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Preface
Back around 2016, I was surprised at the lack of published material for learning how to use CMake.
The official reference documentation was a useful resource for those willing to go exploring, but as
a way of learning CMake in a progressive, structured manner, it was not ideal. There were some
wikis and personal websites that had some useful contents, but there were also many that
contained out-of-date or questionable advice and examples. There was a distinct gap, which meant
those new to CMake had a hard time learning good practices, leading to many becoming
overwhelmed or frustrated.

At the time, I had been writing some blog articles to do something more productive with my spare
time and to deepen my own technical knowledge around software development. I frequently wrote
about areas that came up in my interaction with colleagues at work or in my own development
activities and I found this to be both rewarding and useful to others. As that pattern repeated itself,
the idea of writing a book was born. Fast-forward two and a half years and the result is this book.

Along the way, there was a classic pivotal moment which I now look back on with some degree of
amusement. A colleague bemoaned a particular feature that he wished CMake had. It burrowed its
way into my brain and sat there for a few months until one day I decided to explore how hard it
would be to add that feature myself. That culminated in the test fixtures feature that is now a part
of CMake. More importantly though, I was really struck by the positive experience I had while
making that contribution. The people, the tools and the processes in place made working on the
project truly a pleasure. From there, I became more deeply involved and now fulfill the role of
volunteer co-maintainer.

Acknowledgments
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book released that you realize just how many people have been involved. A work like this doesn’t
happen without the generosity, patience and insight of others, nor does it succeed without being
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people enough for their kindness and wisdom.
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support of Kitware and its staff, both past and present. I’d like to make special mention of Brad
King, the CMake project leader, who through his inclusive and encouraging approach to handling
new CMake contributors has made people like myself very welcome and feel empowered to get
involved. I have personally learned much from him just by observing the way he interacts with
developers and users, providing strong leadership and fostering an environment of respect for
others. It also goes without saying that the many contributors to CMake over the years also deserve
much praise for their efforts, often made on a purely voluntary basis. I’m humbled by the scale of
contributions that have been made by so many and by the positive impact on the world of software
development.

A number of people generously agreed to review the material in this book, without whom both
technical accuracy and readability would have suffered. Any remaining errors and deficiencies are
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updated material in the 7th edition. Marc Chevrier was kind enough to review material for the 7th
and 13th editions. Adriaan de Groot, Nagy-Egri Máté Ferenc, Michael Platings and Luis Caro
Campos all provided feedback on the 13th edition at short notice, for which I am very thankful.
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editions.
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Part I: Fundamentals
Attempting to use any tool before understanding at least the basics of what it does and how it is
meant to be used is most likely going to result in frustration. On the other hand, spending all one’s
time learning the theory about something without getting hands-on makes for a rather boring
experience and often leads to an overly idealistic understanding. This first part of the book follows
a logical progression through CMake’s more fundamental features and concepts and is structured
to enable the reader to immediately experiment and to do increasingly useful things with each
chapter. The goal is to incrementally build up the base knowledge needed to use CMake effectively,
with an emphasis on being able to put that knowledge into practice right away.

The initial focus in the first few chapters is on building a basic executable or library, covering just
enough to give a new developer a quick introduction to CMake. Subsequent chapters expand that
knowledge to demonstrate how to get the most out of what CMake has to offer. The techniques
presented are aimed at real world use, with the intention of establishing good habits and teaching
sound methods which scale to very large projects and can handle more complex scenarios.

The later parts of the book all rely heavily on the material covered in this first part. Those who have
already been using CMake for some time may find the topics relatively familiar, but the material
also includes hard-won knowledge from real world projects and interaction with the CMake
community. Even experienced users should find at least the Recommended Practices section at the
end of each chapter to be a useful read.
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Chapter 1. Introduction
Whether a seasoned developer or just starting out in a software career, one cannot avoid the
process of becoming familiar with a range of tools in order to turn a project’s source code into
something an end user can actually use. Compilers, linkers, testing frameworks, packaging systems
and more all contribute to the complexity of deploying high quality, robust software. While some
platforms have a dominant IDE environment that simplifies some aspects of this (e.g. Xcode and
Visual Studio), projects that need to support multiple platforms cannot always make use of their
features. Having to support multiple platforms adds more complications that can affect everything
from the set of available tools through to the different capabilities available and restrictions
enforced. A typical developer could be forgiven for losing at least some of their sanity trying to keep
on top of the whole picture.

Fortunately, there are tools that make taming the process more manageable. CMake is one such
tool, or more accurately, CMake is a suite of tools which covers everything from setting up a build
right through to producing packages ready for distribution. Not only does it cover the process from
start to end, it also supports a wide range of platforms, tools and languages. When working with
CMake, it helps to understand its view of the world. Loosely speaking, the start to end process
according to CMake looks something like this:

CMake CTest CPack

Project File Generation

Build Test Package
Configure Generate

The first stage takes a generic project description and generates platform-specific project files
suitable for use with the developer’s regular build tool of choice (e.g. make, Xcode, Visual Studio,
etc.). While this setup stage is what CMake is best known for, the CMake suite of tools also includes
CTest and CPack for managing the later testing and packaging stages respectively. The entire
process from start to finish can be driven from CMake itself, with the testing and packaging steps
available simply as additional targets in the build. Even the build tool can be invoked by CMake.

Before jumping in and getting their hands dirty with CMake, developers will first need to ensure
CMake is installed on their system. Some platforms may typically come with CMake already
installed (eg most Linux distributions have CMake available through their package manager), but
these versions are often quite old. Where possible, it is recommended that developers work with a
recent CMake release. This is particularly true when developing for Apple platforms where tools
like Xcode and its SDKs change rapidly and where app store requirements evolve over time. The
official CMake packages can be downloaded and unpacked to a directory on the developer’s
machine without interfering with any system-wide CMake install. Developers are encouraged to
take advantage of this and remain relatively close to the most recent stable CMake release.
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These days, CMake also comes with fairly extensive reference documentation which is accessible
from the official CMake site. This useful resource is very helpful for looking up the various
commands, options, keywords, etc. and developers will likely want to bookmark it for quick
reference. The CMake forum is also a great source of advice and is the recommended place for
asking CMake-related questions where the documentation doesn’t provide sufficient guidance.
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Chapter 2. Setting Up A Project
Without a build system, a project is just a collection of files. CMake brings some order to this,
starting with a human-readable file called CMakeLists.txt that defines what should be built and how,
what tests to run and what package(s) to create. This file is a platform-independent description of
the whole project, which CMake then turns into platform specific build tool project files. As its
name suggests, it is just an ordinary text file which developers edit in their favorite text editor or
development environment. The contents of this file are covered in great detail in subsequent
chapters, but for now, it is enough to know that this is what controls everything that CMake will do
in setting up and performing the build.

A fundamental part of CMake is the concept of a project having both a source directory and a
binary directory. The source directory is where the CMakeLists.txt file is located and the project’s
source files and all other files needed for the build are organized under that location. The source
directory is frequently under version control with a tool like git, subversion, or similar.

The binary directory is where everything produced by the build is created. It is often also called the
build directory. For reasons that will become clear in later chapters, CMake generally uses the term
binary directory, but among developers, the term build directory tends to be in more common use.
This book tends to prefer the latter term since it is generally more intuitive. CMake, the chosen
build tool (e.g. make, Visual Studio, etc.), CTest and CPack will all create various files within the build
directory and subdirectories below it. Executables, libraries, test output and packages are all
created within the build directory. CMake also creates a special file called CMakeCache.txt in the build
directory to store various information for reuse on subsequent runs. Developers won’t normally
need to concern themselves with the CMakeCache.txt file, but later chapters will discuss situations
where this file is relevant. The build tool’s project files (e.g. Xcode or Visual Studio project files,
Makefiles, etc.) are also created in the build directory and are not intended to be put under version
control. The CMakeLists.txt files are the canonical description of the project and the generated
project files should be considered part of the build output.

When a developer commences work on a project, they must decide where they want their build
directory to be in relation to their source directory. There are essentially two approaches: in-source
and out-of-source builds.

2.1. In-source Builds
It is possible, though discouraged, for the source and build directories to be the same. This
arrangement is called an in-source build. Developers at the beginning of their career often start out
using this approach because of the perceived simplicity. The main difficulty with in-source builds,
however, is that all the build outputs are intermixed with the source files. This lack of separation
causes directories to become cluttered with all sorts of files and subdirectories, making it harder to
manage the project sources and running the risk of build outputs overwriting source files. It also
makes working with version control systems more difficult, since there are lots of files created by
the build which either the source control tool has to know to ignore or the developer has to
manually exclude during commits. One other drawback to in-source builds is that it can be non-
trivial to clear out all build output and start again with a clean source tree. For these reasons,
developers are discouraged from using in-source builds where possible, even for simple projects.
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2.2. Out-of-source Builds
The more preferable arrangement is for the source and build directories to be different, which is
called an out-of-source build. This keeps the sources and the build outputs completely separate from
each other, thus avoiding the intermixing problems experienced with in-source builds. Out-of-
source builds also have the advantage that the developer can create multiple build directories for
the same source directory, which allows builds to be set up with different sets of options, such as
debug and release versions, etc.

This book will always use out-of-source builds and will follow the pattern of the source and build
directories being under a common parent. The build directory will be called build, or some
variation thereof. For example:

A variation on this used by some developers is to make the build directory a subdirectory of the
source directory. This offers most of the advantages of an out-of-source build, but it does still carry
with it some of the disadvantages of an in-source arrangement. Unless there is a good reason to
structure things that way, keeping the build directory completely outside of the source tree instead
is recommended.

2.3. Generating Project Files
Once the choice of directory structure has been made, the developer runs CMake, which reads in
the CMakeLists.txt file and creates project files in the build directory. The developer selects the type
of project file to be created by choosing a particular project file generator. A range of different
generators are supported, with the more commonly used ones listed in the table below.

Category Generator Examples Multi-config

Visual Studio Visual Studio 17 2022 Yes

Visual Studio 16 2019

⋮

Xcode Xcode Yes

Ninja Ninja No

Ninja Multi-Config Yes

Makefiles Unix Makefiles No

MSYS Makefiles

MinGW Makefiles

NMake Makefiles
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Some generators produce projects which support multiple configurations (e.g. Debug, Release, etc.).
These allow the developer to choose between different build configurations without having to re-
run CMake, which is more suitable for generators creating projects for use in IDE environments like
Xcode and Visual Studio. For generators which do not support multiple configurations, the
developer has to re-run CMake to switch the build between Debug, Release, etc. These are simpler
and often have good support in IDE environments not so closely associated with a particular
compiler (CLion, Qt Creator, KDevelop, etc.).

The most basic way to run CMake is via the cmake command line utility. The simplest way to invoke
it is to change to the build directory and pass options to cmake for the generator type and location of
the source tree. For example:

mkdir build
cd build
cmake -G "Unix Makefiles" ../source

If the -G option is omitted, CMake will choose a default generator type based on the host platform. If
using CMake 3.15 or later, this default can be overridden by setting the CMAKE_GENERATOR environment
variable to the desired default instead. For all generator types, CMake will carry out a series of tests
to determine how to set up the project files. This includes things like verifying that the compilers
work, determining the set of supported compiler features and various other tasks. A variety of
information will be logged before CMake finishes with lines like the following upon success:

-- Configuring done
-- Generating done
-- Build files have been written to: /some/path/build

The above highlights that project file creation actually involves two steps; configuring and
generating. During the configuring phase, CMake reads in the CMakeLists.txt file and builds up an
internal representation of the entire project. After this is done, the generation phase creates the
project files. The distinction between configuring and generating doesn’t matter so much for basic
CMake usage, but in later chapters the separation of configuration and generation becomes
important. This is covered in more detail in Chapter 10, Generator Expressions.

When CMake has completed its run, it will have saved a CMakeCache.txt file in the build directory.
CMake uses this file to save details so that if it is run again, it can re-use information computed the
first time and speed up the project generation. As covered in later chapters, it also allows developer
options to be saved between runs. A GUI application, cmake-gui, is available as an alternative to
running the cmake command line tool, but the introduction of the GUI application is deferred to
Chapter 5, Variables where its usefulness is more clearly evident.

2.4. Running The Build Tool
At this point, with project files now available, the developer can use their selected build tool in the
way to which they are accustomed. The build directory will contain the necessary project files
which can be loaded into an IDE, read by command line tools, etc. Alternatively, cmake can invoke
the build tool on the developer’s behalf like so:
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cmake --build /pathTo/build --config Debug --target MyApp

This works even for project types the developer may be more accustomed to using through an IDE
like Xcode or Visual Studio. The --build option points to the build directory used by the CMake
project generation step. For multi configuration generators, the --config option specifies which
configuration to build, whereas single configuration generators will ignore the --config option and
rely instead on information provided when the CMake project generation step was performed.
Specifying the build configuration is covered in depth in Chapter 14, Build Type. The --target option
can be used to tell the build tool what to build, or if omitted, the default target will be built. With
CMake 3.15 or later, multiple targets can be listed after the --target option, separated by spaces.

While developers will typically invoke their selected build tool directly in day-to-day development,
invoking it via the cmake command as shown above can be more useful in scripts driving an
automated build. Using this approach, a simple scripted build might look something like this:

mkdir build
cd build
cmake -G "Unix Makefiles" ../source
cmake --build . --config Release --target MyApp

If the developer wishes to experiment with different generators, all that needs to be done is change
the argument given to the -G CMake option and the correct build tool will be automatically invoked.
The build tool doesn’t even have to be on the user’s PATH for cmake --build to work (although it may
need to be for the initial configuration step when cmake is first invoked).

2.5. Recommended Practices
Even when first starting out using CMake, it is advisable to make a habit of keeping the build
directory completely separate from the source tree. A good way to get early experience of the
benefits of such an arrangement is to set up two or more different builds for the same source
directory. One build could be configured with Debug settings, the other for a Release build. Another
option is to use different project generators for the different build directories, such as Unix
Makefiles and Xcode. This can help to catch any unintended dependencies on a particular build tool
or to check for differing compiler settings between generator types.

It can be tempting to focus on using one particular type of project generator in the early stages of a
project, especially if the developer is not accustomed to writing cross-platform software. Projects
do, however, have a habit of growing beyond their initial scope and it is relatively common to need
to support additional platforms and generator types. Periodically checking the build with a
different project generator than the one a developer usually uses can save considerable future pain
by discouraging generator-specific code where it isn’t required. This also has the benefit of making
the project well placed to take advantage of any new generator type in the future. A good strategy is
to ensure the project builds with the default generator type on each platform of interest, plus one
other type. The Ninja generator is an excellent choice for the latter, since it has the broadest
platform support of all the generators and it also creates very efficient builds. If the project is being
scripted, invoke the build tool via cmake --build instead of invoking the build tool directly. This
allows the script to easily switch between generator types without having to be modified.
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Chapter 3. A Minimal Project
All CMake projects start with a file called CMakeLists.txt and it is expected to be placed at the top of
the source tree. Think of it as the CMake project file, defining everything about the build from
sources and targets through to testing, packaging and other custom tasks. It can be as simple as a
few lines or it can be quite complex and pull in more files from other directories. CMakeLists.txt is
just an ordinary text file and is usually edited directly, just like any other source file in the project.

Continuing the analogy with sources, CMake defines its own language which has many things a
programmer would be familiar with, such as variables, functions, macros, conditional logic,
looping, code comments and so on. These various concepts and features are covered in the next few
chapters, but for now, the goal is just to get a simple build working as a starting point. The following
is a minimal, well-formed CMakeLists.txt file producing a basic executable.

cmake_minimum_required(VERSION 3.2)
project(MyApp)
add_executable(MyExe main.cpp)

Each line in the above example executes a built-in CMake command. In CMake, commands are
similar to other languages’ function calls, except that while they support arguments, they do not
return values directly (but a later chapter shows how to pass values back to the caller in other
ways). Arguments are separated from each other by spaces and may be split across multiple lines:

add_executable(MyExe
    main.cpp
    src1.cpp
    src2.cpp
)

Command names are also case insensitive, so the following are all equivalent:

add_executable(MyExe main.cpp)
ADD_EXECUTABLE(MyExe main.cpp)
Add_Executable(MyExe main.cpp)

Typical style varies, but the more common convention these days is to use all lowercase for
command names (this is also the convention followed by the CMake documentation for built-in
commands).

3.1. Managing CMake Versions
CMake is continually updated and extended to add support for new tools, platforms and features.
The developers behind CMake are very careful to maintain backwards compatibility with each new
release, so when users update to a newer version of CMake, projects should continue to build as
they did before. Sometimes, a particular CMake behavior needs to change or more stringent checks
and warnings may be introduced in newer versions. Rather than requiring all projects to

10



immediately deal with this, CMake provides policy mechanisms which allow the project to say
“Behave like CMake version X.Y.Z”. This allows CMake to fix bugs internally and introduce new
features, but still maintain the expected behavior of any particular past release.

The primary way a project specifies details about its expected CMake version behavior is with the
cmake_minimum_required() command. This should be the first line of the CMakeLists.txt file so that the
project’s requirements are checked and established before anything else. This command does two
things:

• It specifies the minimum version of CMake the project needs. If the CMakeLists.txt file is
processed with a CMake version older than the one specified, it will halt immediately with an
error. This ensures that a particular minimum set of CMake functionality is available before
proceeding.

• It enforces policy settings to match CMake behavior to the specified version.

Using this command is so important that CMake will issue a warning if the CMakeLists.txt file does
not call cmake_minimum_required() before any other command. It needs to know how to set up the
policy behavior for all subsequent processing. For most projects, it is enough to treat
cmake_minimum_required() as simply specifying the minimum required CMake version, as its name
suggests. The fact that it also implies CMake should behave the same as that particular version can
be considered a useful side benefit. Chapter 12, Policies discusses policy settings in more detail and
explains how to tailor this behavior as needed.

The typical form of the cmake_minimum_required() command is straightforward:

cmake_minimum_required(VERSION major.minor[.patch[.tweak]])

The VERSION keyword must always be present and the version details provided must have at least
the major.minor part. In most projects, specifying the patch and tweak parts is not necessary, since
new features typically only appear in minor version updates (this is the official CMake behavior
from version 3.0 onward). Only if a specific bug fix is needed should a project specify a patch part.
Furthermore, since no CMake release in the 3.x series has used a tweak number, projects should not
need to specify one either.

Developers should think carefully about what minimum CMake version their project should
require. Version 3.2 is perhaps the oldest any new project should consider, since it provides a
reasonably complete feature set for modern CMake techniques. Version 2.8.12 has a reduced
feature coverage, lacking a number of useful features but it may be workable for older projects.
Versions before that lack substantial features that would make using many modern CMake
techniques impossible. If working with fast-moving platforms such as iOS, quite recent versions of
CMake may be needed in order to support the latest OS releases, etc.

As a general rule of thumb, choose the most recent CMake version that won’t present significant
problems for those building the project. The greatest difficulty is typically experienced by projects
that need to support older platforms where the system-provided version of CMake may be quite
old. For such cases, if at all possible, developers should consider installing a more recent release
rather than restricting themselves to very old CMake versions. On the other hand, if the project will
itself be a dependency for other projects, then choosing a more recent CMake version may present
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a hurdle for adoption. In such cases, it may be beneficial to instead require the oldest CMake
version that still provides the minimum CMake features needed, but make use of features from
later CMake versions if available (Chapter 12, Policies presents techniques for achieving this). This
will prevent other projects from being forced to require a more recent version than their target
environment typically allows or provides. Dependent projects can always require a more recent
version if they so wish, but they cannot require an older one. The main disadvantage of using the
oldest workable version is that it may result in more deprecation warnings, since newer CMake
versions will warn about older behaviors to encourage projects to update themselves.

3.2. The project() Command
Every CMake project should contain a project() command and it should appear after
cmake_minimum_required() has been called. The command with its most common options has the
following form:

project(projectName
        [VERSION major[.minor[.patch[.tweak]]]]
        [LANGUAGES languageName ...]
)

The projectName is required and may only contain letters, numbers, underscores (_) and hyphens (-),
although typically only letters and perhaps underscores are used in practice. Since spaces are not
permitted, the project name does not have to be surrounded by quotes. This name is used for the
top level of a project with some project generators (eg Xcode and Visual Studio) and it is also used
in various other parts of the project, such as to act as defaults for packaging and documentation
metadata, to provide project-specific variables and so on. The name is the only mandatory
argument for the project() command.

The optional VERSION details are only supported in CMake 3.0 and later. Like the projectName, the
version details are used by CMake to populate some variables and as default package metadata, but
other than that, the version details don’t have any other significance. Nonetheless, a good habit to
establish is to define the project’s version here so that other parts of the project can refer to it.
Chapter 21, Specifying Version Details covers this in depth and explains how to refer to this version
information later in the CMakeLists.txt file.

The optional LANGUAGES argument defines the programming languages that should be enabled for the
project. Supported values include C, CXX, Fortran, ASM, CUDA and others. If specifying multiple
languages, separate each with a space. In some special situations, projects may want to indicate that
no languages are used, which can be done using LANGUAGES NONE. Techniques introduced in later
chapters take advantage of this particular form. If no LANGUAGES option is provided, CMake will
default to C and CXX. CMake versions prior to 3.0 do not support the LANGUAGES keyword, but
languages can still be specified after the project name using the older form of the command like so:

project(MyProj C CXX)

New projects are encouraged to specify a minimum CMake version of at least 3.0 and use the new
form with the LANGUAGES keyword instead.
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The project() command does much more than just populate a few variables. One of its important
responsibilities is to check the compilers for each enabled language and ensure they are able to
compile and link successfully. Problems with the compiler and linker setup are then caught very
early. Once these checks have passed, CMake sets up a number of variables and properties which
control the build for the enabled languages. Chapter 23, Toolchains And Cross Compiling discusses
this area in much greater detail, including the various ways to influence toolchain selection and
configuration. Chapter 7, Using Subdirectories also discusses additional considerations and
requirements that affect the use of the project() command.

When the compiler and linker checks performed by CMake are successful, their results are cached
so that they do not have to be repeated in subsequent CMake runs. These cached details are stored
in the build directory in the CMakeCache.txt file. Additional details about the checks can be found in
subdirectories within the build area, but developers would typically only need to look there if
working with a new or unusual compiler or when setting up toolchain files for cross-compiling.

3.3. Building A Basic Executable
To complete our minimal example, the add_executable() command tells CMake to create an
executable from a set of source files. The basic form of this command is:

add_executable(targetName source1 [source2 ...])

This creates an executable which can be referred to within the CMake project as targetName. This
name may contain letters, numbers, underscores and hyphens. When the project is built, an
executable will be created in the build directory with a platform-dependent name, the default name
being based on the target name. Consider the following simple example command:

add_executable(MyApp main.cpp)

By default, the name of the executable would be MyApp.exe on Windows and MyApp on Unix-based
platforms like macOS, Linux, etc. The executable name can be customized with target properties, a
CMake feature introduced in Chapter 9, Properties. Multiple executables can also be defined within
the one CMakeLists.txt file by calling add_executable() multiple times with different target names. If
the same target name is used in more than one add_executable() command, CMake will fail and
highlight the error.

3.4. Commenting
Before leaving this chapter, it will be useful to demonstrate how to add comments to a
CMakeLists.txt file. Comments are used extensively throughout this book and developers are
encouraged to also get into the habit of commenting their projects just as they would for ordinary
source code. CMake follows similar commenting conventions as Unix shell scripts. Any line
beginning with a # character is treated as a comment. Except within a quoted string, anything after
a # on a line within a CMakeLists.txt file is also treated as a comment. The following shows a few
comment examples and brings together the concepts introduced in this chapter:
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cmake_minimum_required(VERSION 3.2)

# We don't use the C++ compiler, so don't let project()
# test for it in case the platform doesn't have one
project(MyApp VERSION 4.7.2 LANGUAGES C)

# Primary tool for this project
add_executable(MainTool
    main.c
    debug.c   # Optimized away for release builds
)

# Helpful diagnostic tool for development and testing
add_executable(TestTool testTool.c)

3.5. Recommended Practices
Ensure every CMake project has a cmake_minimum_required() command as the first line of its top level
CMakeLists.txt file. When deciding the minimum required version number to specify, keep in mind
that the later the version, the more CMake features the project will be able to use. It will also mean
the project is likely to be better placed to adapt to new platform or operating system releases, which
inevitably introduce new things for build systems to deal with. Conversely, if creating a project
intended to be built and distributed as part of the operating system itself (common for Linux), the
minimum CMake version is likely to be dictated by the version of CMake provided by that same
distribution.

If the project can require CMake 3.0 or later, it is also good to force thinking about project version
numbers early and start incorporating version numbering into the project() command as soon as
possible. It can be very hard to overcome the inertia of existing processes and change how version
numbers are handled later in the life of a project. Consider popular practices such as Semantic
Versioning when deciding on a versioning strategy.
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Chapter 4. Building Simple Targets
As shown in the previous chapter, it is relatively straightforward to define a simple executable in
CMake. The simple example given previously required defining a target name for the executable
and listing the source files to be compiled:

add_executable(MyApp main.cpp)

This assumes the developer wants a basic console executable to be built, but CMake also allows the
developer to define other types of executables, such as app bundles on Apple platforms and
Windows GUI applications. This chapter discusses additional options which can be given to
add_executable() to specify these details.

In addition to executables, developers also frequently need to build and link libraries. CMake
supports a few different kinds of libraries, including static, shared, modules and frameworks.
CMake also offers very powerful features for managing dependencies between targets and how
libraries are linked. This whole area of libraries and how to work with them in CMake forms the
bulk of this chapter. The concepts covered here are used extensively throughout the remainder of
this book. Some very basic use of variables and properties are also given to provide a flavor for
how these CMake features relate to libraries and targets in general.

4.1. Executables
The more complete form of the basic add_executable() command is as follows:

add_executable(targetName [WIN32] [MACOSX_BUNDLE]
               [EXCLUDE_FROM_ALL]
               source1 [source2 ...]
)

The only differences to the form shown previously are the new optional keywords.

WIN32

When building the executable on a Windows platform, this option instructs CMake to build the
executable as a Windows GUI application. In practice, this means it will be created with a
WinMain() entry point instead of just main() and it will be linked with the /SUBSYSTEM:WINDOWS
option. On all other platforms, the WIN32 option is ignored.

MACOSX_BUNDLE

When present, this option directs CMake to build an app bundle when building on an Apple
platform. Contrary to what the option name suggests, it applies not just to macOS, but also to
other Apple platforms like iOS as well. The exact effects of this option vary somewhat between
platforms. For example, on macOS, the app bundle layout has a very specific directory structure,
whereas on iOS, the directory structure is flattened. CMake will also generate a basic Info.plist
file for bundles. These and other details are covered in more detail in Section 24.2, “Application
Bundles”. On non-Apple platforms, the MACOSX_BUNDLE keyword is ignored.
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EXCLUDE_FROM_ALL

Sometimes, a project defines a number of targets, but by default only some of them should be
built. When no target is specified at build time, the default ALL target is built (depending on the
CMake generator being used, the name may be slightly different, such as ALL_BUILD for Xcode). If
an executable is defined with the EXCLUDE_FROM_ALL option, it will not be included in that default
ALL target. The executable will then only be built if it is explicitly requested by the build
command or if it is a dependency for another target that is part of the default ALL build. A
common situation where it can be useful to exclude a target from ALL is where the executable is
a developer tool that is only needed occasionally.

In addition to the above, there are other forms of the add_executable() command which produce a
kind of reference to an existing executable or target rather than defining a new one to be built.
These alias executables are covered in detail in Chapter 18, Target Types.

4.2. Defining Libraries
Creating simple executables is a fundamental need of any build system. For many larger projects,
the ability to create and work with libraries is also essential to keep the project manageable. CMake
supports building a variety of different kinds of libraries, taking care of many of the platform
differences, but still supporting the native idiosyncrasies of each. Library targets are defined using
the add_library() command, of which there are a number of forms. The most basic of these is the
following:

add_library(targetName [STATIC | SHARED | MODULE]
            [EXCLUDE_FROM_ALL]
            source1 [source2 ...]
)

This form is analogous to how add_executable() is used to define a simple executable. The targetName
is used within the CMakeLists.txt file to refer to the library, with the name of the built library on the
file system being derived from this name by default. The EXCLUDE_FROM_ALL keyword has exactly the
same effect as it does for add_executable(), namely to prevent the library from being included in the
default ALL target. The type of library to be built is specified by one of the remaining three keywords
STATIC, SHARED or MODULE.

STATIC

Specifies a static library or archive. On Windows, the default library name would be
targetName.lib, while on Unix-like platforms, it would typically be libtargetName.a.

SHARED

Specifies a shared or dynamically linked library. On Windows, the default library name would
be targetName.dll, on Apple platforms it would be libtargetName.dylib and on other Unix-like
platforms it would typically be libtargetName.so. On Apple platforms, shared libraries can also be
marked as frameworks, a topic covered in Section 24.3, “Frameworks”.

MODULE

Specifies a library that is somewhat like a shared library, but is intended to be loaded
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dynamically at run-time rather than being linked directly to a library or executable. These are
typically plugins or optional components the user may choose to be loaded or not. On Windows
platforms, no import library is created for the DLL.

It is possible to omit the keyword defining what type of library to build. Unless the project
specifically requires a particular type of library, the preferred practice is to not specify it and leave
the choice up to the developer when building the project. In such cases, the library will be either
STATIC or SHARED, with the choice determined by the value of a CMake variable called
BUILD_SHARED_LIBS. If BUILD_SHARED_LIBS has been set to true, the library target will be a shared library,
otherwise it will be static. Working with variables is covered in detail in Chapter 5, Variables, but
for now, one way to set this variable is by including a -D option on the cmake command line like so:

cmake -DBUILD_SHARED_LIBS=YES /path/to/source

It could be set in the CMakeLists.txt file instead with the following placed before any add_library()
commands, but that would then require developers to modify it if they wanted to change it (i.e. it
would be less flexible):

set(BUILD_SHARED_LIBS YES)

Just as for executables, library targets can also be defined to refer to some existing binary or target
rather than being built by the project. Another type of pseudo-library is also supported for
collecting together object files without going as far as creating a static library. These are all
discussed in detail in Chapter 18, Target Types.

4.3. Linking Targets
When considering the targets that make up a project, developers are typically used to thinking in
terms of library A needing library B, so A is linked to B. This is the traditional way of looking at
library handling, where the idea of one library needing another is very simplistic. In reality,
however, there are a few different types of dependency relationships that can exist between
libraries:

PRIVATE

Private dependencies specify that library A uses library B in its own internal implementation.
Anything else that links to library A doesn’t need to know about B because it is an internal
implementation detail of A.

PUBLIC

Public dependencies specify that not only does library A use library B internally, it also uses B in
its interface. This means that A cannot be used without B, so anything that uses A will also have
a direct dependency on B. An example of this would be a function defined in library A which has
at least one parameter of a type defined and implemented in library B, so code cannot call the
function from A without providing a parameter whose type comes from B.
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INTERFACE

Interface dependencies specify that in order to use library A, parts of library B must also be
used. This differs from a public dependency in that library A doesn’t require B internally, it only
uses B in its interface. An example of where this is useful is when working with library targets
defined using the INTERFACE form of add_library(), such as when using a target to represent a
header-only library’s dependencies (see Section 18.2.4, “Interface Libraries”).

CMake captures this richer set of dependency relationships with its target_link_libraries()
command, not just the simplistic idea of needing to link. The general form of the command is:

target_link_libraries(targetName
     <PRIVATE|PUBLIC|INTERFACE> item1 [item2 ...]
    [<PRIVATE|PUBLIC|INTERFACE> item3 [item4 ...]]
    ...
)

This allows projects to precisely define how one library depends on others. CMake then takes care
of managing the dependencies throughout the chain of libraries linked in this fashion. For example,
consider the following:

add_library(Collector src1.cpp)
add_library(Algo src2.cpp)
add_library(Engine src3.cpp)
add_library(Ui src4.cpp)
add_executable(MyApp main.cpp)

target_link_libraries(Collector
    PUBLIC  Ui
    PRIVATE Algo Engine
)
target_link_libraries(MyApp PRIVATE Collector)

In this example, the Ui library is linked to the Collector library as PUBLIC, so even though MyApp only
directly links to Collector, MyApp will also be linked to Ui because of that PUBLIC relationship. The Algo
and Engine libraries, on the other hand, are linked to Collector as PRIVATE, so MyApp will not be
directly linked to them. Section 18.2, “Libraries” discusses additional behaviors for static libraries
which may result in further linking to satisfy dependency relationships, including cyclic
dependencies.

Later chapters present a few other target_…() commands which further enhance the dependency
information carried between targets. These allow compiler/linker flags and header search paths to
also carry through from one target to another when they are connected by target_link_libraries().
These features were added progressively from CMake 2.8.11 through to 3.2 and lead to considerably
simpler and more robust CMakeLists.txt files.

Later chapters also discuss the use of more complex source directory hierarchies. In such cases, if
using CMake 3.12 or earlier, the targetName used with target_link_libraries() must have been
defined by an add_executable() or add_library() command in the same directory from which
target_link_libraries() is being called (this restriction was removed in CMake 3.13).
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4.4. Linking Non-targets
In the preceding section, all the items being linked to were existing CMake targets, but the
target_link_libraries() command is more flexible than that. In addition to CMake targets, the
following things can also be specified as items in a target_link_libraries() command:

Full path to a library file

CMake will add the library file to the linker command. If the library file changes, CMake will
detect that change and re-link the target. Note that from CMake version 3.3, the linker command
always uses the full path specified, but prior to version 3.3, there were some situations where
CMake may ask the linker to search for the library instead (e.g. replace /usr/lib/libfoo.so with
-lfoo). The reasoning and details of the pre-3.3 behavior are non-trivial and are largely
historical, but for the interested reader, the full set of information is available in the CMake
documentation under the CMP0060 policy.

Plain library name

If just the name of the library is given with no path, the linker command will search for that
library (e.g. foo becomes -lfoo or foo.lib, depending on the platform). This would be common for
libraries provided by the system.

Link flag

As a special case, items starting with a hyphen other than -l or -framework will be treated as flags
to be added to the linker command. The CMake documentation warns that these should only be
used for PRIVATE items, since they would be carried through to other targets if defined as PUBLIC
or INTERFACE and this may not always be safe.

4.5. Old-style CMake
For historical reasons, any link item specified in target_link_libraries() may be preceded by one of
the keywords debug, optimized or general. The effect of these keywords is to further refine when the
item following it should be included based on whether the build is configured as a debug build (see
Chapter 14, Build Type). If an item is preceded by the debug keyword, then it will only be added if the
build is a debug build. If an item is preceded by the optimized keyword, it will only be added if the
build is not a debug build. The general keyword specifies that the item should be added for all build
configurations, which is the default behavior anyway if no keyword is used. The debug, optimized
and general keywords should be avoided for new projects as there are clearer, more flexible and
more robust ways to achieve the same thing with today’s CMake features.

The target_link_libraries() command also has a few other forms, some of which have been part of
CMake from well before version 2.8.11. These forms are discussed here for the benefit of
understanding older CMake projects, but their use is generally discouraged for new projects. The
full form shown previously with PRIVATE, PUBLIC and INTERFACE sections should be preferred, as it
expresses the nature of dependencies with more accuracy.

target_link_libraries(targetName item [item...])
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The above form is generally equivalent to the items being defined as PUBLIC, but in certain
situations, they may instead be treated as PRIVATE. In particular, if a project defines a chain of
library dependencies with a mix of both old and new forms of the command, the old-style form will
generally be treated as PRIVATE.

Another supported but deprecated form is the following:

target_link_libraries(targetName
    LINK_INTERFACE_LIBRARIES item [item...]
)

This is a pre-cursor to the INTERFACE keyword of the newer form covered above, but its use is
discouraged by the CMake documentation. Its behavior can affect different target properties, with
the policy settings controlling that behavior. This is a potential source of confusion for developers
which can be avoided by using the newer INTERFACE form instead.

target_link_libraries(targetName
    <LINK_PRIVATE|LINK_PUBLIC> lib [lib...]
   [<LINK_PRIVATE|LINK_PUBLIC> lib [lib...]]
)

Similar to the previous old-style form, this one is a pre-cursor to the PRIVATE and PUBLIC keyword
versions of the newer form. Again, the old-style form has the same confusion over which target
properties it affects and the PRIVATE/PUBLIC keyword form should be preferred for new projects.

4.6. Recommended Practices
Target names need not be related to the project name. It is common to see tutorials and examples
use a variable for the project name and reuse that variable for the name of an executable target:

# Poor practice, but very common
set(projectName MyExample)
project(${projectName})
add_executable(${projectName} ...)

This only works for the most basic of projects and encourages a number of bad habits. Consider the
project name and executable name as being separate, even if initially they start out the same. Set
the project name directly rather than via a variable, choose a target name according to what the
target does rather than the project it is part of and assume the project will eventually need to define
more than one target. This reinforces better habits which will be important when working on more
complex multi-target projects.

When naming targets for libraries, resist the temptation to start or end the name with lib. On many
platforms (i.e. just about all except Windows), a leading lib will be prefixed automatically when
constructing the actual library name to make it conform to the platform’s usual convention. If the
target name already begins with lib, the library file names end up with the form liblibsomething….,
which people often assume to be a mistake.
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Unless there are strong reasons to do so, try to avoid specifying the STATIC or SHARED keyword for a
library until it is known to be needed. This allows greater flexibility in choosing between static or
dynamic libraries as an overall project-wide strategy. The BUILD_SHARED_LIBS variable can be used to
change the default in one place instead of having to modify every call to add_library().

Aim to always specify PRIVATE, PUBLIC and/or INTERFACE keywords when calling the
target_link_libraries() command rather than following the old-style CMake syntax which assumed
everything was PUBLIC. As a project grows in complexity, these three keywords have a stronger
impact on how inter-target dependencies are handled. Using them from the beginning of a project
also forces developers to think about the dependencies between targets, which can help to highlight
structural problems within the project much earlier.
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Chapter 5. Variables
The preceding chapters showed how to define basic targets and produce build outputs. On its own,
this is already useful, but CMake comes with a whole host of other features which bring great
flexibility and convenience. This chapter covers one of the most fundamental parts of CMake,
namely the use of variables.

5.1. Variable Basics
Like any computing language, variables are a cornerstone of getting things done in CMake. The
most basic way of defining a variable is with the set() command. A normal variable can be defined
in a CMakeLists.txt file as follows:

set(varName value... [PARENT_SCOPE])

The name of the variable, varName, can contain letters, numbers and underscores, with letters being
case-sensitive. The name may also contain the characters ./-+ but these are rarely seen in practice.
Other characters are also possible via indirect means, but again, these are not typically seen in
normal use.

In CMake, a variable has a particular scope, much like how variables in other languages have scope
limited to a particular function, file, etc. A variable cannot be read or modified outside its own
scope. Compared to other languages, variable scope is a little more flexible in CMake, but for now,
consider the scope of a variable as being the file it is defined in. Section 5.4, “Scope Blocks”
discusses how to define a local scope and pass information back up to enclosing scopes. Chapter 7,
Using Subdirectories and Chapter 8, Functions And Macros introduce further situations where local
scopes arise.

CMake treats all variables as strings. In various contexts, variables may be interpreted as a
different type, but ultimately, they are just strings. When setting a variable’s value, CMake doesn’t
require those values to be quoted unless the value contains spaces. If multiple values are given, the
values will be joined together with a semicolon separating each value - the resultant string is how
CMake represents lists. The following should help to demonstrate the behavior.

set(myVar a b c)    # myVar = "a;b;c"
set(myVar a;b;c)    # myVar = "a;b;c"
set(myVar "a b c")  # myVar = "a b c"
set(myVar a b;c)    # myVar = "a;b;c"
set(myVar a "b c")  # myVar = "a;b c"

The value of a variable is obtained with ${myVar}, which can be used anywhere a string or variable
is expected. CMake is particularly flexible in that it is also possible to use this form recursively or to
specify the name of another variable to set. In addition, CMake doesn’t require variables to be
defined before using them. Use of an undefined variable simply results in an empty string being
substituted, similar to the way Unix shell scripts behave. By default, no warning is issued for use of
an undefined variable, but the --warn-uninitialized option can be given to the cmake command to
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enable such warnings. Be aware, however, that such use is very common and is not necessarily a
symptom of a problem, so the option’s usefulness may be limited.

set(foo ab)               # foo   = "ab"
set(bar ${foo}cd)         # bar   = "abcd"
set(baz ${foo} cd)        # baz   = "ab;cd"
set(myVar ba)             # myVar = "ba"
set(big "${${myVar}r}ef") # big   = "${bar}ef" = "abcdef"
set(${foo} xyz)           # ab    = "xyz"
set(bar ${notSetVar})     # bar   = ""

Strings are not restricted to being a single line, they can contain embedded newline characters.
They can also contain quotes, which require escaping with backslashes.

set(myVar "goes here")
set(multiLine "First line ${myVar}
Second line with a \"quoted\" word")

If using CMake 3.0 or later, an alternative to quotes is to use the lua-inspired bracket syntax where
the start of the content is marked by [=[ and the end with ]=]. Any number of = characters can
appear between the square brackets, including none at all, but the same number of = characters
must be used at the start and the end. If the opening brackets are immediately followed by a
newline character, that first newline is ignored, but subsequent newlines are not. Furthermore, no
further transformation of the bracketed content is performed (i.e. no variable substitution or
escaping).

# Simple multi-line content with bracket syntax,
# no = needed between the square bracket markers
set(multiLine [[
First line
Second line
]])

# Bracket syntax prevents unwanted substitution
set(shellScript [=[
#!/bin/bash

[[ -n "${USER}" ]] && echo "Have USER"
]=])

# Equivalent code without bracket syntax
set(shellScript
"#!/bin/bash

[[ -n \"\${USER}\" ]] && echo \"Have USER\"
")

As the above example shows, bracket syntax is particularly well suited to defining content like Unix
shell scripts. Such content uses the ${…} syntax for its own purpose and frequently contains quotes,
but using bracket syntax means these things do not have to be escaped, unlike the traditional
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quoting style of defining CMake content. The flexibility to use any number of = characters between
the [ and ] markers also means embedded square brackets do not get misinterpreted as markers.
Chapter 20, Working With Files includes further examples which highlight situations where bracket
syntax can be a better alternative.

A variable can be unset either by calling unset() or by calling set() with no value for the named
variable. The following are equivalent, with no error or warning if myVar does not already exist:

set(myVar)
unset(myVar)

In addition to variables defined by the project for its own use, the behavior of many of CMake’s
commands can be influenced by the value of specific variables at the time the command is called.
This is a common pattern used by CMake to tailor command behavior or to modify defaults so they
don’t have to be repeated for every command, target definition, etc. The CMake reference
documentation for each command typically lists any variables which can affect that command’s
behavior. Later chapters of this book also highlight a number of useful variables and the way they
affect or give information about the build.

5.2. Environment Variables
CMake also allows the value of environment variables to be retrieved and set using a modified
form of the CMake variable notation. The value of an environment variable is obtained using the
special form $ENV{varName} and this can be used anywhere a regular ${varName} form can be used.
Setting an environment variable can be done in a similar way to a CMake variable, except with
ENV{varName} instead of just varName as the variable to set. For example:

set(ENV{PATH} "$ENV{PATH}:/opt/myDir")

Note, however, that setting an environment variable like this only affects the currently running
CMake instance. As soon as the CMake run is finished, the change to the environment variable is
lost. In particular, the change to the environment variable will not be visible at build time.
Therefore, setting environment variables within the CMakeLists.txt file like this is rarely useful.

5.3. Cache Variables
In addition to normal variables discussed above, CMake also supports cache variables. Unlike
normal variables which have a lifetime limited to the processing of the CMakeLists.txt file, cache
variables are stored in the special file called CMakeCache.txt in the build directory and they persist
between CMake runs. Once set, cache variables remain set until something explicitly removes them
from the cache. The value of a cache variable is retrieved in exactly the same way as a normal
variable (i.e. with the ${myVar} form), but the set() command is different when used to set a cache
variable:

set(varName value... CACHE type "docstring" [FORCE])

24



When the CACHE keyword is present, the set() command will apply to a cache variable named
varName instead of a normal variable. Cache variables have more information attached to them than
a normal variable, including a nominal type and a documentation string. Both must be provided
when setting a cache variable, although the docstring can be empty. The documentation string does
not affect how CMake treats the variable, it is used only by GUI tools to provide things like help
details, tooltips, etc.

CMake will always treat the variable as a string during processing. The type is used mostly to
improve the user experience in GUI tools, with some important exceptions discussed in Section 5.5,
“Potentially Surprising Behavior Of Variables”. The type must be one of the following:

BOOL

The cache variable is a boolean on/off value. GUI tools use a checkbox or similar to represent the
variable. The underlying string value held by the variable will conform to one of the ways
CMake represents booleans as strings (ON/OFF, TRUE/FALSE, 1/0, etc. - see Section 6.1.1, “Basic
Expressions” for full details).

FILEPATH

The cache variable represents a path to a file on disk. GUI tools present a file dialog to the user
for modifying the variable’s value.

PATH

Like FILEPATH, but GUI tools present a dialog that selects a directory rather than a file.

STRING

The variable is treated as an arbitrary string. By default, GUI tools use a single-line text edit
widget for manipulating the value of the variable. Projects may use cache variable properties to
provide a pre-defined set of values for GUI tools to present as a combobox or similar instead (see
Section 9.6, “Cache Variable Properties”).

INTERNAL

The variable is not intended to be made available to the user. Internal cache variables are
sometimes used to persistently record internal information by the project, such as caching the
result of an intensive query or computation. GUI tools do not show INTERNAL variables. INTERNAL
also implies FORCE (see further below).

GUI tools typically use the docstring as a tooltip for the cache variable or as a short one line
description when the variable is selected. The docstring should be short and consist of plain text (i.e.
no HTML markup, etc.).

Setting a boolean cache variable is such a common need that CMake provides a separate command
for it. Rather than the somewhat verbose set() command, developers can use option() instead:

option(optVar helpString [initialValue])

If initialValue is omitted, the default value OFF will be used. If provided, the initialValue must
conform to one of the boolean values accepted by the set() command. For reference, the above can
be thought of as more or less equivalent to:
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set(optVar initialValue CACHE BOOL helpString)

Compared to set(), the option() command more clearly expresses the behavior for boolean cache
variables, so it would generally be the preferred command to use. Be aware, however, that the
effect of the two commands can be different in certain situations (see Section 5.5, “Potentially
Surprising Behavior Of Variables”).

An important difference between normal and cache variables is that the set() command will only
overwrite a cache variable if the FORCE keyword is present, unlike normal variables where the set()
command will always overwrite a pre-existing value. The set() command acts more like set-if-not-
set when used to define cache variables, as does the option() command (which has no FORCE
capability). The main reason for this is that cache variables are primarily intended as a
customization point for developers. Rather than hard-coding the value in the CMakeLists.txt file as a
normal variable, a cache variable can be used so that the developer can override the value without
having to edit the CMakeLists.txt file. The variable can be modified by interactive GUI tools or by
scripts without having to change anything in the project itself.

5.4. Scope Blocks
As mentioned in Section 5.1, “Variable Basics”, a variable has a scope. Cache variables have global
scope, so they are always accessible. In the material presented so far, a non-cache variable’s scope
is the CMakeLists.txt file in which the variable is defined. This is often called the directory scope.
Subdirectories and functions inherit variables from their parent scope (covered in Section 7.1.2,
“Scope” and Section 8.4, “Returning Values” respectively).

With CMake 3.25 or later, the block() and endblock() commands can be used to define a local
variable scope. Upon entering the block, it receives a copy of all the variables defined in the
surrounding scope at that point in time. Any changes to variables in the block are performed on the
block’s copies, leaving the surrounding scope’s variables unchanged. Upon leaving the block, all
variables that were copied into the block or that were created in the block are discarded. This can
be a useful way of isolating a particular set of commands from the main logic.

set(x 1)

block()
    set(x 2)   # Shadows outer "x"
    set(y 3)   # Local, not visible outside the block
endblock()

# Here, x still equals 1, y is not defined

A block may not always want to be completely isolated from its caller. It may want to selectively
modify some variables in the surrounding scope. The PARENT_SCOPE of the set() and unset()
commands can be used to modify a variable in the enclosing scope instead of the current scope:
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set(x 1)
set(y 3)
block()
    set(x 2 PARENT_SCOPE)
    unset(y PARENT_SCOPE)
    # x still has the value 1 here
    # y still exists and has the value 3
endblock()
# x has the value 2 here and y is no longer defined

When PARENT_SCOPE is used, the variable being set or unset is the one in the parent scope, not the one
in the current scope. Importantly, it does not mean to set or unset the variable in both the parent
and the current scope. This can make PARENT_SCOPE awkward to use, since it often means repeating
the same command for the two different scopes when a change needs to affect both. The block()
command supports a PROPAGATE keyword which can be used to provide that behavior in a more
robust and concise way. When control flow leaves the block, the value of every variable listed after
the PROPAGATE keyword is propagated from the block to its surrounding scope. If a propagated
variable is unset inside the block, it is unset in the surrounding scope upon leaving the block.

set(x 1)
set(z 5)
block(PROPAGATE x z)
    set(x 2)   # Gets propagated back out to the outer "x"
    set(y 3)   # Local, not visible outside the block
    unset(z)   # Unsets the outer "z" too
endblock()
# Here, x equals 2, y and z are undefined

The block() command can be used to control more than just variable scopes. The command’s full
signature is specified as:

block([SCOPE_FOR [VARIABLES] [POLICIES]] [PROPAGATE var...])

The SCOPE_FOR keyword can be used to specify what kind of scope(s) the block should create. When
SCOPE_FOR is omitted, block() creates a new local scope for both variables and policies (see Section
12.2, “Policy Scope” for discussion of the latter). The following has the same effect as the previous
example, but it only creates a variable scope, leaving the policy scope unchanged:

set(x 1)
set(z 5)
block(SCOPE_FOR VARIABLES PROPAGATE x z)
    set(x 2)   # Gets propagated back out to the outer "x"
    set(y 3)   # Local variable, not visible outside the block
    unset(z)   # Unsets the outer "z" too
endblock()
# Here, x equals 2, y and z are undefined

27



While SCOPE_FOR VARIABLES is likely to be what the project needs most of the time, it will often be
harmless to allow a new policy scope to be created as well. Using block() rather than block(SCOPE_FOR
VARIABLES) may be slightly less efficient, but may still be preferred for its simplicity.

See Section 6.2.3, “Interrupting Loops”, Section 7.4, “Ending Processing Early” and Section 8.4,
“Returning Values” for how the block() command interacts with other control flow structures.

5.5. Potentially Surprising Behavior Of Variables
A point that is often not well understood is that normal and cache variables are two separate
things. It is possible to have a normal variable and a cache variable with the same name, but
holding different values. In such cases, CMake will retrieve the normal variable’s value rather than
the cache variable when using ${myVar}. Put another way, normal variables take precedence over
cache variables. The exception to this is that when setting a cache variable’s value, any normal
variable of the same name is removed from the current scope in the following situations (subject to
policy settings discussed further below):

• The cache variable did not exist before the call to set() or option().

• The cache variable existed before the call to set() or option(), but it did not have a defined type
(see Section 5.6.1, “Setting Cache Values On The Command Line” for how this can occur).

• The FORCE or INTERNAL option was used in the call to set().

In the first two cases above, this means it is possible to get different behavior between the first and
subsequent CMake runs. In the first run, the cache variable won’t exist or won’t have a defined
type, but in subsequent runs it will. Therefore, in the first run, a normal variable would be hidden,
but in subsequent runs, it would not. An example should help illustrate the problem:

set(myVar foo)                  # Local myVar
set(result ${myVar})            # result = foo
set(myVar bar CACHE STRING "")  # Cache myVar

set(result ${myVar})            # First run:       result = bar
                                # Subsequent runs: result = foo

set(myVar fred)
set(result ${myVar})            # result = fred

Chapter 7, Using Subdirectories and Chapter 8, Functions And Macros contain further discussions of
how a variable’s scope can influence the value that ${myVar} would return.

In CMake 3.13, the behavior of option() was changed such that if a normal variable already exists
with the same name, the command does nothing. This newer behavior is typically what developers
intuitively expect. A similar change was made for the set() command in CMake 3.21, but note the
following differences in the new behavior for both commands:

• For set(), the cache variable is still set if it didn’t exist previously, but for option() it is not.

• If INTERNAL or FORCE is used with set(), the cache variable will always be set or updated.
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Developers should be mindful of these inconsistencies and the different CMake versions that
provide the new behaviors. Policies CMP0077 and CMP0126 control the actual behavior (see Chapter 12,
Policies for an understanding of how these can be manipulated).

The interaction between cache and non-cache variables can also lead to other potentially
unexpected behavior. Consider the following three commands:

unset(foo)
set(foo)
set(foo "")

One might be tempted to think that the evaluation of ${foo} would always give an empty string after
any of these three cases, but only the last is guaranteed to do so. Both unset(foo) and set(foo)
remove a non-cache variable from the current scope. If there is also a cache variable called foo, that
cache variable is left alone and ${foo} would provide the value of that cache variable. In this sense,
unset(foo) and set(foo) both effectively unmask the foo cache variable, if one exists. On the other
hand, set(foo "") doesn’t remove a non-cache variable, it explicitly sets it to an empty value, so
${foo} will always then evaluate to an empty string regardless of whether there is also a cache
variable called foo. Therefore, setting a variable to an empty string rather than removing it is likely
to be the more robust way of achieving the developer’s intention.

For those rare situations where a project may need to get the value of a cache variable and ignore
any non-cache variable of the same name, CMake 3.13 added documentation for the $CACHE{someVar}
form. Projects should not generally make use of this other than for temporary debugging, since it
breaks the long-established expectation that normal variables will override values set in the cache.

5.6. Manipulating Cache Variables
Using set() and option(), a project can build up a useful set of customization points for its
developers. Different parts of the build can be turned on or off, paths to external packages can be
set, flags for compilers and linkers can be modified and so on. Later chapters cover these and other
uses of cache variables, but first, the ways to manipulate such variables need to be understood.
There are two primary ways developers can do this, either from the cmake command line or using a
GUI tool.

5.6.1. Setting Cache Values On The Command Line

CMake allows cache variables to be manipulated directly via command line options passed to cmake.
The primary workhorse is the -D option, which is used to define the value of a cache variable.

cmake -D myVar:type=someValue ...

someValue will replace any previous value of the myVar cache variable. The behavior is essentially as
though the variable was being assigned using the set() command with the CACHE and FORCE options.
The command line option only needs to be given once, since it is stored in the cache for subsequent
runs and therefore does not need to be provided every time cmake is run. Multiple -D options can be
provided to set more than one variable at a time on the cmake command line.
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When defining cache variables this way, they do not have to be set within the CMakeLists.txt file (i.e.
no corresponding set() command is required). Cache variables defined on the command line have
an empty docstring. The type can also be omitted, in which case the variable will have an undefined
type, or more accurately, it is given a special type that is similar to INTERNAL but which CMake
interprets to mean undefined. The following shows various examples of setting cache variables via
the command line.

cmake -D foo:BOOL=ON ...
cmake -D "bar:STRING=This contains spaces" ...
cmake -D hideMe=mysteryValue ...
cmake -D helpers:FILEPATH=subdir/helpers.txt ...
cmake -D helpDir:PATH=/opt/helpThings ...

Note how the entire value given with the -D option should be quoted if setting a cache variable with
a value containing spaces.

There is a special case for handling values initially declared without a type on the cmake command
line. If the project’s CMakeLists.txt file then tries to set the same cache variable and specifies a type
of FILEPATH or PATH, then if the value of that cache variable is a relative path, CMake will treat it as
being relative to the directory from which cmake was invoked and automatically convert it to an
absolute path. This is not particularly robust, since cmake could be invoked from any directory, not
just the build directory. Therefore, developers are advised to always include a type if specifying a
variable on the cmake command line for a variable that represents some kind of path. It is a good
habit to always specify the type of the variable on the command line in general anyway so that it is
likely to be shown in GUI applications in the most appropriate form. It will also prevent one of the
scenarios mentioned earlier in Section 5.5, “Potentially Surprising Behavior Of Variables”.

It is also possible to remove variables from the cache with the -U option, which can be repeated as
necessary to remove more than one variable. Note that the -U option supports * and ? wildcards,
but care needs to be taken to avoid deleting more than was intended and leaving the cache in an
unbuildable state. In general, it is recommended to only remove specific entries without wildcards
unless it is absolutely certain the wildcards used are safe.

cmake -U 'help*' -U foo ...

5.6.2. CMake GUI Tools

Setting cache variables via the command line is an essential part of automated build scripts and
anything else driving CMake via the cmake command. For everyday development, however, the GUI
tools provided by CMake often present a better user experience. CMake provides two equivalent
GUI tools, cmake-gui and ccmake, which allow developers to manipulate cache variables interactively.
cmake-gui is a fully functional GUI application supported on all major desktop platforms, whereas
ccmake uses a curses-based interface which can be used in text-only environments such as over a ssh
connection. cmake-gui is included in the official CMake release packages for all platforms, ccmake is
included for all platforms except Windows. If using system-provided packages on Linux rather than
the official releases, note that many distributions split cmake-gui out into its own package.
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The cmake-gui user interface is shown in the figure below. The top section allows the project’s source
and build directories to be defined. The middle section is where the cache variables can be viewed
and edited. At the bottom are the Configure and Generate buttons, followed by a log area that shows
the output from those operations.

The source directory must be set to the directory containing the CMakeLists.txt file at the top of the
project’s source tree. The build directory is where CMake will generate all build output
(recommended directory layouts were discussed in Chapter 2, Setting Up A Project). For new
projects, both must be set, but for existing projects, setting the build directory will also update the
source directory, since the source location is stored in the build directory’s cache.

CMake’s two-stage setup process was introduced in Section 2.3, “Generating Project Files”. In the
first stage, the CMakeLists.txt file is read and a representation of the project is built up in memory.
This is called the configure stage. If the configure stage is successful, the generate stage can then be
executed to create the build tool’s project files in the build directory. When running cmake from the
command line, both stages are executed automatically, but in the GUI application, they are
triggered separately with the Configure and Generate buttons.

Each time the configure step is initiated, the cache variables shown in the middle of the UI are
updated. Any variables which were newly added or which changed value from the previous run
will be highlighted in red (when a project is first loaded, all variables are shown highlighted). Good
practice is to re-run the configure stage until there are no changes. This ensures robust behavior for
more complex projects where enabling some options may add further options which could require
another configure pass.

31



Once all cache variables are shown without red highlighting, the generate stage can be run. The
example in the previous screenshot shows typical log output after the configure stage has been run
and no changes were made to any of the cache variables.

Hovering the mouse over any cache variable will show a tooltip containing the docstring for that
variable. New cache variables can also be added with the Add Entry button, which is equivalent to
issuing a set() command with an empty docstring. Cache variables can be removed with the Remove
Entry button, although CMake will most likely recreate that variable on the next run.

Clicking on a variable allows its value to be edited in a widget tailored to the variable type.
Booleans are shown as a checkbox, files and paths have a browse filesystem button and strings are
usually presented as a text line edit. As a special case, cache variables of type STRING can be given a
set of values to show in a combobox in CMake GUI instead of showing a simple text entry widget.
This is achieved by setting a cache variable’s STRINGS property (covered in detail in Section 9.6,
“Cache Variable Properties”, but shown here for convenience):

set(TRAFFIC_LIGHT Green CACHE STRING "Status of something")
set_property(CACHE TRAFFIC_LIGHT PROPERTY STRINGS Red Orange Green)

In the above, the TRAFFIC_LIGHT cache variable will initially have the value Green. When the user
attempts to modify TRAFFIC_LIGHT in cmake-gui, they will be given a combobox containing the three
values Red, Orange and Green instead of a simple line edit widget which would otherwise have
allowed them to enter any arbitrary text. Note that setting the STRINGS property on the variable
doesn’t prevent that variable from having other values assigned to it, it only affects the widget used
by cmake-gui when editing it. The variable can still be given other values via set() commands in the
CMakeLists.txt file or by other means such as manually editing the CMakeCache.txt file.

Cache variables can also have a property marking them as advanced or not. This too only affects
the way the variable is displayed in cmake-gui, it does not in any way affect how CMake uses the
variable during processing. By default, cmake-gui only shows non-advanced variables, which
typically presents just the main variables a developer would be interested in viewing or modifying.
Enabling the Advanced option shows all cache variables except those marked INTERNAL (the only way
to see INTERNAL variables is to edit the CMakeCache.txt file with a text editor, since they are not
intended to be manipulated directly by developers). Variables can be marked as advanced with the
mark_as_advanced() command within the CMakeLists.txt file:

mark_as_advanced([CLEAR|FORCE] var1 [var2...])

The CLEAR keyword ensures the variables are not marked as advanced, while the FORCE keyword
ensures the variables are marked advanced. Without either keyword, the variables will only be
marked as advanced if they don’t already have an advanced/non-advanced state set.

Selecting the Grouped option can make viewing advanced variables easier by grouping variables
together based on the start of the variable name up to the first underscore. Another way to filter the
list of variables shown is to enter text in the Search area, which results in only showing variables
with the specified text in their name or value.
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When the configure stage is run for the first time on a new project, the developer is presented with
a dialog similar to that shown in the next screenshot:

This dialog is where the CMake generator and toolchain are specified. The choice of generator is
usually up to the developer’s personal preference, with available options provided in the
combobox. Depending on the project, the choice of generator may be more restricted than what the
combobox options allow, such as if the project relies on generator-specific functionality. A common
example of this is a project that requires the Xcode generator due to the Apple platform’s unique
features, such as code signing and iOS/tvOS/watchOS support. Once a generator has been selected
for a project, it cannot be changed without deleting the cache and starting again, which can be done
from the File menu if required.

For the toolchain options presented, each one requires progressively more information from the
developer. Using the default native compilers is the usual choice for ordinary desktop development
and selecting that option requires no further details. If more control is required, developers can
instead override the native compilers, with the paths to the compilers being given in a follow-up
dialog. If a separate toolchain file is available, that can be used to customize not just the compilers
but also the target environment, compiler flags and various other things. Using a toolchain file is
typical when cross-compiling, which is covered in detail in Chapter 23, Toolchains And Cross
Compiling. Lastly, for ultimate control, developers can specify the full set of options for cross-
compiling, but this is not recommended for normal use. A toolchain file can provide the same
information but has the advantage that it can be re-used as needed.

The ccmake tool offers most of the same functionality as the cmake-gui application, but it does so
through a text-based interface:
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Rather than selecting the source and build directories like with cmake-gui, the source or build
directory has to be specified on the ccmake command line, just like for the cmake command.

A minor drawback of the ccmake interface is that there is no ability to filter the variables shown. The
methods for editing a variable are also not as rich as with cmake-gui. Nevertheless, the ccmake tool is
a useful alternative when the full cmake-gui application is not practical or not available, such as over
a terminal connection that cannot support UI forwarding.

5.7. Printing Variable Values
As projects get more complicated or when investigating unexpected behavior, it can be useful to
print out diagnostic messages and variable values during a CMake run. This is generally achieved
using the message() command, which is covered in detail in Chapter 13, Debugging And Diagnostics.
For now, it is enough to know that in its simplest form, all the message() command does is print its
arguments to CMake’s output. It adds no separator between arguments if more than one argument
is given and a newline is automatically appended to the end of the message. Newlines can also be
explicitly included using the common \n notation. A variable’s value can be included in the message
by using the usual ${myVar} notation.

set(myVar HiThere)
message("The value of myVar = ${myVar}\nAnd this "
        "appears on the next line")

This will give the following output:

The value of myVar = HiThere
And this appears on the next line

5.8. String Handling
As project complexity grows, in many cases so too does the need to implement more involved logic
for how variables are managed. A core tool CMake provides for this is the string() command, which
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provides a wide range of useful string handling functionality. This command enables projects to
perform find and replace operations, regular expression matching, upper/lower case
transformations, strip whitespace and other common tasks. Some of the more frequently used
functionality is presented below, but the CMake reference documentation should be considered the
canonical source of all available operations and their behavior.

The first argument to string() defines the operation to be performed and subsequent arguments
depend on the operation being requested. These arguments will generally require at least one input
string and since CMake commands cannot return a value, an output variable for the result of the
operation. In the material below, this output variable will generally be named outVar.

string(FIND inputString subString outVar [REVERSE])

FIND searches for subString in inputString and stores the index of the found subString in outVar (the
first character is index 0). The first occurrence is found unless REVERSE is specified, in which case the
last occurrence will be found instead. If subString does not appear in inputString, then outVar will be
given the value -1.

string(FIND abcdefabcdef def fwdIndex)
string(FIND abcdefabcdef def revIndex REVERSE)

message("fwdIndex = ${fwdIndex}\n"
        "revIndex = ${revIndex}")

This results in the following output:

fwdIndex = 3
revIndex = 9

Replacing a simple substring follows a similar pattern:

string(REPLACE matchString replaceWith outVar input...)

The REPLACE operation will replace every occurrence of matchString in the input strings with
replaceWith and store the result in outVar. When multiple input strings are given, they are joined
together without any separator between each string before searching for substitutions. This can
sometimes lead to unexpected matches and typically developers would provide just the one input
string in most situations.

Regular expressions are also well supported by the REGEX operation, with a few different variants
available as determined by the second argument:

string(REGEX MATCH    regex outVar input...)
string(REGEX MATCHALL regex outVar input...)
string(REGEX REPLACE  regex replaceWith outVar input...)
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The regular expression to match, regex, can make use of typical basic regular expression syntax (see
the CMake reference documentation for the full specification), although some common features
such as negation are not supported. The input strings are concatenated before substitution. The
MATCH operation finds just the first match and stores it in outVar. MATCHALL finds all matches and stores
them in outVar as a list. REPLACE will return the entire input string with each match replaced by
replaceWith. Matches can be referred to in replaceWith using the usual notation \1, \2, etc., but note
that the backslashes themselves must be escaped unless bracket notation is used. The following
example and its output demonstrate the above points:

string(REGEX MATCH    "[ace]"           matchOne abcdefabcdef)
string(REGEX MATCHALL "[ace]"           matchAll abcdefabcdef)
string(REGEX REPLACE  "([de])" "X\\1Y"  replVar1 abc def abcdef)
string(REGEX REPLACE  "([de])" [[X\1Y]] replVar2 abcdefabcdef)

message("matchOne = ${matchOne}\n"
        "matchAll = ${matchAll}\n"
        "replVar1 = ${replVar1}\n"
        "replVar2 = ${replVar2}")

matchOne = a
matchAll = a;c;e;a;c;e
replVar1 = abcXdYXeYfabcXdYXeYf
replVar2 = abcXdYXeYfabcXdYXeYf

Extracting a substring is also possible:

string(SUBSTRING input index length outVar)

The index is an integer defining the start of the substring to extract from input. Up to length
characters will be extracted, or if length is -1, the returned substring will contain all characters up
to the end of the input string. Note that in CMake 3.1 and earlier, an error was reported if length
pointed past the end of the string.

String length can be trivially obtained and strings can easily be converted to upper or lower case. It
is also straightforward to strip whitespace from the start and end of a string. The syntax for these
operations all share the same form:

string(LENGTH  input outVar)
string(TOLOWER input outVar)
string(TOUPPER input outVar)
string(STRIP   input outVar)

In the case of LENGTH, for historical reasons the command counts bytes rather than characters. For
strings containing multi-byte characters, this means the reported length will be different to the
number of characters.
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CMake provides other operations, such as string comparison, hashing, timestamps, JSON handling
and more, but their use is less common in everyday CMake projects. The interested reader should
consult the CMake reference documentation for the string() command for full details.

5.9. Lists
Lists are used heavily in CMake. Ultimately, lists are just a single string with list items separated by
semicolons (with one exception, which is covered in Section 5.9.1, “Problems With Unbalanced
Square Brackets” further below). This can make it less convenient to manipulate individual list
items. CMake provides the list() command to facilitate such tasks. Like for the string() command,
list() expects the operation to perform as its first argument. The second argument is always the list
to operate on and it must be a variable (i.e. passing a raw list like a;b;c is not permitted).

The most basic list operations are counting the number of items and retrieving one or more items
from the list:

list(LENGTH listVar outVar)
list(GET    listVar index [index...] outVar)

Example usage:

set(myList a b c)        # Creates the list "a;b;c"

list(LENGTH myList len)
message("length  = ${len}")

list(GET myList 2 1 letters)
message("letters = ${letters}")

The output of the above example would be:

length  = 3
letters = c;b

Inserting, appending and prepending items is also a common task:

list(INSERT  listVar index item [item...])
list(APPEND  listVar item [item...])
list(PREPEND listVar item [item...])  # Requires CMake 3.15 or later

Unlike the LENGTH and GET cases, INSERT, APPEND and PREPEND act directly on the listVar and modify it
in-place, as demonstrated by the following example:

set(myList a b c)

list(INSERT myList 2 X Y Z)
message("myList (first)  = ${myList}")
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list(APPEND myList d e f)
message("myList (second) = ${myList}")

list(PREPEND myList P Q R)
message("myList (third)  = ${myList}")

Which gives the following output:

myList (first)  = a;b;X;Y;Z;c
myList (second) = a;b;X;Y;Z;c;d;e;f
myList (third)  = P;Q;R;a;b;X;Y;Z;c;d;e;f

Finding a particular item in the list follows the expected pattern:

list(FIND myList value outVar)

Example usage:

set(myList a b c d e)
list(FIND myList d index)
message("index = ${index}")

Resultant output:

index = 3

Three operations are provided for removing items, all of which modify the list directly:

list(REMOVE_ITEM       myList value [value...])
list(REMOVE_AT         myList index [index...])
list(REMOVE_DUPLICATES myList)

The REMOVE_ITEM operation can be used to remove all instances of one or more items from a list. If
the item is not in the list, it is not an error. REMOVE_AT on the other hand, specifies one or more
indices to remove and CMake will halt with an error if any of the specified indices are past the end
of the list. REMOVE_DUPLICATES will ensure the list contains only unique items.

CMake 3.15 added support for popping items from the front or back of a list and optionally storing
the popped items:

# Requires CMake 3.15 or later
list(POP_FRONT myList [outVar1 [outVar2...]])
list(POP_BACK myList [outVar1 [outVar2...]])
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When no outVar is given, a single item is popped from the front or back and discarded. If one or
more outVar names are given, popped items will be stored in those variables, with the number of
items popped equal to the number of variable names provided.

List items can also be reordered with REVERSE or SORT operations:

list(REVERSE myList)
list(SORT    myList [COMPARE method] [CASE case] [ORDER order])

All of the optional keywords for list(SORT) are only available with CMake 3.13 or later. If the COMPARE
option is present, the method must be one of the following:

STRING

Sort alphabetically. This is the default behavior when the COMPARE option is not given.

FILE_BASENAME

Sort by assuming that each item is a path and that items should be ordered according to the
basename part of the path only.

NATURAL

Similar to STRING, except contiguous digits within an item are sorted numerically. This is most
useful for sorting strings that contain embedded version numbers. The sorting rules are the
same as for the strverscmp() C function (a GNU extension). This sorting method is only available
with CMake 3.18 or later.

The CASE keyword requires SENSITIVE or INSENSITIVE for the case, while the ORDER keyword requires
either ASCENDING or DESCENDING for the order.

For all list operations taking an index, a negative index indicates that counting starts from the end
of the list. When used this way, the last item in the list has index -1, the second last -2, and so on.

The above describes most of the available list() sub-commands. Those mentioned are all
supported since at least CMake 3.0 unless otherwise noted, so projects should generally be able to
expect them to be available. For the full list of supported sub-commands, the reader should consult
the CMake documentation.

5.9.1. Problems With Unbalanced Square Brackets

There is one exception to the way CMake usually treats semicolons as list separators. For historical
reasons, if a list item contains an opening square bracket [, it must also have a matching closing
square bracket ]. CMake will consider any semicolon between these square brackets to be part of
the list item instead of as a list separator. If one tries to construct a list with unbalanced square
brackets, the list won’t be interpreted as expected. The following demonstrates the behavior:

set(noBrackets   "a_a" "b_b")
set(withBrackets "a[a" "b]b")

list(LENGTH noBrackets   lenNo)
list(LENGTH withBrackets lenWith)
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list(GET noBrackets   0 firstNo)
list(GET withBrackets 0 firstWith)

message("No brackets:   Length=${lenNo} --> First_element=${firstNo}")
message("With brackets: Length=${lenWith} --> First_element=${firstWith}")

The output from the above would be:

No brackets:   Length=2 --> First_element=a_a
With brackets: Length=1 --> First_element=a[a;b]b

Discussion in Section 8.8.3, “Special Cases For Argument Expansion” covers further aspects of this
peculiarity.

5.10. Math
One other common form of variable manipulation is math computation. CMake provides the math()
command for performing basic mathematical evaluation:

math(EXPR outVar mathExpr [OUTPUT_FORMAT format])

The first argument must be the keyword EXPR, while mathExpr defines the expression to be evaluated
and the result will be stored in outVar. The expression may use any of the following operators which
all have the same meaning as they would in C code: + - * / % | & ^ ~ << >>. Parentheses are also
supported and have their usual mathematical meaning. Variables can be referenced in the mathExpr
with the usual ${myVar} notation.

If using CMake 3.13 or later, the OUTPUT_FORMAT keyword can be given to control how the result is
stored in outVar. The format should be either DECIMAL, which is the default behavior, or HEXADECIMAL.

set(x 3)
set(y 7)
math(EXPR zDec "(${x}+${y}) * 2")
message("decimal = ${zDec}")

# Requires CMake 3.13 or later for HEXADECIMAL
math(EXPR zHex "(${x}+${y}) * 2" OUTPUT_FORMAT HEXADECIMAL)
message("hexadecimal = ${zHex}")

The above produces the following output:

decimal = 20
hexadecimal = 0x14
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5.11. Recommended Practices
Where the development environment allows it, the CMake GUI tool is a useful way to quickly and
easily understand the build options for a project and to modify them as needed during
development. A little bit of time spent getting familiar with it will simplify working with more
complex projects later. It also gives developers a good base to work from should they need to
experiment with things like compiler settings, since these are easily found and modified within the
GUI environment.

Prefer to provide cache variables for controlling whether to enable optional parts of the build
instead of encoding the logic in build scripts outside of CMake. This makes it trivial to turn them on
and off in the CMake GUI and other tools which understand how to work with the CMake cache (a
growing number of IDE environments are acquiring this capability).

Try to avoid relying on environment variables being defined, apart from perhaps the ubiquitous
PATH or similar operating system level variables. The build should be predictable, reliable and easy
to set up, but if it relies on environment variables being set for things to work correctly, this can be
a point of frustration for new developers as they wrestle to get their build environment set up.
Furthermore, the environment at the time CMake is run can change compared to when the build
itself is invoked. Therefore, prefer to pass information directly to CMake through cache variables
instead wherever possible.

Try to establish a variable naming convention early. For cache variables, consider grouping related
variables under a common prefix followed by an underscore to take advantage of how CMake GUI
groups variables based on the same prefix automatically. Also consider that the project may one
day become a sub-part of some larger project, so a name beginning with the project name or
something closely associated with the project may be desirable.

Try to avoid defining non-cache variables in the project which have the same name as cache
variables. The interaction between the two types of variables can be unexpected for developers
new to CMake. Later chapters also highlight other common errors and misuses of regular variables
that share the same name as cache variables.

CMake provides a large number of pre-defined variables that provide details about the system or
influence certain aspects of CMake’s behavior. Some of these variables are heavily used by projects,
such as those that are only defined when building for a particular platform (WIN32, APPLE, UNIX, etc.).
It is therefore recommended for developers to occasionally make a quick scan through the CMake
documentation page listing the pre-defined variables to help become familiar with what is
available.
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Chapter 6. Flow Control
A common need for most CMake projects is to apply some steps only in certain circumstances.
Projects may want to use certain compiler flags only with a particular compiler or when building
for a particular platform, for example. In other cases, the project may need to iterate over a set of
values or to keep repeating some set of steps until a certain condition is met. These examples of
flow control are well-supported by CMake in ways which should be familiar to most software
developers. The ubiquitous if() command provides the expected if-then-else behavior and looping
is provided through the foreach() and while() commands. All three commands provide the
traditional behavior as implemented by most programming languages, but they also have added
features specific to CMake.

6.1. The if() Command
The modern form of the if() command is as follows (multiple elseif() clauses can be provided):

if(expression1)
    # commands ...
elseif(expression2)
    # commands ...
else()
    # commands ...
endif()

Very early versions of CMake required expression1 to be repeated as an argument to the else() and
endif() clauses, but this has not been required since CMake 2.8.0. While it is still not unusual to
encounter projects and example code using that older form, it is discouraged for new projects since
it can be somewhat confusing to read. New projects should leave the else() and endif() arguments
empty, as shown above.

