++ < 30 && rclcpp::ok()) {
current_status = tree.rootNode()->executeTick();
rclcpp::spin_some(node_sink);
rate.sleep();

}

ASSERT_EQ(current_status, BT::NodeStatus::RUNNING);
ASSERT_FALSE(node_sink->vel_msgs_.empty());
ASSERT_NEAR(node_sink->vel_msgs_.size(), 30, 1);

geometry_msgs::msg::Twist & one_twist = node_sink->vel_msgs_.front();

ASSERT_GT(one_twist.linear.x, 0.1);
ASSERT_NEAR(one_twist.angular.z, 0.0, 0.0000001);

}

TEST(bt_action, is_obstacle_btn)
{

auto node = rclcpp::Node::make_shared("is_obstacle_btn_node");
auto scan_pub = node->create_publisher<sensor_msgs::msg::LaserScan>("input_scan", 1);

BT::BehaviorTreeFactory factory;
BT::SharedLibrary loader;

factory.registerFromPlugin(loader.getOSName("br2_is_obstacle_bt_node"));

std::string xml_bt =
R"(
<root main_tree_to_execute = "MainTree" >
<BehaviorTree ID="MainTree">

<IsObstacle/>
</BehaviorTree>

</root>)";

auto blackboard = BT::Blackboard::create();
blackboard->set("node", node);
BT::Tree tree = factory.createTreeFromText(xml_bt, blackboard);

rclcpp::Rate rate(10);

sensor_msgs::msg::LaserScan scan;
scan.ranges.push_back(2.0);
for (int i = 0; i < 10; i++) {

214 � A Concise Introduction to Robot Programming

br2 bt bumpgo/tests/bt action test.cpp

scan_pub->publish(scan);
rclcpp::spin_some(node);
rate.sleep();

}

BT::NodeStatus current_status = tree.rootNode()->executeTick();
ASSERT_EQ(current_status, BT::NodeStatus::FAILURE);

scan.ranges[0] = 0.3;
for (int i = 0; i < 10; i++) {
scan_pub->publish(scan);
rclcpp::spin_some(node);
rate.sleep();

}

current_status = tree.rootNode()->executeTick();
ASSERT_EQ(current_status, BT::NodeStatus::SUCCESS);

xml_bt =
R"(
<root main_tree_to_execute = "MainTree" >
<BehaviorTree ID="MainTree">

<IsObstacle distance="0.5"/>
</BehaviorTree>

</root>)";
tree = factory.createTreeFromText(xml_bt, blackboard);

scan.ranges[0] = 0.3;
for (int i = 0; i < 10; i++) {
scan_pub->publish(scan);
rclcpp::spin_some(node);
rate.sleep();

}

current_status = tree.rootNode()->executeTick();
ASSERT_EQ(current_status, BT::NodeStatus::SUCCESS);

scan.ranges[0] = 0.6;
for (int i = 0; i < 10; i++) {
scan_pub->publish(scan);
rclcpp::spin_some(node);
rate.sleep();

}

current_status = tree.rootNode()->executeTick();
ASSERT_EQ(current_status, BT::NodeStatus::FAILURE);

}

int main(int argc, char ** argv)
{

rclcpp::init(argc, argv);

testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();

}

br2 bt bumpgo/tests/CMakeLists.txt

ament_add_gtest(bt_action_test bt_action_test.cpp)
ament_target_dependencies(bt_action_test ${dependencies})

add_executable(bt_forward bt_forward_main.cpp)
ament_target_dependencies(bt_forward ${dependencies})
target_link_libraries(bt_forward ${ZMQ_LIBRARIES})

install(TARGETS
bt_forward
ARCHIVE DESTINATION lib
LIBRARY DESTINATION lib
RUNTIME DESTINATION lib/${PROJECT_NAME}

)

with ROS2

Source Code � 215

br2 bt bumpgo/tests/bt forward main.cpp

#include <string>
#include <memory>

#include "behaviortree_cpp_v3/behavior_tree.h"
#include "behaviortree_cpp_v3/bt_factory.h"
#include "behaviortree_cpp_v3/utils/shared_library.h"
#include "behaviortree_cpp_v3/loggers/bt_zmq_publisher.h"

#include "ament_index_cpp/get_package_share_directory.hpp"

#include "rclcpp/rclcpp.hpp"

int main(int argc, char * argv[])
{

rclcpp::init(argc, argv);

auto node = rclcpp::Node::make_shared("forward_node");

BT::BehaviorTreeFactory factory;
BT::SharedLibrary loader;

factory.registerFromPlugin(loader.getOSName("br2_forward_bt_node"));

std::string xml_bt =
R"(
<root main_tree_to_execute = "MainTree" >
<BehaviorTree ID="MainTree">

<Forward />
</BehaviorTree>

</root>)";

auto blackboard = BT::Blackboard::create();
blackboard->set("node", node);
BT::Tree tree = factory.createTreeFromText(xml_bt, blackboard);

rclcpp::Rate rate(10);
bool finish = false;
while (!finish && rclcpp::ok()) {
finish = tree.rootNode()->executeTick() != BT::NodeStatus::RUNNING;

rclcpp::spin_some(node);
rate.sleep();

}

rclcpp::shutdown();
return 0;

}

216 � A Concise Introduction to Robot Programming

A.9 PACKAGE BR2 BT PATROLLING
Package br2 bt patrolling

br2_bt_patrolling
behavior_tree_xml

patrolling.xml
cmake

FindZMQ.cmake
CMakeLists.txt
include

br2_bt_patrolling
BatteryChecker.hpp
ctrl_support

BTActionNode.hpp
BTLifecycleCtrlNode.hpp

GetWaypoint.hpp
Move.hpp
Patrol.hpp
Recharge.hpp
TrackObjects.hpp

launch
patrolling.launch.py

package.xml
src

br2_bt_patrolling
BatteryChecker.cpp
GetWaypoint.cpp
Move.cpp
Patrol.cpp
Recharge.cpp
TrackObjects.cpp

patrolling_main.cpp
tests

bt_action_test.cpp
CMakeLists.txt

br2 bt patrolling/behavior tree xml/patrolling.xml

<?xml version="1.0"?>
<root main_tree_to_execute="BehaviorTree">

<!-- ////////// -->
<BehaviorTree ID="BehaviorTree">

<KeepRunningUntilFailure>
<ReactiveSequence>

<Fallback>
<Action ID="BatteryChecker"/>
<Sequence>

<Action ID="GetWaypoint" waypoint="{recharge_wp}" wp_id="recharge"/>
<Action ID="Move" goal="{recharge_wp}"/>
<Action ID="Recharge"/>

</Sequence>
</Fallback>
<Sequence>

<Action ID="GetWaypoint" waypoint="{wp}" wp_id="next"/>
<Parallel success_threshold="1" failure_threshold="1">
<Action ID="TrackObjects"/>
<Action ID="Move" goal="{wp}"/>

</Parallel>
<Action ID="Patrol"/>

</Sequence>
</ReactiveSequence>

</KeepRunningUntilFailure>
</BehaviorTree>

with ROS2

Source Code � 217

br2 bt patrolling/behavior tree xml/patrolling.xml

<!-- ////////// -->
<TreeNodesModel>

<Action ID="BatteryChecker"/>
<Action ID="GetWaypoint">

<output_port name="waypoint"/>
<input_port name="wp_id"/>

</Action>
<Action ID="Move">

<input_port name="goal"/>
</Action>
<Action ID="Patrol"/>
<Action ID="Recharge"/>
<Action ID="TrackObjects"/>

</TreeNodesModel>
<!-- ////////// -->

</root>

br2 bt patrolling/CMakeLists.txt

cmake_minimum_required(VERSION 3.5)
project(br2_bt_patrolling)

set(CMAKE_BUILD_TYPE Debug)

set(CMAKE_CONFIG_PATH ${CMAKE_MODULE_PATH} "${CMAKE_CURRENT_LIST_DIR}/cmake")
list(APPEND CMAKE_MODULE_PATH "${CMAKE_CONFIG_PATH}")

find_package(ament_cmake REQUIRED)
find_package(rclcpp REQUIRED)
find_package(rclcpp_lifecycle REQUIRED)
find_package(rclcpp_action REQUIRED)
find_package(behaviortree_cpp_v3 REQUIRED)
find_package(action_msgs REQUIRED)
find_package(lifecycle_msgs REQUIRED)
find_package(geometry_msgs REQUIRED)
find_package(nav2_msgs REQUIRED)
find_package(ament_index_cpp REQUIRED)

find_package(ZMQ)
if(ZMQ_FOUND)

message(STATUS "ZeroMQ found.")
add_definitions(-DZMQ_FOUND)

else()
message(WARNING "ZeroMQ NOT found. Not including PublisherZMQ.")

endif()

set(CMAKE_CXX_STANDARD 17)

set(dependencies
rclcpp
rclcpp_lifecycle
rclcpp_action
behaviortree_cpp_v3
action_msgs
lifecycle_msgs
geometry_msgs
nav2_msgs
ament_index_cpp

)

include_directories(include ${ZMQ_INCLUDE_DIRS})

218 � A Concise Introduction to Robot Programming

br2 bt patrolling/CMakeLists.txt

add_library(br2_recharge_bt_node SHARED src/br2_bt_patrolling/Recharge.cpp)
add_library(br2_patrol_bt_node SHARED src/br2_bt_patrolling/Patrol.cpp)
add_library(br2_move_bt_node SHARED src/br2_bt_patrolling/Move.cpp)
add_library(br2_get_waypoint_bt_node SHARED src/br2_bt_patrolling/GetWaypoint.cpp)
add_library(br2_battery_checker_bt_node SHARED src/br2_bt_patrolling/BatteryChecker.cpp)
add_library(br2_track_objects_bt_node SHARED src/br2_bt_patrolling/TrackObjects.cpp)
list(APPEND plugin_libs
br2_recharge_bt_node
br2_patrol_bt_node
br2_move_bt_node
br2_get_waypoint_bt_node
br2_battery_checker_bt_node
br2_track_objects_bt_node

)

foreach(bt_plugin ${plugin_libs})
ament_target_dependencies(${bt_plugin} ${dependencies})
target_compile_definitions(${bt_plugin} PRIVATE BT_PLUGIN_EXPORT)

endforeach()

add_executable(patrolling_main src/patrolling_main.cpp)
ament_target_dependencies(patrolling_main ${dependencies})
target_link_libraries(patrolling_main ${ZMQ_LIBRARIES})

install(TARGETS
${plugin_libs}
patrolling_main
ARCHIVE DESTINATION lib
LIBRARY DESTINATION lib
RUNTIME DESTINATION lib/${PROJECT_NAME}

)

install(DIRECTORY include/
DESTINATION include/

)

install(DIRECTORY behavior_tree_xml launch
DESTINATION share/${PROJECT_NAME}

)

if(BUILD_TESTING)
find_package(ament_lint_auto REQUIRED)
ament_lint_auto_find_test_dependencies()

set(ament_cmake_cpplint_FOUND TRUE)
ament_lint_auto_find_test_dependencies()

find_package(ament_cmake_gtest REQUIRED)

add_subdirectory(tests)
endif()

ament_export_include_directories(include)
ament_export_dependencies(${dependencies})

ament_package()

with ROS2

Source Code � 219

br2 bt patrolling/launch/patrolling.launch.py

import os

from ament_index_python.packages import get_package_share_directory

from launch import LaunchDescription
from launch.actions import IncludeLaunchDescription
from launch.launch_description_sources import PythonLaunchDescriptionSource
from launch_ros.actions import Node

def generate_launch_description():

tracking_dir = get_package_share_directory('br2_tracking')

tracking_cmd = IncludeLaunchDescription(
PythonLaunchDescriptionSource(
os.path.join(tracking_dir, 'launch', 'tracking.launch.py')))

patrolling_cmd = Node(
package='br2_bt_patrolling',
executable='patrolling_main',
parameters=[{

'use_sim_time': True
}],
remappings=[
('input_scan', '/scan_raw'),
('output_vel', '/nav_vel')

],
output='screen'

)

ld = LaunchDescription()

Add any actions
ld.add_action(tracking_cmd)
ld.add_action(patrolling_cmd)

return ld

br2 bt patrolling/package.xml

<?xml version="1.0"?>
<?xml-model href="http://download.ros.org/schema/package_format3.xsd"

schematypens="http://www.w3.org/2001/XMLSchema"?>
<package format="3">

<name>br2_bt_patrolling</name>
<version>0.0.0</version>
<description>Patrolling behavior package</description>
<maintainer email="fmrico@gmail.com">Francisco Martı́n</maintainer>
<license>Apache 2.0</license>

<buildtool_depend>ament_cmake</buildtool_depend>

<depend>rclcpp</depend>
<depend>rclcpp_lifecycle</depend>
<depend>rclcpp_action</depend>
<depend>behaviortree_cpp_v3</depend>
<depend>action_msgs</depend>
<depend>geometry_msgs</depend>
<depend>lifecycle_msgs</depend>
<depend>nav2_msgs</depend>
<depend>libzmq3-dev</depend>
<depend>ament_index_cpp</depend>

<test_depend>ament_lint_auto</test_depend>
<test_depend>ament_lint_common</test_depend>
<test_depend>ament_cmake_gtest</test_depend>

<export>
<build_type>ament_cmake</build_type>

</export>
</package>

mailto:fmrico@gmail.com
http://download.ros.org
http://www.w3.org

220 � A Concise Introduction to Robot Programming

br2 bt patrolling/include/br2 bt patrolling/BatteryChecker.hpp

#ifndef BR2_BT_PATROLLING__BATTERYCHECKER_HPP_
#define BR2_BT_PATROLLING__BATTERYCHECKER_HPP_

#include <string>
#include <vector>

#include "behaviortree_cpp_v3/behavior_tree.h"
#include "behaviortree_cpp_v3/bt_factory.h"

#include "geometry_msgs/msg/twist.hpp"

#include "rclcpp/rclcpp.hpp"

namespace br2_bt_patrolling
{

class BatteryChecker : public BT::ConditionNode
{
public:

explicit BatteryChecker(
const std::string & xml_tag_name,
const BT::NodeConfiguration & conf);

BT::NodeStatus tick();

static BT::PortsList providedPorts()
{
return BT::PortsList({});

}

void vel_callback(const geometry_msgs::msg::Twist::SharedPtr msg);

const float DECAY_LEVEL = 0.5; // 0.5 * |vel| * dt
const float EPSILON = 0.01; // 0.001 * dt
const float MIN_LEVEL = 10.0;

private:
void update_battery();

rclcpp::Node::SharedPtr node_;
rclcpp::Time last_reading_time_;
geometry_msgs::msg::Twist last_twist_;
rclcpp::Subscription<geometry_msgs::msg::Twist>::SharedPtr vel_sub_;

};

} // namespace br2_bt_patrolling

#endif // BR2_BT_PATROLLING__BATTERYCHECKER_HPP_

br2 bt patrolling/include/br2 bt patrolling/ctrl support/BTLifecycleCtrlNode.hpp

#ifndef BR2_BT_PATROLLING__CTRL_SUPPORT__BTLIFECYCLECTRLNODE_HPP_
#define BR2_BT_PATROLLING__CTRL_SUPPORT__BTLIFECYCLECTRLNODE_HPP_

#include <memory>
#include <string>

#include "lifecycle_msgs/srv/change_state.hpp"
#include "lifecycle_msgs/srv/get_state.hpp"
#include "lifecycle_msgs/msg/state.hpp"

#include "behaviortree_cpp_v3/action_node.h"
#include "rclcpp/rclcpp.hpp"
namespace br2_bt_patrolling

{

using namespace std::chrono_literals; // NOLINT

with ROS2

Source Code � 221

br2 bt patrolling/include/br2 bt patrolling/ctrl support/BTLifecycleCtrlNode.hpp

class BtLifecycleCtrlNode : public BT::ActionNodeBase
{
public:

BtLifecycleCtrlNode(
const std::string & xml_tag_name,
const std::string & node_name,
const BT::NodeConfiguration & conf)

: BT::ActionNodeBase(xml_tag_name, conf), ctrl_node_name_(node_name)
{
node_ = config().blackboard->get<rclcpp::Node::SharedPtr>("node");

}

BtLifecycleCtrlNode() = delete;

virtual ˜BtLifecycleCtrlNode()
{
}

template<typename serviceT>
typename rclcpp::Client<serviceT>::SharedPtr createServiceClient(
const std::string & service_name)

{
auto srv = node_->create_client<serviceT>(service_name);
while (!srv->wait_for_service(1s)) {
if (!rclcpp::ok()) {
RCLCPP_ERROR(node_->get_logger(), "Interrupted while waiting for the service.");

} else {
RCLCPP_INFO(node_->get_logger(), "service not available, waiting again...");

}
}
return srv;

}

virtual void on_tick() {}

virtual BT::NodeStatus on_success()
{
return BT::NodeStatus::SUCCESS;

}

virtual BT::NodeStatus on_failure()
{
return BT::NodeStatus::FAILURE;

}

BT::NodeStatus tick() override
{
if (status() == BT::NodeStatus::IDLE) {
change_state_client_ = createServiceClient<lifecycle_msgs::srv::ChangeState>(
ctrl_node_name_ + "/change_state");

get_state_client_ = createServiceClient<lifecycle_msgs::srv::GetState>(
ctrl_node_name_ + "/get_state");

}

if (ctrl_node_state_ != lifecycle_msgs::msg::State::PRIMARY_STATE_ACTIVE) {
ctrl_node_state_ = get_state();
set_state(lifecycle_msgs::msg::State::PRIMARY_STATE_ACTIVE);

}

on_tick();

return BT::NodeStatus::RUNNING;
}

void halt() override
{
if (ctrl_node_state_ == lifecycle_msgs::msg::State::PRIMARY_STATE_ACTIVE) {
set_state(lifecycle_msgs::msg::State::PRIMARY_STATE_INACTIVE);

}
setStatus(BT::NodeStatus::IDLE);

}

// Get the state of the controlled node
uint8_t get_state()

222 � A Concise Introduction to Robot Programming

br2 bt patrolling/include/br2 bt patrolling/ctrl support/BTLifecycleCtrlNode.hpp

{
auto request = std::make_shared<lifecycle_msgs::srv::GetState::Request>();
auto result = get_state_client_->async_send_request(request);

if (rclcpp::spin_until_future_complete(node_, result) !=
rclcpp::FutureReturnCode::SUCCESS)

{
lifecycle_msgs::msg::State get_state;

RCLCPP_ERROR(node_->get_logger(), "Failed to call get_state service");
return lifecycle_msgs::msg::State::PRIMARY_STATE_UNKNOWN;

}

return result.get()->current_state.id;
}

// Get the state of the controlled node. Ot can fail, if not transition possible
bool set_state(uint8_t state)
{
auto request = std::make_shared<lifecycle_msgs::srv::ChangeState::Request>();

if (state == lifecycle_msgs::msg::State::PRIMARY_STATE_ACTIVE &&
ctrl_node_state_ == lifecycle_msgs::msg::State::PRIMARY_STATE_INACTIVE)

{
request->transition.id = lifecycle_msgs::msg::Transition::TRANSITION_ACTIVATE;

} else {
if (state == lifecycle_msgs::msg::State::PRIMARY_STATE_INACTIVE &&
ctrl_node_state_ == lifecycle_msgs::msg::State::PRIMARY_STATE_ACTIVE)

{
request->transition.id = lifecycle_msgs::msg::Transition::TRANSITION_DEACTIVATE;

} else {
if (state != ctrl_node_state_) {
RCLCPP_ERROR(
node_->get_logger(),
"Transition not possible %zu -> %zu", ctrl_node_state_, state);

return false;
} else {

return true;
}

}
}

auto result = change_state_client_->async_send_request(request);

if (rclcpp::spin_until_future_complete(node_, result) !=
rclcpp::FutureReturnCode::SUCCESS)

{
RCLCPP_ERROR(node_->get_logger(), "Failed to call set_state service");
return false;