The expressions in if() and elseif() commands can take a variety of different forms. CMake offers
the traditional boolean logic as well as various other conditions such as file system tests, version
comparison and testing for the existence of things.

6.1.1. Basic Expressions

The most basic of all expressions is a single constant value:

if(value)

CMake’s logic for what it considers true and false is a little more involved than most programming
languages. For a single unquoted value, the rules are as follows:

• If value is a quoted or unquoted constant with value ON, YES, TRUE or Y, it is treated as true. The
test is case-insensitive.

• If value is a quoted or unquoted constant with value OFF, NO, FALSE, N, IGNORE, NOTFOUND, an empty
string or a string that ends in -NOTFOUND, it is treated as false. Again, the test is case-insensitive.
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• If value is a (possibly floating-point) number, it will be converted to a bool following usual C
rules, although values other than 0 or 1 are not often used in this context.

• If none of the above cases apply, it will be treated as a variable name (or possibly as a string)
and evaluated further as described below.

In the following examples, only the if(…) part of the command is shown for illustration purposes,
the corresponding body and endif() is omitted:

# Examples of quoted and unquoted constants
if(YES)
if("True")
if(0)
if(TRUE)

# These are also treated as unquoted constants because the
# variable evaluation occurs before if() sees the values
set(A YES)
set(B 0)
if(${A})  # Evaluates to true
if(${B})  # Evaluates to false

# Does not match any of the true or false constants, so proceed
# to testing as a variable name in the fall-through case below
if(someLetters)

# Quoted value that doesn't match any of the true or false constants,
# so again fall through to testing as a variable name or string
if("someLetters")

The CMake documentation refers to the fall through case as the following form:

if(<variable|string>)

What this means in practice is the if-expression is either:

• An unquoted name of a (possibly undefined) variable.

• A quoted string.

When an unquoted variable name is used, the variable’s value is compared against the false
constants. If none of those match the value, the result of the expression is true. An undefined
variable will evaluate to an empty string, which matches one of the false constants and will
therefore yield a result of false.

# Common pattern, often used with variables defined
# by commands such as option(enableSomething "...")
if(enableSomething)
    # ...
endif()
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Note that environment variables do not count as variables in this discussion. A statement like
if(ENV{some_var}) will always evaluate to false, regardless of whether an environment variable
called some_var exists or not.

When the if-expression is a quoted string, the behavior is more involved:

• A quoted string that doesn’t match any of the defined true constants always evaluates to false in
CMake 3.1 or later, regardless of the string’s value (but this can be overridden with policy
setting CMP0054, see Chapter 12, Policies).

• Before CMake 3.1, if the value of the string matched the name of an existing variable, then the
quoted string is effectively replaced by that variable name (unquoted) and the test is then
repeated.

Both of the above can be a surprise to developers, but at least the CMake 3.1 behavior is always
predictable. The pre-3.1 behavior would occasionally lead to unexpected string substitutions when
the string value happened to match a variable name, possibly one defined somewhere quite far
from that part of the project. The potential confusion around quoted values means it is generally
advisable to avoid using quoted arguments with the if(something) form. There are usually better
comparison expressions that handle strings more robustly, which are covered in Section 6.1.3,
“Comparison Tests” further below.

6.1.2. Logic Operators

CMake supports the usual AND, OR and NOT logical operators, as well as parentheses to control order
of precedence.

# Logical operators
if(NOT expression)
if(expression1 AND expression2)
if(expression1 OR expression2)

# Example with parentheses
if(NOT (expression1 AND (expression2 OR expression3)))

Following usual conventions, expressions inside parentheses are evaluated first, beginning with the
innermost parentheses.

6.1.3. Comparison Tests

CMake separates comparison tests into distinct categories: numeric, string, version numbers and
path, but the syntax forms all follow the same pattern:

if(value1 OPERATOR value2)

The two operands, value1 and value2, can be either variable names or (possibly quoted) values. If a
value is the same as the name of a defined variable, it will be treated as a variable. Otherwise, it is
treated as a string or value directly. Once again though, quoted values have ambiguous behavior
similar to that in basic unary expressions. Prior to CMake 3.1, a quoted string with a value that

44



matched a variable name would be replaced by that variable’s value. The behavior of CMake 3.1
and later uses the quoted value without substitution, which is what developers intuitively expect.

All of the comparison categories support the same set of operations, but the OPERATOR names are
different for each category. The following table summarizes the supported operators:

Numeric String Version numbers Path

LESS STRLESS VERSION_LESS

GREATER STRGREATER VERSION_GREATER

EQUAL STREQUAL VERSION_EQUAL PATH_EQUAL2

LESS_EQUAL1 STRLESS_EQUAL1 VERSION_LESS_EQUAL1

GREATER_EQUAL1 STRGREATER_EQUAL1 VERSION_GREATER_EQUAL1

1 Only available with CMake 3.7 and later.
2 Only available with CMake 3.24 and later.

Numeric comparison works as one would expect, comparing the value of the left against the right.
Note, however, that CMake does not typically raise an error if either operand is not a number and
its behavior does not fully conform to the official documentation when values contain more than
just digits. Depending on the mix of digits and non-digits, the result of the expression may be true
or false.

# Valid numeric expressions, all evaluating as true
if(2 GREATER 1)
if("23" EQUAL 23)
set(val 42)
if(${val} EQUAL 42)
if("${val}" EQUAL 42)

# Invalid expression that evaluates as true with at
# least some CMake versions. Do not rely on this behavior.
if("23a" EQUAL 23)

Version number comparisons are somewhat like an enhanced form of numerical comparisons.
Version numbers are assumed to be in the form major[.minor[.patch[.tweak]]] where each
component is expected to be a non-negative integer. When comparing two version numbers, the
major part is compared first. Only if the major components are equal will the minor parts be
compared (if present) and so on. A missing component is treated as zero. In all of the following
examples, the expression evaluates to true:

if(1.2   VERSION_EQUAL   1.2.0)
if(1.2   VERSION_LESS    1.2.3)
if(1.2.3 VERSION_GREATER 1.2  )
if(2.0.1 VERSION_GREATER 1.9.7)
if(1.8.2 VERSION_LESS    2    )
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The version number comparisons have the same robustness caveats as numeric comparisons. Each
version component is expected to be an integer, but the comparison result is essentially undefined
if this restriction does not hold.

For strings, values are compared lexicographically. No assumptions are made about the contents of
the strings, but be mindful of the potential for the variable/string substitution situation described
earlier. String comparisons are one of the most common situations where such unexpected
substitutions occur.

The PATH_EQUAL operator is much like a special case of STREQUAL. The operands are assumed to be
paths in CMake’s native path form (i.e. forward slashes for directory separators). A key difference
for PATH_EQUAL is that it uses a component-wise comparison. Multiple consecutive directory
separators are collapsed to a single separator, which is the primary practical difference to STREQUAL.
The following example from the official CMake documentation demonstrates the difference:

# comparison is TRUE
if ("/a//b/c" PATH_EQUAL "/a/b/c")
   ...
endif()

# comparison is FALSE
if ("/a//b/c" STREQUAL "/a/b/c")
   ...
endif()

In addition to the operator forms above, a string can also be tested against a regular expression:

if(value MATCHES regex)

The value again follows the variable-or-string rules defined above and is compared against the regex
regular expression. If the value matches, the expression evaluates to true. While the CMake
documentation doesn’t define the supported regular expression syntax for if() commands, it does
define it elsewhere for other commands (e.g. see the string() command documentation).
Essentially, CMake supports basic regular expression syntax only.

Parentheses can be used to capture parts of the matched value. The command will set variables
with names of the form CMAKE_MATCH_<n> where <n> is the group to match. The entire matched string
is stored in group 0.

if("Hi from ${who}" MATCHES "Hi from (Fred|Barney).*")
    message("${CMAKE_MATCH_1} says hello")
endif()

6.1.4. File System Tests

CMake also includes a set of tests which can be used to query the file system:
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if(EXISTS pathToFileOrDir)
if(IS_DIRECTORY pathToDir)
if(IS_SYMLINK fileName)
if(IS_ABSOLUTE path)
if(file1 IS_NEWER_THAN file2)

Unlike most other if() expressions, none of the above operators perform any variable/string
substitution without ${}, regardless of any quoting.

Each of the above operators should be self-explanatory, except for IS_NEWER_THAN. Unfortunately,
IS_NEWER_THAN is an inaccurate name for what that operator does. It also returns true if both files
have the same timestamp, not just if the timestamp of file1 is newer than that of file2. This
becomes especially important on file systems that only have timestamps with a resolution of one
second, such as the HFS+ file system on macOS 10.12 and earlier. On such systems, it is very
common to encounter scenarios where files have the same timestamp, even when those files are
created by separate commands. Another less intuitive behavior is that it also returns true if either
file is missing. Furthermore, if either file is not specified as an absolute path, the behavior is
undefined. It will often therefore be necessary to use IS_NEWER_THAN in a negated way to obtain the
desired condition.

Consider a scenario where secondFile is generated from firstFile. If firstFile is updated or
secondFile is missing, then secondFile needs to be recreated. If firstFile does not exist, it should be a
fatal error. Such logic would need to be expressed like so:

set(firstFile  "/full/path/to/somewhere")
set(secondFile "/full/path/to/another/file")

if(NOT EXISTS ${firstFile})
    message(FATAL_ERROR "${firstFile} is missing")
elseif(NOT EXISTS ${secondFile} OR
       NOT ${secondFile} IS_NEWER_THAN ${firstFile})
    # ... commands to recreate secondFile
endif()

One might naively think that the condition could be expressed like this instead:

# WARNING: Very likely to be wrong
if(${firstFile} IS_NEWER_THAN ${secondFile})
    # ... commands to recreate secondFile
endif()

Although the words might express the desired condition, it doesn’t do what it appears to because it
also returns true if the two files have the same timestamp. If the operation to recreate secondFile is
fast and the file system only has second timestamp resolution, it is very likely that secondFile would
be recreated every time CMake is run. If build steps depend on secondFile, the build would also end
up rebuilding those things after every CMake run.
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6.1.5. Existence Tests

The last category of if() expressions support testing whether various CMake entities exist. They can
be particularly useful in larger, more complex projects where some parts might or might not be
present or be enabled.

if(DEFINED name)
if(COMMAND name)
if(POLICY name)
if(TARGET name)
if(TEST name)              # Available since CMake 3.4
if(value IN_LIST listVar)  # Available since CMake 3.3

All but the last of the above will return true if an entity of the specified name exists at the point
where the if() command is issued.

DEFINED

Returns true if a variable of the specified name exists. The value of the variable is irrelevant, only
its existence is tested. The variable can be a regular CMake variable or it can be a cache variable.
From CMake 3.14, it is possible to check for a cache variable only using the CACHE{name} form. All
CMake versions also support testing for the existence of an environment variable using the
ENV{name} form, even though this was only officially documented as supported from CMake 3.13.

if(DEFINED SOMEVAR)         # Checks for a CMake variable (regular or cache)
if(DEFINED CACHE{SOMEVAR})  # Checks for a CMake cache variable
if(DEFINED ENV{SOMEVAR})    # Checks for an environment variable

COMMAND

Tests whether a CMake command, function or macro with the specified name exists. This can be
useful for checking whether something is defined before trying to use it. For CMake-provided
commands, prefer to test the CMake version instead, but for project-supplied functions and
macros (see Chapter 8, Functions And Macros), this can be an appropriate check.

POLICY

Tests whether a particular policy is known to CMake. Policy names are usually of the form
CMPxxxx, where xxxx is a four-digit number. See Chapter 12, Policies for details on this topic.

TARGET

Returns true if a CMake target of the specified name has been defined by one of the commands
add_executable(), add_library() or add_custom_target(). The target could have been defined in any
directory, as long as it is known at the point where the if() test is performed. This test is
particularly useful in complex project hierarchies that pull in other external projects and where
those projects may share common dependent subprojects (i.e. this sort of if() test can be used to
check if a target is already defined before trying to create it).

TEST

Returns true if a CMake test with the specified name has been previously defined by the
add_test() command (covered in detail in Chapter 26, Testing).
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The IN_LIST form returns true if listVar contains the specified value, where value follows the usual
variable-or-string rules. listVar must be the name of a list variable, it cannot be a string.

# Correct
set(things A B C)
if("B" IN_LIST things)
    ...
endif()

# WRONG: Right hand side must be the name of a variable
if("B" IN_LIST "A;B;C")
    ...
endif()

Also note that IN_LIST can only be used if policy CMP0057 is NEW (see Chapter 12, Policies).

6.1.6. Common Examples

A few uses of if() are so common, they deserve special mention. Many of these rely on predefined
CMake variables for their logic, especially variables relating to the compiler and target platform.
Unfortunately, it is common to see such expressions based on the wrong variables. For example,
consider a project which has two C++ source files, one for building with Visual Studio compilers or
those compatible with them (e.g. Intel) and another for building with all other compilers. Such logic
is frequently implemented like so:

if(WIN32)
    set(platformImpl source_win.cpp)
else()
    set(platformImpl source_generic.cpp)
endif()

While this will likely work for the majority of projects, it doesn’t actually express the right
constraint. Consider, for example, a project built on Windows but using the MinGW compiler. For
such cases, source_generic.cpp may be the more appropriate source file. The above could be more
accurately implemented as follows:

if(MSVC)
    set(platformImpl source_msvc.cpp)
else()
    set(platformImpl source_generic.cpp)
endif()

Another example involves conditional behavior based on the CMake generator being used. In
particular, CMake offers additional features when building with the Xcode generator which no
other generators support. Projects sometimes make the assumption that building for macOS means
the Xcode generator will be used, but this doesn’t have to be the case (and often isn’t). The following
incorrect logic is sometimes used:
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if(APPLE)
    # Some Xcode-specific settings here...
else()
    # Things for other platforms here...
endif()

Again, this may seem to do the right thing, but if a developer tries to use a different generator (e.g.
Ninja or Unix Makefiles) on macOS, the logic fails. Testing the platform with the expression APPLE
doesn’t express the right condition, the CMake generator should be tested instead:

if(CMAKE_GENERATOR STREQUAL "Xcode")
    # Some Xcode-specific settings here...
else()
    # Things for other CMake generators here...
endif()

The above examples are both cases of testing the platform instead of the entity the constraint
actually relates to. This is understandable, since the platform is one of the simplest things to
understand and test, but using it instead of the more accurate constraint can unnecessarily limit the
generator choices available to developers, or it may result in the wrong behavior entirely.

Another common example, this time used appropriately, is the conditional inclusion of a target
based on whether or not a particular CMake option has been set.

option(BUILD_MYLIB "Enable building the MyLib target")
if(BUILD_MYLIB)
    add_library(MyLib src1.cpp src2.cpp)
endif()

More complex projects often use the above pattern to conditionally include subdirectories or
perform a variety of other tasks based on a CMake option or cache variable. Developers can then
turn that option on/off or set the variable to non-default values without having to edit the
CMakeLists.txt file directly. This is especially useful for scripted builds driven by continuous
integration systems, etc. which may want to enable or disable certain parts of the build.

6.2. Looping
Another common need in many CMake projects is to perform some action on a list of items or for a
range of values. Alternatively, some action may need to be performed repeatedly until a particular
condition is met. These needs are well covered by CMake, offering the traditional behavior with
some additions to make working with CMake features a little easier.

6.2.1. foreach()

CMake provides the foreach() command to enable projects to iterate over a set of items or values.
There are a few different forms of foreach(), the most basic of which is:
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foreach(loopVar arg1 arg2 ...)
    # ...
endforeach()

In the above form, for each argN value, loopVar is set to that argument and the loop body is executed.
No variable/string test is performed, the arguments are used exactly as the values are specified.
Rather than listing out each item explicitly, the arguments can also be specified by one or more list
variables using the more general form of the command:

foreach(loopVar IN [LISTS listVar1 ...] [ITEMS item1 ...])
    # ...
endforeach()

In this more general form, individual arguments can still be specified using the ITEMS keyword, but
the LISTS keyword allows one or more list variables to be specified. Either ITEMS or LISTS (or both)
must be provided when using this more general form. When both are provided, the ITEMS must
appear after the LISTS. It is permitted for the listVarN list variables to hold an empty list. An
example should help clarify this more general form’s usage.

set(list1 A B)
set(list2)
set(foo WillNotBeShown)

foreach(loopVar IN LISTS list1 list2 ITEMS foo bar)
    message("Iteration for: ${loopVar}")
endforeach()

The output from the above would be:

Iteration for: A
Iteration for: B
Iteration for: foo
Iteration for: bar

CMake 3.17 added a more specialized form for looping over multiple lists at once:

foreach(loopVar... IN ZIP_LISTS listVar...)
    # ...
endforeach()

If only one loopVar is given, then the command will set variables of the form loopVar_N at each
iteration, where N corresponds to the listVarN variable. Numbering starts from 0. If there is one
loopVar for each listVar, then the command maps them one-to-one instead of creating loopVar_N
variables. The following example demonstrates the two cases:
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set(list0 A B)
set(list1 one two)

foreach(var0 var1 IN ZIP_LISTS list0 list1)
    message("Vars: ${var0} ${var1}")
endforeach()

foreach(var IN ZIP_LISTS list0 list1)
    message("Vars: ${var_0} ${var_1}")
endforeach()

Both foreach() loops will print the same output:

Vars: A one
Vars: B two

The lists to be "zipped" in this way do not have to be the same length. The associated iteration
variable will be undefined when iteration moves past the end of the shorter list. Taking the value of
an undefined variable results in an empty string. The next example demonstrates the behavior:

set(long  A B C)
set(short justOne)

foreach(varLong varShort IN ZIP_LISTS long short)
    message("Vars: ${varLong} ${varShort}")
endforeach()

Vars: A justOne
Vars: B
Vars: C

The foreach() command also supports the more C-like iteration over a range of numerical values:

foreach(loopVar RANGE start stop [step])

When using the RANGE form of foreach(), the loop is executed with loopVar set to each value in the
range start to stop (inclusive). If the step option is provided, then this value is added to the previous
one after each iteration and the loop stops when the result of that is greater than stop. The RANGE
form also accepts just one argument like so:

foreach(loopVar RANGE value)

This is equivalent to foreach(loopVar RANGE 0 value), which means the loop body will execute (value
+ 1) times. This is unfortunate, since the more intuitive expectation is probably that the loop body
executes value times. For this reason, it is likely to be clearer to avoid using this second RANGE form
and explicitly specify both the start and stop values instead.
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Similar to the situation for the if() and endif() commands, in very early versions of CMake (i.e.
prior to 2.8.0), all forms of the foreach() command required that the loopVar also be specified as an
argument to endforeach(). Again, this harms readability and offers little benefit, so specifying the
loopVar with endforeach() is discouraged for new projects.

6.2.2. while()

The other looping command offered by CMake is while():

while(condition)
    # ...
endwhile()

The condition is tested and if it evaluates to true (following the same rules as the expression in if()
statements), then the loop body is executed. This is repeated until condition evaluates to false or the
loop is exited early (see next section). Again, in CMake versions prior to 2.8.0, the condition had to
be repeated in the endwhile() command, but this is no longer necessary and is actively discouraged
for new projects.

6.2.3. Interrupting Loops

Both while() and foreach() loops support the ability to exit the loop early with break() or to skip to
the start of the next iteration with continue(). These commands behave just like their similarly
named C language counterparts and both operate only on the inner-most enclosing loop. The
following example illustrates the behavior.

foreach(outerVar IN ITEMS a b c)
    unset(s)

    foreach(innerVar IN ITEMS 1 2 3)
        # Stop inner loop once string s gets long
        list(APPEND s "${outerVar}${innerVar}")
        string(LENGTH "${s}" length)
        if(length GREATER 5)
            # End the innerVar foreach loop early
            break()
        endif()

        # Do no more processing if outerVar is "b"
        if(outerVar STREQUAL "b")
            # End current innerVar iteration and move on to next innerVar item
            continue()
        endif()

        message("Processing ${outerVar}-${innerVar}")
    endforeach()

    message("Accumulated list: ${s}")
endforeach()
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The output from the above example would be:

Processing a-1
Processing a-2
Accumulated list: a1;a2;a3
Accumulated list: b1;b2;b3
Processing c-1
Processing c-2
Accumulated list: c1;c2;c3

The break() and continue() commands are also permitted within a block defined by the block() and
endblock() commands (see Section 5.4, “Scope Blocks”). Leaving a block via break() or continue()
ends that block’s local scope. The following contrived example demonstrates the behavior:

set(log "Value: ")
set(values one two skipMe three stopHere four)
set(didSkip FALSE)

while(NOT values STREQUAL "")
    list(POP_FRONT values next)

    # Modifications to "log" will be discarded
    block(PROPAGATE didSkip)
        string(APPEND log "${next}")
        if(next MATCHES "skip")
            set(didSkip TRUE)
            continue()
        elseif(next MATCHES "stop")
            break()
        elseif(next MATCHES "t")
            string(APPEND log ", has t")
        endif()
        message("${log}")
    endblock()

endwhile()

message("Did skip: ${didSkip}")
message("Remaining values: ${values}")

Value: one
Value: two, has t
Value: three, has t
Did skip: TRUE
Remaining values: four
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6.3. Recommended Practices
Minimize opportunities for strings to be unintentionally interpreted as variables in if(), foreach()
and while() commands. Avoid unary expressions with quotes, prefer to use a string comparison
operation instead. Strongly prefer to set a minimum CMake version of at least 3.1 to disable the old
behavior that allowed implicit conversion of quoted string values to variable names.

When regular expression matching in if(xxx MATCHES regex) commands and the group capture
variables are needed, it is generally advisable to store the CMAKE_MATCH_<n> match results in ordinary
variables as soon as possible. These variables will be overwritten by the next command that does
any sort of regular expression operation.

Prefer to use looping commands which avoid ambiguous or misleading code. If using the RANGE
form of foreach(), always specify both the start and end values. If iterating over items, consider
whether using the IN LISTS or IN ITEMS forms communicate more clearly what is being done rather
than a bare foreach(loopVar item1 item2 …) form.

55



Chapter 7. Using Subdirectories
Keeping everything in one directory is fine for simple projects, but most real world projects split
their files across multiple directories. It is common to find different file types or individual modules
grouped under their own directories, or for files belonging to logical functional groupings to be in
their own part of the project’s directory hierarchy. While the directory structure may be driven by
how developers think of the project, the way the project is structured also impacts the build system.

Two fundamental CMake commands in any multi-directory project are add_subdirectory() and
include(). These commands bring content from another file or directory into the build, allowing the
build logic to be distributed across the directory hierarchy rather than forcing everything to be
defined at the top-most level. This offers a number of advantages:

• Build logic is localized, meaning that characteristics of the build can be defined in the directory
where they have the most relevance.

• Builds can be composed of subcomponents which are defined independently from the top level
project consuming them. This is especially important if a project makes use of things like git
submodules or embeds third party source trees.

• Because directories can be self-contained, it becomes relatively trivial to turn parts of the build
on or off simply by choosing whether or not to add in that directory.

add_subdirectory() and include() have quite different characteristics, so it is important to
understand the strengths and weaknesses of both.

7.1. add_subdirectory()
The add_subdirectory() command allows a project to bring another directory into the build. That
directory must have its own CMakeLists.txt file which will be processed at the point where
add_subdirectory() is called. A corresponding directory will be created in the project’s build tree.

add_subdirectory(sourceDir [binaryDir]
    [EXCLUDE_FROM_ALL]
    [SYSTEM]   # Requires CMake 3.25 or later
)

The sourceDir does not have to be a subdirectory within the source tree, although it usually is. Any
directory can be added, with sourceDir being specified as either an absolute or relative path, the
latter being relative to the current source directory. Absolute paths are typically only needed when
adding directories that are outside the main source tree.

Normally, the binaryDir does not need to be specified. When omitted, CMake creates a directory in
the build tree with the same name as the sourceDir. If sourceDir contains any path components,
these will be mirrored in the binaryDir created by CMake. Alternatively, the binaryDir can be
explicitly specified as either an absolute or relative path, with the latter being evaluated relative to
the current binary directory (discussed in more detail shortly). If sourceDir is a path outside the
source tree, CMake requires the binaryDir to be specified since a corresponding relative path can no
longer be constructed automatically.
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The optional EXCLUDE_FROM_ALL keyword is intended to control whether targets defined in the
subdirectory being added should be included in the project’s ALL target by default. Unfortunately,
for some CMake versions and project generators, it doesn’t always act as expected and can even
result in broken builds. The SYSTEM keyword would not normally be used directly by projects and is
discussed in Section 15.7.2, “System Header Search Paths”.

7.1.1. Source And Binary Directory Variables

Sometimes a developer needs to know the location of the build directory corresponding to the
current source directory, such as when copying files needed at run time or to perform a custom
build task. With add_subdirectory(), both the source and the build trees’ directory structures can be
arbitrarily complex. There could even be multiple build trees being used with the same source tree.
The developer therefore needs some assistance from CMake to determine the directories of interest.
To that end, CMake provides a number of variables which keep track of the source and binary
directories for the CMakeLists.txt file currently being processed. The following read-only variables
are updated automatically as each file is processed by CMake. They always contain absolute paths.

CMAKE_SOURCE_DIR

The top-most directory of the source tree (i.e. where the top-most CMakeLists.txt file resides). This
variable never changes its value.

CMAKE_BINARY_DIR

The top-most directory of the build tree. This variable never changes its value.

CMAKE_CURRENT_SOURCE_DIR

The directory of the CMakeLists.txt file currently being processed by CMake. It is updated each
time a new file is processed as a result of an add_subdirectory() call and is restored back again
when processing of that directory is complete.

CMAKE_CURRENT_BINARY_DIR

The build directory corresponding to the CMakeLists.txt file currently being processed by CMake.
It changes for every call to add_subdirectory() and is restored again when add_subdirectory()
returns.

An example should help demonstrate the behavior:

Top level CMakeLists.txt

cmake_minimum_required(VERSION 3.0)
project(MyApp)

message("top:   CMAKE_SOURCE_DIR         = ${CMAKE_SOURCE_DIR}")
message("top:   CMAKE_BINARY_DIR         = ${CMAKE_BINARY_DIR}")
message("top:   CMAKE_CURRENT_SOURCE_DIR = ${CMAKE_CURRENT_SOURCE_DIR}")
message("top:   CMAKE_CURRENT_BINARY_DIR = ${CMAKE_CURRENT_BINARY_DIR}")

add_subdirectory(mysub)

message("top:   CMAKE_CURRENT_SOURCE_DIR = ${CMAKE_CURRENT_SOURCE_DIR}")
message("top:   CMAKE_CURRENT_BINARY_DIR = ${CMAKE_CURRENT_BINARY_DIR}")

57



mysub/CMakeLists.txt

message("mysub: CMAKE_SOURCE_DIR         = ${CMAKE_SOURCE_DIR}")
message("mysub: CMAKE_BINARY_DIR         = ${CMAKE_BINARY_DIR}")
message("mysub: CMAKE_CURRENT_SOURCE_DIR = ${CMAKE_CURRENT_SOURCE_DIR}")
message("mysub: CMAKE_CURRENT_BINARY_DIR = ${CMAKE_CURRENT_BINARY_DIR}")

For the above example, if the top level CMakeLists.txt file was in the directory /somewhere/src and the
build directory was /somewhere/build, the following output would be generated:

top:   CMAKE_SOURCE_DIR         = /somewhere/src
top:   CMAKE_BINARY_DIR         = /somewhere/build
top:   CMAKE_CURRENT_SOURCE_DIR = /somewhere/src
top:   CMAKE_CURRENT_BINARY_DIR = /somewhere/build
mysub: CMAKE_SOURCE_DIR         = /somewhere/src
mysub: CMAKE_BINARY_DIR         = /somewhere/build
mysub: CMAKE_CURRENT_SOURCE_DIR = /somewhere/src/mysub
mysub: CMAKE_CURRENT_BINARY_DIR = /somewhere/build/mysub
top:   CMAKE_CURRENT_SOURCE_DIR = /somewhere/src
top:   CMAKE_CURRENT_BINARY_DIR = /somewhere/build

7.1.2. Scope

In Section 5.4, “Scope Blocks”, the concept of scope was discussed. One of the effects of calling
add_subdirectory() is that CMake creates a new scope for processing that subdirectory’s
CMakeLists.txt file. That new scope acts like a child of the calling scope, in a similar way to how the
block() command creates a local child scope. The effects are very similar:

• All variables defined in the calling scope are copied into the subdirectory’s child scope upon
entry.

• Any new variable created in the subdirectory’s child scope will not be visible to the calling
scope.

• Any change to a variable in the subdirectory’s child scope is local to that child scope.

• Unsetting a variable in the subdirectory’s child scope does not unset it in the calling scope.

CMakeLists.txt

set(myVar foo)

message("Parent (before): myVar    = ${myVar}")
message("Parent (before): childVar = ${childVar}")

add_subdirectory(subdir)

message("Parent (after):  myVar    = ${myVar}")
message("Parent (after):  childVar = ${childVar}")
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subdir/CMakeLists.txt

message("Child  (before): myVar    = ${myVar}")
message("Child  (before): childVar = ${childVar}")

set(myVar bar)
set(childVar fuzz)

message("Child  (after):  myVar    = ${myVar}")
message("Child  (after):  childVar = ${childVar}")

This produces the following output:

Parent (before): myVar    = foo     ①
Parent (before): childVar =         ②
Child  (before): myVar    = foo     ③
Child  (before): childVar =         ④
Child  (after):  myVar    = bar     ⑤
Child  (after):  childVar = fuzz    ⑥
Parent (after):  myVar    = foo     ⑦
Parent (after):  childVar =         ⑧

① myVar is defined at the parent level.

② childVar is not defined at the parent level, so it evaluates to an empty string.

③ myVar is still visible in the child scope.

④ childVar is still undefined in the child scope before it is set.

⑤ myVar is modified in the child scope.

⑥ childVar is set in the child scope.

⑦ When processing returns to the parent scope, myVar still has the value from before the call to
add_subdirectory(). The modification to myVar in the child scope is not visible to the parent.

⑧ childVar was defined in the child scope, so it is not visible to the parent and evaluates to an
empty string.

The above behavior of scoping for variables highlights one of the important characteristics of
add_subdirectory(). It allows the added directory to change whatever variables it wants without
affecting variables in the calling scope. This helps keep the calling scope isolated from potentially
unwanted changes.

As discussed in Section 5.4, “Scope Blocks”, the PARENT_SCOPE keyword can be used with the set() or
unset() commands to change or unset a variable in a parent scope instead of the current scope. This
works the same way for a child scope created by add_subdirectory():

CMakeLists.txt

set(myVar foo)
message("Parent (before): myVar = ${myVar}")
add_subdirectory(subdir)
message("Parent (after):  myVar = ${myVar}")
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subdir/CMakeLists.txt

message("Child  (before): myVar = ${myVar}")
set(myVar bar PARENT_SCOPE)
message("Child  (after):  myVar = ${myVar}")

This produces the following output:

Parent (before): myVar = foo
Child  (before): myVar = foo
Child  (after):  myVar = foo    ①
Parent (after):  myVar = bar    ②

① The myVar in the child scope is not affected by the set() call because the PARENT_SCOPE keyword
tells CMake to modify the parent’s myVar, not the local one.

② The parent’s myVar has been modified by the set() call in the child scope.

Because the use of PARENT_SCOPE prevents any local variable of the same name from being modified
by the command, it can be less misleading if the local scope does not reuse the same variable name
as one from the parent. In the above example, a clearer set of commands would be:

subdir/CMakeLists.txt

set(localVar bar)
set(myVar ${localVar} PARENT_SCOPE)

Obviously the above is a trivial example, but for real world projects, there may be many commands
which contribute to building up the value of localVar before finally setting the parent’s myVar
variable.

It’s not just variables that are affected by scope, policies and some properties also have similar
behavior to variables in this regard. In the case of policies, each add_subdirectory() call creates a
new scope in which policy changes can be made without affecting the policy settings of the parent.
Similarly, there are directory properties which can be set in the child directory’s CMakeLists.txt file
which will have no effect on the parent’s directory properties. Both of these are covered in more
detail in their own respective chapters: Chapter 12, Policies and Chapter 9, Properties.

7.1.3. When To Call project()

A question that sometimes arises is whether to call project() in the CMakeLists.txt files of
subdirectories. In most cases, it is not necessary or desirable to do so, but it is permitted. The only
place where project() must be called is the top-most CMakeLists.txt file. Upon reading the top level
CMakeLists.txt file, CMake scans that file’s contents looking for a call to project(). If no such call is
found, CMake will issue a warning and insert an internal call to project() with the default C and
C++ languages enabled. Projects should never rely on this mechanism, they should always explicitly
call project() themselves. Note that it is not enough to call project() through a wrapper function or
via a file read in via add_subdirectory() or include(), the top level CMakeLists.txt file must call
project() directly.
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Calling project() in subdirectories typically does no harm, but it may result in CMake having to
generate extra files. For the most part, these extra project() calls and generated files are just noise,
but in some cases they can be useful. When using a Visual Studio project generator, each project()
command results in the creation of an associated solution file. Normally, the developer would load
the solution file corresponding to the top-most project() call (that solution file will be at the top of
the build directory). This top level solution file contains all the targets in the project. The solution
files generated for any project() calls within subdirectories will contain a more trimmed down
view, containing just the targets from that directory scope and below, plus any other targets from
the rest of the build that they depend on. Developers can load these sub-solutions instead of the top
level one for a more trimmed-down view of the project, allowing them to focus on a smaller subset
of the set of targets. For very large projects with many targets, this can be especially useful.

The Xcode generator behaves in a similar way, creating an Xcode project for each project() call.
These Xcode projects can be loaded for a similar trimmed down view, but unlike for Visual Studio
generators, they do not include the logic for building targets from outside of that directory scope or
below. The developer is responsible for ensuring that anything required from outside of that
trimmed down view has been built already. In practice, this means the top level project likely needs
to be loaded and built first before switching to the trimmed down Xcode project.

7.2. include()
The other method CMake provides for pulling in content from other directories is the include()
command, which has the following two forms:

include(fileName [OPTIONAL] [RESULT_VARIABLE myVar] [NO_POLICY_SCOPE])
include(module   [OPTIONAL] [RESULT_VARIABLE myVar] [NO_POLICY_SCOPE])

The first form is somewhat analogous to add_subdirectory(), but there are important differences:

• include() expects the name of a file to read in, whereas add_subdirectory() expects a directory
and will look for a CMakeLists.txt file within that directory. The file name passed to include()
typically has the extension .cmake, but it can be anything.

• include() does not introduce a new variable scope, whereas add_subdirectory() does.

• Both commands introduce a new policy scope by default, but the include() command can be told
not to do so with the NO_POLICY_SCOPE option (add_subdirectory() has no such option). See Chapter
12, Policies for further details on policy scope handling.

• The value of the CMAKE_CURRENT_SOURCE_DIR and CMAKE_CURRENT_BINARY_DIR variables do not change
when processing the file named by include(), whereas they do change for add_subdirectory().
This will be discussed in more detail shortly.

The second form of the include() command serves an entirely different purpose. It is used to load
the named module, a topic covered in depth in Chapter 11, Modules. All but the first of the above
points also hold true for this second form.

Since the value of CMAKE_CURRENT_SOURCE_DIR does not change when include() is called, it may seem
difficult for the included file to work out the directory in which it resides. CMAKE_CURRENT_SOURCE_DIR
will contain the location of the file from where include() was called, not the directory containing
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the included file. Furthermore, unlike add_subdirectory() where the fileName will always be
CMakeLists.txt, the name of the file can be anything when using include(), so it can be difficult for
the included file to determine its own name. To address situations like these, CMake provides an
additional set of variables:

CMAKE_CURRENT_LIST_DIR

Analogous to CMAKE_CURRENT_SOURCE_DIR except it will be updated when processing the included
file. This is the variable to use where the directory of the current file being processed is
required, no matter how it has been added to the build. It will always hold an absolute path.

CMAKE_CURRENT_LIST_FILE

Always gives the name of the file currently being processed. It always holds an absolute path to
the file, not just the file name.

CMAKE_CURRENT_LIST_LINE

Holds the line number of the file currently being processed. This variable is rarely needed, but
may prove useful in some debugging scenarios.

Note that the above three variables work for any file being processed by CMake, not just those
pulled in by an include() command. They have the same values as described above even for a
CMakeLists.txt file pulled in via add_subdirectory(), in which case CMAKE_CURRENT_LIST_DIR would have
the same value as CMAKE_CURRENT_SOURCE_DIR. The following example demonstrates the behavior:

CMakeLists.txt

add_subdirectory(subdir)
message("")
include(subdir/CMakeLists.txt)

subdir/CMakeLists.txt

message("CMAKE_CURRENT_SOURCE_DIR = ${CMAKE_CURRENT_SOURCE_DIR}")
message("CMAKE_CURRENT_BINARY_DIR = ${CMAKE_CURRENT_BINARY_DIR}")
message("CMAKE_CURRENT_LIST_DIR   = ${CMAKE_CURRENT_LIST_DIR}")
message("CMAKE_CURRENT_LIST_FILE  = ${CMAKE_CURRENT_LIST_FILE}")
message("CMAKE_CURRENT_LIST_LINE  = ${CMAKE_CURRENT_LIST_LINE}")

This produces output like the following:

CMAKE_CURRENT_SOURCE_DIR = /somewhere/src/subdir
CMAKE_CURRENT_BINARY_DIR = /somewhere/build/subdir
CMAKE_CURRENT_LIST_DIR   = /somewhere/src/subdir
CMAKE_CURRENT_LIST_FILE  = /somewhere/src/subdir/CMakeLists.txt
CMAKE_CURRENT_LIST_LINE  = 5

CMAKE_CURRENT_SOURCE_DIR = /somewhere/src
CMAKE_CURRENT_BINARY_DIR = /somewhere/build
CMAKE_CURRENT_LIST_DIR   = /somewhere/src/subdir
CMAKE_CURRENT_LIST_FILE  = /somewhere/src/subdir/CMakeLists.txt
CMAKE_CURRENT_LIST_LINE  = 5
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The above example also highlights another interesting characteristic of the include() command. It
can be used to include content from a file which has already been included in the build previously.
If different subdirectories of a large, complex project both want to make use of CMake code in some
file in a common area of the project, they may both include() that file independently.

7.3. Project-relative Variables
As will be seen in later chapters, various scenarios require paths relative to a location in the source
or build directory. Consider one such example where a project needs a path to a file that resides in
its top level source directory. From Section 7.1.1, “Source And Binary Directory Variables”,
CMAKE_SOURCE_DIR seems to be a natural fit, allowing a path like ${CMAKE_SOURCE_DIR}/someFile to be
used. But consider what happens if that project is later incorporated into another parent project by
bringing it into the parent build via add_subdirectory(). It could be used as a git submodule or
fetched on demand using techniques like those discussed in Chapter 30, FetchContent. What used to
be the top of the original project’s source tree is now a subdirectory within the parent project’s
source tree. CMAKE_SOURCE_DIR now points to the top of the parent project, so the file path will be
pointing to the wrong directory. A similar trap exists for CMAKE_BINARY_DIR.

The above scenario is encountered surprisingly often in online tutorials and older projects, but it
can easily be avoided. The project() command sets some variables that provide a much more
robust way of defining paths relative to locations in the directory hierarchy. The following variables
will be available after project() has been called at least once:

PROJECT_SOURCE_DIR

The source directory of the most recent call to project() in the current scope or any parent
scope. The project name (i.e. the first argument given to the project() command) is not relevant.

PROJECT_BINARY_DIR

The build directory corresponding to the source directory defined by PROJECT_SOURCE_DIR.

projectName_SOURCE_DIR

The source directory of the most recent call to project(projectName) in the current scope or any
parent scope. This is tied to a specific project name and therefore to a particular call to project().

projectName_BINARY_DIR

The build directory corresponding to the source directory defined by projectName_SOURCE_DIR.

The following example demonstrates how these variables can be used (the …_BINARY_DIR variables
follow a similar pattern to the …_SOURCE_DIR variables shown).

CMakeLists.txt

cmake_minimum_required(VERSION 3.0)
project(topLevel)

message("Top level:")
message("  PROJECT_SOURCE_DIR  = ${PROJECT_SOURCE_DIR}")
message("  topLevel_SOURCE_DIR = ${topLevel_SOURCE_DIR}")
add_subdirectory(child)
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child/CMakeLists.txt

message("Child:")
message("  PROJECT_SOURCE_DIR (before) = ${PROJECT_SOURCE_DIR}")

project(child)

message("  PROJECT_SOURCE_DIR (after)  = ${PROJECT_SOURCE_DIR}")
message("  child_SOURCE_DIR            = ${child_SOURCE_DIR}")

add_subdirectory(grandchild)

child/grandchild/CMakeLists.txt

message("Grandchild:")
message("  PROJECT_SOURCE_DIR  = ${PROJECT_SOURCE_DIR}")
message("  child_SOURCE_DIR    = ${child_SOURCE_DIR}")
message("  topLevel_SOURCE_DIR = ${topLevel_SOURCE_DIR}")

Running cmake on the top level of this project hierarchy would give output similar to the following:

Top level:
  PROJECT_SOURCE_DIR  = /somewhere/src
  topLevel_SOURCE_DIR = /somewhere/src
Child:
  PROJECT_SOURCE_DIR (before) = /somewhere/src
  PROJECT_SOURCE_DIR (after)  = /somewhere/src/child
  child_SOURCE_DIR            = /somewhere/src/child
Grandchild:
  PROJECT_SOURCE_DIR  = /somewhere/src/child
  child_SOURCE_DIR    = /somewhere/src/child
  topLevel_SOURCE_DIR = /somewhere/src

The above example shows the versatility of the project-related variables. They can be used from
any part of the directory hierarchy to robustly refer to any other directory in the project. For the
scenario discussed at the start of this section, using ${PROJECT_SOURCE_DIR}/someFile or perhaps
${projectName_SOURCE_DIR}/someFile instead of ${CMAKE_SOURCE_DIR}/someFile would ensure that the
path to someFile would be correct, regardless of whether the project is being built stand-alone or
being incorporated into a larger project hierarchy.

Some hierarchical build arrangements allow a project to be built either stand-alone or as part of a
larger parent project (see Chapter 30, FetchContent). Some parts of the project might only make
sense if it is the top of the build, such as setting up packaging support. A project can detect whether
it is the top level by comparing the value of CMAKE_SOURCE_DIR with CMAKE_CURRENT_SOURCE_DIR. If they
are the same, then the current directory scope must be the top level of the source tree.

if(CMAKE_CURRENT_SOURCE_DIR STREQUAL CMAKE_SOURCE_DIR)
    add_subdirectory(packaging)
endif()
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The above technique is supported by all versions of CMake and is a very common pattern. With
CMake 3.21 or later, a dedicated PROJECT_IS_TOP_LEVEL variable is provided which can achieve the
same result, but is clearer in its intent:

# Requires CMake 3.21 or later
if(PROJECT_IS_TOP_LEVEL)
    add_subdirectory(packaging)
endif()

The value of PROJECT_IS_TOP_LEVEL will be true if the most recent call to project() in the current
directory scope or above was in the top level CMakeLists.txt file. A similar variable,
<projectName>_IS_TOP_LEVEL, is also defined by CMake 3.21 or later for every call to project(). It is
created as a cache variable, so it can be read from any directory scope. <projectName> corresponds to
the name given to the project() command of interest. This alternative variable is useful when there
may be intervening calls to project() between the current scope and the scope of the project of
interest.

7.4. Ending Processing Early
There can be occasions where a project may want to stop processing the remainder of the current
file and return control back to the caller. The return() command can be used for this purpose. If not
called from inside a function, return() ends processing of the current file regardless of whether it
was brought in via include() or add_subdirectory(). The effect of calling return() inside a function is
covered in Section 8.4, “Returning Values”, including special attention for a common mistake that
can result in returning from the current file unintentionally.

With CMake 3.24 and earlier, the return() command cannot return any values to the caller. Starting
with CMake 3.25, return() accepts a PROPAGATE keyword which has similarities to the same keyword
of the block() command. Variables listed after the PROPAGATE keyword will be updated in the scope
that control returns to. Historically, the return() command used to ignore all arguments given to it.
Therefore, if using the PROPAGATE keyword, the CMP0140 policy must be set to NEW to indicate that the
old behavior is not applicable (Chapter 12, Policies discusses policies in depth).

CMakeLists.txt

set(x 1)
set(y 2)
add_subdirectory(subdir)
# Here, x will have the value 3 and y will be unset

subdir/CMakeLists.txt

# This ensures that we have a version of CMake that supports
# PROPAGATE and that the CMP0140 policy is set to NEW.
cmake_minimum_required(VERSION 3.25)

set(x 3)
unset(y)
return(PROPAGATE x y)
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Two cases involving variable propagation and interaction with the block() command are worth
highlighting. Both are consequences of the fact that the return() command updates variables in the
scope it returns to. For the first of the two cases, if that returned-to scope is within a block, then that
block’s scope is the one that gets updated.

CMakeLists.txt

set(x 1)
set(y 2)

block()
    add_subdirectory(subdir)
    # Here, x will have the value 3 and y will be unset
endblock()
# Here, x is 1 and y is 2

The other case to highlight is more interesting. If the return() statement is itself inside a block, that
block doesn’t affect the propagation of variables to the returned-to scope.

CMakeLists.txt

set(x 1)
set(y 2)
add_subdirectory(subdir)
# Here, x will have the value 3 and y will be unset

subdir/CMakeLists.txt

cmake_minimum_required(VERSION 3.25)

# This block does not affect the propagation of x and y to
# the parent CMakeLists.txt file's scope
block()
    set(x 3)
    unset(y)
    return(PROPAGATE x y)
endblock()

A word of caution is in order regarding the use of return(PROPAGATE) with directory scopes. While it
may seem like an attractive way to pass information back to a parent scope, such usage is not
consistent with the more target-centered approach of CMake best practice. Propagating variables to
parent scopes drives the project structure to be more like the old-style variable-based methods.
Those are known to be fragile, and they lack the power and expressiveness of target-centered
methods. Variable propagation with return() is potentially appropriate when returning from
functions though, as discussed in Section 8.4, “Returning Values”.

The return() command isn’t the only way to end processing of a file early. As noted in the previous
section, different parts of a project may include the same file from multiple places. It can
sometimes be desirable to check for this and only include the file once, returning early for
subsequent inclusions to prevent reprocessing the file multiple times. This is very similar to the
situation for C and C++ headers. It is therefore common to see a similar form of include guard used:
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if(DEFINED cool_stuff_include_guard)
    return()
endif()

set(cool_stuff_include_guard 1)
# ...

With CMake 3.10 or later, this can be expressed more succinctly and robustly with a dedicated
command whose behavior is analogous to the #pragma once of C and C++:

include_guard()

Compared to manually writing out the if-endif code, this is more robust because it handles the
name of the guard variable internally. The command also accepts an optional keyword argument
DIRECTORY or GLOBAL to specify a different scope within which to check for the file having been
processed previously. These keywords are unlikely to be needed in most situations though. With
neither argument specified, variable scope is assumed and the effect is exactly equivalent to the if-
endif code above. GLOBAL ensures the command ends processing of the file if it has been processed
before anywhere else in the project (i.e. variable scope is ignored). DIRECTORY checks for previous
processing only within the current directory scope and below.

7.5. Recommended Practices
The best choice between using add_subdirectory() or include() to bring another directory into the
build is not always obvious. On the one hand, add_subdirectory() is simpler and does a better job of
keeping directories relatively self-contained because it creates its own scope. On the other, some
CMake commands have restrictions which only allow them to operate on things defined within the
current file scope, so include() works better for those cases. Section 15.2.6, “Source Files” and
Section 34.5.1, “Building Up A Target Across Directories” discuss aspects of this topic.

As a general guide, most simple projects are probably better off preferring to use add_subdirectory()
over include(). It promotes cleaner definition of the project and allows the CMakeLists.txt for a
given directory to focus more on just what that directory needs to define. Following this strategy
will promote better locality of information throughout the project and will also tend to introduce
complexity only where it is needed and where it brings useful benefits. It’s not that include() itself
is any more complicated than add_subdirectory(), but the use of include() tends to result in paths to
files needing to be more explicitly spelled out, since what CMake considers the current source
directory is not that of the included file. Many of the restrictions associated with calling certain
commands from different directories have been removed in more recent CMake versions too,
which further strengthens the argument to prefer add_subdirectory().

Irrespective of whether using add_subdirectory(), include() or a combination of both, the
CMAKE_CURRENT_LIST_DIR variable is generally going to be a better choice than
CMAKE_CURRENT_SOURCE_DIR. By establishing the habit of using CMAKE_CURRENT_LIST_DIR early, it is much
easier to switch between add_subdirectory() and include() as a project grows in complexity and to
move entire directories to restructure a project.
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Where possible, avoid using the CMAKE_SOURCE_DIR and CMAKE_BINARY_DIR variables, as these typically
break the ability of the project to be incorporated into a larger project hierarchy. In the vast
majority of cases, PROJECT_SOURCE_DIR and PROJECT_BINARY_DIR, or their project-specific equivalents
projectName_SOURCE_DIR and projectName_BINARY_DIR are more appropriate variables to use.

Avoid using the PROPAGATE keyword with return() statements that end processing of the current file.
Propagating variables to the parent file violates the best practice of preferring to attach
information to targets rather than passing details around in variables. Chapter 15, Compiler And
Linker Essentials covers a lot of relevant material related to preferring target-centered practices.

If the project requires CMake 3.10 or later, prefer to use the include_guard() command without
arguments instead of an explicit if-endif block in cases where multiple inclusion of a file must be
prevented.

Avoid the practice of arbitrarily calling project() in the CMakeLists.txt of every subdirectory. Only
consider putting a project() command in a subdirectory’s CMakeLists.txt file if that subdirectory can
be treated as a more or less standalone project. Unless the whole build has a very high number of
targets, there is little need to call project() anywhere other than in the top level CMakeLists.txt file.
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Chapter 8. Functions And Macros
Looking back on the material covered in this book so far, CMake’s syntax is already starting to look
a lot like a programming language in its own right. It supports variables, if-then-else logic, looping
and inclusion of other files to be processed. It should be no surprise to learn that CMake also
supports the common programming concepts of functions and macros too. Much like their role in
other programming languages, functions and macros are the primary mechanism for projects and
developers to extend CMake’s functionality and to encapsulate repetitive tasks in a natural way.
They allow the developer to define reusable blocks of CMake code which can be called just like
regular built-in CMake commands. They are also a cornerstone of CMake’s own module system
(covered separately in Chapter 11, Modules).

8.1. The Basics
Functions and macros in CMake have very similar characteristics to their same-named
counterparts in C/C++. Functions introduce a new scope and the function arguments become
variables accessible inside the function body. Macros, on the other hand, effectively paste their
body into the point of the call and the macro arguments are substituted as simple string
replacements. These behaviors mirror the way functions and #define macros work in C/C++. A
CMake function or macro is defined as follows:

function(name [arg1 [arg2 [...]]])
   # Function body (i.e. commands) ...
endfunction()

macro(name [arg1 [arg2 [...]]])
   # Macro body (i.e. commands) ...
endmacro()

Once defined, the function or macro is called in exactly the same way as any other CMake
command. The function or macro’s body is then executed at the point of the call. For example:

function(print_me)
    message("Hello from inside a function")
    message("All done")
endfunction()

# Called like so:
print_me()

As shown above, the name argument defines the name used to call the function or macro and it
should only contain letters, numbers and underscores. The name will be treated case-insensitively,
so upper/lowercase conventions are more a matter of style (the CMake documentation follows the
convention that command names are all lowercase with words separated by underscores). Very
early versions of CMake required the name to be repeated as an argument to endfunction() or
endmacro(), but new projects should avoid this as it only adds unnecessary clutter.
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8.2. Argument Handling Essentials
The argument handling of functions and macros is the same except for one very important
difference. For functions, each argument is a CMake variable and has all the usual behaviors of a
CMake variable. For example, they can be tested in if() statements as variables. In comparison,
macro arguments are string replacements, so whatever was used as the argument to the macro call
is essentially pasted into wherever that argument appears in the macro body. If a macro argument
is used in an if() statement, it would be treated as a string rather than a variable. The following
example and its output demonstrate the difference:

function(func arg)
    if(DEFINED arg)
        message("Function arg is a defined variable")
    else()
        message("Function arg is NOT a defined variable")
    endif()
endfunction()

macro(macr arg)
    if(DEFINED arg)
        message("Macro arg is a defined variable")
    else()
        message("Macro arg is NOT a defined variable")
    endif()
endmacro()

func(foobar)
macr(foobar)

Function arg is a defined variable
Macro arg is NOT a defined variable

Aside from that difference, functions and macros both support the same features when it comes to
argument processing. Each argument in the function definition serves as a case-sensitive label for
the argument it represents. For functions, that label acts like a variable, whereas for macros it acts
like a string substitution. The value of that argument can be accessed in the function or macro body
using the usual variable notation, even though macro arguments are not technically variables.

function(func myArg)
    message("myArg = ${myArg}")
endfunction()

macro(macr myArg)
    message("myArg = ${myArg}")
endmacro()

func(foobar)
macr(foobar)
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Both the call to func() and the call to macr() print the same thing:

myArg = foobar

In addition to the named arguments, functions and macros come with a set of automatically
defined variables (or variable-like names in the case of macros) which allow processing of
arguments in addition to or instead of the named ones:

ARGC

This will be set to the total number of arguments passed to the function. It counts the named
arguments plus any additional unnamed arguments that were given.

ARGV

This is a list containing each of the arguments passed to the function, including both the named
arguments and any additional unnamed arguments that were given.

ARGN

Like ARGV, except this only contains arguments beyond the named ones (i.e. the optional,
unnamed arguments).

In addition to the above, each individual argument can be referenced with a name of the form ARGVx
where x is the number of the argument (e.g. ARGV0, ARGV1, etc.). This includes the named arguments,
so the first named argument could also be referenced via ARGV0, etc. Note that it should be
considered undefined behavior to use ARGVx with x >= ARGC.

Typical situations where the ARG… names are used include supporting optional arguments and
implementing a command which can take an arbitrary number of items to be processed. Consider a
function that defines an executable target, links that target to some library and defines a test case
for it. Such a function is frequently encountered when writing test cases (a topic covered in Chapter
26, Testing). Rather than repeating the steps for every test case, the function allows the steps to be
defined once and then each test case becomes a simple one-line definition.

# Use a named argument for the target and treat all other
# (unnamed) arguments as the source files for the test case
function(add_mytest targetName)
    add_executable(${targetName} ${ARGN})

    target_link_libraries(${targetName} PRIVATE foobar)

    add_test(NAME    ${targetName}
             COMMAND ${targetName})
endfunction()

# Define some test cases using the above function
add_mytest(smallTest small.cpp)
add_mytest(bigTest   big.cpp algo.cpp net.cpp)

The above example shows the usefulness of ARGN in particular. It allows a function or macro to take
a varying number of arguments, yet still specify a set of named arguments which must be provided.
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There is, however, a specific case to be aware of which can result in unexpected behavior. Because
macros treat their arguments as string substitutions rather than as variables, if they use ARGN in a
place where a variable name is expected, the variable it will refer to will be in the scope from
which the macro is called, not the ARGN from the macro’s own arguments. The following example
highlights the situation:

# WARNING: This macro is misleading
macro(dangerous)
    # Which ARGN?
    foreach(arg IN LISTS ARGN)
        message("Argument: ${arg}")
    endforeach()
endmacro()

function(func)
    dangerous(1 2)
endfunction()

func(3)

The output from the above would be:

Argument: 3

When using the LISTS keyword with foreach(), a variable name has to be given, but the ARGN
provided for a macro is not a variable name. When the macro is called from inside another
function, the macro ends up using the ARGN variable from that enclosing function, not the ARGN from
the macro itself. The situation becomes clear when pasting the contents of the macro body directly
into the function where it is called (which is effectively what CMake will do with it):

function(func)
    # Now it is clear, ARGN here will use the arguments from func
    foreach(arg IN LISTS ARGN)
        message("Argument: ${arg}")
    endforeach()
endfunction()

In such cases, consider making the macro a function instead, or if it must remain a macro then
avoid treating arguments as variables. For the above example, the implementation of dangerous()
could be changed to use foreach(arg IN ITEMS ${ARGN}) instead, but see Section 8.8, “Problems With
Argument Handling” for some potential caveats.

8.3. Keyword Arguments
The previous section illustrated how the ARG… variables can be used to handle a varying set of
arguments. That functionality is sufficient for the simple case where only one set of varying or
optional arguments is needed, but if multiple optional or variable sets of arguments must be
supported, the processing becomes quite tedious. Furthermore, the basic argument handling
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described above is quite rigid compared to many of CMake’s own built-in commands which support
keyword-based arguments and flexible argument ordering.

Consider the target_link_libraries() command:

target_link_libraries(targetName
     <PRIVATE|PUBLIC|INTERFACE> item1 [item2 ...]
    [<PRIVATE|PUBLIC|INTERFACE> item3 [item4 ...]]
    ...
)

The targetName is required as the first argument, but after that, callers can provide any number of
PRIVATE, PUBLIC or INTERFACE sections in any order, with each section permitted to contain any
number of items. User-defined functions and macros can support a similar level of flexibility by
using the cmake_parse_arguments() command, of which there are two forms. The first form is
supported by all CMake versions and works for both functions and macros:

# Needed only for CMake 3.4 and earlier
include(CMakeParseArguments)

cmake_parse_arguments(
    prefix
    valuelessKeywords singleValueKeywords multiValueKeywords
    argsToParse...
)

The cmake_parse_arguments() command used to be provided by the CMakeParseArguments module, but it
became a built-in command in CMake 3.5. The include(CMakeParseArguments) line will do nothing in
CMake 3.5 and later, while for earlier versions of CMake it will define the cmake_parse_arguments()
command (see Chapter 11, Modules for more on this sort of usage of include()).

The second form was introduced in CMake 3.7 and can only be used in functions, not macros:

# Available with CMake 3.7 or later, do not use in macros
cmake_parse_arguments(
    PARSE_ARGV startIndex
    prefix
    valuelessKeywords singleValueKeywords multiValueKeywords
)

Both forms of the command are similar, differing only in the way they take in the set of arguments
to parse. With the first form, argsToParse will typically be given as ${ARGN} without quotes. This
provides all arguments given to the enclosing function or macro beyond the named arguments,
except for a few specific corner cases that don’t apply in most situations (see Section 8.8, “Problems
With Argument Handling”).

In the second form, the PARSE_ARGV option tells cmake_parse_arguments() to read the arguments
directly from the set of ${ARGVx} variables, with x ranging from startIndex to (ARGC - 1). Because it
reads variables directly, it does not support being used inside macros. As already explained in
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Section 8.2, “Argument Handling Essentials”, macros use string replacement rather than variables
for its arguments. The main advantage of the second form is that for functions, it robustly handles
the corner cases that the first form does not. If there are no named arguments for the enclosing
function, then passing ${ARGV} or ${ARGN} to the first form is equivalent to giving PARSE_ARGV 0 to the
second form when none of the corner cases apply.

The rest of the behavior of the two forms of the command is the same. Each of the …Keywords is a list
of keyword names to search for during parsing. Because they are a list, they need to be surrounded
by quotes to ensure they are handled correctly. The valuelessKeywords define standalone keyword
arguments which act like boolean switches. The keyword being present means one thing, its
absence another. The singleValueKeywords each require exactly one additional argument after the
keyword when they are used, whereas multiValueKeywords require zero or more additional
arguments after the keyword. While not required, the prevailing convention is for keywords to be
all uppercase, with words separated by underscores if required. Note that keywords should not be
too long or they can be cumbersome to use.

When cmake_parse_arguments() returns, variables may be defined whose names consist of the
specified prefix, an underscore and the name of the keyword they are associated with. For example,
with a prefix of ARG, the variable corresponding to a keyword named FOO would be ARG_FOO. For each
of the valuelessKeywords, the corresponding variable will be defined with the value TRUE if the
keyword is present or FALSE if it is not. For each of the singleValueKeywords and multiValueKeywords,
the corresponding variable will only be defined if that keyword is present and a value is provided
after the keyword.

The following example illustrates how the three different keyword types are defined and handled:

function(func)
    # Define the supported set of keywords
    set(prefix       ARG)
    set(noValues     ENABLE_NET COOL_STUFF)
    set(singleValues TARGET)
    set(multiValues  SOURCES IMAGES)

    # Process the arguments passed in
    include(CMakeParseArguments)
    cmake_parse_arguments(
        ${prefix}
        "${noValues}" "${singleValues}" "${multiValues}"
        ${ARGN}
    )

    # Log details for each supported keyword
    message("Option summary:")

    foreach(arg IN LISTS noValues)
        if(${prefix}_${arg})
            message("  ${arg} enabled")
        else()
            message("  ${arg} disabled")
        endif()
    endforeach()
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    foreach(arg IN LISTS singleValues multiValues)
        # Single argument values will print as a string
        # Multiple argument values will print as a list
        message("  ${arg} = ${${prefix}_${arg}}")
    endforeach()
endfunction()

# Examples of calling with different combinations
# of keyword arguments

func(SOURCES foo.cpp bar.cpp
     TARGET MyApp
     ENABLE_NET
)

func(COOL_STUFF
     TARGET dummy
     IMAGES here.png there.png gone.png
)

The corresponding output would look like this:

Option summary:
  ENABLE_NET enabled
  COOL_STUFF disabled
  TARGET = MyApp
  SOURCES = foo.cpp;bar.cpp
  IMAGES =
Option summary:
  ENABLE_NET disabled
  COOL_STUFF enabled
  TARGET = dummy
  SOURCES =
  IMAGES = here.png;there.png;gone.png

The call to cmake_parse_arguments() in the above example could also have been written using the
second form like so:

cmake_parse_arguments(
    PARSE_ARGV 0
    ${prefix}
    "${noValues}" "${singleValues}" "${multiValues}"
)

Arguments can be given to a command such that there are leftover arguments not associated with
any keyword. The cmake_parse_arguments() command provides all leftover arguments as a list in the
variable <prefix>_UNPARSED_ARGUMENTS. An advantage of the PARSE_ARGV form is that if any unparsed
arguments are themselves a list, their embedded semicolons will be escaped. This preserves the
original structure of the arguments, unlike the other form of the command which doesn’t. The
following reduced example demonstrates this more clearly:
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function(demoArgs)
    set(noValues     "")
    set(singleValues SPECIAL)
    set(multiValues  EXTRAS)
    cmake_parse_arguments(
        PARSE_ARGV 0
        ARG
        "${noValues}" "${singleValues}" "${multiValues}"
    )

    message("Left-over args: ${ARG_UNPARSED_ARGUMENTS}")
    foreach(arg IN LISTS ARG_UNPARSED_ARGUMENTS)
        message("${arg}")
    endforeach()
endfunction()

demoArgs(burger fries "cheese;tomato" SPECIAL secretSauce)

Left-over args: burger;fries;cheese\;tomato
burger
fries
cheese;tomato

Inside the demoArgs() function, the call to cmake_parse_arguments() will define the variable ARG_SPECIAL
with the value secretSauce. The burger, fries and cheese;tomato arguments do not correspond to any
recognized keywords, so they are treated as leftover arguments. As the above output shows, the
original cheese;tomato list is preserved because the PARSE_ARGV form was used. This important point
is revisited in Section 8.8.2, “Forwarding Command Arguments”.

In the above example, the SPECIAL keyword expects a single argument to follow it. If the call had
omitted the value, cmake_parse_arguments() would not raise an error. With CMake 3.14 or earlier, the
project would not be able to detect this situation, but with later versions, it can. With CMake 3.15 or
later, the <prefix>_KEYWORDS_MISSING_VALUES variable will be populated with a list containing all
single- or multi-value keywords that were present but which did not have any value following
them. This can be demonstrated by modifying the previous example:

function(demoArgs)
    set(noValues     "")
    set(singleValues SPECIAL)
    set(multiValues  ORDINARY EXTRAS)
    cmake_parse_arguments(
        PARSE_ARGV 0
        ARG
        "${noValues}" "${singleValues}" "${multiValues}"
    )
    message("Keywords missing values: ${ARG_KEYWORDS_MISSING_VALUES}")
endfunction()

demoArgs(burger fries SPECIAL ORDINARY EXTRAS high low)
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In the above, SPECIAL and ORDINARY are each immediately followed by another keyword, so they have
no values associated with them. Both can or should have values, so they will both be present in the
ARG_KEYWORDS_MISSING_VALUES variable populated by cmake_parse_arguments(). In the case of SPECIAL, it is
probably an error, but for ORDINARY, it may still be valid since multi-value keywords can legitimately
have no values. Projects should therefore be careful how they make use of
<prefix>_KEYWORDS_MISSING_VALUES.

The cmake_parse_arguments() command provides considerable flexibility. While the first form of the
command usually takes ${ARGN} as the set of arguments to parse, other arguments can be given. One
can take advantage of this to do things like multi-level argument parsing:

function(libWithTest)
    # First level of arguments
    set(groups LIB TEST)
    cmake_parse_arguments(GRP "" "" "${groups}" ${ARGN})

    # Second level of arguments
    set(args SOURCES PRIVATE_LIBS PUBLIC_LIBS)
    cmake_parse_arguments(LIB  "" "TARGET" "${args}" ${GRP_LIB})
    cmake_parse_arguments(TEST "" "TARGET" "${args}" ${GRP_TEST})

    add_library(${LIB_TARGET} ${LIB_SOURCES})
    target_link_libraries(${LIB_TARGET}
        PUBLIC  ${LIB_PUBLIC_LIBS}
        PRIVATE ${LIB_PRIVATE_LIBS}
    )

    add_executable(${TEST_TARGET} ${TEST_SOURCES})
    target_link_libraries(${TEST_TARGET}
        PUBLIC  ${TEST_PUBLIC_LIBS}
        PRIVATE ${LIB_TARGET} ${TEST_PRIVATE_LIBS}
    )
endfunction()

libWithTest(
    LIB
        TARGET Algo
        SOURCES algo.cpp algo.h
        PUBLIC_LIBS SomeMathHelpers
    TEST
        TARGET AlgoTest
        SOURCES algoTest.cpp
        PRIVATE_LIBS gtest_main
)

In the above example, the first level of arguments parsed by cmake_parse_arguments() is the usual
${ARGN}. The only keywords at this first level are the two multi-value keywords LIB and TEST. These
define which target the sub-options following it should be applied to. The second level of parsing is
fed either ${GRP_LIB} or ${GRP_TEST} as the set of arguments to parse rather than ${ARGN}. There is no
conflict as a result of sub-options appearing more than once in the original set of ARGN arguments,
since each target’s sub-options are parsed separately.
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Compared to basic argument handling using named arguments or using the ARG… variables, the
advantages of cmake_parse_arguments() are numerous:

• Being keyword-based, the calling site has improved readability, since the arguments essentially
become self-documenting. Other developers reading the call site usually won’t need to look at
the function implementation or its documentation to understand what each of the arguments
mean.

• The caller gets to choose the order in which the arguments are given.

• The caller can simply omit those arguments which don’t need to be provided.

• Since each of the supported keywords has to be passed to cmake_parse_arguments() and it is
typically called near the top of the function, it is generally very clear what arguments the
function supports.

• Since parsing of the keyword based arguments is handled by the cmake_parse_arguments()
command rather than from an ad hoc, manually coded parser, argument parsing bugs are
virtually eliminated.

While these capabilities are quite powerful, the command still has some limitations. Built-in
commands are able to support keywords being repeated. For example, commands like
target_link_libraries() allow the PRIVATE, PUBLIC and INTERFACE keywords to be used more than once
in the same command. The cmake_parse_arguments() command does not support this to the same
extent. It will only return the values associated with the last occurrence of a keyword and discard
the earlier ones. A keyword can only be repeated if using a multi-level set of keywords and the
keyword only appears once in any given set of arguments being processed.

8.4. Returning Values
A fundamental difference between functions and macros is that functions introduce a new variable
scope, whereas macros do not. Functions receive a copy of all variables from the calling scope.
Variables defined or modified inside a function have no effect on variables of the same name
outside the function (unless explicitly propagated, as discussed below). As far as variables are
concerned, the function is essentially its own self-contained sandbox, much like a scope created by
the block() command (see Section 5.4, “Scope Blocks”). Macros, on the other hand, share the same
variable scope as their caller and can therefore modify the caller’s variables directly. Note that
functions do not introduce a new policy scope (see Section 12.3, “Recommended Practices” for
further discussion of this).

8.4.1. Returning Values From Functions

With CMake 3.25 or later, a function can effectively return values by specifying variables to
propagate to the caller. This is achieved using the PROPAGATE keyword with the return() command,
similar to the behavior described previously in Section 7.4, “Ending Processing Early”. For each
variable name listed after PROPAGATE, that variable will be updated in the calling scope to have the
same value as in the function at the point of the return() call. If a propagated variable is unset in
the function scope, it will also be unset in the calling scope. The CMP0140 policy must be set to NEW
when the function is defined if the PROPAGATE keyword is used (Chapter 12, Policies discusses policies
in depth).
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# This ensures that we have a version of CMake that supports
# PROPAGATE and that the CMP0140 policy is set to NEW
cmake_minimum_required(VERSION 3.25)

function(doSomething outVar)
    set(${outVar} 42)
    return(PROPAGATE ${outVar})
endfunction()

doSomething(result)
# Here, a variable named result now holds the value 42

A function should not normally dictate the name of variables to be set in the calling scope. Instead,
function arguments should be used to tell the function the names of variables to be set in the calling
scope. This ensures the caller is in full control of what the function does and that the function won’t
overwrite variables the caller does not expect. CMake’s own built-in commands generally follow
this pattern. The above example follows this recommendation by allowing the caller to specify the
name of the result variable as the first argument to the function.

The return() statement propagates variables to the calling scope. This means any block() statements
within the function do not prevent propagation to the function’s caller, but they will affect the
value of the variable(s) being propagated. The previous example can be modified slightly to
demonstrate this:

cmake_minimum_required(VERSION 3.25)

function(doSomething outVar)
    set(${outVar} 42)
    block()
        set(${outVar} 27)
        return(PROPAGATE ${outVar})
    endblock()
endfunction()

doSomething(result)
# Here, a variable named result now holds the value 27

With CMake 3.24 and earlier, functions do not support returning a value directly. Since functions
introduce their own variable scope, it may seem that there is no easy way to pass information back
to the caller, but this is not the case. As discussed previously in Section 5.4, “Scope Blocks” and
Section 7.1.2, “Scope”, the set() and unset() commands support a PARENT_SCOPE keyword, which can
be used to modify a variable in the caller’s scope rather than a local variable within the function.
While this isn’t the same as returning values from the function, it does allow values to be passed
back to the calling scope to achieve a similar effect.

function(func resultVar1 resultVar2)
    set(${resultVar1} "First result" PARENT_SCOPE)
    set(${resultVar2} "Second result" PARENT_SCOPE)
endfunction()
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func(myVar otherVar)

message("myVar: ${myVar}")
message("otherVar: ${otherVar}")

myVar: First result
otherVar: Second result

8.4.2. Returning Values From Macros

Macros can "return" specific variables in the same way as functions, specifying the names of
variables to be set by passing them in as arguments. The only difference is that the PARENT_SCOPE
keyword should not be used within the macro when calling set() because the macro already
modifies the variables in the caller’s scope. In fact, about the only reason one would use a macro
instead of a function is if many variables need to be set in the calling scope. A macro will affect the
calling scope with every set() or unset() call, whereas a function only affects the calling scope when
PARENT_SCOPE is explicitly given to set() or unset().

The last example of the previous section could be implemented equivalently as a macro like so:

macro(func resultVar1 resultVar2)
    set(${resultVar1} "First result")
    set(${resultVar2} "Second result")
endmacro()

The behavior of return() within a macro is very different to a function. Because a macro does not
introduce a new scope, the behavior of the return() statement is dependent on where the macro is
called. Recall that a macro effectively pastes its commands at the call site. That being the case, any
return() statement from a macro will actually be returning from the scope of whatever called the
macro, not from the macro itself. Consider the following example:

macro(inner)
    message("From inner")
    return()  # Usually dangerous within a macro
    message("Never printed")
endmacro()

function(outer)
    message("From outer before calling inner")
    inner()
    message("Also never printed")
endfunction()

outer()

The output from the above would be:
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From outer before calling inner
From inner

To highlight why the second message in the function body is never printed, paste the contents of the
macro body into where it is called:

function(outer)
    message("From outer before calling inner")

    # === Pasted macro body ===
    message("From inner")
    return()
    message("Never printed")
    # === End of macro body ===

    message("Also never printed")
endfunction()

outer()

It is now much clearer why the return() statement causes processing to leave the function, even
though it was originally called from inside the macro. This highlights the danger of using return()
within macros. Because macros do not create their own scope, the result of a return() statement is
often not what was expected.

8.5. Overriding Commands
When function() or macro() is called to define a new command, if a command already exists with
that name, the undocumented CMake behavior is to make the old command available using the
same name except with an underscore prepended. This applies whether the old name is for a
builtin command or a custom function or macro. Developers who are aware of this behavior are
sometimes tempted to exploit it to try to create a wrapper around an existing command like so:

function(someFunc)
    # Do something...
endfunction()

# Later in the project...
function(someFunc)
    if(...)
        # Override the behavior with something else...
    else()
        # WARNING: Intended to call the original command, but it is not safe
        _someFunc()
    endif()
endfunction()
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If the command is only ever overridden like this once, it appears to work, but if it is overridden
again, then the original command is no longer accessible. The prepending of one underscore to
"save" the previous command only applies to the current name, it is not applied recursively to all
previous overrides. This has the potential to lead to infinite recursion, as the following contrived
example demonstrates:

function(printme)
    message("Hello from first")
endfunction()

function(printme)
    message("Hello from second")
    _printme()
endfunction()

function(printme)
    message("Hello from third")
    _printme()
endfunction()

printme()

One would naively expect the output to be as follows:

Hello from third
Hello from second
Hello from first

But instead, the first implementation is never called because the second one ends up calling itself in
an infinite loop. When CMake processes the above, here’s what occurs:

1. The first implementation of printme is created and made available as a command of that name.
No command by that name previously existed, so no further action is required.

2. The second implementation of printme is encountered. CMake finds an existing command by
that name, so it defines the name _printme to point to the old command and sets printme to point
to the new definition.

3. The third implementation of printme is encountered. Again, CMake finds an existing command
by that name, so it redefines the name _printme to point to the old command (which is the second
implementation) and sets printme to point to the new definition.

When printme() is called, execution enters the third implementation, which calls _printme(). This
enters the second implementation which also calls _printme(), but _printme() points back at the
second implementation again and infinite recursion results. Execution never reaches the first
implementation.

In general, it is fine to override a function or macro as long as it does not try to call the previous
implementation like in the above discussion. Projects should simply assume that the new
implementation replaces the old one, with the old one considered to be no longer available.
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8.6. Special Variables For Functions
CMake 3.17 added support for a number of variables to assist with debugging and implementing
functions. The following variables will be available during execution of a function:

CMAKE_CURRENT_FUNCTION

Holds the name of the function currently being executed.

CMAKE_CURRENT_FUNCTION_LIST_FILE

Contains the full path to the file that defined the function currently being executed.

CMAKE_CURRENT_FUNCTION_LIST_DIR

Holds the absolute directory containing the file that defined the function currently being
executed.

CMAKE_CURRENT_FUNCTION_LIST_LINE

Holds the line number at which the currently executing function was defined within the file that
defined it.

The CMAKE_CURRENT_FUNCTION_LIST_DIR variable is particularly useful when a function needs to refer to
a file that is an internal implementation detail of the function. The value of CMAKE_CURRENT_LIST_DIR
would contain the directory of the file where the function is called, whereas
CMAKE_CURRENT_FUNCTION_LIST_DIR holds the directory where the function is defined. To see how this
can be used, consider the following example. It demonstrates a common pattern where a function
uses the configure_file() command to copy a file from the same directory as the file defining the
function (see Section 20.2, “Copying Files” for further discussion):

function(writeSomeFile toWhere)
    configure_file(${CMAKE_CURRENT_FUNCTION_LIST_DIR}/template.cpp.in ${toWhere} @ONLY)
endfunction()

Before CMake 3.17, the above would typically be implemented something like the following instead
(CMake’s own modules used this technique prior to CMake 3.17):

set(__writeSomeFile_DIR ${CMAKE_CURRENT_LIST_DIR})

function(writeSomeFile toWhere)
    configure_file(${__writeSomeFile_DIR}/template.cpp.in ${toWhere} @ONLY)
endfunction()

This second example relies on the __writeSomeFile_DIR variable remaining visible at the point of the
call to the function. Normally, that should be a reasonable assumption, but because functions have
global scope visibility, projects can technically define a function in one place and call it in an
unrelated variable scope. While that is technically legal, it is not a recommended practice. Extra
care must also be taken with this technique when include guards are used in files that define
functions (see Section 7.4, “Ending Processing Early”).
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The CMAKE_CURRENT_FUNCTION… variables are only updated for functions, they are not modified inside
macros. When executing code for a macro, these variables will hold whatever values they had
when the macro was called.

8.7. Other Ways Of Invoking CMake Code
Functions and macros provide powerful ways of defining code to be executed at some later time.
They are an essential part of re-using common logic for similar or repetitive tasks. Nevertheless,
there are situations where projects may want to define CMake code to be executed in a way that
functions and macros alone cannot capture.

CMake 3.18 added the cmake_language() command which can be used to invoke arbitrary CMake
code directly without having to define a function or macro. This functionality isn’t designed to
replace functions or macros, but rather to complement them by enabling more concise code and
the ability to express logic in ways that were not previously possible. The two sub-commands
provided by CMake 3.18 are CALL and EVAL CODE:

cmake_language(CALL command [args...])
cmake_language(EVAL CODE code...)

The CALL sub-command invokes a single CMake command, with arguments if required. It provides
the ability to parameterize the command to be invoked without having to hard-code all available
choices. Certain built-in commands cannot be invoked this way, specifically those commands that
start or end a block like if(), endif(), foreach(), endforeach() and so on.

The following example demonstrates how a generic wrapper can be defined around a set of
functions that include a version number in their name:

function(qt_generate_moc)
    set(cmd qt${QT_DEFAULT_MAJOR_VERSION}_generate_moc)

    cmake_language(CALL ${cmd} ${ARGV})
endfunction()

The above example assumes the QT_DEFAULT_MAJOR_VERSION variable has been set previously. As future
Qt major versions are released, the above would continue to work as long as the appropriate
versioned command was still provided. The alternative would be to implement an ever-expanding
set of if() tests for each version individually.

The CALL sub-command is fairly limited in its usefulness. The EVAL CODE sub-command is much more
powerful, as it supports executing any valid CMake script. One advantage of this is that it does not
interfere with variables that get updated inside a function invocation, such as ARGV,
CMAKE_CURRENT_FUNCTION and so on. The following example takes advantage of this behavior to
implement a form of call tracing for functions:
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set(myProjTraceCall [=[
    message("Called ${CMAKE_CURRENT_FUNCTION}")
    set(__x 0)
    while(__x LESS ${ARGC})
        message("  ARGV${__x} = ${ARGV${__x}}")
        math(EXPR __x "${__x} + 1")
    endwhile()
    unset(__x)
]=])

function(func)
    cmake_language(EVAL CODE "${myProjTraceCall}")
    # ...
endfunction()

func(one two three)

Called func
  ARGV0 = one
  ARGV1 = two
  ARGV2 = three

Note how the code stored in myProjTraceCall makes use of the various ARG* variables and also the
CMAKE_CURRENT_FUNCTION variable. Bracket syntax [=[ and ]=] is used to prevent the evaluation of these
variables when myProjTraceCall is set. The variables will be evaluated only when cmake_language() is
called, so they will reflect the details of the enclosing function. Because of this delayed evaluation,
the tracing code won’t work as expected inside a macro, so only use it from inside a function.

See Section 8.8.2, “Forwarding Command Arguments” for another particularly interesting example
of the EVAL CODE sub-command.

CMake 3.19 added the DEFER set of sub-commands. These allow a command to be queued for
execution at a later time and to manage the set of currently queued commands. Creating a deferred
command is accomplished with the following form:

cmake_language(DEFER
    [DIRECTORY dir]
    [ID id | ID_VAR outVar]
    CALL command [args...]   ①
)

① Evaluation of variables within command and args doesn’t follow the usual behavior of most other
CMake commands. See Section 8.8.3, “Special Cases For Argument Expansion” for a discussion of
the important differences.

The command and its arguments will be queued for execution at the end of the current directory
scope. The DIRECTORY option can be given to specify a different directory scope instead. In that case,
the dir directory must already be known to CMake and it must not already have finished being
processed. In practice, this means it must be either the current directory or one of the parent
directory scopes.
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cmake_language(DEFER
    CALL message "End of current scope processing"
)
cmake_language(DEFER
    DIRECTORY ${CMAKE_SOURCE_DIR}
    CALL message "End of top level processing"
)

Each queued command has an identifier associated with it. Multiple commands can be associated
with the same identifier to allow them to be manipulated as a group (see further below). Normally,
the project would let CMake automatically assign a new identifier when queueing a new deferred
command. The ID_VAR option can be used to capture the assigned identifier, which can then be re-
used in later calls with the ID option to add more commands to the same identifier.

cmake_language(DEFER
    ID_VAR deferredId
    CALL message "First deferred command"
)
cmake_language(DEFER
    ID ${deferredId}
    CALL message "Second deferred command"
)

Other DEFER sub-commands can query and cancel deferred commands based on identifiers:

cmake_language(DEFER [DIRECTORY dir] GET_CALL_IDS outVar)
cmake_language(DEFER [DIRECTORY dir] GET_CALL id outVar)
cmake_language(DEFER [DIRECTORY dir] CANCEL_CALL ids...)

The GET_CALL_IDS form returns a list of the identifiers for all commands currently queued for the
specified directory scope, or the current directory scope if no DIRECTORY option is given. The GET_CALL
form returns the first command and its arguments associated with the specified id. It is not possible
to retrieve the second or later commands for a given identifier, nor a count of how many
commands are associated with an identifier. The CANCEL_CALL form will discard all deferred
commands associated with any of the specified identifiers.

At this point, it would be natural to start thinking of different ways one might put the DEFER
functionality to use. Before doing so, consider the following observations:

• Special rules apply to variable expansion within deferred commands and their arguments (see
Section 8.8.3, “Special Cases For Argument Expansion”). These can lead to subtle problems that
can be difficult to trace.

• Deferred commands make it harder for developers to follow the flow of execution. This is
especially true when deferred commands are created inside functions or macros and their
creation isn’t made obvious.

• In deferring commands, the project may be making assumptions about what can happen
between the deferral and the execution of the commands. It may be quite difficult to guarantee
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that these assumptions remain valid, especially for commands deferred to parent scopes or
where deferred commands are created inside a function or macro that could be called from
anywhere.

• Deferred commands can be a sign of a project’s CMake API trying to do too much in one
function or macro.

Given the above, where there is a choice, prefer other techniques or refactoring over deferring
commands. As an example, a function might wrap a command that creates a target, then call other
commands that use properties of that target before returning (properties are covered in the next
chapter). By encapsulating all of this in a single function, the caller has no opportunity to modify
target properties before they are used. Rather than deferring the commands that use the target so
that the caller can modify the target properties, consider breaking up the function so that it doesn’t
have so many responsibilities. Requiring the target to be passed in instead of creating it would be
one alternative solution for this particular example.

8.8. Problems With Argument Handling
CMake’s implementation of command arguments contains a few subtle behaviors. For the most
part, these behaviors don’t lead to problems, but occasionally they can cause confusion or give rise
to unexpected results. In order to appreciate why these behaviors exist and how to handle them
safely, it helps to understand the way in which CMake constructs and passes arguments to
commands.

Consider the following equivalent calls where someCommand could be any valid command:

someCommand(a b c)
someCommand(a    b    c)

Arguments are separated by spaces and consecutive spaces are treated as a single argument
separator. Semi-colons act as argument separators too, so the following are also equivalent to the
above:

someCommand(a b;c)
someCommand(a;;;;b;c)

Where an argument needs to contain embedded spaces or semicolons, quoting must be used:

someCommand(a "b b" c)
someCommand(a "b;b" c)
someCommand(a;"b;b";c)

All three of the above calls result in three arguments being passed to the command. The first call
passes b b for the second argument, the other two calls pass b;b for the second argument.

Where spaces and semicolons differ is how they are handled when variable evaluation is involved
and arguments are not quoted:
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set(containsSpace     "b b")
set(containsSemiColon "b;b")

someCommand(a ${containsSpace} c)
someCommand(a ${containsSemiColon} c)

The first call to someCommand() results in three arguments being passed, whereas the second call
results in four arguments. The embedded space in containsSpace does not act as an argument
separator, but the embedded semicolon in containsSemiColon does. Spaces only act as argument
separators before any variable evaluation is performed. The interaction between these two
different behaviors can lead to some surprising results:

set(empty               "")
set(space               " ")
set(semicolon           ";")
set(semiSpace           "; ")
set(spaceSemi           " ;")
set(spaceSemiSpace      " ; ")
set(spaceSemiSemi       " ;;")
set(semiSemiSpace       ";; ")
set(spaceSemiSemiSpace  " ;; ")

someCommand(${empty})               # 0 args
someCommand(${space})               # 1 arg
someCommand(${semicolon})           # 0 args
someCommand(${semiSpace})           # 1 arg
someCommand(${spaceSemi})           # 1 arg
someCommand(${spaceSemiSpace})      # 2 args
someCommand(${spaceSemiSemi})       # 1 arg
someCommand(${semiSemiSpace})       # 1 arg
someCommand(${spaceSemiSemiSpace})  # 2 args

Some important observations should be noted from the above:

OBSERVATION 1

When they are the result of variable evaluations, spaces are never discarded and never act as
argument separators.

OBSERVATION 2

One or more semicolons at the start or the end of an unquoted argument are discarded.

OBSERVATION 3

Consecutive semicolons not at the start or end of an unquoted argument are merged and act as a
single argument separator.

Much of the confusion can be avoided by quoting arguments if they contain any variable
evaluations. This eliminates any special interpretation of embedded spaces or semicolons. While
not generally harmful, this isn’t always desirable. As the next subsection will highlight, there are
some situations which require arguments to be unquoted precisely because they rely on the above
behavior.
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8.8.1. Parsing Arguments Robustly

Consider the cmake_parse_arguments() command discussed earlier in Section 8.3, “Keyword
Arguments”. The original form of this command is typically used like so:

function(func)
    set(noValues     ENABLE_A ENABLE_B)
    set(singleValues FORMAT ARCH)
    set(multiValues  SOURCES IMAGES)

    cmake_parse_arguments(
        ARG
        "${noValues}" "${singleValues}" "${multiValues}"
        ${ARGV}
    )
endfunction()

Note the quoting around the evaluation of noValues, singleValues and multiValues. When evaluated,
each of these variables yields a string that contains a semicolon. For example, ${singleValues} will
evaluate to FORMAT;ARCH. The quotes are necessary to prevent those semicolons from acting as
argument separators. The end result is that cmake_parse_arguments() will see ARG for its first
argument, ENABLE_A;ENABLE_B as the second, FORMAT;ARCH as the third and SOURCES;IMAGES as the fourth.

The ${ARGV} provided at the end of the call does not have quotes. This is specifically to take
advantage of the fact that embedded semicolons will act as argument separators. The
cmake_parse_arguments() command interprets the fifth and subsequent arguments it receives as the
arguments to parse. By using an unquoted ${ARGV}, cmake_parse_arguments() sees the same set of
arguments as was passed in to func().

The problem with the above is that using ${ARGV} fails to preserve the original arguments in two
specific cases. Consider the following calls:

func(a "" c)
func("a;b;c" "1;2;3")

For the first call, inside func() the evaluation of ${ARGV} will be a;;c. As noted in OBSERVATION 3,
however, the two semicolons will be merged and cmake_parse_arguments() will see only a and c as the
arguments to be parsed. Empty arguments are silently dropped. For the second call, the evaluation
of ${ARGV} will be a;b;c;1;2;3. The original call to func() had a;b;c as the first argument and 1;2;3 as
the second, but this gets flattened by the ${ARGV} evaluation and the cmake_parse_arguments()
command instead sees six individual arguments rather than two lists. Both of these problems can
be solved by using the other form of the cmake_parse_arguments() command to avoid evaluating
${ARGV} directly:

cmake_parse_arguments(
    PARSE_ARGV 0 ARG
    "${noValues}" "${singleValues}" "${multiValues}"
)
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In practice, the cmake_parse_arguments() command is often used in situations where dropping empty
arguments or flattening lists has no real impact. In these cases, either form of the
cmake_parse_arguments() command can safely be called. Where the arguments need to be preserved
exactly as passed in though, the PARSE_ARGV form should always be used.

8.8.2. Forwarding Command Arguments

A relatively common need is to create some sort of wrapper around an existing command. The
project may wish to support some extra options or remove existing ones, or it may want to perform
certain processing before or after the call. Preserving arguments and forwarding them on without
changing their structure or losing information can be surprisingly difficult.

Consider the following example and its output, which picks up on one of the points in the previous
subsection:

function(printArgs)
    message("ARGC = ${ARGC}\n"
            "ARGN = ${ARGN}"
    )
endfunction()

printArgs("a;b;c" "d;e;f")

ARGC = 2
ARGN = a;b;c;d;e;f

The arguments to printArgs() are quoted, so the function does see only two arguments. In forming
the value for ${ARGN} though, these two lists are joined with a semicolon and the result is a single list
of six items. The original form of the arguments is lost as a result of this list flattening. Consider the
consequences of this for a wrapper command when it attempts to forward arguments to the
command being wrapped:

function(inner)
    message("inner:\n"
            "ARGC = ${ARGC}\n"
            "ARGN = ${ARGN}"
    )
endfunction()

function(outer)
    message("outer:\n"
            "ARGC = ${ARGC}\n"
            "ARGN = ${ARGN}"
    )
    inner(${ARGN})  # Naive forwarding, not robust
endfunction()

outer("a;b;c" "d;e;f")
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outer:
ARGC = 2
ARGN = a;b;c;d;e;f
inner:
ARGC = 6
ARGN = a;b;c;d;e;f

The outer() function wants to wrap the inner() function and forward its arguments exactly, but as
the above output shows, the number of arguments seen by inner() is different. The evaluation of
${ARGN} as a way to pass arguments through to inner() triggers the list flattening behavior described
previously. The original structure of the arguments is lost. The PARSE_ARGV form of the
cmake_parse_arguments() command can be used to avoid this list flattening:

function(outer)
    cmake_parse_arguments(PARSE_ARGV 0 FWD "" "" "")
    inner(${FWD_UNPARSED_ARGUMENTS})
endfunction()

With no keywords to parse, all arguments given to outer() will be placed in FWD_UNPARSED_ARGUMENTS.
As noted back in Section 8.3, “Keyword Arguments”, when the PARSE_ARGV form of
cmake_parse_arguments() populates FWD_UNPARSED_ARGUMENTS, it escapes any embedded semicolons from
the original arguments. Therefore, when that variable is passed to inner(), the escaping preserves
the structure of the original arguments and inner() will see the same arguments as outer().

Unfortunately, the above technique still has a weakness. As a consequence of OBSERVATIONS 2 and
3, it does not preserve any empty arguments. To avoid dropping empty arguments, each argument
needs to be listed individually and be quoted. The cmake_language(EVAL CODE) command available
with CMake 3.18 or later provides the functionality needed:

function(outer)
    cmake_parse_arguments(PARSE_ARGV 0 FWD "" "" "")

    set(quotedArgs "")
    foreach(arg IN LISTS FWD_UNPARSED_ARGUMENTS)
        string(APPEND quotedArgs " [===[${arg}]===]")
    endforeach()

    cmake_language(EVAL CODE "inner(${quotedArgs})")
endfunction()

Note the use of the bracket form for quoting. This ensures that any arguments with embedded
quotes will be handled robustly too.

The above implementation provides robust argument forwarding, but it requires a minimum
CMake version of 3.18 or higher. For earlier versions, the cmake_language() command is not
available. An equivalent capability can be implemented by writing out the command to be executed
to a file and asking CMake to process that file via a call to include(), but this is very inefficient and
not recommended as a general solution.
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The above technique works only for functions. The PARSE_ARGV form of cmake_parse_arguments() can’t
be used with macros, which means list flattening cannot be avoided. However, if list flattening is
not a concern, one can at least preserve empty strings. The following implementation demonstrates
one way to achieve that, under the assumption that no value will ever need to contain a semicolon:

# WARNING: This example does not preserve list structure.
#          It does preserve empty string arguments.
macro(outer)
    string(REPLACE ";" "]===] [===[" args "[===[${ARGV}]===]")
    cmake_language(EVAL CODE "inner(${args})")
endmacro()

See Section 32.2.6, “Delegating Providers” for an example of a scenario where the above technique
may be needed.

8.8.3. Special Cases For Argument Expansion

While the above techniques work well in general, some built-in commands handle their arguments
in special ways, causing them to diverge from the expected behavior. These exceptions fall into two
main categories: cmake_language() and evaluating boolean expressions.

Variable Evaluation For cmake_language()

cmake_language(CALL) provides an alternative way of executing a command. The command to call can
be provided by a variable instead of having to be hard-coded. In order to faithfully reproduce the
normal argument expansion and quote handling behavior for the arguments given to the
forwarded-to command, those arguments are required to be separated from the command itself in
the call to cmake_language(CALL). The following example demonstrates the limitation:

# ERROR: command must be its own argument
set(cmdWithArgs message STATUS "Hello world")
cmake_language(CALL ${cmdWithArgs})

# OK: Command can be a variable expansion, but it must evaluate to a single value.
# Arguments can also be a variable expansion and they can evaluate to a list.
set(cmd message)
set(args STATUS "Hello world")
cmake_language(CALL ${cmd} ${args})

The cmake_language(DEFER CALL) command has similar restrictions, but it has further differences.
Variable evaluations are performed immediately for the command to be executed, but evaluations
are deferred for the command arguments. The following example highlights this behavior:

set(cmd message)
set(args "before deferral")
cmake_language(DEFER CALL ${cmd} ${args})

set(cmd somethingElse)      # Doesn't affect the command
set(args "after deferral")  # But this does!
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after deferral

The evaluation of ${cmd} happens immediately, but ${args} is not evaluated until the deferred
command is called. At the end of the directory scope, args will have the value after deferral.

If evaluation of variables in command arguments needs to be performed immediately, one has to
wrap the deferral within a call to cmake_language(EVAL CODE). An example of this scenario is where
the deferral is created inside a function or macro and the deferred command arguments need to
incorporate information passed as arguments to the deferring function or macro:

function(endOfScopeMessage msg)
    cmake_language(EVAL CODE "cmake_language(DEFER CALL message [[${msg}]])")
endfunction()

Note how quoting with bracket syntax is used around the ${msg} evaluation to ensure spaces in the
evaluated variable are handled correctly.

Boolean Expressions

Commands that treat their arguments as a boolean expression also have some special rules
associated with quoting and argument expansion. The if() command best demonstrates this, but
the rules also apply to while(). Consider the following example, which shows the subtle behavior of
how unquoted arguments can be treated as either variable names or string values (see Section
6.1.1, “Basic Expressions” for a deeper discussion of this behavior):

cmake_minimum_required(VERSION 3.1)

set(someVar xxxx)
set(xxxx "some other value")

# Here, xxxx is unquoted, so it is treated as the name of
# a variable and its value is used. Result: prints NO
if(someVar STREQUAL xxxx)
    message(YES)
else()
    message(NO)
endif()

# Now use xxxx in quotes. This prevents it from being treated as a
# variable name and the value is used directly. Result: prints YES
if(someVar STREQUAL "xxxx")
    message(YES)
else()
    message(NO)
endif()

Attempting to reproduce the above using variables to provide arguments to the if() commands,
one might try something like the following:
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set(noQuotes   someVar STREQUAL xxxx)
set(withQuotes someVar STREQUAL [["xxxx"]])

if(${noQuotes})
    message(YES)
else()
    message(NO)
endif()

if(${withQuotes})  # Doesn't work as expected
    message(YES)
else()
    message(NO)
endif()

The value of withQuotes uses bracket syntax to make the quotes part of the value stored. The idea is
to try to get the if() command to treat xxxx as a quoted argument, but it does not have the desired
effect. The if() command checks for quotes before expansion, so in this case, the quotes get treated
as part of the argument value. There is no way to get an argument to be treated as quoted when
providing the arguments to if() through an expanded variable evaluation like in the above.

One other special case to be aware of is the way square brackets affect how semicolons are
interpreted for lists, as discussed previously in Section 5.9.1, “Problems With Unbalanced Square
Brackets”. Semicolons between unbalanced square brackets are not interpreted as list separators
when evaluating a variable. This does not extend to the way CMake assembles command
arguments though, as demonstrated by the following example and its output:

function(func)
    message("Number of arguments: ${ARGC}")
    math(EXPR lastIndex "${ARGC} - 1")
    foreach(n RANGE 0 ${lastIndex})
        message("ARGV${n} = ${ARGV${n}}")
    endforeach()

    foreach(arg IN LISTS ARGV)
        message("${arg}")
    endforeach()
endfunction()

func("a[a" "b]b" "c[c]c" "d[d" "eee")

Number of arguments: 5
ARGV0 = a[a
ARGV1 = b]b
ARGV2 = c[c]c
ARGV3 = d[d
ARGV4 = eee
a[a;b]b
c[c]c
d[d;eee
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The func() command does see the five original arguments, as demonstrated by the first foreach()
loop. The evaluation of the ARGV variable by the second foreach() command is where the embedded
unbalanced square brackets interfere with how the variable is interpreted as a list.

In practice, it is relatively uncommon to find situations where unbalanced square brackets may
reasonably be present. Occasionally, balanced square brackets may be encountered, but as the c[c]c
argument in the above example shows, they do not interfere with list interpretation.

8.9. Recommended Practices
Functions and macros are a great way to re-use the same piece of CMake code throughout a project.
In general, prefer to use functions rather than macros, since the use of a new variable scope within
the function better isolates that function’s effects on the calling scope. Macros should generally only
be used where the contents of the macro body really do need to be executed within the scope of the
caller. These situations should generally be relatively rare. To avoid unexpected behavior, also
avoid calling return() from inside a macro.

Prefer to pass all values a function or macro needs as command arguments rather than relying on
variables being set in the calling scope. This tends to make the implementation more robust to
future changes and it is much clearer and easier to maintain.

For all but very trivial functions or macros, it is highly recommended to use the keyword-based
argument handling provided by cmake_parse_arguments(). This leads to better usability and improved
robustness of calling code (e.g. little chance of getting arguments mixed up). It also allows the
function to be more easily extended in the future because there is no reliance on argument
ordering or for all arguments to always be provided, even if not relevant.

Beware of dropping empty arguments and list flattening when parsing or forwarding command
arguments. Where the project’s minimum CMake version allows, prefer to use the PARSE_ARGV form
of cmake_parse_arguments() inside functions. When forwarding arguments, use cmake_language(EVAL
CODE) to quote each argument individually if preserving empty arguments and lists is required.

Prefer to avoid deferring commands via cmake_language(DEFER) if there are other alternatives.
Deferred commands introduce fragility, hinder the ability to debug a project and can be a sign that
CMake functions and macros should be refactored.

Rather than distributing functions and macros throughout the source tree, a common practice is to
nominate a particular directory (usually just below the top level of the project) where various
XXX.cmake files can be collected. That directory acts like a catalog of ready-to-use functionality, able
to be conveniently accessed from anywhere in the project. Each of the files can provide functions,
macros, variables and other features as appropriate. Using a .cmake file name suffix allows the
include() command to find the files as modules, a topic covered in detail in Chapter 11, Modules. It
also tends to allow IDE tools to recognize the file type and apply CMake syntax highlighting.

Do not define or call a function or macro with a name that starts with a single underscore. In
particular, do not rely on the undocumented behavior whereby the old implementation of a
command is made available by such a name when a function or macro redefines an existing
command. Once a command has been overridden more than once, its original implementation is no
longer accessible. This undocumented behavior may even be removed in a future version of CMake,
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so it should not be used. Along similar lines, do not override any builtin CMake command. Consider
those to be off-limits so that projects will always be able to assume the builtin commands behave as
per the official documentation and there will be no opportunity for the original command to
become inaccessible.

Where the project’s minimum CMake version is set to 3.17 or later, prefer to use
CMAKE_CURRENT_FUNCTION_LIST_DIR to refer to any file or directory expected to exist at a location
relative to the file in which a function is defined.
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Chapter 9. Properties
Properties affect just about all aspects of the build process, from how a source file is compiled into
an object file, right through to the install location of built binaries in a packaged installer. They are
always attached to a specific entity, whether that be a directory, target, source file, test case, cache
variable or even the overall build process itself. Rather than holding a standalone value like a
variable does, a property provides information specific to the entity it is attached to.

For those new to CMake, properties are sometimes confused with variables. Though both may
initially seem similar in terms of function and features, properties serve a very different purpose. A
variable is not attached to any particular entity and it is very common for projects to define and use
their own variables. Compare this with properties which are typically well defined and
documented by CMake and which always apply to a specific entity. A likely contributor to the
confusion between the two is that a property’s default value is sometimes provided by a variable.
The names CMake uses for related properties and variables usually follow the same pattern, with
the variable name being the property name with CMAKE_ prepended.

9.1. General Property Commands
CMake provides a number of commands for manipulating properties. The most generic of these,
set_property() and get_property(), allow setting and getting any property on any type of entity.

set_property(entitySpecific
    [APPEND | APPEND_STRING]
    PROPERTY propertyName values...
)

entitySpecific defines the entity whose property is being set. It must be one of the following:

GLOBAL
DIRECTORY [dir]
TARGET    targets...
SOURCE    sources...  # Additional options with CMake 3.18
INSTALL   files...
TEST      tests...
CACHE     vars...

The first word of each of the above defines the type of entity whose property is being set. GLOBAL
means the build itself, so there is no specific entity name required. For DIRECTORY, if no dir is named,
the current source directory is used. For all the other types of entities, any number of items of that
type can be listed. The SOURCE entity type also supports some additional options when using CMake
3.18 or later, which are discussed in Section 9.5, “Source Properties”.

The PROPERTY keyword marks all remaining arguments as defining the property name and its
value(s). The propertyName would normally match one of the properties defined in the CMake
documentation, a number of which are discussed in later chapters. The meaning of the value(s) are
property specific.

97



In addition to the properties defined by CMake, a project may also set its own custom properties. It
is up to the project what such properties mean and how they affect the build. If choosing to do this,
it would be wise for projects to use a project-specific prefix on the property name to avoid potential
name clashes with properties defined by CMake or other third party packages.

set_property(TARGET MyApp1 MyApp2
    PROPERTY MYPROJ_CUSTOM_PROP val1 val2 val3
)

The above example defines a custom MYPROJ_CUSTOM_PROP property which will have the list
val1;val2;val3 as its value. It also demonstrates how to set a property for multiple targets at once.

The APPEND and APPEND_STRING keywords can be used to control how the named property is updated if
it already has a value. With neither keyword specified, the value(s) given replace any previous
value. The APPEND keyword changes the behavior to append the value(s) to the existing one, forming
a list, whereas the APPEND_STRING keyword takes the existing value and appends the new value(s) by
concatenating the two as strings rather than as a list (see also the special note for inherited
properties further below). The following table demonstrates the differences.

Previous Value(s) New Value(s) No Keyword APPEND APPEND_STRING

foo bar bar foo;bar foobar

a;b c;d c;d a;b;c;d a;bc;d

The get_property() command follows a similar form:

get_property(resultVar entitySpecific
    PROPERTY propertyName
    [DEFINED | SET | BRIEF_DOCS | FULL_DOCS]
)

The PROPERTY keyword and propertyName are always required. The entitySpecific part is similar to
that for set_property() and must be one of the following:

GLOBAL
DIRECTORY [dir]
TARGET    target
SOURCE    source  # Additional options with CMake 3.18
INSTALL   file
TEST      test
CACHE     var
VARIABLE

As before, GLOBAL refers to the build as a whole and therefore requires no specific entity to be
named. DIRECTORY can be used with or without specifying a particular directory, with the current
source directory being assumed if no directory is provided. For most of the other scopes, the
particular entity within that scope must be named. Again, the SOURCE entity type supports additional
options when using CMake 3.18 or later and these are covered in Section 9.5, “Source Properties”.
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The VARIABLE type is a bit different, with the variable name being specified as the propertyName rather
than being attached to the VARIABLE keyword. This can seem somewhat unintuitive, but consider the
situation if the variable was named as the entity along with the VARIABLE keyword, just like for the
other entity type keywords. In that situation, there would be nothing to specify for the property
name. It may help to think of VARIABLE as specifying the current scope, then the property of interest
is the variable named by propertyName. When understood this way, VARIABLE is consistent with how
the other entity types are handled.

If none of the optional keywords are given, the value of the property is stored in the variable
named by resultVar. This is the typical usage of the get_property() command. For the VARIABLE scope,
variable values can and should be obtained more directly with the ${} syntax instead. The optional
keywords can be used to retrieve other details about a property:

DEFINED

The result of the retrieval will be a boolean value indicating whether the named property has
been defined. In the case of VARIABLE scope queries, the result will only be true if the named
variable has been explicitly defined with the define_property() command (see below).

SET

The result of the retrieval will be a boolean value indicating whether the named property has
been set. It differs from DEFINED in that it queries whether the named property has actually been
set to some value (the value itself is irrelevant), whereas DEFINED is more about describing what
the property means. SET is usually what projects need rather than DEFINED in most scenarios. Note
also that a property can return true for DEFINED and false for SET, or vice versa.

BRIEF_DOCS

Retrieves the brief documentation string for the named property. If no brief documentation has
been defined for the property, the result will be the string NOTFOUND.

FULL_DOCS

Retrieves the full documentation for the named property. If no full documentation has been
defined for the property, the result will be the string NOTFOUND.

Of the optional keywords, all but SET have little value unless the project has explicitly called
define_property() to populate the requested information for the entity:

define_property(entityType
    PROPERTY propertyName
    [INHERITED]

    # Mandatory for CMake 3.22 and earlier
    [BRIEF_DOCS briefDoc [moreBriefDocs...]]
    [FULL_DOCS fullDoc [moreFullDocs...]]

    # Requires CMake 3.23 or later
    [INITIALIZE_FROM_VARIABLE variableName]
)
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The define_property() command does not set the property’s value. Rather, it controls how that
property is initialized or inherited, and potentially provides documentation. CMake 3.22 and earlier
require BRIEF_DOCS and FULL_DOCS to be present, but they are unused by CMake other than providing
them back to the project via get_property(). It is likely these documentation options will be
deprecated in a future version of CMake due to their lack of usefulness.

The entityType must be one of GLOBAL, DIRECTORY, TARGET, SOURCE, TEST, VARIABLE or CACHED_VARIABLE. The
propertyName specifies the property being defined. No entity is specified, although like for the
get_property() command, in the case of VARIABLE, the variable name is specified as propertyName.

If the INHERITED option is given, the get_property() command will chain up to the parent scope if that
property is not set in the named scope. For example, if a DIRECTORY property is requested, but is not
set for the directory specified, the parent directory scope is queried recursively up the directory
scope hierarchy until the property is found or the top level of the source tree is reached. If still not
found at the top level directory, then the GLOBAL scope will be searched. Similarly, if a TARGET, SOURCE
or TEST property is requested, but is not set for the specified entity, the DIRECTORY scope will be
searched (including recursively up the directory hierarchy and ultimately to the GLOBAL scope if
necessary). No such chaining functionality is provided for VARIABLE or CACHE, since these already
chain to the parent variable scope by design.

The inheriting behavior of INHERITED properties only applies to the get_property() command and its
analogous get_… functions for specific property types (covered in the sections below). When calling
set_property() with APPEND or APPEND_STRING options, only the immediate value of the property is
considered (i.e. no inheriting occurs when working out the value to append to).

CMake 3.23 added support for the INITIALIZE_FROM_VARIABLE keyword, which specifies a variable to
be used to initialize the named property. It can only be used with target properties and only affects
targets created after the call to define_property(). The variable name must end with the name of the
property and cannot begin with CMAKE_ or _CMAKE_. This feature is a particularly useful way of
providing a default value for a custom property defined by the project. With that in mind, the
property name must also contain at least one underscore. This constraint exists to encourage
projects to name their custom properties with a project-specific prefix.

# Example of setting the variable, but it could instead be set by the user,
# or even left unset to initialize the property with an empty value
set(MYPROJ_SOMETOOL_OPTIONS --verbose)

define_property(TARGET PROPERTY MYPROJ_SOMETOOL_OPTIONS
    INITIALIZE_FROM_VARIABLE MYPROJ_SOMETOOL_OPTIONS
)

CMake has a large number of pre-defined properties of each type. Developers should consult the
CMake reference documentation for the available properties and their intended purpose. In later
chapters, many of these properties are discussed and their relationship to other CMake commands,
variables and features are explored.
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9.2. Global Properties
Global properties relate to the overall build as a whole. They are typically used for things like
modifying how build tools are launched or other aspects of tool behavior, for defining aspects of
how project files are structured and for providing some degree of build-level information.

In addition to the generic set_property() and get_property() commands, CMake also provides
get_cmake_property() for querying global entities. It is more than just shorthand for get_property(),
although it can be used simply to retrieve the value of any global property.

get_cmake_property(resultVar property)

Just like for get_property(), resultVar is the name of a variable in which the value of the requested
property will be stored when the command returns. The property argument can be the name of any
global property or one of the following pseudo properties:

VARIABLES

Return a list of all regular (i.e. non-cache) variables.

CACHE_VARIABLES

Return a list of all cache variables.

COMMANDS

Return a list of all defined commands, functions and macros. Commands are pre-defined by
CMake, whereas functions and macros can be defined either by CMake (typically through
modules) or by projects themselves. Some of the returned names may correspond to
undocumented or internal entities not intended for projects to use directly. The names may be
returned with different upper/lower case than the way they were originally defined.

MACROS

Return a list of just the defined macros. This will be a subset of what the COMMANDS pseudo
property would return, but note that the upper/lower case of the names can be different to what
the COMMANDS pseudo property reports.

COMPONENTS

Return a list of all components defined by install() commands, which is covered in Chapter 27,
Installing.

These read-only pseudo properties are technically not global properties (they cannot be retrieved
using get_property(), for example), but they are notionally very similar. They can only be retrieved
via get_cmake_property().

9.3. Directory Properties
Directories also support their own set of properties. Logically, directory properties sit somewhere
between global properties which apply everywhere and target properties which only affect
individual targets. As such, directory properties mostly focus on setting defaults for target
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properties and overriding global properties or defaults for the current directory. A few read-only
directory properties also provide a degree of introspection, holding information about how the
build reached the directory, what things have been defined at that point, etc.

For convenience, CMake provides dedicated commands for setting and getting directory properties
which are a little more concise than their generic counterparts:

set_directory_properties(PROPERTIES prop1 val1 [prop2 val2] ...)

get_directory_property(resultVar [DIRECTORY dir] property)
get_directory_property(resultVar [DIRECTORY dir] DEFINITION varName)

While being a little more concise, this directory-specific setter command lacks any APPEND or
APPEND_STRING option. This means it can only be used to set or replace a property, it cannot be used to
add to an existing property directly. A further restriction of this command compared to the more
generic set_property() is that it always applies to the current directory. Projects may choose to use
this more specific form where it is convenient and use the generic form elsewhere, or for
consistency the more generic form may be used everywhere. Neither approach is more correct, it’s
more a matter of preference.

The directory-specific getter command has two forms. The first form is used to get the value of a
property from a particular directory or from the current directory if the DIRECTORY argument is not
used. The second form retrieves the value of a variable, which may not seem all that useful, but it
provides a means of obtaining a variable’s value from a different directory scope other than the
current one (when the DIRECTORY argument is used). In practice, this second form should rarely be
needed and its use should be avoided for scenarios other than debugging the build or similar
temporary tasks.

For either form of the get_directory_property() command, if the DIRECTORY argument is used, the
named directory must have already been processed by CMake. It is not possible for CMake to know
the properties of a directory scope it has not yet encountered.

9.4. Target Properties
Few things in CMake have such a strong and direct influence on how targets are built as target
properties. They control and provide information about everything from the flags used to compile
source files through to the type and location of the built binaries and intermediate files. Some
target properties affect how targets are presented in the developer’s IDE project, while others affect
the tools used when compiling/linking. In short, target properties are where most of the details
about how to actually turn source files into binaries are collected and applied.

A number of methods have evolved in CMake for manipulating target properties. In addition to the
generic set_property() and get_property() commands, CMake also provides some target-specific
equivalents for convenience:
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set_target_properties(target1 [target2...]
    PROPERTIES
        propertyName1 value1
        [propertyName2 value2] ...
)
get_target_property(resultVar target propertyName)

As for the set_directory_properties() command, set_target_properties() lacks the full flexibility of
set_property() but provides a simpler syntax for common cases. The set_target_properties()
command does not support appending to existing property values and if a list value needs to be
provided for a given property, the set_target_properties() command requires that value to be
specified in string form, e.g. "this;is;a;list".

The get_target_property() command is the simplified version of get_property(). It focuses purely on
providing a simple way to obtain the value of a target property and is basically just a shorthand
version of the generic command.

In addition to the generic and target-specific property getters and setters, CMake also has a number
of other commands which modify target properties. In particular, the family of target_…()
commands are a critical part of CMake and all but the most trivial of projects would typically use
them. These commands define not only properties for a particular target, they also define how that
information might be propagated to other targets that link to it. Chapter 15, Compiler And Linker
Essentials covers those commands and how they relate to target properties in depth.

9.5. Source Properties
CMake also supports properties on individual source files. These enable fine-grained manipulation
of compiler flags on a file-by-file basis rather than for all of a target’s sources. They also allow
additional information about the source file to be provided to modify how CMake or build tools
treat the file. For example, they may indicate whether the file is generated as part of the build, what
compiler to use with it, options for non-compiler tools working with the file and so on.

Projects should rarely need to query or modify source file properties, but for those situations that
require it, CMake provides dedicated setter and getter commands to make the task easier. These
follow a similar pattern to the other property-specific setter and getter commands:

set_source_files_properties(file1 [file2...]
    PROPERTIES
        propertyName1 value1
        [propertyName2 value2] ...
)
get_source_file_property(resultVar sourceFile propertyName)

Again, no APPEND functionality is provided for the setter, while the getter is really just syntax
shorthand for the generic get_property() command and offers no new functionality. The following
example shows how to set a property on a source file, in this case to prevent it from being
combined with other sources in a unity build (discussed in Section 35.1, “Unity Builds”):
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add_executable(MyApp small.cpp big.cpp tall.cpp thin.cpp)

set_source_files_properties(big.cpp PROPERTIES SKIP_UNITY_BUILD_INCLUSION YES)

With CMake 3.17 and earlier, source properties are only visible to targets defined in the same
directory scope. If the setting of a source property occurs in a different directory scope, the target
will not see that property change and therefore the compilation, etc. of that source file will not be
affected. With CMake 3.18 or later, additional options are available to specify the directory scope in
which the source file properties should be searched or applied. The following shows the full set of
options available for setting source file properties with CMake 3.18 or later:

set_property(SOURCE sources...
    [DIRECTORY dirs...]
    [TARGET_DIRECTORY targets...]
    [APPEND | APPEND_STRING]
    PROPERTY propertyName values...
)

set_source_files_properties(sources...
    [DIRECTORY dirs...]
    [TARGET_DIRECTORY targets...]
    PROPERTIES
        propertyName1 value1
        [propertyName2 value2] ...
)

The DIRECTORY option can be used to specify one or more directories in which the source properties
should be set. Any targets created in those directories will be aware of the source properties. These
directories must have already been added to the build by an earlier call to add_subdirectory(). Any
relative paths will be treated as relative to the current source directory.

The TARGET_DIRECTORY option is similar, except it is followed by the names of targets. For each target
listed, the directory in which that target was created (i.e. its source directory) will be treated as
though it had been specified with the DIRECTORY option. Note that this means all targets defined in
that directory will be aware of the source property, not just the target specified.

CMake 3.18 also added analogous options for retrieving source file properties:

get_property(resultVar SOURCE source
    [DIRECTORY dir | TARGET_DIRECTORY target]
    PROPERTY propertyName
    [DEFINED | SET | BRIEF_DOCS | FULL_DOCS]
)

get_source_file_property(resultVar source
    [DIRECTORY dir | TARGET_DIRECTORY target]
    propertyName
)
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When retrieving source file properties, at most one target or directory can be listed to identify the
directory scope from which to retrieve the property. The current source directory is assumed if
neither DIRECTORY nor TARGET_DIRECTORY is given.

Whether DIRECTORY or TARGET_DIRECTORY options are specified or not, note that it is possible for a
source file to be compiled into multiple targets. Therefore, in each of the directory scopes where the
source properties are set, the properties should make sense for all targets using those files.

Developers should be aware of an implementation detail which may present a strong deterrent to
their use in some situations. For some CMake generators (notably the Unix Makefiles generator), the
dependencies between sources and source properties are stronger than one might expect. If source
properties are used to modify the compiler flags for specific source files rather than for a whole
target, changing the source’s compiler flags will still result in all of the target’s sources being
rebuilt, not just the affected source file. This is a limitation of how the dependency details are
handled in the Makefile, where testing whether each individual source’s compiler flags have
changed brings with it a prohibitively big performance hit. The relevant Makefile dependencies
were implemented at the target level instead to avoid that problem.

A typical scenario where projects may be tempted to use source properties is to pass version details
to just one or two sources as compiler definitions. As discussed in Section 21.2, “Source Code Access
To Version Details”, there are better alternatives to source properties which do not suffer from the
sort of build performance problems mentioned above. Setting some source properties can also
reduce build performance by preventing those sources from participating in unity builds (see
Section 35.1, “Unity Builds”).

The Xcode generator also has a limitation in its support for source properties which prevents it
from handling configuration-specific property values. See Section 15.6, “Language-specific Compiler
Flags” for a scenario of where this limitation can be important.

9.6. Cache Variable Properties
Properties on cache variables are a little different in purpose to other property types. For the most
part, cache variable properties are aimed more at how the cache variables are handled in the
CMake GUI and the console-based ccmake tool rather than affecting the build in any tangible way.
There are also no extra commands provided for manipulating them, so the generic set_property()
and get_property() commands must be used with the CACHE keyword

In Section 5.3, “Cache Variables”, a number of aspects of cache variables were discussed which are
ultimately reflected in the cache variable properties.

• Each cache variable has a type, which must be one of BOOL, FILEPATH, PATH, STRING or INTERNAL. This
type can be obtained using get_property() with the property name TYPE. The type affects how the
CMake GUI and ccmake present that cache variable in the UI and what kind of widget is used for
editing its value. Any variable with type INTERNAL will not be shown at all.

• A cache variable can be marked as advanced with the mark_as_advanced() command, which is
really just setting the boolean ADVANCED cache variable property. The CMake GUI and the ccmake
tool both provide an option to show or hide advanced cache variables. The user can then choose
whether to focus on just the main basic variables or to see the full list.
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• The help string of a cache variable is typically set as part of a call to the set() command, but it
can also be modified or read using the HELPSTRING cache variable property. This help string is
used as the tooltip in the CMake GUI and as a one-line help tip in the ccmake tool.

• If a cache variable is of type STRING, then CMake GUI will look for a cache variable property
named STRINGS. If not empty, it is expected to be a list of valid values for the variable and CMake
GUI will then present that variable as a combo box of those values rather than an arbitrary text
entry widget. In the case of ccmake, pressing enter on that cache variable will cycle through the
values provided. Note that CMake does not enforce that the cache variable must be one of the
values from the STRINGS property, it is only a convenience for the CMake GUI and ccmake tools.
When CMake runs its configure step, it still treats the cache variable as an arbitrary string, so it
is still possible to give the cache variable any value either at the cmake command line or via set()
commands in the project.

9.7. Other Property Types
CMake also supports properties on individual tests and it provides the usual test-specific versions of
the property setter and getter commands:

set_tests_properties(test1 [test2...]
    PROPERTIES
        propertyName1 value1
        [propertyName2 value2] ...
)
get_test_property(resultVar test propertyName)

Like their equivalent counterparts, these are just slightly more concise versions of the generic
commands which lack APPEND functionality but may be more convenient in some circumstances.
Tests are discussed in detail in Chapter 26, Testing.

The other type of property CMake supports is for installed files. These properties are specific to the
type of packaging being used and are typically not needed by most projects.

9.8. Recommended Practices
Properties are a crucial part of CMake. A range of commands have the ability to set, modify or
query the various types of properties, some of which have further implications for dependencies
between projects.

• All but the special global pseudo properties can be fully manipulated using the generic
set_property() command, making it predictable for developers and offering flexible APPEND
functionality where needed. The property-specific setters may be more convenient in some
situations, such as allowing multiple properties to be set at once, but their lack of APPEND
functionality may steer some projects towards just using set_property(). Neither is right or
wrong, although a common mistake is to use the property-specific commands to replace a
property value instead of appending to it.

• For target properties, use of the various target_…() commands is strongly recommended over
manipulating the associated target properties directly. These commands not only manipulate
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the properties on specific targets, they also set up dependency relationships between targets so
that CMake can propagate some properties automatically. Chapter 15, Compiler And Linker
Essentials discusses a range of topics which highlight the strong preference for the target_…()
commands.

• Source properties offer a fine granularity on the level of control of compiler options, etc. These
do, however, have the potential for undesirable negative impacts on the build behavior of a
project. In particular, some CMake generators may rebuild more than should be necessary
when compile options for only a few source files change. The Xcode generator also has
limitations which prevent it from supporting configuration-specific source file properties.
Projects should consider using other alternatives to source properties where available, such as
the techniques given in Section 21.2, “Source Code Access To Version Details”.
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Chapter 10. Generator Expressions
When running CMake, developers tend to think of it as a single step which involves reading the
project’s CMakeLists.txt file and producing the relevant set of generator-specific project files (e.g.
Visual Studio solution and project files, an Xcode project, Unix Makefiles or Ninja input files). There
are, however, two quite distinct steps involved. When running CMake, the end of the output log
typically looks something like this:

-- Configuring done
-- Generating done
-- Build files have been written to: /some/path/build

When CMake is invoked, it first reads in and processes the CMakeLists.txt file at the top of the
source tree, including any other files it pulls in. An internal representation of the project is created
as the commands, functions, etc. are executed. This is called the configure step. Most of the output to
the console log is produced during this stage, including any content from message() commands. At
the end of the configure step, the -- Configuring done message is printed to the log.

Once CMake has finished reading and processing the CMakeLists.txt file, it then performs the
generation step. This is where the build tool’s project files are created using the internal
representation built up in the configure step. For the most part, developers tend to ignore the
generation step and just think of it as the end result of configuration. The console log almost always
shows the -- Generating done message immediately after the configure step completes, so this is
understandable. But there are situations where understanding the separation into two distinct
phases is particularly important.

Consider a project processed for a multi configuration CMake generator like Xcode, Visual Studio or
Ninja Multi-Config. When the CMakeLists.txt files are being read, CMake doesn’t know which
configuration a target will be built for. It is a multi configuration setup, so there’s more than one
choice (e.g. Debug, Release, etc.). The developer selects the configuration at build time, well after
CMake has finished. This would seem to present a problem if the CMakeLists.txt file wants to do
something like copy a file to the same directory as the final executable for a given target, since the
location of that directory depends on which configuration is being built. A placeholder is needed to
tell CMake "For whichever configuration is being built, use the directory of the final executable".

This is a prime example of the functionality provided by generator expressions. They provide a way
to encode some logic which is not evaluated at configure time, the evaluation is instead delayed
until the generation phase when the project files are being written. They can be used to perform
conditional logic, output strings providing information about various aspects of the build like
directories, names of things, platform details and more. They can even be used to provide different
content based on whether a build or an install is being performed.

Generator expressions cannot be used everywhere, but they are supported in many places. In the
CMake reference documentation, if a particular command or property supports generator
expressions, the documentation will mention it. The set of properties supporting generator
expressions have expanded over time, with some CMake releases also expanding the set of
supported expressions. Projects should confirm that for the minimum CMake version they require,
the properties being modified do indeed support the generator expressions used.
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10.1. Simple Boolean Logic
A generator expression is specified using the syntax $<…> where the content between the angle
brackets can take a few different forms. As will become clear shortly, an essential feature is the
conditional inclusion of content. The most basic generator expressions for this are the following:

$<1:...>
$<0:...>

For $<1:…>, the result of the expression will be the … part, whereas for $<0:…>, the … part is
ignored and the expression results in an empty string. These are basically the true and false
conditional expressions, but unlike for variables, the concept of true and false only allows for these
two specific values. Anything other than 0 or 1 for a conditional expression is rejected by CMake
with a fatal error. Another generator expression can be used to make boolean expression
evaluation more flexible and ensure content evaluates to 0 or 1:

$<BOOL:...>

This evaluates the … content in the same way that the if() command evaluates a boolean constant,
so it understands all the usual special strings like OFF, NO, FALSE and so on. A very common pattern is
to use it to wrap the evaluation of a variable that is expected to hold a boolean value, but which
might not be restricted to 0 or 1 (see the table a little further below for examples).

Logical operations are also supported:

$<AND:expr[,expr...]>
$<OR:expr[,expr...]>
$<NOT:expr>

Each expr is expected to evaluate to either 1 or 0. The AND and OR expressions can take any number of
comma-separated arguments and provide the corresponding logic result, while NOT accepts only a
single expression and will yield the negation of its argument. Because AND, OR and NOT require that
their expressions evaluate to only 0 or 1, consider wrapping those expressions in a $<BOOL:…> to
force more tolerant logic of what is considered a true or false expression.

With CMake 3.8 and later, if-then-else logic can also be expressed very conveniently using a
dedicated $<IF:…> expression:

$<IF:expr,val1,val0>

As usual, the expr must evaluate to 1 or 0. The result is val1 if expr evaluates to 1 and val0 if expr
evaluates to 0. Before CMake 3.8, equivalent logic would have to be expressed in the following more
verbose way that requires the expression to be given twice:

$<expr:val1>$<$<NOT:expr>:val0>
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Generator expressions can be nested, allowing expressions of arbitrary complexity to be
constructed. The above example shows a nested condition, but any part of a generator expression
can be nested. The following examples demonstrate the features discussed so far:

Expression Result

$<1:foo> foo

$<0:foo>

$<true:foo> Error, not a 1 or 0

$<$<BOOL:true>:foo> foo

$<$<NOT:0>:foo> foo

$<$<NOT:1>:foo>

$<$<NOT:true>:foo> Error, NOT requires a 1 or 0

$<$<AND:1,0>:foo>

$<$<OR:1,0>:foo> foo

$<1:$<$<BOOL:false>:foo>>

$<IF:$<BOOL:${foo}>,yes,no> Result will be yes or no depending on ${foo}

Just like for the if() command, CMake also provides support for testing strings, numbers and
versions in generator expressions, although the syntax is slightly different. The following all
evaluate to 1 if the respective condition is satisfied, or 0 otherwise.

$<STREQUAL:string1,string2>
$<EQUAL:number1,number2>
$<VERSION_EQUAL:version1,version2>
$<VERSION_GREATER:version1,version2>
$<VERSION_LESS:version1,version2>

Another very useful conditional expression is testing the build type:

$<CONFIG:arg>

This will evaluate to 1 if arg corresponds to the build type actually being built and 0 for all other
build types. Common uses of this would be to provide compiler flags only for debug builds or to
select different implementations for different build types. For example:

add_executable(MyApp src1.cpp src2.cpp)

# Before CMake 3.8
target_link_libraries(MyApp PRIVATE
    $<$<CONFIG:Debug>:CheckedAlgo>
    $<$<NOT:$<CONFIG:Debug>>:FastAlgo>
)

# CMake 3.8 or later allows a more concise form
target_link_libraries(MyApp PRIVATE $<IF:$<CONFIG:Debug>,CheckedAlgo,FastAlgo>)
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The above would link the executable to the CheckedAlgo library for Debug builds and to the FastAlgo
library for all other build types. The $<CONFIG:…> generator expression is the only way to robustly
provide such functionality which works for all CMake project generators, including multi
configuration generators like Xcode, Visual Studio or Ninja Multi-Config. This particular topic is
covered in more detail in Section 14.2, “Common Errors”.

CMake offers even more conditional tests based on things like platform and compiler details,
CMake policy settings, etc. Developers should consult the CMake reference documentation for the
full set of supported conditional expressions.

10.2. Target Details
Another common use of generator expressions is to provide information about targets. Any
property of a target can be obtained with one of the following two forms:

$<TARGET_PROPERTY:target,property>
$<TARGET_PROPERTY:property>

The first form provides the value of the named property from the specified target, while the second
form will retrieve the property from the target on which the generator expression is being used.

While TARGET_PROPERTY is a very flexible expression type, it is not always the best way to obtain
information about a target. For example, CMake also provides other expressions which give details
about the directory and file name of a target’s built binary. These more direct expressions take care
of extracting out parts of some properties or computing values based on raw properties. The most
general of these is the TARGET_FILE set of generator expressions:

TARGET_FILE

This will yield the absolute path and file name of the target’s binary, including any file prefix
and suffix if relevant for the platform (e.g .exe, .dylib). For Unix-based platforms where shared
libraries typically have version details in their file name, these will also be included.

TARGET_FILE_NAME

Same as TARGET_FILE but without the path (i.e. it provides just the file name part).

TARGET_FILE_DIR

Same as TARGET_FILE but without the file name. This is the most robust way to obtain the
directory in which the final executable or library is built. Its value is different for different build
configurations when using a multi configuration generator like Xcode, Visual Studio or Ninja
Multi-Config.

The above three TARGET_FILE expressions are especially useful when defining custom build rules for
copying files around in post build steps (see Section 19.2, “Adding Build Steps To An Existing
Target”). In addition to the TARGET_FILE expressions, CMake also provides some library-specific
expressions which have similar roles except they handle file name prefix and/or suffix details
slightly differently. These expressions have names starting with TARGET_LINKER_FILE and
TARGET_SONAME_FILE and tend not to be used as frequently as the TARGET_FILE expressions.
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CMake 3.15 added support for additional target-related generator expressions that extract the
basename, prefix and suffix of target-related file names. Projects needing these more fine-grained
details should consult the CMake documentation, but such a need should be rare.

Projects supporting the Windows platform can also obtain details about PDB files for a given target.
Again, these would mostly find use in custom build tasks. Expressions starting with TARGET_PDB_FILE
follow an analogous pattern as for TARGET_PROPERTY, providing path and file name details for the PDB
file used for the target on which the generator expression is being used.

One other generator expression relating to targets deserves special mention. CMake allows a library
target to be defined as an object library, meaning it isn’t a library in the usual sense, it is just a
collection of object files that CMake associates with a target but doesn’t actually result in a final
library file being created. When using CMake 3.11 or earlier, it is not possible to link to an object
library. Instead, object libraries have to be added to targets in the same way that sources are added.
CMake then includes those object files at the link stage just like the object files created by compiling
that target’s sources. This is done using the $<TARGET_OBJECTS:…> generator expression which lists
the object files in a form suitable for add_executable() or add_library() to consume, as demonstrated
by the following example:

# Define an object library
add_library(ObjLib OBJECT src1.cpp src2.cpp)

# Define two executables which each have their own source
# file as well as the object files from ObjLib
add_executable(App1 app1.cpp $<TARGET_OBJECTS:ObjLib>)
add_executable(App2 app2.cpp $<TARGET_OBJECTS:ObjLib>)

In the above example, no separate library is created for ObjLib, but the src1.cpp and src2.cpp source
files are still only compiled once. This can be more convenient for some builds because it can avoid
the build time cost of creating a static library or the run time cost of symbol resolution for a
dynamic library, yet still avoid having to compile the same sources multiple times.

From CMake 3.12, it is possible to link directly to an object library instead of using
$<TARGET_OBJECTS:…> as outlined above. There are limitations to such linking, details of which are
discussed in Section 18.2, “Libraries”.

10.3. General Information
Generator expressions can provide information about more than just targets. Information can be
obtained about the compiler being used, the platform for which the target is being built, the name
of the build configuration and more. These sort of expressions tend to find use in more advanced
situations such as handling a custom compiler or to work around a problem specific to a particular
compiler or toolchain. These expressions also invite misuse, since they may appear to provide a
way to do things like construct paths to things which could otherwise have been obtained using
more robust methods like using TARGET_FILE expressions or other CMake features. Developers
should think carefully before relying on the more general information generator expressions as a
way to solve a problem. That said, some of these expressions do have valid uses. Some of the more
common ones are listed here as a starting point for further reading:
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$<CONFIG>

Evaluates to the build type. Use this in preference to the CMAKE_BUILD_TYPE variable since that
variable is not used on multi configuration project generators like Xcode, Visual Studio or Ninja
Multi-Config. Earlier versions of CMake used the now deprecated $<CONFIGURATION> expression for
this, but projects should now only use $<CONFIG>.

$<PLATFORM_ID>

Identifies the platform for which the target is being built. This can be useful in cross-compiling
situations, especially where a build may support multiple platforms (e.g. device and simulator
builds). This generator expression is closely related to the CMAKE_SYSTEM_NAME variable and projects
should consider whether using that variable would be simpler in their specific situation.

$<C_COMPILER_VERSION>, $<CXX_COMPILER_VERSION>

In some situations, it may be useful to only add content if the compiler version is older or newer
than some particular version. This is achievable with the help of the $<VERSION_xxx:…> generator
expressions. For example, to produce the string OLDCXX if the C++ compiler version is less than
4.2.0, the following expression could be used:

$<$<VERSION_LESS:$<CXX_COMPILER_VERSION>,4.2.0>:OLDCXX>

Such expressions tend to be used only in situations where the type of compiler is known and a
specific behavior of the compiler needs to be handled in some special way by the project. It can
be a useful technique in specific situations, but it can reduce the portability of the project if it
relies too heavily on such expressions.

10.4. Path Expressions
CMake 3.24 added support for two path-handling expressions:

$<PATH_EQUAL:path1,path2>

This is the path equivalent of $<STREQUAL:string1,string2>. When the two things to be compared
are expected to be paths rather than arbitrary strings, $<PATH_EQUAL:…> more clearly expresses
that expectation. It has the advantage of comparing each part of the path individually, effectively
collapsing multiple consecutive directory separators into a single separator (they are expected to
use forward slashes). Paths can be wrapped with $<PATH:CMAKE_PATH,…> to ensure they have the
required form:

$<PATH_EQUAL:$<PATH:CMAKE_PATH,path1>,$<PATH:CMAKE_PATH,path2>>

$<PATH:subcommand,…>

This is essentially the generator expression equivalent of the configure-time cmake_path()
command (covered in detail in Section 20.1.1, “cmake_path()”). The same set of operations are
supported, although the syntax has some differences. The full list of supported subcommands
can be found in the generator expressions manual of the official CMake documentation. Some
examples are listed below to give a flavor of what is possible.
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$<PATH:IS_ABSOLUTE,somePath>
$<PATH:IS_PREFIX,NORMALIZE,prefix,fullPath>
$<PATH:GET_FILENAME:somePath>

10.5. Utility Expressions
Some generator expressions modify content or substitute special characters. Below are some of the
ones that are more commonly used or are easily misunderstood.

$<COMMA>

There can be scenarios where a comma needs to be included in a generator expression, but
doing so would interfere with the generator expression syntax itself. To work around such cases,
$<COMMA> can be used instead to prevent parsing it as part of the expression syntax.

$<SEMICOLON>

Similar to the above, a semicolon embedded in a generator expression may be parsed by CMake
as a command argument separator. By using $<SEMICOLON> instead, argument parsing won’t see a
raw semicolon character, so such argument splitting will not occur.

$<LOWER_CASE:…>, $<UPPER_CASE:…>

Any content can be converted to lower or upper case via these expressions. This can be
especially useful as a step before performing a string comparison. For example:

$<STREQUAL:$<UPPER_CASE:${someVar}>,FOOBAR>

$<JOIN:list,…>

The effect of this generator expression is to replace each semicolon in list with the … content,
effectively joining the list items with … between each one. Note that this generator expression
should never be used without quoting the whole expression. This prevents the semicolons in
list from acting as argument separators for the command in which the generator expression is
being used (see Section 8.8, “Problems With Argument Handling” for a deeper discussion of this
particular topic). Quoting is also needed to prevent any spaces in the … part from acting as
argument separators. The following shows a very common example of this generator expression
being used incorrectly:

set(dirs here there)  # dirs = here;there

# ERROR: space and ; treated as argument separators
set_target_properties(Foo PROPERTIES
    CUSTOM_INC -I$<JOIN:${dirs}, -I>
)

# OK: Whole generator expression is quoted
set_target_properties(Foo PROPERTIES
    CUSTOM_INC "-I$<JOIN:${dirs}, -I>"
)
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$<GENEX_EVAL:…>, $<TARGET_GENEX_EVAL:target,…>

These two generator expressions were introduced in CMake 3.13. In certain more advanced
scenarios, a situation can arise where the evaluation of a generator expression results in content
that itself contains generator expressions. One example is when evaluating a target property
using $<TARGET_PROPERTY:…> and the value of the retrieved property contains another generator
expression. Normally, the retrieved property is not evaluated further to expand any generator
expressions it contains, but expansion can be forced using $<GENEX_EVAL:…> or
$<TARGET_GENEX_EVAL:…> like so:

# Evaluate in current context
$<GENEX_EVAL:$<TARGET_PROPERTY:MY_PROP>>

# Evaluate for a specific target "foo"
$<TARGET_GENEX_EVAL:foo,$<TARGET_PROPERTY:foo,MY_PROP>>

Projects should rarely need to use these two generator expressions. The above example
demonstrates the primary motivation for why they were added to CMake, but that scenario
should not typically arise in most projects.

10.6. Recommended Practices
Compared to other functionality, generator expressions are a more recently added CMake feature.
Because of this, much of the material online and elsewhere about CMake tends not to use them.
This is unfortunate, since generator expressions are typically more robust and provide more
generality than older methods. There are some common examples where well-intentioned
guidance leads to logic which only works for a subset of supported project generators or platforms,
but where the use of suitable generator expressions instead would result in no such limitations.
This is particularly true in relation to project logic which tries to do different things for different
build types. Therefore, developers should become familiar with the capabilities that generator
expressions provide. Those expressions mentioned above are only a subset of what CMake
supports, but they form a good foundation for covering the majority of situations most developers
are likely to face.

Used judiciously, generator expressions can result in more succinct CMakeLists.txt files. For
example, conditionally including a source file depending on the build type can be done relatively
concisely, as the example given earlier for $<CONFIG:…> showed. Such uses reduce the amount of if-
then-else logic, resulting in better readability as long as the generator expressions are not too
complex. Generator expressions are also a perfect fit for handling content that changes depending
on the target or the build type. No other mechanism in CMake offers the same degree of flexibility
and generality for handling the multitude of factors which may contribute to the final content
needed for a particular target property.

Conversely, it is easy to go overboard and to try to make everything a generator expression. This
can lead to overly complex expressions which ultimately obscure the logic and which can be
difficult to debug (Section 13.5, “Debugging Generator Expressions” provides some techniques to
help with that). As always, developers should favor clarity over cleverness and this is especially
true with generator expressions. Consider first whether CMake already provides a dedicated facility
to achieve the same result. Various CMake modules provide more targeted functionality aimed at a
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particular third party package or for carrying out certain specific tasks. There are also a variety of
variables and properties which could simplify or replace the need for generator expressions
altogether. A few minutes consulting the CMake reference documentation can save many hours of
unnecessary work constructing complex generator expressions which were not really needed.
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Chapter 11. Modules
The preceding chapters have focused mostly on the core aspects of CMake. Variables, properties,
flow control, generator expressions, functions, etc. are all part of what could be considered the
CMake language. In contrast, modules are pre-built chunks of CMake code built on top of the core
language features. They provide a rich set of functionality which projects can use to accomplish a
wide variety of goals. Being written and packaged as ordinary CMake code and therefore being
human readable, modules can also be a useful resource for learning more about how to get things
done in CMake.

Modules are collected together and provided in a single directory as part of a CMake release.
Projects employ modules in one of two ways, either directly or as part of finding an external
package. The more direct method of employing modules uses the include() command to essentially
inject the module code into the current scope. This works just like the behavior already discussed
back in Section 7.2, “include()” except that only the base name of the module needs to be given to
the include() command, not the full path or file extension. All the options to include() work exactly
as before.

include(module
    [OPTIONAL]
    [RESULT_VARIABLE myVar]
    [NO_POLICY_SCOPE]
)

When given a module name, the include() command will look in a well-defined set of locations for a
file whose name is the name of the module (case-sensitive) with .cmake appended. For example,
include(FooBar) would result in CMake looking for a file called FooBar.cmake and on case-sensitive
systems like Linux, file names like foobar.cmake would not match.

When looking for a module’s file, CMake first consults the variable CMAKE_MODULE_PATH. This is
assumed to be a list of directories and CMake will search each of these in order. The first matching
file will be used, or if no matching file is found or if CMAKE_MODULE_PATH is empty or undefined, CMake
will then search in its own internal module directory. This search order allows projects to add their
own modules seamlessly by adding directories to CMAKE_MODULE_PATH. A useful pattern is to collect
together a project’s module files in a single directory and add it to the CMAKE_MODULE_PATH somewhere
near the beginning of the top level CMakeLists.txt file. The following directory structure shows such
an arrangement:

117



The corresponding CMakeLists.txt file then only needs to add the cmake directory to the
CMAKE_MODULE_PATH and it can then call include() using just the base file name when loading each of
the modules.

CMakeLists.txt:

cmake_minimum_required(VERSION 3.0)
project(Example)

list(APPEND CMAKE_MODULE_PATH "${CMAKE_CURRENT_SOURCE_DIR}/cmake")

# Inject code from project-provided modules
include(CoolThings)
include(MyModule)

There is one exception to the search order used by CMake to find a module. If the file calling
include() is itself inside CMake’s own internal module directory, then the internal module directory
will be searched first before consulting CMAKE_MODULE_PATH. This prevents project code from
accidentally (or deliberately) replacing an official module with one of their own and changing the
documented behavior.

The other way to employ modules is with the find_package() command. This is discussed in detail in
Section 25.5, “Finding Packages”, but for the moment, a simplified form of that command without
any of the optional keywords demonstrates its basic usage:

find_package(PackageName)

When used in this way, the behavior is very similar to include() except CMake will search for a file
called FindPackageName.cmake rather than PackageName.cmake. This is the method by which details about
an external package are often brought into the build, including things like imported targets,
variables defining locations of relevant files, libraries or programs, information about optional
components, version details and so on. The set of options and features associated with
find_package() is considerably richer than what is provided for include() and Chapter 25, Finding
Things is dedicated to covering the topic in detail.

The remainder of this chapter introduces a number of interesting modules that are included as part
of a CMake release. This is by no means a comprehensive set, but they do give a flavor of the sort of
functionality that is available. Other modules are introduced in subsequent chapters where their
functionality is closely related to the topic of discussion. The CMake documentation provides a
complete list of all available modules, each with its own help section explaining what the module
provides and how it can be used. Be forewarned though that the quality of the documentation does
vary from module to module.

11.1. Checking Existence And Support
One of the more comprehensive areas covered by CMake’s modules is checking for the existence of
or support for various things. This family of modules all work in fundamentally the same way,
writing a short amount of test code and then attempting to compile and possibly link and run the
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resultant executable to confirm whether what is being tested in the code is supported. All of these
modules have a name beginning with Check.

Some of the more fundamental Check… modules are those that compile and link a short test file into
an executable and return a success/fail result. With CMake 3.19 or later, the CheckSourceCompiles
module provides this capability. It defines the check_source_compiles() command:

include(CheckSourceCompiles)
check_source_compiles(lang code resultVar
    [FAIL_REGEX regexes...]
    [SRC_EXT extension]
)

The lang would be one of the languages CMake supports, such as C, CXX, CUDA and so on. With earlier
CMake versions, separate per-language modules provide the same capabilities, but the set of
supported languages is much smaller. These modules have names of the form
Check<LANG>SourceCompiles and each one provides an associated command that performs the test:

include(CheckCSourceCompiles)
check_c_source_compiles(code resultVar
    [FAIL_REGEX regexes...]
)

include(CheckCXXSourceCompiles)
check_cxx_source_compiles(code resultVar
    [FAIL_REGEX regexes...]
)

include(CheckFortranSourceCompiles)
check_fortran_source_compiles(code resultVar
    [FAIL_REGEX regexes...]
    [SRC_EXT extension]
)

For all of these commands, the code argument is expected to be a string containing source code that
should produce an executable for the corresponding language. The result of an attempt to compile
and link the code is stored in resultVar as a cache variable, with true indicating success. False
values could be an empty string, an error message, etc. depending on the situation. After the test
has been performed once, subsequent CMake runs will use the cached result rather than
performing the test again. This is the case even if the code being tested is changed. To force re-
evaluation, the variable has to be manually removed from the cache.

If the FAIL_REGEX option is specified, then an additional criteria applies. If the output of the test
compilation and linking matches any of the specified regexes (a list of regular expressions), the
check will be deemed to have failed, even if the code compiles and links successfully.
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include(CheckCSourceCompiles)
check_c_source_compiles("int main() { int myVar; }"
    unusedNotDetected
    FAIL_REGEX "[Ww]arn"
)
if(unusedNotDetected)
    message("Unused variables do not generate warnings")
endif()

In the case of Fortran, the file extension can affect how compilers treat source files, so the file
extension can be explicitly specified with the SRC_EXT option to obtain the expected behavior. There
is no equivalent option for the C or C++ cases when using the older Check<LANG>SourceCompiles
modules, but the newer CheckSourceCompiles module supports it for all languages.

A number of variables of the form CMAKE_REQUIRED_… can be set before calling any of the compilation
test commands to influence how they compile the code:

CMAKE_REQUIRED_FLAGS

Additional flags to pass to the compiler command line after the contents of the relevant
CMAKE_<LANG>_FLAGS and CMAKE_<LANG>_FLAGS_<CONFIG> variables (see Section 15.5, “Compiler And
Linker Variables”). This must be a single string with multiple flags being separated by spaces,
unlike all the other variables below which are CMake lists.

CMAKE_REQUIRED_DEFINITIONS

A CMake list of compiler definitions, each one specified in the form -DFOO or -DFOO=bar.

CMAKE_REQUIRED_INCLUDES

Specifies directories to search for headers. Multiple paths must be specified as a CMake list, with
spaces being treated as part of a path.

CMAKE_REQUIRED_LIBRARIES

A CMake list of libraries to add to the linking stage. Do not prefix the library names with any -l
option or similar, provide just the library name or the name of a CMake imported target
(discussed in Chapter 18, Target Types).

CMAKE_REQUIRED_LINK_OPTIONS

A CMake list of options to be passed to the linker if building an executable, or to the archiver if
building a static library. Support for this variable is only available with CMake 3.14 or later.

CMAKE_REQUIRED_QUIET

If this option is present, no status messages will be printed by the command.

These variables are used to construct arguments to the try_compile() call made internally to
perform the check. The CMake documentation for try_compile() discusses additional variables
which may have an effect on the checks, while other aspects of try_compile() behavior relating to
toolchain selection and the type of target to build are covered in Section 23.5, “Compiler Checks”.
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In addition to checking whether code can be built, CMake also provides modules that test whether
the built executable can be run successfully. Success is measured by the exit code of the executable
created from the source provided, with 0 being treated as success and all other values indicating
failure. With CMake 3.19 or later, a single module provides a command for all languages:

include(CheckSourceRuns)
check_source_runs(lang code resultVar
    [SRC_EXT extension]
)

Again, with earlier CMake versions, separate per-language modules provide the same capabilities,
but with fewer supported languages:

# Supported by all CMake versions
include(CheckCSourceRuns)
check_c_source_runs(code resultVar)

include(CheckCXXSourceRuns)
check_cxx_source_runs(code resultVar)

# Requires CMake 3.14 or later
include(CheckFortranSourceRuns)
check_fortran_source_runs(code resultVar
    [SRC_EXT extension]
)

There is no FAIL_REGEX option for these commands, as success or failure is determined purely by the
exit code of the test process. If the code cannot be built, this is also treated as a failure. All the same
variables that affect how the code is built for check_source_compiles() or
check_<lang>_source_compiles() also have the same effect for these modules’ commands as well.

For builds that are cross-compiling to a different target platform, the check_source_runs() and
check_<lang>_source_runs() commands behave quite differently. They may run the code under a
simulator if the necessary details have been provided, which would likely slow down the CMake
stage considerably. If simulator details have not been provided, the commands will instead expect a
predetermined result to be provided through a set of variables and will not try to run anything.
This fairly advanced topic is covered in CMake’s documentation for the try_run() command, which
is what the module commands use internally to perform the checks.

Certain categories of checks are so common that CMake provides dedicated modules for them.
These remove much of the boilerplate of defining the test code and allow projects to specify a
minimal amount of information for the check. These are typically just wrappers around the
commands provided by one of the modules mentioned above, so the same set of variables used for
customizing how the test code is built still apply. These more specialized modules check compiler
flags, pre-processor symbols, functions, variables, header files and more.

Just as for the modules above, CMake 3.19 or later provides a single module and command for all
supported languages. For earlier CMake versions, a set of per-language modules must be used
instead.
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# Requires CMake 3.19 or later
include(CheckCompilerFlag)
check_compiler_flag(lang flag resultVar)

# Supported by all CMake versions
include(CheckCCompilerFlag)
check_c_compiler_flag(flag resultVar)

include(CheckCXXCompilerFlag)
check_cxx_compiler_flag(flag resultVar)

# Requires CMake 3.3 or later
include(CheckFortranCompilerFlag)
check_fortran_compiler_flag(flag resultVar)

The flag-checking commands update the CMAKE_REQUIRED_DEFINITIONS variable internally to include
flag in a call to check_source_compiles() with a trivial test file. An internal set of failure regular
expressions is also passed as the FAIL_REGEX option, testing whether the flag results in a diagnostic
message being issued or not. The result of the call will be a true value if no matching diagnostic
message is issued. Note that this means any flag that results in a compiler warning but successful
compilation will still be deemed to have failed the check. Also be aware that these commands
assume that any flags already present in the relevant CMAKE_<LANG>_FLAGS variables (see Section 15.5,
“Compiler And Linker Variables”) do not themselves generate any compiler warnings. If they do,
then the logic for each of these flag-testing commands will be defeated and the result of all such
checks will be failure.

CMake 3.18 also introduced the CheckLinkerFlag module. It provides the analogous command
check_linker_flag(), which is mostly just a convenience wrapper around check_source_compiles(). As
such, it supports all the same variables as previously discussed, except that it takes over handling of
the CMAKE_REQUIRED_LINK_OPTIONS variable.

include(CheckLinkerFlag)
check_linker_flag(language flag resultVar)

The specified flag is not passed directly to the linker. The linker is invoked via the compiler, which
internally adds extra language-specific flags, libraries, etc. needed to successfully link for the
specified language. A raw linker flag will usually not work, it typically needs some sort of prefix like
-Wl,… or -Xlinker to tell the compiler to pass it through to the linker. This prefix is compiler-specific,
but the special prefix LINKER: can be used and CMake will substitute the correct compiler-specific
prefix automatically. See Section 15.1.2, “Linker Flags” and the target_link_options() command in
Section 15.2, “Target Property Commands” for related discussions.

include(CheckLinkerFlag)
check_linker_flag(CXX LINKER:-stats LINKER_STATS_SUPPORTED)

Two other notable modules are CheckSymbolExists and CheckCXXSymbolExists. The former provides a
command which builds a test C executable and the latter does the same as a C++ executable. Both
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check whether a particular symbol exists as either a pre-processor symbol (i.e. something that can
be tested via an #ifdef statement), a function or a variable.

include(CheckSymbolExists)
check_symbol_exists(symbol headers resultVar)

include(CheckCXXSymbolExists)
check_cxx_symbol_exists(symbol headers resultVar)

For each of the items specified in headers (a CMake list if more than one header needs to be given), a
corresponding #include will be added to the test source code. In most cases, the symbol being
checked will be defined by one of these headers. The result of the test is stored in the resultVar
cache variable in the usual way.

In the case of functions and variables, the symbol needs to resolve to something that is part of the
test executable. If the function or variable is provided by a library, that library must be linked as
part of the test, which can be done using the CMAKE_REQUIRED_LIBRARIES variable.

include(CheckSymbolExists)
check_symbol_exists(sprintf stdio.h HAVE_SPRINTF)

include(CheckCXXSymbolExists)
set(CMAKE_REQUIRED_LIBRARIES SomeCxxSDK)
check_cxx_symbol_exists(SomeCxxInitFunc somecxxsdk.h HAVE_SOMECXXSDK)

There are limitations on the sort of functions and variables that can be checked by these
commands. Only those symbols that satisfy the naming requirements for a preprocessor symbol
can be used. The implications are stronger for check_cxx_symbol_exists(), since it means only non-
template functions or variables in the global namespace can be checked because any scoping (::) or
template markers (<>) would not be valid for a preprocessor symbol. It is also impossible to
distinguish between different overloads of the same function, so these cannot be checked either.