}

if (!result.get()->success) {
RCLCPP_ERROR(
node_->get_logger(),
"Failed to set node state %zu -> %zu", ctrl_node_state_, state);

return false;
} else {
RCLCPP_INFO(
node_->get_logger(), "Transition success %zu -> %zu", ctrl_node_state_, state);

}

ctrl_node_state_ = state;
return true;

}

std::string ctrl_node_name_;
uint8_t ctrl_node_state_;

rclcpp::Client<lifecycle_msgs::srv::ChangeState>::SharedPtr change_state_client_;
rclcpp::Client<lifecycle_msgs::srv::GetState>::SharedPtr get_state_client_;

rclcpp::Node::SharedPtr node_;
};

} // namespace br2_bt_patrolling

#endif // BR2_BT_PATROLLING__CTRL_SUPPORT__BTLIFECYCLECTRLNODE_HPP_

with ROS2

Source Code � 223

br2 bt patrolling/include/br2 bt patrolling/ctrl support/BTActionNode.hpp

// Copyright (c) 2018 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#ifndef BR2_BT_PATROLLING__CTRL_SUPPORT__BTACTIONNODE_HPP_
#define BR2_BT_PATROLLING__CTRL_SUPPORT__BTACTIONNODE_HPP_

#include <memory>
#include <string>

#include "behaviortree_cpp_v3/action_node.h"
#include "rclcpp/rclcpp.hpp"
#include "rclcpp_action/rclcpp_action.hpp"

namespace br2_bt_patrolling
{

using namespace std::chrono_literals; // NOLINT

template<class ActionT, class NodeT = rclcpp::Node>
class BtActionNode : public BT::ActionNodeBase
{
public:

BtActionNode(
const std::string & xml_tag_name,
const std::string & action_name,
const BT::NodeConfiguration & conf)

: BT::ActionNodeBase(xml_tag_name, conf), action_name_(action_name)
{
node_ = config().blackboard->get<typename NodeT::SharedPtr>("node");

server_timeout_ = 1s;

// Initialize the input and output messages
goal_ = typename ActionT::Goal();
result_ = typename rclcpp_action::ClientGoalHandle<ActionT>::WrappedResult();

std::string remapped_action_name;
if (getInput("server_name", remapped_action_name)) {
action_name_ = remapped_action_name;

}
createActionClient(action_name_);

// Give the derive class a chance to do any initialization
RCLCPP_INFO(
node_->get_logger(), "\"%s\" BtActionNode initialized", xml_tag_name.c_str());

}

BtActionNode() = delete;

virtual ˜BtActionNode()
{
}

// Create instance of an action server
void createActionClient(const std::string & action_name)
{
// Now that we have the ROS node to use, create the action client for this BT action
action_client_ = rclcpp_action::create_client<ActionT>(node_, action_name);

// Make sure the server is actually there before continuing
RCLCPP_INFO(
node_->get_logger(), "Waiting for \"%s\" action server", action_name.c_str());

action_client_->wait_for_action_server();
}

http://www.apache.org

224 � A Concise Introduction to Robot Programming

br2 bt patrolling/include/br2 bt patrolling/ctrl support/BTActionNode.hpp

// Any subclass of BtActionNode that accepts parameters must provide a
// providedPorts method and call providedBasicPorts in it.
static BT::PortsList providedBasicPorts(BT::PortsList addition)
{
BT::PortsList basic = {
BT::InputPort<std::string>("server_name", "Action server name"),
BT::InputPort<std::chrono::milliseconds>("server_timeout")

};
basic.insert(addition.begin(), addition.end());

return basic;
}

static BT::PortsList providedPorts()
{
return providedBasicPorts({});

}

// Derived classes can override any of the following methods to hook into the
// processing for the action: on_tick, on_wait_for_result, and on_success

// Could do dynamic checks, such as getting updates to values on the blackboard
virtual void on_tick()
{
}

// There can be many loop iterations per tick. Any opportunity to do something after
// a timeout waiting for a result that hasn't been received yet
virtual void on_wait_for_result()
{
}

// Called upon successful completion of the action. A derived class can override this
// method to put a value on the blackboard, for example.
virtual BT::NodeStatus on_success()
{
return BT::NodeStatus::SUCCESS;

}

// Called when a the action is aborted. By default, the node will return FAILURE.
// The user may override it to return another value, instead.
virtual BT::NodeStatus on_aborted()
{
return BT::NodeStatus::FAILURE;

}

// Called when a the action is cancelled. By default, the node will return SUCCESS.
// The user may override it to return another value, instead.
virtual BT::NodeStatus on_cancelled()
{
return BT::NodeStatus::SUCCESS;

}

// The main override required by a BT action
BT::NodeStatus tick() override
{
// first step to be done only at the beginning of the Action
if (status() == BT::NodeStatus::IDLE) {
createActionClient(action_name_);

// setting the status to RUNNING to notify the BT Loggers (if any)
setStatus(BT::NodeStatus::RUNNING);

// user defined callback
on_tick();

on_new_goal_received();
}

// The following code corresponds to the "RUNNING" loop
if (rclcpp::ok() && !goal_result_available_) {
// user defined callback. May modify the value of "goal_updated_"
on_wait_for_result();

auto goal_status = goal_handle_->get_status();
if (goal_updated_ && (goal_status == action_msgs::msg::GoalStatus::STATUS_EXECUTING ||
goal_status == action_msgs::msg::GoalStatus::STATUS_ACCEPTED))

with ROS2

Source Code � 225

br2 bt patrolling/include/br2 bt patrolling/ctrl support/BTActionNode.hpp

{
goal_updated_ = false;
on_new_goal_received();

}

rclcpp::spin_some(node_->get_node_base_interface());

// check if, after invoking spin_some(), we finally received the result
if (!goal_result_available_) {
// Yield this Action, returning RUNNING
return BT::NodeStatus::RUNNING;

}
}

switch (result_.code) {
case rclcpp_action::ResultCode::SUCCEEDED:
return on_success();

case rclcpp_action::ResultCode::ABORTED:
return on_aborted();

case rclcpp_action::ResultCode::CANCELED:
return on_cancelled();

default:
throw std::logic_error("BtActionNode::Tick: invalid status value");

}
}

// The other (optional) override required by a BT action. In this case, we
// make sure to cancel the ROS2 action if it is still running.
void halt() override
{
if (should_cancel_goal()) {
auto future_cancel = action_client_->async_cancel_goal(goal_handle_);
if (rclcpp::spin_until_future_complete(

node_->get_node_base_interface(), future_cancel, server_timeout_) !=
rclcpp::FutureReturnCode::SUCCESS)

{
RCLCPP_ERROR(
node_->get_logger(),
"Failed to cancel action server for %s", action_name_.c_str());

}
}

setStatus(BT::NodeStatus::IDLE);
}

protected:
bool should_cancel_goal()
{
// Shut the node down if it is currently running
if (status() != BT::NodeStatus::RUNNING) {
return false;

}

rclcpp::spin_some(node_->get_node_base_interface());
auto status = goal_handle_->get_status();

// Check if the goal is still executing
return status == action_msgs::msg::GoalStatus::STATUS_ACCEPTED ||

status == action_msgs::msg::GoalStatus::STATUS_EXECUTING;
}

void on_new_goal_received()
{
goal_result_available_ = false;
auto send_goal_options = typename rclcpp_action::Client<ActionT>::SendGoalOptions();
send_goal_options.result_callback =
[this](const typename
rclcpp_action::ClientGoalHandle<ActionT>::WrappedResult & result) {

// TODO(#1652): a work around until rcl_action interface is updated
// if goal ids are not matched, the older goal call this callback so ignore
// the result if matched, it must be processed (including aborted)

226 � A Concise Introduction to Robot Programming

br2 bt patrolling/include/br2 bt patrolling/ctrl support/BTActionNode.hpp

if (this->goal_handle_->get_goal_id() == result.goal_id) {
goal_result_available_ = true;
result_ = result;

}
};

auto future_goal_handle = action_client_->async_send_goal(goal_, send_goal_options);

if (rclcpp::spin_until_future_complete(
node_->get_node_base_interface(), future_goal_handle, server_timeout_) !=

rclcpp::FutureReturnCode::SUCCESS)
{
throw std::runtime_error("send_goal failed");

}

goal_handle_ = future_goal_handle.get();
if (!goal_handle_) {
throw std::runtime_error("Goal was rejected by the action server");

}
}

void increment_recovery_count()
{
int recovery_count = 0;
config().blackboard->get<int>("number_recoveries", recovery_count); // NOLINT
recovery_count += 1;
config().blackboard->set<int>("number_recoveries", recovery_count); // NOLINT

}

std::string action_name_;
typename std::shared_ptr<rclcpp_action::Client<ActionT>> action_client_;

// All ROS2 actions have a goal and a result
typename ActionT::Goal goal_;
bool goal_updated_{false};
bool goal_result_available_{false};
typename rclcpp_action::ClientGoalHandle<ActionT>::SharedPtr goal_handle_;
typename rclcpp_action::ClientGoalHandle<ActionT>::WrappedResult result_;

// The node that will be used for any ROS operations
typename NodeT::SharedPtr node_;

// The timeout value while waiting for response from a server when a
// new action goal is sent or canceled
std::chrono::milliseconds server_timeout_;

};

} // namespace br2_bt_patrolling

#endif // BR2_BT_PATROLLING__CTRL_SUPPORT__BTACTIONNODE_HPP_

br2 bt patrolling/include/br2 bt patrolling/Recharge.hpp

#ifndef BR2_BT_PATROLLING__RECHARGE_HPP_
#define BR2_BT_PATROLLING__RECHARGE_HPP_

#include <string>

#include "behaviortree_cpp_v3/behavior_tree.h"
#include "behaviortree_cpp_v3/bt_factory.h"

namespace br2_bt_patrolling
{

class Recharge : public BT::ActionNodeBase
{
public:

explicit Recharge(
const std::string & xml_tag_name,
const BT::NodeConfiguration & conf);

void halt();
BT::NodeStatus tick();

with ROS2

Source Code � 227

br2 bt patrolling/include/br2 bt patrolling/Recharge.hpp

static BT::PortsList providedPorts()
{
return BT::PortsList({});

}

private:
int counter_;

};