There are other modules which aim to provide functionality that is similar to or a subset of that
covered by CheckSymbolExists. These other modules are either from earlier versions of CMake or are
for a language other than C or C++. The CheckFunctionExists module is already documented as being
deprecated and the CheckVariableExists module offers nothing that CheckSymbolExists doesn’t already
provide. The CheckFortranFunctionExists module may be useful for those projects working with
Fortran, but note that there is no CheckFortranVariableExists module. Fortran projects may want to
use CheckFortranSourceCompiles for consistency instead.

More detailed checks are provided by other modules. For example, struct members can be tested
with CheckStructHasMember, specific C or C++ function prototypes can be tested with
CheckPrototypeDefinition and the size of non-user types can be tested with CheckTypeSize. Other
higher level checks are also possible, as provided by CheckLanguage, CheckLibraryExists and the
various CheckIncludeFile… modules. Further check modules continue to be added to CMake as it
evolves, so consult the CMake module documentation to see the full set of available functionality.

In situations where multiple checks are being made or where the effects of performing the checks
need to be isolated from each other or from the rest of the current scope, it can be cumbersome to
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manually save and restore the state before and after the checks. In particular, the various
CMAKE_REQUIRED_… variables often need to be saved and restored. To help with this, CMake provides
the CMakePushCheckState module which defines the following three commands:

include(CMakePushCheckState)
cmake_push_check_state([RESET])
cmake_pop_check_state()
cmake_reset_check_state()

These commands allow the various CMAKE_REQUIRED_… variables to be treated as a set and to have
their state pushed and popped onto/from a virtual stack. Each time cmake_push_check_state() is
called, it effectively begins a new virtual variable scope for just the CMAKE_REQUIRED_… variables (and
also the CMAKE_EXTRA_INCLUDE_FILES variable which is only used by the CheckTypeSize module).
cmake_pop_check_state() is the opposite, it discards the current values of the CMAKE_REQUIRED_…
variables and restores them to the previous stack level’s values. The cmake_reset_check_state()
command is a convenience for clearing all the CMAKE_REQUIRED_… variables and the RESET option to
cmake_push_check_state() is also just a convenience for clearing the variables as part of the push.
Note, however, that a bug existed prior to CMake 3.10 which resulted in the RESET option being
ignored, so for projects that need to work with versions before 3.10, it is better to use a separate call
to cmake_reset_check_state() instead.

# Start with a known state we can modify and undo later
include(CMakePushCheckState)
cmake_push_check_state()
cmake_reset_check_state()

set(CMAKE_REQUIRED_FLAGS -Wall)
include(CheckSymbolExists)
check_symbol_exists(FOO_VERSION foo/version.h HAVE_FOO)

if(HAVE_FOO)
  # Preserve -Wall and add more things for extra checks
  cmake_push_check_state()
  set(CMAKE_REQUIRED_INCLUDES foo/inc.h foo/more.h)
  set(CMAKE_REQUIRED_DEFINES -DFOOBXX=1)
  check_symbol_exists(FOOBAR "" HAVE_FOOBAR)
  check_symbol_exists(FOOBAZ "" HAVE_FOOBAZ)
  check_symbol_exists(FOOBOO "" HAVE_FOOBOO)
  cmake_pop_check_state()
  # Now back to just -Wall
endif()

# Clear CMAKE_REQUIRED_... variables for this last check
cmake_reset_check_state()
check_symbol_exists(__TIME__ "" HAVE_PPTIME)

# Restore all CMAKE_REQUIRED_... variables to their
# original values from the top of this example
cmake_pop_check_state()
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11.2. Other Modules
CMake has excellent built-in support for some languages, especially C and C++. It also includes a
number of modules which provide support for languages in a more extensible and configurable
way. These modules allow aspects of some languages or language-related packages to be made
available to projects by defining relevant commands, variables and properties. Many of these
modules are provided as part of the support for find_package() calls (see Section 25.5, “Finding
Packages”), while others are intended to be used more directly via include() to bring things into the
current scope. The following module list should give a taste of the sort of language support
available:

• CSharpUtilities

• FindCUDA (but note this has been superseded by support for CUDA as a first class language in its
own right in recent CMake versions)

• FindJava, FindJNI, UseJava

• FindLua

• FindMatlab

• FindPerl, FindPerlLibs

• FindPython

• FindPHP4

• FindRuby

• FindSWIG, UseSWIG

• FindTCL

• FortranCInterface

In addition, modules are also provided for interacting with external data and projects (see Chapter
29, ExternalProject and Chapter 30, FetchContent). A number of modules are also provided to
facilitate various aspects of testing and packaging. These have a close relationship with the CTest
and CPack tools distributed as part of the CMake suite and are covered in depth in Chapter 26,
Testing and Chapter 28, Packaging. Debugging assistance is also provided by the CMakePrintHelpers
module (see Section 13.3, “Print Helpers”).

11.3. Recommended Practices
CMake’s collection of modules provides a wealth of functionality built on top of the core CMake
language. A project can easily extend the set of available functionality by adding their own custom
modules under a particular directory and then adding that path to the CMAKE_MODULE_PATH variable.
The use of CMAKE_MODULE_PATH should be preferred over hard-coding absolute or relative paths across
complex directory structures in include() calls, since this will encourage generic CMake logic to be
decoupled from the places where that logic may be applied. This in turn makes it easier to relocate
CMake modules to different directories as a project evolves, or to re-use the logic across different
projects. Indeed, it is not unusual for an organization to build up its own collection of modules,
perhaps even storing them in their own separate repository. By setting CMAKE_MODULE_PATH
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appropriately in each project, those reusable CMake building blocks are then made available for
use as widely as needed.

Over time, a developer will typically be exposed to an increasing number of interesting scenarios
for which a CMake module may provide useful shortcuts or ready-made solutions. Sometimes a
quick scan of the available modules can yield an unexpected hidden gem, or a new module may
offer a better maintained implementation of something a project has been implementing in an
inferior way up to that point. CMake’s modules have the benefit of a potentially large pool of
developers and projects using them across a diverse set of platforms and situations, so they may
offer a more compelling alternative to projects doing their own manual logic in many cases. The
quality does, however, vary from one module to another. Some modules began their life quite early
on in CMake’s existence and these can sometimes become less useful if not kept up to date with
changes to CMake or to the areas those modules relate to. This can be particularly true of Find…
modules which may not track newer versions of the packages they are finding as closely as one
might like. On the other hand, modules are just ordinary CMake code, so anyone can inspect them,
learn from them, improve or update them without having to learn much beyond what is needed for
basic CMake use in a project. In fact, they are an excellent starting point for developers wishing to
get involved with working on CMake itself.

The abundance of different Check… modules provided by CMake can be a mixed blessing.
Developers can be tempted to get too over-zealous with checking all manner of things, which can
result in slowing down the configure stage for sometimes questionable gains. It is common to see
the commands related to these checks dominate the profiling results of a CMake run (see Section
13.6, “Profiling CMake Calls”). Consider whether the benefits outweigh the costs in terms of time to
implement and maintain the checks and the complexity of the project. Sometimes a few judicious
checks are sufficient for covering the most useful cases, or to catch a subtle problem that might
otherwise cause hard to trace problems later. Furthermore, if using any of the Check… modules, aim
to isolate the checking logic from the scope in which it may be invoked. Use of the
CMakePushCheckState module is highly recommended, but avoid using the RESET option to
cmake_push_check_state() if support for CMake versions before 3.10 is important.

When the minimum CMake version can be set to 3.20 or later, avoid using the relatively popular
but now deprecated TestBigEndian module. That module was deprecated in CMake 3.20 in favor of a
new CMAKE_<LANG>_BYTE_ORDER variable, which was also introduced in the same CMake release.
Projects that are using TestBigEndian should transition to the new variable where possible.
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Chapter 12. Policies
CMake has evolved over a long period, introducing new functionality, fixing bugs and changing the
behavior of certain features to address shortcomings or introduce improvements. While the
introduction of new capabilities is unlikely to cause problems for existing projects built with
CMake, any change in behavior has the potential to break projects if they are relying on the old
behavior. For this reason, the CMake developers are careful to ensure that changes are
implemented in such a way as to preserve backward compatibility and to provide a
straightforward, controlled migration path for projects to be updated to the new behavior.

This control over whether old or new behavior should be used is done through CMake’s policy
mechanisms. In general, policies are not something that developers are exposed to all that often,
mostly just when CMake issues a warning about the project relying on an older version’s behavior.
When developers move to a more recent CMake release, the newer CMake version will sometimes
issue such warnings to highlight how the project should be updated to use a new behavior.

12.1. Policy Control
CMake’s policy functionality is closely tied to the cmake_minimum_required() command, which was
introduced back in Chapter 3, A Minimal Project. Not only does this command specify the minimum
CMake version a project requires, it also sets CMake’s behavior to match that of the version given.
Thus, when a project starts with cmake_minimum_required(VERSION 3.2), it says that at least CMake 3.2
is needed and also that the project expects CMake to behave like the 3.2 release. This gives projects
confidence that developers should be able to update to any newer version of CMake at their
convenience and the project will still build as it did before.

Sometimes, however, a project may want more fine-grained control than what the
cmake_minimum_required() command provides. Consider the following scenarios:

• A project wants to set a low minimum CMake version, but it also wants to take advantage of
newer behavior if it is available.

• A part of the project cannot be modified (e.g. it might come from an external read-only code
repository), and it relies on old behavior which has been changed in newer CMake versions. The
rest of the project, however, wants to move to the new behavior.

• A project relies heavily on some old behavior which would require a non-trivial amount of
work to update. Some parts of the project want to make use of recent CMake features, but the
old behavior for that particular change needs to be preserved until time can be set aside to
update the project.

These are some common examples where the high level control provided by the
cmake_minimum_required() command alone is not enough. More specific control over policies is
enabled through the cmake_policy() command, which has a number of forms acting at different
degrees of granularity. The form acting at the coarsest level is a close relative to
cmake_minimum_required():

cmake_policy(VERSION major[.minor[.patch[.tweak]]])
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In this form, the command changes CMake’s behavior to match that of the specified version. The
cmake_minimum_required() command implicitly calls this form to set CMake’s behavior. The two are
largely interchangeable except for the top of the project where a call to cmake_minimum_required() is
mandatory to enforce a minimum CMake version. Apart from the start of the top level
CMakeLists.txt file, using cmake_policy() generally communicates the intent more clearly when a
project needs to enforce a particular version’s behavior for a section of the project, as
demonstrated by the following example:

cmake_minimum_required(VERSION 3.7)
project(WithLegacy)

# Uses recent CMake features
add_subdirectory(modernDir)

# Imported from another project, relies on old behavior
cmake_policy(VERSION 2.8.11)
add_subdirectory(legacyDir)

CMake 3.12 extends this capability in a backward-compatible way by optionally allowing the
project to specify a version range rather than a single version to either cmake_minimum_required() or
cmake_policy(VERSION). The range is specified using three dots ... between the minimum and
maximum version with no spaces. The range indicates that the CMake version in use must be at
least the minimum, and the behavior should match that of the lowest of the specified maximum
and the running CMake version. This allows the project to effectively say "I need at least CMake X,
but I am safe to use with policies from up to CMake Y". The following example shows two ways for a
project to require only CMake 3.7, but still support the newer behavior for all policies up to CMake
3.12 if the running CMake version supports them:

cmake_minimum_required(VERSION 3.7...3.12)
cmake_policy(VERSION 3.7...3.12)

CMake versions before 3.12 would effectively see just a single version number and would ignore
the ...3.12 part, whereas 3.12 and later would understand it to mean a range.

CMake also provides the ability to control each behavior change individually with the SET form:

cmake_policy(SET CMPxxxx NEW)
cmake_policy(SET CMPxxxx OLD)

Each individual behavior change is given its own policy number of the form CMPxxxx, where xxxx is
always four digits. By specifying NEW or OLD, a project tells CMake to use the new or old behavior for
that particular policy. The CMake documentation provides the full list of policies, along with an
explanation of the OLD and NEW behavior of each one.

As an example, before version 3.0, CMake allowed a project to call get_target_property() with the
name of a target that didn’t exist. In such a case, the value of the property was returned as -NOTFOUND
rather than issuing an error, but in all likelihood, the project probably contained incorrect logic.
Therefore, from version 3.0 onward, CMake halts with an error if such a situation is encountered.
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In the event that a project was relying on the old behavior, it could continue to do so using policy
CMP0045 like so:

# Allow non-existent target with get_target_property()
cmake_policy(SET CMP0045 OLD)

# Would halt with an error without the above policy change
get_target_property(outVar doesNotExist COMPILE_DEFINITIONS)

The need for setting a policy to NEW is less common. One situation is where a project wants to set a
low minimum CMake version, but still take advantage of later features if a later version is used. For
example, in CMake 3.2, policy CMP0055 was introduced to provide strict checking on usage of the
break() command. If the project still wanted to support being built with earlier CMake versions,
then the additional checks would have to be explicitly enabled when run with later CMake
versions.

cmake_minimum_required(VERSION 3.0)
project(PolicyExample)

if(CMAKE_VERSION VERSION_GREATER 3.1)
    # Enable stronger checking of break() command usage
    cmake_policy(SET CMP0055 NEW)
endif()

Testing the CMAKE_VERSION variable is one way of determining whether a policy is available, but the
if() command provides a more direct way using the if(POLICY…) form. The above could
alternatively be implemented like so:

cmake_minimum_required(VERSION 3.0)
project(PolicyExample)

# Only set the policy if the version of CMake being used
# knows about that policy number
if(POLICY CMP0055)
    cmake_policy(SET CMP0055 NEW)
endif()

It is also possible to get the current state of a particular policy. The main situation where the
current policy setting may need to be read is in a module file, which may be one provided by CMake
itself or by the project. It would be unusual, however, for a project module to change its behavior
based on a policy setting.

cmake_policy(GET CMPxxxx outVar)

The value stored in outVar will be OLD, NEW or an empty string. The cmake_minimum_required(VERSION…)
and cmake_policy(VERSION…) commands reset the state of all policies. Those policies introduced at
the specified CMake version or earlier are reset to NEW. Those policies that were added after the
specified version will effectively be reset to empty.
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If CMake detects that the project is doing something that either relies on the old behavior, conflicts
with the new behavior or whose behavior is ambiguous, it may warn if the relevant policy is unset.
These warnings are the most common way developers are exposed to CMake’s policy functionality.
They are designed to be noisy but informative, encouraging developers to update the project to the
new behavior. In some cases, a deprecation warning may be issued even if the policy has been
explicitly set, but this is typically only for a policy that has already been documented as deprecated
for a long time (many releases).

Sometimes the policy warnings cannot be addressed immediately, but the warnings could be
undesirable. The preferred way to handle this is to explicitly set the policy to the desired behavior
(OLD or NEW), which stops the warning. This isn’t always possible though, such as when a deeper part
of the project issues its own call to cmake_minimum_required(VERSION…) or cmake_policy(VERSION…),
thereby resetting the policy states. As a temporary way to work around such situations, CMake
provides the CMAKE_POLICY_DEFAULT_CMPxxxx and CMAKE_POLICY_WARNING_CMPxxxx variables where xxxx is
the usual four-digit policy number. These are not intended to be set by the project, but rather by the
developer as a cache variable temporarily to enable/disable a warning or to check whether the
project issues warnings with a particular policy enabled. Ultimately, the long term solution is to
address the underlying problem highlighted by the warning. Nevertheless, it may occasionally be
appropriate for a project to set one of these variables to silence a warning known to not be harmful.

12.2. Policy Scope
Sometimes a policy setting only needs to be applied to a specific section of a file. Rather than
requiring a project to manually save the existing value of any policies it wants to change
temporarily, CMake provides a policy stack which can be used to simplify this process. Pushing onto
the policy stack essentially creates a copy of the current settings and allows the project to operate
on that copy. Popping the stack discards the current policy settings and reverts to the previous
settings on the stack.

Two methods are available for saving and restoring (pushing and popping) the policy stack:

# Requires CMake 3.25 or later
block(SCOPE_FOR POLICIES)
    # Make changes to policies here. Policy settings outside
    # the block are not affected.
endblock()

# Works with any CMake version
cmake_policy(PUSH)
    # Make changes to policies here. Policy changes apply
    # up until the policy stack is popped (see below).
cmake_policy(POP)

Of the two methods, the first using block() is more robust. Regardless of how control flow leaves the
block, the policies are restored to their previous state from before the block was entered. This
means commands like return(), break() and continue() can be used freely within the block.
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The second method using cmake_policy() is more fragile because it relies on the project ensuring it
calls cmake_policy(POP) exactly once for each cmake_policy(PUSH). This can be challenging when
pushing and popping policy state across many lines. A common source of error is pushing policies
at the start of a long file and popping at the end, but returning early somewhere in the middle of
the file without popping the policy stack. This often happens when the file originally had no
return() statements at the time the policy push-pop was added, but a return() was added later.
Module files are one of the more common places where the policy stack might be manipulated like
this and where this sort of error frequently occurs.

cmake_policy(PUSH)
cmake_policy(SET CMP0085 NEW)

# ...

if("Foo" IN_LIST SomeList)
    # ERROR: Returns without popping the policy stack
    return()
endif()

# ...

cmake_policy(POP)

Replacing the above with block() instead avoids the problem:

block(SCOPE_FOR POLICIES)
cmake_policy(SET CMP0085 NEW)

# ...

if("Foo" IN_LIST SomeList)
    # OK: No manual policy pop needed
    return()
endif()

# ...

endblock()

Some commands implicitly push a new policy state onto the stack and pop it again before returning
to the caller. The add_subdirectory(), include() and find_package() commands are important
examples of this. The include() and find_package() commands also support a NO_POLICY_SCOPE option
which prevents the automatic push-pop of the policy stack (add_subdirectory() has no such option).
In very early versions of CMake, include() and find_package() did not automatically push and pop
an entry on the policy stack. The NO_POLICY_SCOPE option was added as a way for projects using later
CMake versions to revert back to the old behavior for specific parts of the project, but its use is
discouraged and should be unnecessary for new projects.
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12.3. Recommended Practices
Where possible, projects should prefer to work with policies at the CMake version level rather than
manipulating specific policies. Setting policies to match a particular CMake release’s behavior
makes the project easier to understand and update, whereas changes to individual policies can be
harder to trace through multiple directory levels, especially because of their interaction with
version-level policy changes where they are always reset.

When choosing how to specify the CMake version to conform to, the choice between
cmake_minimum_required(VERSION) and cmake_policy(VERSION) would usually fall to the latter. The two
main exceptions to this are at the start of the project’s top level CMakeLists.txt file and at the top of a
module file that could be re-used across multiple projects. For the latter case, it is preferable to use
cmake_minimum_required(VERSION) because the projects using the module may enforce their own
minimum CMake version, but the module may have specific minimum version requirements of its
own. Aside from these cases, cmake_policy(VERSION) usually expresses the intent more clearly, but
both commands will effectively achieve the same thing from a policy perspective.

In cases where a project does need to manipulate a specific policy, it should check whether the
policy is available using if(POLICY…) rather than testing the CMAKE_VERSION variable. This leads to
greater consistency of the code. Compare the following two ways of setting policy behavior and
note how the check and the enforcement use a consistent approach:

# Version-level policy enforcement
if(NOT CMAKE_VERSION VERSION_LESS 3.4)
    cmake_policy(VERSION 3.4)
endif()

# Individual policy-level enforcement
if(POLICY CMP0055)
    cmake_policy(SET CMP0055 NEW)
endif()

If a project needs to manipulate multiple individual policies locally, surround that section with calls
to block(SCOPE_FOR POLICIES) and endblock(). If CMake 3.24 or early must be supported, use
cmake_policy(PUSH) and cmake_policy(POP) instead. Surrounding the code with either command pair
ensures that the rest of the scope is isolated from the changes. If using cmake_policy() to define these
regions, pay special attention to any possible return(), break() or continue() statements that exit that
section of code and ensure no push is left without a corresponding pop.

Note also that add_subdirectory(), include() and find_package() all push and pop an entry on the
policy stack automatically. No explicit block or push-pop is needed to isolate their policy changes
from the calling scope. Projects should avoid the NO_POLICY_SCOPE keyword of these commands, as it
is intended only for addressing a change in behavior of very early CMake versions. NO_POLICY_SCOPE
is rarely appropriate for new projects.

Aim to avoid modifying policy settings inside a function unless using an appropriate block() or
cmake_policy() push-pop within the function body. Since functions do not introduce a new policy
scope, a policy change can affect the caller if the change is not properly isolated using the
appropriate logic. Furthermore, the policy settings for the function implementation are taken from
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the scope in which the function was defined, not the one from which it is called. Therefore, prefer to
adjust any policy settings in the scope that defines the function rather than within the function
itself.

As a last resort, the CMAKE_POLICY_DEFAULT_CMPxxxx and CMAKE_POLICY_WARNING_CMPxxxx variables may
allow a developer or project to work around some specific policy-related situations. Developers
may use these to temporarily change the default for a specific policy setting, or to prevent warnings
about a particular policy. Projects should generally avoid setting these variables so that developers
have control locally. Nonetheless, in certain situations, they can be used to ensure the behavior or
warning about a particular policy persists even through calls to cmake_minimum_required() or
cmake_policy(VERSION). Where possible, projects should instead try to update to the newer behavior
rather than relying on these variables.
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Chapter 13. Debugging And Diagnostics
When a build is behaving well, users tend not to pay much attention to the output generated by
CMake. For developers working on a project, however, diagnostic output and debugging capabilities
are essential. CMake has always provided basic printing functionality, but enhancements added in
versions 3.15 to 3.18 significantly extended the available capabilities.

13.1. Log Messages
CMake has always supported logging arbitrary text using the message() command, which was
introduced briefly back in Section 5.7, “Printing Variable Values”. The more general form of that
command is:

message([mode] msg1 [msg2]...)

If more than one msg is specified, they will be joined into a single string with no separators. To
preserve spaces, semicolons or newlines, surround the message with quotes (see Section 8.8,
“Problems With Argument Handling” for a detailed explanation of why).

The message output can be affected by the optional mode argument, cmake command-line options and
the value of a few variables at the time of the call. The next few subsections cover these in detail.

13.1.1. Log Levels

The message() command accepts an optional mode keyword which provides information about the
type of message being provided. It affects how and where the message is output, whether it is
output at all and in some cases can halt further processing for that CMake run. Recognized mode
values in order of importance are:

FATAL_ERROR

Denotes a hard error. Processing will stop immediately after the message is printed and the log
will also normally record the location of the fatal message() command.

SEND_ERROR

Like FATAL_ERROR except processing will continue until the configure stage completes, but
generation will not be performed. This can be quite confusing for users, so projects should avoid
this mode and prefer to use FATAL_ERROR instead.

WARNING

Denotes a warning. The log will also normally record the location of the message() command
raising the warning. Processing will continue.

AUTHOR_WARNING

Like WARNING, but only shown if developer warnings are enabled (use the -Wno-dev option on the
cmake command line to disable them). Projects do not often use this particular type of message,
they are usually generated by CMake itself.
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DEPRECATION

Special category used to log a deprecation message. If the CMAKE_ERROR_DEPRECATED variable is set to
true, the message will be treated as an error. If the CMAKE_WARN_DEPRECATED variable is set to true,
the message will be treated as a warning. If neither variable is set, the message will be shown for
CMake 3.5 or later and hidden for earlier versions.

NOTICE

This keyword is only recognized with CMake 3.15 or later, but for all versions, this is the default
log level when no mode keyword is provided. The keyword was added for consistency and to
allow projects to be clearer about the meaning of such messages. Avoid using this log level if the
message doesn’t require any action from the user (see further below).

STATUS

Concise status information, generally expected to be a single line. Prefer to use this message
mode rather than NOTICE for purely informational messages.

VERBOSE

(CMake 3.15 or later only) More detailed information that wouldn’t normally be of interest, but
could be helpful to project users when seeking a deeper understanding of what is happening.

DEBUG

(CMake 3.15 or later only) Not intended for project users, but rather for developers working on
the project itself. These may record internal implementation details that would not be of interest
to those simply wanting to build the project.

TRACE

(CMake 3.15 or later only) Very low level details, used almost exclusively for temporary
messages during project development.

Messages of STATUS through to TRACE level will be printed to stdout, whereas NOTICE and above are
printed to stderr. This can result in messages of different log levels sometimes appearing out of
order in the output. Furthermore, messages on stderr usually imply a problem or something that
the user should investigate, so NOTICE is generally a poor choice for purely informational messages
that don’t require follow-up. Use STATUS or below for such messages.

Messages of STATUS through to TRACE may also have two hyphens and a space automatically
prepended. The CMake GUI application and the ccmake tool do not prepend this prefix, whereas the
current version of the cmake tool will. Future CMake versions may drop this prefix completely, so do
not rely on it being present. No such prefix is prepended for messages of NOTICE level and above.

CMake 3.15 also added the ability to set a minimum logging level with the --loglevel=… command-
line option. This option was renamed to --log-level in CMake 3.16 for consistency reasons, but
--loglevel is still accepted for backward compatibility. The option specifies the desired log level and
only messages of that level or higher will be shown. When no --log-level option is given, only
messages of STATUS level or higher will be recorded.

cmake --log-level=VERBOSE ...
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CMake 3.17 added the ability to specify the default log level with the CMAKE_MESSAGE_LOG_LEVEL
variable. It is overridden by the --log-level command line option if both are present. The cache
variable is intended for developer use only, projects should not try to read or modify it.

If a project wants to perform some action only at certain log levels, there is no way to robustly do
that with CMake 3.24 or earlier. The CMAKE_MESSAGE_LOG_LEVEL variable is not a reliable indicator of
the current log level. The --log-level option could have been passed on the cmake command line,
and it overrides the variable when both are given (the variable value is not updated to reflect the
command line setting). With CMake 3.25 or later, the current log level can be reliably obtained
using cmake_language(GET_MESSAGE_LOG_LEVEL). This accounts for both the variable and the command
line option, returning the active log level at the time of the call. Patterns like the following can then
be implemented:

# Requires CMake 3.25 or later
cmake_language(GET_MESSAGE_LOG_LEVEL logLevel)

# Only do the time-consuming operation at VERBOSE or lower
if(logLevel MATCHES "VERBOSE|DEBUG|TRACE")
    doTimeConsumingDiagnostics()
endif()

13.1.2. Message Indenting

When a project logs a non-trivial amount of output, adding some structure can help the user better
understand which parts of the project each message relates to. One way to do that is to make use of
the CMAKE_MESSAGE_INDENT variable. When using CMake 3.16 or later, the contents of this variable at
the time of the call to message() will be concatenated and prepended to the message for log levels of
NOTICE and below. If the message contains embedded newlines, the indentation contents will be
prepended to each line of the output.

set(CMAKE_MESSAGE_INDENT aa bb)  # Don't do this, see below
message("First line\nSecond line")

aabbFirst line
aabbSecond line

While the above example demonstrates how the feature works, it has problems. The general
expectation is that the list elements in CMAKE_MESSAGE_INDENT will only contain whitespace, typically
two spaces each. This isn’t a requirement, but deviating from it will likely be annoying for users.
Projects should also never set() the variable, they should only append to it, typically by calling
list(APPEND). This avoids any assumption about the contents of the variable and always preserves
the existing indenting. This is especially important for the output of hierarchical projects (discussed
in detail in Chapter 30, FetchContent) or when using indenting within function calls.

The following example demonstrates the above guidelines and how they can be applied in practice.
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function(funcA)
    list(APPEND CMAKE_MESSAGE_INDENT "  ")
    message("${CMAKE_CURRENT_FUNCTION}")
endfunction()

function(funcB)
    list(APPEND CMAKE_MESSAGE_INDENT "  ")
    message("${CMAKE_CURRENT_FUNCTION}")
    funcA()
endfunction()

function(funcC)
    list(APPEND CMAKE_MESSAGE_INDENT "  ")
    message("${CMAKE_CURRENT_FUNCTION}")
    funcB()
endfunction()

message("Top level")
funcA()
funcB()
funcC()

Top level
  funcA
  funcB
    funcA
  funcC
    funcB
      funcA

Note how the indenting of output from both funcA() and funcB() varies depending on the call stack.
Another feature of the example is that because functions introduce their own variable scope, it is
not necessary to pop the indent off the end of the list before returning. The caller has its own
separate copy of the CMAKE_MESSAGE_INDENT variable, so from its perspective, the value of the variable
doesn’t change as a result of the function call.

Projects can add support for indenting even if their minimum CMake version is less than 3.16.
Older CMake versions will simply ignore the indenting and output will be unchanged.

13.1.3. Message Contexts

CMake 3.17 extended the support for message metadata even further. In the same way that
CMAKE_MESSAGE_INDENT can be used to provide indenting, the CMAKE_MESSAGE_CONTEXT variable can be
used to provide information about the context in which each message is generated. This can be
used to record things like the project name or some logical part within the project, for example.
Users can then instruct CMake to print context information with each message by including the
--log-context option on the cmake command line.

When the --log-context option is given and CMAKE_MESSAGE_CONTEXT is not empty, a prefix is generated
for each line of output from a call to message(). This prefix will be the concatenation of the items in

137



CMAKE_MESSAGE_CONTEXT, with each item separated by a dot. The result of that will be enclosed in
square brackets and a space added to the end of the prefix. For messages logged at STATUS level or
below, the context follows after any leading hyphens that may be added by cmake.

CMakeLists.txt:

cmake_minimum_required(VERSION 3.17)
list(APPEND CMAKE_MESSAGE_CONTEXT Coolio)
project(Coolio)

message("Adding features\nHere we go:")

add_subdirectory(networking)
add_subdirectory(graphics)

message("All done")

networking/CMakeLists.txt:

list(APPEND CMAKE_MESSAGE_CONTEXT net)
message("Doing something")

graphics/CMakeLists.txt:

list(APPEND CMAKE_MESSAGE_CONTEXT graphics)
message("Doing something else")

Running cmake --log-context on the above would result in output like the following:

-- [Coolio] The C compiler identification is GNU 9.3.0
-- [Coolio] The CXX compiler identification is GNU 9.3.0
-- [Coolio] Detecting C compiler ABI info
-- [Coolio] Detecting C compiler ABI info - done
-- [Coolio] Check for working C compiler: /.../cc - skipped
-- [Coolio] Detecting C compile features
-- [Coolio] Detecting C compile features - done
-- [Coolio] Detecting CXX compiler ABI info
-- [Coolio] Detecting CXX compiler ABI info - done
-- [Coolio] Check for working CXX compiler: /.../c++ - skipped
-- [Coolio] Detecting CXX compile features
-- [Coolio] Detecting CXX compile features - done
[Coolio] Adding features
[Coolio] Here we go:
[Coolio.net] Doing something
[Coolio.graphics] Doing something else
[Coolio] All done
-- Configuring done
-- Generating done
-- Build files have been written to: /...
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Compiler feature checks are triggered by the call to project(), so Coolio is appended to
CMAKE_MESSAGE_CONTEXT before that call to ensure that the check output includes context information.
The final few lines at the end of the output which record the completion of the different stages of
the run will always have no context.

The general expectation is that when the output of context information is enabled, that output is
going to undergo further post-processing of some sort rather than being shown directly to the user.
For example, an IDE tool might use this to gain understanding of the structure of the output and
offer filtering capabilities to the user. The IDE might support the user expanding and collapsing or
showing and hiding parts of the cmake output according to their interest.

Another use case would be scripted builds. These might use Unix commands like tee and awk to save
an annotated log to a file, but still show the output without context details to allow it to be
monitored in real time. The saved file can then be searched later to find specific lines of interest.
The following is one way of accomplishing this within a bash shell on a Unix-like system (it also
strips off any leading hyphen prefix along with the context information):

cmake . --log-context |& \
        tee out.log | \
        awk 'sub("^((-- )?(\\[[^\\]]*\\] ))?", "")'

One could then extract just the messages associated with networking from the saved log file using a
tool like grep:

grep -E '^(-- )?\[.*Coolio\.net\] ' out.log

CMake places certain restrictions on what a project may use as context names. Valid context names
(i.e. each item in the CMAKE_MESSAGE_CONTEXT list) are those that could be used as the name of a CMake
variable. For the most part, this essentially means letters, numbers and underscores. In addition,
CMake considers context names that begin with cmake_ or a leading underscore to be reserved for
its own use.

Message contexts are particularly effective when message() calls specify appropriate log levels. For
example, projects may provide more detailed information using a VERBOSE log level, but only fairly
minimal output at STATUS level or higher. That would make the default output uncluttered, but using
a --log-level of VERBOSE would provide extra detail when needed. Users could then focus in on just
the details they want by searching for the message context(s) of interest.

13.1.4. Check Messages

Another useful feature available with CMake 3.17 or later is support for messages that record the
status of some form of check. The syntax is essentially the same as the main form of the message()
command, but the meaning of the first argument is different:

message(checkState msg1 [msg2]...)
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The checkState argument is expected to be one of the following values:

CHECK_START

Signifies the start of the check. The message should be short, ideally not more than a few words.
It will be repeated as part of the pass or fail message at the end of the check.

CHECK_PASS

The check completed successfully.

CHECK_FAIL

The check completed with a failure.

Start, pass and fail messages are always output with a STATUS log level. The meaning of success or
failure is up to the project and failure does not necessarily imply an error. For example, the project
may want to check for a number of related things and stop upon the first successful one it finds.

Upon completion of the check (pass or fail), the message() command will repeat the message from
the most recent CHECK_START and then "forget" that message. Output from nested checks then work
intuitively with minimal effort. When combined with appropriate indenting using
CMAKE_MESSAGE_INDENT, the readability and consistency of the output is particularly good.

# Functions just to demonstrate pass/fail behavior
function(checkSomething resultVar)
    set(${resultVar} YES PARENT_SCOPE)
endfunction()

function(checkSomethingElse resultVar)
    set(${resultVar} NO PARENT_SCOPE)
endfunction()

# Outer check starts here
message(CHECK_START "Checking things")
list(APPEND CMAKE_MESSAGE_INDENT "  ")

# Inner check 1
message(CHECK_START "Checking support for something")
checkSomething(successVar1)
if(successVar1)
    message(CHECK_PASS "supported")
else()
    message(CHECK_FAIL "not supported")
endif()

# Inner check 2
message(CHECK_START "Checking support for something else")
checkSomethingElse(successVar2)
if(successVar2)
    message(CHECK_PASS "supported")
else()
    message(CHECK_FAIL "not supported")
endif()
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# Outer check finishes here
list(POP_BACK CMAKE_MESSAGE_INDENT)
if(successVar1 OR successVar2)
    message(CHECK_PASS "ok")
else()
    message(CHECK_FAIL "failed")
endif()

Output from the above would contain lines like the following:

-- Checking things
--   Checking support for something
--   Checking support for something - supported
--   Checking support for something else
--   Checking support for something else - not supported
-- Checking things - ok

13.2. Color Diagnostics
Some compilers support showing their warning and error messages with colored text. When the
build output is long, or where custom tasks generate a lot of less interesting output, having
warnings and errors shown in different colors helps draw attention to the more important
information. This can be of great assistance to developers in their day-to-day work.

Colorized output is usually done by inserting ANSI formatting codes in the output. These codes are
then interpreted by the consumer, applying the colorizing instructions they represent rather than
showing the raw characters. The conventions for ANSI codes are very old and well-established, but
they are not supported in all scenarios. Compilers that offer such functionality usually try to auto-
detect whether the calling environment supports them, adding the ANSI codes only if safe to do so.
Unfortunately, this auto-detection is frequently defeated by the way the compiler is invoked.
Compiler output may be piped between processes, it may be buffered by the build tool, or IDEs may
capture the output and show it in a UI component. In scenarios like these, the compiler has no
terminal to query for its capabilities, so color output will usually be disabled.

Compilers typically offer the ability to override the auto-detection, but the command line flags are
compiler-specific. With CMake 3.24 or later, the CMAKE_COLOR_DIAGNOSTICS variable can be set to
specify the behavior in a compiler-independent way. Setting this variable to true will enable color
output for compilers that support it, while setting it to false will disable color output (useful if the
compiler’s auto-detection incorrectly decides that color output is supported). If the variable is not
set, the compiler’s auto-detection will be used, matching the behavior of CMake 3.23 and older.

If the CMAKE_COLOR_DIAGNOSTICS variable is undefined the first time CMake is run in a build directory,
it is initialized from the environment variable of the same name, if set. This is primarily intended
for IDEs so they can turn on color diagnostics by default for CMake invocations they initiate.

The CMAKE_COLOR_DIAGNOSTICS variable may also enable colorized output of some build tools. It
replaces the much older CMAKE_COLOR_MAKEFILE variable, which should no longer be needed.
CMAKE_COLOR_DIAGNOSTICS is more general and controls color diagnostics for a broader range of tools,
so it should be preferred.
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13.3. Print Helpers
The CMakePrintHelpers module provides two macros which make printing the values of properties
and variables more convenient during development. They are not intended for permanent use, but
are more aimed at helping developers quickly and easily log information temporarily to help
investigate problems in the project.

cmake_print_properties(
    [TARGETS target1 [target2...]]
    [SOURCES source1 [source2...]]
    [DIRECTORIES dir1 [dir2...]]
    [TESTS test1 [test2...]]
    [CACHE_ENTRIES var1 [var2...]]
    PROPERTIES property1 [property2...]
)

This command essentially combines get_property() with message() into a single call. Exactly one of
the property types must be specified and each of the named properties will be printed for each
entity listed. It is particularly convenient for logging values of multiple entities or properties.

add_executable(MyApp main.c)
add_executable(MyAlias ALIAS MyApp)
add_library(MyLib STATIC src.cpp)

include(CMakePrintHelpers)
cmake_print_properties(TARGETS MyApp MyLib MyAlias
    PROPERTIES TYPE ALIASED_TARGET
)

Properties for TARGET MyApp:
  MyApp.TYPE = "EXECUTABLE"
  MyApp.ALIASED_TARGET = <NOTFOUND>
Properties for TARGET MyLib:
  MyLib.TYPE = "STATIC_LIBRARY"
  MyLib.ALIASED_TARGET = <NOTFOUND>
Properties for TARGET MyAlias:
  MyAlias.TYPE = "EXECUTABLE"
  MyAlias.ALIASED_TARGET = "MyApp"

The module also provides a similar function for logging the value of one or more variables:

cmake_print_variables(var1 [var2...])

This works for all variables regardless of whether they have been explicitly set by the project, are
automatically set by CMake or have not been set at all.
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set(foo "My variable")
unset(bar)

include(CMakePrintHelpers)
cmake_print_variables(foo bar CMAKE_VERSION)

foo="My variable" ; bar="" ; CMAKE_VERSION="3.8.2"

13.4. Tracing Variable Access
Another mechanism provided for debugging variable use is the variable_watch() command. This is
intended for more complex projects where it may not be clear how a variable ended up with a
particular value. When a variable is watched, all attempts to read or modify it are logged.

variable_watch(myVar [command])

For the vast majority of cases, listing the variable to be watched without the optional command is
sufficient, as it logs all accesses to the nominated variable. For a more customized degree of control,
a command can be given which will be executed every time the variable is read or modified. The
command is expected to be the name of a CMake function or macro, which will receive the
following arguments:

• The name of the variable.

• The type of access.

• The variable’s value.

• The name of the current list file.

• The list file stack.

In practice, specifying a command with variable_watch() would be very uncommon. The default
message is usually enough to help diagnose the situations where variable_watch() is typically used.
The default message also contains more detail in the call stack than is available in the last argument
passed to a custom watcher command.

13.5. Debugging Generator Expressions
Generator expressions can quickly become complicated and it can be difficult to confirm their
correctness. Because they are only evaluated at generation time, their results are not available
during the configure stage and therefore cannot be printed using the message() command.

One way to debug the value of a generator expression is to use the file(GENERATE) command, which
is covered in Section 20.3, “Reading And Writing Files Directly”. The generator expression can be
written to a temporary file and inspected when CMake finishes execution. For example:
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add_executable(someTarget ...)
target_include_directories(someTarget ...)

set(incDirs $<TARGET_PROPERTY:someTarget,INCLUDE_DIRECTORIES>)
set(genex "-I$<JOIN:${incDirs}, -I>")

file(GENERATE OUTPUT genex.txt CONTENT "${genex}\n")

Another approach is to create a temporary custom build target whose command prints the value of
the generator expression (see Section 19.1, “Custom Targets”). Building that target then prints the
result of the expression.

add_custom_target(printGenex
    COMMENT "Result of generator expression:"
    COMMAND ${CMAKE_COMMAND} -E echo "${genex}"
    VERBATIM
)

Building that target and some representative output might look like this:

cmake --build . --target printGenex
[1/1] Result of generator expression:
-I/some/path -I/some/other/path

This technique is especially useful for configuration-specific generator expressions and when using
multi-config generators like Xcode, Visual Studio and Ninja Multi-Config:

set(genex "$<IF:$<CONFIG:Debug>,is debug,not debug>")

add_custom_target(printGenex
    COMMENT "Result of generator expression:"
    COMMAND ${CMAKE_COMMAND} -E echo "${genex}"
    VERBATIM
)

For multi-configuration generators, the configuration can be specified with the build command:

cmake --build . --target printGenex --config Release
[1/1] Result of generator expression:
not debug

cmake --build . --target printGenex --config Debug
[1/1] Result of generator expression:
is debug
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13.6. Profiling CMake Calls
CMake 3.18 added the ability to profile CMake’s own processing of a project. For large, complicated
projects where the configure stage takes a long time, this can provide valuable insights into where
time is being spent. When profiling is enabled, every CMake command invocation is recorded in the
profiling output.

Both of the following command line options need to be provided to enable profiling:

--profiling-output=fileName

The profiling data will be written to the specified fileName.

--profiling-format=fmt

This specifies the format of the profiling data. The only supported value for fmt is google-trace,
but future CMake versions may expand this to include other formats.

For the google-trace format, the output file can be loaded directly into a Chrome web browser
(navigate to the URL about:tracing) or some IDEs (e.g. Qt Creator). Using a .json extension for the
output file name may make it easier to find and load into tools that understand the google-trace
format.

The profiling results often show calls like try_compile() and execute_process() as consuming the
majority of the execution time. Rather than focusing on those two calls specifically, inspect the call
stacks that led up to those commands. There may be opportunities for reducing how often these
two commands are called by avoiding unnecessary or overly pessimistic logic higher in the call
stack.

13.7. Discarding Previous Results
When trying to track down unexpected behavior in the CMake logic of a project, a recommended
debugging step is to discard any cached results from an existing build directory and then confirm
whether the problem still persists. For small projects, deleting the whole build directory is often the
easiest way to achieve that. For very large projects, the loss of all the compiled object files and other
build artifacts may be unacceptable. A more surgical approach may be needed to remove a smaller
subset of the files and directories.

The CMakeCache.txt file in the top of the build directory is the primary place where information is
cached. In some scenarios, the developer may need to delete this file so that cached information is
recomputed, or manual changes discarded. Examples where the file should be removed include:
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• A dependency may have been updated or removed.

• A cache variable the developer added or modified temporarily might no longer be needed and
the defaults should be used instead.

• The compiler or other tools associated with the toolchain might have been updated or changed.

If anything about the toolchain changes, the CMakeFiles directory should also be removed. This is
where CMake caches toolchain information after performing various checks on the first run.

With CMake 3.24 or later, the --fresh option can be passed on the cmake command line. This option
tells CMake to delete both the CMakeCache.txt file and the CMakeFiles directory. It is mostly a
convenience for developers, with the added advantage that the details of where CMake caches
things don’t need to be remembered. The same functionality has also been available in the CMake
GUI application for much earlier CMake versions. It can be found in the File menu as the Delete
Cache… action.

13.8. Recommended Practices
A common problem with many projects is that they log an excessive amount of output during the
configure step. This tends to train users to ignore the output, which in turn means that important
messages and warnings are easily missed. When the output is fairly minimal and a warning does
occur, users tend to take note and investigate the cause. Therefore, aim to minimize the amount of
output at the STATUS log level, saving more detailed output for a log level of VERBOSE or lower. If
supporting CMake versions older than 3.15 where log levels below STATUS are not available, consider
putting detailed logging behind a project-specific cache option, which should be off by default.

For log messages intended to remain as part of the build, aim to always specify a log level as the
first argument to the message() command. If the message is of a general informational nature,
prefer to use STATUS rather than no keyword at all so that message output does not appear out of
order in the build log. Temporary debugging messages frequently omit specifying a log level for
convenience, but if they are likely to remain part of the project for any length of time, it is better
that they too specify a log level.

For non-trivial projects, consider adding message context information to allow users to filter log
output and focus on just those messages that are of interest to them. Never discard existing
contents of the CMAKE_MESSAGE_CONTEXT variable, always use list(APPEND) when starting a new message
context. If the message context should end before the end of the current variable scope, use
list(POP_BACK). Make no assumptions about what the variable contains other than that this append /
pop back pattern can be used. Consider appending the project name as a message context
immediately before the first project() call in the top level CMakeLists.txt file so that compiler
feature checks also have a message context.

In a similar manner, also consider using the CMAKE_MESSAGE_INDENT variable to provide some logical
structure to the message output. Prefer to append two spaces for an indent. While other indents are
permitted, following this convention will make the output more consistent, especially in
hierarchical projects that make use of external dependencies. Use list(APPEND) to add to the existing
indent, never replace or discard the existing contents of the CMAKE_MESSAGE_INDENT variable. If
required, list(POP_BACK) can be used to reduce the indent again before the end of the current
variable scope.
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Both the CMAKE_MESSAGE_CONTEXT and CMAKE_MESSAGE_INDENT variables can be populated by the project
regardless of the minimum supported CMake version. When an earlier CMake version that doesn’t
know about these variables is used, it will simply ignore them and the output will be unaffected.
Therefore, consider using these features even if the project needs to support earlier CMake
versions. Note that the list(POP_BACK) command requires CMake 3.15 or later, so if the project needs
to support versions earlier that that, it must use alternative commands to achieve the same effect
where that is needed. In most cases though, a new message context or indentation level will apply
through to the end of the current variable scope, in which case popping the last value from the end
of the list variable won’t be necessary.

Consider using the CHECK_START, CHECK_PASS and CHECK_FAIL form of the message() command to record
details of checks. This reduces duplication of messages and provides improved readability. It is
especially effective when used in conjunction with the indenting support provided by the
CMAKE_MESSAGE_INDENT variable.

If the configure stage of a project takes a long time to complete, consider running cmake with the
--profiling-output and --profiling-format options to investigate where the time is being spent.
Available with CMake 3.18 or later, these options enable the generation of command-level profiling
information, which can be viewed with tools like the Chrome web browser or IDEs like Qt Creator
and CLion.

Section 25.7, “Debugging find_…() Calls” also discusses further debugging features added in CMake
3.17 and later. Those features relate to finding files, packages and other things, which is covered in
detail in Chapter 25, Finding Things.
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Part II: Builds In Depth
In the preceding chapters, the most fundamental aspects of CMake were progressively introduced.
Core language features, key concepts and important building blocks were presented, providing a
solid foundation for a deeper exploration of CMake’s functionality.

In this part of the book, the build products become the focus. Chapters cover the toolchain and
build configuration, different types of targets, carrying out custom tasks and handling platform-
specific features. Understanding these areas well can be the difference between a fragile, complex
project and a robust, easy to maintain one.
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Chapter 14. Build Type
This chapter and the next cover two closely related topics. The build type (also known as the build
configuration or build scheme in some IDE tools) is a high level control which selects different sets
of compiler and linker behavior. Manipulation of the build type is the subject of this chapter, while
the next chapter presents more specific details of controlling compiler and linker options. Together,
these chapters cover material every CMake developer will typically use for all but the most trivial
projects.

14.1. Build Type Basics
The build type has the potential to affect almost everything about the build in one way or another.
While it primarily has a direct effect on the compiler and linker behavior, it also has an effect on
the directory structure used for a project. This can in turn influence how a developer sets up their
own local development environment, so the effects of the build type can be quite far-reaching.

Developers commonly think of builds as being one of two arrangements: debug or release. For a
debug build, compiler flags are used to enable the recording of information that debuggers can use
to associate machine instructions with the source code. Optimizations are frequently disabled in
such builds so that the mapping from machine instruction to source code location is direct and easy
to follow when stepping through program execution. A release build, on the other hand, generally
has full optimizations enabled and no debug information generated.

These are examples of what CMake refers to as the build type. While projects are able to define
whatever build types they want, the default build types provided by CMake are usually sufficient
for most projects:

Debug

With no optimizations and full debug information, this is commonly used during development
and debugging, as it typically gives the fastest build times and the best interactive debugging
experience.

Release

This build type typically provides full optimizations for speed and no debug information,
although some platforms may still generate debug symbols in certain circumstances. It is
generally the build type used when building software for final production releases.

RelWithDebInfo

This is somewhat of a compromise of the previous two. It aims to give performance close to a
Release build, but still allow some level of debugging. Most optimizations for speed are typically
applied, but most debug functionality is also enabled. This build type is therefore most useful
when the performance of a Debug build is not acceptable even for a debugging session. Note that
the default settings for RelWithDebInfo will disable assertions.

MinSizeRel

This build type is typically only used for constrained resource environments such as embedded
devices. The code is optimized for size rather than speed and no debug information is created.
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Each build type results in a different set of compiler and linker flags. It may also change other
behaviors, such as altering which source files get compiled or what libraries to link to. These details
are covered in the next few sections, but before launching into those discussions, it is essential to
understand how to select the build type and how to avoid some common problems.

14.1.1. Single Configuration Generators

Back in Section 2.3, “Generating Project Files”, the different types of project generators were
introduced. Some, like Makefiles and Ninja, support only a single build type per build directory. For
these generators, the build type is chosen by setting the CMAKE_BUILD_TYPE cache variable. For
example, to configure and then build a project with Ninja, one might use commands like this:

cmake -G Ninja -DCMAKE_BUILD_TYPE:STRING=Debug ../source
cmake --build .

The CMAKE_BUILD_TYPE cache variable can also be changed in the CMake GUI application instead of
from the command line, but the end effect is the same. With CMake 3.22 or later, if the
CMAKE_BUILD_TYPE cache variable is not set, it will be initialized from the CMAKE_BUILD_TYPE
environment variable (if defined).

Rather than switching between different build types in the same build directory, an alternative
strategy is to set up separate build directories for each build type, all still using the same sources.
Such a directory structure might look something like this:

If frequently switching between build types, this arrangement avoids having to constantly
recompile the same sources just because compiler flags change. It also allows a single configuration
generator to effectively act like a multi configuration generator. IDE environments like Qt Creator
support switching between build directories just as easily as Xcode or Visual Studio allow switching
between build schemes or configurations.

14.1.2. Multiple Configuration Generators

Some generators, notably Xcode and Visual Studio, support multiple configurations in a single build
directory. From CMake 3.17, the Ninja Multi-Config generator is also available. These multi-config
generators ignore the CMAKE_BUILD_TYPE cache variable and instead require the developer to choose
the build type within the IDE or with a command line option at build time. Configuring and
building such projects would typically look something like this:
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cmake -G Xcode ../source
cmake --build . --config Debug

When building within the Xcode IDE, the build type is controlled by the build scheme, while within
the Visual Studio IDE, the current solution configuration controls the build type. Both environments
keep separate directories for the different build types, so switching between builds doesn’t cause
constant rebuilds. In effect, the same thing is being done as the multiple build directory
arrangement described above for single configuration generators, it’s just that the IDE is handling
the directory structure on the developer’s behalf.

For command-line builds, the Ninja Multi-Config generator has a little more flexibility compared to
the other multi-config generators. The CMAKE_DEFAULT_BUILD_TYPE cache variable can be used to
change the default configuration to use when no configuration is specified on the build command
line. The Xcode and Visual Studio generators have their own fixed logic for determining the default
configuration in this scenario. The Ninja Multi-Config generator also supports advanced features
that allow custom commands to execute as one configuration, but other targets to be built with one
or more other configurations. Most projects would not typically need or benefit from these more
advanced features, but the CMake documentation for the Ninja Multi-Config generator provides the
essential details, with examples.

14.2. Common Errors
Note how for single configuration generators, the build type is specified at configure time, whereas
for multi configuration generators, the build type is specified at build time. This distinction is
critical, as it means the build type is not always known when CMake is processing a project’s
CMakeLists.txt file. Consider the following piece of CMake code, which unfortunately is rather
common, but demonstrates an incorrect pattern:

# WARNING: Do not do this!
if(CMAKE_BUILD_TYPE STREQUAL "Debug")
    # Do something only for debug builds
endif()

The above would work fine for Makefile-based generators and Ninja, but not for Xcode, Visual
Studio or Ninja Multi-Config. In practice, just about any logic based on CMAKE_BUILD_TYPE within a
project is questionable unless it is protected by a check to confirm a single configuration generator
is being used. For multi configuration generators, this variable is likely to be empty, but even if it
isn’t, its value should be considered unreliable because the build will ignore it. Rather than
referring to CMAKE_BUILD_TYPE in the CMakeLists.txt file, projects should instead use other more robust
alternative techniques, such as generator expressions based on $<CONFIG:…>.

When scripting builds, a common deficiency is to assume a particular generator is used or to not
properly account for differences between single and multi configuration generators. Developers
should ideally be able to change the generator in one place and the rest of the script should still
function correctly. Conveniently, single configuration generators will ignore any build-time
specification and multi configuration generators will ignore the CMAKE_BUILD_TYPE variable, so by
specifying both, a script can account for both cases. For example:
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mkdir build
cd build
cmake -G Ninja -DCMAKE_BUILD_TYPE=Release ../source
cmake --build . --config Release

With the above example, a developer could simply change the generator name given to the -G
parameter and the rest of the script would work unchanged.

Not explicitly setting the CMAKE_BUILD_TYPE for single configuration generators is also common, but
usually not what the developer intended. A behavior unique to single configuration generators is
that if CMAKE_BUILD_TYPE is not set, the build type will usually be empty. This can lead to the
misunderstanding that an empty build type is equivalent to Debug, but this is not so. An empty
build type is its own unique, nameless build type. In such cases, no configuration-specific compiler
or linker flags are used, which often results in invoking the compiler and linker with minimal flags.
The behavior is then determined by the compiler’s and linker’s own defaults. While this may often
be similar to the Debug build type’s behavior, it is by no means guaranteed.

Using the Visual Studio compilers with a single configuration generator is somewhat of a special
case. For that toolchain, there are different runtime libraries for debug and non-debug builds. An
empty build type would make it unclear which runtime should be used. To avoid this ambiguity, the
build type will default to Debug for this combination.

14.3. Custom Build Types
Sometimes a project may want to limit the set of build types to a subset of the defaults, or it may
want to add other custom build types with a special set of compiler and linker flags. A good
example of the latter is adding a build type for profiling or code coverage, both of which require
specific compiler and linker settings.

There are two main places where a developer may see the set of build types. When using IDE
environments for multi configuration generators like Xcode and Visual Studio, the IDE provides a
drop-down list or similar from which the developer selects the configuration they wish to build. For
single configuration generators like Makefiles or Ninja, the build type is entered directly for the
CMAKE_BUILD_TYPE cache variable, but the CMake GUI application can be made to present a combo box
of valid choices instead of a simple text edit field. The mechanisms behind these two cases are
different, so they must be handled separately.

The set of build types known to multi configuration generators is controlled by the
CMAKE_CONFIGURATION_TYPES cache variable, or more accurately, by the value of this variable at the end
of processing the top level CMakeLists.txt file. The first encountered project() command populates
the cache variable if it has not already been defined. With CMake 3.22 or later, a
CMAKE_CONFIGURATION_TYPES environment variable can provide the default value. If that environment
variable isn’t set or an earlier CMake version is used, the default value will be (possibly a subset of)
the four standard configurations mentioned in Section 14.1, “Build Type Basics” (Debug, Release,
RelWithDebInfo and MinSizeRel).

Projects may modify the CMAKE_CONFIGURATION_TYPES variable after the first project() command, but
only in the top level CMakeLists.txt file. Some CMake generators rely on this variable having a
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consistent value throughout the whole project. Custom build types can be defined by adding them
to CMAKE_CONFIGURATION_TYPES and unwanted build types can be removed from that list. Note that only
the non-cache variable should be modified, as changing the cache variable may discard changes
made by the developer.

Care needs to be taken to avoid setting CMAKE_CONFIGURATION_TYPES if it is not already defined. Prior to
CMake 3.9, a very common approach for determining whether a multi configuration generator was
being used was to check if CMAKE_CONFIGURATION_TYPES was non-empty. Even parts of CMake itself did
this prior to 3.11. While this method is usually accurate, it is not unusual to see projects unilaterally
set CMAKE_CONFIGURATION_TYPES even if using a single configuration generator. This can lead to wrong
decisions being made regarding the type of generator in use. To address this, CMake 3.9 added a
new GENERATOR_IS_MULTI_CONFIG global property which is set to true when a multi configuration
generator is being used, providing a definitive way to obtain that information instead of relying on
inferring it from CMAKE_CONFIGURATION_TYPES. Even so, checking CMAKE_CONFIGURATION_TYPES is still such a
prevalent pattern that projects should continue to only modify it if it exists and never create it
themselves. It should also be noted that prior to CMake 3.11, adding custom build types to
CMAKE_CONFIGURATION_TYPES was not safe. Certain parts of CMake only accounted for the default build
types, but even so, projects may still be able to usefully define custom build types with earlier
CMake versions, depending on how they are going to be used. That said, for better robustness, it is
recommended that at least CMake 3.11 be used if custom build types are going to be defined.

Another aspect of this issue is that developers may add their own types to the
CMAKE_CONFIGURATION_TYPES cache variable and/or remove those they are not interested in. Projects
should therefore not make any assumptions about what configuration types are or are not defined.

Taking the above points into account, the following pattern shows the preferred way for projects to
add their own custom build types for multi configuration generators:

cmake_minimum_required(3.11)
project(Foo)

# Only make changes if we are the top level project
if(CMAKE_SOURCE_DIR STREQUAL CMAKE_CURRENT_SOURCE_DIR)
    get_property(isMultiConfig GLOBAL
        PROPERTY GENERATOR_IS_MULTI_CONFIG
    )
    if(isMultiConfig)
        if(NOT "Profile" IN_LIST CMAKE_CONFIGURATION_TYPES)
            list(APPEND CMAKE_CONFIGURATION_TYPES Profile)
        endif()
    endif()
    # Set Profile-specific flag variables as needed...
endif()

For single configuration generators, there is only one build type. This is specified by the
CMAKE_BUILD_TYPE cache variable, which is a string. In the CMake GUI, this is normally presented as a
text edit field, so the developer can edit it to contain whatever arbitrary content they wish. As
discussed back in Section 9.6, “Cache Variable Properties”, cache variables can have their STRINGS
property defined to hold a set of valid values. The CMake GUI application will then present that
variable as a combo box containing the valid values instead of as a text edit field.
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set_property(CACHE CMAKE_BUILD_TYPE PROPERTY
    STRINGS Debug Release Profile
)

Properties can only be changed from within the project’s CMakeLists.txt files, so they can safely set
the STRINGS property without having to worry about preserving any developer changes. Note,
however, that setting the STRINGS property of a cache variable does not guarantee that the cache
variable will hold one of the defined values, it only controls how the variable is presented in the
CMake GUI application. Developers can still set CMAKE_BUILD_TYPE to any value at the cmake command
line or edit the CMakeCache.txt file manually. In order to rigorously require the variable to have one
of the defined values, a project must explicitly perform that test itself.

set(allowedBuildTypes Debug Release Profile)

# WARNING: This logic is not sufficient
if(NOT CMAKE_BUILD_TYPE IN_LIST allowedBuildTypes)
    message(FATAL_ERROR "${CMAKE_BUILD_TYPE} is not a known build type")
endif()

The default value for CMAKE_BUILD_TYPE is an empty string, so the above would cause a fatal error for
both single and multi configuration generators unless the developer explicitly set it. This is
undesirable, especially for multi configuration generators which don’t even use the CMAKE_BUILD_TYPE
variable’s value. This can be handled by having the project provide a default value if
CMAKE_BUILD_TYPE hasn’t been set. Furthermore, the techniques for multi and single configuration
generators can and should be combined to give robust behavior across all generator types. The end
result would look something like this:

cmake_minimum_required(3.11)
project(Foo)

if(CMAKE_SOURCE_DIR STREQUAL CMAKE_CURRENT_SOURCE_DIR)
    get_property(isMultiConfig GLOBAL PROPERTY GENERATOR_IS_MULTI_CONFIG)
    if(isMultiConfig)
        if(NOT "Profile" IN_LIST CMAKE_CONFIGURATION_TYPES)
            list(APPEND CMAKE_CONFIGURATION_TYPES Profile)
        endif()
    else()
        set(allowedBuildTypes Debug Release Profile)
        set_property(CACHE CMAKE_BUILD_TYPE PROPERTY
            STRINGS "${allowedBuildTypes}"
        )
        if(NOT CMAKE_BUILD_TYPE)
            set(CMAKE_BUILD_TYPE Debug CACHE STRING "" FORCE)
        elseif(NOT CMAKE_BUILD_TYPE IN_LIST allowedBuildTypes)
            message(FATAL_ERROR "Unknown build type: ${CMAKE_BUILD_TYPE}")
        endif()
    endif()

    # Set relevant Profile-specific flag variables as needed...
endif()
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The above techniques enable selecting a custom build type, but they don’t define anything about
that build type. Selecting a build type specifies which configuration-specific variables to use. It also
affects any generator expressions whose logic depends on the current configuration ($<CONFIG> and
$<CONFIG:…>). These variables and generator expressions are discussed in the next chapter. For now,
the following two families of variables are of primary interest.

• CMAKE_<LANG>_FLAGS_<CONFIG>

• CMAKE_<TARGETTYPE>_LINKER_FLAGS_<CONFIG>

The flags specified in these variables are added to the default set provided by the same-named
variables without the _<CONFIG> suffix. A custom Profile build type might be defined like so:

set(CMAKE_C_FLAGS_PROFILE             "-p -g -O2" CACHE STRING "")
set(CMAKE_CXX_FLAGS_PROFILE           "-p -g -O2" CACHE STRING "")
set(CMAKE_EXE_LINKER_FLAGS_PROFILE    "-p -g -O2" CACHE STRING "")
set(CMAKE_SHARED_LINKER_FLAGS_PROFILE "-p -g -O2" CACHE STRING "")
set(CMAKE_STATIC_LINKER_FLAGS_PROFILE ""          CACHE STRING "")
set(CMAKE_MODULE_LINKER_FLAGS_PROFILE "-p -g -O2" CACHE STRING "")

The above assumes a GCC-compatible compiler to keep the example simple and turns on profiling
as well as enabling debugging symbols and most optimizations. An alternative is to base the
compiler and linker flags on one of the other build types and add the extra flags needed. This can
be done as long as it comes after the project() command, since that command populates the default
compiler and linker flag variables. For profiling, the RelWithDebInfo default build type is a good one
to choose as the base configuration since it enables both debugging and most optimizations:

set(CMAKE_C_FLAGS_PROFILE
    "${CMAKE_C_FLAGS_RELWITHDEBINFO} -p"
    CACHE STRING ""
)
set(CMAKE_CXX_FLAGS_PROFILE
    "${CMAKE_CXX_FLAGS_RELWITHDEBINFO} -p"
    CACHE STRING ""
)
set(CMAKE_EXE_LINKER_FLAGS_PROFILE
    "${CMAKE_EXE_LINKER_FLAGS_RELWITHDEBINFO} -p"
    CACHE STRING ""
)
set(CMAKE_SHARED_LINKER_FLAGS_PROFILE
    "${CMAKE_SHARED_LINKER_FLAGS_RELWITHDEBINFO} -p"
    CACHE STRING ""
)
set(CMAKE_STATIC_LINKER_FLAGS_PROFILE
    "${CMAKE_STATIC_LINKER_FLAGS_RELWITHDEBINFO}"
    CACHE STRING ""
)
set(CMAKE_MODULE_LINKER_FLAGS_PROFILE
    "${CMAKE_MODULE_LINKER_FLAGS_RELWITHDEBINFO} -p"
    CACHE STRING ""
)

155



Each custom configuration should have the associated compiler and linker flag variables defined.
For some multi configuration generator types, CMake will check that the required variables exist
and will fail with an error if they are not set.

Another variable which may sometimes be defined for a custom build type is
CMAKE_<CONFIG>_POSTFIX. It is used to initialize the <CONFIG>_POSTFIX property of each library target,
with its value being appended to the file name of such targets when built for the specified
configuration. This allows libraries from multiple build types to be put in the same directory
without overwriting each other. CMAKE_DEBUG_POSTFIX is often set to values like d or _debug, especially
for Visual Studio builds where different runtime DLLs must be used for Debug and non-Debug
builds, so packages may need to include libraries for both build types. In the case of the custom
Profile build type defined above, an example might be:

set(CMAKE_PROFILE_POSTFIX _profile)

If creating packages that contain multiple build types, setting CMAKE_<CONFIG>_POSTFIX for each build
type is highly recommended. By convention, the postfix for Release builds is typically empty. Note
though that the <CONFIG>_POSTFIX target property is ignored on Apple platforms.

For historical reasons, the items passed to the target_link_libraries() command can be prefixed
with the debug or optimized keywords to indicate that the named item should only be linked in for
debug or non-debug builds respectively. A build type is considered to be a debug build if it is listed in
the DEBUG_CONFIGURATIONS global property, otherwise it is considered to be optimized. For custom build
types, they should have their name added to this global property if they should be treated as a debug
build in this scenario. As an example, if a project defines its own custom build type called
StrictChecker and that build type should be considered a non-optimized debug build type, it can
(and should) make this clear like so:

set_property(GLOBAL APPEND PROPERTY
    DEBUG_CONFIGURATIONS StrictChecker
)

New projects should normally prefer to use generator expressions instead of the debug and optimized
keywords with the target_link_libraries() command. The next chapter discusses this area in more
detail.

14.4. Recommended Practices
Developers should not assume a particular CMake generator is being used to build their project.
Another developer on the same project may prefer to use a different generator because it integrates
better with their IDE tool, or a future version of CMake may add support for a new generator type
which might bring other benefits. Certain build tools may contain bugs which a project may later be
affected by, so it can be useful to have alternative generators to fall back on until such bugs are
fixed. Expanding a project’s set of supported platforms can also be hindered if a particular CMake
generator has been assumed.
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When using single configuration generators like Makefiles or Ninja, consider using multiple build
directories, one for each build type of interest. This allows switching between build types without
forcing a complete recompile each time. This provides similar behavior to that inherently offered
by multi configuration generators and can be a useful way to enable IDE tools like Qt Creator to
simulate multi configuration functionality.

For single configuration generators, consider setting CMAKE_BUILD_TYPE to a better default value if it is
empty. While an empty build type is technically valid, it is also often misunderstood by developers
to mean a Debug build rather than its own distinct build type. Furthermore, avoid creating logic
based on CMAKE_BUILD_TYPE unless it is first confirmed that a single configuration generator is being
used. Even then, such logic is likely to be fragile and could probably be expressed with more
generality and robustness using generator expressions instead.

Only consider modifying the CMAKE_CONFIGURATION_TYPES variable if it is known that a multi
configuration generator is being used or if the variable already exists. If adding a custom build type
or removing one of the default build types, do not modify the cache variable but instead change the
regular variable of the same name (it will take precedence over the cache variable). Also prefer to
add and remove individual items rather than completely replacing the list. Both of these measures
will help avoid interfering with changes made to the cache variable by the developer. Only make
such changes in the top level CMakeLists.txt file.

If requiring CMake 3.9 or later, use the GENERATOR_IS_MULTI_CONFIG global property to definitively
query the generator type instead of relying on the existence of CMAKE_CONFIGURATION_TYPES to perform
a less robust check.

A common but incorrect practice is to query the LOCATION target property to work out a target’s
output file name. A related error is to assume a particular build output directory structure in
custom commands (see Chapter 19, Custom Tasks). These methods do not work for all build types,
since LOCATION is not known at configure time for multi configuration generators and the build
output directory structure is typically different across the various CMake generator types.
Generator expressions like $<TARGET_FILE:…> should be used instead, as they robustly provide the
required path for all generators, whether they be single or multi configuration.
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Chapter 15. Compiler And Linker Essentials
The previous chapter discussed the build type and how it relates to selecting a particular set of
compiler and linker behavior. This chapter discusses the fundamentals of how that compiler and
linker behavior is controlled. The material presented here covers some of the most important topics
and techniques with which every CMake developer should become familiar.

Before proceeding, note that as CMake has evolved, the available methods for controlling the
compiler and linker behavior have also improved. The focus has shifted from a more build-global
view to one where the requirements of each individual target can be controlled, along with how
those requirements should or should not be applied to other targets that depend on it. This is an
important shift in thinking, as it affects how a project can most effectively define the way targets
should be built. CMake’s more mature features can be used to control behavior at a coarse level at
the expense of losing the ability to define relationships between targets. The more recent target-
focused features should be preferred instead, since they greatly improve the robustness of the build
and offer much more precise control over compiler and linker behavior. The newer features also
tend to be more consistent in their behavior and the way they are meant to be used.

15.1. Target Properties
Within CMake’s property system, the target properties form the primary mechanism by which
compiler and linker flags are controlled. Some properties provide the ability to specify any
arbitrary flag, whereas others focus on a specific capability so they can abstract away platform or
compiler differences. This chapter focuses on the more commonly used and general purpose
properties, with later chapters covering a number of the more specific ones.

Before proceeding, it should be noted that the target properties discussed in the following sections
are not usually modified directly. CMake provides dedicated commands which are generally more
convenient and more robust than direct property manipulation. Nevertheless, understanding the
underlying properties involved can help developers understand some of the features and
restrictions of those commands.

15.1.1. Compiler Flags

The most fundamental target properties for controlling compiler flags are the following, each of
which hold a list of items:

INCLUDE_DIRECTORIES

This is a list of directories to be used as header search paths, all of which must be absolute paths.
CMake will add a compiler flag for each path with an appropriate prefix prepended (typically -I
or /I). When a target is created, the initial value of this target property is taken from the
directory property of the same name.

COMPILE_DEFINITIONS

This holds a list of definitions to be set on the compile command line. A definition has the form
VAR or VAR=VALUE, which CMake will convert to the appropriate form for the compiler being used
(typically -DVAR… or /DVAR…). When a target is created, the initial value of this target property
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will be empty. There is a directory property of the same name, but it is not used to provide an
initial value for this target property. Rather, the directory and target properties are combined in
the final compiler command line.

COMPILE_OPTIONS

Any compiler flags that are neither header search paths nor symbol definitions are provided in
this property. When a target is created, the initial value of this target property is taken from the
directory property of the same name. Note that this property is also subject to de-duplication
(see Section 15.4, “De-duplicating Options” for further details).



An older and now deprecated target property with the name COMPILE_FLAGS used
to serve a similar purpose as COMPILE_OPTIONS. The COMPILE_FLAGS property is
treated as a single string that is included directly on the compiler command
line. As a result, it may require manual escaping, whereas COMPILE_OPTIONS is a
list and CMake performs any required escaping or quoting automatically.

The INCLUDE_DIRECTORIES and COMPILE_DEFINITIONS properties are really just conveniences, taking care
of the compiler-specific flags for the most common things projects often want to set. All remaining
compiler-specific flags are then provided in the COMPILE_OPTIONS property.

The three target properties above have related target properties of the same name with INTERFACE_
prepended. These interface properties do the same thing as their non-INTERFACE counterparts, except
instead of applying to the target itself, they apply to targets that link directly to it. In other words,
they specify compiler flags that consuming targets inherit. For this reason, they are often referred to
as usage requirements, in contrast to the non-INTERFACE properties which are sometimes called build
requirements. Two special library types IMPORTED and INTERFACE are discussed later in Chapter 18,
Target Types. These special library types support only the INTERFACE_… target properties and not the
non-INTERFACE_… properties. Section 15.7.2, “System Header Search Paths” discusses additional
functionality related to how INTERFACE_INCLUDE_DIRECTORIES is used.

Unlike their non-interface counterparts, none of the above INTERFACE_… properties are initialized
from directory properties. Instead, they all start out empty, since only the project has knowledge of
what header search paths, defines and compiler flags should propagate to consuming targets.

All the above target properties except COMPILE_FLAGS support generator expressions. Generator
expressions are particularly useful for the COMPILE_OPTIONS property, since they enable adding a
particular flag only if some condition is met, such as only for one particular compiler or language.

If compiler flags need to be manipulated at the individual source file level, target properties are not
granular enough. For such cases, CMake provides the COMPILE_DEFINITIONS, COMPILE_FLAGS and
COMPILE_OPTIONS source file properties (the COMPILE_OPTIONS source file property was only added in
CMake 3.11). These are each analogous to their same-named target properties except that they
apply only to the individual source file on which they are set. Note that their support for generator
expressions has lagged behind that of the target properties, with the COMPILE_DEFINITIONS source file
property gaining generator expression support in CMake 3.8 and the others in 3.11. Furthermore,
the Xcode project file format does not support configuration specific source file properties at all, so
if targeting Apple platforms, $<CONFIG> or $<CONFIG:…> should not be used in source file properties.
Also keep in mind the warnings discussed back in Section 9.5, “Source Properties” regarding
implementation details leading to performance issues when source file properties are used.
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15.1.2. Linker Flags

The target properties associated with linker flags have similarities to those for compiler flags, but
some were only added in more recent CMake versions. CMake 3.13 in particular added a number of
improvements for linker control. Also note that only some of the linker-related properties have an
associated interface property and that not all properties support generator expressions.

LINK_LIBRARIES

This target property holds a list of all libraries the target should link to directly. It is initially
empty when the target is created and it supports generator expressions. An associated interface
property INTERFACE_LINK_LIBRARIES is supported. Each library listed can be one of the following:

• A path to a library, usually specified as an absolute path.

• Just the library name without a path, usually also without any platform-specific file name
prefix (e.g. lib) or suffix (e.g. .a, .so, .dll).

• The name of a CMake library target. CMake will convert this to a path to the built library
when generating the linker command, including supplying any prefix or suffix to the file
name as appropriate for the platform. Because CMake handles all the various platform
differences and paths on the project’s behalf, using a CMake target name is generally the
preferred method.

CMake will use the appropriate linker flags to link each item listed in the LINK_LIBRARIES property.
In some circumstances, linker flags may also be present in this property, but the other target
properties below are generally preferred for holding such options.

LINK_OPTIONS

Support for this property was added in CMake 3.13. It holds a list of flags to be passed to the
linker for targets that are executables, shared libraries or module libraries. It is ignored for
targets being built as a static library. This property is intended for general linker flags, not those
flags which specify other libraries to link to. When a target is created, the initial value of this
target property is taken from the directory property of the same name. Generator expressions
are supported and the property is also subject to de-duplication (see Section 15.4, “De-
duplicating Options” for further details).

An associated interface property INTERFACE_LINK_OPTIONS is also supported. Note that the contents
of this interface property will be applied to consuming targets even if the target on which
INTERFACE_LINK_OPTIONS is set is a static library. This is because the interface property is specifying
linker flags that the consumer should use, so the type of the library being consumed is not a
factor.

LINK_FLAGS

This property serves a similar purpose to LINK_OPTIONS, but there are a number of differences.
The first key difference is that it holds a single string that will be placed directly on the linker
command line rather than a list of linker flags. Another difference is that it does not support
generator expressions. Furthermore, there is no associated interface property and it is
initialized to an empty value when the target is created. In general, LINK_OPTIONS is more robust
and offers a broader set of features, so only use LINK_FLAGS if CMake versions earlier than 3.13
must be supported.
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STATIC_LIBRARY_OPTIONS

This is the counterpart to LINK_OPTIONS. It only has meaning for targets being built as a static
library and will be used for the librarian or archiver tool. It holds a list of options, generator
expressions are supported and it is subject to de-duplication (see Section 15.4, “De-duplicating
Options”). Like LINK_OPTIONS, support for STATIC_LIBRARY_OPTIONS was only added in CMake 3.13,
but note that there is no associated interface property. A target cannot dictate librarian/archiver
flags of its consumers, only linker flags (see the comments regarding INTERFACE_LINK_OPTIONS
above).

STATIC_LIBRARY_FLAGS

This is the counterpart to LINK_FLAGS and should only be used if CMake versions earlier than 3.13
must be supported. It is a single string rather than a list and it does not support generator
expressions. There is no associated interface property.

In some older projects, one may occasionally encounter a target property named
LINK_INTERFACE_LIBRARIES, which is an older version of INTERFACE_LINK_LIBRARIES. This older property
has been deprecated since CMake 2.8.12, but policy CMP0022 can be used to give the old property
precedence if needed. New projects should prefer to use INTERFACE_LINK_LIBRARIES instead.

The LINK_FLAGS and STATIC_LIBRARY_FLAGS properties do not support generator expressions. They do,
however, have related configuration-specific properties:

• LINK_FLAGS_<CONFIG>

• STATIC_LIBRARY_FLAGS_<CONFIG>

These flags will be used in addition to the non-configuration-specific flags when the <CONFIG>
matches the configuration being built. These should only be used if the project must support CMake
versions earlier than 3.13. For 3.13 or later, prefer to use LINK_OPTIONS and STATIC_LIBRARY_OPTIONS
and express configuration-specific content using generator expressions.

One of the difficulties of passing flags to the linker is that the linker is usually invoked via the
compiler front end, but each compiler has its own syntax for how to pass through linker options.
For example, invoking the ld linker via gcc requires specifying linker flags using the form -Wl,…,
whereas clang expects the form -Xlinker …. With CMake 3.13 or later, this difference can be
handled automatically by adding a LINKER: prefix to each linker flag in the LINK_OPTIONS and
INTERFACE_LINK_OPTIONS properties. This will result in the linker flag being transformed into the
required form for the compiler front end being used. For example:

set_target_properties(Foo PROPERTIES
    LINK_OPTIONS LINKER:-stats
)

Using the gcc compiler, this would add -Wl,-stats, whereas with clang it would add -Xlinker -stats.
See Section 15.4, “De-duplicating Options” for further related discussion of the LINKER: prefix.
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15.1.3. Sources

The sources associated with a target follow a similar pattern to the compiler and linker flags. A
SOURCES property lists all sources for a target that will be considered for compilation. This includes
not just files like .cpp or .c files, it may also include headers, resources and other files for which no
compilation should be performed. It may seem of limited use to list files as sources if they won’t be
compiled, but there are situations where it is desirable. If any files are generated by the build,
having them listed as sources makes them dependencies of the target and ensures the files are
generated when the target is built. This is especially useful for generated headers (see Section 19.3,
“Commands That Generate Files”). Listing non-compiled files as sources is also a common
technique for making them show up in file lists of some IDE tools.

A target’s INTERFACE_SOURCES property lists sources to be added to consumers of that target. In
practice, it would be very unusual for any file in this property to be a compilable source. The more
typical use case is for listing headers of an interface library (see Section 18.2.4, “Interface
Libraries”). Another potential use case might be to add resources that need to be part of the same
translation unit to work, but such situations would be uncommon.

Both SOURCES and INTERFACE_SOURCES support generator expressions. Common examples of their use
include specifying sources that should only be compiled for certain configurations, platforms or
compilers. Another common example is the $<TARGET_OBJECTS:targetName> generator expression.
Before CMake’s support for object libraries matured (see Section 18.2.2, “Object Libraries”), it was
not possible to link directly to an object library. Instead, the project had to add that object library’s
objects directly to the consuming target’s SOURCES property using $<TARGET_OBJECTS:objectLib>. With
CMake 3.14 or later, this is no longer necessary and can be robustly handled by linking directly to
the object library instead.

15.2. Target Property Commands
As mentioned earlier, the target properties discussed in this chapter so far are not normally
manipulated directly. CMake provides dedicated commands for modifying them in a more
convenient and robust manner. These commands also encourage clear specification of
dependencies and transitive behavior between targets.

15.2.1. Linking Libraries

Back in Section 4.3, “Linking Targets”, the target_link_libraries() command was presented, along
with an explanation of how inter-target dependencies are expressed using PRIVATE, PUBLIC and
INTERFACE specifications. That earlier discussion focused on the dependency relationships between
targets, but following the discussion of target properties earlier in this chapter, the exact effects of
those keywords can now be made more precise.

target_link_libraries(targetName
     <PRIVATE|PUBLIC|INTERFACE> item1 [item2 ...]
    [<PRIVATE|PUBLIC|INTERFACE> item3 [item4 ...]]
    ...
)
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PRIVATE

Items listed after PRIVATE only affect the behavior of targetName itself. The items are added to the
LINK_LIBRARIES target property.

INTERFACE

This is the complement to PRIVATE, with items following the INTERFACE keyword being added to the
target’s INTERFACE_LINK_LIBRARIES property. Any target that links to targetName will have these
items applied to them as though the items were listed in their own LINK_LIBRARIES property.

PUBLIC

This is equivalent to combining the effects of PRIVATE and INTERFACE.

Most of the time, developers will probably find the explanation in Section 4.3, “Linking Targets”
more intuitive, but the above more precise description can help explain the behavior in more
complex projects where properties may be manipulated in unusual ways. The above description
also happens to map very closely to the behavior of the other target_…() commands which
manipulate compiler and linker flags. In fact, they all follow the same pattern and apply the PRIVATE,
PUBLIC and INTERFACE keywords in the same way.

CMake 3.12 and earlier prohibited target_link_libraries() from operating on a target defined in a
different directory. If a subdirectory needed to make the target link to something, it couldn’t do so
from within that subdirectory. The call to target_link_libraries() would have to be made in the
same directory as where add_executable() or add_library() was called. Section 34.5.1, “Building Up A
Target Across Directories” discusses this restriction in more detail. CMake 3.13 removed this
limitation.

15.2.2. Linker Options

CMake 3.13 added a dedicated command for specifying linker options. Instead of specifying linker
options in target_link_libraries(), it allows projects to more clearly and accurately communicate
that linker options are being added. It also avoids populating the LINK_LIBRARIES property with
linker flags and instead populates the relevant target properties set aside for such flags.

target_link_options(targetName [BEFORE]
     <PRIVATE|PUBLIC|INTERFACE> item1 [item2 ...]
    [<PRIVATE|PUBLIC|INTERFACE> item3 [item4 ...]]
    ...
)

The target_link_options() command populates the LINK_OPTIONS target property with the PRIVATE
items and the INTERFACE_LINK_OPTIONS target property with the INTERFACE items. As one would expect,
PUBLIC items are added to both target properties. Since these properties support generator
expressions, so does the target_link_options() command.

Normally, each time target_link_options() is called, the specified items are appended to the relevant
target properties. This makes it easy to add multiple options in a natural, progressive manner. If
required, the BEFORE keyword can be used to prepend the listed options to existing contents of the
target properties instead.
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This command can be used even if targetName is a static library, but note that PRIVATE and PUBLIC
items will populate LINK_OPTIONS, not STATIC_LIBRARY_OPTIONS. To populate STATIC_LIBRARY_OPTIONS, the
only choice is to modify the target property directly with set_property() or set_target_properties().
Using target_link_options() to add INTERFACE items to a static library target is still useful, since the
contents of INTERFACE_LINK_OPTIONS are applied to the consuming target.

Since target_link_options() adds items to the LINK_OPTIONS and INTERFACE_LINK_OPTIONS properties, the
command also supports items being prefixed with LINKER: to handle the compiler front end
differences. The example in Section 15.1.2, “Linker Flags” can therefore be better implemented as:

target_link_options(Foo PRIVATE LINKER:-stats)

15.2.3. Header Search Paths

A number of commands are available for managing a target’s compiler-related properties. Adding
directories to the compiler’s header search path is one of the most common needs.

target_include_directories(targetName [AFTER|BEFORE] [SYSTEM]
     <PRIVATE|PUBLIC|INTERFACE> dir1 [dir2 ...]
    [<PRIVATE|PUBLIC|INTERFACE> dir3 [dir4 ...]]
    ...
)

The target_include_directories() command adds header search paths to the INCLUDE_DIRECTORIES and
INTERFACE_INCLUDE_DIRECTORIES target properties. Directories following a PRIVATE keyword are added
to the INCLUDE_DIRECTORIES target property. Directories following an INTERFACE keyword are added to
the INTERFACE_INCLUDE_DIRECTORIES target property. Directories following a PUBLIC keyword are added
to both the INTERFACE and non-INTERFACE properties. The SYSTEM keyword affects how these search
paths are used and is discussed in Section 15.7.2, “System Header Search Paths”.

The BEFORE keyword has the same effect as for target_link_options(). It causes the specified
directories to be prepended to the relevant properties instead of appending. CMake 3.20 added
support for the AFTER keyword for symmetry, but it doesn’t need to be used since appending is the
default behavior already.

The target_include_directories() command offers another advantage over manipulating the target
properties directly. Projects can specify relative directories too, not just absolute directories. With
one exception discussed below, relative paths will be automatically converted to absolute, treating
them as relative to the current source directory.

Since the target_include_directories() command is basically just populating the relevant target
properties, all the usual features of those properties apply. This means generator expressions can
be used, a feature which becomes much more important when installing targets and creating
packages. The $<BUILD_INTERFACE:…> and $<INSTALL_INTERFACE:…> generator expressions allow
different paths to be specified for building and installing. For installed targets, relative paths are
normally used. They would be interpreted as relative to the base install location rather than the
source directory. Section 27.2.1, “Interface Properties” covers this aspect of specifying header
search paths in more detail. For building targets, the expansion of the $<BUILD_INTERFACE:…>
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generator expression takes place after the check for relative paths, so such expressions must
evaluate to an absolute path or CMake will issue an error.

15.2.4. Compiler Defines

Compiler defines for a target also have their own dedicated command, following the usual form:

target_compile_definitions(targetName
     <PRIVATE|PUBLIC|INTERFACE> item1 [item2 ...]
    [<PRIVATE|PUBLIC|INTERFACE> item3 [item4 ...]]
    ...
)

The target_compile_definitions() command is quite straightforward. Each item has the form VAR or
VAR=VALUE. PRIVATE items populate the COMPILE_DEFINITIONS target property. INTERFACE items populate
the INTERFACE_COMPILE_DEFINITIONS target property. PUBLIC items populate both target properties.
Generator expressions can be used, but there would usually be no need to handle build and install
situations differently.

15.2.5. Compiler Options

Adding compiler options other than defines should be done with the following dedicated command:

target_compile_options(targetName [BEFORE]
     <PRIVATE|PUBLIC|INTERFACE> item1 [item2 ...]
    [<PRIVATE|PUBLIC|INTERFACE> item3 [item4 ...]]
    ...
)

Following the usual pattern, PRIVATE items populate the COMPILE_OPTIONS target property, INTERFACE
items populate the INTERFACE_COMPILE_OPTIONS target property, and PUBLIC items populate both target
properties. For all cases, each item is appended to existing target property values, but the BEFORE
keyword can be used to prepend instead. Generator expressions are supported in all cases and
there would usually be no need to handle build and install situations differently.

15.2.6. Source Files

The most direct way of adding sources to a target is to list them in the add_executable() or
add_library() call. This adds those files to the SOURCES property of the target. With CMake 3.1 or later,
the target_sources() command can be used to add sources to a target after the target has been
defined. This command works just like the other target_…() commands and supports the same
familiar form (Section 27.5.1, “File Sets” also discusses a different form):

target_sources(targetName
     <PRIVATE|PUBLIC|INTERFACE> file1 [file2 ...]
    [<PRIVATE|PUBLIC|INTERFACE> file3 [file4 ...]]
    ...
)
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PRIVATE sources are added to the SOURCES property. INTERFACE sources are added to the
INTERFACE_SOURCES property. PUBLIC sources are added to both properties. The more practical way of
thinking of this is that PRIVATE sources are compiled into targetName, INTERFACE sources are added to
anything that links to targetName and PUBLIC sources are added to both. In practice, anything other
than PRIVATE would be unusual. Section 18.2.4, “Interface Libraries” discusses scenarios where
listing headers with INTERFACE may be justified if supporting CMake 3.18 or earlier.

add_executable(MyApp main.cpp)

if(WIN32)
    target_sources(MyApp PRIVATE eventloop_win.cpp)
else()
    target_sources(MyApp PRIVATE eventloop_generic.cpp)
endif()

A peculiarity of the target_sources() command prior to CMake 3.13 is that if a source is specified
with a relative path, that path is assumed to be relative to the source directory of the target it is
being added to. This creates a number of problems.

The first problem is that if a relative source was added with INTERFACE, the path would be treated as
relative to the consuming target, not the target on which target_sources() was called. Clearly this
could create incorrect paths, so any non-PRIVATE source would need to be specified with an absolute
path.

The second problem is that relative paths behave non-intuitively when target_sources() is called
from a directory other than the one in which the target was defined. Consider a modification of the
previous example where platform-specific code is separated into different directories:

CMakeLists.txt

add_executable(MyApp main.cpp)

if(WIN32)
    add_subdirectory(windows)
else()
    add_subdirectory(generic)
endif()

windows/CMakeLists.txt

# WARNING: Wrong file paths with CMake 3.12 or earlier
target_sources(MyApp PRIVATE eventloop_win.cpp)

generic/CMakeLists.txt

# WARNING: Wrong file paths with CMake 3.12 or earlier
target_sources(MyApp PRIVATE eventloop_generic.cpp)
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In the above example, the calls to target_sources() were intended to add sources from the windows or
generic subdirectories. But with CMake 3.12 or earlier, they would be interpreted as being relative
to the top level directory where the MyApp target was defined.

A robust way to address both of these problems is to prefix the files with
${CMAKE_CURRENT_SOURCE_DIR} or ${CMAKE_CURRENT_LIST_DIR} to ensure they always use the correct path:

windows/CMakeLists.txt

target_sources(MyApp PRIVATE ${CMAKE_CURRENT_LIST_DIR}/eventloop_win.cpp)

Having to prefix each source file with ${CMAKE_CURRENT_SOURCE_DIR} or ${CMAKE_CURRENT_LIST_DIR} is
inconvenient and not particularly intuitive. In recognition of this, the behavior was changed in
CMake 3.13 to treat relative paths as being relative to CMAKE_CURRENT_SOURCE_DIR at the point where
target_sources() is called, not the source directory in which the target was defined. Policy CMP0076
provides backward compatibility for those projects that were relying on the old behavior. If at all
possible, projects should set their minimum CMake version to 3.13 or higher and use the new
CMP0076 policy behavior instead.

CMake 3.20 added the ability to use target_sources() to add sources to custom targets (discussed in
detail in Chapter 19, Custom Tasks). With earlier CMake versions, sources could only be added to
custom targets in the add_custom_target() call.

15.3. Directory Properties And Commands
With CMake 3.0 and later, target properties are strongly preferred for specifying compiler and
linker flags due to their ability to define how they interact with targets that link to one another. In
earlier versions of CMake, target properties were much less prominent and properties were often
specified at the directory level instead. These directory properties and the commands typically used
to manipulate them lack the consistency shown by their target-based equivalents, which is another
reason they should generally be avoided by projects where possible. That said, since many online
tutorials and examples still use them, developers should at least be aware of the directory level
properties and commands.

include_directories([AFTER | BEFORE] [SYSTEM] dir1 [dir2...])

Simplistically, the include_directories() command adds header search paths to targets created in
the current directory scope and below. By default, paths are appended to the existing list of
directories, but that default can be changed by setting the CMAKE_INCLUDE_DIRECTORIES_BEFORE variable
to true. It can also be controlled on a per-call basis with the BEFORE and AFTER options to explicitly
direct how the paths for that call should be handled. Projects should be wary about setting
CMAKE_INCLUDE_DIRECTORIES_BEFORE, as most developers will likely assume that the default behavior of
directories being appended will apply. The effect of the SYSTEM keyword is discussed in Section
15.7.2, “System Header Search Paths”.

The paths provided to include_directories() can be relative or absolute. Relative paths are
converted to absolute paths automatically and are treated as relative to the current source
directory. Paths may also contain generator expressions.
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The details of what include_directories() actually does is more complex than the simplistic
explanation above. Primarily, there are two main effects of calling include_directories():

• The listed paths are added to the INCLUDE_DIRECTORIES directory property of the current
CMakeLists.txt file. This means all targets created in the current directory and below will have
the directories added to their INCLUDE_DIRECTORIES target property.

• Any target created in the current CMakeLists.txt file (or more accurately, the current directory
scope) will also have the paths added to their INCLUDE_DIRECTORIES target property, even if those
targets were created before the call to include_directories(). This applies strictly only to the
targets created in the current CMakeLists.txt file or other files pulled in via include(), but not to
any targets created in parent or child directory scopes.

It is the second of the above points which tends to surprise many developers. To avoid creating
situations which may lead to such confusion, if the include_directories() command must be used,
prefer to call it early in a CMakeLists.txt file before any targets have been created or any
subdirectories have been pulled in with include() or add_subdirectory().

add_definitions(-DSomeSymbol /DFoo=Value ...)
remove_definitions(-DSomeSymbol /DFoo=Value ...)

The add_definitions() and remove_definitions() commands add and remove entries in the
COMPILE_DEFINITIONS directory property. Each entry should begin with either -D or /D, the two most
prevalent flag formats used by the vast majority of compilers. This flag prefix is stripped off by
CMake before the definition is stored in the COMPILE_DEFINITIONS directory property, so it doesn’t
matter which prefix is used, regardless of the compiler or platform on which the project is built.

Just as for include_directories(), these two commands affect all targets created in the current
CMakeLists.txt file, even those created before the add_definitions() or remove_definitions() call.
Targets created in child directory scopes will only be affected if created after the call. This is a direct
consequence of how the COMPILE_DEFINITIONS directory property is used by CMake.

Although not recommended, it is also possible to specify compiler flags other than definitions with
these commands. If CMake does not recognize a particular item as looking like a compiler define,
that item will instead be added unmodified to the COMPILE_OPTIONS directory property. This behavior
is present for historical reasons, but new projects should avoid this behavior (see the
add_compile_options() command a little further below for an alternative).

Since the underlying directory properties support generator expressions, so do these two
commands, with some caveats. Generator expressions should only be used for the value part of a
definition, not for the name part (i.e. only after the "=" in a -DVAR=VALUE item or not at all for a -DVAR
item). This relates to how CMake parses each item to check if it is a compiler definition or not. Note
also that these commands only modify directory properties, they do not affect the
COMPILE_DEFINITIONS target property.

The add_definitions() command has a number of shortcomings. The requirement to prefix each
item with -D or /D to have it treated as a definition is not consistent with other CMake behavior. The
fact that omitting the prefix makes the command treat the item as a generic option instead is also
counter-intuitive given the command’s name. Furthermore, the restriction on generator
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expressions only being supported for the VALUE part of a KEY=VALUE definition is also a direct
consequence of the prefix requirement. In recognition of this, CMake 3.12 introduced the
add_compile_definitions() command as a replacement for add_definitions():

add_compile_definitions(SomeSymbol Foo=Value ...)

The new command handles only compile definitions, it does not require any prefix on each item
and generator expressions can be used without the VALUE-only restriction. The new command’s
name and treatment of the definition items is consistent with the analogous
target_compile_definitions() command. add_compile_definitions() still affects all targets created in
the same directory scope regardless of whether those targets are created before or after
add_compile_definitions() is called, as this is a characteristic of the underlying COMPILE_DEFINITIONS
directory property the command manipulates, not of the command itself.

add_compile_options(opt1 [opt2 ...])

The add_compile_options() command is used to provide arbitrary compiler options. Unlike the
include_directories(), add_definitions(), remove_definitions() and add_compile_definitions()
commands, its behavior is very straightforward and predictable. Each option given to
add_compile_options() is added to the COMPILE_OPTIONS directory property. Every target subsequently
created in the current directory scope and below will then inherit those options in their own
COMPILE_OPTIONS target property. Any targets created before the call are not affected. This behavior is
much closer to what developers would intuitively expect compared to the other directory property
commands. Furthermore, generator expressions are supported by the underlying directory and
target properties, so the add_compile_options() command also supports them.

link_libraries(item1 [item2 ...]
    [ [debug | optimized | general] item] ...
)
link_directories( [ BEFORE | AFTER ] dir1 [dir2 ...])

In early CMake versions, these two commands were the primary way to tell CMake to link libraries
into other targets. They affect all targets created in the current directory scope and below after the
commands are called, but any existing targets remain unaffected (i.e. similar to the behavior of
add_compile_options()). The items specified in the link_libraries() command can be CMake targets,
library names, full paths to libraries or even linker flags.

Loosely speaking, an item can be made to apply to just the Debug build type by preceding it with the
keyword debug, or to all build types except Debug by preceding it with the keyword optimized. An item
can be preceded by the keyword general to indicate that it applies to all build types, but since
general is the default anyway, there is little benefit to doing so. All three keywords only affect the
single item following it, not all items up to the next keyword. The use of these keywords is strongly
discouraged, since generator expressions provide much better control over when an item should be
added. To account for custom build types, a build type is considered to be a debug configuration if it
is listed in the DEBUG_CONFIGURATIONS global property.
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The directories added by link_directories() only have an effect when CMake is given a bare library
name to link to. CMake adds the supplied paths to the linker command line and leaves the linker to
find such libraries on its own. The directories given should be absolute paths, although relative
paths were permitted prior to CMake 3.13 (see policy CMP0081 which controls whether CMake halts
with an error if a relative path is encountered). The BEFORE and AFTER keywords were added in
CMake 3.13 and have a similar effect as they do for include_directories(), including the default
behavior being equivalent to AFTER if neither keyword is present.

For robustness reasons, when using link_libraries(), provide a full path or the name of a CMake
target. No linker search directory is necessary for either of those cases and the exact location of the
library will be given to the linker. Furthermore, once a linker search directory has been added by
link_directories(), projects have no convenient way to remove that search path if they need to.
Adding linker search directories should generally be avoided and is usually not necessary.

CMake 3.13 also introduced the add_link_options() command. It is analogous to the
target_link_options() command, acting instead on a directory property rather than on target
properties.

add_link_options(item1 [item2...])

This command appends items to the LINK_OPTIONS directory property, which is used to initialize the
same-named target property of all targets subsequently created in the current directory scope and
below. As with other directory level commands, add_link_options() should generally be avoided in
favor of the target level command.

15.4. De-duplicating Options
When CMake constructs the final compiler and linker command lines, it performs a de-duplication
step on the flags. This can greatly reduce the command line length, which has benefits for the
implementation and for developers trying to understand the final set of options used. In some cases
though, de-duplication will be undesirable. For example, an option might need to be repeated with
different second arguments, such as passing multiple linker options with Clang:

# This won't work as expected
target_link_options(SomeTarget PRIVATE
    -Xlinker -z
    -Xlinker defs
)

After de-duplication, the second -Xlinker would be removed, resulting in the incorrect set of
command line options -Xlinker -z defs. A similar case exists for the compiler:

# This won't work as expected either
target_compile_options(SomeTarget PRIVATE
    -Xassembler --keep
    -Xassembler --no_esc
)
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CMake provides the SHELL: prefix as a way of preventing groups of options from being split up by
de-duplication. It is supported since CMake 3.12 for compiler options and 3.13 for linker options. To
force two or more options to be treated as a group that should not be split, they should be prefixed
by SHELL: and given as a single quoted string with options separated by spaces.

target_link_options(SomeTarget PRIVATE
    "SHELL:-Xlinker -z"
    "SHELL:-Xlinker defs"
)
target_compile_options(SomeTarget PRIVATE
    "SHELL:-Xassembler --keep"
    "SHELL:-Xassembler --no_esc"
)

For linker options, the LINKER: prefix is expanded after de-duplication. It can also be combined with
SHELL:. Either of the following would be equivalent:

target_link_options(SomeTarget PRIVATE "LINKER:-z,defs")
target_link_options(SomeTarget PRIVATE "LINKER:SHELL:-z defs")

When using Clang, "LINKER:-z,defs" and "LINKER:SHELL:-z defs" both expand to -Xlinker -z -Xlinker
defs. The -Xlinker part is not de-duplicated.

The SHELL:, LINKER: and LINKER:SHELL: prefixes are handled at the target property level. This means
they can be used with any of the commands that manipulate target properties. LINK_OPTIONS and
INTERFACE_LINK_OPTIONS support all the prefixes. COMPILE_OPTIONS, INTERFACE_COMPILE_OPTIONS and
STATIC_LIBRARY_OPTIONS only support SHELL:. Since all of these target properties are initialized from
directory properties of the same names, those directory properties can also use the prefixes.

15.5. Compiler And Linker Variables
Properties are the main way that projects should seek to influence compiler and linker flags. End
users cannot manipulate properties directly, so the project is in full control of how the properties
are set. There are situations, however, where the user will want to add their own compiler or linker
flags. They may wish to add more warning options, turn on special compiler features such as
sanitizers or debugging switches, and so on. For these situations, variables are more appropriate.

CMake provides a set of variables that specify compiler and linker flags to be merged with those
provided by the various directory, target and source file properties. They are normally cache
variables to allow the user to easily view and modify them, but they can also be set as regular
CMake variables within the project’s CMakeLists.txt files (something projects should aim to avoid).
CMake gives the cache variables suitable default values the first time it runs in a build directory.

The primary variables directly affecting the compiler flags have the following form:

• CMAKE_<LANG>_FLAGS

• CMAKE_<LANG>_FLAGS_<CONFIG>
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<LANG> corresponds to the language being compiled, with typical values being C, CXX, Fortran, Swift
and so on. The <CONFIG> part is an uppercase string corresponding to one of the build types, such as
DEBUG, RELEASE, RELWITHDEBINFO or MINSIZEREL. The first variable will be applied to all build types,
including single configuration generators with an empty CMAKE_BUILD_TYPE. The second variable is
only applied to the build type specified by <CONFIG>. Thus, a C++ file being built with a Debug
configuration would have compiler flags from both CMAKE_CXX_FLAGS and CMAKE_CXX_FLAGS_DEBUG.

The first project() command encountered will create cache variables for these if they don’t already
exist (this is a bit of a simplification, a more complete explanation is given in Chapter 23, Toolchains
And Cross Compiling). Therefore, after the first time CMake has been run, their values are easy to
check in the CMake GUI application. As an example, for one particular compiler, the following
variables for the C++ language are defined by default:

CMAKE_CXX_FLAGS

CMAKE_CXX_FLAGS_DEBUG -g -O0

CMAKE_CXX_FLAGS_RELEASE -O3 -DNDEBUG

CMAKE_CXX_FLAGS_RELWITHDEBINFO -O2 -g -DNDEBUG

CMAKE_CXX_FLAGS_MINSIZEREL -Os -DNDEBUG

The handling of linker flags is similar. They are controlled by the following family of variables:

• CMAKE_<TARGETTYPE>_LINKER_FLAGS

• CMAKE_<TARGETTYPE>_LINKER_FLAGS_<CONFIG>

These are specific to a particular type of target, each of which was introduced back in Chapter 4,
Building Simple Targets. The <TARGETTYPE> part of the variable name must be one of the following:

EXE

Targets created with add_executable().

SHARED

Targets created with add_library(name SHARED …) or equivalent, such as omitting the SHARED
keyword but with the BUILD_SHARED_LIBS variable set to true.

STATIC

Targets created with add_library(name STATIC …) or equivalent, such as omitting the STATIC
keyword but with the BUILD_SHARED_LIBS variable set to false or not defined.

MODULE

Targets created with add_library(name MODULE …).

Just like for the compiler flags, the CMAKE_<TARGETTYPE>_LINKER_FLAGS are used when linking any build
configuration, whereas the CMAKE_<TARGETTYPE>_LINKER_FLAGS_<CONFIG> flags are only added for the
corresponding CONFIG. It is not unusual for some or all of the linker flags to be empty strings on
some platforms.
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CMake tutorials and example code frequently use the above variables to control the compiler and
linker flags. This was fairly common practice in the pre CMake 3.0 era, but with the focus shifting to
a target-centric model with CMake 3.0 and later, such examples are no longer a good model to
follow. They often lead to a number of very common mistakes, with some of the more prevalent
ones presented below.

15.5.1. Compiler And Linker Variables Are Single Strings, Not Lists

If multiple compiler flags need to be set, they need to be specified as a single string, not as a list.
CMake will not properly handle flag variables if their contents contain semicolons, which is what a
list would be turned into if specified by the project.

# Wrong, list used instead of a string
set(CMAKE_CXX_FLAGS -Wall -Wextra)

# Correct, but see later sections for why appending would be preferred
set(CMAKE_CXX_FLAGS "-Wall -Wextra")

# Appending to existing flags the correct way (two methods)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wall -Wextra")
string(APPEND CMAKE_CXX_FLAGS " -Wall -Wextra")

15.5.2. Distinguish Between Cache And Non-cache Variables

All of the variables mentioned above are cache variables. Non-cache variables of the same name
can be defined and they will override the cache variables for the current directory scope and its
children (i.e. those created by add_subdirectory()). Problems can arise, however, when a project tries
to force updating the cache variable instead of a local variable. Code like the following tends to
make projects harder to work with and can lead to developers feeling like they are fighting the
project when they want to change flags for their own build through the CMake GUI application or
similar:

# Case 1: Only has an effect if the variable isn't already in the cache
set(CMAKE_CXX_FLAGS "-Wall -Wextra" CACHE STRING "C++ flags")

# Case 2: Using FORCE to always update the cache variable, but this overwrites
#         any changes a developer might make to the cache
set(CMAKE_CXX_FLAGS "-Wall -Wextra" CACHE STRING "C++ flags" FORCE)

# Case 3: FORCE + append = recipe for disaster (see discussion below)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wall -Wextra" CACHE STRING "C++ flags" FORCE)

The first case above highlights a common oversight made by developers new to CMake. Without the
FORCE keyword, the set() command only updates a cache variable if it is not already defined. The
first run of CMake may therefore appear to do what the developer intended (if placed before any
project() command), but if the line is ever changed to specify something else for the flags, that
change won’t be applied to an existing build because the variable will already be in the cache at
that point.
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The usual reaction to discovering this is to then use FORCE to ensure the cache variable is always
updated, as shown in the second case, but this then creates another problem. The cache is a
primary means for developers to change variables locally without having to edit project files. If a
project uses FORCE to unilaterally set cache variables in this manner, any change made by the
developer to that cache variable will be lost.

The third case is even more problematic because every time CMake is run, the flags will be
appended again, leading to an ever growing and repeating set of flags. Using FORCE to update the
cache like this for compiler and linker flags is rarely a good idea.

Rather than simply removing the FORCE keyword, the correct behavior is to set a non-cache variable
rather than the cache variable. It is then safe to append flags to the current value because the cache
variable is left untouched. Every CMake run will start with the same set of flags from the cache
variable, regardless of how often CMake is invoked. Any changes the developer chooses to make to
the cache variable will also be preserved.

# Preserves the cache variable contents, appends new flags safely
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wall -Wextra")

15.5.3. Prefer Appending Over Replacing Flags

As touched on above, developers are sometimes tempted to unilaterally set compiler flags in their
CMakeLists.txt files like so:

# Not ideal, discards any developer settings from cache
set(CMAKE_CXX_FLAGS "-Wall -Wextra")

Because this discards any value set by the cache variable, developers lose their ability to easily
inject their own flags. This forces developers to go hunting through the project to find and modify
the offending lines. For a complex project with many subdirectories, this can be tedious. Where
possible, projects should prefer to append flags to the existing value.

One reasonable exception to this guideline may be if a project is required to enforce a mandated set
of compiler or linker flags. In such cases, a workable compromise may be to set the variable values
in the top level CMakeLists.txt file as early as possible, ideally at the very top just after the
cmake_minimum_required() command (or even better, in the toolchain file if one is being used - see
Chapter 23, Toolchains And Cross Compiling for further details). Keep in mind though that over
time, the project may itself become a child of another project, at which point it would no longer be
the top level of the build and the suitability of this compromise may be reduced.

15.5.4. Understand When Variable Values Are Used

One of the more obscure aspects of the compiler and linker flag variables is the point in the build
process at which their value actually gets used. One might reasonably expect the following code to
behave as noted in the inline comments:
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# Save the original set of flags so we can restore them later
set(oldCxxFlags "${CMAKE_CXX_FLAGS}")

# This library has stringent build requirements, so
# enforce them just for it alone.
# WARNING: This doesn't do what it may appear to do!
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wall -Wextra")
add_library(StrictReq STATIC ...)

# Less strict requirements from here, so restore the
# original set of compiler flags
set(CMAKE_CXX_FLAGS "${oldCxxFlags}")
add_library(RelaxedReq STATIC ...)

It may be surprising to learn that with the arrangement above, the StrictReq library will not be built
with -Wall -Wextra flags. Intuitively, one may expect that the variable’s value at the time of the call
to add_library() is what CMake uses, but in fact it is the variable’s value at the end of processing for
that directory scope that gets used. In other words, what matters is the value the variable holds at
the end of the CMakeLists.txt file for that directory. This can lead to unexpected results in a variety
of situations for the unaware.

One of the main ways developers get caught out by this behavior is to treat the compiler and linker
variables as though they apply immediately to any targets that are created. Another related trap is
when an include() is used after targets have been created and the included file(s) modify the
compiler or linker variables. This would also alter the compiler and linker flags for the already
defined targets in the current directory scope. This delayed nature of compiler and linker variables
makes them fragile to work with. Ideally, a project would only modify them early in the top level
CMakeLists.txt file, if at all, so as to minimize opportunities for misuse and developer surprise.

15.6. Language-specific Compiler Flags
There are limitations to be aware of when it comes to setting compiler flags that should only apply
for specific languages. It is possible to set language-specific compiler flags for a particular target
using generator expressions, as the following example shows (for simplicity, the compiler is
assumed to support the -fno-exceptions option):

target_compile_options(Foo PRIVATE
    $<$<COMPILE_LANGUAGE:CXX>:-fno-exceptions>
)

Unfortunately, this will not work as expected for Visual Studio or for Xcode. Those generators’
implementations do not support setting different flags for different languages at the target level.
Instead, they evaluate generator expressions with the target language assumed to be C++ if the
target has any C++ sources, or as C otherwise. This applies not just to compile options, but also to
compile definitions and include directories. This limitation is a result of a compromise needed to
avoid considerably degrading the build performance. If projects are willing to accept slower builds,
compiler flags can be applied using source file properties instead. For example:
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add_executable(Foo src1.c src2.cpp)

set_property(SOURCE src2.cpp APPEND PROPERTY
    COMPILE_OPTIONS -fno-exceptions
)

Source file properties also have their own limitations, as discussed back in Section 9.5, “Source
Properties”. In particular, note that the Xcode generator has restrictions which prevent it from
supporting configuration-specific source file properties, so generator expressions like $<CONFIG>
would need to be avoided.

A better way to work around these limitations is to split out the different languages to their own
separate targets rather than combining them in the same target. The compiler flags can then be
applied to the whole target, which will work for all CMake generators and will not degrade build
performance.

add_library(Foo_c src1.c)
add_executable(Foo src2.cpp)

target_link_libraries(Foo PRIVATE Foo_c)
target_compile_options(Foo PRIVATE -fno-exceptions)

A less ideal workaround is to use the CMAKE_<LANG>_FLAGS variables which are handled correctly by
Visual Studio and Xcode, but they will apply indiscriminately to all targets in a directory scope and
should preferably be left alone for developers to manipulate.

15.7. Compiler Option Abstractions
CMake provides abstractions for a variety of different compiler features. Some of these are for
features implemented by multiple compilers, others are for making a feature of a specific toolchain
easier to use. This section covers some more common, general purpose abstractions. Other chapters
cover additional cases that relate to specific topics.

Where CMake provides an abstraction for a particular feature, the project should not mix using
that abstraction with explicitly passing compiler flags for that feature. The project should either
fully adopt the abstraction, or fully avoid using it. Mixing explicit compiler flags for a feature while
also using the abstraction for it can result in unexpected results, or even broken builds. Pay extra
attention to dependencies that are part of the build (see Chapter 30, FetchContent), as these need to
also use or not use the same abstractions as the rest of the build.

15.7.1. Warnings As Errors

For projects that are expected to build free of warnings, it can be desirable to treat any warnings as
errors. This is a common need for continuous integration builds, where a newly introduced
warning should result in a build failure. Such a mechanism encourages the developer to address
the warning before their change is merged into the main branch.
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For developers building locally, it is less clear-cut whether builds should treat warnings as errors.
The developer might be testing out a newer compiler or a different toolchain, which means new
warnings may be generated compared to CI builds. If the project hard-coded treating warnings as
errors, the developer would have to modify the project to prevent that. If the code causing the
warnings is coming from dependencies and those dependencies are enforcing treating warnings as
errors, it may be difficult for the developer to make that change (see Section 15.7.2, “System Header
Search Paths” for a common way of handling such cases).

CMake 3.24 added support for managing whether to treat warnings as errors. The
COMPILE_WARNING_AS_ERROR target property can be set to true on a target to treat all compiler warnings
for that target as errors. CMake will add the appropriate flag for the compiler being used, which
frees the project from having to work out what flag to add. Not all compilers are supported for this
feature, but it is implemented for all the mainstream compilers. See the COMPILE_WARNING_AS_ERROR
property documentation for the list of supported compilers.

The property is initialized from the CMAKE_COMPILE_WARNING_AS_ERROR variable when the target is
created. In general, projects should not set the target property directly, and ideally they shouldn’t
set the variable either. Instead, the decision for whether to treat all warnings as errors should be
left up to the developer, or a script driving the build. The developer or scripts can set
CMAKE_COMPILE_WARNING_AS_ERROR as a cache variable without having to modify the project:

cmake -DCMAKE_COMPILE_WARNING_AS_ERROR=YES ...

If CMake presets are being used (see Chapter 33, Presets), they are an ideal place to set this variable.
This is especially so where presets are used for continuous integration builds.

In certain circumstances, a project may choose to set the CMAKE_COMPILE_WARNING_AS_ERROR variable in
order to meet things like certification requirements or company policies. Alternatively, a
dependency might hard-code enabling warnings as errors despite the above advice, either through
setting individual target properties or the CMAKE_COMPILE_WARNING_AS_ERROR variable. When these sort
of situations occur, a developer can still turn off treating warnings as errors by passing the
--compile-no-warning-as-error option on the cmake command line. This command line option forces
CMake to ignore the COMPILE_WARNING_AS_ERROR target property throughout the whole build.

cmake --compile-no-warning-as-error ...

If the project is manually adding compiler flags to turn warnings into errors, CMake will not
attempt to remove those. Unless CMake does not implement the warnings as errors feature for the
compiler being used, such hard-coded flags should be removed from the project.

15.7.2. System Header Search Paths

Most mainstream compilers support specifying system header search paths. Historically, these were
paths that were in system locations (e.g. /usr/include on Unix systems), or part of the toolchain
rather than being provided by the project. More recently, the term is also sometimes used for
header search paths that are associated with dependencies of a project.
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System header search paths work mostly like regular header search paths, but some compiler-
dependent behavior differences may apply. For example:

• The compiler may search all non-system search paths before searching any system ones, even if
the system paths appear earlier on the command line.

• When a header is found in a system header location, compilers will often skip any warnings
coming from that header. Some compilers do this automatically, while others provide separate
warning control flags that allow you to achieve the same effect (the Visual Studio toolchain is
one example of the latter).

• When the compiler computes dependencies for the file being compiled, it may leave out
dependencies on headers in system locations.

CMake’s abstraction for system header search paths helps to make the behavior more consistent
between toolchains and CMake generators. The following describes relevant behavior introduced at
key CMake versions:

CMake 3.12

System search paths are always placed after non-system ones on the compiler command line.
This means the header search order will be consistent across all toolchains.

CMake 3.22

When using the Visual Studio toolchain (VS 16.10 or later), /external:W0 is included in the default
compiler flags when using one of the Ninja or Makefiles generators. This turns off warnings
coming from system headers. Compare this with gcc and clang which always do this by default.

CMake 3.24

When using one of the Visual Studio generators with a Visual Studio toolchain (VS 16.11 or later),
system headers are supported. Earlier CMake or Visual Studio toolchain versions would treat
such headers as regular non-system headers when using the Visual Studio generators.

CMake treats header search paths defined on imported targets as system search paths by default.
Section 18.2.3, “Imported Libraries” discusses imported targets in more detail, but for now it is
sufficient to know that these represent a library provided by something outside the project, usually
system libraries or libraries from dependencies. They usually represent a library that already exists
on the system, or that is provided at a known location and potentially built in some way external to
the project.

If, for some reason, a consumer should not treat header search paths from imported targets as
system search paths, one can set the consumer’s NO_SYSTEM_FROM_IMPORTED target property to true.
Note that this setting does not discriminate between different imported targets, it will apply to all
imported targets the consumer links to. In practice, use of this setting likely indicates deeper
problems in the project or the targets it is linking to. The "systemness" of a target being consumed
shouldn’t be determined by the thing that consumes it.

CMake 3.25 and later provides a better approach. Targets support a SYSTEM property, which CMake
uses to decide whether consumers should treat that target’s header search paths as system or not. It
doesn’t affect building the target on which SYSTEM is set, only its consumers. For imported targets,
SYSTEM defaults to true. For non-imported targets, the default value is taken from the SYSTEM
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directory property, or false if that directory property is not set. These defaults give the same
behavior as described above for CMake 3.24 and earlier.

It would be rare to need to change the SYSTEM property for an imported target. One might do so if the
imported target represents something that is part of the project, but it has to be built with some
external build system. Apart from that, setting SYSTEM to false on an imported target would be
unusual.

For non-imported targets, it may be appropriate to set the SYSTEM property to true in certain
situations. One example is where the sources for a third-party dependency are added directly to the
project’s build (the FetchContent module discussed in Chapter 30, FetchContent uses this approach
extensively). In this scenario, non-imported targets are created for the dependency, but the main
project may still want to treat headers coming from that dependency as system headers.

For the dependency-related scenario just described, it would be tedious to explicitly set the SYSTEM
property on each target from every dependency individually. A more convenient approach is to use
the SYSTEM directory property to change the default value for non-imported targets. Rather than
modifying that directory property directly, the best way to manipulate it is by adding the SYSTEM
keyword to the add_subdirectory() or FetchContent_Declare() call used to bring in the dependency.
These both set the SYSTEM directory property to true for the subdirectories they add to the build.

# Vendored code stored directly in the project
add_subdirectory(third_party/somedep SYSTEM)

# External dependency downloaded and added to the build
include(FetchContent)
FetchContent_Declare(anotherdep
    GIT_REPOSITORY ...
    SYSTEM
)
FetchContent_MakeAvailable()

CMake 3.25 also provides control over a target’s SYSTEM property when it is installed or exported (see
Section 27.2, “Installing Project Targets” and Section 27.3, “Installing Exports”). It will be
represented by an imported target when installed or exported. As discussed above, that imported
target will be created with its SYSTEM property set to true by default. Normally, this is the right
behavior, but for situations where that imported target should not be treated as system, one can set
the EXPORT_NO_SYSTEM property on the original target to true.

# This is an ordinary non-imported target during the build
add_library(MyThing ...)
set_target_properties(MyThing PROPERTIES
    EXPORT_NO_SYSTEM TRUE
)

# It becomes an imported target in the installed location.
# Its SYSTEM property will be false when installed.
install(TARGETS MyThing EXPORT MyProj ...)
install(EXPORT MyProj ...)
export(EXPORT MyProj ...)
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CMake 3.23 added support for an IMPORTED_NO_SYSTEM property, but that was deprecated in CMake
3.25. The functionality provided by IMPORTED_NO_SYSTEM has been superseded by the SYSTEM and
EXPORT_NO_SYSTEM properties. Therefore, avoid using IMPORTED_NO_SYSTEM.

In addition to the methods described above, the target_include_directories() and
include_directories() commands also accept a SYSTEM keyword. The effect of that keyword in these
commands is related to the above, but the mechanisms are different.

When SYSTEM is used with include_directories(), it forces the header search paths listed to be treated
as system search paths for the current directory and all of its subdirectories. This cannot be
disabled, and it is not affected by target properties like SYSTEM, EXPORT_NO_SYSTEM or
IMPORTED_NO_SYSTEM. The include_directories() command should generally be avoided in favor of
target-based commands, and the use of the SYSTEM keyword with include_directories() is even more
strongly discouraged.

Use of SYSTEM with target_include_directories() is only marginally better. The paths are still added to
the same target properties, so the PRIVATE, PUBLIC and INTERFACE keywords still have their usual
meanings. However, internally CMake records that those paths are to be treated as system paths.
Those listed as PUBLIC or INTERFACE will be added to the target’s INTERFACE_SYSTEM_INCLUDE_DIRECTORIES
property, but PRIVATE paths are not added to any project-readable property. The SYSTEM keyword for
target_include_directories() also has the same problem as include_directories() in that it is not
affected by target properties like SYSTEM, EXPORT_NO_SYSTEM or IMPORTED_NO_SYSTEM.

add_library(MyThing ...)
add_executable(Consumer ...)
target_link_libraries(Consumer PRIVATE MyThing)

target_include_directories(MyThing SYSTEM
    PRIVATE secret
    PUBLIC  api
)

The above is not a particularly good example of using the SYSTEM keyword, but it demonstrates the
behavior. CMake will add api as a system header search path when building Consumer. It will add
secret and api as system header search paths when building MyThing. What makes this a relatively
poor example is that headers provided by the project should not normally be treated as system
headers. Since MyThing is built by the project, headers in its secret or api directory can also be
considered part of the project, and therefore shouldn’t be treated as system headers.

In practice, projects should rarely need to use the SYSTEM keyword with target_include_directories()
or include_directories(). CMake normally makes appropriate choices by default based on whether a
consumed target is imported or non-imported. Where the default behavior doesn’t fit the needs of
the project, it may be appropriate to use the SYSTEM keyword with target_include_directories() if the
project must support older CMake versions where the SYSTEM target property is not supported.

15.7.3. Runtime Library Selection

When using compilers that target the MSVC ABI, a runtime library must be selected. The project
needs to choose between a statically linked or dynamically linked runtime. It also needs to choose
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whether to use the debug or non-debug runtime. With CMake 3.15 or later, this choice can be
handled through the MSVC_RUNTIME_LIBRARY target property. Valid values are:

• MultiThreaded

• MultiThreadedDLL

• MultiThreadedDebug

• MultiThreadedDebugDLL

Values ending in DLL use the dynamically linked runtime, those without it use the statically linked
runtime. And of course, values containing Debug use the debug version of the runtime, while those
without Debug use the non-debug runtime. When MSVC_RUNTIME_LIBRARY is set, CMake chooses the
appropriate flags for the compiler used. This frees the project from having to know all the different
options required for the various toolchains that target the MSVC ABI. If the MSVC_RUNTIME_LIBRARY
property remains unset, CMake uses the default value equivalent to the generator expression
MultiThreaded$<$<CONFIG:Debug>:Debug>DLL. The property is initialized from the value of the
CMAKE_MSVC_RUNTIME_LIBRARY variable, if set.

When using CMake 3.14 or earlier, similar defaults are used for at least some MSVC toolchains. But
instead of achieving that through the MSVC_RUNTIME_LIBRARY property, raw flags are added using the
variables discussed in Section 15.5, “Compiler And Linker Variables”. This makes it much more
difficult for the project to change the behavior from the defaults, since it requires knowing the flags
used and performing string replacements. This is fairly fragile and much less convenient.

In order for CMake to use the MSVC_RUNTIME_LIBRARY property, the project must ensure policy CMP0091
is set to NEW before the very first project() command is called. The easiest and most typical way of
ensuring that is to require at least CMake 3.15 or higher, with a statement like the following at the
beginning of the top level CMakeLists.txt:

# Need at least CMake 3.15 to use MSVC_RUNTIME_LIBRARY
cmake_minimum_required(VERSION 3.15)

If a version older than 3.15 is specified, CMake will ignore the MSVC_RUNTIME_LIBRARY property and fall
back to the old behavior of encoding raw compiler flags in the flag variables.

The above illustrates how to specify the MSVC runtime, but for most projects, the defaults already
give the appropriate behavior. Debug builds will use the debug runtime, and binaries will be
dynamically linked. Only if there is a specific need to deviate from these defaults should the
property or variable discussed above be used. Changing from the defaults is often a cause of
friction for other projects that need to link to the produced binaries. Therefore, prefer to leave the
choice up to a consuming project, and only override the defaults for a top level project where there
is a strong need to do so.

15.7.4. Debug Information Format Selection

CMake’s default compiler flags may include options that affect the debug information format. For
example, when using the MSVC toolchain, flags like /Z7, /Zi or /ZI change both where debug
information is stored and aspects of the debugging experience in Visual Studio. With CMake 3.24
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and earlier, these flags are specified in the CMAKE_<LANG>_FLAGS_<CONFIG> family of variables discussed
in Section 15.5, “Compiler And Linker Variables”. When a developer or the project needs something
different from the defaults, string-based search-and-replace has to be performed on these variables.
This is inconvenient for a number of reasons:

• String-based replacements can be fragile.

• It has to be done separately for each combination of language and configuration.

• It requires knowing all possible flags for any version of the toolchain.

CMake 3.25 added an abstraction for handling the debug information when using a toolchain that
targets the MSVC ABI. The abstraction uses a MSVC_DEBUG_INFORMATION_FORMAT target property to
determine what flags to add for the debug information for that target. The abstraction is only used
if policy CMP0141 is set to NEW at the first project() call. If the policy is unset or set to OLD, the default
values of the various CMAKE_<LANG>_FLAGS_<CONFIG> variables will contain debug-related flags just as
they did with CMake 3.24 and earlier, and the MSVC_DEBUG_INFORMATION_FORMAT property will be
ignored.

When CMP0141 is set to NEW, the MSVC_DEBUG_INFORMATION_FORMAT target property must evaluate to one of
the following values or an empty string. Generator expressions are supported, so different flags can
be used for different configurations.

Embedded

The compiler will include debug information directly in each object file. For the MSVC toolchain,
this corresponds to the /Z7 flag.

ProgramDatabase

The compiler collects debug information in a separate file (the program database). For the MSVC
toolchain, this corresponds to the /Zi flag, with the debug information being stored in a PDB file.

EditAndContinue

This is like ProgramDatabase, except the program database supports the Visual Studio "edit and
continue" functionality. For the MSVC toolchain, this corresponds to the /ZI flag.

For non-MSVC toolchains that target the MSVC ABI, not all of the above are supported. It is the
developer’s responsibility to ensure that the requested behavior is supported by the toolchain used.
For example, when using a Clang toolchain that targets the MSVC ABI, the only supported value is
Embedded.

With CMP0141 set to NEW, if MSVC_DEBUG_INFORMATION_FORMAT evaluates to an empty string, no debug-
related flags are added for that target. This allows generator expressions to be used to provide
debug-related flags for some configurations and not others.

# NOTE: Setting this property directly is discouraged.
set_target_properties(SomeTarget
    CMAKE_MSVC_DEBUG_INFORMATION_FORMAT
    $<$<CONFIG:Debug,RelWithDebInfo>:Embedded>
)
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Projects wouldn’t typically manipulate the MSVC_DEBUG_INFORMATION_FORMAT target property directly
like in the above example. The initial value of that property is taken from the
CMAKE_MSVC_DEBUG_INFORMATION_FORMAT variable. This variable should not typically be set by the project,
it should be under the developer’s control to allow them to select the type of debugging support
they need.

When CMAKE_MSVC_DEBUG_INFORMATION_FORMAT is not set and CMP0141 is set to NEW, CMake will use a
default that gives the same end result as the OLD behavior. Where the toolchain supports
ProgramDatabase, that will be the default value for the Debug and RelWithDebInfo configurations. For
toolchains that target the MSVC ABI but do not support ProgramDatabase, the default value for those
configurations will be Embedded instead.

CMAKE_MSVC_DEBUG_INFORMATION_FORMAT can be explicitly set to an empty string. With CMP0141 set to NEW,
this results in no debug-related flags being added for any configuration when using a toolchain that
targets the MSVC ABI. An example scenario where this may be needed is when using a toolchain file
(see Section 23.1, “Toolchain Files”), and the projects it will be used with may set CMP0141 to OLD or
NEW, or CMake 3.24 or older needs to be supported. In such cases, for the toolchain file to work as
intended in all situations, it will need to override the default compiler flag variables and explicitly
set the debug-related flags. CMAKE_MSVC_DEBUG_INFORMATION_FORMAT then has to be set to an empty string
to prevent CMake from adding debug-related flags as well. Appendix B, Full Compiler Cache
Example shows another situation where both OLD and NEW behavior of CMP0141 must be accounted for.

15.8. Recommended Practices
This chapter has covered areas of CMake which have undergone some of the most significant
improvements since earlier versions. The reader should expect to encounter plenty of examples
and tutorials online and elsewhere which still recommend patterns and approaches employing the
older methods using variables and directory property commands. It should be understood that the
target_…() commands should be the preferred approach in the CMake 3.0+ era.

Projects should seek to define all dependencies between targets with the target_link_libraries()
command. This clearly expresses the nature of the relationships between targets and
communicates unambiguously to all of a project’s developers how targets are related. The
target_link_libraries() command should be preferred over link_libraries() or manipulating target
or directory properties directly. Similarly, the other target_…() commands offer a cleaner, more
consistent and more robust way to manipulate compiler and linker flags than variables, directory
property commands or direct manipulation of properties.

CMake 3.13 introduced a number of new commands and properties related to linker options, some
of which were added for consistency reasons or to address specific use cases. Projects should
generally avoid the new add_link_options() directory level command and prefer to use the new
target_link_options() command instead. CMake 3.13 also introduced a new target level command
target_link_directories(), which is a complement to the existing directory level link_directories()
command. Both of these link directory commands should be avoided for robustness reasons.
Projects are advised to link to target names or use absolute paths to libraries where those libraries
are not in directories expected to be on the default linker search path. The
LINK_LIBRARIES_ONLY_TARGETS target property supported with CMake 3.23 or later may be helpful in
enforcing this (see Section 16.1, “Require Targets For Linking”).
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The following guide may help determine which methods are appropriate for a given situation:

• Where possible, prefer to use the target_…() commands to describe relationships between
targets and to modify compiler and linker behavior.

• In general, prefer to avoid the directory property commands. While they can be convenient in a
few specific circumstances, consistent use of the target_…() commands instead will establish
clear patterns that all developers in a project can follow. If directory property commands must
be used, do so as early in the CMakeLists.txt file as possible to avoid some less intuitive behavior
described in the preceding sections.

• Avoid direct manipulation of the target and directory properties that affect compiler and linker
behavior. Understand what the properties do and how the different commands manipulate
them, but prefer to use the more specialized target and directory specific commands where
possible. Querying the target properties can, however, be useful from time to time when
investigating unexpected compiler or linker command line flags.

• Where CMake provides an abstraction for a compiler or linker feature, prefer to use that
instead of adding raw compiler or linker flags. Ensure the abstraction is used instead of the raw
flags consistently throughout the whole build, including any dependencies that are built from
sources.

• Prefer to avoid modifying the various CMAKE_…_FLAGS variables and their configuration specific
counterparts. Consider these to be reserved for the developer who may wish to change them
locally at will. If changes need to be applied on a whole-of-project basis, consider using a few
strategic directory property commands at the top level of the project instead, but consider
whether such settings really should be unilaterally applied. A partial exception to this is in
toolchain files where initial defaults may be defined (see Chapter 23, Toolchains And Cross
Compiling for a detailed discussion of this area).

Developers should become familiar with the concepts of PRIVATE, PUBLIC and INTERFACE relationships.
They are a critical part of the target_…() command set and they become even more important for
the install and packaging stages of a project. Think of PRIVATE as meaning for the target itself,
INTERFACE for things that link against the target and PUBLIC as meaning both behaviors combined.
While it may be tempting to just mark everything as PUBLIC, this may unnecessarily expose
dependencies out beyond targets they need to. Build times can be impacted and private
dependencies can be forced onto other targets which should not have to know about them. This in
turn has a strong impact on other areas such as symbol visibility (discussed in detail in Section 22.5,
“Symbol Visibility”). Therefore, prefer to start with a dependency as PRIVATE and only make it PUBLIC
when it is clear that the dependency is needed by those linking to the target.

The INTERFACE keyword is used mostly for imported or interface library targets. Another less
common use is to add missing requirements to a target defined in a part of the project the
developer may not be allowed to change directly. Examples include parts written for older CMake
versions and don’t use the target_…() commands, or external libraries with imported targets that
omit important flags needed by targets linking to them. CMake 3.13 removed the restriction that
target_link_libraries() could not be called to operate on a target defined in a different directory
scope. For all other target_…() commands, there was no such restriction previously, so they can
always be used to extend the interface properties of targets defined elsewhere in the project.
Section 34.5.1, “Building Up A Target Across Directories” revisits this topic, demonstrating how
these capabilities can also be used to promote a more modular project structure.
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Avoid hard-coding turning warnings into errors. Let the choice be determined by whether the
CMAKE_COMPILE_WARNING_AS_ERROR variable enables it (CMake 3.24 or later required). Projects shouldn’t
set this variable, it is meant as a developer control, to be set either on the command line, or perhaps
in a CMake preset (see Chapter 33, Presets). If using CMake 3.23 or earlier, do not hard-code raw
compiler flags like -Werror or /WX to force warnings to be treated as errors.

Developers are sometimes tempted to use the SYSTEM target property or the SYSTEM keyword with
target_include_directories() or include_directories() to silence warnings coming from headers
instead of addressing those warnings directly. If such headers are part of the project, SYSTEM is not
typically an appropriate feature to use. In general, SYSTEM is intended for paths outside the project
(e.g. for dependencies).
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Chapter 16. Advanced Linking
The preceding chapter presented the usual ways that properties are used to control linking of
targets. The properties and commands discussed should cover most typical scenarios. Nevertheless,
situations arise where the project may want to use additional linking techniques and constraints
not covered by those methods.

16.1. Require Targets For Linking
CMake 3.23 added support for a LINK_LIBRARIES_ONLY_TARGETS target property. When this is set to true,
it adds constraints on the link items added to a target according to its LINK_LIBRARIES property, and
the INTERFACE_LINK_LIBRARIES and INTERFACE_LINK_LIBRARIES_DIRECT properties of its dependencies (see
Section 16.3, “Propagating Up Direct Link Dependencies” for the latter). Any item in any of those
properties which could be a valid target name is required to be a target name. For the purposes of
that check, an item is considered a potential target name if it has no path components and doesn’t
start with -, $ or  `  (after any generator expressions have been evaluated).

add_library(glob STATIC ...)
add_executable(App ...)
set_target_properties(App PROPERTIES
    LINK_LIBRARIES_ONLY_TARGETS TRUE
)
target_link_libraries(App PRIVATE glib)   # NOTE: typo here

In the above example, the developer made a typo on the target_link_libraries() line. They intended
to use the name of the glob target, but instead used glib. On some platforms, the system may
provide a library named glib which can be found on the linker’s library search path. Without the
LINK_LIBRARIES_ONLY_TARGETS property set, the linker would find glib and link to it, but be unable to
resolve the symbols that were expected to be provided by glob instead. The linker would then issue
an error message about the missing symbols rather than the wrong library being linked. The
developer would be confused, thinking they linked to glob, which should have provided the missing
symbols. With LINK_LIBRARIES_ONLY_TARGETS set to true, CMake sees that there is no CMake target
called glib and halts with an error at configure time. CMake’s error message will immediately
diagnose the real problem (the typo that caused the wrong thing to be linked).

In practice, it will probably be desirable to enable this behavior across the whole project, not just
for individual targets. The CMAKE_LINK_LIBRARIES_ONLY_TARGETS variable is used to initialize the
LINK_LIBRARIES_ONLY_TARGETS target property. Setting that variable at the project’s top level before any
targets are created will ensure that all targets have the feature enabled.

In some cases, certain libraries provided by the toolchain may be linked with a bare name that
could be a target name. The m library on Unix platforms is a relatively common example. A
toolchain file or the project might add such a library to the linker command line of all executable
and shared library targets. If LINK_LIBRARIES_ONLY_TARGETS is set to true, this may lead to CMake
rejecting that library linking relationship. Such libraries need to be wrapped in an INTERFACE
IMPORTED target (see Section 18.2.5, “Interface Imported Libraries”). The IMPORTED_LIBNAME target
property also needs to be set to the name to be used on the linker command line. The following
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contrived example (taken from the official CMake documentation, with minor changes)
demonstrates the technique:

add_library(Toolchain::m INTERFACE IMPORTED)
set_target_properties(Toolchain::m PROPERTIES
    IMPORTED_LIBNAME "m"
)
target_link_libraries(App PRIVATE Toolchain::m)

CMake doesn’t check whether the value of IMPORTED_LIBNAME matches a target name. The value is
used on the linker command line directly as provided. One can take advantage of this to mask a
bare library name with a CMake target of the same name:

# No Toolchain:: namespace, masks bare "m" name
add_library(m INTERFACE IMPORTED)
set_target_properties(m PROPERTIES
    IMPORTED_LIBNAME "m"   # Never treated as a target name
)
target_link_libraries(App PRIVATE m)

Third party code that links to a bare m could then be used with LINK_LIBRARIES_ONLY_TARGETS enabled.

16.2. Customize How Libraries Are Linked
In some projects, there can be requirements around not just what libraries are linked, but also how
they are linked. For example, some linkers can optimize away linked libraries and frameworks it
thinks are not needed. The target may use those libraries or frameworks in a way that the linker
can’t detect, so the project has to somehow prevent the linker from discarding them. Another
example is where a group of libraries has complex interdependencies that cannot be easily
captured by CMake’s cyclic dependency handling (see Section 22.2, “Linking Static Libraries”). In
such cases, the project may want to direct the linker to repeatedly rescan a group of interdependent
libraries to satisfy unresolved symbols.

Two new generator expressions added in CMake 3.24 provide greater control over how libraries are
added to the linker command line. They directly support scenarios like those mentioned above.
These new generator expressions and the various constraints and features surrounding them can
be fairly complicated. However, for the more common use cases, a fairly simple understanding will
likely be sufficient. Nevertheless, it is recommended that the reader use the discussion below as a
starting point, but also check the official documentation of these generator expressions. Most
features are not supported for every toolchain, so consult the documentation to confirm availability
for the toolchain(s) being used, and for any other limitations that may apply.

The two new generator expressions are closely related, but they serve different purposes:

$<LINK_GROUP:groupFeature,libs...>
$<LINK_LIBRARY:libFeature,libs...>
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Both expressions can only be used in the LINK_LIBRARIES, INTERFACE_LINK_LIBRARIES or
INTERFACE_LINK_LIBRARIES_DIRECT target properties. They can also be used in the
target_link_libraries() and link_libraries() commands.

When adding the specified libs to the linker command line, the groupFeature or libFeature defines
how that should be done. $<LINK_GROUP:…> is used to express a constraint around a group of
libraries as a whole, whereas $<LINK_LIBRARY:…> expresses a constraint that applies to each listed
library individually. The set of features supported by the two expressions are separate and non-
overlapping.

16.2.1. Link Group Features

CMake defines only one built-in groupFeature for use with $<LINK_GROUP:…>, a feature called RESCAN. It
ensures that the list of libraries are kept together on the linker command line. It surrounds that list
of libraries with linker options that make the linker rescan the group members repeatedly to
resolve symbols. With some linkers, the libraries would normally only be scanned once in a single
pass. For such linkers, symbols needed by libraries earlier on the command line would have to be
supplied by things later on the command line. The RESCAN feature makes the linker work harder by
using multiple passes to resolve symbols within the group as much as possible. Some linkers are
already multi-pass by default and don’t require any additional options to be added in order to get
this behavior.

add_library(MyThings STATIC ...)
add_executable(App ...)

target_link_libraries(App PRIVATE
    $<LINK_GROUP:RESCAN,MyThings,externalTC>
)

In the above example, the project defines a MyThings target, which is closely coupled with an
externally-provided externalTC library. Both need symbols from each other. CMake will choose the
appropriate linker flags for the toolchain to represent the group constraint when linking the App
target. With toolchains that use the GNU ld linker, the above example might result in a linker
command line that contains the following fragment:

-Wl,--start-group /path/to/libMyThings.a -lexternalTC -Wl,--end-group

Once a library has been mentioned in a RESCAN group anywhere in the project, CMake will replace
any standalone use of that library with the whole group when linking any target. A library can be a
member of multiple RESCAN groups, although such cases are probably an indication that those
groups may each be underspecified.

16.2.2. Link Library Features

The $<LINK_LIBRARY:…> generator expression has a different and larger set of built-in features. The
generator expression’s official documentation lists all the supported features, but a few are
discussed here to demonstrate the usage.
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In the following example, Things is the main library that consumers are expected to link to.
However, the project implements some of the Things public API in the separate SubPart and
AnotherPart static libraries. These are not just private implementation details, they are functions,
etc. that consumers of Things might reference directly, but which Things itself might not reference.

add_library(SubPart STATIC ...)
add_library(AnotherPart STATIC ...)
add_library(Things SHARED ...)

target_link_libraries(Things PRIVATE
    SubPart
    AnotherPart
)

add_executable(App ...)
target_link_libraries(App PRIVATE Things)

In the example as shown, the linker would normally end up discarding all the symbols from SubPart
and AnotherPart when linking Things as a shared library. The built-in WHOLE_ARCHIVE library feature
can be used to prevent the linker from discarding those symbols:

target_link_libraries(Things PRIVATE
    $<LINK_LIBRARY:WHOLE_ARCHIVE,SubPart,AnotherPart>
)

CMake again chooses the appropriate flags for the linker command line to implement the
constraint. With Visual Studio toolchains, the /WHOLEARCHIVE option would be used. For toolchains
using the GNU ld linker, the --whole-archive flag might be used in conjunction with other flags that
push and pop the state of that feature (where supported).

CMake may take advantage of the libraries being expressed in a single expression to reduce the
number of flags added to the linker command line. Note though that the libraries are not
guaranteed to be listed together as a group. Use $<LINK_GROUP:…> for cases that require the set of
libraries to be kept together.

When targeting Apple platforms, a number of other built-in $<LINK_LIBRARY:…> features are
available. The FRAMEWORK feature can be used to explicitly force a library to be treated as a
framework. This is more useful when linking an external framework by name rather than as a
CMake target (see Section 24.9, “Linking Frameworks”). The NEEDED_FRAMEWORK and NEEDED_LIBRARY
features can be used to force the linker to make a target link to a framework or library, even if the
target doesn’t use any symbols from it. This may be desirable if no symbols from the framework or
library are referenced directly by the target, but the framework or library has global objects whose
constructors have side effects (registering handlers, etc.). Other built-in features provide support
for weak imports and re-exporting symbols, but those are fairly advanced use cases.

In more complex projects, there is a greater likelihood that conflicting $<LINK_LIBRARY:…>
expressions will occur. CMake 3.24 and later support LINK_LIBRARY_OVERRIDE and
LINK_LIBRARY_OVERRIDE_<LIBRARY> target properties as a potential way of addressing those situations.
They allow a target to override link features attached to libraries it uses. These override properties
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should be considered a last resort workaround for what is already an advanced feature. They are
appropriate for certain scenarios, but they should be avoided if possible. See the official CMake
documentation of the properties for examples of their usage.

16.2.3. Custom Features

The $<LINK_LIBRARY:…> and $<LINK_GROUP:…> generator expressions also support custom features
defined by the project. This is an advanced area, one that won’t be needed by most projects. The
official CMake documentation explains the steps involved for those projects that do require that
level of customization and control.

16.2.4. Feature Validity

It is the project’s responsibility to ensure that it only uses a $<LINK_LIBRARY:…> or $<LINK_GROUP:…>
feature with a set of libraries for which that feature is valid. CMake does not try to detect invalid
combinations. For example, using $<LINK_LIBRARY:WHOLE_ARCHIVE,…> with anything other than static
libraries would be inappropriate.

16.3. Propagating Up Direct Link Dependencies
For most projects, linking relationships between targets can and should be specified purely through
target_link_libraries() calls. These clearly express the nature of a relationship in terms of
something the target needs (PRIVATE), something that consumers of the target need (INTERFACE), or
something needed by both (PUBLIC).

In some scenarios, the nature of the relationship is more complex. Sometimes, a set of objects must
be linked only by the top level executable or shared library at the head of the link dependency
chain. The link seaming technique is an example of this. An interface is defined in a lower level
library, and while that library may make use of the interface, it doesn’t provide the implementation
for it. Instead, the application is expected to provide the implementation, usually as object files on
the linker command line (using object files ensures library ordering issues are avoided). Projects
can take advantage of this technique to use different implementations in different executables.
Production applications might use real implementations, whereas test executables might provide
predictable values or use mocked implementations with non-essential features stubbed out.

Relationships like the above cannot be easily and robustly expressed with CMake 3.23 and earlier.
The library depends on the executable consuming it, but there may be different executables, so the
library can’t express the dependency. The project has to rely on adding object files directly to each
executable or shared library target. It cannot attach that logic to an intermediate library that
executables and shared libraries link to.

With CMake 3.24 or later, the INTERFACE_LINK_LIBRARIES_DIRECT target property can be used to handle
these scenarios. It allows a target to specify libraries that should be treated as direct link
dependencies of all targets up to the executable or shared library at the top of the dependency
chain. Compare this with the INTERFACE_LINK_LIBRARIES property, which adds indirect dependencies
to that target’s immediate consumers only.

190



The differences between direct and indirect dependencies are subtle. One of the more important
differences is in how object libraries are affected (see Section 18.2.2, “Object Libraries”). Object
libraries linked indirectly do not add their objects to the consumer. Their objects only get added for
direct link dependencies. This is important, because it means INTERFACE_LINK_LIBRARIES_DIRECT can
list object libraries and those objects will be added to the linker command line of each target in the
chain up to the executable or shared library. An object library listed in INTERFACE_LINK_LIBRARIES will
only add object files to the linker command line of its immediate consumer. If that immediate
consumer isn’t an executable or shared library, those object files won’t end up being part of the
eventual executable or shared library, leading to unresolved symbols.

16.3.1. Link Seaming Example

Consider the following partial example with a diagram of the final desired set of direct linking
relationships:

add_executable(Exe1 ...)
add_executable(Exe2 ...)
add_library(Middle STATIC ...)
add_library(SeamIface STATIC ...)
add_library(SeamImpl OBJECT ...)

# INCOMPLETE: Exe1 and Exe2 still need SeamImpl to be linked
target_link_libraries(Exe1 PRIVATE Middle)
target_link_libraries(Exe2 PRIVATE Middle)
target_link_libraries(Middle PRIVATE SeamIface)

Exe1 Exe2

SeamImpl

Middle

SeamIface

In the above example, SeamIface uses symbols that it doesn’t provide and doesn’t pull in from its
own link dependencies. It expects those symbols to be provided by the final executable or shared
library it gets linked into. SeamImpl provides those implementations.

With CMake 3.23, one would have to explicitly add SeamImpl to every executable that linked directly
or indirectly to SeamIface:
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target_link_libraries(Exe1 PRIVATE SeamImpl)
target_link_libraries(Exe2 PRIVATE SeamImpl)

With CMake 3.24 or later, the requirement can be attached to the Middle target instead. Anything
that links to Middle (directly or indirectly) will then have SeamImpl added to its direct dependencies:

set_target_properties(Middle PROPERTIES
    INTERFACE_LINK_LIBRARIES_DIRECT SeamImpl
)

Attaching the implementation to Middle is more convenient if there are many executables.
Expanding the example further, it becomes clearer how this pattern allows different link seam
implementations to be provided to different groups of executables.

Exe1 Exe2 Test1 Test2

SeamImpl MockImpl

Middle Stubs

SeamIface

As mentioned earlier, items listed in INTERFACE_LINK_LIBRARIES_DIRECT will be linked to every target in
the dependency chain up to the executable or shared library. This can result in unwanted linking
for intermediate targets. Generator expressions can be used to only add the direct link dependency
to the head target at the top of the link dependency chain. This will be an executable, shared library
or module library. The earlier example can be modified to demonstrate this behavior:

add_executable(TopExe ...)
add_library(Extra STATIC ...)
add_library(Middle STATIC ...)
add_library(SeamIface STATIC ...)
add_library(SeamImpl OBJECT ...)

target_link_libraries(TopExe PRIVATE Extra)
target_link_libraries(Extra  PRIVATE Middle)
target_link_libraries(Middle PRIVATE SeamIface)
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# OPTION A: No generator expression
set_target_properties(Middle PROPERTIES
    INTERFACE_LINK_LIBRARIES_DIRECT SeamImpl
)

# OPTION B: With generator expression

# Build up a generator expression that evaluates to 1 only for the head target
set(type "$<TARGET_PROPERTY:TYPE>")
set(head_targets EXECUTABLE SHARED_LIBRARY MODULE_LIBRARY)
set(is_head "$<IN_LIST:${type},${head_targets}>")

set_target_properties(Middle PROPERTIES
    INTERFACE_LINK_LIBRARIES_DIRECT "$<${is_head}:SeamImpl>"
)

OPTION A OPTION B

No generator expression With generator expression

TopExe TopExe

Extra Extra

(unwanted)

Middle SeamImpl Middle SeamImpl

SeamIface SeamIface

Extra is a static library, so it does not need the SeamImpl objects. But without using the generator
expression to limit the direct linking of SeamImpl, Extra will contain its own copy of the SeamImpl
objects.
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16.3.2. Static Plugins

INTERFACE_LINK_LIBRARIES_DIRECT can be used for other scenarios too. Some projects define a library
with one or more associated plugins. When the project is built as a shared library and plugin, the
library loads the plugin dynamically at run time. When they are built statically, the plugin has to be
linked in to any executable that uses the library, and the library has to find the plugin using some
other mechanism. Something also has to use symbols from the plugin to prevent the linker from
discarding them. The project may choose to list the plugin in the library’s
INTERFACE_LINK_LIBRARIES_DIRECT property (this is the example used by CMake’s own documentation
for that property). More likely, an object library with a registration function that references the
plugin’s symbols would be listed instead. This arrangement means an executable can link to the
library, and regardless of whether things were built as shared or static, the plugin will be available
to the application.

The plugin scenario is likely to be more complicated than the above brief description.
Implementing the plugin registration functions and the symbol search in the library can be non-
trivial. They are specific to the project and the capabilities of the target platform. In certain cases, a
companion INTERFACE_LINK_LIBRARIES_DIRECT_EXCLUDE property may be needed as well. It allows the
final list of direct link dependencies to be filtered before they are added to the linker command
line. Used incorrectly, it can break linker command lines by re-ordering things in a way that doesn’t
satisfy the dependencies between libraries. As such, it should be avoided unless it is absolutely
necessary. Consult the official CMake documentation for further details on how to use the
INTERFACE_LINK_LIBRARIES_DIRECT_EXCLUDE property and scenarios that may require it.

16.4. Recommended Practices
Where possible, link to targets rather than to raw library names or paths. Targets are more portable
across platforms, and they support bringing other usage requirements rather than specifying just a
basic linking relationship. Consider setting CMAKE_LINK_LIBRARIES_ONLY_TARGETS to true as a cache
variable on the cmake command line or in presets to enforce this as a requirement.

The $<LINK_GROUP:…> and $<LINK_LIBRARY:…> generator expressions available with CMake 3.24 or
later should not be used without careful consideration of the alternatives. Some of the features they
offer can easily be misused as a way to cover over structural problems in the project. Avoid using
$<LINK_GROUP:RESCAN,…> if the interdependencies between the libraries can be removed through
refactoring and restructuring. Rather than using $<LINK_LIBRARY:WHOLE_ARCHIVE,…>, consider whether
using object libraries or combining separate libraries into a single library would be a better
solution. See Section 22.6, “Mixing Static And Shared Libraries” for further discussion of this area.

Similarly, avoid using the INTERFACE_LINK_LIBRARIES_DIRECT target property if the relationships
between targets can be fully expressed without it. There are valid scenarios where it may be
appropriate, such as when using link seaming techniques or certain types of static plugin handling.
These should be viewed as more advanced methods to solve specific problems rather than
something to reach for as a first choice solution.
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Chapter 17. Language Requirements
With the ongoing evolution of the C and C++ languages, developers are increasingly required to
understand the compiler and linker flags that enable support for the C and/or C++ version their
code uses. Different compilers use different flags, but even when using the same compiler and
linker, flags can be used to select different implementations of the standard library.

In the days when C++11 support was relatively new, CMake had no direct support for choosing
which standard to use, so projects were left to work out the required flags on their own. In CMake
3.1, features were introduced to allow the C and C++ standard to be selected in a consistent and
convenient way, abstracting away the various compiler and linker differences. This support has
been extended in subsequent versions and from CMake 3.6 covers most common compilers (CMake
3.2 added most of the compiler support, 3.6 added the Intel compiler).

Two main methods are provided by CMake for specifying language requirements. The first is to set
the language standard directly and the second is to allow projects to specify the language features
they need and let CMake select the appropriate language standard. While the functionality has
largely been driven by the C and C++ languages, other languages and pseudo-languages such as
CUDA and Objective-C/C++ are also supported.

17.1. Setting The Language Standard Directly
The simplest way for a project to control the language standards used by a build is to set them
directly. Using this approach, developers do not need to know or specify the individual language
features used by the code, they just need to set a single number indicating the standard the code
assumes is supported. Not only is this easy to understand and use, it also has the advantage that it is
relatively straightforward to ensure that the same standard is used throughout a project. This
becomes important at the link stage where a consistent standard library should be used across all
the linked libraries and object files. It can also be important at compile time if headers define things
differently depending on what language standard is being used.

As is the usual pattern with CMake, target properties control which standard will be used when
building that target’s sources and when linking the final executable or shared library. For a given
language, there are three target properties related to specifying the standard. In the following,
<LANG> will most commonly be either C or CXX, but CUDA, OBJC and OBJCXX are also supported with more
recent CMake versions.