} // namespace br2_bt_patrolling

#endif // BR2_BT_PATROLLING__RECHARGE_HPP_

br2 bt patrolling/include/br2 bt patrolling/GetWaypoint.hpp

#ifndef BR2_BT_PATROLLING__GETWAYPOINT_HPP_
#define BR2_BT_PATROLLING__GETWAYPOINT_HPP_

#include <string>
#include <vector>

#include "behaviortree_cpp_v3/behavior_tree.h"
#include "behaviortree_cpp_v3/bt_factory.h"

#include "geometry_msgs/msg/pose_stamped.hpp"

namespace br2_bt_patrolling
{

class GetWaypoint : public BT::ActionNodeBase
{
public:

explicit GetWaypoint(
const std::string & xml_tag_name,
const BT::NodeConfiguration & conf);

void halt();
BT::NodeStatus tick();

static BT::PortsList providedPorts()
{
return BT::PortsList(
{
BT::InputPort<std::string>("wp_id"),
BT::OutputPort<geometry_msgs::msg::PoseStamped>("waypoint")

});
}

private:
geometry_msgs::msg::PoseStamped recharge_point_;
std::vector<geometry_msgs::msg::PoseStamped> waypoints_;
static int current_;

};

} // namespace br2_bt_patrolling

#endif // BR2_BT_PATROLLING__GETWAYPOINT_HPP_

228 � A Concise Introduction to Robot Programming

br2 bt patrolling/include/br2 bt patrolling/Patrol.hpp

#ifndef BR2_BT_PATROLLING__PATROL_HPP_
#define BR2_BT_PATROLLING__PATROL_HPP_

#include <string>

#include "behaviortree_cpp_v3/behavior_tree.h"
#include "behaviortree_cpp_v3/bt_factory.h"

#include "geometry_msgs/msg/twist.hpp"

#include "rclcpp/rclcpp.hpp"

namespace br2_bt_patrolling
{

class Patrol : public BT::ActionNodeBase
{
public:

explicit Patrol(
const std::string & xml_tag_name,
const BT::NodeConfiguration & conf);

void halt();
BT::NodeStatus tick();

static BT::PortsList providedPorts()
{
return BT::PortsList({});

}

private:
rclcpp::Node::SharedPtr node_;
rclcpp::Time start_time_;
rclcpp::Publisher<geometry_msgs::msg::Twist>::SharedPtr vel_pub_;

};

} // namespace br2_bt_patrolling

#endif // BR2_BT_PATROLLING__PATROL_HPP_

br2 bt patrolling/include/br2 bt patrolling/TrackObjects.hpp

#ifndef BR2_BT_PATROLLING__TRACKOBJECTS_HPP_
#define BR2_BT_PATROLLING__TRACKOBJECTS_HPP_

#include <string>

#include "geometry_msgs/msg/pose_stamped.hpp"
#include "nav2_msgs/action/navigate_to_pose.hpp"

#include "br2_bt_patrolling/ctrl_support/BTLifecycleCtrlNode.hpp"
#include "behaviortree_cpp_v3/behavior_tree.h"
#include "behaviortree_cpp_v3/bt_factory.h"

namespace br2_bt_patrolling
{

class TrackObjects : public br2_bt_patrolling::BtLifecycleCtrlNode
{
public:

explicit TrackObjects(
const std::string & xml_tag_name,
const std::string & node_name,
const BT::NodeConfiguration & conf);

with ROS2

Source Code � 229

br2 bt patrolling/include/br2 bt patrolling/TrackObjects.hpp

static BT::PortsList providedPorts()
{
return BT::PortsList({});

}
};

} // namespace br2_bt_patrolling

#endif // BR2_BT_PATROLLING__TRACKOBJECTS_HPP_

br2 bt patrolling/include/br2 bt patrolling/Move.hpp

#ifndef BR2_BT_PATROLLING__MOVE_HPP_
#define BR2_BT_PATROLLING__MOVE_HPP_

#include <string>

#include "geometry_msgs/msg/pose_stamped.hpp"
#include "nav2_msgs/action/navigate_to_pose.hpp"

#include "br2_bt_patrolling/ctrl_support/BTActionNode.hpp"
#include "behaviortree_cpp_v3/behavior_tree.h"
#include "behaviortree_cpp_v3/bt_factory.h"

namespace br2_bt_patrolling
{

class Move : public br2_bt_patrolling::BtActionNode<nav2_msgs::action::NavigateToPose>
{
public:

explicit Move(
const std::string & xml_tag_name,
const std::string & action_name,
const BT::NodeConfiguration & conf);

void on_tick() override;
BT::NodeStatus on_success() override;

static BT::PortsList providedPorts()
{
return {
BT::InputPort<geometry_msgs::msg::PoseStamped>("goal")

};
}

};

} // namespace br2_bt_patrolling

#endif // BR2_BT_PATROLLING__MOVE_HPP_

230 � A Concise Introduction to Robot Programming

br2 bt patrolling/src/br2 bt patrolling/Patrol.cpp

#include <string>
#include <iostream>

#include "br2_bt_patrolling/Patrol.hpp"

#include "behaviortree_cpp_v3/behavior_tree.h"

#include "geometry_msgs/msg/twist.hpp"

#include "rclcpp/rclcpp.hpp"

namespace br2_bt_patrolling
{

using namespace std::chrono_literals;

Patrol::Patrol(
const std::string & xml_tag_name,
const BT::NodeConfiguration & conf)

: BT::ActionNodeBase(xml_tag_name, conf)
{

config().blackboard->get("node", node_);

vel_pub_ = node_->create_publisher<geometry_msgs::msg::Twist>("/output_vel", 100);
}

void
Patrol::halt()
{

std::cout << "Patrol halt" << std::endl;
}

BT::NodeStatus
Patrol::tick()
{

if (status() == BT::NodeStatus::IDLE) {
start_time_ = node_->now();

}

geometry_msgs::msg::Twist vel_msgs;
vel_msgs.angular.z = 0.5;
vel_pub_->publish(vel_msgs);

auto elapsed = node_->now() - start_time_;

if (elapsed < 15s) {
return BT::NodeStatus::RUNNING;

} else {
return BT::NodeStatus::SUCCESS;

}
}

} // namespace br2_bt_patrolling

#include "behaviortree_cpp_v3/bt_factory.h"
BT_REGISTER_NODES(factory)
{

factory.registerNodeType<br2_bt_patrolling::Patrol>("Patrol");
}

with ROS2

Source Code � 231

br2 bt patrolling/src/br2 bt patrolling/Recharge.cpp

#include <string>
#include <iostream>
#include <set>

#include "br2_bt_patrolling/Recharge.hpp"

#include "behaviortree_cpp_v3/behavior_tree.h"

namespace br2_bt_patrolling
{

Recharge::Recharge(
const std::string & xml_tag_name,
const BT::NodeConfiguration & conf)

: BT::ActionNodeBase(xml_tag_name, conf), counter_(0)
{
}

void
Recharge::halt()
{
}

BT::NodeStatus
Recharge::tick()
{

std::cout << "Recharge tick " << counter_ << std::endl;

if (counter_++ < 50) {
return BT::NodeStatus::RUNNING;

} else {
counter_ = 0;
config().blackboard->set<float>("battery_level", 100.0f);
return BT::NodeStatus::SUCCESS;

}
}

} // namespace br2_bt_patrolling

#include "behaviortree_cpp_v3/bt_factory.h"
BT_REGISTER_NODES(factory)
{

factory.registerNodeType<br2_bt_patrolling::Recharge>("Recharge");
}

232 � A Concise Introduction to Robot Programming

br2 bt patrolling/src/br2 bt patrolling/GetWaypoint.cpp

#include <string>
#include <iostream>
#include <vector>

#include "br2_bt_patrolling/GetWaypoint.hpp"

#include "behaviortree_cpp_v3/behavior_tree.h"

#include "geometry_msgs/msg/pose_stamped.hpp"

#include "rclcpp/rclcpp.hpp"

namespace br2_bt_patrolling
{

int GetWaypoint::current_ = 0;

GetWaypoint::GetWaypoint(
const std::string & xml_tag_name,
const BT::NodeConfiguration & conf)

: BT::ActionNodeBase(xml_tag_name, conf)
{

rclcpp::Node::SharedPtr node;
config().blackboard->get("node", node);

geometry_msgs::msg::PoseStamped wp;
wp.header.frame_id = "map";
wp.pose.orientation.w = 1.0;

// recharge wp
wp.pose.position.x = 3.67;
wp.pose.position.y = -0.24;
recharge_point_ = wp;

with ROS2

Source Code � 233

br2 bt patrolling/src/br2 bt patrolling/GetWaypoint.cpp

// wp1
wp.pose.position.x = 1.07;
wp.pose.position.y = -12.38;
waypoints_.push_back(wp);

// wp2
wp.pose.position.x = -5.32;
wp.pose.position.y = -8.85;
waypoints_.push_back(wp);

// wp3
wp.pose.position.x = -0.56;
wp.pose.position.y = 0.24;
waypoints_.push_back(wp);

}

void
GetWaypoint::halt()
{
}

BT::NodeStatus
GetWaypoint::tick()
{

std::string id;
getInput("wp_id", id);

if (id == "recharge") {
setOutput("waypoint", recharge_point_);

} else {
setOutput("waypoint", waypoints_[current_++]);
current_ = current_ % waypoints_.size();

}

return BT::NodeStatus::SUCCESS;
}

} // namespace br2_bt_patrolling

#include "behaviortree_cpp_v3/bt_factory.h"
BT_REGISTER_NODES(factory)
{

factory.registerNodeType<br2_bt_patrolling::GetWaypoint>("GetWaypoint");
}

234 � A Concise Introduction to Robot Programming

br2 bt patrolling/src/br2 bt patrolling/Move.cpp

#include <string>
#include <iostream>
#include <vector>
#include <memory>

#include "br2_bt_patrolling/Move.hpp"

#include "geometry_msgs/msg/pose_stamped.hpp"
#include "nav2_msgs/action/navigate_to_pose.hpp"

#include "behaviortree_cpp_v3/behavior_tree.h"

namespace br2_bt_patrolling
{

Move::Move(
const std::string & xml_tag_name,
const std::string & action_name,
const BT::NodeConfiguration & conf)