<LANG>_STANDARD

Specifies the language standard the project wants to use for the specified target.

• C_STANDARD supports the values 90, 99 and 11, with CMake 3.21 adding 17 and 23.

• CXX_STANDARD supports the values 98, 11 and 14. The value 17 is also supported since CMake
3.8, 20 since CMake 3.12 and 23 since CMake 3.20. The value 26 is recognized as valid starting
with CMake 3.25, but no compiler support is currently implemented for it.

• CUDA_STANDARD is a CUDA-specific version of what CXX_STANDARD would normally control. If
CUDA_STANDARD is not defined, it effectively falls back to CXX_STANDARD. Supported values for
CUDA_STANDARD are 98 and 11 since CMake 3.8, 14 since CMake 3.9, 03, 17 and 20 since CMake

195



3.18 and 23 since CMake 3.22. Some of these values are recognized as valid by earlier CMake
versions than the ones just mentioned, but no compilers actually supported the values prior
to the minimum versions stated.

• From CMake 3.16, OBJC_STANDARD and OBJCXX_STANDARD follow a similar pattern. If they are not
defined, then C_STANDARD and CXX_STANDARD are used as fallbacks respectively. In practice, it
would be unusual to set OBJC_STANDARD or OBJCXX_STANDARD, since the fallback to C_STANDARD and
CXX_STANDARD would typically be desirable to ensure that C/C++ code uses language standards
consistent with the Objective-C/C++ code.

One would reasonably presume that later CMake versions would add support for other language
standards as they evolve over time. When a target is created, the initial value of this
<LANG>_STANDARD property is taken from the CMAKE_<LANG>_STANDARD variable.

<LANG>_STANDARD_REQUIRED

While the <LANG>_STANDARD property specifies the language standard the project wants,
<LANG>_STANDARD_REQUIRED determines whether that language standard is treated as a minimum
requirement or as just a "use if available" guideline. One might intuitively expect that
<LANG>_STANDARD would be a requirement by default, but for better or worse, the
<LANG>_STANDARD_REQUIRED properties are OFF by default. When OFF, if the requested standard is not
supported by the compiler, CMake will decay the request to an earlier standard rather than
halting with an error. This decaying behavior is often unexpected for new developers and in
practice can be a cause of confusion. Thus, for most projects, when specifying a <LANG>_STANDARD
property, its corresponding <LANG>_STANDARD_REQUIRED property will almost always need to be set
to true as well to ensure the particular requested standard is treated as a firm requirement.
When a target is created, the initial value of this property is taken from the
CMAKE_<LANG>_STANDARD_REQUIRED variable.

<LANG>_EXTENSIONS

Many compilers support their own extensions to the language standard. A compiler and/or
linker flag is usually provided to enable or disable those extensions. The <LANG>_EXTENSIONS target
property controls whether those extensions are enabled for that particular target. See below for
how this property is initialized.

For many compilers, the same flag is used to control both the language standard and whether
extensions are enabled. With CMake 3.21 or earlier, if a project sets the <LANG>_EXTENSIONS property
without also setting the <LANG>_STANDARD property, <LANG>_EXTENSIONS may effectively be ignored.
CMake 3.22 introduced policy CMP0128 which affects this behavior. When CMP0128 is set to NEW,
<LANG>_EXTENSIONS will be honored regardless of whether <LANG>_STANDARD is set or not.

CMP0128 also affects how <LANG>_EXTENSIONS is initialized when a target is created. With CMP0128 set to
OLD or not set, the initial value for the <LANG>_EXTENSIONS property is taken from the
CMAKE_<LANG>_EXTENSIONS variable. If that variable isn’t set, the default value will be true. When
CMP0128 is set to NEW, the initial value of <LANG>_EXTENSIONS will also be taken from the
CMAKE_<LANG>_EXTENSIONS variable if it is defined, but will fall back to the value of a separate, read-
only CMAKE_<LANG>_EXTENSIONS_DEFAULT variable otherwise. CMake determines the compiler’s default
during its compiler checks and will set CMAKE_<LANG>_EXTENSIONS_DEFAULT accordingly to reflect that
behavior.
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CMP0128 has one more potential effect. When this policy is set to NEW, flags related to setting the
language standard or extensions will only be added if the compiler’s default behavior doesn’t
already provide those settings. This may change the flags seen on the compiler command line, but
shouldn’t change the actual behavior unless the project is adding its own language standard flags
directly (which is strongly discouraged).

In practice, projects would more typically set the variables that provide the defaults for the above
target properties rather than setting the target properties directly. This ensures that all targets in a
project are built in a consistent manner with compatible settings. It is also recommended that
projects set all three rather than just some of them. The defaults for <LANG>_STANDARD_REQUIRED and
<LANG>_EXTENSIONS have proven to be relatively unintuitive for many developers. By explicitly setting
them, a project makes clear the standard behavior it expects.

# Require C++11 and disable extensions for all targets
set(CMAKE_CXX_STANDARD          11)
set(CMAKE_CXX_STANDARD_REQUIRED ON)
set(CMAKE_CXX_EXTENSIONS        OFF)

When using GCC or Clang, the above would typically add the -std=c++11 flag. For Visual Studio
compilers before VS2015 Update 3, no flags would be added since the compiler either supports
C++11 by default or it has no support for C++11 at all. From Visual Studio 15 Update 3, the compiler
supports specifying a C++ standard of C++14 or later, with C++14 being the default if not set.

In comparison, the following example requests a later C++ version and enables compiler
extensions, resulting in a GCC/Clang compiler flag like -std=gnu++14 instead. Visual Studio compilers
again may support the requested standard by default or not, depending on compiler version. If the
compiler in use does not support the requested C++ standard, CMake will configure the compiler to
use the most recent C++ standard it supports.

# Use C++14 if available and allow compiler extensions for all targets
set(CMAKE_CXX_STANDARD          14)
set(CMAKE_CXX_STANDARD_REQUIRED OFF)
set(CMAKE_CXX_EXTENSIONS        ON)

The following example shows how to set the C standard details for a specific target only:

# Build target Foo with C99, no compiler extensions
set_target_properties(Foo PROPERTIES
    C_STANDARD          99
    C_STANDARD_REQUIRED ON
    C_EXTENSIONS        OFF
)

Note that <LANG>_STANDARD specifies a minimum standard, not necessarily an exact requirement.
CMake may select a more recent standard due to compile feature requirements (discussed next).
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17.2. Setting The Language Standard By Feature
Requirements
Directly setting the language standard for a target or for a whole project is the simplest way to
manage standard requirements. It is the most suitable approach when the project’s developers
know which language version provides the features used by the project’s code. It is particularly
convenient when a large number of language features are being used, since each feature does not
have to be explicitly specified. In some cases, however, developers may prefer to state which
language features their code uses and leave CMake to select the appropriate language standard.
This has the advantage that, unlike specifying the standard directly, compile feature requirements
can be part of a target’s interface and therefore can be enforced on other targets linking to it.

Compile feature requirements are controlled by the target properties COMPILE_FEATURES and
INTERFACE_COMPILE_FEATURES, but these properties are typically populated using the
target_compile_features() command rather than being manipulated directly. This command follows
a very similar form to the various other target_…() commands provided by CMake:

target_compile_features(targetName
     <PRIVATE|PUBLIC|INTERFACE> feature1 [feature2 ...]
    [<PRIVATE|PUBLIC|INTERFACE> feature3 [feature4 ...]] ...
)

The PRIVATE, PUBLIC and INTERFACE keywords have their usual meanings, controlling how the listed
features should be applied. PRIVATE features populate the COMPILE_FEATURES property, which is applied
to the target itself. Those features specified with the INTERFACE keyword populate the
INTERFACE_COMPILE_FEATURES property, which is applied to any target that links to targetName. Features
specified as PUBLIC will be added to both properties and will therefore be applied to both the target
itself and to any other target which links to it.

Each feature must be one of the features supported by the underlying compiler. CMake provides
two lists of known features: CMAKE_<LANG>_KNOWN_FEATURES which contains all known features for the
language and CMAKE_<LANG>_COMPILE_FEATURES which contains only those features supported by the
compiler. If a requested feature is not supported by the compiler, CMake will report an error.
Developers may find the CMake documentation for the CMAKE_<LANG>_KNOWN_FEATURES variables to be a
particularly useful resource, since it not only lists the features understood by that particular
version of CMake, it also contains references to standard documents relating to each feature. Note
that not all functionality provided by a particular language version can be explicitly specified using
compile features. For example, new C++ STL types, functions, etc. have no associated feature.

From CMake 3.8, a per language meta-feature is available to indicate a particular language
standard rather than a specific compile feature. These meta-features take the form
<lang>_std_<value> and when listed as a required compile feature, CMake will ensure compiler flags
are used which enable that language standard. For example, to add a compile feature which
ensures that a target and anything that links against it has C++14 support enabled, the following
could be used:
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target_compile_features(targetName PUBLIC cxx_std_14)

If a project needs to support CMake versions earlier than 3.8, then the above meta-feature will not
be available. In such cases, each compile feature would have to be listed out individually, which can
be impractical and would likely be incomplete. This tends to limit the usefulness of compile
features in general, with projects frequently choosing to set the language standard through the
target properties described in the previous section instead.

In situations where a target has both its <LANG>_STANDARD property set and compile features specified
(directly or transitively as a result of INTERFACE features from something it links to), CMake will
enforce the stronger standard requirement. In the following example, Foo would be built with
C++14, Bar with C++17 and Guff with C++14:

set_target_properties(Foo PROPERTIES CXX_STANDARD 11)
target_compile_features(Foo PUBLIC cxx_std_14)

set_target_properties(Bar PROPERTIES CXX_STANDARD 17)
target_compile_features(Bar PRIVATE cxx_std_11)

set_target_properties(Guff PROPERTIES CXX_STANDARD 11)
target_link_libraries(Guff PRIVATE Foo)

Note that this may mean a more recent language standard could be used than what the project
expected, which in some cases can result in compilation errors. For example, C++17 removed
std::auto_ptr, so if code expects to be compiled with an older language standard and still uses
std::auto_ptr, it could fail to compile if the toolchain strictly enforces this removal.

The CUDA, OBJC and OBJCXX languages are a little unusual in that they are based off C or C++. The OBJC
and OBJCXX languages do not as yet have their own separate set of compile features, but the compile
features for the corresponding base language can be used instead. In CMake 3.16 or earlier, the CUDA
language also did not have its own separate set of compile features and relied on the C++ compile
features. CMake 3.17 added dedicated compile feature support for CUDA.

17.2.1. Detection And Use Of Optional Language Features

Some projects have the ability to handle a particular language feature being supported or not. They
may provide a fallback implementation, for example, or only define certain function overloads if
they are supported by the compiler. A project may support some compile features being optional,
such as keywords intended to guide the developer or provide an increased ability for the compiler
to catch common mistakes. C++ keywords such as final and override are common examples of this.

CMake provides a number of ways to handle the above scenarios. One approach is to use generator
expressions to conditionally set compiler defines or include directories based on the availability of
a particular compile feature. These can be a little verbose, but they offer a great deal of flexibility
and support very precise handling of feature-based functionality. Consider the following example:
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add_library(Foo ...)

# Make override a feature requirement only if available
target_compile_features(Foo PUBLIC
    $<$<COMPILE_FEATURES:cxx_override>:cxx_override>
)

# Define the foo_OVERRIDE symbol so it provides the
# override keyword if available or empty otherwise
target_compile_definitions(Foo PUBLIC
    $<$<COMPILE_FEATURES:cxx_override>:foo_OVERRIDE=override>
    $<$<NOT:$<COMPILE_FEATURES:cxx_override>>:foo_OVERRIDE>
)

The above would allow code such as the following to compile for any C++ compiler, regardless of
whether it supported the override keyword:

class MyClass : public Base
{
public:
    void func() foo_OVERRIDE;
    ...
};

Other features can also have a similar conditionally defined symbol used in much the same way.
C++ keywords like final, constexpr and noexcept can potentially be used if available or omitted if not
supported by the compiler and still produce valid code. Other keywords such as nullptr and
static_assert have alternative implementations which can be used if the keyword is not supported.

Specifying generator expressions for each feature to cover the supported and unsupported cases
can be both tedious and fragile. Techniques such as using the WriteCompilerDetectionHeader module
(which is deprecated as of CMake 3.20) can help reduce the drawbacks, but in the long run,
switching behavior at the standard level rather than on individual features is likely to be the better
approach.

17.3. Recommended Practices
Projects should avoid setting compiler and linker flags directly to control the language standard
used. The required flags vary from compiler to compiler, so it is more robust, more maintainable
and more convenient to use the features CMake provides and allow it to populate the flags
appropriately. The CMakeLists.txt file will also more clearly express the intent, since human
readable variables and properties are used instead of often cryptic raw compiler and linker flags.

The simplest method for controlling language standard requirements is to use the
CMAKE_<LANG>_STANDARD, CMAKE_<LANG>_STANDARD_REQUIRED and CMAKE_<LANG>_EXTENSIONS variables. These
can be used to set the language standard behavior for the entire project, ensuring consistent usage
across all targets. These variables should ideally be set just after the first project() command in the
top level CMakeLists.txt file. Projects should always set all three variables together to make clear
how the language standard requirements should be enforced and whether compiler extensions are
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permitted. Omitting CMAKE_<LANG>_STANDARD_REQUIRED or CMAKE_<LANG>_EXTENSIONS can lead to
unexpected behavior, as the defaults may not be what some developers intuitively expect.

If the language standard only needs to be enforced for some targets and not others, the
<LANG>_STANDARD, <LANG>_STANDARD_REQUIRED and <LANG>_EXTENSIONS target properties can be set on
individual targets rather than for the whole project. These properties behave as though they were
PRIVATE, meaning they only specify requirements on that target and not on anything linking to it.
This places more of a burden on the project to ensure that all targets have correctly specified
language standard details. In practice, it is usually easier and more robust to use the variables to set
language requirements project-wide rather than use per target properties. Prefer using the
variables unless the project needs different language standard behavior for different targets.

If using CMake 3.8 or later, compile features can be used to specify the desired language standard
on a per-target basis. The target_compile_features() command makes this easy and clearly specifies
whether such requirements are PRIVATE, PUBLIC or INTERFACE. The main advantage of specifying a
language requirement this way is that it can be enforced transitively on other targets via PUBLIC and
INTERFACE relationships. These requirements are also preserved when targets are exported and
installed (see Chapter 27, Installing). Note, however, that only the equivalent of the <LANG>_STANDARD
and <LANG>_STANDARD_REQUIRED target property behaviors are provided, so the <LANG>_EXTENSIONS target
property or CMAKE_<LANG>_EXTENSIONS variable should still be used to control whether compiler
extensions are allowed.

If policy CMP0128 is not set to NEW, the <LANG>_EXTENSIONS properties and their associated variables
often only take effect if the corresponding <LANG>_STANDARD is also set. This is due to how compilers
frequently combine the two into a single flag. Therefore, unless using CMake 3.22 or later with
policy CMP0128 set to NEW, it is difficult to escape having to specify <LANG>_STANDARD, even when compile
features are used.

Specifying individual compile features provides fine-grained control over the language
requirements at a per-target level. In practice, it is difficult for developers to ensure that all
features used by a target are explicitly specified, so there will always be the question of whether the
language requirements are properly defined. They can also easily become out of date as code
development continues over time. Most projects will probably find specifying language
requirements this way to be tedious and fragile, so they should only be used if the situation clearly
warrants it.

In the early days of C++11 and C++14, working with compile features was potentially useful because
compiler support was often lagging behind. For later language releases, support by the mainstream
compilers has arrived much faster. Subsequently, CMake stopped providing fine-grained features
for language standards beyond C++14. For C++17 and later, only the high level meta features like
cxx_std_17 are provided.

For projects still needing to support older compilers, they can detect available compile features and
provide implementations for whether a feature is available or not. The WriteCompilerDetectionHeader
module provided by CMake was sometimes useful in helping projects transition to more modern
compilers, but that module was deprecated in CMake 3.20. Therefore, it should no longer be used.
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Chapter 18. Target Types
CMake supports a wide variety of target types, not just the simple executables and libraries
introduced back in Chapter 4, Building Simple Targets. Different target types can be defined that act
as a reference to other entities rather than being built themselves. They can be used to collect
together transitive properties and dependencies without actually producing their own binaries, or
they can even be a kind of library that is simply a collection of object files rather than a traditional
static or shared library. Many things can be abstracted away as a target to hide the complexities of
platform differences, locations in the filesystem, file names and so on. This chapter covers all of
these various target types and discusses their uses.

Another category of target is the utility or custom target. These can be used to execute arbitrary
commands and define custom build rules, allowing projects to implement just about any sort of
behavior needed. They have their own dedicated commands and unique behaviors and are covered
in depth in the next chapter.

18.1. Executables
The add_executable() command has more than just the form introduced back in Chapter 4, Building
Simple Targets. Two other forms also exist which can be used to define executable targets that
reference other things. The full set of supported forms are:

add_executable(targetName
    [WIN32] [MACOSX_BUNDLE]
    [EXCLUDE_FROM_ALL]
    source1 [source2 ...]
)
add_executable(targetName IMPORTED [GLOBAL])
add_executable(aliasName ALIAS targetName)

The IMPORTED form can be used to create a CMake target for an existing executable rather than one
built by the project. By creating a target to represent the executable, other parts of the project can
treat it just like it would any other executable target that the project built itself (with some
restrictions). The most significant benefit is that it can be used in contexts where CMake
automatically replaces a target name with its location on disk, such as when executing commands
for tests or custom tasks (both covered in later chapters). One of the few differences compared to a
regular target is that imported targets cannot be installed, a topic covered in Chapter 27, Installing.

When defining an imported executable target, certain target properties need to be set before it can
be useful. Most of the relevant properties for any imported target have names beginning with
IMPORTED, but for executables, IMPORTED_LOCATION and IMPORTED_LOCATION_<CONFIG> are the most
important. When the location of the imported executable is needed, CMake will first look at the
configuration-specific property and only if that is not set will it look at the more generic
IMPORTED_LOCATION property. Typically, the location doesn’t need to be configuration-specific, so it is
very common for only IMPORTED_LOCATION to be set.
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When defined without the GLOBAL keyword, an imported target will only be visible in the current
directory scope and below, but adding GLOBAL makes the target visible everywhere. In contrast,
regular executable targets built by the project are always global. The reasons for this and some of
the associated implications of reduced target visibility are covered in Section 18.3, “Promoting
Imported Targets” further below.

An ALIAS target is a read-only way to refer to another target within CMake. It can be used to read
properties of the target it aliases and it may be used in custom commands and test commands just
like the aliased target (see Section 19.1, “Custom Targets” and Section 26.1, “Defining And Executing
A Simple Test” respectively). An alias does not create a new build target with the alias name. There
are limitations to defining and using aliases:

• Aliases cannot be installed or exported (both covered in Chapter 27, Installing).

• An alias of an alias is not supported.

• Prior to CMake 3.11, imported targets could not be aliased at all.

• From CMake 3.11, imported targets with global visibility can be aliased.

• From CMake 3.18, an alias of a non-global imported target can be created and that alias will also
be non-global. The alias cannot later be promoted to global visibility, even if the imported target
it aliases is promoted (see Section 18.3, “Promoting Imported Targets”).

18.2. Libraries
The add_library() command also has a number of different forms. The details for libraries are more
involved than for executables, which is a consequence of the variety of roles that libraries can take
in a project.

18.2.1. Basic Library Types

The basic form introduced back in Chapter 4, Building Simple Targets can be used to define the
common types of libraries most developers are familiar with:

add_library(targetName
    [STATIC | SHARED | MODULE]
    [EXCLUDE_FROM_ALL]
    source1 [source2 ...]
)

If no STATIC, SHARED or MODULE keyword is given, the library will be either STATIC or SHARED. The choice
is determined by the value of the BUILD_SHARED_LIBS variable (see Section 22.1, “Build Basics”).

18.2.2. Object Libraries

The add_library() command can also be used to define object libraries. These are a collection of
object files that are not combined into a single archive or shared library:
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add_library(targetName OBJECT
    [EXCLUDE_FROM_ALL]
    source1 [source2 ...]
)

With CMake 3.11 or earlier, object libraries cannot be linked like other library types (i.e. they
cannot be used with target_link_libraries()). They require using a generator expression of the form
$<TARGET_OBJECTS:objLib> as part of the list of sources of another executable or library target.
Because they cannot be linked, they therefore do not provide transitive dependencies to the targets
they are added to as objects/sources. This can make them less convenient than the other library
types, since header search paths, compiler defines, etc. have to be manually carried across to the
targets they are added to.

CMake 3.12 introduced features that make object libraries behave more like other types of libraries,
but with some caveats. From CMake 3.12, object libraries can be used with target_link_libraries(),
either as the target being added to (i.e. the first argument to the command) or as one of the libraries
being added. But because they add object files rather than actual libraries, their transitive nature is
more restricted to prevent object files from being added multiple times to consuming targets. A
simplistic explanation is that object files are only added to a target that links directly to the object
library, not transitively beyond that. The object library’s usage requirements do, however,
propagate transitively exactly like an ordinary library would.



The propagation of an object library’s own link library dependencies initially
contained an implementation bug which was not fixed until CMake 3.14.0. Projects
should set their minimum CMake version to 3.14 or later if they intend to link to
object libraries.

Some developers may find object libraries more natural if coming from a background where non-
CMake projects defined their targets based on sources or object files rather than a related set of
static libraries. In general, however, where there is a choice, static libraries will typically be the
more convenient choice in CMake projects. Before relying on the expanded features available for
object libraries in CMake 3.12 and later, consider whether an ordinary static library is more
appropriate and ultimately easier to use.

18.2.3. Imported Libraries

Just like executables, libraries may also be defined as imported targets. These are heavily used by
config files created during packaging or by Find module implementations (covered in Chapter 25,
Finding Things and Chapter 27, Installing), but have limited use outside of those contexts. They don’t
define a library to be built by the project, rather they act as a reference to a library that is provided
externally (e.g. it already exists on the system, is built by some process outside of the current CMake
project or is provided by the package that a config file is part of).

add_library(targetName
    (STATIC | SHARED | MODULE | OBJECT | UNKNOWN)
    IMPORTED [GLOBAL]
)
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The library type must be given immediately after the targetName. If the type of library that the new
target will refer to is known, it should be specified as such. This will allow CMake to treat the
imported target just like a regular library target of the named type in various situations. The type
can only be set to OBJECT with CMake 3.9 or later (imported object libraries were not supported
before that version). If the library type is not known, the UNKNOWN type should be given, in which case
CMake will simply use the full path to the library without further interpretation in places like linker
command lines. This will mean fewer checks and in the case of Windows builds, no handling of
DLL import libraries.

Except for OBJECT libraries, the location on the filesystem that the imported target represents needs
to be specified by the IMPORTED_LOCATION and/or IMPORTED_LOCATION_<CONFIG> properties (i.e. the same as
for imported executables). In the case of Windows platforms, two properties should be set:
IMPORTED_LOCATION should hold the location of the DLL and IMPORTED_IMPLIB should hold the location of
the associated import library, which usually has a .lib file extension (the …_<CONFIG> variants of
these properties can also be set and will take precedence). For object libraries, instead of the above
location properties, the IMPORTED_OBJECTS property must be set to a list of object files that the
imported target represents.

Imported libraries also support a number of other target properties, most of which can typically be
left alone or are automatically set by CMake. Developers who need to manually write config
packages should refer to the CMake reference documentation to understand the other IMPORTED_…
target properties which may be relevant to their situation. Most projects will rely on CMake
generating such files for them though, so the need to do this should be fairly uncommon.

By default, imported libraries are defined as local targets, meaning they are only visible in the
current directory scope and below. The GLOBAL keyword can be given to make them have global
visibility instead, just like other regular targets. A library may initially be created without the GLOBAL
keyword but later promoted to global visibility, a topic covered in detail in Section 18.3, “Promoting
Imported Targets” further below.

# Windows-specific example of imported library
add_library(MyWindowsLib SHARED IMPORTED)

set_target_properties(MyWindowsLib PROPERTIES
    IMPORTED_LOCATION /some/path/bin/foo.dll
    IMPORTED_IMPLIB   /some/path/lib/foo.lib
)

# Assume FOO_LIB holds the location of the library but its type is unknown
add_library(MysteryLib UNKNOWN IMPORTED)

set_target_properties(MysteryLib PROPERTIES
    IMPORTED_LOCATION ${FOO_LIB}
)
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# Imported object library, Windows example shown
add_library(MyObjLib OBJECT IMPORTED)

set_property(TARGET MyObjLib PROPERTY
    # These .obj files would be .o on most other platforms
    IMPORTED_OBJECTS /some/path/obj1.obj
                     /some/path/obj2.obj
)

# Regular executable target using imported object library.
# Platform differences assumed to be handled by MyObjLib.
add_executable(MyExe $<TARGET_OBJECTS:MyObjLib>)

18.2.4. Interface Libraries

Another form of the add_library() command allows interface libraries to be defined. These do not
usually represent a physical library, instead they primarily serve to collect usage requirements and
dependencies to be applied to anything that links to them. A popular example of their use is for
header-only libraries where there is no physical library that needs to be linked, but header search
paths, compiler definitions, etc. need to be carried forward to anything using the headers.

add_library(targetName INTERFACE)

All the various target_…() commands can be used with their INTERFACE keywords to define the usage
requirements the interface library will carry. One can also set the relevant INTERFACE_… properties
directly with set_property() or set_target_properties(), but the target_…() commands are safer and
easier to use.

add_library(MyHeaderOnlyToolkit INTERFACE)
target_include_directories(MyHeaderOnlyToolkit
    INTERFACE /some/path/include
)
target_compile_definitions(MyHeaderOnlyToolkit
    INTERFACE COOL_FEATURE=1
              $<$<COMPILE_FEATURES:cxx_std_11>:HAVE_CXX11>
)

add_executable(MyApp ...)
target_link_libraries(MyApp PRIVATE MyHeaderOnlyToolkit)

In the above example, the MyApp target links against the MyHeaderOnlyToolkit interface library. When
the MyApp sources are compiled, they will have /some/path/include as a header search path and will
also have a compiler definition COOL_FEATURE=1 provided on the compiler command line. If the MyApp
target is being built with C++11 support enabled, it will also have the symbol HAVE_CXX11 defined. The
headers in MyHeaderOnlyToolkit can then use this symbol to determine what things they declare and
define rather than relying on the __cplusplus symbol provided by the C++ standard, the value of
which is often unreliable for a range of compilers.
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Ordinarily, an interface library would not have any sources, but in some cases it can make sense.
Header-only libraries are one such example. The headers are likely to be of interest to developers
and they may want the headers to show up in their IDE. Since the headers are not part of any other
target, they normally wouldn’t appear. By adding them to the interface library as sources, IDEs
usually have enough information to be able to show the headers under one or more targets.

A special sub-case of the above example is when one or more headers in a header-only library are
generated as part of the build (a topic covered in Section 19.3, “Commands That Generate Files”).
With CMake 3.18 or earlier, if nothing in the project actually uses the interface library, the project
needs to create a separate custom target to ensure that the headers will be generated. Another
limitation with CMake 3.18 and earlier is that sources cannot be added to the interface library in
the add_library() call. A separate call to target_sources() has to be used instead (see Section 15.2.6,
“Source Files”). The resultant code would take the following form:

# Defines how to generate the header
add_custom_command(OUTPUT someHeader.h COMMAND ...)

# Required for CMake <= 3.18 to ensure header is generated
add_custom_target(GenerateSomeHeader ALL
    DEPENDS ${CMAKE_CURRENT_BINARY_DIR}/someHeader.h
)

# CMake <= 3.18 doesn't allow sources to be added to an
# INTERFACE target directly in the add_library() call
add_library(MyHeaderOnly INTERFACE)
target_sources(MyHeaderOnly
    INTERFACE
        ${CMAKE_CURRENT_BINARY_DIR}/someHeader.h
)

From CMake 3.19, both of the above-mentioned restrictions have been removed. Sources can be
listed directly in the add_library() call for interface libraries and they will be treated as private
sources. This means that unlike the example above, the headers will not be added to targets that
link to the interface library. Instead, they will remain associated only with the interface library
itself and therefore will only show up in IDEs under that library instead of in all of its consumers.
CMake will also create a build system target for the interface library if any sources are added to it.
Bringing that build system target up to date like any other target will then ensure that its generated
sources are created. The end result is both more concise and produces a better result in IDEs:

add_custom_command(OUTPUT someHeader.h COMMAND ...)

# Requires CMake 3.19 or later
add_library(MyHeaderOnly INTERFACE
    ${CMAKE_CURRENT_BINARY_DIR}/someHeader.h
)

Another use of interface libraries is to provide a convenience for linking in a larger set of libraries,
possibly encapsulating logic that selects which libraries should be in the set. For example:
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# Regular library targets
add_library(Algo_Fast ...)
add_library(Algo_Accurate ...)
add_library(Algo_Beta ...)

# Convenience interface library
add_library(Algo_All INTERFACE)
target_link_libraries(Algo_All INTERFACE
    Algo_Fast
    Algo_Accurate
    $<$<BOOL:${ENABLE_ALGO_BETA}>:Algo_Beta>
)

# Other targets link to the interface library
# instead of each of the real libraries
add_executable(MyApp ...)
target_link_libraries(MyApp PRIVATE Algo_All)

The above will only include Algo_Beta in the list of libraries to link if the CMake option variable
ENABLE_ALGO_BETA is true. Other targets then simply link to Algo_All and the conditional linking of
Algo_Beta is handled by the interface library. This is an example of using an interface library to
abstract away details of what is actually going to be linked, defined, etc. so that the targets linking
against them don’t have to implement those details for themselves. This can be exploited to do
things like abstract away completely different library structures on different platforms, switch
library implementations based on some condition (variables, generator expressions, etc.), provide
an old library target name where the library structure has been refactored (e.g. split up into
separate libraries) and so on.

18.2.5. Interface Imported Libraries

add_library(targetName INTERFACE IMPORTED [GLOBAL])

While the use cases for INTERFACE libraries are generally well understood, the addition of the
IMPORTED keyword to yield an INTERFACE IMPORTED library can sometimes be a cause of confusion. This
combination usually arises when an INTERFACE library is exported or installed for use outside the
project. It still serves the purpose of an INTERFACE library when consumed by another project, but
the IMPORTED part is added to indicate the library came from somewhere else. The effect is to restrict
the default visibility of the library to the current directory scope instead of global. With minor
exceptions discussed below, adding the GLOBAL keyword to yield the keyword combination INTERFACE
IMPORTED GLOBAL results in a library with little practical difference to INTERFACE alone.

An INTERFACE IMPORTED library is not required to (and indeed is prohibited from) setting an
IMPORTED_LOCATION. Instead, one can set its IMPORTED_LIBNAME property, if desired. The IMPORTED_LIBNAME
is intended for representing libraries provided by the toolchain or platform, but whose location
isn’t known. The IMPORTED_LIBNAME specifies the name to include on the linker command line. It is not
permitted to specify any path, only a bare library name. Section 16.1, “Require Targets For Linking”
includes an example where its use is required.
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Before CMake 3.11, none of the target_…() commands could be used to set INTERFACE_… properties
on any kind of IMPORTED library. These properties could, however, be set using set_property() or
set_target_properties(). CMake 3.11 removed the restriction on using target_…() commands to set
these properties, so whereas INTERFACE IMPORTED used to be very similar to plain IMPORTED libraries,
with CMake 3.11 they are now much closer to plain INTERFACE libraries in terms of their set of
restrictions.

The following table summarizes what the various keyword combinations support:

Keywords Visibility IMPORTED_
LOCATION

IMPORTED_
LIBNAME

Set
Interface

Properties

Installable

INTERFACE Global Prohibited Prohibited Any method Yes

IMPORTED Local Required Prohibited Restricted* No

IMPORTED GLOBAL Global Required Prohibited Restricted* No

INTERFACE IMPORTED Local Prohibited Permitted Restricted* No

INTERFACE IMPORTED GLOBAL Global Prohibited Permitted Restricted* No

* The various target_…() commands can be used to set INTERFACE_… properties with CMake 3.11 or
later. The set_property() or set_target_properties() commands can be used with any CMake version.

One could be forgiven for thinking that the number of different interface and imported library
combinations is overly complicated and confusing. For most developers, however, imported targets
are generally created for them behind the scenes and they appear to act more or less like regular
targets. Of all the combinations in the above table, only plain INTERFACE targets would typically be
defined by a project directly. Chapter 27, Installing covers much of the motivation and mechanics of
the other combinations.

18.2.6. Library Aliases

The last form of the add_library() command is for defining a library alias:

add_library(aliasName ALIAS otherTarget)

A library alias is mostly analogous to an executable alias. It acts as a read-only way to refer to
another library, but does not create a new build target. Library aliases cannot be installed and they
cannot be defined as an alias of another alias. Before CMake 3.11, a library alias could not be
created for imported targets, but as with other changes made for imported targets in CMake 3.11,
this restriction was relaxed and it has become possible to create aliases for globally visible
imported targets. CMake 3.18 relaxed that restriction further to allow non-global aliases to be
created for non-global imported targets.

There is a particularly common use of library aliases that relates to an important feature
introduced in CMake 3.0. For each library that will be installed or packaged, a common pattern is to
also create a matching library alias with a name of the form projNamespace::targetName. All such
aliases within a project would typically share the same projNamespace. For example:
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# Any sort of real library (SHARED, STATIC, MODULE or possibly OBJECT)
add_library(MyRealThings SHARED src1.cpp ...)
add_library(OtherThings STATIC srcA.cpp ...)

# Aliases to the above with special names
add_library(BagOfBeans::MyRealThings ALIAS MyRealThings)
add_library(BagOfBeans::OtherThings  ALIAS OtherThings)

Within the project itself, other targets would link to either the real targets or the namespaced
targets (both have the same effect). The motivation for the aliases comes from when the project is
installed and something else links to the imported targets created by the installed/packaged config
files. Those config files would define imported libraries with the namespaced names rather than
the bare original names (see Section 27.3, “Installing Exports”). The consuming project would then
link against the namespaced names. For example:

# Pull in imported targets from an installed package
find_package(BagOfBeans REQUIRED)    ①

# Define an executable that links to the imported library from the installed package
add_executable(EatLunch main.cpp ...)
target_link_libraries(EatLunch PRIVATE
    BagOfBeans::MyRealThings
)

① The find_package() command is discussed in Chapter 25, Finding Things.

If at some point the above project wanted to incorporate the BagOfBeans project directly into its own
build instead of finding an installed package, it could do so without changing its linking
relationship because the BagOfBeans project provided an alias for the namespaced name:

# Add BagOfBeans directly to this project, making all of its targets directly available
add_subdirectory(BagOfBeans)

# Same definition of linking relationship still works
add_executable(EatLunch main.cpp ...)
target_link_libraries(EatLunch PRIVATE
    BagOfBeans::MyRealThings
)

Another important aspect of names having a double-colon (::) is that CMake will always treat them
as the name of an alias or imported target. Any attempt to use such a name for a different target
type will result in an error. Perhaps more usefully though, when the target name is used as part of
a target_link_library() call, if CMake doesn’t know of a target by that name, it will issue an error at
generation time. Compare this to an ordinary name which CMake will treat as a library assumed to
be provided by the system if it doesn’t know of a target by that name. This can lead to the error only
becoming apparent much later at build time.
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add_executable(Main main.cpp)
add_library(Bar STATIC ...)
add_library(Foo::Bar ALIAS Bar)

# Typo in name being linked to, CMake will assume a library called "Bart"
# will be provided by the system at link time and won't issue an error.
target_link_libraries(Main PRIVATE Bart)

# Typo in name being linked to, CMake flags an error at generation time
# because a namespaced name must be a CMake target.
target_link_libraries(Main PRIVATE Foo::Bart)

It is therefore more robust to link to namespaced names where they are available. Projects are
strongly encouraged to define namespaced aliases at least for all targets that are intended to be
installed/packaged. Such namespaced aliases can even be used within the project itself, not just by
other projects consuming it as a pre-built package or child project. Section 27.3, “Installing Exports”
also discusses how to change the name used for the targetName part of a namespaced name, which
can allow an original target like MyProj_Algo to have a namespaced name like MyProj::Algo instead of
the more verbose and repetitive MyProj::MyProj_Algo.

18.3. Promoting Imported Targets
When defined without the GLOBAL keyword, imported targets are only visible in the directory scope
in which they are created or below. This behavior stems from their main intended use, which is as
part of a Find module or package config file. Anything defined by a Find module or package config
file is generally expected to have local visibility, so they shouldn’t generally add globally visible
targets. This allows different parts of a project hierarchy to pull in the same packages and modules
with different settings, yet not interfere with each other.

Nevertheless, there are situations where imported targets need to be created with global visibility,
such as to ensure that the same version or instance of a particular package is used consistently
throughout the whole project. Adding the GLOBAL keyword when creating the imported library
achieves this, but the project may not be in control of the command that does the creation. To
provide projects with a way to address this situation, CMake 3.11 introduced the ability to promote
an imported target to global visibility by setting the target’s IMPORTED_GLOBAL property to true. Note
that this is a one-way transition, it is not possible to demote a global target back to local visibility.

# Imported library created with local visibility. This could be in an external file
# brought in by an include() call rather than in the same file as the lines further below.
add_library(BuiltElsewhere STATIC IMPORTED)
set_target_properties(BuiltElsewhere PROPERTIES
    IMPORTED_LOCATION /path/to/libSomething.a
)

# Promote the imported target to global visibility
set_target_properties(BuiltElsewhere PROPERTIES
    IMPORTED_GLOBAL TRUE
)
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Also note that an imported target can only be promoted if it is defined in exactly the same scope as
the promotion. An imported target defined in a parent or child scope cannot be promoted. The
include() command does not introduce a new directory scope and neither does a find_package() call,
so imported targets defined by files brought into the build that way can be promoted. In fact, this is
the main use case for which the ability to promote imported targets was created.

Promoting an imported target does not promote any aliases already pointing to that target. An alias
to an imported target always has the visibility that the imported target had when the alias was
created. Aliases do not support promotion to global visibility.

add_library(Original STATIC IMPORTED)

# Local alias (requires CMake 3.18 or later)
add_library(LocalAlias ALIAS Original)

# Promote imported target to global visibility,
# but LocalAlias remains with local visibility
set_target_properties(Original PROPERTIES
    IMPORTED_GLOBAL TRUE
)

# Global alias (requires CMake 3.11 or later)
add_library(GlobalAlias ALIAS Original)

In practice, aliases to imported targets should rarely be needed. INTERFACE IMPORTED libraries can
largely achieve the same thing and they work for a wider range of CMake versions. INTERFACE
IMPORTED libraries don’t support reading the underlying properties of the real library target, but they
do carry all the linking and transitive properties.

add_library(Original STATIC IMPORTED)
add_library(OtherName INTERFACE IMPORTED Original)
target_link_libraries(OtherName INTERFACE Original)

An added advantage of INTERFACE IMPORTED libraries is that they can be promoted to global visibility
if required, whereas aliases cannot.

18.4. Recommended Practices
Version 3.0 of CMake brought with it a significant change to the recommended way projects should
manage dependencies and requirements between targets. Instead of specifying most things through
variables which then had to be managed manually by the project, or by directory level commands
that would apply to all targets in a directory and below without much discrimination, each target
gained the ability to carry all the necessary information in its own properties. This shift in focus to
a target-centric model has also led to a family of pseudo target types that facilitate expressing inter-
target relationships more flexibly and accurately.

Developers should become familiar with interface libraries in particular. They open up a range of
techniques for capturing and expressing relationships without needing to create or refer to a
physical file. They can be useful for representing the details of header-only libraries, collections of
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resources and many other scenarios and should be strongly preferred over trying to achieve the
same result with variables or directory-level commands alone.

Imported targets are encountered frequently once projects start using externally built packages or
they refer to tools from the file system that are found through Find modules. Developers should be
comfortable using imported targets, but understanding all the ins and outs of how they are defined
is not usually necessary unless writing Find modules or manually creating config files for a
package. Some specific cases are discussed in Chapter 27, Installing where developers may come up
against certain limitations of imported targets, but such scenarios are not very common.

A number of older CMake modules used to provide only variables to refer to imported entities.
Starting with CMake 3.0, these modules are progressively being updated to also provide imported
targets where appropriate. For those situations where a project needs to refer to an external tool or
library, prefer to do so through an imported target if one is available. These typically do a better job
of abstracting away things like platform differences, option-dependent tool selection and so on, but
more importantly the usage requirements are then robustly handled by CMake. If there is a choice
between using an imported library or a variable to refer to the same thing, prefer to use the
imported library wherever possible.

Prefer defining static libraries over object libraries. Static libraries are simpler, have more
complete and robust support from earlier CMake versions and they are well understood by most
developers. Object libraries have their uses, but they are also less flexible than static libraries. In
particular, object libraries cannot be linked at all prior to CMake 3.12 and not robustly before
CMake 3.14. Without such linking, they don’t support transitive dependencies, which forces projects
to manually apply the dependencies themselves. This increases the opportunity for errors and
omissions. It also reduces the encapsulation that a library target would normally provide. Even the
name itself can cause some confusion among developers, since an object library is not a true
library, but rather just a set of uncombined object files, yet developers still sometimes expect it to
behave like a real library. The changes with CMake 3.12 blur that distinction, but the remaining
differences still leave room for unexpected results, as evidenced by the number of queries relating
to object libraries and their transitive behavior on the CMake mailing list and issue tracker.

Avoid using target names that are too generic. Globally visible target names must be unique and
names may clash with targets from other projects when used in a larger hierarchical arrangement.
In addition, consider adding an alias namespace::… target for each target that is not private to the
project (i.e. every target that may end up being installed or packaged). This allows consuming
projects to link to the namespaced target name instead of the real target name, which enables a
consuming project to switch between building the child project themselves or using a pre-built
installed project relatively easily. While this may initially seem like extra work for not much gain, it
is emerging as an expected standard practice among the CMake community, especially for those
projects that take a non-trivial amount of time to build. This pattern is discussed further in Section
27.3, “Installing Exports” and Section 31.1, “Use Project-specific Names”.

Inevitably, at some point it may become desirable to rename or refactor a library, but there may be
external projects which expect the existing library targets to be available to link to. In these
situations, use an interface target to provide an old name for a renamed target so that those
external projects can continue to build and be updated at their convenience. When splitting up a
library, define an interface library with the old target name and have it define link dependencies to
the new split out libraries. For example:
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# Old library previously defined like this:
add_library(DeepCompute SHARED ...)

Now change DeepCompute to an INTERFACE library that links to the new refactored libraries to preserve
backward compatibility:

# Now refactored into two separate libraries
add_library(ComputeAlgoA SHARED ...)
add_library(ComputeAlgoB SHARED ...)

# Forwarding interface library keeps old projects working
add_library(DeepCompute INTERFACE)
target_link_libraries(DeepCompute INTERFACE
    ComputeAlgoA
    ComputeAlgoB
)
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Chapter 19. Custom Tasks
No build tool can ever hope to implement every feature that will ever be needed by any given
project. At some point, developers will need to carry out a task that falls outside the directly
supported functionality. For example, a special tool may need to be run to produce source files or to
post-process a target after it has been built. Files may need to be copied, verified or a hash value
computed. Build artifacts may need to be archived or a notification service contacted. These and
other tasks don’t always fit into a predictable pattern that allows them to be easily provided as a
general build system capability.

CMake supports such tasks through custom commands and custom targets. These allow any
command or set of commands to be executed at build time to perform whatever arbitrary tasks a
project requires. CMake also supports executing tasks at configure time, enabling various
techniques that rely on tasks being completed before the build stage or even before processing later
parts of the current CMakeLists.txt file.

19.1. Custom Targets
Library and executable targets are not the only kinds of targets CMake supports. Projects can also
define their own custom targets that perform arbitrary tasks defined as a sequence of commands to
be executed at build time. These custom targets are defined using the add_custom_target() command:

add_custom_target(targetName
    [ALL]
    [command1 [args1...]]
    [COMMAND command2 [args2...]]
    [DEPENDS depends1...]
    [BYPRODUCTS [files...]]
    [WORKING_DIRECTORY dir]
    [COMMENT comment]
    [VERBATIM]
    [USES_TERMINAL]      # Requires CMake 3.2 or later
    [JOB_POOL poolName]  # Requires CMake 3.15 or later
    [SOURCES source1 [source2...]]
)

A new target with the specified targetName will be available to the build and it will always be
considered out of date. The ALL option makes the all target depend on this new custom target (the
various generators name the all target slightly differently, but it is generally something like all, ALL
or similar). If the ALL option is not provided, then the target is only built if it is explicitly requested
or if building some other target that depends on it.

When the custom target is built, the specified command(s) will be executed in the order given, with
each command able to have any number of arguments. For improved readability, arguments can be
split across multiple lines. The first command does not need to have the COMMAND keyword preceding
it, but for clarity it is recommended to always include the COMMAND keyword even for the first
command. This is especially true when specifying multiple commands, since it makes each
command use a consistent form.
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Commands can be defined to do anything that could be performed on the host platform. Typical
commands involve running a script or a system-provided executable, but they can also run
executable targets created as part of the build. If another executable target name is listed as the
command to execute, CMake will automatically substitute the built location of that other target’s
executable. This works regardless of the platform or CMake generator being used, thereby freeing
the project from having to work out the various platform and generator differences that lead to a
range of different output directory structures, file names, etc. If another target needs to be used as
an argument to one of the commands, CMake will not automatically perform the same substitution,
but it is trivial to obtain an equivalent substitution with the TARGET_FILE generator expression.
Projects should take advantage of these features to let CMake provide locations of targets rather
than hard-coding paths manually, as this allows the project to robustly support all platforms and
generator types with minimal effort. The following example shows how to define a custom target
which uses two other targets as part of the command and argument list:

add_executable(Hasher hasher.cpp)
add_library(MyLib api.cpp)

add_custom_target(CreateHash
    COMMAND Hasher $<TARGET_FILE:MyLib>
)

When a target is used as the command to execute, CMake automatically creates a dependency on
that executable target to ensure it is built before the custom target. Similarly, if a target is referred
to in one of the following generator expressions anywhere in the command or its arguments, a
dependency will also be automatically created on that target:

• $<TARGET_FILE:…>

• $<TARGET_LINKER_FILE:…>

• $<TARGET_SONAME_FILE:…>

• $<TARGET_PDB_FILE:…>

For CMake 3.18 and earlier, other $<TARGET_xxx:…> generator expressions will also lead to a
dependency being added automatically. With CMake 3.19 or later, the behavior depends on policy
CMP0112. See the CMake documentation of that policy for further details. To create a dependency
on a target not mentioned in such generator expressions, use the add_dependencies() command to
define that relationship.

If a dependency exists on a file rather than a target, the DEPENDS keyword can be used to specify that
relationship. Note that DEPENDS should not be used for target dependencies, only file dependencies.
The DEPENDS keyword is especially useful when the file being listed is generated by some other
custom command (see Section 19.3, “Commands That Generate Files” further below), where CMake
will set up the necessary dependencies to ensure the other custom commands execute before this
custom target’s commands. Always use an absolute path for DEPENDS, since relative paths can give
unexpected results due to a legacy feature that allows path matching against multiple locations.

When multiple commands are provided, each one will be executed in the order listed. A project
should not assume any particular shell behavior, however, as each command might run in its own
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separate shell or without any shell environment at all. Custom commands should be defined as
though they were being executed in isolation and without any shell features such as redirection,
variable substitution, etc., with only command order being enforced. While some of these features
may work on some platforms, they are not universally supported. Also, since no particular shell
behavior is guaranteed, escaping within the executable names or their arguments may be handled
differently on different platforms. To help reduce these differences, the VERBATIM option can be used
to ensure that the only escaping done is that by CMake itself when parsing the CMakeLists.txt file.
No further escaping is performed by the platform, so the developer can have confidence in how the
command is ultimately constructed for execution. If there is any chance of escaping being relevant,
use of the VERBATIM keyword is recommended.

The directory in which the commands are executed is the current binary directory by default. This
can be changed with the WORKING_DIRECTORY option, which can be an absolute path or a relative path,
the latter being relative to the current binary directory. This means that using
${CMAKE_CURRENT_BINARY_DIR} as part of the working directory should not be necessary, since a
relative path already implies it.

The BYPRODUCTS option can be used to list other files that are created as part of running the
command(s). If the Ninja generator is being used, this option is required if another target depends
on any of the files created as a by-product of running this set of custom commands. Files listed as
BYPRODUCTS are marked as GENERATED (for all generator types, not just Ninja) which ensures the build
tool knows how to correctly handle dependency details related to the by-product files. For cases
where a custom target generates files as a by-product, consider whether add_custom_command() would
be a more appropriate way to define the commands and the things it outputs (see Section 19.3,
“Commands That Generate Files”).

With CMake 3.20 or later, a restricted set of generator expressions is supported for BYPRODUCTS. Any
expression that refers to a target (e.g. $<TARGET_FILE:…>) may not be used.

If the commands produce no output on the console, it can sometimes be useful to specify a short
message with the COMMENT option. The specified message is logged just before running the
commands, so if the commands silently fail for some reason, the comment can be a useful marker
to indicate where the build failed. Note, however, that for some generators, the comment will not
be shown, so this cannot be considered a reliable mechanism, but it may still be useful for those
generators that do support it. A universally supported alternative is presented in Section 19.5,
“Platform Independent Commands” below.

USES_TERMINAL is another console-related option which instructs CMake to give the command direct
access to the terminal, if possible. When using the Ninja generator, this has the effect of placing the
command in the console pool. This may lead to better output buffering behavior in some situations,
such as helping IDE environments capture and present the build output in a more timely manner. It
can also be useful if interactive input is required for non-IDE builds. The USES_TERMINAL option is
supported for CMake 3.2 and later.

To provide even more control over Ninja job pools, CMake 3.15 added support for the JOB_POOL
option. Whereas USES_TERMINAL assigns the task to the console job pool, the JOB_POOL option allows the
project to assign the task to any custom job pool. USES_TERMINAL and JOB_POOL cannot both be given.
See Section 35.3.2, “Ninja Generators” for more on using job pools with Ninja.
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The SOURCES option allows arbitrary files to be listed which will then be associated with the custom
target. These files might be used by the commands or they could just be some additional files which
are loosely associated with the target, such as documentation, etc. Listing a file with SOURCES has no
effect on the build or the dependency relationships, it is purely for the benefit of associating those
files with the target so that IDE projects can show them in an appropriate context. This feature is
sometimes exploited by defining a dummy custom target and listing sources with no commands
just to make them show up in IDE projects. While this works, it does have the disadvantage of
creating a build target with no real meaning. Many projects deem this to be an acceptable trade-off,
while some developers consider this undesirable or even an anti-pattern.

19.2. Adding Build Steps To An Existing Target
Custom commands sometimes do not require a new target to be defined, they may instead specify
additional steps to be performed when building an existing target. This is where
add_custom_command() should be used with the TARGET keyword as follows:

add_custom_command(TARGET targetName buildStage
    COMMAND command1 [args1...]
    [COMMAND command2 [args2...]]
    [WORKING_DIRECTORY dir]
    [BYPRODUCTS files...]
    [COMMENT comment]
    [VERBATIM]
    [USES_TERMINAL]      # Requires CMake 3.2 or later
    [JOB_POOL poolName]  # Requires CMake 3.15 or later
)

Most of the options are very similar to those for add_custom_target(), but instead of defining a new
target, the above form attaches the commands to an existing target. That existing target can be an
executable or library target, or it can even be a custom target (with some restrictions). The
commands will be executed as part of building targetName, with the buildStage argument required to
be one of the following:

PRE_BUILD

The commands should be run before any other rules for the specified target. Be aware that only
the Visual Studio generator supports this option and only for Visual Studio 7 or later. All other
CMake generators will treat this as PRE_LINK instead. Given the limited support for this option,
projects should aim for a structure which does not require a PRE_BUILD custom command so as to
avoid command ordering differences between generators.

PRE_LINK

The commands will be run after sources are compiled, but before they are linked. For static
library targets, the commands will run before the library archiver tool. For custom targets,
PRE_LINK is not supported.

POST_BUILD

The commands will be run after all other rules for the specified target. All target types and
generators support this option, making it the preferred build stage whenever there is a choice.
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POST_BUILD tasks are relatively common, but PRE_LINK and PRE_BUILD are rarely needed since they can
usually be avoided by using the OUTPUT form of add_custom_command() instead (see the next section).

Multiple calls to add_custom_command() can be made to append multiple sets of custom commands to a
particular target. This can be useful, for example, to have some commands run from one working
directory and other commands run from somewhere else.

add_executable(MyExe main.cpp)

add_custom_command(TARGET MyExe POST_BUILD
    COMMAND script1 $<TARGET_FILE:MyExe>
)

# Additional command which will run after the above from a different directory
add_custom_command(TARGET MyExe POST_BUILD
    COMMAND writeHash $<TARGET_FILE:MyExe>
    BYPRODUCTS ${CMAKE_BINARY_DIR}/verify/MyExe.md5
    WORKING_DIRECTORY ${CMAKE_BINARY_DIR}/verify
)

19.3. Commands That Generate Files
Defining commands as additional build steps for a target covers many common use cases.
Sometimes, however, a project needs to create one or more files by running a command or series of
commands and the generation of that file doesn’t really belong to any existing target. This is where
the OUTPUT form of add_custom_command() can be used. It implements all of the same options as the
TARGET form as well as some additional options related to dependency handling and appending to a
previous OUTPUT command set.

add_custom_command(OUTPUT output1 [output2...]
    COMMAND command1 [args1...]
    [COMMAND command2 [args2...]]
    [WORKING_DIRECTORY dir]
    [BYPRODUCTS files...]
    [COMMENT comment]
    [VERBATIM]
    [USES_TERMINAL]      # Requires CMake 3.2 or later
    [JOB_POOL poolName]  # Requires CMake 3.15 or later
    [APPEND]
    [DEPENDS [depends1...]
    [MAIN_DEPENDENCY depend]
    [IMPLICIT_DEPENDS <lang1> depend1 [<lang2> depend2...]]
    [DEPFILE depfile]
)

Instead of specifying a target and pre/post build stage, this form requires one or more output file
names to be given after the OUTPUT keyword. CMake will then interpret the commands as a recipe
for generating the named output files. If the output files are specified with no path or with a
relative path, they are relative to the current binary directory. With CMake 3.20 or later, generator
expressions that do not refer to a target can be used.
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On its own, this form won’t result in the output files being built, since no target is defined. If,
however, some other target defined in the same directory scope depends on any of the output files,
CMake will automatically create dependency relationships that ensure the output files are
generated before the target that needs them. A common error is to try to make a target defined in a
different directory scope depend on the output of an add_custom_command(), but this is not supported.
Furthermore, only one target should depend on any of the output files or else parallel builds may
try to invoke the custom command multiple times simultaneously to satisfy the dependencies of
multiple targets.

The target that depends on the output of the add_custom_command() can be an ordinary executable, a
library target or it can even be a custom target. In fact, it is quite common for a custom target to be
defined simply to provide a way for the developer to trigger the custom command. The following
variation on the hashing example of the preceding section demonstrates the technique:

add_executable(MyExe main.cpp)

# Output file with relative path, generated in the build directory
add_custom_command(OUTPUT MyExe.md5
    COMMAND writeHash $<TARGET_FILE:MyExe>
)

# Absolute path needed for DEPENDS, otherwise relative to source directory
add_custom_target(ComputeHash
    DEPENDS ${CMAKE_CURRENT_BINARY_DIR}/MyExe.md5
)

When defined this way, building the MyExe target will not result in running the hashing step, unlike
the earlier example which added the hashing command as a POST_BUILD step of the MyExe target.
Instead, hashing will only be performed if the developer explicitly requests it as a build target. This
allows optional steps to be defined and invoked when needed instead of always being run, which
can be quite useful if the additional steps are time consuming or won’t always be relevant.

Of course, add_custom_command() can also be used to generate files consumed by existing targets, such
as generating source files. In the following example, an executable built by the project is used to
generate a source file which is then compiled as part of another executable.

add_executable(Generator generator.cpp)

add_custom_command(OUTPUT onTheFly.cpp
    COMMAND Generator
)

add_executable(MyExe ${CMAKE_CURRENT_BINARY_DIR}/onTheFly.cpp)

CMake automatically recognizes that MyExe needs the source file generated by the custom command,
which in turn requires the Generator executable. Asking for the MyExe target to be built will result in
the Generator and the generated source file being built before building MyExe. Note, however, that
this dependency relationship has limitations. Consider the following scenario:
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• The onTheFly.cpp file initially does not exist.

• Build the MyExe target, which results in the following sequence:

◦ The Generator target is brought up to date.

◦ The custom command is executed to create onTheFly.cpp.

◦ The MyExe target is built.

• Now modify the generator.cpp file.

• Build the MyExe target again, which this time results in the following sequence:

◦ The Generator target is brought up to date. This will cause the Generator executable to be
rebuilt because its source file was modified.

◦ The custom command is NOT executed, since onTheFly.cpp already exists.

◦ The MyExe target is NOT rebuilt because its source file remains unchanged.

One might intuitively expect that if the Generator target is rebuilt, then the custom command should
also be re-run. The dependency CMake automatically creates does not enforce this, it creates a
weaker dependency which does ensure Generator is brought up to date but the custom command is
only run if the output file is missing altogether. In order to force the custom command to be re-run
if the Generator target is rebuilt, an explicit dependency has to be specified rather than relying on
the dependency CMake automatically creates.

Dependencies can be manually specified with the DEPENDS option. Items listed with DEPENDS can be
CMake targets or files (compare this with the DEPENDS option for add_custom_target() which can only
list files). If a target is listed, it will be brought up to date any time the custom command’s output
files are required to be brought up to date. Similarly, if a listed file is modified, the custom
command will be executed if anything requires any of the custom command’s output files.
Furthermore, if any listed file is itself an output file of another custom command in the same
directory scope, that other custom command will be executed first. As for add_custom_target(),
always use an absolute path if listing a file for DEPENDS to avoid ambiguous legacy behavior.

While CMake’s automatic dependencies may seem convenient, in practice the project will still
typically need to list out all the required targets and files in a DEPENDS section to ensure that the full
dependency relationships are adequately specified. It can be easy to omit the DEPENDS section by
mistake, since the first build will run the custom command to create the missing output files and
the build will appear to be behaving correctly. Subsequent builds will not re-run the custom
command unless the output file is removed, even if any of the automatically detected dependency
targets are rebuilt. This can be easy to miss, often going undetected for a long time in complex
projects until a developer encounters the situation and tries to work out why something isn’t being
rebuilt when it was expected to be. Therefore, developers should expect that a DEPENDS section will
typically be needed unless the custom command doesn’t require anything created by the build or
any of the project’s source files.

Another common error is to not create a dependency on a file that is needed by the custom
command, but which isn’t listed as part of the command line to be executed. Such files need to
appear in a DEPENDS section for the build to be considered robust.
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There are a few more dependency-related options supported by add_custom_command(). The
MAIN_DEPENDENCY option is intended to identify a source file which should be considered the main
dependency of the custom command. It has mostly the same effect as DEPENDS for the listed file, but
some generators may apply additional logic such as where to place the custom command in an IDE
project. An important distinction to note is that if a source file is listed as a MAIN_DEPENDENCY, then the
custom command becomes a replacement for how that source file would normally be compiled.
This can lead to some unexpected results. Consider the following example:

add_custom_command(OUTPUT transformed.cpp
    COMMAND transform
            ${CMAKE_CURRENT_SOURCE_DIR}/original.cpp
            transformed.cpp
    MAIN_DEPENDENCY
            ${CMAKE_CURRENT_SOURCE_DIR}/original.cpp
)
add_executable(Original    original.cpp)
add_executable(Transformed transformed.cpp)

The above would lead to a linker error for the Original target because original.cpp would not be
compiled to an object file, so there would be no object files at all (and therefore no main() function).
Instead, the build tool would treat original.cpp as an input file used to create transformed.cpp. The
problem can be fixed by using DEPENDS instead of MAIN_DEPENDENCY, as this would preserve the same
dependency relationship, but it would not result in the default compilation rule for the original.cpp
source file being replaced.

The other two dependency-related options, IMPLICIT_DEPENDS and DEPFILE, are not universally
supported by all project generators. IMPLICIT_DEPENDS directs CMake to invoke a C or C++ scanner to
determine dependencies of the listed files. It is ignored for all but Makefile generators, so projects
should generally avoid it if other alternatives are available for expressing the necessary
dependencies. DEPFILE can be used to provide a *.d dependency file (which the project is responsible
for generating), but up until CMake 3.19, only the Ninja generator supported it. From CMake 3.20,
DEPFILE can also be used with Makefile generators, while CMake 3.21 added support for the Xcode
and Visual Studio generators. While depfiles have their uses, they are more complex to work with
and they shouldn’t need to be manually managed for most typical projects. IMPLICIT_DEPENDS and
DEPFILE cannot be used together.

CMake 3.20 also introduced another change related to DEPFILE which may affect projects that were
using that functionality with earlier CMake versions. CMake 3.20 added policy CMP0116 which, unlike
most policies, can result in warnings even where the project is not invoking or relying on the OLD
behavior. The warning draws attention to the changed handling of relative paths when DEPFILE is
used with a call to add_custom_command() anywhere other than in the top level source directory.
CMake cannot reliably check the contents of a depfile, since it can be and usually is updated at
build time. Therefore, it conservatively issues a warning unless the project has been updated to
ensure that policy CMP0116 is set to NEW. Projects that were using DEPFILE with CMake 3.19 or earlier
should be checked to ensure that absolute paths are used in accordance with the CMP0116 policy
requirements. They can then be updated to set the policy to avoid the warning. This can be done
globally by adjusting the version range passed to the cmake_minimum_required() call, or locally around
the call in question.
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The following example demonstrates how to adjust the policy setting locally without affecting the
minimum CMake version requirement (see Chapter 12, Policies for further details):

# Give ourselves a local policy set we can safely modify
cmake_policy(PUSH)

# Use the NEW policy setting only if it is available
if(POLICY CMP0116)
    cmake_policy(SET CMP0116 NEW)
endif()

# We guarantee that depfile.d will not use relative paths
# for any dependency it specifies
add_custom_command(OUTPUT ...
    DEPFILE /some/absolute/path/to/depfile.d
    ...
)

# Restore the original policy settings
cmake_policy(POP)

The OUTPUT and TARGET forms also have slightly different behavior when it comes to appending more
dependencies or commands to the same output file or target. For the OUTPUT form, the APPEND
keyword must be specified and the first OUTPUT file listed must be the same for the first and
subsequent calls to add_custom_command(). Only COMMAND and DEPENDS can be used for the second and
subsequent calls for the same output file. The other options, such as MAIN_DEPENDENCY,
WORKING_DIRECTORY and COMMENT, are ignored when the APPEND keyword is present. In contrast, for the
TARGET form, no APPEND keyword is necessary for second and subsequent calls to add_custom_command()
for the same target. The COMMENT and WORKING_DIRECTORY options can also be specified for each call and
they will take effect for the commands being added in that call.

19.4. Configure Time Tasks
Both add_custom_target() and add_custom_command() define commands to be executed during the build
stage. This is typically when custom commands should be run, but there are some situations where
a custom task needs to be performed during the configure stage instead. Some examples of when
this is needed include:

• Executing external commands to obtain information to be used during configuration. The
command output is often captured directly into CMake variables for further processing.

• Writing or touching files which need to be updated any time CMake is re-run.

• Generation of CMakeLists.txt or other files which need to be included or processed as part of the
current configure step.

CMake provides the execute_process() command for running tasks like these during the configure
stage:
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execute_process(
    COMMAND command1 [args1...]
    [COMMAND command2 [args2...]]
    [WORKING_DIRECTORY directory]
    [RESULT_VARIABLE resultVar]
    [RESULTS_VARIABLE resultsVar]
    [OUTPUT_VARIABLE outputVar]
    [ERROR_VARIABLE errorVar]
    [OUTPUT_STRIP_TRAILING_WHITESPACE]
    [ERROR_STRIP_TRAILING_WHITESPACE]
    [INPUT_FILE inFile]
    [OUTPUT_FILE outFile]
    [ERROR_FILE errorFile]
    [OUTPUT_QUIET]
    [ERROR_QUIET]
    [TIMEOUT seconds]

    # CMake 3.15 or later required:
    [COMMAND_ECHO STDOUT | STDERR | NONE]

    # CMake 3.18 or later required:
    [ECHO_OUTPUT_VARIABLE]
    [ECHO_ERROR_VARIABLE]

    # CMake 3.19 or later required:
    [COMMAND_ERROR_IS_FATAL ANY | LAST]
)

Similar to add_custom_command() and add_custom_target(), one or more COMMAND sections specify the
tasks to be executed and the WORKING_DIRECTORY option can be used to control where those commands
are run. The commands are passed to the operating system for execution as is with no intermediate
shell environment. Therefore, features like input/output redirection and environment variables are
not supported. The commands run immediately.

If multiple commands are given, they are executed in order, but instead of being fully independent
from each other, the standard output from one command is piped to the input of the next. In the
absence of any other options, the output of the last command is sent to the output of the CMake
process itself but the standard error of every command is sent to the standard error stream of the
CMake process.

The standard output and standard error streams can be captured and stored in variables instead of
being sent to the default pipes. The output of the last command in the set of commands can be
captured by specifying the name of a variable to store it in with the OUTPUT_VARIABLE option.
Similarly, the standard error streams of all commands can be stored in the variable named by the
ERROR_VARIABLE option. Passing the same variable name to both of these options will result in the
standard output and standard error being merged just as they would be if outputting to a terminal,
with the merged result being stored in the named variable. With CMake 3.18 or later, the
ECHO_OUTPUT_VARIABLE and ECHO_ERROR_VARIABLE options can be added to echo the output and error
streams while also capturing them to variables. This can be useful for long-running commands
where seeing progress in the output helps to confirm that the command has not hung.
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If the OUTPUT_STRIP_TRAILING_WHITESPACE option is present, any trailing whitespace will be omitted
from the content stored in the output variable. The ERROR_STRIP_TRAILING_WHITESPACE option does a
similar thing for the content stored in the error variable. If using the output or error variables’
contents for any sort of string comparison, a common problem is failing to account for trailing
whitespace, so its removal is often desirable.

Instead of capturing the output and error streams in variables, they can be sent to files. The
OUTPUT_FILE and ERROR_FILE options can be used to specify the names of files to send the streams to.
Just like the variable-focused options, specifying the same file name for both results in a merged
stream. In addition, a file can be specified for the input stream to the first command with the
INPUT_FILE option. Note, however, that the OUTPUT_STRIP_TRAILING_WHITESPACE and
ERROR_STRIP_TRAILING_WHITESPACE options have no effect on content sent to files. There is also no
ability to echo the output or error streams when capturing to files.

The same stream cannot be captured in a variable and sent to a file at the same time. It is possible,
however, to send different streams to different places, such as the output stream to a variable and
the error stream to a file or vice versa. It is also possible to silently discard the content of a stream
altogether with the OUTPUT_QUIET and ERROR_QUIET options. These options can be useful if just success
or failure of a command is of interest.

Success or failure of the set of commands can be captured using the RESULT_VARIABLE option. The
result of running the commands will be stored in the named variable as either an integer return
code of the last command or a string containing some kind of error message. The if() command
conveniently treats both non-empty error strings and integer values other than 0 as boolean true
(unless a project is unlucky enough to have an error string that satisfies one of the special cases, see
Section 6.1.1, “Basic Expressions”). Therefore, checking for the success of a call to execute_process()
is generally relatively simple:

execute_process(
    COMMAND runSomeScript
    RESULT_VARIABLE result
)
if(result)
    message(FATAL_ERROR "runSomeScript failed: ${result}")
endif()

From CMake 3.10, if the result of each individual command is required rather than just the last one,
the RESULTS_VARIABLE option can be used instead. This option stores the result of each command in
the variable named by resultsVar as a list.

With CMake 3.19 or later, the COMMAND_ERROR_IS_FATAL option can be used as a more concise way of
halting with an error if the command fails. It avoids the need to receive the result in a variable and
perform an explicit check, since the check is performed by the execute_process() command directly.
The option must be followed by either ANY or LAST. When more than one COMMAND is given, specifying
ANY will cause the execute_process() command to fail with a fatal error if any of the commands fail.
If LAST is given instead, then execute_process() only fails if the last COMMAND fails. If only one COMMAND is
given, then ANY and LAST are equivalent.
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# Automatically halt with an error if either command fails
execute_process(
    COMMAND runSomeScript
    COMMAND runSomethingElse
    COMMAND_ERROR_IS_FATAL ANY
)

The TIMEOUT option can be used to handle commands which may run longer than expected or which
might possibly never complete. This ensures the configure step doesn’t block indefinitely and
allows an unexpectedly long configure step to be treated as an error. Note, however, that the
TIMEOUT option on its own won’t cause CMake to halt and report an error. It is still necessary to
either check the result using RESULT_VARIABLE and an if() test, or provide the COMMAND_ERROR_IS_FATAL
option. Note that in the initial CMake 3.19.0 release, if a command timed out, it was not caught and
treated as a fatal error by the COMMAND_ERROR_IS_FATAL option. That was fixed in CMake 3.19.2, so
consider this to be the minimum CMake version if using this option. If using the RESULT_VARIABLE
method, the result variable will hold an error string indicating the command was terminated due to
timeout if it runs for too long, so printing it in the error message is useful.

CMake 3.15 added support for the COMMAND_ECHO option, which must be followed by one of STDOUT,
STDERR or NONE. This controls where to echo each COMMAND (the command line itself, not the command’s
output), or in the case of NONE, prevents commands from being echoed. If the COMMAND_ECHO option is
not present, the default behavior is determined by the CMAKE_EXECUTE_PROCESS_COMMAND_ECHO variable,
which supports the same three values. If that variable isn’t defined either or the CMake version is
3.14 or earlier, commands are not echoed.

When CMake executes the commands, the child process largely inherits the same environment as
the main process. An important exception to this exists with CMake 3.23 and earlier. The first time
CMake is run on a project, the CC and CXX environment variables of the child process are explicitly
set to the C and C++ compilers being used by the main build (if the main project has enabled the C
and C++ languages). For subsequent CMake runs, the CC and CXX environment variables are not
substituted in this way. This can lead to unexpected results if the commands perform actions that
rely on the CC and CXX environment variables having the same values every time execute_process() is
called. This behavior was undocumented before CMake 3.24, but it has been present since early
versions of CMake, even as far back as the now deprecated exec_program() command which
execute_process() replaced. The behavior was added to facilitate child processes being able to
configure and run sub-builds with the same compilers as the main project. In some cases, however,
the child process might not want the compiler to be preserved, such as when the main build is
cross-compiling, but the child process should use the default host compilers. CMake 3.24 introduced
policy CMP0132 which avoids the above behavior when it is set to NEW (see Section 12.1, “Policy
Control”). When using CMake 3.23 or earlier, projects can set an undocumented variable
CMAKE_GENERATOR_NO_COMPILER_ENV to a boolean true value and the effect will be the same as setting
CMP0132 to NEW.

19.5. Platform Independent Commands
The add_custom_command(), add_custom_target() and execute_process() commands provide projects with
a great deal of freedom. Any task not already directly supported by CMake can be implemented
using commands provided by the host operating system instead. These custom commands are
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inherently platform specific, which works against one of the main reasons many projects use
CMake in the first place, i.e. to abstract away platform differences or to at least support a range of
platforms with minimal effort.

A large proportion of custom tasks are related to file system manipulation. Creating, deleting,
renaming or moving files and directories form the bulk of these tasks, but the commands to do so
vary between operating systems. As a result, projects often end up using if-else conditions to
define the different platforms’ versions of the same command, or worse, they only bother to
implement the commands for some platforms. Many developers are not aware that CMake provides
a command mode which abstracts away many of these platform specific tasks:

cmake -E cmd [args...]

The full set of supported commands can be listed using cmake -E help, but some of the more
commonly used ones include copy, copy_if_different, echo, env, make_directory, md5sum, rm and tar.

Consider the example of a custom task to remove a particular directory and all its contents:

set(discardDir "${CMAKE_CURRENT_BINARY_DIR}/private")

# Naive platform specific implementation (not robust)
if(WIN32)
    add_custom_target(MyCleanup COMMAND rmdir /S /Q "${discardDir}")
elseif(UNIX)
    add_custom_target(MyCleanup COMMAND rm -rf "${discardDir}")
else()
    message(FATAL_ERROR "Unsupported platform")
endif()

# Platform independent equivalent
add_custom_target(MyCleanup COMMAND "${CMAKE_COMMAND}" -E rm -R "${discardDir}")

The platform-specific implementation shows how projects often try to implement this scenario, but
the if-else conditions are testing the target platform rather than the host platform. In a cross
compiling scenario, this may result in the wrong command being used. The platform-independent
version has no such weakness. It always selects the right command for the host platform.

The example also shows how to invoke the cmake command correctly. The CMAKE_COMMAND variable is
populated by CMake and it contains the full path to the cmake executable being used in the main
build. Using CMAKE_COMMAND in this way ensures that the same version of CMake is also used for the
custom command. The cmake executable does not have to be on the current PATH and if multiple
versions of CMake are installed, the correct version is always used, regardless of which one might
otherwise have been selected based on the user’s PATH. It also ensures the build uses the same
CMake version during the build stage as was used in the configure stage, even if the user’s PATH
environment variable changes.
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Earlier in this chapter, it was noted that the COMMENT option for add_custom_target() and
add_custom_command() isn’t always reliable. Instead of using COMMENT, projects can use the -E echo
command to intersperse comments anywhere in a sequence of custom commands:

set(discardDir "${CMAKE_CURRENT_BINARY_DIR}/private")

add_custom_target(MyCleanup
    COMMAND ${CMAKE_COMMAND} -E echo "Removing ${discardDir}"
    COMMAND ${CMAKE_COMMAND} -E rm -R "${discardDir}"
    COMMAND ${CMAKE_COMMAND} -E echo "Recreating ${discardDir}"
    COMMAND ${CMAKE_COMMAND} -E make_directory "${discardDir}"
)

CMake’s command mode is a very useful way of carrying out a range of common tasks in a
platform-independent way. Sometimes, however, more complex logic is required and such custom
tasks are often implemented using platform specific shell scripts. An alternative is to use CMake
itself as a scripting engine, providing a platform-independent language in which to express
arbitrary logic. The -P option to the cmake command puts CMake into script processing mode:

cmake [options] -P filename

The filename argument is the name of the CMake script file to execute. The usual CMakeLists.txt
syntax is supported, but there is no configure or generate step and the CMakeCache.txt file is not
updated. The script file is essentially processed as just a set of commands rather than as a project,
so any commands which relate to build targets or project-level features are not supported.
Nonetheless, script mode allows complex logic to be implemented and it comes with the advantage
of not requiring any additional shell interpreter to be installed.

While script mode doesn’t support command line options like ordinary shells or command
interpreters, it does support passing in variables with -D options, just like ordinary cmake
invocations. Since no CMakeCache.txt file is updated in script mode, -D options can be used freely
without affecting the main build’s cache. Such options must be placed before -P.

cmake -DOPTION_A=1 -DOPTION_B=foo -P myCustomScript.cmake

19.6. Combining The Different Approaches
The example below demonstrates many of the features discussed in this chapter. It shows how
custom tasks can be specified in different ways. An important aspect of the example is how it
accomplishes non-trivial things without having to resort to platform specific commands or
functionality.

By putting the archiving logic in the separate archiver.cmake file, it can also be used either within a
project as shown, or it can be invoked on its own through CMake’s script mode. This can be useful
from a development and testing perspective, or to provide a platform-independent way of
archiving a directory for general use outside any project.
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CMakeLists.txt

cmake_minimum_required(VERSION 3.17)
project(Example)

# This executable generates files in a directory passed as a command line argument
add_executable(GenerateFiles generateFiles.cpp)

# Custom target to run the above executable and archive its results
set(outDir "foo")
add_custom_target(Archiver
    COMMAND ${CMAKE_COMMAND} -E echo "Archiving files"
    COMMAND ${CMAKE_COMMAND} -E rm -R "${outDir}"
    COMMAND ${CMAKE_COMMAND} -E make_directory "${outDir}"
    COMMAND GenerateFiles "${outDir}"
    COMMAND ${CMAKE_COMMAND} "-DTAR_DIR=${outDir}"
            -P "${CMAKE_CURRENT_SOURCE_DIR}/archiver.cmake"
)

archiver.cmake

cmake_minimum_required(VERSION 3.17)

if(NOT TAR_DIR)
    message(FATAL_ERROR "TAR_DIR must be set")
endif()

# Create an archive of the directory
set(archive archive.tar)
execute_process(
    COMMAND ${CMAKE_COMMAND} -E tar cf ${archive} "${TAR_DIR}"
    RESULT_VARIABLE result
)
if(result)
    message(FATAL_ERROR "Archiving ${TAR_DIR} failed: ${result}")
endif()

# Compute MD5 checksum of the archive
execute_process(
    COMMAND ${CMAKE_COMMAND} -E md5sum ${archive}
    OUTPUT_VARIABLE md5output
    RESULT_VARIABLE result
)
if(result)
    message(FATAL_ERROR "Unable to compute md5 of archive: ${result}")
endif()

# Extract just the checksum from the output
string(REGEX MATCH "^ *[^ ]*" md5sum "${md5output}")
message("Archive MD5 checksum: ${md5sum}")
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19.7. Recommended Practices
When custom tasks need to be executed, it is preferable that they be done during the build stage
rather than the configure stage. A fast configure stage is important because it can be invoked
automatically when some files are modified (e.g. any CMakeLists.txt file in the project, any file
included by a CMakeLists.txt file or any file listed as a source of a configure_file() command as
discussed in the next chapter). For this reason, prefer to use add_custom_target() or
add_custom_command() instead of execute_process() if there is a choice. If the task needs to run
immediately or as part of a cmake -P script mode invocation, then execute_process() is appropriate.

It is relatively common to see platform specific commands used with add_custom_command(),
add_custom_target() and execute_process(). Quite often, however, such commands can instead be
expressed in a platform independent manner using CMake’s command mode (-E). Where possible,
the use of platform-independent commands should be preferred. In addition, CMake can be used as
a platform-independent scripting language, processing a file as a sequence of CMake commands
when invoked with the -P option. The use of CMake scripts instead of a platform specific shell or a
separately installed script engine can reduce the complexity of the project and reduce the
additional dependencies it requires in order to build. Specifically, consider whether CMake’s script
mode would be a better choice than using a Unix shell script or Windows batch file, or even a script
for a language like Python, Perl etc. which may not be available by default on all platforms. The
next chapter shows how to manipulate files directly with CMake instead of having to resort to such
tools and methods.

When implementing custom tasks, try to avoid features that lack support in all situations:

• Prefer to use command mode -E echo rather than the COMMENT keyword with add_custom_command()
and add_custom_target().

• Try to avoid using PRE_BUILD with the TARGET form of add_custom_command().

• Consider whether using IMPLICIT_DEPENDS or DEPFILE options with add_custom_command() is worth
the generator-specific behavior.

• Avoid listing a source file as a MAIN_DEPENDENCY in add_custom_command() unless the intention is to
replace the default build rule for that source file.

Pay special attention to dependencies for the inputs and outputs of custom tasks. Ensure that all
files created by add_custom_command() are listed as OUTPUT files. When listing build targets as the
command or arguments in a call to add_custom_command() or add_custom_target(), prefer to explicitly
list them as DEPENDS items rather than relying on CMake’s automatic target dependency handling.
The weaker automatic dependencies may not enforce all the relationships that developers may
intuitively expect. If listing a file in DEPENDS for either add_custom_target() or add_custom_command(),
always use an absolute path to avoid non-robust legacy path matching behavior.

When calling execute_process(), most of the time the success of the command should be tested by
capturing the result using RESULT_VARIABLE and testing it with the if() command. This includes when
a TIMEOUT option is being used, since TIMEOUT on its own will not generate an error, it will only ensure
the command doesn’t run longer than the nominated timeout period.

In certain types of projects, the difference between executing custom commands with optimized
targets versus non-optimized targets may have a noticeable effect on build times. A common
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example of this is where custom commands are used to run code generators that are themselves
built as part of the project. If code generation is a non-trivial process, it may be desirable to have
the code generators build with the Release configuration even when building the rest of the project
as Debug. The Ninja Multi-Config generator introduced with CMake 3.17 is the only generator which
directly supports this workflow. Given the fairly new status of this generator, consider carefully
before relying heavily on this capability. The interested reader should consult the CMake
documentation for further details on this and other related advanced features of the Ninja Multi-
Config generator.
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Chapter 20. Working With Files
Many projects need to manipulate files and directories as part of the build. While such
manipulations range from trivial through to quite complex, the more common tasks include:

• Constructing paths or extracting components of a path.

• Obtaining a list of files from a directory.

• Copying files.

• Generating a file from string contents.

• Generating a file from another file’s contents.

• Reading in the contents of a file.

• Computing a checksum or hash of a file.

CMake provides a variety of features related to working with files and directories. In some cases,
there can be multiple ways of achieving the same thing, so it is useful to be aware of the different
choices and understand how to use them effectively. A number of these features are frequently
misused, some due to such misuse being prevalent in online tutorials and examples, leading to the
belief that it is the right way to do things. Some of the more problematic anti-patterns are discussed
in this chapter.

Much of CMake’s file-related functionality is provided by the file() command, with a few other
commands offering alternatives better suited to certain situations or providing related helper
capabilities. CMake’s command mode, which was introduced in the previous chapter, also provides
a variety of file-related features which overlap with much of what file() provides, but it covers a
complimentary set of scenarios to file() rather than being an alternative in most cases.

20.1. Manipulating Paths
One of the most basic parts of file handling is manipulating file names and paths. Projects often
need to extract file names, file suffixes, etc. from full paths, or convert between absolute and
relative paths. With CMake 3.19 and earlier, this functionality is spread across two commands,
get_filename_component() and file(). The two have some overlap and there are inconsistencies.
CMake 3.20 introduced a new command, cmake_path() which supersedes most of the path-handling
capabilities of those two commands. It provides a more consistent, more predictable interface.

20.1.1. cmake_path()

The official documentation for cmake_path() is fairly comprehensive. It covers the concepts used,
presents the various sub-commands in logical, task-based groups and provides numerous
examples. The reader is encouraged to study the material presented therein for a deeper
understanding of the command. Only some key concepts and sub-commands for more common
tasks are described here.

The cmake_path() command never accesses the underlying file system. It only operates on paths
syntactically, so it knows nothing about symbolic links or the existence of a path. It uses a clearly
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defined path structure where forward slashes are always used as directory separators, regardless
of the host or target platform. A drive letter or mapped drive name (e.g. C: or //myserver) is
supported only if the host platform supports it.

The following example path and table demonstrate the terminology used:

C:/one/two/start.middle.end

Path component Example

ROOT_NAME C:

ROOT_DIRECTORY /

ROOT_PATH C:/

FILENAME start.middle.end

EXTENSION .middle.end

STEM start

RELATIVE_PART one/two/start.middle.end

PARENT_PATH C:/one/two

The GET sub-command can be used to retrieve any of the above path components (replace <COMP>
with one of the items from the first column in the above table):

cmake_path(GET pathVar <COMP> [LAST_ONLY] outVar)

LAST_ONLY can only be given if <COMP> is either EXTENSION or STEM. By default, an EXTENSION starts at the
left-most dot (.) character of the FILENAME, but LAST_ONLY changes this to use the right-most dot
character instead. The STEM is the FILENAME without the EXTENSION, with the LAST_ONLY keyword
changing the meaning of EXTENSION in this case as well.

set(path "a.b.c")

cmake_path(GET path EXTENSION result)            # .b.c
cmake_path(GET path EXTENSION LAST_ONLY result)  # .c

cmake_path(GET path STEM result)                 # a
cmake_path(GET path STEM LAST_ONLY result)       # a.b

As demonstrated in the above example, note that pathVar is the name of a variable holding a path, it
is not a string:

# WRONG: Cannot use a string for the path
cmake_path(GET "/some/path/example" FILENAME result)

# Correct, but can be improved (see below)
set(path "/some/path/example")
cmake_path(GET path FILENAME result)
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While using set() to create a path variable is permitted, cmake_path() has a dedicated SET sub-
command which is more robust and has additional features:

cmake_path(SET pathVar [NORMALIZE] input)

The main advantage of using cmake_path(SET) over set() is that the former automatically converts a
native path to a cmake-style path, as expected by other cmake_path() sub-commands. Another
advantage is the ability to normalize the path. The CMake documentation describes the formal
rules for what the NORMALIZE keyword implies, but essentially it means to simplify a path by
resolving things like . and .., collapsing multiple consecutive path separators (/) down to a single
separator and a few other special cases. Note that because cmake_path() never accesses the file
system, it does not resolve symbolic links as part of normalization.

cmake_path(SET path NORMALIZE "/some//path/xxx/../example")

# The path variable now holds the value: /some/path/example

One can also query a path to see if it has a particular path component:

cmake_path(<OP> pathVar outVar)

Valid values for <OP> include all the same <COMP> values for GET, except prefixed with HAS_ (e.g.
HAS_EXTENSION, HAS_RELATIVE_PART). In addition, IS_ABSOLUTE and IS_RELATIVE are also supported values
for <OP>, but they have some less obvious behavioral aspects to be aware of. IS_ABSOLUTE technically
means that the path unambiguously refers to a location without needing to refer to some relative
point. The consequences of this are mostly relevant for Windows hosts and paths, since a path has
to start at the root / and also have a drive letter to be considered absolute. On non-Windows host
platforms, paths having a drive letter are considered malformed. The same path can therefore yield
different results on different host platforms. This is especially dangerous if cross-compiling on a
Windows host and testing paths intended for a non-Windows target platform.

The following table shows the result of cmake_path(IS_ABSOLUTE pathVar result) for different cases:

pathVar Windows host Other host platforms

C:/somewhere Absolute Undefined

C:somewhere Relative Undefined

/somewhere Relative Absolute

On all platforms, the result of IS_RELATIVE is always the opposite of IS_ABSOLUTE, so it exhibits the
same platform-dependent differences.

There are sub-commands for converting to absolute or relative paths:

234



cmake_path(RELATIVE_PATH pathVar
    [BASE_DIRECTORY baseDir]
    [OUTPUT_VARIABLE outVar]
)
cmake_path(ABSOLUTE_PATH pathVar [NORMALIZE]
    [BASE_DIRECTORY baseDir]
    [OUTPUT_VARIABLE outVar]
)

Relative paths are considered relative to the specified baseDir, if given, or CMAKE_CURRENT_SOURCE_DIR
otherwise. If no outVar is given, the pathVar is modified in-place. The NORMALIZE keyword has the
usual effect of normalizing the resultant path. One can also explicitly normalize a path with
another sub-command:

cmake_path(NORMAL_PATH pathVar [OUTPUT_VARIABLE outVar])

Across all of CMake’s file handling, most of the time a project can use forward slashes for directory
separators on all platforms and CMake will do the right thing, converting to native paths as
necessary on the project’s behalf. Occasionally, however, a project may need to explicitly convert
between CMake and native paths. One such example is when working with custom commands and
needing to pass a path to a script which requires native paths. For these situations, the NATIVE_PATH
sub-command can be used:

cmake_path(NATIVE_PATH pathVar [NORMALIZE] outVar)

There are other cmake_path() sub-commands, but the ones presented above cover the most common
use cases.

20.1.2. Older Commands

For projects that must support CMake 3.19 or earlier, the cmake_path() command cannot be used.
The same capabilities are more or less available with the much older get_filename_component() and
file() commands though, albeit in less consistent syntactic forms. These two commands also
potentially access the file system as part of resolving paths, unlike cmake_path() which doesn’t.

With CMake 3.19 and earlier, the primary method for performing path-related operations is the
get_filename_component() command. It has three different forms. The first form allows for the
extraction of the different parts of a path or file name, similar to the functionality provided by
cmake_path(GET):

get_filename_component(outVar input component [CACHE])

The result of the call is stored in the variable named by outVar. The component to extract from input
is specified by component, which must be one of the following:
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DIRECTORY

Extract the path part of input without the file name. Prior to CMake 2.8.12, this option used to be
PATH, which is still accepted as a synonym for DIRECTORY to preserve compatibility with older
versions.

NAME

Extract the full file name, including any extension. This essentially just discards the directory
part of input.

NAME_WE

Extract the base file name only. This is like NAME except only the part of the file name up to but
not including the first "." is extracted.

NAME_WLE

Similar to NAME_WE except the name up to the last "." is extracted. This option is only available
with CMake 3.14 or later.

EXT

This is the complement to NAME_WE. It extracts just the extension part of the file name from the
first "." onward. This can be thought of as the longest extension in the file name.

LAST_EXT

Similar to EXT except the shortest extension is returned (i.e. the part of the file name from the last
"." onward). This option is only available with CMake 3.14 or later.

The CACHE keyword is optional. If present, the result is stored as a cache variable rather than a
regular variable. Typically, it is not desirable to store the result in the cache, so the CACHE keyword is
not often required.

set(input /some/path/foo.bar.txt)

get_filename_component(path1          ${input} DIRECTORY)    # /some/path
get_filename_component(path2          ${input} PATH)         # /some/path
get_filename_component(fullName       ${input} NAME)         # foo.bar.txt
get_filename_component(baseNameShort  ${input} NAME_WE)      # foo
get_filename_component(baseNameLong   ${input} NAME_WLE)     # foo.bar
get_filename_component(extensionLong  ${input} EXT)          # .bar.txt
get_filename_component(extensionShort ${input} LAST_EXT)     # .txt

The second form of get_filename_component() is used to obtain an absolute path:

get_filename_component(outVar input component
    [BASE_DIR baseDir] [CACHE]
)

In this form, input can be a relative path or it can be an absolute path. If BASE_DIR is given, relative
paths are interpreted as being relative to baseDir instead of the current source directory (i.e.
CMAKE_CURRENT_SOURCE_DIR). BASE_DIR will be ignored if input is already an absolute path. Unlike
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cmake_path(), this command can access the file system and resolve symbolic links. The component
argument controls how symbolic links are handled for the path stored in outVar:

ABSOLUTE

Compute the absolute path of input without resolving symbolic links.

REALPATH

Compute the absolute path of input with symbolic links resolved.

The file() command provides the inverse operation, converting an absolute path to relative:

file(RELATIVE_PATH outVar relativeToDir input)

CMake 3.19 also added a file() sub-command which is essentially equivalent to the REALPATH
operation of get_filename_component():

file(REAL_PATH input outVar
    [BASE_DIRECTORY baseDir]
    [EXPAND_TILDE]    # Requires CMake 3.21 or later
)

With CMake 3.21 or later, when the EXPAND_TILDE keyword is given and input starts with a tilde (~),
the tilde will be replaced by the path to the user’s home directory. This mimics the behavior of most
Unix shells.

Unfortunately, the file(REAL_PATH) sub-command introduced a number of inconsistencies:

• The order of the input and outVar arguments is different to the complementary RELATIVE_PATH
operation.

• The file() command uses REAL_PATH (note the underscore), whereas get_filename_component()
uses REALPATH.

• The optional base directory keyword is named BASE_DIRECTORY for file(REAL_PATH), whereas it is
named BASE_DIR for the get_filename_component() command.

The above inconsistencies can make the use of these commands somewhat more error-prone, so
extra care is needed.

The following example demonstrates the usage of these file() sub-commands:

set(basePath   /base)
set(fooBarPath /base/foo/bar)
set(otherPath  /other/place)

file(RELATIVE_PATH fooBar ${basePath} ${fooBarPath})
file(RELATIVE_PATH other  ${basePath} ${otherPath})

file(REAL_PATH ${other} otherReal BASE_DIRECTORY ${basePath})
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At the end of the above code block, the variables have the following values:

fooBar    = foo/bar
other     = ../other/place
otherReal = /other/place

The third form of the get_filename_component() command is a convenience for extracting parts of a
full command line (there is no equivalent cmake_path() command for this):

get_filename_component(progVar input PROGRAM
    [PROGRAM_ARGS argVar] [CACHE]
)

With this form, input is assumed to be a command line which may contain arguments. CMake will
extract the full path to the executable which would be invoked by the specified command line,
resolving the executable’s location using the PATH environment variable if necessary and store the
result in progVar. If PROGRAM_ARGS is given, the set of command line arguments are also stored as a list
in the variable named by argVar. The CACHE keyword has the same meaning as the other forms of
get_filename_component().

The file() command offers two more forms which help transform paths between platform native
and CMake formats:

file(TO_NATIVE_PATH input outVar)
file(TO_CMAKE_PATH  input outVar)

The TO_NATIVE_PATH form converts input into a native path for the host platform. This amounts to
ensuring the correct directory separator is used (backslash on Windows, forward slash everywhere
else). The TO_CMAKE_PATH form converts all directory separators in input to forward slashes. This is the
representation used by CMake for paths on all platforms. The input can also be a list of paths
specified in a form compatible with the platform’s PATH environment variable. All colon separators
are replaced with semi-colons, thereby converting a PATH-like input into a CMake list of paths.

# Unix example
set(customPath /usr/local/bin:/usr/bin:/bin)

file(TO_CMAKE_PATH ${customPath} outVar)
# outVar = /usr/local/bin;/usr/bin;/bin

20.2. Copying Files
The need to copy a file during the configure stage or during the build itself is relatively common.
Because copying a file is generally a familiar task to most users, it is natural for new CMake
developers to implement file copying in terms of the same methods they already know.
Unfortunately, this often results in the use of platform-specific shell commands with
add_custom_target() and add_custom_command(), sometimes also with dependency problems that

238



require developers to run CMake multiple times and/or manually build targets in a particular
sequence.

In almost all cases, CMake offers better alternatives to such platform-specific approaches. In this
section, a number of techniques for copying files are presented. Some are aimed at meeting a
particular need, while others are intended to be more generic and can be used in a variety of
situations. All methods presented work exactly the same way on all platforms.

One of the most useful commands for copying files at configure time is, unfortunately, one of the
less intuitively named. The configure_file() command allows a single file to be copied from one
location to another, optionally performing CMake variable substitution along the way. The copy is
performed immediately, so it is a configure-time operation. A slightly reduced form of the
command is as follows:

configure_file(source destination
    [COPYONLY | @ONLY] [ESCAPE_QUOTES]
    # See below for availability
    [NO_SOURCE_PERMISSIONS | USE_SOURCE_PERMISSIONS |
     FILE_PERMISSIONS permissions...]
)

The source must be an existing file and can be an absolute or relative path, with the latter being
relative to the current source directory (i.e. CMAKE_CURRENT_SOURCE_DIR). The destination can be an
existing directory or the file name to copy to. Using a directory name is risky, since if there is no
directory by the specified name, a file of that name will be created instead. The destination can
include a path, which can be absolute or relative. If the destination is not an absolute path, it is
interpreted as being relative to the current binary directory (i.e. CMAKE_CURRENT_BINARY_DIR). If any
part of the destination path does not exist, CMake will attempt to create the missing directories as
part of the call. Note that it is not unusual to see projects include CMAKE_CURRENT_SOURCE_DIR or
CMAKE_CURRENT_BINARY_DIR as part of the path with the source and destination respectively, but this just
adds unnecessary clutter and should be avoided.

By default, the destination file will have the same permissions as the source file. With CMake 3.19
or later, the NO_SOURCE_PERMISSIONS option can be given and the destination file will be readable by
everyone, writable by the user only and not executable. With CMake 3.20 or later,
USE_SOURCE_PERMISSIONS or FILE_PERMISSIONS can be used. The former is already the default behavior,
but it can be specified to clearly indicate the intent. FILE_PERMISSIONS gives full control over the
permissions assigned to the destination. These three permission-related keywords are also
supported by the file(COPY) and file(GENERATE) commands. Examples of how permissions can be
specified are included in the discussion of those commands further below.

If the source file is modified, the build will consider the destination to be out of date and will re-run
cmake automatically. If the configure and generation time is non-trivial and the source file is being
modified frequently, this can be a source of frustration for developers. For this reason,
configure_file() is best used only for files that don’t need to be changed all that often.

When performing the copy, configure_file() has the ability to substitute CMake variables. Without
the COPYONLY or @ONLY options, anything in the source file that looks like a use of a CMake variable (i.e.
has the form ${someVar}) will be replaced by the value of that variable. If no variable exists with that
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name, an empty string is substituted. Strings of the form @someVar@ are also substituted in the same
way. The following shows a number of substitution examples:

CMakeLists.txt

set(FOO "String with spaces")
configure_file(various.txt.in various.txt)

various.txt.in

CMake version: ${CMAKE_VERSION}
Substitution works inside quotes too: "${FOO}"
No substitution without the $ and {}: FOO
Empty ${} specifier gets removed
Escaping has no effect: \${FOO}
@-syntax also supported: @FOO@

various.txt

CMake version: 3.7.0
Substitution works inside quotes too: "String with spaces"
No substitution without the $ and {}: FOO
Empty  specifier gets removed
Escaping has no effect: \String with spaces
@-syntax also supported: String with spaces

The ESCAPE_QUOTES keyword can be used to cause any substituted quotes to be preceded with a
backslash.

CMakeLists.txt

set(BAR "Some \"quoted\" value")
configure_file(quoting.txt.in quoting.txt)
configure_file(quoting.txt.in quoting_escaped.txt ESCAPE_QUOTES)

quoting.txt.in

A: @BAR@
B: "@BAR@"

quoting.txt

A: Some "quoted" value
B: "Some "quoted" value"

quoting_escaped.txt

A: Some \"quoted\" value
B: "Some \"quoted\" value"
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As the above example shows, the ESCAPE_QUOTES option causes escaping of all quotes regardless of
their context. Therefore, a degree of care must be taken when the file being copied is sensitive to
spaces and quoting in any substitutions which may be performed.

Some file types need to have the ${someVar} form preserved without substitution. A classic example
of this is copying a Unix shell script where ${someVar} is a common way to refer to a shell variable.
In such cases, substitution can be limited to only the @someVar@ form with the @ONLY keyword:

CMakeLists.txt

set(USER_FILE whoami.txt)
configure_file(whoami.sh.in whoami.sh @ONLY)

whoami.sh.in

#!/bin/sh
echo ${USER} > "@USER_FILE@"

whoami.sh

#!/bin/sh
echo ${USER} > "whoami.txt"

Substitution can also be disabled entirely with the COPYONLY keyword. If it is known that substitution
is not needed, specifying COPYONLY is good practice, since it prevents unnecessary processing and any
unexpected substitutions.

When using configure_file() and substituting file names or paths, a common mistake is to
mishandle spaces and quoting. The source file may need to surround a substituted variable with
quotes if it needs to be treated as a single path or file name. This is why the source file in the above
example used "@USER_FILE@" rather than @USER_FILE@ as the filename to write the output to.

Substitution of CMake variables in ${someVar} or @someVar@ form can also be performed on strings,
not just files. The string(CONFIGURE) command provides equivalent functionality and options. It can
be useful when the content to be copied requires more complex steps than a simple substitution:

string(CONFIGURE input outVar [@ONLY] [ESCAPE_QUOTES])

The configure_file() command uses files for input and output. The string(CONFIGURE) sub-command
uses strings for input and output. CMake 3.18 added a third method that supports using a string for
input and a file for output:

file(CONFIGURE
    OUTPUT  outFile
    CONTENT inputString
    [@ONLY] [ESCAPE_QUOTES]
    # ... Other rarely used options
)
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The OUTPUT and CONTENT specify the output file and input string respectively. If the outFile is a relative
path, it is assumed to be relative to the current binary directory. The remaining options have
exactly the same meaning as they do for the configure_file() command.

Where no substitution is needed, another alternative is to use one of the relevant file() sub-
commands. The most flexible and mature, available with all CMake versions, are the closely related
COPY and INSTALL forms, both of which support the same set of options:

file(<COPY|INSTALL> fileOrDir1 [fileOrDir2...]
    DESTINATION dir
    [NO_SOURCE_PERMISSIONS | USE_SOURCE_PERMISSIONS |
     [FILE_PERMISSIONS permissions...]
     [DIRECTORY_PERMISSIONS permissions...]]
    [FOLLOW_SYMLINK_CHAIN]   # Requires CMake 3.15 or later
    [FILES_MATCHING]
    [ [PATTERN pattern | REGEX regex] [EXCLUDE]
      [PERMISSIONS permissions...] ] [...]
)

Multiple files or even entire directory hierarchies can be copied to a chosen directory, even
preserving symlinks if present. Any source files or directories specified without an absolute path
are treated as being relative to the current source directory. Similarly, if the destination directory is
not absolute, it will be interpreted as being relative to the current binary directory. The destination
directory structure is created as necessary.

If a source is a directory name, it will be copied into the destination. To copy the directory’s
contents into the destination instead, append a forward slash (/) to the source directory like so:

file(COPY base/srcDir  DESTINATION destDir)  # --> destDir/srcDir
file(COPY base/srcDir/ DESTINATION destDir)  # --> destDir

By default, the COPY form will result in all files and directories keeping the same permissions as the
source from which they are copied, whereas the INSTALL form will not preserve the original
permissions. The NO_SOURCE_PERMISSIONS and USE_SOURCE_PERMISSIONS options can be used to override
these defaults, or the permissions can be explicitly specified with the FILE_PERMISSIONS and
DIRECTORY_PERMISSIONS options. The permission values are based on those supported by Unix systems:

OWNER_READ OWNER_WRITE OWNER_EXECUTE

GROUP_READ GROUP_WRITE GROUP_EXECUTE

WORLD_READ WORLD_WRITE WORLD_EXECUTE

SETUID SETGID

If a particular permission is not understood on a given platform, it is simply ignored. Multiple
permissions can be (and usually are) listed together. For example, a Unix shell script might be
copied to the current binary directory as follows:
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file(COPY whoami.sh
    DESTINATION .
    FILE_PERMISSIONS
        OWNER_READ OWNER_WRITE OWNER_EXECUTE
        GROUP_READ GROUP_EXECUTE
        WORLD_READ WORLD_EXECUTE
)

The COPY and INSTALL signatures both also preserve the timestamps of the files and directories being
copied. Furthermore, if the source is already present at the destination with the same timestamp,
the copy for that file is deemed as already having been done and will be skipped. The only other
difference between COPY and INSTALL apart from the default permissions is that the INSTALL form
prints status messages for each copied item, whereas COPY does not. This difference is because the
INSTALL form is typically used as part of CMake scripts run in script mode for installing files, where
common behavior is to print the name of each file installed.

With CMake 3.15 or later, the FOLLOW_SYMLINK_CHAIN keyword is supported. When this option is
present, symlinks in the list of files to copy/install will be copied recursively, with symlinks being
preserved. The recursion stops with the final non-symlink file being copied as normal. When
copying or installing symlinks like this, all paths are stripped off, so this functionality really only
suits situations where symlinks point to things in the same directory.

Consider a fairly standard set of library symlinks on Linux, such as the following:

libMyStuff.so.2.4.3
libMyStuff.so.2 --> libMyStuff.so.2.4.3
libMyStuff.so   --> libMyStuff.so.2

If libMyStuff.so was given to the file(COPY) or file(INSTALL) command and the FOLLOW_SYMLINK_CHAIN
option was present, all three of the above would be copied/installed and the relative symlinks
would all be preserved exactly as shown. Note that the symlinks are only followed in one direction,
there is no logic for finding things that link to a file listed. So for the above example, if only
libMyStuff.so.2 was listed in the file() command, the libMyStuff.so symlink would not be
discovered and therefore it wouldn’t be copied/installed.

Both COPY and INSTALL support applying certain logic to files that match or do not match a particular
wildcard pattern or regular expression. This can be used to limit which files are copied and to
override the permissions just for the matched files. Multiple patterns and regular expressions can
be given in the one file() command. The use is best demonstrated by example.

The following copies all header (.h) and script (.sh) files from someDir, except headers whose file
name ends with _private.h. Headers are given the same permissions as the file they are copied
from, whereas scripts are given owner read, write and execute permissions. The directory structure
is preserved.
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file(COPY someDir
    DESTINATION .
    FILES_MATCHING
        REGEX .*_private\\.h EXCLUDE
        PATTERN *.h
        PATTERN *.sh
            PERMISSIONS OWNER_READ OWNER_WRITE OWNER_EXECUTE
)

If the whole source should be copied but permissions need to be overridden for just a subset of
matched files, the FILES_MATCHING keyword can be omitted and the patterns and regular expressions
are used purely to apply permission overrides.

file(COPY someDir
    DESTINATION .
    # Make Unix shell scripts executable by everyone
    PATTERN *.sh PERMISSIONS
        OWNER_READ OWNER_WRITE OWNER_EXECUTE
        GROUP_READ GROUP_EXECUTE
        WORLD_READ WORLD_EXECUTE
    # Ensure only owner can read/write private key files
    REGEX _dsa\$|_rsa\$ PERMISSIONS
        OWNER_READ OWNER_WRITE
)

For very simple file copying operations, CMake 3.21 or later provides an alternative sub-command
that some developers may find easier to use:

file(COPY_FILE source destination
    [RESULT result]
    [ONLY_IF_DIFFERENT]
)

If ONLY_IF_DIFFERENT is given, then the timestamp of the destination will not be updated if it already
has the same contents as the source file. It will typically be advisable to include this option to avoid
triggering unnecessary rebuilds of anything that depends on the destination.

If the RESULT keyword is given, the outcome of the command is stored in the named variable. This
allows processing to continue and recover from an error. The value stored in outVar will be 0 upon
success or an error message otherwise. Without the RESULT keyword, processing will halt if any
error is encountered.

CMake offers further methods for copying files and directories. Whereas configure_file() and
file() are used mainly at configure time or in a CMake script at install time, CMake’s command
mode is often used for copying files and directories at build time. Command mode is the preferred
way to copy content as part of add_custom_target() and add_custom_command() rules, since it provides
platform independence (see Section 19.5, “Platform Independent Commands”). There are three
commands related to copying, the first of which is used to copy individual files:
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cmake -E copy file1 [file2...] destination

If only one source file is provided, then destination is treated as the name of the file to copy to,
unless it names an existing directory. When the destination is an existing directory, the source file
will be copied into it. This behavior is consistent with that of most operating systems’ native copy
commands, but it also means that the behavior is dependent on the state of the file system before
the copy operation. Therefore, it is more robust to explicitly specify the target file name when
copying a single file unless it is guaranteed that the destination is a directory that will already exist.

As a convenience, if destination includes a path (relative or absolute), CMake will try to create the
destination path as needed when copying only a single source file. This means that when copying
individual files, the copy command does not require an earlier step to ensure the destination
directory exists. If more than one source file is listed, destination must refer to an existing directory.
Once again, CMake’s command mode can be used to ensure this using make_directory which creates
the named directory if it does not already exist, including any parent directories as needed. The
following shows how to safely put these command mode commands together:

add_custom_target(CopyOne
    COMMAND ${CMAKE_COMMAND} -E copy a.txt output/textfiles/a.txt
)
add_custom_target(CopyTwo
    COMMAND ${CMAKE_COMMAND} -E make_directory output/textfiles
    COMMAND ${CMAKE_COMMAND} -E copy a.txt b.txt output/textfiles
)

The copy command will always copy the source to the destination, even if the destination is already
identical to the source. This results in the target timestamps always being updated, which can
sometimes be undesirable. If the timestamps should not be updated if the files already match, then
the copy_if_different command may be more appropriate:

cmake -E copy_if_different file1 [file2...] destination

This functions exactly like the copy command except if a source file already exists at the destination
and is the same as the source, no copy is performed and the timestamp of the target is left alone. It
is also possible to copy entire directories rather than individual files:

cmake -E copy_directory dir1 [dir2...] destination

Unlike the file-related copy commands, the destination directory is created if required, including
any intermediate path. Note also that copy_directory copies the contents of the source directories
into the destination, not the source directories themselves. For example, suppose a directory myDir
contains a file someFile.txt and the following command was issued:

cmake -E copy_directory myDir targetDir
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The result would be that targetDir would contain the file someFile.txt, not myDir/someFile.txt.

Generally speaking, configure_file() and file() are best suited to copying files at configure time,
whereas CMake’s command mode is the preferred way to copy at build time. While it is possible to
use command mode in conjunction with execute_process() to copy files at configure time, there is
little reason to do so, since configure_file() and file() are both more direct and have the added
benefit that they stop on any error automatically.

20.3. Reading And Writing Files Directly
CMake offers more than just the ability to copy files, it also provides a number of commands for
reading and writing file contents. The file() command provides the bulk of the functionality, with
the simplest being the forms that write directly to a file:

file(WRITE fileName content)
file(APPEND fileName content)

Both of these commands will write the specified content to the named file. The only difference
between the two is that if fileName already exists, APPEND will append to the existing contents,
whereas WRITE will discard the existing contents before writing. The content is just like any other
function argument and can be the contents of a variable or a string.

set(msg "Hello world")
file(WRITE hello.txt ${msg})
file(APPEND hello.txt " from CMake")

The above would result in the file hello.txt containing the single line Hello world from CMake. Note
that newlines are not automatically added, so the text from the APPEND line continues directly after
the WRITE line’s text without a break. To have a newline written, it must be included in the content
passed to the file() command. One way is to use a quoted value spread across multiple lines:

file(WRITE multi.txt "First line
Second line
")

If using CMake 3.0 or later, the bracket syntax introduced back in Section 5.1, “Variable Basics” can
sometimes be more convenient, since it prevents any variable substitution of the content.

file(WRITE multi.txt [[
First line
Second line
]])

file(WRITE userCheck.sh [=[
#!/bin/bash
[[ -n "${USER}" ]] && echo "Have USER"
]=])
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In the above, the contents to be written to multi.txt consist only of simple text with no special
characters, so the simplest bracket syntax where = characters can be omitted is sufficient, leaving
just a pair of square brackets to mark the start and end of the content. Note how the behavior to
ignore the first newline immediately after the opening bracket makes the command more readable.

The contents for userCheck.sh are much more interesting and highlight the features of bracket
syntax. Without bracket syntax, CMake would see the ${USER} part and treat it as a CMake variable
substitution, but because bracket syntax performs no such substitution, it is left as is. For the same
reason, the various quote characters in the content are also not interpreted as anything other than
part of the content. They do not need to be escaped to prevent them being interpreted as the start
or end of an argument. Furthermore, note how the embedded contents contain a pair of square
brackets. This is the sort of situation the variable number of = signs in the start and end markers is
meant to handle, allowing the markers to be chosen so that they do not match anything in the
content they surround. When writing out multiple lines to a file and when no substitution should
be performed, bracket syntax is often the most convenient way to specify the content to be written.

Sometimes a project may need to write a file whose contents depend on the build type. A naive
approach would be to assume the CMAKE_BUILD_TYPE variable could be used as a substitution, but this
does not work for multi configuration generators like Xcode, Visual Studio or Ninja Multi-Config.
Instead, the file(GENERATE…) command can be used:

file(GENERATE
    OUTPUT outFile
    INPUT inFile | CONTENT content
    [CONDITION expression]
    # Requires CMake 3.19 or later:
    [TARGET target]
    # Requires CMake 3.20 or later:
    [NO_SOURCE_PERMISSIONS | USE_SOURCE_PERMISSIONS |
     [FILE_PERMISSIONS permissions...]
)

This works somewhat like file(WRITE…) except that it writes out one file for each build type
supported for the current CMake generator. Either of the INPUT or CONTENT options must be present,
but not both. They define the content to be written to the specified output file.

outFile, inFile and content all support generator expressions, which is how the file names and
contents are customized for each build type. A build type can be skipped by using the CONDITION
option. The expression must evaluate to either 0 or 1 after any generator expressions have been
expanded. The output file is not generated if it evaluates to 0.

If a generator expression in any of the arguments needs a target for it to be evaluated, but the
target is not part of the expression (e.g. $<TARGET_PROPERTY:propName>), the TARGET option must be
provided so it can be resolved. The TARGET option is only supported with CMake 3.19 or later.

With CMake 3.20 or later, the permissions for the outFile can be specified in the same way as for
configure_file() or file(COPY). The NO_SOURCE_PERMISSIONS and USE_SOURCE_PERMISSIONS keywords are
only valid if using the INPUT option to specify an input file, but FILE_PERMISSIONS can be used with
either INPUT or CONTENT.
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The following examples show how to make use of generator expressions to customize the contents
and file names depending on the build type.

# Generate unique files for all but Release
file(GENERATE
    OUTPUT ${CMAKE_CURRENT_BINARY_DIR}/outFile-$<CONFIG>.txt
    INPUT  ${CMAKE_CURRENT_SOURCE_DIR}/input.txt.in
    CONDITION $<NOT:$<CONFIG:Release>>
)

# Embedded content, bracket syntax does not prevent the use of generator expressions
file(GENERATE
    OUTPUT ${CMAKE_CURRENT_BINARY_DIR}/details-$<CONFIG>.txt
    CONTENT [[
Built as "$<CONFIG>" for platform "$<PLATFORM_ID>".
Defines: $<TARGET_PROPERTY:COMPILE_DEFINITIONS>
]]
    TARGET SomeTarget
)

In the first case above, any generator expressions in the input.txt.in file will be evaluated when
writing the output file. This is somewhat analogous to the way configure_file() substitutes CMake
variables, except this time the substitution is for generator expressions. The second case
demonstrates how bracket syntax can be a particularly convenient way of defining file contents
inline, even when generator expressions and quoting are involved.

Usually, the output file would be different for each build type. In some situations, however, it may
be desirable for the output file to always be the same, such as where the file contents do not depend
on the build type but rather on some other generator expressions. To support such use cases,
CMake allows the output file to be the same for different build types, but only if the generated file
contents are also identical for those build types. CMake disallows multiple file(GENERATE…)
commands trying to generate the same output file.

Like for file(COPY…), the file(GENERATE…) command will only modify the output file if the contents
actually change. Therefore, the output file’s timestamp will also only be updated if the contents
differ. This is useful when the generated file is used as an input in a build target, such as a
generated header file, since it can prevent unnecessary rebuilds.

There are some important differences in the way file(GENERATE…) behaves compared to most other
CMake commands. Because it evaluates generator expressions, it cannot write out the files
immediately. Instead, the files are written as part of the generation phase, which occurs after all of
the CMakeLists.txt files have been processed. This means that the generated files won’t exist when
the file(GENERATE…) command returns, so the files cannot be used as inputs to something else
during the configure phase. In particular, since the generated files won’t exist until the end of the
configure phase, they cannot be copied or read with configure_file(), file(COPY…), etc. They can,
however, still be used as inputs for the build phase, such as generated sources or headers.

Another point to note is that before CMake 3.10, file(GENERATE…) handled relative paths differently
compared to usual CMake conventions. The behavior of relative paths was left unspecified and
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usually ended up being relative to the working directory of when cmake was invoked. This was
unreliable and inconsistent, so in CMake 3.10 the behavior was changed to make INPUT act as
relative to the current source directory and OUTPUT relative to the current binary directory, just like
most other CMake commands that handle paths. Projects should consider relative paths unsafe to
use with file(GENERATE…) unless the minimum CMake version is set to 3.10 or later.

The file() command can not only copy or create files, it can also be used to read in a file’s contents:

file(READ fileName outVar [OFFSET offset] [LIMIT byteCount] [HEX])

Without any of the optional keywords, this command reads all the contents of fileName and stores
them as a single string in outVar. The OFFSET option can be used to read only from the offset
specified, counted in bytes from the beginning of the file. The maximum number of bytes to read
can also be limited with the LIMIT option. If the HEX option is given, the contents will be converted to
a hexadecimal representation, which can be useful for files containing binary data rather than text.

If it is more desirable to break up the file contents line-by-line, the STRINGS sub-command may be
more convenient. Instead of storing the entire file’s contents as a single string, it stores them as a
list, with each line being one list item.

file(STRINGS fileName outVar
    [LENGTH_MAXIMUM maxBytesPerLine]
    [LENGTH_MINIMUM minBytesPerLine]
    [LIMIT_INPUT maxReadBytes]
    [LIMIT_OUTPUT maxStoredBytes]
    [LIMIT_COUNT maxStoredLines]
    [REGEX regex]
    # ... other less commonly used options not shown
)

The LENGTH_MAXIMUM and LENGTH_MINIMUM options can be used to exclude strings longer or shorter than
a certain number of bytes respectively. The total number of bytes read can be limited using
LIMIT_INPUT, while the total number of bytes stored can be limited using LIMIT_OUTPUT. Perhaps more
likely to be useful, however, is the LIMIT_COUNT option which limits the total number of lines stored
rather than the number of bytes.

The REGEX option is a useful way to extract only specific lines from a file. For example, the following
obtains a list with all lines in myStory.txt that contain either PKG_VERSION or MODULE_VERSION.

file(STRINGS myStory.txt versionLines
     REGEX "(PKG|MODULE)_VERSION"
)

It can also be combined with LIMIT_COUNT to obtain just the first match. The following example
shows how to combine file() and string() to extract a portion of the first line matching a regular
expression.
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set(regex "^ *FOO_VERSION *= *([^ ]+) *$")
file(STRINGS config.txt fooVersion
     REGEX "${regex}"
)
string(REGEX REPLACE "${regex}" "\\1" fooVersion "${fooVersion}")

If config.txt contained a line like this:

FOO_VERSION = 2.3.5

Then the value stored in fooVersion would be 2.3.5.

20.4. File System Manipulation
In addition to reading and writing files, CMake also supports other common file system operations.

file(MAKE_DIRECTORY dirs...)
file(REMOVE files...)
file(REMOVE_RECURSE filesOrDirs...)
file(RENAME source destination
    # CMake 3.21 or later required for these options
    [RESULT outVar]
    [NO_REPLACE]
)

The MAKE_DIRECTORY sub-command will ensure the listed directories exist. Intermediate paths are
created as necessary and no error is reported if a directory already exists.

The REMOVE sub-command can be used to delete files. If any of the listed files do not exist, the file()
command does not report an error. Attempting to delete a directory with the REMOVE sub-command
will have no effect. To delete directories and all of their contents, use the REMOVE_RECURSE sub-
command instead.

The RENAME sub-command renames a file or directory. The source and destination must be the same
type, i.e. both files or both directories. It is not permitted to specify a file as the source and an
existing directory for the destination. To move a file into a directory, the file name must be specified
as part of the destination. Furthermore, any path part of the destination must already exist — the
RENAME form will not create intermediate directories.

Ordinarily, file(RENAME) will halt if any error is encountered. With CMake 3.21 or later, if the RESULT
keyword is given, the outcome of the command is stored in the named variable instead. This allows
processing to continue and recover from an error. The value stored in outVar will be 0 upon success
or an error message otherwise. Note that if destination already exists, it is not considered an error
unless NO_REPLACE is given (CMake 3.21 or later required). Without NO_REPLACE, the destination will be
silently replaced by the source.
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# Requires CMake 3.21 or later
file(RENAME someFile toSomethingElse
    RESULT result
    NO_REPLACE
)
if(result)
    message(WARNING "File rename failed, taking action")
    # ... handle failure to rename the file
endif()

CMake’s command mode also supports a very similar set of capabilities which can be used at build
time rather than configure time:

cmake -E make_directory dirs...
cmake -E remove [-f] files...         # deprecated from CMake 3.17
cmake -E remove_directory dir         # deprecated from CMake 3.17
cmake -E rm [-rRf] filesOrDirs...
cmake -E rename source destination

These commands largely behave in a comparable way to their file()-based counterparts, with only
slight variations. The remove_directory command can strictly only be used with a single directory,
whereas file(REMOVE_RECURSE…) can remove multiple items and both files and directories can be
listed. The remove command accepts an optional -f flag which is intended to change the behavior
when an attempt is made to remove a file that does not exist. The documented behavior of this flag
is that without -f, a non-zero exit code is returned, whereas with -f, a zero exit code will be
returned. This is intended to mimic aspects of the behavior of the Unix rm -f command.
Unfortunately, due to a long-standing bug in the implementation, this isn’t the actual behavior and
the exit code of cmake -E remove should be considered unreliable, with or without the -f flag. The rm
command was added in CMake 3.17 as a replacement for both the remove and remove_directory
commands. It fixes the exit code bug and is more closely aligned with the Unix rm command.

CMake 3.14 added two new file() sub-commands which enable the project to query and
manipulate file system links:

file(READ_SYMLINK linkName outVar)
file(CREATE_LINK pointedTo linkName
     [RESULT outVar]
     [COPY_ON_ERROR]
     [SYMBOLIC]
)

The READ_SYMLINK sub-command gives the path of what linkName points to. Note that symlinks often
use relative paths and the value stored in outVar will just be the raw relative path for such cases.

The CREATE_LINK command allows the project to create hard or symbolic links. Hard links are
created by default, but the SYMBOLIC option can be given to create a symbolic link instead. In most
situations, SYMBOLIC would be recommended since it supports more scenarios (e.g. linking across
different file systems). The RESULT keyword can be used to name a variable in which to store the
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result of the operation. The value stored will be 0 upon success or an error message otherwise.
Without the RESULT option, a failure will cause CMake to halt with a fatal error. The COPY_ON_ERROR
option provides a fallback for when an attempt to create a link fails, downgrading the operation to
copy pointedTo to linkName. It exists primarily to allow the command to be used where creation of
links is not supported, such as a hard link to a path on a different drive or device.

All CMake versions allow basic creation of symbolic links using CMake’s command mode too (hard
links cannot be created via this method):

cmake -E create_symlink pointedTo linkName

CMake 3.14 also added the ability to query the size of a file:

file(SIZE fileName outVar)

The specified fileName must exist and importantly it must also be readable.

CMake 3.19 added file() sub-commands for setting file and directory permissions:

file(CHMOD | CHMOD_RECURSE
    files... directories...
    [PERMISSIONS permissions...]
    [FILE_PERMISSIONS permissions...]
    [DIRECTORY_PERMISSIONS permissions...]
)

The CHMOD and CHMOD_RECURSE sub-commands are identical in their behavior except that the latter will
also descend recursively into subdirectories. The supported values for permissions are the same as
those supported by the file(COPY) sub-command. FILE_PERMISSIONS or DIRECTORY_PERMISSIONS will
apply only to their respective type of entity and they will override PERMISSIONS for that entity type.
One can specify just one of the two more specific types to operate on just that type of entity. The
following shows how to take advantage of this to set permissions just for directories and leave file
permissions unmodified:

file(CHMOD_RECURSE ${someFilesAndDirs}
    DIRECTORY_PERMISSIONS
        OWNER_READ OWNER_WRITE OWNER_EXECUTE
        GROUP_READ GROUP_EXECUTE
        WORLD_READ WORLD_EXECUTE
)

20.5. File Globbing
CMake also supports listing the contents of one or more directories with either a recursive or non-
recursive form of globbing:
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file(GLOB outVar
    [LIST_DIRECTORIES true|false]
    [RELATIVE path]
    [CONFIGURE_DEPENDS]   # Requires CMake 3.12 or later
    expressions...
)

file(GLOB_RECURSE outVar
    [LIST_DIRECTORIES true|false]
    [RELATIVE path]
    [FOLLOW_SYMLINKS]
    [CONFIGURE_DEPENDS]   # Requires CMake 3.12 or later
    expressions...
)

These commands find all files whose names match any of the provided expressions, which can be
thought of as simplified regular expressions. It may be easier to think of them as ordinary
wildcards with the addition of character subset selection. For GLOB_RECURSE, they can also include
path components.

Some examples should help clarify basic use:

*.txt All files whose name ends with .txt.

foo?.txt Files like foo2.txt, fooB.txt, etc.

bar[0-9].txt Matches all files of the form barX.txt where X is a single digit.

/images/*.png For GLOB_RECURSE, this will match only those files with a .png extension
and that are in a subdirectory called images. This can be a useful way
of finding files in a well-structured directory hierarchy.

For GLOB, both files and directories matching the expression are stored in outVar. For GLOB_RECURSE, on
the other hand, directory names are not included by default but this can be controlled with the
LIST_DIRECTORIES option. Furthermore, for GLOB_RECURSE, symlinks to directories are normally
reported as entries in outVar rather than descending into them, but the FOLLOW_SYMLINKS option
directs CMake to descend into the directory instead of listing it.

The set of file names returned will be full absolute paths by default, regardless of the expressions
used. The RELATIVE option can be used to change this behavior such that the reported paths are
relative to a specific directory.

set(base /usr/share)

file(GLOB_RECURSE images
    RELATIVE ${base}
    ${base}/*/*.png
)
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The above will find all images below /usr/share and include the path to those images, except with
the /usr/share part stripped off. Note the /*/ in the expression to allow any directory below the base
point to be matched.

Developers should be aware that the file(GLOB…) commands are not as fast as, say, the Unix find
shell command. Therefore, run time can be non-trivial if using it to search parts of the file system
that contain many files.



The file(GLOB) and file(GLOB_RECURSE) commands are some of the most misused
parts of CMake. They should not be used to collect a set of sources, headers or any
other type of file that in an input to the build. One reason this should be avoided is
that if files are added or removed, CMake is not automatically re-run, so the build
is unaware of the change. This becomes particularly problematic if developers are
using a version control system and are switching between branches, etc. where the
set of files might change, but not in a way which causes CMake to re-run. The
CONFIGURE_DEPENDS option added in CMake 3.12 tries to address this deficiency, but it
comes with performance penalties and is not guaranteed to be supported by all
project generators. The use of this option should be avoided.

Unfortunately, it is very common to see tutorials and examples use file(GLOB) and
file(GLOB_RECURSE) to collect the set of sources to pass to commands like
add_executable() and add_library(). This is explicitly discouraged by the CMake
documentation. Such a practice also ignores the possibility that some files might
only be intended for specific platforms. For projects with many files spread across
multiple directories, there are better ways to collect the set of source files which do
not suffer from such deficiencies. Section 34.5.1, “Building Up A Target Across
Directories” presents alternative strategies which avoid these problems and
encourage a more modular, self-contained directory structure.

20.6. Downloading And Uploading
The file() command has a number of other forms which carry out different tasks. A surprisingly
powerful pair of sub-commands gives projects the ability to download files from and upload files to
an arbitrary URL.

file(DOWNLOAD url fileName [options...])
file(UPLOAD   fileName url [options...])

The DOWNLOAD form downloads a file from the specified url and saves it to fileName. If a relative
fileName is given, it is interpreted as being relative to the current binary directory. CMake 3.19 and
later allow the fileName to be omitted, in which case the file is downloaded but discarded. This can
be used to check that a URL exists without having to save the file anywhere (not recommended for
files that are expected to be large).

The UPLOAD form performs the complementary operation, uploading the named file to the specified
url. For uploads, a relative path is interpreted as being relative to the current source directory.
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The following options can be used, most of which are common to both DOWNLOAD and UPLOAD:

LOG outVar

Save logged output from the operation to the named variable. This can be useful to help
diagnose problems when a download or upload fails.

SHOW_PROGRESS

When present, this option causes progress information to be logged as status messages. This can
produce a fairly noisy CMake configure stage, so it is probably best to use this option only to
temporarily help test a failing connection.

TIMEOUT seconds

Abort the operation if more than seconds have elapsed.

INACTIVITY_TIMEOUT seconds

This is a more specific kind of timeout. Some network connections may be of poor quality or
may simply be very slow. It might be desirable to allow an operation to continue as long as it is
making some sort of progress, but if it stalls for more than some acceptable limit, the operation
should fail. The INACTIVITY_TIMEOUT option provides this capability, whereas TIMEOUT only allows
the total time to be limited.

TLS_VERIFY value

This option accepts a boolean value indicating whether to perform server certificate verification
when downloading from or uploading to a https:// url. If this option is not provided, CMake
looks for a variable named CMAKE_TLS_VERIFY instead. If neither the option nor the variable are
defined, the default behavior is to not verify the server certificate. Note that UPLOAD support for
this option was only added in CMake 3.18.

TLS_CAINFO fileName

A custom Certificate Authority file can be specified with this option. It only affects https:// urls.
If this option is not provided, CMake looks for a variable named CMAKE_TLS_CAINFO instead. Note
that UPLOAD support for this option was only added in CMake 3.18.

EXPECTED_HASH ALGO=value

This option is only supported for DOWNLOAD. It specifies the checksum of the file being downloaded
so that CMake can verify the contents. ALGO can be any one of the hashing algorithms CMake
supports, the most commonly used being MD5 and SHA1. Some older projects may use EXPECTED_MD5
as an alternative to EXPECTED_HASH MD5=…, but new projects should prefer the EXPECTED_HASH form.

With CMake 3.7 or later, the following options are also available for both DOWNLOAD and UPLOAD:

USERPWD username:password

Provides authentication details for the operation. Be aware that hard-coding passwords is a
security issue and in general should be avoided. If providing passwords with this option, the
content should come from outside the project, such as from an appropriately protected file read
from the user’s local machine at configure time.
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HTTPHEADER header

Includes a HTTP header for the operation and can be repeated multiple times as needed to
provide more than one header value. The following partial example demonstrates one of the
motivating cases for this option:

file(DOWNLOAD "https://somebucket.s3.amazonaws.com/myfile.tar.gz" myfile.tar.gz
    EXPECTED_HASH SHA1=${myfileHash}
    HTTPHEADER "Host: somebucket.s3.amazonaws.com"
    HTTPHEADER "Date: ${timestamp}"
    HTTPHEADER "Content-Type: application/x-compressed-tar"
    HTTPHEADER "Authorization: AWS ${s3key}:${signature}"
)

CMake 3.24 added the ability to download only part of a file:

RANGE_START offset

RANGE_END offset

The offsets are the number of bytes from the start of the file in both cases. Omitting RANGE_START
will start downloading from the beginning of the file. Omitting RANGE_END will download to the
end of the file.

The file()-based download and upload commands tend to find use more as part of install steps,
packaging or test reporting, but they can also occasionally find use for other purposes. Examples
include things like downloading bootstrap files at configure time or bringing a file into the build
which cannot or should not be stored as part of the project sources (e.g. sensitive files that should
only be accessible for certain developers, very large files, etc.). Later chapters provide specific
scenarios where these commands are used with great effect.

20.7. Recommended Practices
A range of CMake functionality related to file handling has been presented in this chapter. The
various methods can be used very effectively to carry out a range of tasks in a platform-
independent way, but they can also be misused. Establishing good patterns and applying them
consistently throughout a project will help ensure new developers are exposed to better practices.

Consider using the cmake_path() command for path handling if the project’s minimum CMake
version is 3.20 or later. It generally uses a more consistent syntax than analogous capabilities of the
much older get_filename_component() and file() commands. On the other hand, cmake_path() does
not access the underlying file system, so it cannot be used if resolving symbolic links is required.

Note that the if(IS_ABSOLUTE) and cmake_path(IS_ABSOLUTE) commands interpret the path based on the
host platform, but there are subtle differences between the two. They can yield different results for
the same path in some cases. cmake_path(IS_ABSOLUTE) follows the implementation of the C++
std::filesystem::path::is_absolute() function, whereas if(IS_ABSOLUTE) uses its own logic with
handling for some special cases. Take extra care if cross-compiling from a Windows host to a non-
Windows target platform, or vice versa. If either command is used inappropriately, some paths may
yield undefined behavior or give an opposite result to the value one may intuitively expect.
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The configure_file() command is one that new developers often overlook, yet it is a key method of
providing a file whose contents can be tailored according to variables determined at configure
time, or even just to do a simple file copy. A common naming convention is for the file name part of
the source and destination to be the same, except the source has an extra .in appended. Some IDE
environments understand this convention and will provide appropriate syntax highlighting on the
source file based on the file’s extension without the .in suffix. The presence of the .in suffix not
only serves as a clear reminder that the file needs to be transformed before use, it also prevents it
from being accidentally picked up instead of the destination if CMake or the compiler look for files
in multiple directories. This is especially relevant when the destination is a C/C++ header and the
current source and binary directories are both on the header search path.

Choosing the most appropriate command for copying files is not always clear. The following may
serve as a useful guide when choosing between configure_file(), file(COPY) and file(INSTALL):

• If file contents need to be modified to include CMake variable substitutions, configure_file() is
the most concise way to achieve it.

• If a file just needs to be copied but its name will change, the syntax of configure_file() is slightly
shorter than file(COPY…), but either would be suitable.

• If copying more than one file or a whole directory structure, the file(COPY) or file(INSTALL)
command must be used.

• If control over file or directory permissions is required as part of the copy, file(COPY) or
file(INSTALL) must be used if the project’s minimum CMake version is 3.19 or earlier.

• file(INSTALL) should only typically be used as part of install scripts. Prefer file(COPY) instead for
other situations.

Prior to CMake 3.10, the file(GENERATE…) command had different handling of relative paths
compared to most other commands provided by CMake. Rather than relying on developers being
aware of this different behavior, projects should instead prefer to always specify the INPUT and
OUTPUT files with an absolute path to avoid errors or files being generated in unexpected locations.

When downloading or uploading files with the file(DOWNLOAD…) or file(UPLOAD…) commands,
security and efficiency aspects should be carefully considered. Strive to avoid embedding any sort
of authentication details (usernames, passwords, private keys, etc.) in any file stored in a version
control system for the project’s sources. Such details should come from outside the project, such as
through environment variables (still somewhat insecure), files found on the user’s file system with
appropriate permissions limiting access or a keychain of some kind. Make use of the EXPECTED_HASH
option when downloading to re-use previously downloaded content from an earlier run and avoid
a potentially time-consuming remote operation. If the downloaded file’s hash cannot be known in
advance, then the TLS_VERIFY option is highly recommended to ensure the integrity of the content.
Also consider specifying a TIMEOUT, INACTIVITY_TIMEOUT or both to prevent a configure run from
blocking indefinitely if network connectivity is poor or unreliable.
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Chapter 21. Specifying Version Details
Versioning is one of those things that frequently doesn’t get the attention it deserves. The
importance of what a version number communicates to users is often underestimated, resulting in
users with unmet expectations or confusion about changes between releases. There are also the
inevitable tensions between marketing and how a versioning strategy affects the technical
implementation of builds, packaging and so on. Thinking about and establishing these things early
places the project in a better position when it comes time to deliver the first public release. This
chapter explores ways to implement an effective versioning strategy, taking advantage of CMake
features to provide a robust, efficient process.

21.1. Project Version
A project version often needs to be defined near the beginning of the top level CMakeLists.txt file so
that various parts of the build can refer to it. Source code may want to embed the project version so
that it can be displayed to the user or recorded in a log file, packaging steps may need it to define
release version details and so on. One could simply set a variable near the start of the CMakeLists.txt
file to record a version number in whatever form is needed like so:

cmake_minimum_required(VERSION 3.0)
project(FooBar)
set(FooBar_VERSION 2.4.7)

If individual components need to be extracted, a slightly more involved set of variables may need to
be defined. One example may look something like this:

cmake_minimum_required(VERSION 3.0)
project(FooBar)
set(FooBar_VERSION_MAJOR 2)
set(FooBar_VERSION_MINOR 4)
set(FooBar_VERSION_PATCH 7)
set(FooBar_VERSION
    ${FooBar_VERSION_MAJOR}.${FooBar_VERSION_MINOR}.${FooBar_VERSION_PATCH}
)

Different projects may use different conventions for the naming of variables. The structure of
version numbers can also vary from project to project, with the resultant lack of consistency
making it that much more difficult to bring together many projects as part of a larger collection or
superbuild (discussed in Section 34.1, “Superbuild Structure”).

CMake 3.0 introduced new functionality which makes specifying version details easier and brings
some consistency to project version numbering. The VERSION keyword was added to the project()
command, mandating a version number of the form major.minor.patch.tweak as the expected
format. From that information, a set of variables are automatically populated to make the full
version string as well as each version component individually available to the rest of the project.
Where a version string is provided with some parts omitted (the tweak part is often left out, for
example), the corresponding variables are left empty.
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The following table shows the automatically populated version variables when the VERSION keyword
is used with the project() command:

PROJECT_VERSION projectName_VERSION

PROJECT_VERSION_MAJOR projectName_VERSION_MAJOR

PROJECT_VERSION_MINOR projectName_VERSION_MINOR

PROJECT_VERSION_PATCH projectName_VERSION_PATCH

PROJECT_VERSION_TWEAK projectName_VERSION_TWEAK

The two sets of variables serve slightly different purposes. The project-specific projectName_…
variables can be used to obtain the version details anywhere from the current directory scope or
below. A call like project(FooBar VERSION 2.7.3) results in variables named FooBar_VERSION,
FooBar_VERSION_MAJOR and so on. Since no two calls to project() can use the same projectName, these
project-specific variables won’t be overwritten by other calls to the project() command. The
PROJECT_… variables, on the other hand, are updated every time project() is called, so they can be
used to provide the version details of the most recent call to project() in the current scope or above.
From CMake 3.12, an analogous set of variables also provides the version details set by the project()
call in the top level CMakeLists.txt file. These variables are:

CMAKE_PROJECT_VERSION

CMAKE_PROJECT_VERSION_MAJOR

CMAKE_PROJECT_VERSION_MINOR

CMAKE_PROJECT_VERSION_PATCH

CMAKE_PROJECT_VERSION_TWEAK

This same pattern is also followed to provide variables for the project name, description and
homepage url, the latter two being added in CMake versions 3.9 and 3.12 respectively. As a general
guide, the PROJECT_… variables can be useful for generic code (especially modules) as a way to
define sensible defaults for things like packaging or documentation details. The CMAKE_PROJECT_…
variables are sometimes used for defaults too, but they can be a bit less reliable since their use
typically assumes a particular top level project. The projectName_… variables are the most robust,
since they are always unambiguous in which project’s details they will provide.

When working with projects that support CMake versions earlier than 3.0, it is sometimes the case
that they will define their own version-related variables which clash with those automatically
defined by CMake 3.0 and later. This can lead to CMP0048 policy warnings which highlight the
conflict. The following shows an example of code which leads to such a warning:

cmake_minimum_required(VERSION 2.8.12)

set(FooBar_VERSION 2.4.7)
project(FooBar)

In the above, the FooBar_VERSION variable is explicitly set, but this variable name conflicts with the
variable that the project() command would automatically define. The resultant policy warning is
intended as an encouragement for the project to either use a different variable name or to update
to a minimum CMake version of 3.0 and set the version details in the project() command instead.
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21.2. Source Code Access To Version Details
Once the version details are defined in the CMakeLists.txt file, a very common need is to make them
available to source code compiled by the project. A number of different approaches can be used,
each with their own strengths and weaknesses. One of the most common techniques used by those
new to CMake is to add a compiler define at the top level of the project:

cmake_minimum_required(VERSION 3.0)
project(FooBar VERSION 2.4.7)
add_definitions(-DFOOBAR_VERSION=\"${FooBar_VERSION}\")

This makes the version available as a raw string able to be used like so:

void printVersion()
{
    std::cout << FOOBAR_VERSION << std::endl;
}

While this approach is fairly simple, adding the definition to the compilation of every single file in
the project comes with some drawbacks. Apart from cluttering up the command line of every file to
be compiled, it means that any time the version number changes, the whole project gets rebuilt.
This may seem like a minor point, but developers who regularly switch between different branches
in a source control system will almost certainly get very annoyed by all the unnecessary
recompilations. A slightly better approach uses source properties to define the FOOBAR_VERSION
symbol only for those files where it is needed. For example:

cmake_minimum_required(VERSION 3.0)
project(FooBar VERSION 2.4.7)

add_executable(FooBar main.cpp src1.cpp src2.cpp ...)

get_source_file_property(defs src1.cpp COMPILE_DEFINITIONS)
list(APPEND defs "FOOBAR_VERSION=\"${FooBar_VERSION}\"")
set_source_files_properties(src1.cpp PROPERTIES
    COMPILE_DEFINITIONS "${defs}"
)

This avoids adding the compiler definition to every file, instead only adding it to those files that
need it. As mentioned in Section 9.5, “Source Properties”, however, there can be negative impacts
on the build dependencies when setting individual source properties and these once again result in
more files being rebuilt than should be necessary. Therefore, this approach may seem like an
improvement, but often it won’t be.

Rather than passing the version details on the command line, another common approach is to use
configure_file() to write a header file that supplies the version details. For example:
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foobar_version.h.in

#include <string>

inline std::string getFooBarVersion()
{
    return "@FooBar_VERSION@";
}

inline unsigned getFooBarVersionMajor()
{
    return @FooBar_VERSION_MAJOR@;
}

inline unsigned getFooBarVersionMinor()
{
    return @FooBar_VERSION_MINOR@ +0;
}

inline unsigned getFooBarVersionPatch()
{
    return @FooBar_VERSION_PATCH@ +0;
}

inline unsigned getFooBarVersionTweak()
{
    return @FooBar_VERSION_TWEAK@ +0;
}

main.cpp

#include "foobar_version.h"
#include <iostream>

int main(int argc, char* argv[])
{
    std::cout << "VERSION = " << getFooBarVersion() << "\n"
              << "MAJOR   = " << getFooBarVersionMajor() << "\n"
              << "MINOR   = " << getFooBarVersionMinor() << "\n"
              << "PATCH   = " << getFooBarVersionPatch() << "\n"
              << "TWEAK   = " << getFooBarVersionTweak()
              << std::endl;
}

CMakeLists.txt

cmake_minimum_required(VERSION 3.0)
project(FooBar VERSION 2.4.7)

configure_file(foobar_version.h.in foobar_version.h @ONLY)
add_executable(FooBar main.cpp)
target_include_directories(FooBar PRIVATE "${CMAKE_CURRENT_BINARY_DIR}")
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The +0 in foobar_version.h.in is necessary for the minor, patch and tweak parts to allow their
corresponding variables to be empty in the case of those version components being omitted.

Providing version details through a header like this is an improvement over the previous
techniques. The version details are not included on the command line of any source file’s
compilation and only those files that #include the foobar_version.h header will be recompiled when
the version details change. Providing all of the different version components rather than just the
version string also has no impact on command lines. Nevertheless, if the version number is needed
in many different source files, this can still result in more recompilation than is really necessary.
This approach can be further refined by moving the implementations out of the header into their
own .cpp file and compiling that as its own library.

foobar_version.h

#include <string>

std::string getFooBarVersion();
unsigned    getFooBarVersionMajor();
unsigned    getFooBarVersionMinor();
unsigned    getFooBarVersionPatch();
unsigned    getFooBarVersionTweak();

foobar_version.cpp.in

#include "foobar_version.h"

std::string getFooBarVersion()
{
    return "@FooBar_VERSION@";
}

unsigned getFooBarVersionMajor()
{
    return @FooBar_VERSION_MAJOR@;
}

unsigned getFooBarVersionMinor()
{
    return @FooBar_VERSION_MINOR@ +0;
}

unsigned getFooBarVersionPatch()
{
    return @FooBar_VERSION_PATCH@ +0;
}

unsigned getFooBarVersionTweak()
{
    return @FooBar_VERSION_TWEAK@ +0;
}

262



CMakeLists.txt

cmake_minimum_required(VERSION 3.0)
project(FooBar VERSION 2.4.7)

configure_file(foobar_version.cpp.in foobar_version.cpp @ONLY)
add_library(FooBar_version STATIC ${CMAKE_CURRENT_BINARY_DIR}/foobar_version.cpp)
target_include_directories(FooBar_version PUBLIC ${CMAKE_CURRENT_SOURCE_DIR})

add_executable(FooBar main.cpp)
target_link_libraries(FooBar PRIVATE FooBar_version)

add_library(FooToolkit mylib.cpp)
target_link_libraries(FooToolkit PRIVATE FooBar_version)

This arrangement has none of the drawbacks of the previous approaches. When the version details
change, only one source file needs to be recompiled (the generated foobar_version.cpp file) and the
FooBar and FooToolkit targets only need to be relinked. The foobar_version.h header never changes,
so any file that depends on it does not become out of date when the version details change. No
options are added to the compilation command line of any source file either, so no other
recompilations are triggered as a result of changing version details.

In situations where the project provides a library and header as part of a release package, the
above arrangement is also robust. The header does not contain the version details, the library does.
Therefore, code using the library can call the version functions and be confident that the details
they receive are those the library was built with. This can be helpful in complicated end user
environments where multiple versions of a project might be installed and not necessarily
structured how the project intended.

One variant of this approach is to make FooBar_version an object library rather than a static library.
The end result is more or less the same, but there isn’t much to be gained and it may feel less
natural to some developers. Making it a shared library loses some of the robustness advantages and
again introduces a little more complexity for little benefit. In general, a static library is the better
choice.

If the version functions are to be exposed as part of the API for a broader shared library, then the
additional concerns discussed in Section 22.5, “Symbol Visibility” and Section 22.6, “Mixing Static
And Shared Libraries” may need to be considered. In such cases, it may be more appropriate to add
the foobar_version.cpp file to that shared library directly rather than creating a separate static
library for it.

21.3. Source Control Commits
It is not unusual for projects to want to record details related to their source control system. This
might include the revision or commit hash of the sources at the time of the build, the name of the
current branch or most recent tag and so on. The approach outlined above with version details
provided through a dedicated .cpp file lends itself well to adding more functions to return such
details. For example, the current git hash can be provided relatively easily:
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foobar_version.cpp.in

std::string getFooBarGitHash()
{
    return "@FooBar_GIT_HASH@";
}
// Other functions as before...

CMakeLists.txt

cmake_minimum_required(VERSION 3.0)
project(FooBar VERSION 2.4.7)

# The find_package() command is covered later in the Finding Things chapter.
# Here, it provides the GIT_EXECUTABLE variable after searching for the
# git binary in some standard/well-known locations for the current platform.
find_package(Git REQUIRED)
execute_process(
    COMMAND ${GIT_EXECUTABLE} rev-parse HEAD
    RESULT_VARIABLE result
    OUTPUT_VARIABLE FooBar_GIT_HASH
    OUTPUT_STRIP_TRAILING_WHITESPACE
)
if(result)
    message(FATAL_ERROR "Failed to get git hash: ${result}")
endif()

configure_file(foobar_version.cpp.in foobar_version.cpp @ONLY)
# Targets, etc....

A slightly more interesting example is measuring how many commits have occurred since a
particular file changed. Consider embedding the project’s version in a separate file rather than in
the CMakeLists.txt file, where the only thing in this separate file is the project version number. A
reasonable assumption can then be made that the file only changes when the version number
changes. As a result, measuring the number of commits since that file changed on the current
branch is generally a good measure of the number of commits since the last version update.

The following example moves the project version out to a separate file named
projectVersionDetails.cmake and provides the number of commits through a new function in the
generated foobar_version.cpp file. It demonstrates a pattern suitable for any project where the
version is set by the top level project() call, but in a way that won’t interfere with a parent project if
it is incorporated into a larger project hierarchy (a topic discussed in Chapter 30, FetchContent).

foobar_version.cpp.in

unsigned getFooBarCommitsSinceVersionChange()
{
    return @FooBar_COMMITS_SINCE_VERSION_CHANGE@;
}
// Other functions as before...
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projectVersionDetails.cmake

# This file should contain nothing but the following line
# setting the project version. The variable name must not
# clash with the FooBar_VERSION* variables automatically
# defined by the project() command.
set(FooBar_VER 2.4.7)

CMakeLists.txt

cmake_minimum_required(VERSION 3.0)
include(projectVersionDetails.cmake)
project(FooBar VERSION ${FooBar_VER})

find_package(Git REQUIRED)
execute_process(
    COMMAND ${GIT_EXECUTABLE} rev-list -1 HEAD projectVersionDetails.cmake
    RESULT_VARIABLE result
    OUTPUT_VARIABLE lastChangeHash
    OUTPUT_STRIP_TRAILING_WHITESPACE
)
if(result)
    message(FATAL_ERROR "Failed to get hash of last change: ${result}")
endif()

execute_process(
    COMMAND ${GIT_EXECUTABLE} rev-list ${lastChangeHash}..HEAD
    RESULT_VARIABLE result
    OUTPUT_VARIABLE hashList
    OUTPUT_STRIP_TRAILING_WHITESPACE
)
if(result)
    message(FATAL_ERROR "Failed to get list of git hashes: ${result}")
endif()
string(REGEX REPLACE "[\n\r]+" ";" hashList "${hashList}")
list(LENGTH hashList FooBar_COMMITS_SINCE_VERSION_CHANGE)

configure_file(foobar_version.cpp.in foobar_version.cpp @ONLY)
# Targets, etc....

The above approach works out the git hash of the last change to the version details file, then uses
git rev-list to obtain the list of commit hashes for the whole repository since that commit. The
commits are initially found as a string with one hash per line, which is then converted into a CMake
list by replacing newline characters with the list separator (;). The list() command then simply
counts how many items are in the list to give the number of commits. A simpler approach would
use git rev-list --count to obtain the number directly, but older versions of git do not support the
--count option, so the above method is preferable if older git versions need to be supported.

Other variations are also possible. Some projects use git describe to provide various details
including branch names, most recent tag, etc., but note that tag and branch details can change
without changing commits. If a branch or tag is moved or renamed, the build might not be
repeatable. If version details only rely on file commit hashes, no such weakness is created. This also
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gives the project freedom in creating, renaming or deleting tags as needed after builds have
confirmed the commits have no errors (think of release tags being applied to commits after
continuous integration builds, testing, etc. confirm there are no problems).

Source control systems like Subversion present other challenges. On the one hand, Subversion
maintains a global revision number for the whole repository, so there is no need to first obtain
commit hashes and then count them. But Subversion also has the complication that it allows mixing
different revisions of different files. As a result, approaches like the one outlined above for git can
be defeated by a developer checking out different revisions of files but leaving the project version
file alone. This is not a scenario one would expect for an automated continuous integration system,
but it may be more likely for a developer working locally on their own machine, depending on the
way they like to work.

Another consideration of techniques like those above is what forces the generated version .cpp file
to be updated. CMake ensures the configure step is re-run if the project version file changes, since it
is brought into the main CMakeLists.txt file via an include() command. If, however, commits are
made to other files, CMake will not be aware of them. It may be possible to implement hooks into
the version control system (e.g. git’s post-commit hook) to force CMake to re-run, but this is more
likely to annoy developers than to help them. Ultimately, a compromise between convenience and
robustness will typically be made. That said, the accuracy of the source control details will likely
only be critical for releases and it should be easy enough to ensure that the release process
explicitly invokes CMake.

21.4. Recommended Practices
Projects are not required to follow any particular versioning system, but by following the
major.minor.patch.tweak format, certain functionality comes for free with CMake and new
developers have an easier time understanding the versioning used by the project. As will be seen in
later chapters (notably Chapter 28, Packaging), the version format is more important when making
packaged releases, but since many projects report their own version number at run time, the
version format affects the build as well.

The meaning of each of the numbers making up the version format is up to the project, but there
are conventions that end users often expect. For example, a change in the major value usually
means a significant release, often involving changes that are not backward compatible or that
represent a change in direction for the project. If a minor value changes, users tend to see this as an
incremental release, most likely adding new features without breaking existing behavior. When
only the patch value changes, users may not see it as a particularly important change and expect it
to be relatively minor, such as fixing some bugs but not introducing new functionality. The tweak
value is often omitted and doesn’t tend to have a common interpretation beyond being even less
significant than patch. Note that these are just general observations, projects can and do give the
version numbers completely different meanings. For ultimate simplicity, a project might use just a
single number and nothing else, effectively specifying every release as a new major version. While
this would be easy to implement, it would also provide less guidance to end users and require good
quality release notes to manage user expectations between each version.

The VERSION keyword of the project() command is one example of how CMake provides extra
convenience when the major.minor.patch.tweak format is used. The project provides a single
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version string and the project() command automatically defines a set of variables making the
various parts of the version number available. Some CMake modules may also use these variables
as defaults for certain meta data, so it is generally advisable to set the project version with the
project() command using the VERSION keyword. This keyword was added in CMake 3.0, but if
supporting older CMake versions, this functionality still needs to be considered. Projects should not
define variables whose names clash with the automatically defined ones or else later CMake
versions will issue a warning. Avoid explicitly setting variables with names of the form xxx_VERSION
or xxx_VERSION_yyy to prevent such warnings.

When defining the version number, consider doing so in its own dedicated file which CMake then
pulls in via an include() command. This allows the project to take advantage of changes in version
number aligning with changes in that file as seen by the project’s source control system. To
minimize unnecessary recompilation on version changes, generate a .c or .cpp file which contains
functions that return version details rather than embedding those details in a generated header or
as compiler definitions to be passed on the command line. Also ensure that names given to such
functions incorporate something specific to the project or place them in a project-specific
namespace. This allows the same pattern to be replicated across many projects which may later be
combined into a single build without causing name clashes.

Establish versioning strategies and implementation patterns early in a project’s life. This helps
developers gain a clear understanding about how and when version details get updated and it
encourages thinking about the release process well before the pressures of the first delivery. It also
allows less efficient approaches to be weeded out early so that build efficiency is maximized in
advance of releases where version numbers change and where build turnaround times may
become more important.
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Chapter 22. Libraries
Compared to writing ordinary applications, creating and maintaining libraries is typically more
involved, especially shared libraries. All the usual concerns about code correctness and
maintainability still apply, but shared libraries in particular also bring with them additional
considerations relating to API consistency, preserving binary compatibility between releases,
symbol visibility and more. Furthermore, each platform typically has its own set of unique features
and requirements, making cross-platform library development a challenging task.