: br2_bt_patrolling::BtActionNode<nav2_msgs::action::NavigateToPose>(xml_tag_name,
action_name, conf)

{
}

void
Move::on_tick()
{

geometry_msgs::msg::PoseStamped goal;
getInput("goal", goal);

goal_.pose = goal;
}

BT::NodeStatus
Move::on_success()
{

RCLCPP_INFO(node_->get_logger(), "navigation Suceeded");

return BT::NodeStatus::SUCCESS;
}

} // namespace br2_bt_patrolling

#include "behaviortree_cpp_v3/bt_factory.h"
BT_REGISTER_NODES(factory)
{

BT::NodeBuilder builder =
[](const std::string & name, const BT::NodeConfiguration & config)
{
return std::make_unique<br2_bt_patrolling::Move>(
name, "navigate_to_pose", config);

};

factory.registerBuilder<br2_bt_patrolling::Move>(
"Move", builder);

}

with ROS2

Source Code � 235

br2 bt patrolling/src/br2 bt patrolling/BatteryChecker.cpp

#include <string>
#include <iostream>
#include <algorithm>

#include "br2_bt_patrolling/BatteryChecker.hpp"

#include "behaviortree_cpp_v3/behavior_tree.h"

#include "geometry_msgs/msg/twist.hpp"

#include "rclcpp/rclcpp.hpp"

namespace br2_bt_patrolling
{

using namespace std::chrono_literals;
using namespace std::placeholders;

BatteryChecker::BatteryChecker(
const std::string & xml_tag_name,
const BT::NodeConfiguration & conf)

: BT::ConditionNode(xml_tag_name, conf)
{

config().blackboard->get("node", node_);

vel_sub_ = node_->create_subscription<geometry_msgs::msg::Twist>(
"/output_vel", 100, std::bind(&BatteryChecker::vel_callback, this, _1));

last_reading_time_ = node_->now();
}

void
BatteryChecker::vel_callback(const geometry_msgs::msg::Twist::SharedPtr msg)
{

last_twist_ = *msg;
}

void
BatteryChecker::update_battery()
{

float battery_level;
if (!config().blackboard->get("battery_level", battery_level)) {
battery_level = 100.0f;

}

float dt = (node_->now() - last_reading_time_).seconds();
last_reading_time_ = node_->now();

float vel = sqrt(last_twist_.linear.x * last_twist_.linear.x +
last_twist_.angular.z * last_twist_.angular.z);

battery_level = std::max(0.0f, battery_level -(vel * dt * DECAY_LEVEL) - EPSILON * dt);

config().blackboard->set("battery_level", battery_level);
}

BT::NodeStatus
BatteryChecker::tick()
{

update_battery();

float battery_level;
config().blackboard->get("battery_level", battery_level);

std::cout << battery_level << std::endl;

if (battery_level < MIN_LEVEL) {
return BT::NodeStatus::FAILURE;

} else {
return BT::NodeStatus::SUCCESS;

}
}

} // namespace br2_bt_patrolling

#include "behaviortree_cpp_v3/bt_factory.h"
BT_REGISTER_NODES(factory)
{

factory.registerNodeType<br2_bt_patrolling::BatteryChecker>("BatteryChecker");
}

236 � A Concise Introduction to Robot Programming

br2 bt patrolling/src/br2 bt patrolling/TrackObjects.cpp

#include <string>
#include <iostream>
#include <vector>
#include <memory>

#include "br2_bt_patrolling/TrackObjects.hpp"

#include "geometry_msgs/msg/pose_stamped.hpp"
#include "nav2_msgs/action/navigate_to_pose.hpp"

#include "behaviortree_cpp_v3/behavior_tree.h"

namespace br2_bt_patrolling
{

TrackObjects::TrackObjects(
const std::string & xml_tag_name,
const std::string & action_name,
const BT::NodeConfiguration & conf)

: br2_bt_patrolling::BtLifecycleCtrlNode(xml_tag_name, action_name, conf)
{
}

} // namespace br2_bt_patrolling

#include "behaviortree_cpp_v3/bt_factory.h"
BT_REGISTER_NODES(factory)
{

BT::NodeBuilder builder =
[](const std::string & name, const BT::NodeConfiguration & config)
{
return std::make_unique<br2_bt_patrolling::TrackObjects>(
name, "/head_tracker", config);

};

factory.registerBuilder<br2_bt_patrolling::TrackObjects>(
"TrackObjects", builder);

}

with ROS2

Source Code � 237

br2 bt patrolling/src/patrolling main.cpp

#include <string>
#include <memory>

#include "behaviortree_cpp_v3/behavior_tree.h"
#include "behaviortree_cpp_v3/bt_factory.h"
#include "behaviortree_cpp_v3/utils/shared_library.h"
#include "behaviortree_cpp_v3/loggers/bt_zmq_publisher.h"

#include "ament_index_cpp/get_package_share_directory.hpp"

#include "rclcpp/rclcpp.hpp"

int main(int argc, char * argv[])
{

rclcpp::init(argc, argv);

auto node = rclcpp::Node::make_shared("patrolling_node");

BT::BehaviorTreeFactory factory;
BT::SharedLibrary loader;

factory.registerFromPlugin(loader.getOSName("br2_battery_checker_bt_node"));
factory.registerFromPlugin(loader.getOSName("br2_patrol_bt_node"));
factory.registerFromPlugin(loader.getOSName("br2_recharge_bt_node"));
factory.registerFromPlugin(loader.getOSName("br2_move_bt_node"));
factory.registerFromPlugin(loader.getOSName("br2_get_waypoint_bt_node"));
factory.registerFromPlugin(loader.getOSName("br2_track_objects_bt_node"));

std::string pkgpath = ament_index_cpp::get_package_share_directory("br2_bt_patrolling");
std::string xml_file = pkgpath + "/behavior_tree_xml/patrolling.xml";

auto blackboard = BT::Blackboard::create();
blackboard->set("node", node);
BT::Tree tree = factory.createTreeFromFile(xml_file, blackboard);

auto publisher_zmq = std::make_shared<BT::PublisherZMQ>(tree, 10, 2666, 2667);

rclcpp::Rate rate(10);

bool finish = false;
while (!finish && rclcpp::ok()) {
finish = tree.rootNode()->executeTick() == BT::NodeStatus::SUCCESS;

rclcpp::spin_some(node);
rate.sleep();

}

rclcpp::shutdown();
return 0;

}

238 � A Concise Introduction to Robot Programming

br2 bt patrolling/tests/bt action test.cpp

#include <string>
#include <list>
#include <memory>
#include <vector>
#include <set>

#include "behaviortree_cpp_v3/behavior_tree.h"
#include "behaviortree_cpp_v3/bt_factory.h"
#include "behaviortree_cpp_v3/utils/shared_library.h"

#include "ament_index_cpp/get_package_share_directory.hpp"

#include "geometry_msgs/msg/twist.hpp"
#include "nav2_msgs/action/navigate_to_pose.hpp"
#include "lifecycle_msgs/msg/transition.hpp"
#include "lifecycle_msgs/msg/state.hpp"

#include "rclcpp/rclcpp.hpp"
#include "rclcpp_lifecycle/lifecycle_node.hpp"
#include "rclcpp_action/rclcpp_action.hpp"

#include "br2_bt_patrolling/TrackObjects.hpp"

#include "gtest/gtest.h"

using namespace std::placeholders;
using namespace std::chrono_literals;

class VelocitySinkNode : public rclcpp::Node
{
public:

VelocitySinkNode()
: Node("VelocitySink")
{
vel_sub_ = create_subscription<geometry_msgs::msg::Twist>(
"/output_vel", 100, std::bind(&VelocitySinkNode::vel_callback, this, _1));

}

void vel_callback(geometry_msgs::msg::Twist::SharedPtr msg)
{
vel_msgs_.push_back(*msg);

}

std::list<geometry_msgs::msg::Twist> vel_msgs_;

private:
rclcpp::Subscription<geometry_msgs::msg::Twist>::SharedPtr vel_sub_;

};

class Nav2FakeServer : public rclcpp::Node
{

using NavigateToPose = nav2_msgs::action::NavigateToPose;
using GoalHandleNavigateToPose = rclcpp_action::ServerGoalHandle<NavigateToPose>;

public:
Nav2FakeServer()
: Node("nav2_fake_server_node") {}

void start_server()
{
move_action_server_ = rclcpp_action::create_server<NavigateToPose>(
shared_from_this(),
"navigate_to_pose",
std::bind(&Nav2FakeServer::handle_goal, this, _1, _2),
std::bind(&Nav2FakeServer::handle_cancel, this, _1),
std::bind(&Nav2FakeServer::handle_accepted, this, _1));

}

private:
rclcpp_action::Server<NavigateToPose>::SharedPtr move_action_server_;

rclcpp_action::GoalResponse handle_goal(
const rclcpp_action::GoalUUID & uuid,
std::shared_ptr<const NavigateToPose::Goal> goal)

{
return rclcpp_action::GoalResponse::ACCEPT_AND_EXECUTE;

}

with ROS2

Source Code � 239

br2 bt patrolling/tests/bt action test.cpp

rclcpp_action::CancelResponse handle_cancel(
const std::shared_ptr<GoalHandleNavigateToPose> goal_handle)

{
return rclcpp_action::CancelResponse::ACCEPT;

}

void handle_accepted(const std::shared_ptr<GoalHandleNavigateToPose> goal_handle)
{
std::thread{std::bind(&Nav2FakeServer::execute, this, _1), goal_handle}.detach();

}

void execute(const std::shared_ptr<GoalHandleNavigateToPose> goal_handle)
{
auto feedback = std::make_shared<NavigateToPose::Feedback>();
auto result = std::make_shared<NavigateToPose::Result>();

auto start = now();

while ((now() - start) < 5s) {
feedback->distance_remaining = 5.0 - (now() - start).seconds();
goal_handle->publish_feedback(feedback);

}

goal_handle->succeed(result);
}

};

class StoreWP : public BT::ActionNodeBase
{
public:

explicit StoreWP(
const std::string & xml_tag_name,
const BT::NodeConfiguration & conf)

: BT::ActionNodeBase(xml_tag_name, conf) {}

void halt() {}
BT::NodeStatus tick()
{
waypoints_.push_back(getInput<geometry_msgs::msg::PoseStamped>("in").value());
return BT::NodeStatus::SUCCESS;

}

static BT::PortsList providedPorts()
{
return BT::PortsList(
{
BT::InputPort<geometry_msgs::msg::PoseStamped>("in")

});
}

static std::vector<geometry_msgs::msg::PoseStamped> waypoints_;
};

std::vector<geometry_msgs::msg::PoseStamped> StoreWP::waypoints_;

TEST(bt_action, recharge_btn)
{

auto node = rclcpp::Node::make_shared("recharge_btn_node");

BT::BehaviorTreeFactory factory;
BT::SharedLibrary loader;

factory.registerFromPlugin(loader.getOSName("br2_recharge_bt_node"));

std::string xml_bt =
R"(
<root main_tree_to_execute = "MainTree" >
<BehaviorTree ID="MainTree">

<Recharge name="recharge"/>
</BehaviorTree>

</root>)";

auto blackboard = BT::Blackboard::create();
blackboard->set("node", node);
BT::Tree tree = factory.createTreeFromText(xml_bt, blackboard);

rclcpp::Rate rate(10);

240 � A Concise Introduction to Robot Programming

br2 bt patrolling/tests/bt action test.cpp

bool finish = false;
while (!finish && rclcpp::ok()) {
finish = tree.rootNode()->executeTick() == BT::NodeStatus::SUCCESS;
rate.sleep();

}

float battery_level;
ASSERT_TRUE(blackboard->get("battery_level", battery_level));
ASSERT_NEAR(battery_level, 100.0f, 0.0000001);

}

TEST(bt_action, patrol_btn)
{

auto node = rclcpp::Node::make_shared("patrol_btn_node");
auto node_sink = std::make_shared<VelocitySinkNode>();

BT::BehaviorTreeFactory factory;
BT::SharedLibrary loader;

factory.registerFromPlugin(loader.getOSName("br2_patrol_bt_node"));

std::string xml_bt =
R"(
<root main_tree_to_execute = "MainTree" >
<BehaviorTree ID="MainTree">

<Patrol name="patrol"/>
</BehaviorTree>

</root>)";

auto blackboard = BT::Blackboard::create();
blackboard->set("node", node);
BT::Tree tree = factory.createTreeFromText(xml_bt, blackboard);

rclcpp::Rate rate(10);

bool finish = false;
int counter = 0;
while (!finish && rclcpp::ok()) {
finish = tree.rootNode()->executeTick() == BT::NodeStatus::SUCCESS;
rclcpp::spin_some(node_sink->get_node_base_interface());
rate.sleep();

}

ASSERT_FALSE(node_sink->vel_msgs_.empty());
ASSERT_NEAR(node_sink->vel_msgs_.size(), 150, 2);

geometry_msgs::msg::Twist & one_twist = node_sink->vel_msgs_.front();

ASSERT_GT(one_twist.angular.z, 0.1);
ASSERT_NEAR(one_twist.linear.x, 0.0, 0.0000001);

}

TEST(bt_action, move_btn)
{

auto node = rclcpp::Node::make_shared("move_btn_node");
auto nav2_fake_node = std::make_shared<Nav2FakeServer>();

nav2_fake_node->start_server();

bool finish = false;
std::thread t([&]() {

while (!finish) {rclcpp::spin_some(nav2_fake_node);}
});

BT::BehaviorTreeFactory factory;
BT::SharedLibrary loader;

factory.registerFromPlugin(loader.getOSName("br2_move_bt_node"));

with ROS2

Source Code � 241

br2 bt patrolling/tests/bt action test.cpp

std::string xml_bt =
R"(
<root main_tree_to_execute = "MainTree" >
<BehaviorTree ID="MainTree">

<Move name="move" goal="{goal}"/>
</BehaviorTree>

</root>)";

auto blackboard = BT::Blackboard::create();
blackboard->set("node", node);

geometry_msgs::msg::PoseStamped goal;
blackboard->set("goal", goal);

BT::Tree tree = factory.createTreeFromText(xml_bt, blackboard);

rclcpp::Rate rate(10);

int counter = 0;
while (!finish && rclcpp::ok()) {
finish = tree.rootNode()->executeTick() == BT::NodeStatus::SUCCESS;
rate.sleep();

}

t.join();
}

TEST(bt_action, get_waypoint_btn)
{

auto node = rclcpp::Node::make_shared("get_waypoint_btn_node");

rclcpp::spin_some(node);

{
BT::BehaviorTreeFactory factory;
BT::SharedLibrary loader;

factory.registerFromPlugin(loader.getOSName("br2_get_waypoint_bt_node"));

std::string xml_bt =
R"(
<root main_tree_to_execute = "MainTree" >
<BehaviorTree ID="MainTree">
<GetWaypoint name="recharge" wp_id="{id}" waypoint="{waypoint}"/>

</BehaviorTree>
</root>)";

auto blackboard = BT::Blackboard::create();
blackboard->set("node", node);
blackboard->set<std::string>("id", "recharge");

BT::Tree tree = factory.createTreeFromText(xml_bt, blackboard);

rclcpp::Rate rate(10);

bool finish = false;
int counter = 0;
while (!finish && rclcpp::ok()) {
finish = tree.rootNode()->executeTick() == BT::NodeStatus::SUCCESS;
counter++;
rate.sleep();

}

auto point = blackboard->get<geometry_msgs::msg::PoseStamped>("waypoint");

ASSERT_EQ(counter, 1);
ASSERT_NEAR(point.pose.position.x, 3.67, 0.0000001);
ASSERT_NEAR(point.pose.position.y, -0.24, 0.0000001);

}

{
BT::BehaviorTreeFactory factory;
BT::SharedLibrary loader;

factory.registerNodeType<StoreWP>("StoreWP");
factory.registerFromPlugin(loader.getOSName("br2_get_waypoint_bt_node"));

242 � A Concise Introduction to Robot Programming

br2 bt patrolling/tests/bt action test.cpp

std::string xml_bt =
R"(
<root main_tree_to_execute = "MainTree" >
<BehaviorTree ID="MainTree">
<Sequence name="root_sequence">

<GetWaypoint name="wp1" wp_id="next" waypoint="{waypoint}"/>
<StoreWP in="{waypoint}"/>
<GetWaypoint name="wp2" wp_id="next" waypoint="{waypoint}"/>
<StoreWP in="{waypoint}"/>
<GetWaypoint name="wp3" wp_id="" waypoint="{waypoint}"/>
<StoreWP in="{waypoint}"/>
<GetWaypoint name="wp4" wp_id="recharge" waypoint="{waypoint}"/>
<StoreWP in="{waypoint}"/>
<GetWaypoint name="wp5" wp_id="wp1" waypoint="{waypoint}"/>
<StoreWP in="{waypoint}"/>
<GetWaypoint name="wp6" wp_id="wp2" waypoint="{waypoint}"/>
<StoreWP in="{waypoint}"/>
<GetWaypoint name="wpt" waypoint="{waypoint}"/>
<StoreWP in="{waypoint}"/>

</Sequence>
</BehaviorTree>

</root>)";

auto blackboard = BT::Blackboard::create();
blackboard->set("node", node);

BT::Tree tree = factory.createTreeFromText(xml_bt, blackboard);

rclcpp::Rate rate(10);

bool finish = false;
while (!finish && rclcpp::ok()) {
finish = tree.rootNode()->executeTick() == BT::NodeStatus::SUCCESS;
rate.sleep();

}

const auto & waypoints = StoreWP::waypoints_;
ASSERT_EQ(waypoints.size(), 7);
ASSERT_NEAR(waypoints[0].pose.position.x, 1.07, 0.0000001);
ASSERT_NEAR(waypoints[0].pose.position.y, -12.38, 0.0000001);
ASSERT_NEAR(waypoints[1].pose.position.x, -5.32, 0.0000001);
ASSERT_NEAR(waypoints[1].pose.position.y, -8.85, 0.0000001);
ASSERT_NEAR(waypoints[2].pose.position.x, -0.56, 0.0000001);
ASSERT_NEAR(waypoints[2].pose.position.y, 0.24, 0.0000001);

ASSERT_NEAR(waypoints[3].pose.position.x, 3.67, 0.0000001);
ASSERT_NEAR(waypoints[3].pose.position.y, -0.24, 0.0000001);

ASSERT_NEAR(waypoints[4].pose.position.x, 1.07, 0.0000001);
ASSERT_NEAR(waypoints[4].pose.position.y, -12.38, 0.0000001);
ASSERT_NEAR(waypoints[5].pose.position.x, -5.32, 0.0000001);
ASSERT_NEAR(waypoints[5].pose.position.y, -8.85, 0.0000001);
ASSERT_NEAR(waypoints[6].pose.position.x, -0.56, 0.0000001);
ASSERT_NEAR(waypoints[6].pose.position.y, 0.24, 0.0000001);

}
}

TEST(bt_action, battery_checker_btn)
{

auto node = rclcpp::Node::make_shared("battery_checker_btn_node");
auto vel_pub = node->create_publisher<geometry_msgs::msg::Twist>("/output_vel", 100);

BT::BehaviorTreeFactory factory;
BT::SharedLibrary loader;

factory.registerFromPlugin(loader.getOSName("br2_battery_checker_bt_node"));
factory.registerFromPlugin(loader.getOSName("br2_patrol_bt_node"));

std::string xml_bt =
R"(
<root main_tree_to_execute = "MainTree" >
<BehaviorTree ID="MainTree">

<ReactiveSequence>
<BatteryChecker name="battery_checker"/>
<Patrol name="patrol"/>

</ReactiveSequence>
</BehaviorTree>

</root>)";

with ROS2

Source Code � 243

br2 bt patrolling/tests/bt action test.cpp

auto blackboard = BT::Blackboard::create();
blackboard->set("node", node);
BT::Tree tree = factory.createTreeFromText(xml_bt, blackboard);

rclcpp::Rate rate(10);
geometry_msgs::msg::Twist vel;
vel.linear.x = 0.8;

bool finish = false;
int counter = 0;
while (!finish && rclcpp::ok()) {
finish = tree.rootNode()->executeTick() == BT::NodeStatus::SUCCESS;

vel_pub->publish(vel);

rclcpp::spin_some(node);
rate.sleep();

}

float battery_level;
ASSERT_TRUE(blackboard->get("battery_level", battery_level));
ASSERT_NEAR(battery_level, 94.6, 1.0);

}

TEST(bt_action, track_objects_btn_1)
{

auto node = rclcpp::Node::make_shared("track_objects_btn_node");
auto node_head_tracker = rclcpp_lifecycle::LifecycleNode::make_shared("head_tracker");

bool finish = false;
std::thread t([&]() {

while (!finish) {rclcpp::spin_some(node_head_tracker->get_node_base_interface());}
});

BT::NodeConfiguration conf;
conf.blackboard = BT::Blackboard::create();
conf.blackboard->set("node", node);
br2_bt_patrolling::BtLifecycleCtrlNode bt_node("TrackObjects", "head_tracker", conf);

bt_node.change_state_client_ = bt_node.createServiceClient<lifecycle_msgs::srv::
ChangeState>(
"/head_tracker/change_state");

ASSERT_TRUE(bt_node.change_state_client_->service_is_ready());

bt_node.get_state_client_ = bt_node.createServiceClient<lifecycle_msgs::srv::GetState>(
"/head_tracker/get_state");

ASSERT_TRUE(bt_node.get_state_client_->service_is_ready());
auto start = node->now();

rclcpp::Rate rate(10);
while (rclcpp::ok() && (node->now() - start) < 1s) {
rclcpp::spin_some(node);
rate.sleep();

}

ASSERT_EQ(bt_node.get_state(), lifecycle_msgs::msg::State::PRIMARY_STATE_UNCONFIGURED);
bt_node.ctrl_node_state_ = lifecycle_msgs::msg::State::PRIMARY_STATE_UNCONFIGURED;
ASSERT_FALSE(bt_node.set_state(lifecycle_msgs::msg::State::PRIMARY_STATE_ACTIVE));

node_head_tracker->trigger_transition(lifecycle_msgs::msg::Transition::
TRANSITION_CONFIGURE);

start = node->now();
while (rclcpp::ok() && (node->now() - start) < 1s) {
rclcpp::spin_some(node);
rate.sleep();

}

bt_node.ctrl_node_state_ = bt_node.get_state();

ASSERT_TRUE(bt_node.set_state(lifecycle_msgs::msg::State::PRIMARY_STATE_ACTIVE));
ASSERT_EQ(bt_node.get_state(), lifecycle_msgs::msg::State::PRIMARY_STATE_ACTIVE);

start = node->now();
while (rclcpp::ok() && (node->now() - start) < 1s) {
rclcpp::spin_some(node);
rate.sleep();

}

244 � A Concise Introduction to Robot Programming

br2 bt patrolling/tests/bt action test.cpp

bt_node.ctrl_node_state_ = bt_node.get_state();

ASSERT_TRUE(bt_node.set_state(lifecycle_msgs::msg::State::PRIMARY_STATE_INACTIVE));
ASSERT_EQ(bt_node.get_state(), lifecycle_msgs::msg::State::PRIMARY_STATE_INACTIVE);

finish = true;
t.join();

}

TEST(bt_action, track_objects_btn_2)
{

auto node = rclcpp::Node::make_shared("track_objects_btn_node");
auto node_head_tracker = rclcpp_lifecycle::LifecycleNode::make_shared("head_tracker");

bool finish = false;
std::thread t([&]() {

while (!finish) {rclcpp::spin_some(node_head_tracker->get_node_base_interface());}
});

BT::NodeConfiguration conf;
conf.blackboard = BT::Blackboard::create();
conf.blackboard->set("node", node);
br2_bt_patrolling::BtLifecycleCtrlNode bt_node("TrackObjects", "head_tracker", conf);

node_head_tracker->trigger_transition(lifecycle_msgs::msg::Transition::
TRANSITION_CONFIGURE);

rclcpp::Rate rate(10);
auto start = node->now();
while (rclcpp::ok() && (node->now() - start) < 1s) {
rclcpp::spin_some(node);
rate.sleep();

}

ASSERT_EQ(bt_node.tick(), BT::NodeStatus::RUNNING);

ASSERT_TRUE(bt_node.change_state_client_->service_is_ready());
ASSERT_TRUE(bt_node.get_state_client_->service_is_ready());

ASSERT_EQ(bt_node.get_state(), lifecycle_msgs::msg::State::PRIMARY_STATE_ACTIVE);

ASSERT_EQ(bt_node.tick(), BT::NodeStatus::RUNNING);

bt_node.halt();

start = node->now();
while (rclcpp::ok() && (node->now() - start) < 1s) {
rclcpp::spin_some(node);
rate.sleep();

}

ASSERT_EQ(bt_node.get_state(), lifecycle_msgs::msg::State::PRIMARY_STATE_INACTIVE);

finish = true;
t.join();

}

TEST(bt_action, track_objects_btn_3)
{

auto node = rclcpp::Node::make_shared("track_objects_btn_node");
auto node_head_tracker = rclcpp_lifecycle::LifecycleNode::make_shared("head_tracker");

node_head_tracker->trigger_transition(lifecycle_msgs::msg::Transition::
TRANSITION_CONFIGURE);

bool finish = false;
std::thread t([&]() {

while (!finish) {rclcpp::spin_some(node_head_tracker->get_node_base_interface());}
});

BT::BehaviorTreeFactory factory;
BT::SharedLibrary loader;

factory.registerFromPlugin(loader.getOSName("br2_track_objects_bt_node"));

with ROS2

Source Code � 245

br2 bt patrolling/tests/bt action test.cpp

std::string xml_bt =
R"(
<root main_tree_to_execute = "MainTree" >
<BehaviorTree ID="MainTree">

<KeepRunningUntilFailure>
<TrackObjects name="track_objects"/>

</KeepRunningUntilFailure>
</BehaviorTree>

</root>)";

auto blackboard = BT::Blackboard::create();
blackboard->set("node", node);
auto start = node->now();
rclcpp::Rate rate(10);

{
BT::Tree tree = factory.createTreeFromText(xml_bt, blackboard);

ASSERT_EQ(
node_head_tracker->get_current_state().id(),
lifecycle_msgs::msg::State::PRIMARY_STATE_INACTIVE);

while (rclcpp::ok() && (node->now() - start) < 1s) {
tree.rootNode()->executeTick() == BT::NodeStatus::RUNNING;

rclcpp::spin_some(node);
rate.sleep();

}
ASSERT_EQ(
node_head_tracker->get_current_state().id(),
lifecycle_msgs::msg::State::PRIMARY_STATE_ACTIVE);

}

start = node->now();
while (rclcpp::ok() && (node->now() - start) < 1s) {
rclcpp::spin_some(node);
rate.sleep();

}

ASSERT_EQ(
node_head_tracker->get_current_state().id(),
lifecycle_msgs::msg::State::PRIMARY_STATE_INACTIVE);

finish = true;
t.join();

}

TEST(bt_action, move_track_btn)
{

auto node = rclcpp::Node::make_shared("move_btn_node");
auto nav2_fake_node = std::make_shared<Nav2FakeServer>();
auto node_head_tracker = rclcpp_lifecycle::LifecycleNode::make_shared("head_tracker");

node_head_tracker->trigger_transition(lifecycle_msgs::msg::Transition::
TRANSITION_CONFIGURE);

nav2_fake_node->start_server();

rclcpp::executors::SingleThreadedExecutor exe;
exe.add_node(nav2_fake_node);
exe.add_node(node_head_tracker->get_node_base_interface());
bool finish = false;
std::thread t([&]() {

while (!finish) {exe.spin_some();}
});

BT::BehaviorTreeFactory factory;
BT::SharedLibrary loader;

factory.registerFromPlugin(loader.getOSName("br2_move_bt_node"));
factory.registerFromPlugin(loader.getOSName("br2_track_objects_bt_node"));

246 � A Concise Introduction to Robot Programming

br2 bt patrolling/tests/bt action test.cpp

std::string xml_bt =
R"(
<root main_tree_to_execute = "MainTree" >
<BehaviorTree ID="MainTree">

<Parallel success_threshold="1" failure_threshold="1">
<TrackObjects name="track_objects"/>
<Move name="move" goal="{goal}"/>

</Parallel>
</BehaviorTree>

</root>)";

auto blackboard = BT::Blackboard::create();
blackboard->set("node", node);

geometry_msgs::msg::PoseStamped goal;
blackboard->set("goal", goal);

BT::Tree tree = factory.createTreeFromText(xml_bt, blackboard);

ASSERT_EQ(
node_head_tracker->get_current_state().id(),
lifecycle_msgs::msg::State::PRIMARY_STATE_INACTIVE);

rclcpp::Rate rate(10);
auto start = node->now();
auto finish_tree = false;
while (rclcpp::ok() && (node->now() - start) < 1s) {
finish_tree = tree.rootNode()->executeTick() == BT::NodeStatus::SUCCESS;

rclcpp::spin_some(node);
rate.sleep();

}

ASSERT_FALSE(finish_tree);
ASSERT_EQ(
node_head_tracker->get_current_state().id(),
lifecycle_msgs::msg::State::PRIMARY_STATE_ACTIVE);

while (rclcpp::ok() && !finish_tree) {
finish_tree = tree.rootNode()->executeTick() == BT::NodeStatus::SUCCESS;

rclcpp::spin_some(node);
rate.sleep();

}

start = node->now();
while (rclcpp::ok() && (node->now() - start) < 1s) {
rclcpp::spin_some(node);
rate.sleep();

}

ASSERT_EQ(
node_head_tracker->get_current_state().id(),
lifecycle_msgs::msg::State::PRIMARY_STATE_INACTIVE);

finish = true;
t.join();

}

int main(int argc, char ** argv)
{

rclcpp::init(argc, argv);

testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();

}

br2 bt patrolling/tests/CMakeLists.txt

ament_add_gtest(bt_action_test bt_action_test.cpp)
ament_target_dependencies(bt_action_test ${dependencies})
target_link_libraries(bt_action_test br2_track_objects_bt_node)

with ROS2

Bibliography

[1] Rodney A. Brooks. Elephants don’t play chess. Robotics and Autonomous Sys-
tems, 6(1):3–15, 1990. Designing Autonomous Agents.

[2] Brian Gerkey, Richard T Vaughan, Andrew Howard, et al. The player/stage
project: Tools for multi-robot and distributed sensor systems. In Proceedings of
the 11th international conference on advanced robotics, volume 1, pages 317–323.
Citeseer, 2003.

[3] Steven Macenski, Francisco Martin, Ruffin White, and Jonatan Ginés Clavero.
The marathon 2: A navigation system. In 2020 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), 2020.

[4] Alejandro Marzinotto, Michele Colledanchise, Christian Smith, and Petter Ögren.
Towards a unified behavior trees framework for robot control. In 2014 IEEE
International Conference on Robotics and Automation (ICRA), pages 5420–5427,
2014.

[5] Giorgio Metta, Paul Fitzpatrick, and Lorenzo Natale. Yarp: Yet another robot
platform. International Journal of Advanced Robotic Systems, 3(1):8, 2006.

[6] Michael Montemerlo, Nicholas Roy, and Sebastian Thrun. Perspectives on stan-
dardization in mobile robot programming: The carnegie mellon navigation (car-
men) toolkit. In Proceedings 2003 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS 2003)(Cat. No. 03CH37453), volume 3, pages
2436–2441. IEEE, 2003.

[7] Morgan Quigley, Brian Gerkey, Ken Conley, Josh Faust, Tully Foote, Jeremy
Leibs, Eric Berger, Rob Wheeler, and Andrew Ng. Ros: an open-source robot
operating system. In Proc. of the IEEE Intl. Conf. on Robotics and Automation
(ICRA) Workshop on Open Source Robotics, Kobe, Japan, May 2009.

[8] Dirk Thomas, William Woodall, and Esteve Fernandez. Next-generation ros:
Building on dds. In OSRF, editor, ROSCon 2014, 2014.

[9] Sebastian Thrun, Dieter Fox, Wolfram Burgard, and Frank Dellaert. Robust
monte carlo localization for mobile robots. Artificial Intelligence, 128(1):99–141,
2001.

247

https://taylorandfrancis.com

Index

–packages–select, 30
–ros-args, 31
–symlink-install, 13
.NET, 14
/tf, 64
/tf static, 64

Action BT nodes, 116
AMCL, 135
ament cmake, 26
Apache 2, 3
Artificial Vision, 95
ASSERT * macros, 92

base footprint, 44
base link, 65
Behavior Trees, 115
blackboard, 118
Bouncy Bolson, 4
br2 basics, 30
BSD, 3
BT Navigator Server, 137
Bump and Go, 47, 122

C++, 13
C++17, 15
Callback signatures, 54
camera info, 42
Carmen, 1
Cascade lifecycle, 81
Closed-loop, 62
CMakeLists.txt, 24
colcon, 12
Computational Graph, 3
Condition BT nodes, 116
Continous Integration, 89
Contriller Server, 136
Control BT nodes, 116, 120
cpplint, 94
Crystal Clemmys, 4

Custom messages, 102
CycloneDDS, 15

Dashing Diademata, 4
DDS, 14
declare parameter, 38
Decorator BT nodes, 116
demo nodes cpp, 20
demo nodes py, 23
Deployment phase, 118
Development phase, 117
distribution, 2
distributions, 4
distutils, 58

Eloquent Elusor, 4
Event-oriented execution, 6
Executor, 39

FastDDS, 15
Finite State Machine, 47
flake8, 94
Foxy Fitzroy, 3
Frame, 44
FSM, 47

Galactic Geochelone, 4
Gazebo, 41
get logger, 28
get parameter, 38
Go, 14
Google tests, 89
Groot, 124

HSV color space, 97

Integration tests, 92
Interfaces, 22
International System of Measurements,

48
Iterative Execution, 6

249

250 � Index

Java, 14

Keep Last, 34
Kobuki robot, 7

Laser sensor, 9
LaserScan, 44
Launchers, 35
Lifecycle Node, 95
LifeCycle nodes, 101
log, 13
Logging System, 31

Map, 135
Map Server, 135
Messages, 6
MultiThreadedExecutor, 40

Naming, 8
Nav2, 135
Navigation, 9, 135
Node, 5
Noetic Ninjemys, 11
now, 66

odom, 45
OMG, 15
Open Source Robotics Foundation, 3
Open-loop, 62
OpenCV, 95
Overlay, 11

Package, 4, 10
package.xml, 24
Parameters, 37
Particle Filter, 37
PID controller, 104
Planner Server, 136
Player/Stage, 1
Publciation/Subscription, 6
PublisherZMQ, 153
Python, 15

QoS, 34
qrt console, 29

rcl, 14

rclcpp, 13
rclcpp::init, 25
rclcpp::Rate, 28
rclcpp::spin, 26
RCLCPP INFO, 28
rclpy, 13
Recovery Server, 136
Reliable, 34
Remap, 43
RGB color space, 97
RGBD camera, 8
Right-handed, 48
RMW IMPLEMENTATION, 15
Robot behavior, 9
Rolling Ridley, 4
ROS, 1
ROS Answers, 5
ROS Community, 3
ROS Discourse, 5
ROS2, 1
ROS2 Actions, 6
ros2 command, 20
ros2 interface, 22
ros2 node, 20
ros2 pkg, 20
ros2 run, 20
ROS2 Services, 6
ros2 topic, 21
ros control, 99
Rosdep, 12
rosout, 28
rqt graph, 23
rqt tf tree, 65
RTI Connext, 15
Rust, 14
RViz2, 44

shared ptr, 15
SingleThreadedExecutor, 40
SLAM, 141
Smart pointers, 15
spin some, 28
Stamped messages, 43
standardization, 51
Subsumption, 81

Index � 251

Testing, 89
TF, 44, 63
TF buffer, 66
TF2, 63
Tiago robot, 8, 41
tick, 115
Timers, 31
Transform broadcaster, 66
Transform listener, 66
Transformation Matrix, 63
Transient Local, 34

Ubuntu, 3
UDP, 14
Underlay, 11
unique ptr, 15
Unitary tests, 91
URDF, 42
use sim time, 58

vcs, 12
vcstool, 12
VFF, 81
Virtual Force Field, 81
Visual markers, 73, 86
Volatile, 34

Workspace, 3

XML, 39

YAML, 39
Yarp, 1

	Cover
	Half Title
	Title Page
	Copyright Page
	Contents
	List of Figures
	CHAPTER 1: Introduction
	1.1. ROS2 OVERVIEW
	1.1.1. The ROS Community
	1.1.2. The Computation Graph
	1.1.3. The Workspace

	1.2. THE ROS2 DESIGN
	1.3. ABOUT THIS BOOK

	CHAPTER 2: First Steps with ROS2
	2.1. FIRST STEPS WITH ROS2
	2.2. DEVELOPING THE FIRST NODE
	2.3. ANALYZING THE BR2 BASICS PACKAGE
	2.3.1. Controlling the Iterative Execution
	2.3.2. Publishing and Subscribing
	2.3.3. Launchers
	2.3.4. Parameters
	2.3.5. Executors

	2.4. SIMULATED ROBOT SETUP

	CHAPTER 3: First Behavior: Avoiding Obstacles with Finite States Machines
	3.1. PERCEPTION AND ACTUATION MODELS
	3.2. COMPUTATION GRAPH
	3.3. BUMP AND GO IN C++
	3.3.1. Execution Control
	3.3.2. Implementing a FSM
	3.3.3. Running the Code

	3.4. BUMP AND GO BEHAVIOR IN PYTHON
	3.4.1. Execution Control
	3.4.2. Implementing the FSM
	3.4.3. Running the Code

	CHAPTER 4: The TF Subsystem
	4.1. AN OBSTACLE DETECTOR THAT USES TF2
	4.2. COMPUTATION GRAPH
	4.3. BASIC DETECTOR
	4.3.1. Obstacle Detector Node
	4.3.2. Obstacle Monitor Node
	4.3.3. Running the Basic Detector

	4.4. IMPROVED DETECTOR
	4.4.1. Running the Improved Detector

	CHAPTER 5: Reactive Behaviors
	5.1. AVOIDING OBSTACLES WITH VFF
	5.1.1. The Computation Graph
	5.1.2. Package Structure
	5.1.3. Control Logic
	5.1.4. Calculation of the VFF Vectors
	5.1.5. Debugging with Visual Markers
	5.1.6. Running the AvoidanceNode
	5.1.7. Testing During Development

	5.2. TRACKING OBJECTS
	5.2.1. Perception and Actuation Models
	5.2.2. Computation Graph
	5.2.3. Lifecycle Nodes
	5.2.4. Creating Custom Messages
	5.2.5. Tracking Implementation
	5.2.6. Executing the Tracker

	CHAPTER 6: Programming Robot Behaviors with Behavior Trees
	6.1. BEHAVIOR TREES
	6.2. BUMP AND GO WITH BEHAVIOR TREES
	6.2.1. Using Groot to Create the Behavior Tree
	6.2.2. BT Nodes Implementation
	6.2.3. Running the Behavior Tree
	6.2.4. Testing the BT Nodes

	6.3. PATROLLING WITH BEHAVIOR TREES
	6.3.1. Nav2 Description
	6.3.2. Setup Nav2
	6.3.3. Computation Graph and Behavior Tree
	6.3.4. Patrolling Implementation
	6.3.5. Running Patrolling

	APPENDIX A: Source Code
	A.1. PACKAGE BR2 BASICS
	A.2. PACKAGE BR2 FSM BUMPGO CPP
	A.3. PACKAGE BR2 FSM BUMPGO PY
	A.4. PACKAGE BR2 TF2 DETECTOR
	A.5. PACKAGE BR2 VFF AVOIDANCE
	A.6. PACKAGE BR2 TRACKING MSGS
	A.7. PACKAGE BR2 TRACKING
	A.8. PACKAGE BR2 BT BUMPGO
	A.9. PACKAGE BR2 BT PATROLLING

	Bibliography
	Index