For the most part, however, a core set of capabilities are supported by all major platforms, it’s just
that the way to define or use them varies. CMake provides a number of features which abstract
away these differences so that developers can focus on the capabilities and leave the
implementation details up to the build system.

22.1. Build Basics
The fundamental command for defining a library was covered in previous chapters and has the
following form:

add_library(targetName [STATIC | SHARED | MODULE | OBJECT]
            [EXCLUDE_FROM_ALL]
            source1 [source2 ...])

A shared library will be produced if either the SHARED or MODULE keyword is provided. Alternatively, if
no STATIC, SHARED, MODULE or OBJECT keyword is given, a shared library will be produced if the
BUILD_SHARED_LIBS variable has a value of true at the time add_library() is called.

The main difference between SHARED and MODULE is that SHARED libraries are intended for other targets
to link against, whereas MODULE libraries are not. MODULE libraries are typically used for things like
plugins or other optional libraries that can be loaded at runtime. The loading of such libraries is
often dependent on an application configuration setting or detection of some system feature. Other
executables and libraries do not normally link against a MODULE library.

On most Unix-based platforms, the file name of a STATIC or SHARED library will have lib prepended
by default, whereas MODULE might not. Apple platforms also support frameworks and loadable
bundles, which allow additional files to be bundled with the library in a well-defined directory
structure. This is covered in detail in Section 24.3, “Frameworks”.

On Windows platforms, library names do not have any lib prefix prepended, regardless of the type
of library. Static library targets produce a single .lib archive, whereas shared library targets result
in two separate files, one for the runtime (the .dll or dynamic link library) and the other for linking
against at build time (i.e. the .lib import library). Developers sometimes confuse import and static
libraries due to the same file suffix being used for both, but CMake generally handles them
correctly without any special intervention.

When using GNU tools on Windows (e.g. with the MinGW or MSYS project generators), CMake has
the ability to convert GNU import libraries (.dll.a) to the same format that Visual Studio produces
(.lib). This can be useful if distributing a shared library built with GNU tools to enable it to be
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linked to binaries built with Visual Studio. Note that Visual Studio must be installed for this
conversion to be possible. The conversion is enabled by setting the GNUtoMS target property to true
for a shared library. This target property is initialized by the value of the CMAKE_GNUtoMS variable at
the time add_library() is called.

22.2. Linking Static Libraries
CMake handles some special cases specific to linking static libraries. If a library A is listed as a
PRIVATE dependency for a static library target B, then A will effectively be treated as a PUBLIC
dependency as far as linking is concerned (and only for linking). This is because the private A
library will still need to be added to the linker command line of anything linking to B in order for
symbols from A to be found at link time. If B was a shared library, the private library A that it
depends on would not need to be listed on the linker command line. This is all handled
transparently by CMake, so the developer typically doesn’t need to concern themselves with the
details beyond specifying the PUBLIC, PRIVATE and INTERFACE dependencies with
target_link_libraries().

In typical projects, static libraries will not contain cyclic dependencies where two or more libraries
depend on each other. Nevertheless, some scenarios give rise to such situations and CMake will
recognize and handle the cyclic dependency as long as the relevant linking relationships have been
specified (i.e. by target_link_libraries()). A slightly modified version of the example from the
CMake documentation highlights the behavior:

add_library(A STATIC a.cpp)
add_library(B STATIC b.cpp)
target_link_libraries(A PUBLIC B)
target_link_libraries(B PUBLIC A)
add_executable(Main main.cpp)
target_link_libraries(Main A)

In the above, the link command for Main will contain A B A B. This repetition is provided
automatically by CMake without developer intervention, but in certain pathological cases, more
than one repetition may be required. While CMake provides the LINK_INTERFACE_MULTIPLICITY target
property for this purpose, such situations usually point to a need for the project to be restructured.
OBJECT libraries may also be a useful tool for addressing such deep interdependencies, since they
effectively act like a collection of sources rather than actual libraries. The ordering of object files on
the linker command line is usually not important, whereas library ordering typically is.

22.3. Shared Library Versioning
A CMake project which does not expect its libraries to be used outside the project itself doesn’t
typically need version information for any shared libraries it creates. The whole project tends to be
updated together when deployed, so there are few issues about ensuring binary compatibility
between releases, etc. But if the project provides libraries and other software could link against
them, library versioning becomes very important. Library version details add greater robustness,
allowing other software to specify the interface they expect to link against and have available to
them at run time.
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Most platforms offer functionality for specifying the version number of a shared library, but the
way it is done varies considerably. Platforms generally have the ability to encode version details
into the shared library binary and this information is sometimes used to determine whether a
binary can be used by another executable or shared library that links to it. Some platforms also
have conventions for setting up files and symbolic links with different levels of the version number
in their names. On Linux, for example, a common set of file and symbolic links for a shared library
might look like this:

libMyStuff.so.2.4.3
libMyStuff.so.2 --> libMyStuff.so.2.4.3
libMyStuff.so   --> libMyStuff.so.2

CMake takes care of most of the platform differences with regard to version handling for shared
libraries. When linking a target to a shared library, it will follow platform conventions when
deciding which of the file or symlink names to link against. When building a shared library, CMake
automates the creation of the full set of files and symlinks if version details are provided.

A shared library’s version details are defined by the VERSION and SOVERSION target properties. The
interpretation of these properties is different across the platforms CMake supports, but by
following semantic versioning principles, these differences can be handled fairly seamlessly.
Semantic versioning assumes a version number is specified in the form major.minor.patch, where
each version component is an integer. The VERSION property would be set to the full
major.minor.patch, whereas SOVERSION would be set to just the major part. As a project evolves and
makes releases, semantic versioning implies that the version details should be modified as follows:

• When an incompatible API change is made, increment the major part of the version and reset
the minor and patch parts to 0. This means the SOVERSION property will change every time there
is an API breakage and only if there is an API breakage.

• When functionality is added in a backwards compatible manner, increment the minor part and
reset the patch to 0. The major part remains unchanged.

• When a backwards compatible bug fix is made, increment the patch value and leave the major
and minor parts unchanged.

If the version details of a shared library are modified according to these principles, API
incompatibility issues at run time will be minimized on all platforms. Consider the following
example, which produces the set of symbolic links shown earlier for Linux:

add_library(MyStuff SHARED source1.cpp ...)
set_target_properties(MyStuff PROPERTIES
    VERSION   2.4.3
    SOVERSION 2
)

On Apple platforms, the otool -L command can be used to print the version details encoded into the
resultant shared library. The output for the shared library produced by the above example would
report the version details as having a compatibility version of 2.0.0 and current version 2.4.3.
Anything that linked against the MyStuff library would have the name libMyStuff.2.dylib encoded
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into it as the name of the library to look for at run time. Linux platforms show a similar structure in
their symbolic links for shared libraries and normal practice is to use just the major part for the
library’s soname.

CMake 3.17 added the MACHO_COMPATIBILITY_VERSION and MACHO_CURRENT_VERSION target properties to
support advanced use cases for Apple platforms (typically related to matching libtool conventions).
These additional properties allow file and symlink naming to be decoupled from the internal names
embedded in the Mach-O binaries. Projects should rarely need this more complex functionality and
are advised to avoid using these properties unless specific scenarios require them.

On Windows, CMake behavior is to extract a major.minor version from the VERSION property and
encode that into the DLL as the DLL image version. Windows does not have the concept of a
soname, so the SOVERSION property is not used. Nevertheless, following semantic versioning
principles will at least ensure that the DLL version can be used to determine the compatibility of
the library with binaries that link against it.

It should be noted that semantic versioning is not strictly required by any platform. Rather, it
provides a well-defined specification which brings some certainty around dependency
management between shared libraries and the things that use them. It happens to closely reflect
how library versions are usually interpreted on most Unix-based platforms and CMake aims to
make the most of the VERSION and SOVERSION target properties to provide shared libraries which
follow native platform conventions.

Projects should be aware that if only one of the VERSION and SOVERSION target properties are set, on
most platforms the missing one is treated as though it had the same value as the one that was
provided. This is unlikely to result in good version handling unless just a single number is used for
the version number (i.e. no minor or patch parts). Such version numbering may be appropriate in
certain cases, but projects should generally endeavor to follow the principles discussed above for
more flexible and more robust runtime behavior.

22.4. Interface Compatibility
The VERSION and SOVERSION target properties allow API versioning to be specified at the binary level
in a platform-independent manner. CMake also provides other properties which can be used to
define requirements for compatibility between CMake targets when they are linked to one another.
These can be used to describe and enforce details that version numbering alone cannot capture.

Consider a realistic example where a networking library only provides support for the https://
protocol and other similar secure capabilities if an appropriate SSL toolkit is available. Other parts
of the program may need to adjust their own functionality based on whether SSL is supported,
while the program as a whole should be consistent about whether SSL features can be used. This
can be enforced with an interface compatibility property.

A few different types of interface compatibility properties can be defined, but the simplest is a
boolean property. The basic idea is that libraries specify the name of a property they will use to
advertise a particular boolean state. Then they define that property with the relevant value. When
multiple libraries that are being linked together define the same property name for an interface
compatibility, CMake will check that they specify the same value and issue an error if they are
different. A basic example looks something like this:
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add_library(Networking net.cpp)
set_target_properties(Networking PROPERTIES
    COMPATIBLE_INTERFACE_BOOL SSL_SUPPORT
    INTERFACE_SSL_SUPPORT YES
)

add_library(Util util.cpp)
set_target_properties(Util PROPERTIES
    COMPATIBLE_INTERFACE_BOOL SSL_SUPPORT
    INTERFACE_SSL_SUPPORT YES
)

add_executable(MyApp myapp.cpp)
target_link_libraries(MyApp PRIVATE Networking Util)
target_compile_definitions(MyApp PRIVATE
    $<$<BOOL:$<TARGET_PROPERTY:SSL_SUPPORT>>:HAVE_SSL>
)

Both library targets advertise that they define an interface compatibility for the property name
SSL_SUPPORT. The COMPATIBLE_INTERFACE_BOOL property is expected to hold a list of names, each of
which requires an associated property of the same name with INTERFACE_ prepended to be defined
on that target. When the libraries are used together as a link dependency for MyApp, CMake checks
that both libraries define INTERFACE_SSL_SUPPORT with the same value. In addition, CMake will also
automatically populate the SSL_SUPPORT property of the MyApp target with the same value too, which
can then be used as part of a generator expression and made available to the source code of MyApp
as a compile definition as shown. This allows the MyApp code to tailor itself to whether or not SSL
support has been compiled into the libraries it uses. Continuing with the example, rather than MyApp
simply detecting whether SSL support is available, it can specify a requirement by explicitly
defining its SSL_SUPPORT property to hold the value that the libraries must be compatible with. In
that case, rather than automatically populating the SSL_SUPPORT property of MyApp, CMake will
compare the values and ensure the libraries are consistent with the specified requirement.

# Require libraries to have SSL support
set_target_properties(MyApp PROPERTIES SSL_SUPPORT YES)

The above examples are somewhat contrived, the same constraints could have been enforced in
other ways. The real advantages of interface compatibility specifications start to emerge as a
project becomes more complicated and its targets are spread across many directories or come from
externally built projects. Interface compatibilities are assigned as properties of the targets, so they
only need to be defined in one place and are then made available anywhere the target can be used
without further effort. Consuming targets don’t have to know the details of how the interface
compatibility is determined, only the final decision stored in the target’s INTERFACE_… properties.

CMake also supports interface compatibilities expressed as a string. These work essentially the
same way as the boolean case except that the named properties are required to have exactly the
same values and can hold any arbitrary contents. The earlier example can be modified to require
that libraries use the same SSL implementation, not just agree on whether they support SSL or not:
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add_library(Networking net.cpp)
set_target_properties(Networking PROPERTIES
    COMPATIBLE_INTERFACE_STRING SSL_IMPL
    INTERFACE_SSL_IMPL OpenSSL
)

add_library(Util util.cpp)
set_target_properties(Util PROPERTIES
    COMPATIBLE_INTERFACE_STRING SSL_IMPL
    INTERFACE_SSL_IMPL OpenSSL
)

add_executable(MyApp myapp.cpp)
target_link_libraries(MyApp PRIVATE Networking Util)
target_compile_definitions(MyApp PRIVATE
    SSL_IMPL=$<TARGET_PROPERTY:SSL_IMPL>
)

In the above, the SSL_IMPL property is used as a string interface compatibility with the libraries
specifying that they use OpenSSL as their SSL implementation. Just as for the boolean case, the MyApp
target could have defined its SSL_IMPL property to specify a requirement rather than letting CMake
populate it with the value from the libraries.

The other kind of interface compatibility CMake supports is a numeric value. Numeric interface
compatibilities are used to determine the minimum or maximum value defined for a property
among a set of libraries rather than to require the properties to have the same value. This can be
exploited to allow a target to detect things like a minimum protocol version it could support or to
work out the largest temporary buffer size needed among the libraries it links to.

add_library(BigFast strategy1.cpp)
set_target_properties(BigFast PROPERTIES
    COMPATIBLE_INTERFACE_NUMBER_MIN PROTOCOL_VER
    COMPATIBLE_INTERFACE_NUMBER_MAX TMP_BUFFERS
    INTERFACE_PROTOCOL_VER 3
    INTERFACE_TMP_BUFFERS 200
)

add_library(SmallSlow strategy2.cpp)
set_target_properties(SmallSlow PROPERTIES
    COMPATIBLE_INTERFACE_NUMBER_MIN PROTOCOL_VER
    COMPATIBLE_INTERFACE_NUMBER_MAX TMP_BUFFERS
    INTERFACE_PROTOCOL_VER 2
    INTERFACE_TMP_BUFFERS 15
)

add_executable(MyApp myapp.cpp)
target_link_libraries(MyApp PRIVATE BigFast SmallSlow)
target_compile_definitions(MyApp PRIVATE
    MIN_API=$<TARGET_PROPERTY:PROTOCOL_VER>
    TMP_BUFFERS=$<TARGET_PROPERTY:TMP_BUFFERS>
)
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In the above, PROTOCOL_VER is defined as a minimum numeric interface compatibility, so the
PROTOCOL_VER property of MyApp will be set to the smallest value specified for the
INTERFACE_PROTOCOL_VER property of the libraries it links to, which in this case is 2. Similarly,
TMP_BUFFERS is defined as a maximum numeric interface compatibility and the MyApp TMP_BUFFERS
property receives the largest value among the INTERFACE_TMP_BUFFERS property of its linked libraries,
which is 200.

At this point, it would be natural to think about using the same property for both a minimum and
maximum numeric interface compatibility to allow both the smallest and largest value to be
detected in the parent. This is not possible because CMake does not (and cannot) allow the same
property to be used with more than one kind of interface compatibility. If a property was used for
multiple types of interface compatibilities, it would be impossible for CMake to know which type
should be used to compute the value to be stored in the parent’s result property. For example, if
PROTOCOL_VER were both a minimum and maximum interface compatibility in the above example,
CMake could not determine the value to store in the PROTOCOL_VER property of MyApp - should it store
the minimum or maximum value? Instead, separate properties must be used to achieve this:

add_library(BigFast strategy1.cpp)
set_target_properties(BigFast PROPERTIES
    COMPATIBLE_INTERFACE_NUMBER_MIN PROTOCOL_VER_MIN
    COMPATIBLE_INTERFACE_NUMBER_MAX PROTOCOL_VER_MAX
    INTERFACE_PROTOCOL_VER_MIN 3
    INTERFACE_PROTOCOL_VER_MAX 3
)

add_library(SmallSlow strategy2.cpp)
set_target_properties(SmallSlow PROPERTIES
    COMPATIBLE_INTERFACE_NUMBER_MIN PROTOCOL_VER_MIN
    COMPATIBLE_INTERFACE_NUMBER_MAX PROTOCOL_VER_MAX
    INTERFACE_PROTOCOL_VER_MIN 2
    INTERFACE_PROTOCOL_VER_MAX 2
)

add_executable(MyApp myapp.cpp)
target_link_libraries(MyApp PRIVATE BigFast SmallSlow)
target_compile_definitions(MyApp PRIVATE
    PROTOCOL_VER_MIN=$<TARGET_PROPERTY:PROTOCOL_VER_MIN>
    PROTOCOL_VER_MAX=$<TARGET_PROPERTY:PROTOCOL_VER_MAX>
)

The result of the above example is that MyApp knows the range of protocol versions it needs to
support based on the protocols used by the libraries it links to.

If one target defines an interface compatibility of any particular type, other targets are not required
to define it too. Any target which does not define a matching interface compatibility is simply
ignored for that particular property. This ensures libraries only need to define interface
compatibilities that are relevant to them.

When there are multiple levels of library link dependencies, there are some subtle complexities to
how interface compatibilities are handled. Consider the structure shown in the following diagram,
which contains a number of library and executable targets and their direct link dependencies.
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MyApp

libNet libUtil

INTERFACE_FOO ON INTERFACE_FOO ON

libCalc

INTERFACE_FOO OFF

If all link dependencies are considered PRIVATE, then only libNet and libUtil are direct link
dependencies of MyApp, so only those two libraries are required to have consistent values for their
INTERFACE_FOO property. The value of that property in the libCalc library is not considered, since it is
not a direct dependency of MyApp. Furthermore, the only direct link dependency of libUtil is libCalc,
so the INTERFACE_FOO property of libCalc has no other library it is required to be consistent with.
Even though both libUtil and libCalc define an interface compatibility for the same property name,
because they are not both direct link dependencies of a common target, they are not required to
have compatible values.

Now consider the situation where libCalc is a PUBLIC link dependency of libUtil. In that case, the
final linking relationships will actually look like this:

MyApp

Transitive link

libNet libUtil

INTERFACE_FOO ON INTERFACE_FOO ON

libCalc

INTERFACE_FOO OFF

When libCalc is a PUBLIC link dependency of libUtil, anything that links to libUtil will also link to
libCalc. Thus, libCalc becomes a direct link dependency of MyApp and therefore it does participate in
interface compatibility checking with libNet and libUtil. This means great care must be taken when
defining interface compatibilities to ensure that they accurately express the correct things, since
their reach can extend out to targets beyond what may initially seem obvious when PUBLIC link
relationships are involved.
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22.5. Symbol Visibility
Simplistically, a library can be thought of as a container of compiled source code, providing various
functions and global data which other code can call or use. For static libraries, the container is
really just a collection of object files and the tool putting it together is sometimes referred to as an
archiver or librarian. Shared libraries, on the other hand, are produced by the linker, which
processes the object code, archives, etc. and decides what to include in the final shared library
binary. Some functions and global data may be hidden, meaning they have been marked as okay for
the linker to use to resolve internal code dependencies, but code outside the shared library cannot
call or use them. Other symbols are exported, so code both inside and outside the shared library
can access them. This is referred to as a symbol’s visibility.

Compilers have different ways of specifying symbol visibility, and they also have different default
behaviors. Some make all symbols visible by default, whereas others hide symbols by default.
Compilers also differ in the syntax used to mark individual functions, classes and data as visible or
not, which adds to the complexity of writing portable shared libraries. In order to avoid some of
that complexity, some developers opt to simply make all symbols visible and avoid having to
explicitly mark any symbols for export. While this may initially seem like a win, it comes with a
range of downsides:

• It is equivalent to saying every function, class, type, global variable, etc. is freely available for
anything to use. This is rarely desirable, but may be acceptable if the project is content to rely
on its documentation to define the symbols which should be considered public.

• By making all symbols visible, consuming code cannot be prevented from using things they
shouldn’t. Other code linking to the library may come to rely on some internal symbol, making
it harder for the shared library to change its implementation or internal structure without
breaking consuming projects.

• When all symbols are to be treated as visible, the linker cannot know whether each symbol will
be used by anything, so it has to include them all in the final shared library. When only a subset
of the symbols are exported, the linker has the opportunity to identify code which can never be
used by the visible symbols and therefore discard it, often resulting in a much smaller binary,
which then has the potential to load faster at run time.

• Languages like C++ which support templates have the potential to define a huge number of
symbols. If all symbols are visible by default, this can result in the symbol table of a shared
library growing quite large. In extreme cases, this can have a measurable impact on run time
startup performance.

• Functions used in the internal implementation of the library may use names which expose
details about what the library does or how it does it. This might be a security concern in some
contexts, or it may reveal commercial IP that shouldn’t be visible to those receiving the library.

The above points highlight that symbol visibility is as much about enforcing the public-private
nature of a library’s API as it is about the low level mechanics of shared library performance and
package size. Clearly, there are advantages to only exporting those symbols which should be
considered public, but the compiler and platform specific nature of how to achieve that often
presents a substantial hurdle for multi-platform projects. CMake considerably simplifies this
process by abstracting away those differences behind a few properties, variables and a helper
module.
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22.5.1. Specifying Default Visibility

By default, Visual Studio compilers assume all symbols are hidden unless explicitly exported. Other
compilers, such as GCC and Clang are the opposite, making all symbols visible by default and only
hiding symbols if explicitly told to. If a project wishes to have the same default symbol visibility
across all its compilers and platforms, one of these two approaches must be selected, but hopefully
the disadvantages highlighted in the preceding section provide a compelling argument for choosing
that symbols be hidden by default.

The first step to enforcing hidden default visibility is to define the <LANG>_VISIBILITY_PRESET set of
properties on a shared library target. For the two most common languages where this functionality
is used, the property names are C_VISIBILITY_PRESET and CXX_VISIBILITY_PRESET for C and C++
respectively. The value given to this property should be hidden, which changes the default visibility
to hide all symbols. Other supported values include default, protected and internal, but these are
less likely to be useful for cross-platform projects. They either specify what is already the default
behavior or are variants of hidden with more specialized meanings in some contexts.

The second step is to specify that inlined functions should also be hidden by default. For C++ code
making heavy use of templates, this can substantially reduce the size of the final shared library
binary. This behavior is controlled by the target property VISIBILITY_INLINES_HIDDEN and applies to
all languages. It should hold the boolean value TRUE to hide inline symbols by default.

Both <LANG>_VISIBILITY_PRESET and VISIBILITY_INLINES_HIDDEN can be specified on each shared library
target, or a default can be set by the appropriate CMake variables. When a target is created, its
<LANG>_VISIBILITY_PRESET property is initialized by the value of the CMake variable
CMAKE_<LANG>_VISIBILITY_PRESET and its VISIBILITY_INLINES_HIDDEN property is initialized by the
CMAKE_VISIBILITY_INLINES_HIDDEN variable. This is typically more convenient than setting the
properties for each target individually.

For those projects wishing to make all symbols visible by default across all platforms, this only
requires changing the default behavior of Visual Studio compilers. From version 3.4, CMake
provides the WINDOWS_EXPORT_ALL_SYMBOLS target property which provides this behavior, but with
caveats. Defining this property to a true value will cause CMake to write a .def file containing all
symbols from all object files used to create the shared library and pass that .def file to the linker.
This fairly brute force method prevents the source code from selectively hiding any symbols, so it
should only be used where all symbols should be made visible. This target property is initialized by
the CMAKE_WINDOWS_EXPORT_ALL_SYMBOLS CMake variable when a shared library target is created.

22.5.2. Specifying Individual Symbol Visibilities

Most common compilers support specifying the visibility of individual symbols, but the way they do
so varies. In general Visual Studio uses one method and most other compilers follow the method
used by GCC. The two share a similar structure, but they use different keywords. This means source
code for languages like C, C++ and their derivatives can use a common preprocessor define for
visibility control and projects can instruct CMake to provide the appropriate definition.

There are three primary cases where symbol visibility can be specified: classes, functions and
variables. In the following example which contains declarations for each of these three cases, note
the position of MYTOOLS_EXPORT:
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class MYTOOLS_EXPORT SomeClass {...};   // Export non-private members of a class
MYTOOLS_EXPORT void someFunction();     // Make a free function visible
MYTOOLS_EXPORT extern int myGlobalVar;  // Make a global variable visible

When building the shared library containing the implementations of the above, MYTOOLS_EXPORT
needs to evaluate to keywords that export the symbol for use by other libraries and executables. On
the other hand, if the same declarations are read by code belonging to a target outside the shared
library, MYTOOLS_EXPORT must evaluate to keywords that import the symbol. With Visual Studio
compilers, these keywords take the form __declspec(...), whereas GCC and compatible compilers
use __attribute__(...).

Coming up with the right contents for MYTOOLS_EXPORT for all compilers and for both the exporting
and importing cases can be somewhat messy. Add into the mix that developers might choose to
build a library as either shared or static and the complexity grows. Thankfully, CMake provides the
GenerateExportHeader module which handles all of these details in a very convenient fashion. This
module provides the following function:

generate_export_header(target
    [BASE_NAME baseName]
    [EXPORT_FILE_NAME exportFileName]
    [EXPORT_MACRO_NAME exportMacroName]
    [DEPRECATED_MACRO_NAME deprecatedMacroName]
    [NO_EXPORT_MACRO_NAME noExportMacroName]
    [STATIC_DEFINE staticDefine]
    [NO_DEPRECATED_MACRO_NAME noDeprecatedMacroName]
    [DEFINE_NO_DEPRECATED]
    [PREFIX_NAME prefix]
    [CUSTOM_CONTENT_FROM_VARIABLE var]
)

Typically, none of the optional arguments are needed and only the shared library target name is
provided. CMake writes out a header file in the current binary directory, using the target name in
lowercase with _export.h appended as the header file name. The header provides a define for
symbol export with a similarly structured name, this time using the uppercase target name with
_EXPORT appended. The following demonstrates this typical usage:

CMakeLists.txt

# Hide things by default
set(CMAKE_CXX_VISIBILITY_PRESET     hidden)
set(CMAKE_VISIBILITY_INLINES_HIDDEN YES)

# NOTE: myTools.cpp must #include myTools.h
add_library(MyTools myTools.cpp)
target_include_directories(MyTools PUBLIC
    "${CMAKE_CURRENT_BINARY_DIR}"
)
# Write mytools_export.h to the current binary directory
include(GenerateExportHeader)
generate_export_header(MyTools)
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myTools.h

#include "mytools_export.h"

class MYTOOLS_EXPORT SomeClass
{
    // ...
};
MYTOOLS_EXPORT void someFunction();
MYTOOLS_EXPORT extern int myGlobalVar;

The current binary directory is not part of the default header search path, so it needs to be added as
a PUBLIC search path for the library to ensure the mytools_export.h header can be found by both the
library’s own source code and any other code from targets linking to the shared library. See Section
27.5.1, “File Sets” for a potentially cleaner way of handling this aspect.

If using the target name as part of the header file name or preprocessor define name is not
desirable, the BASE_NAME option can be used to provide an alternative. It is transformed in the same
way, being converted to lowercase and having _export.h appended for the file name and uppercase
with _EXPORT appended for the preprocessor define.

CMakeLists.txt

include(GenerateExportHeader)
generate_export_header(MyTools BASE_NAME fooBar)

myTools.h

#include "foobar_export.h"

class FOOBAR_EXPORT SomeClass
{
    // ...
};
FOOBAR_EXPORT void someFunction();
FOOBAR_EXPORT extern int myGlobalVar;

If a different name should be used for the file and preprocessor define, then rather than using
BASE_NAME, the EXPORT_FILE_NAME and EXPORT_MACRO_NAME options can be given. Unlike BASE_NAME, the
names provided by these two options are used without any modification.

CMakeLists.txt

include(GenerateExportHeader)
generate_export_header(MyTools
    EXPORT_FILE_NAME  export_myTools.h
    EXPORT_MACRO_NAME API_MYTOOLS
)
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myTools.h

#include "export_myTools.h"

class API_MYTOOLS SomeClass
{
    // ...
};
API_MYTOOLS void someFunction();
API_MYTOOLS extern int myGlobalVar;

The generate_export_header() function provides more than just this one preprocessor define, it also
provides other preprocessor definitions which can be used to mark symbols as deprecated or to
explicitly specify that a symbol should never be exported. The latter can be useful to prevent
exporting parts of a class that is otherwise exported, such as a public member function intended for
internal use within the shared library but not by code outside it. By default, the name of this
preprocessor definition consists of the target name (or BASE_NAME if it is specified) with _NO_EXPORT
appended, but an alternative name can be provided with the NO_EXPORT_MACRO_NAME option if desired.

CMakeLists.txt

include(GenerateExportHeader)
generate_export_header(MyTools
    NO_EXPORT_MACRO_NAME REALLY_PRIVATE
)

myTools.h

#include "mytools_export.h"

class MYTOOLS_EXPORT SomeClass
{
public:
    REALLY_PRIVATE void doInternalThings();
    // ...
};

The function’s deprecation support works in a similar way, providing a preprocessor definition
with the uppercased target (or BASE_NAME) name followed by _DEPRECATED, or allowing a custom name
to be specified via the DEPRECATED_MACRO_NAME option. The DEFINE_NO_DEPRECATED option can also be
given, which will result in an additional preprocessor define being provided with a name consisting
of the usual uppercased target or BASE_NAME followed by _NO_DEPRECATED. Like the other preprocessor
defines, this name can also be overridden with the NO_DEPRECATED_MACRO_NAME option. With some
compilers, symbols marked as deprecated can result in compile time warnings which draw
attention to their use. This can be a helpful mechanism to encourage developers to update their
code to no longer use the deprecated symbols. The following shows how the deprecation
mechanisms can be used.
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CMakeLists.txt

option(OMIT_DEPRECATED "Omit deprecated parts of MyTools")
if(OMIT_DEPRECATED)
    set(deprecatedOption "DEFINE_NO_DEPRECATED")
else()
    unset(deprecatedOption)
endif()

include(GenerateExportHeader)
generate_export_header(MyTools
    NO_DEPRECATED_MACRO_NAME OMIT_DEPRECATED
    ${deprecatedOption}
)

myTools.h

#include "mytools_export.h"

class MYTOOLS_EXPORT SomeClass
{
public:
#ifndef OMIT_DEPRECATED
    MYTOOLS_DEPRECATED void oldImpl();
#endif
    // ...
};

myTools.cpp

#include "myTools.h"

#ifndef OMIT_DEPRECATED
void SomeClass::oldImpl() { ... }
#endif

The above example provides a CMake cache variable to determine whether to compile the
deprecated items. The developer has the ability to make this choice without editing any files, so
verifying behavior with or without the deprecated part of an API is easy to do. This can be
particularly useful if continuous integration builds have been set up to test both with and without
deprecated parts of a library. It can also be useful in situations where the project is being used as a
dependency of another project, allowing that other project’s developers to test whether their code
uses the deprecated symbols or not just by changing the CMake cache variable.

A less common but nevertheless important case also deserves special mention. Some projects may
wish to build both shared and static versions of the same library. In this case, the same set of source
code needs to allow symbol exports to be enabled for the shared library build, but disabled for the
static library build (also see the next section for why this won’t always be the case). When both
forms of library are required in the one build, they need to be different build targets, but the
generate_export_header() function writes a header that is closely tied to a single target. In order to
support this scenario, the generated header includes logic to check for the existence of one further
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preprocessor define before populating the export definition. The name of this special define follows
the usual pattern once again, this time being the uppercased target or BASE_NAME followed by
_STATIC_DEFINE, or having a custom name provided by the STATIC_DEFINE option. When this special
preprocessor definition is defined, the export definition is forced to expand to nothing, which is
typically what is needed when the target is being built as a static library. Without the special
preprocessor definition, the export define has the usual contents and works as expected when
building a shared library target.

When both shared and static libraries are being built for the same set of source files, the
generate_export_header() function should be given the target that corresponds to the shared library.
The special preprocessor define is then set only on the static library’s target. The BASE_NAME option
will also typically be used to make the various symbols intuitive to either form of the library rather
than being specific to the shared library only. The following demonstrates the structure needed to
achieve the desired result:

# Same source list, different library types
add_library(MyShared SHARED ${mySources})
add_library(MyStatic STATIC ${mySources})

# Shared target used for generating export header
# with the name mytools_export.h, which will be suitable
# for both the shared and static targets
include(GenerateExportHeader)
generate_export_header(MyShared BASE_NAME MyTools)

# Static target needs special preprocessor define
# to prevent symbol import/export keywords being added
target_compile_definitions(MyStatic PRIVATE
    MYTOOLS_STATIC_DEFINE
)

As is evident by the preceding discussion, the generate_export_header() function defines a number of
different preprocessor definitions and there are opportunities for different targets to accidentally
try to use the same names for at least some of them. To help reduce name collisions, the PREFIX_NAME
option allows an additional string to be specified which will be prepended to the names of each
preprocessor definition. When used, this option would typically be something related to the project
as a whole, effectively putting all of a project’s generated preprocessor names into something like a
project-specific namespace.

The last option not yet discussed is CUSTOM_CONTENT_FROM_VARIABLE, which was only added in CMake
3.7. This option allows arbitrary content to be injected into the generated header near the end, after
all the various preprocessor logic has been added. When used, this option must be given the name
of a variable whose contents should be injected, not the content itself.

string(TIMESTAMP now)
set(customContents "/* Generated: ${now} */")
generate_export_header(MyTools
    CUSTOM_CONTENT_FROM_VARIABLE customContents
)
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22.6. Mixing Static And Shared Libraries
When a project builds all its libraries as static, the build may appear to be a bit more forgiving
about library link dependencies. The project may neglect to specify that one target requires
another, but when various static libraries are linked into a final executable, the missing library
dependencies are satisfied because they are explicitly listed for the executable in the required
order. The build then succeeds, but probably only after a period of trial and error doing builds,
having the linker complain about missing symbols, adding in more missing libraries or reordering
the existing ones, etc.

This scenario results in success more by good fortune than by good design, but it is surprisingly
common, especially with projects that define many small libraries. If link dependencies are
specified for at least some static libraries, CMake automatically handles transitively linking those
dependencies. So even if the PRIVATE/PUBLIC nature of the dependency is specified incorrectly, with a
static library, it is always treated as PUBLIC anyway. This sometimes makes builds work, even though
the link dependency isn’t accurately described.

When library targets are defined as a mix of shared and static, the correctness of link dependencies
becomes much more important. Consider the following set of targets:

MyApp

libUtil

libCalc

If libUtil and libCalc are static libraries, the above link dependency relationships are safe. If
libUtil is a shared library, then the above link dependency arrangement opens up the possibility of
duplicating data expected to have only one instance across a whole application. If libCalc defines
global data, such as might be common for a singleton or static data of a class, it may be possible for
both MyApp and libUtil to have their own separate instances of that data. This becomes possible
because both MyApp and libUtil require the linker to resolve symbols, so both invocations may
decide the global data is required and set up an internal instance of it within that executable or
shared library. If the global data is not an exported symbol, the linker won’t see the instance
already created in libUtil when it goes to link MyApp. The end result is that a second instance is
created in MyApp, which is almost certain to cause hard-to-trace runtime issues. A typical
manifestation of this is a variable magically appearing to change values across a function call from
one executable or shared library into another shared library.
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Situations similar to the above scenario can appear in a number of different forms, but the same
underlying principle applies in each case. If a static library is linked into a shared library, that
shared library should not be combined with any other library or executable that also links to that
same static library. Ideally, if shared and static libraries are being mixed, then the static libraries
should only ever exclusively be linked into one shared library and anything that needs something
from one of those static libraries should link to the shared library instead. The shared library
essentially has its own API and the static libraries may contribute to it.

MyApp

libSharedA libSharedB

libStaticA1 libStaticSeparate libStaticB1

libStaticA2 libStaticB2

Using static libraries to build up shared library content like this presents its own set of issues when
it comes to symbol visibility. Ordinarily, the code from the static libraries would not be exported, so
it would not appear as part of the shared library’s exported symbols. One way to address this is to
use the generate_export_header() function on the shared library as normal, then make the static
library re-use the same export definitions. The key to making this work is to ensure the static
library has a compile definition for the name of the shared library target with _EXPORTS appended,
which is how the generated header detects whether the code is being built as part of the shared
library or not.

CMakeLists.txt

add_library(MyShared SHARED shared.cpp)
add_library(MyStatic STATIC static.cpp)

include(GenerateExportHeader)
generate_export_header(MyShared BASE_NAME mine)

target_link_libraries(MyShared PRIVATE MyStatic)
target_include_directories(MyShared PUBLIC ${CMAKE_CURRENT_BINARY_DIR})
target_include_directories(MyStatic PUBLIC ${CMAKE_CURRENT_BINARY_DIR})

# This makes the static library code appear to be part of the shared
# library as far as the generated export header is concerned
target_compile_definitions(MyStatic PRIVATE MyShared_EXPORTS)

284



shared.h

#include "mine_export.h"

MINE_EXPORT void sharedFunc();

static.h

#include "mine_export.h"

MINE_EXPORT void staticFunc();

The other factor to consider is whether the linker will discard code or data defined in the static
library when it comes to linking the shared library. If it determines that nothing is using a
particular symbol, the linker may discard it as an optimization. Special steps may need to be taken
to prevent it from doing this.

One choice is to make the shared library explicitly use every symbol to be retained from the shared
libraries. This has the advantage that it would work for all compilers and linkers, but it may not be
feasible for non-trivial projects. The alternative essentially requires linker-specific flags to be
added, such as --whole-archive for the ld linker on Unix systems, or /WHOLEARCHIVE with Visual Studio.
The $<LINK_LIBRARY:WHOLE_ARCHIVE,…> generator expression may be used to add the necessary flags
with CMake 3.24 or later, as shown below (see Section 16.2, “Customize How Libraries Are Linked”
for further details). Be aware though that such functionality may not be available for all linkers. If
the above strategies are not suitable, it may be worth considering turning those static libraries into
shared instead.

target_link_libraries(MyShared
    PRIVATE $<LINK_LIBRARY:WHOLE_ARCHIVE,MyStatic>
)

If a shared library only links to static libraries in a private fashion (meaning none of the static
libraries’ symbols need to be exported), then the situation is considerably easier. On some
platforms, no further action is needed other than simply linking the shared library to the static
libraries. On others, one or two minor wrinkles may arise which need to be addressed. On many 64-
bit Unix systems, for example, code has to be compiled as position independent if it is to go into a
shared library, whereas there is no such requirement for static libraries. If, however, a shared
library links to a static library, then the static library does have to be built as position independent.

CMake provides the POSITION_INDEPENDENT_CODE target property as a way of transparently handling
position independent behavior on those platforms that require it. When set to true, this causes that
target’s code to be built as position independent. By default, the property is ON for SHARED and MODULE
libraries and OFF for all other types of targets. The default can be overridden by setting the
CMAKE_POSITION_INDEPENDENT_CODE variable, in which case it will be used to initialize the
POSITION_INDEPENDENT_CODE target property when the target is created.
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add_library(MyShared SHARED shared.cpp)
add_library(MyStatic STATIC static.cpp)
target_link_libraries(MyShared PRIVATE MyStatic)

set_target_properties(MyStatic PROPERTIES
    POSITION_INDEPENDENT_CODE ON
)

set(CMAKE_POSITION_INDEPENDENT_CODE ON)
add_library(MyOtherStatic STATIC other.cpp)
target_link_libraries(MyShared PRIVATE MyOtherStatic)

22.7. Recommended Practices
Use MODULE libraries for optional plugins to be loaded on demand and SHARED libraries for linking
against. Use shared libraries where the symbols to be exposed to consumers of the library must be
tightly controlled, either for API purposes or to hide sensitive implementation details. If aiming to
deliver a library as part of a release package, shared libraries tend to be preferred over static
libraries in most cases.

If a target uses something from a library, it should always link directly to that library. Even if the
library is already a link dependency of something else the target links to, do not rely on an indirect
link dependency for something a target uses directly. If that other target changes its
implementation and it no longer links against the library, the main target will no longer build.
Furthermore, express the right type of link dependency; PRIVATE, PUBLIC or INTERFACE. This ensures
CMake correctly handles transitive link dependencies for both shared and static libraries.
Specifying all the direct dependencies with the correct level of visibility is essential for ensuring
CMake constructs a reliable linker command line with correct library ordering.

Using the correct link visibility has the added benefit that consuming targets don’t have to know
about all the different library dependencies used internally, they only need to link to a library and
let that library define its own dependencies. CMake then takes care of ensuring all required
libraries are specified in the correct order on the final linker command line. Resist the temptation
to simply make all link dependencies PUBLIC, since this extends the visibility of otherwise private
libraries into places where it may be undesirable. This becomes particularly important when
packaging up a project for release or distribution.

Consider using a library versioning strategy as early as possible. Once a library has been released
into the wild, the version number has some very specific meanings with regard to binary
compatibility. Make use of the VERSION and SOVERSION target properties to specify the library version,
even if initially these are set to some basic placeholders early in the life of the project. In the
absence of any other strategy, one reasonable option is to start version numbering at 0.1.0, since
people tend to interpret 0.0.0 as a default value or the version mistakenly not having been set,
while 1.0.0 is sometimes taken to imply the first public release. Give strong consideration to
adopting semantic versioning for handling version changes thereafter. Also keep in mind that
changes in library versions can have a surprisingly strong influence on things like release
processes, packaging, etc. and developers need time to learn the implications of version numbers
for shared libraries well in advance of those libraries being released publicly. Consider also
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whether the project version and library version should have any relationship to each other or not.
It can be very difficult to change such a relationship once the first release is made, so be wary of
linking them unless they have a strong association (a project delivering a coherent set of libraries
as an SDK would be one such example of a strong association).

Some projects can optionally provide certain functionality if a particular supporting toolkit, library,
etc. is available. To allow other parts of the build or indeed other consuming projects to detect or
check consistency with that optional functionality or feature, interface compatibility details can be
provided. Consider whether the feature in question needs to have visibility beyond the library, such
as allowing consuming targets to detect whether the feature is supported or confirming whether
the selected implementation provides all the capabilities required. Also consider whether the added
complexity of specifying and using interface compatibilities brings with it sufficient benefits to
make it worthwhile, as the deeper the library dependency hierarchy becomes, the harder it can be
to use interface compatibilities effectively.

Give consideration to symbol visibility as early in the life of a project as possible, as it can be very
difficult to go back and retrofit a project with symbol visibility details later. When creating
libraries, develop the mindset of always thinking about whether a particular class, function or
variable should be accessible to anything outside the library. Think of anything that has external
visibility as being very hard to change, whereas internal things can be more freely modified
between releases as needed. Use hidden visibility as the default and explicitly mark each individual
entity to be exported, ideally with macros provided by the generate_export_header() function so that
CMake handles the various platform differences on the project’s behalf. Also consider using the
deprecation macros provided by that function to clearly identify those parts of a library’s API that
have been deprecated and which may be removed in a future version.

Take extra care when mixing shared and static libraries. Where possible, prefer to use one or the
other rather than both. This avoids some difficulties associated with symbol visibility control and
ensuring consistency of build settings. Where it makes sense to mix both library types, try to ensure
that static libraries only get linked into one shared library and no other targets link to those static
libraries. Treat the static libraries as being subgroups within the shared library, with outside targets
only ever linking to the shared library. Even better though, consider pulling the code up from the
static libraries into the shared library directly instead, getting rid of the static libraries altogether.
The techniques presented in Section 34.5.1, “Building Up A Target Across Directories” demonstrate
how to add sources to an existing target progressively, allowing the target sources to be
conveniently accumulated across subdirectories.
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Chapter 23. Toolchains And Cross Compiling
When considering the process of building software and the tools involved, developers typically
think about the compiler and linker. While these are the primary tools that developers are exposed
to, there are a number of other tools, libraries and supporting files that also contribute to the
process. Loosely speaking, this broader set of tools and other files is collectively referred to as the
toolchain.

For desktop or traditional server applications, there usually isn’t a great need to think too deeply
about the toolchain. In most cases, deciding which release of the prevailing platform toolchain to
use is about as complicated as it gets. CMake usually finds the toolchain without needing much help
and the developer can get on with the task of writing software. For mobile or embedded
development, however, the situation is quite different. The toolchain will normally need to be
specified in some way by the developer. This can be as simple as specifying a different target
system name, or it can be as complex as specifying the paths to individual tools and a target root
file system. Special flags may also need to be set to make the tools produce binaries that will
support the right chipset, have the required performance characteristics and so on.

Once a toolchain has been selected, CMake performs quite a bit of processing internally to test the
toolchain to determine the features it supports, set various properties and variables, etc. This is the
case even for a traditional build where the default toolchain is used, not just for builds that are
cross-compiling. The results of these tests can be seen in CMake’s output the first time it is run for a
given build directory. An example for GCC may look something like this:

-- The C compiler identification is GNU 9.3.0
-- The CXX compiler identification is GNU 9.3.0
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done
-- Check for working C compiler: /usr/bin/cc - skipped
-- Detecting C compile features
-- Detecting C compile features - done
-- Detecting CXX compiler ABI info
-- Detecting CXX compiler ABI info - done
-- Check for working CXX compiler: /usr/bin/c++ - skipped
-- Detecting CXX compile features
-- Detecting CXX compile features - done

The bulk of this processing usually occurs at the point where the first project() command is called
and the results of the toolchain tests are then cached. The enable_language() command also triggers
such processing when it enables a previously non-enabled language, as would another project()
call that adds a previously non-enabled language. Once a language has been enabled, its cached
details will always be used rather than re-testing the toolchain, even for subsequent CMake runs.
This has at least two important consequences:

• Once a build directory has been configured with a particular toolchain, it cannot (safely) be
changed. In certain situations, CMake may detect that the toolchain has been modified and
discard its previous results, but this only discards cached details directly related to the
toolchain. Any other cached quantities based on the cached toolchain details outside of the ones
CMake knows about will not be reset. Therefore, the build directory should be completely
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cleared before changing the toolchain (it may not be enough to just remove the CMakeCache.txt
file, other details may be cached in different locations).

• Different toolchains cannot be mixed directly within the one project. CMake fundamentally sees
a project as using a single toolchain throughout. In order to use multiple toolchains, one has to
structure the project to perform parts of the build as external sub-builds (a technique discussed
in Chapter 29, ExternalProject and Section 34.1, “Superbuild Structure”).

23.1. Toolchain Files
If the default toolchain is not suitable, then the recommended way of specifying the desired
toolchain details is with a toolchain file. This is just an ordinary CMake script which typically
contains mostly set(…) commands. These would define the variables that CMake uses to describe
the target platform, the location of the various toolchain components and so on. The name of the
toolchain file is passed to CMake through the special cache variable CMAKE_TOOLCHAIN_FILE like so:

cmake -DCMAKE_TOOLCHAIN_FILE=myToolchain.cmake path/to/source

CMake 3.21 or later also supports a --toolchain command-line option or a fallback to a
CMAKE_TOOLCHAIN_FILE environment variable, but the result is ultimately the same (i.e. the
CMAKE_TOOLCHAIN_FILE cache variable is set).

cmake --toolchain myToolchain.cmake path/to/source

# Set once for the current shell
export CMAKE_TOOLCHAIN_FILE=myToolchain.cmake

# No toolchain specified, uses the environment variable
cmake path/to/source

A full absolute path can be used, or for a relative path like in the above examples, CMake first looks
relative to the top of the build directory, then if not found there, relative to the top of the source
directory. This toolchain file must be specified the first time CMake is run for the build directory, it
cannot be added later or changed to point to a different toolchain. Since the variable itself is
cached, there is no need to respecify it again for any subsequent CMake runs.

The toolchain file is read by the first call to the project() command, possibly more than once. The
number of times it is read in subsequent runs may also be different to the first run. The toolchain
file may also be read by temporary sub-projects that CMake sets up internally to test the toolchain
when a language is enabled for the first time. Given these factors, a toolchain file should support
being included multiple times and it should not contain logic that assumes it is being read only by
the main project.

Developers should aim to make toolchain files minimal, setting only the things needed and making
as few assumptions about what the project does as possible. Toolchain files should ideally be
completely decoupled from the project and should even be reusable across different projects, since
they should only be describing the toolchain, not how they interact with a particular project.
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The contents of a toolchain file can vary, but on the whole there are only a few main things they
potentially need to do:

• Describe basic details of the target system.

• Provide paths to tools (often just to the compilers).

• Set the default flags for tools (usually just for compilers and perhaps linkers).

• Set the location of a target platform’s root file system in the case of cross-compilation.

It is quite common to see other logic included in toolchain files as well, especially for influencing
the behavior of the various find_…() commands (see Chapter 25, Finding Things). While there are
situations where such logic may be appropriate, one can mount an argument that such logic can
and should be part of the project instead in most cases. Only the project knows what it is trying to
find, so the toolchain should not make assumptions about what the project wants to do.

23.2. Defining The Target System
The fundamental variables that describe the target system are:

• CMAKE_SYSTEM_NAME

• CMAKE_SYSTEM_PROCESSOR

• CMAKE_SYSTEM_VERSION

Of these, CMAKE_SYSTEM_NAME is the most important. It defines the type of platform being targeted, as
opposed to CMAKE_HOST_SYSTEM_NAME which defines the platform on which the build is being
performed. CMake itself always sets CMAKE_HOST_SYSTEM_NAME, but CMAKE_SYSTEM_NAME can be (and often
is) set by toolchain files. One can think of CMAKE_SYSTEM_NAME as being what CMAKE_HOST_SYSTEM_NAME
would be set to if CMake was run directly on the target platform. Thus, typical values include Linux,
Windows, QNX, Android or Darwin, but for certain situations (e.g. bare metal embedded devices), a system
name of Generic may be used instead. There are also variations on the typical platform names
which can be appropriate in some situations, such as WindowsStore and WindowsPhone. If
CMAKE_SYSTEM_NAME is set in a toolchain file, then CMake will also set the CMAKE_CROSSCOMPILING variable
to true, even if it has the same value as CMAKE_HOST_SYSTEM_NAME. If CMAKE_SYSTEM_NAME is not set, it will
be given the same value as the auto-detected CMAKE_HOST_SYSTEM_NAME.

CMAKE_SYSTEM_PROCESSOR is intended to describe the hardware architecture of the target platform. If
not specified, it will be given the same value as CMAKE_HOST_SYSTEM_PROCESSOR, which is automatically
populated by CMake. In cross-compiling scenarios or when building for a 32-bit platform on a 64-bit
host of the same system type, this will result in CMAKE_SYSTEM_PROCESSOR being incorrect. Therefore, it
is advisable to set CMAKE_SYSTEM_PROCESSOR if the architecture doesn’t match the build host, even if the
project seems to build okay without it. Wrong decisions based on an incorrect
CMAKE_SYSTEM_PROCESSOR value can lead to subtle problems that may not be easy to detect or diagnose.

The CMAKE_SYSTEM_VERSION variable has different meanings depending on what CMAKE_SYSTEM_NAME is set
to. For example, with a system name of WindowsStore, WindowsPhone or WindowsCE, the system version
will be used to define which Windows SDK to use. Values might be more general like 8.1 or 10.0, or
they might define a very specific release, such as 10.0.10240.0. As another example, if
CMAKE_SYSTEM_NAME is set to Android, then CMAKE_SYSTEM_VERSION will typically be interpreted as the
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default Android API version and must be a positive integer. For other system names, it is not
unusual to see CMAKE_SYSTEM_VERSION set to something arbitrary like 1, or to not be set at all. The
toolchains section of the CMake documentation provides examples of different uses of
CMAKE_SYSTEM_VERSION, but the meaning and the set of allowable values for the variable are not
always clearly defined. For this reason, projects are advised to exercise caution if implementing
logic that depends on the value of CMAKE_SYSTEM_VERSION.

Normally, these three CMAKE_SYSTEM_… variables fully describe the target system, but there are
exceptions:

• With CMake 3.13 and earlier, all Apple platforms use Darwin for the CMAKE_SYSTEM_NAME, even for
iOS, tvOS or watchOS. The actual target system is then selected by the CMAKE_OSX_SYSROOT variable,
which selects the base SDK to be used for the build. The target device is determined based on
the SDK chosen, but the developer can still choose between device or simulator at build time.
This is a complex topic and is covered in detail in Section 24.5, “Build Settings”. Support for the
dedicated CMAKE_SYSTEM_NAME values iOS, tvOS and watchOS was added in CMake 3.14 to better
distinguish the different platforms and make them more consistent with how other platforms
are handled.

• CMAKE_SYSTEM_PROCESSOR and CMAKE_SYSTEM_VERSION are not particularly meaningful for Apple
platforms and usually remain unset.

• The CMAKE_SYSTEM_PROCESSOR variable is typically not set when targeting Android platforms. This is
discussed further in Section 23.7, “Android” below.

Furthermore, some project generators support their own native platform names. For such
generators, instead of setting the CMAKE_SYSTEM_NAME variable, a native platform name can be
specified via a few different methods. The simplest and most direct is to specify the native platform
along with the generator details on the cmake command line using the -A option. For example, the
Visual Studio generator can be instructed to target the x64 platform like so:

cmake -G "Visual Studio 2019" -A x64

The chosen platform will be available to projects through the CMAKE_GENERATOR_PLATFORM CMake
variable. Alternatively, developers may choose to use a toolchain file and to set the
CMAKE_GENERATOR_PLATFORM CMake variable directly (projects should never set this CMake variable
themselves). If using CMake 3.15 or later, another choice is to provide the platform via the
CMAKE_GENERATOR_PLATFORM environment variable instead.

23.3. Tool Selection
Of all the tools used in the build, the compiler is probably the most important from the developer’s
perspective. The path to the compiler is controlled by the CMAKE_<LANG>_COMPILER variable, which can
be set in a toolchain file or on the command line to manually control the compiler used, or it can be
omitted to allow CMake to choose one automatically. If the name of an executable is provided
manually without a path, CMake will search for it using find_program() (covered in Section 25.3,
“Finding Programs”). If a full path to a compiler is provided, it will be used directly. If no compiler
is manually specified, CMake will select a compiler based on an internal set of defaults for the
target platform and generator.
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From CMake 3.19, CMAKE_<LANG>_COMPILER can be a list. The first item in the list is the compiler to use,
just as described above. The remaining list items are compiler options that have to be present for
the compiler to work. Do not add non-mandatory options via this variable. Note also that
CMAKE_<LANG>_COMPILER should not be changed after the first CMake run.

Most languages also have support for setting the compiler by specifying an environment variable
instead of having to set CMAKE_<LANG>_COMPILER. These usually follow common conventions, such as CC
for a C compiler, CXX for a C++ compiler, FC for a Fortran compiler and so on. These environment
variables will only have an effect the first time CMake is run in a build directory and only if the
corresponding CMAKE_<LANG>_COMPILER variable is not set by a toolchain file or on the CMake
command line.

Some generators support their own separate toolset specifications which work differently to the
above methods. These toolsets can be selected using the -T option on the cmake command line, or if
using CMake 3.15 or later, by setting the CMAKE_GENERATOR_TOOLSET environment variable. They can
also be selected in a toolchain file by setting the CMAKE_GENERATOR_TOOLSET CMake variable (projects
should never set this variable themselves). The available toolsets and the supported syntax are
specific to each generator, but the following examples demonstrate some of the possibilities.

Build 32-bit executables but use 64-bit compiler and linker tools:

cmake -G "Visual Studio 2019" -A Win32 -T host=x64 ...

Use the clang-cl compilers from the Visual Studio built-in LLVM distribution:

cmake -G "Visual Studio 2019" -T ClangCL ...

For some generators, having multiple instances of the build tool installed may mean the developer
needs to specify which instance to use. A typical example is a developer trying out a preview
version of Visual Studio and then later installing the release version without deleting the preview
version. When using CMake 3.11 or later, the CMAKE_GENERATOR_INSTANCE variable may be set in a
toolchain file to control the specific instance that will be used. With CMake 3.15 or later, the
CMAKE_GENERATOR_INSTANCE environment variable can be set instead. Few generators support this
feature, currently only those for Visual Studio 2017 or later.

With the toolchain specified, CMake will identify the compiler and try to determine its version. This
compiler information will be made available through the CMAKE_<LANG>_COMPILER_ID and
CMAKE_<LANG>_COMPILER_VERSION variables respectively. The compiler ID is a short string used to
differentiate one compiler from another, with common values being GNU, Clang, AppleClang, MSVC and
Intel. The CMake documentation for CMAKE_<LANG>_COMPILER_ID gives the full list of supported IDs. If
the compiler version can be determined, it will have the usual major.minor.patch.tweak form,
where not all version components need to be present (e.g. 4.9 would be a valid version).

In addition to the CMAKE_<LANG>_COMPILER_ID and CMAKE_<LANG>_COMPILER_VERSION variables, analogous
generator expressions without the leading CMAKE_ part are also supported. Either the variables or
the generator expressions can be used to conditionally add content only for certain compilers or
compiler versions. For example, GCC 7 introduced a new -fcode-hoisting option and the following
shows both ways of adding it for C++ compilation only if it is available:
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# Conditionally add -fcode-hoisting option using variables
if(CMAKE_CXX_COMPILER_ID STREQUAL "GNU" AND
   CMAKE_CXX_COMPILER_VERSION VERSION_GREATER_EQUAL 7)
    target_compile_options(SomeTarget PRIVATE -fcode-hoisting)
endif()

# Same thing using generator expressions instead
set(isGNU     $<CXX_COMPILER_ID:GNU>)
set(newEnough $<VERSION_GREATER_EQUAL:$<CXX_COMPILER_VERSION>,7>)
target_compile_options(SomeTarget PRIVATE
    $<$<AND:${isGNU},${newEnough}>:-fcode-hoisting>
)

The compiler ID is the most robust way to identify the compiler used. The one case projects may
need to be aware of is that prior to CMake 3.0, the Apple Clang compiler was treated the same as the
upstream Clang and both had the compiler ID Clang. From CMake 3.0 onward, Apple’s compiler has
the compiler ID AppleClang instead so that it can be differentiated from upstream Clang. Policy
CMP0025 was added to allow the old behavior to be used for those projects that require it.

Once the path to the compiler has been determined, CMake is able to work out the appropriate set
of default flags for the compiler and linker. These are made available to the project through the
variables CMAKE_<LANG>_FLAGS, CMAKE_<LANG>_FLAGS_<CONFIG>, CMAKE_<TARGETTYPE>_LINKER_FLAGS and
CMAKE_<TARGETTYPE>_LINKER_FLAGS_<CONFIG>, which were covered back in Section 15.5, “Compiler And
Linker Variables”. Developers can add their own flags into the set of default values for these using
variables of the same name but with _INIT appended. These …_INIT variables are only ever used to
set the initial defaults, they have no effect once CMake has been run once and the actual values
have been saved in the cache.

A common mistake is to set the non-…INIT variables in a toolchain file (i.e. setting CMAKE_<LANG>_FLAGS
rather than CMAKE_<LANG>_FLAGS_INIT). This has the undesirable effect of discarding or hiding any
changes the developer might make to these variables in the cache. The toolchain file may also be re-
read as part of later project() or enable_language() calls, thereby discarding any changes to these
variables made by the project itself. Setting the …INIT variables instead ensures that only the initial
default values are affected and any subsequent changes to the non-…_INIT variables via any
method are retained.

As an example, consider a toolchain file a developer might use to set up their build with special
compiler flags for debugging (this can be a useful way of re-using some complex developer-only
logic across multiple projects without having to add it to each project). The following chooses GNU
compilers and adds flags that enable most warnings:

set(CMAKE_C_COMPILER   gcc)
set(CMAKE_CXX_COMPILER g++)

set(extraOpts "-Wall -Wextra")
set(CMAKE_C_FLAGS_DEBUG_INIT   ${extraOpts})
set(CMAKE_CXX_FLAGS_DEBUG_INIT ${extraOpts})
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Unfortunately, there are some inconsistencies in how CMake combines developer-specified …_INIT
options with the defaults it normally provides. In most cases, CMake will append further options to
those specified by …INIT variables, but with some platform/compiler combinations (particularly
older or less frequently used ones), developer-specified …_INIT values can be discarded. This stems
from the history of these variables, which used to be for internal use only and always unilaterally
set the …_INIT values. From CMake 3.7, the …_INIT variables were documented for general use and
the behavior was switched to appending rather than replacing for the commonly used compilers.
The behavior for very old or no longer actively maintained compilers was left unmodified.

Some compilers act more as compiler drivers and expect a command line argument specifying the
platform/architecture to compile for (Clang and QNX qcc are two such examples). For compilers
that CMake recognizes as requiring such arguments, the CMAKE_<LANG>_COMPILER_TARGET variable can
be set in a toolchain file to specify the target. Where supported, this should be used instead of
trying to manually add the flags with CMAKE_<LANG>_FLAGS_INIT.

Another less common situation is where the compiler toolchain does not include other supporting
utilities like archivers or linkers. These compiler drivers typically support a command line
argument that can be used to specify where these tools can be found. CMake provides the
CMAKE_<LANG>_COMPILER_EXTERNAL_TOOLCHAIN variable which can be used to specify the directory in
which these utilities are located.

23.4. System Roots
In many cases, the toolchain is all that is needed, but sometimes projects may require access to a
broader set of libraries, header files, etc. as they would be found on the target platform. A common
way of handling this is to provide the build with a cut down version (or even a full version) of the
root filesystem for the target platform. This is referred to as a system root or just sysroot for short. A
sysroot is basically just the target platform’s root file system mounted or copied to a path that can
be accessed through the host’s file system. Toolchain packages often provide a minimal sysroot
containing various libraries, etc. needed for compiling and linking.

CMake has fairly extensive and easy to use support for sysroots. Toolchain files can set the
CMAKE_SYSROOT variable to the sysroot location and with that information alone, CMake can find
libraries, headers, etc. preferentially in the sysroot area over same-named files on the host (this is
covered in detail in Section 25.1.2, “Cross-compilation Controls”). In many cases, CMake will also
automatically add the necessary compiler/linker flags to the underlying tools to make them aware
of the sysroot area. For more complex scenarios where different sysroots need to be provided for
compiling and linking (e.g. as used by the Android NDK with unified headers), toolchain files can
set CMAKE_SYSROOT_COMPILE and CMAKE_SYSROOT_LINK instead when using CMake 3.9 or later.

In some arrangements, developers may choose to mount the full target file system under a host
mount point and use that as their sysroot. This could be mounted as read-only, or if not it may still
be desirable to leave it unmodified by the build. Therefore, when the project has been built, it may
need to be installed to somewhere else rather than writing to the sysroot area. CMake provides the
CMAKE_STAGING_PREFIX variable which can be used to set a staging point below which any install
commands will install to (see Section 27.1.2, “Base Install Location” for a discussion of this area).
This staging area could be a mount point for a running target system and the installed binaries
could then be tested immediately after installation. Such an arrangement is particularly useful
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when cross compiling on a fast host for a target system that would otherwise be slow to build on
(e.g. building on a desktop machine for a Raspberry Pi target). Section 25.1.2, “Cross-compilation
Controls” also discusses how CMAKE_STAGING_PREFIX affects the way CMake searches for libraries,
headers and so on.

23.5. Compiler Checks
When a project() or enable_language() call triggers testing of compiler and language features, the
try_compile() command is called internally to perform various checks. If a toolchain file has been
provided, it is read by each try_compile() invocation, so the test compilation will be configured in a
similar way to the main build. CMake will pass through some relevant variables automatically, such
as CMAKE_<LANG>_FLAGS, but toolchain files may want other variables to be passed through to the test
compilation as well. Since the main build will read the toolchain file first, the toolchain file itself
can define which variables should be passed through to test compilations. This is done by adding
the names of the variables to the CMAKE_TRY_COMPILE_PLATFORM_VARIABLES variable (do not set this in the
project, only in a toolchain file). Use list(APPEND) rather than set() so that any variables added by
CMake are not lost. It won’t matter if CMAKE_TRY_COMPILE_PLATFORM_VARIABLES ends up containing
duplicates, it only matters that the desired variable names are present.

The try_compile() command normally compiles and links test code to produce an executable. In
some cross compiling scenarios, this can present a problem if running the linker requires custom
flags or linker scripts, or is otherwise not desirable to invoke (cross compiling for a bare metal
target platform may have such a restriction). If using CMake 3.6 or later, the command can be told
to create a static library instead by setting CMAKE_TRY_COMPILE_TARGET_TYPE to STATIC_LIBRARY. This
avoids the need for the linker, but it still requires an archiving tool. CMAKE_TRY_COMPILE_TARGET_TYPE
can also have the value EXECUTABLE, which is the default behavior anyway if no value is set. Prior to
CMake 3.6, the now deprecated CMakeForceCompiler module had to be used to prevent try_compile()
from being invoked at all, but CMake now relies heavily on these tests to work out what features
the compilers support, so the use of CMakeForceCompiler is now actively discouraged.

While it is not invoked during compiler checks, the try_run() command is closely related to
try_compile() and its behavior is affected by cross-compilation. try_run() is effectively a
try_compile() followed by an attempt to run the executable just built. When CMAKE_CROSSCOMPILING is
set to true, CMake modifies its logic for running the test executable. If the
CMAKE_CROSSCOMPILING_EMULATOR variable is set, CMake will prepend it to the command that would
otherwise have been used to run the executable on the target platform and uses that to run the
executable on the host platform. If CMAKE_CROSSCOMPILING_EMULATOR is not set when
CMAKE_CROSSCOMPILING is true, CMake requires the toolchain or project to manually set some cache
variables. These variables provide the exit code and the output from stdout and stderr that would
be obtained had the executable been able to be run on the target platform. Having to provide these
manually is clearly inconvenient and error-prone, so projects should generally try hard to avoid
calling try_run() in cross-compiling situations where CMAKE_CROSSCOMPILING_EMULATOR cannot be set.
For cases where these manually defined variables cannot be avoided, the CMake documentation for
the try_run() command provides the necessary details regarding the variables to be set. Further
uses of CMAKE_CROSSCOMPILING_EMULATOR are also discussed in Section 26.8, “Cross-compiling And
Emulators”.
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23.6. Examples
The examples that follow have been selected to highlight the concepts discussed in this chapter. The
toolchains section of the CMake reference documentation contains further examples for a variety
of different target platforms.

23.6.1. Raspberry Pi

Cross compiling for the Raspberry Pi is a good introduction to the way CMake handles cross
compilation in general. The first step is to obtain the compiler toolchain, a common way being to
use a utility like crosstool-NG. The rest of this example will use /path/to/toolchain to refer to the top
of the toolchain directory structure.

A typical toolchain file for the Raspberry Pi might look something like this:

set(CMAKE_SYSTEM_NAME      Linux)
set(CMAKE_SYSTEM_PROCESSOR ARM)

set(CMAKE_C_COMPILER   /path/to/toolchain/bin/armv8-rpi3-linux-gnueabihf-gcc)
set(CMAKE_CXX_COMPILER /path/to/toolchain/bin/armv8-rpi3-linux-gnueabihf-g++)

set(CMAKE_SYSROOT      /path/to/toolchain/armv8-rpi3-linux-gnueabihf/sysroot)

If the host has a mount point for a running target device, it could be used to make testing the
binaries built by the project relatively straightforward. For example, assume /mnt/rpiStage is a
mount point that attaches to a running Raspberry Pi (this would preferably point to some local
directory rather than the system root so that it could be wiped or otherwise modified in arbitrary
ways without destabilizing the running system). A toolchain file would specify this mount point as a
staging area like so:

set(CMAKE_STAGING_PREFIX /mnt/rpiStage)

The project’s binaries could then be installed to this staging area and run directly on the device (see
Section 27.1.2, “Base Install Location”).

23.6.2. GCC With 32-bit Target On 64-bit Host

GCC allows 32-bit binaries to be built on 64-bit hosts by adding the -m32 flag to both the compiler
and linker commands. The following toolchain example still allows the GCC compilers to be found
on the PATH, adding just the extra flag to the initial set used by the compilers and linker. Depending
on one’s point of view, this arrangement could be seen as cross-compiling or not. Therefore, setting
CMAKE_SYSTEM_NAME could also be seen as optional, since setting it forces CMAKE_CROSSCOMPILING to have
the value true. Either way, the CMAKE_SYSTEM_PROCESSOR should still be set since the goal of this
toolchain file is specifically to target a processor different to that of the host.
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set(CMAKE_SYSTEM_NAME      Linux)
set(CMAKE_SYSTEM_PROCESSOR i686)

set(CMAKE_C_COMPILER   gcc)
set(CMAKE_CXX_COMPILER g++)

set(CMAKE_C_FLAGS_INIT   -m32)
set(CMAKE_CXX_FLAGS_INIT -m32)

set(CMAKE_EXE_LINKER_FLAGS_INIT    -m32)
set(CMAKE_SHARED_LINKER_FLAGS_INIT -m32)
set(CMAKE_MODULE_LINKER_FLAGS_INIT -m32)

One way to confirm that the build is indeed 32-bit is with the CMAKE_SIZEOF_VOID_P variable, which is
computed by CMake automatically as part of its toolchain setup. For 64-bit builds, this will have a
value of 8, whereas for 32-bit builds, it will be 4.

math(EXPR bitness "${CMAKE_SIZEOF_VOID_P} * 8")
message("${bitness}-bit build")

23.7. Android
Cross-compiling for Android can be a bit more involved than the cases discussed above. There are a
number of Android-specific settings that affect the build, not just the usual target platform,
toolchain locations and flags. Some combinations of CMake and Android NDK versions also have
compatibility issues, so developers need to select their tools and toolkits carefully.

23.7.1. Historical Context

CMake has its own built-in support for Android, but the Android NDK also has its own expectations
around how the build should be set up. Both CMake and the NDK developed their respective
support for each other more or less independently and in parallel. This resulted in problems at
various points where incompatibilities emerged.

The NDK r19 release introduced changes that broke CMake’s built-in Android support. CMake 3.16.0
contained changes which restored the ability to use the built-in Android support again, but some
issues remained in certain scenarios. With the NDK r23 release and CMake 3.21 or later, these
incompatibilities have finally been resolved. The interested reader is directed to the following for
details on the above:

• https://gitlab.kitware.com/cmake/cmake/issues/18787

• https://github.com/android-ndk/ndk/issues/463

Users should be able to reliably use the toolchain file provided by the NDK r23 or later when using
CMake 3.21 or later. Developers who must use NDK releases in the range r18—r22 are advised to
prefer using CMake 3.20 or later where possible. The 3.20 release contained fixes relevant to these
NDK versions.
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The rest of the Android-related material in the sections that follow assume NDK
r23 or later and CMake 3.21 or later are being used.

23.7.2. Using The NDK

The recommended way to build for Android is to use the toolchain file provided by the Android
NDK. The name of the file is typically something like android.toolchain.cmake. Depending on the host
platform and how the NDK has been installed, the toolchain file can be found in a variety of
locations. A typical arrangement would see the file placed in the build/cmake subdirectory below the
base install directory of the NDK.

The toolchain file takes care of setting a number of things. CMAKE_SYSTEM_NAME will always be set to
Android. The Clang compilers provided by the NDK will be used (NDK r18 removed the ability to
select the gcc toolchain). CMAKE_SYSROOT will be set to the appropriate directory within the NDK.

The architecture and ABI can be left at defaults chosen by the NDK, but it is recommended that the
developer explicitly set them. This ensures it is very clear what is being built for. This can be done
by setting the CMAKE_ANDROID_ARCH_ABI variable to one of the following values (others may be
supported, check the NDK documentation or toolchain file):

• armeabi-v7a

• arm64-v8a

• x86

• x86_64

If armeabi-v7a is selected, the following two variables are also relevant:

• CMAKE_ANDROID_ARM_NEON can be set to true to enable building with NEON support, or false to build
without it. If this variable is not set, NEON support will be enabled by default.

• CMAKE_ANDROID_ARM_MODE controls the type of processor to build for. Set it to true to build for 32-bit
ARM processors, otherwise the build will target 16-bit Thumb processors.

CMake will set CMAKE_SYSTEM_PROCESSOR to an appropriate value based on the above and information
provided by the NDK.

The Android API level is controlled by a variable named ANDROID_PLATFORM (note the lack of any
CMAKE_ prefix). If ANDROID_PLATFORM is not set, the API level is set to the minimum level supported by
the NDK. Note that this minimum version may be unsuitable for the chosen architecture and ABI,
so it is advisable not to rely on it. Instead, the API level should be specified as a number to ensure
the API used is well-defined. It is recommended that an API level of 23 or higher be used to avoid
potential reliability issues with Android PackageManager’s native library loading (see
https://github.com/KeepSafe/ReLinker). The special string latest can also be used, which selects the
latest API level supported by the NDK, but this is less clear and not as traceable.

CMAKE_ANDROID_STL_TYPE specifies the C++ STL implementation to be used. Earlier NDK releases
supported a range of different options, but projects should now use either c++_shared or c++_static.
Only use the latter if your application consists of a single shared library. If the application does not
use the C++ STL at all, the value none can be used instead, but this would be unusual.
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CMAKE_ANDROID_RTTI and CMAKE_ANDROID_EXCEPTIONS control whether to enable rtti and exceptions
respectively. They are boolean variables whose defaults are determined by the choice of STL
implementation. Note that the NDK toolchain file in r23 contains a bug which means
CMAKE_ANDROID_EXCEPTIONS might not be set correctly in some circumstances, if not set directly by the
developer. It is therefore recommended that this variable always be set to ensure the expected
behavior is obtained.

From the above, it can be seen that there are a number of variables that will typically need to be set
before the NDK toolchain file is read. One could specify them on the cmake command line, like so:

cmake -DCMAKE_TOOLCHAIN_FILE=/path/to/ndk/build/cmake/android.toolchain.cmake \
      -DCMAKE_ANDROID_ARCH_ABI=arm64-v8a \
      -DANDROID_PLATFORM=24 \
      -DCMAKE_ANDROID_STL_TYPE=c++_shared \
      -DCMAKE_ANDROID_RTTI=YES \
      -DCMAKE_ANDROID_EXCEPTIONS=YES \
      ...

Alternatively, a wrapper toolchain file could be used:

my_android_toolchain.cmake:

set(CMAKE_ANDROID_ARCH_ABI arm64-v8a)
set(ANDROID_PLATFORM 24)
set(CMAKE_ANDROID_STL_TYPE c++_shared)
set(CMAKE_ANDROID_RTTI YES)
set(CMAKE_ANDROID_EXCEPTIONS YES)

include(/path/to/ndk/build/cmake/android.toolchain.cmake)

cmake -DCMAKE_TOOLCHAIN_FILE=my_android_toolchain.cmake ...



CMake caches information computed during the first run in a build directory. If
any of the variables mentioned in this section need to be changed, the build
directory contents should be deleted first. If this is not done, the compiler flags
may not be updated to reflect the new settings in the changed variables.

23.7.3. Android Studio

Certain tools may enforce the use of their own internal toolchain file, making it potentially harder
for developers to specify any of the above settings. Android Studio is one such example, forcing a
particular toolchain file which overrides much of CMake’s own logic. The gradle builds are set up to
create an external CMake build that uses the Ninja generator and the NDK provided through the
Android SDK manager. While direct access to the toolchain file is not enabled, the gradle build does
provide a range of gradle variables which are translated into their CMake equivalents. Developers
should consult the tool’s documentation to understand how different CMake versions can be used
and how to influence the behavior of the CMake build.
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23.7.4. ndk-build

For developers using ndk-build (which is essentially just a wrapper around GNU make) rather than
gradle, CMake 3.7 added the ability to export an Android.mk file as part of the CMake build using
export() or as part of the install step with install(). Exporting during the build is straightforward:

export(TARGETS target1 [target2...] ANDROID_MK fileName)

The fileName will typically be Android.mk with some path prepended to put it at the location required
by ndk-build. Each of the named targets will be included in the generated file along with the
relevant usage requirements such as include flags, compiler defines, etc. This is typically what a
project will want to do if it needs to support being part of a parent ndk-build. For the case where the
CMake project will be packaged up and wants to make itself easy to incorporate into any ndk-build,
the install() command offers the required functionality (see Section 27.3, “Installing Exports”).

23.7.5. Visual Studio Generators

The Ninja and Makefiles generators integrate well with the NDK toolchain file. When using a Visual
Studio generator, CMake 3.19 and later supports the NDK as well. Setup should work reasonably
smoothly for NDK versions installed directly via the Visual Studio installer, but these tend to be
quite old and are therefore of limited usefulness. The Ninja and Makefiles generators are likely to
give better results if using more recent NDK versions installed outside of Visual Studio.

For earlier CMake versions, Android support in Visual Studio required the use of the Nvidia Nsight
Tegra Visual Studio Edition. This method has been essentially unmaintained for quite a few CMake
releases, so it’s reliability may be questionable. Developers are encouraged to use the NDK instead.

23.8. Recommended Practices
Toolchain files can seem a little intimidating at first, but much of this comes from many examples
and projects putting too much logic in them. Toolchain files should be as minimal as possible to
support the required tools and they should generally be reusable across different projects. Logic
specific to a project should be in the project’s own CMakeLists.txt files.

When writing toolchain files, developers should ensure that the contents do not assume they will
only be executed once. CMake may process the toolchain file multiple times depending on what the
project does (e.g. multiple calls to project() or enable_language()). The toolchain file may also be
used for temporary builds "off to the side" as part of try_compile() calls, so they should make no
assumptions about the context in which they are being used.

Avoid using the deprecated CMakeForceCompiler module to set the compiler to be used in the build.
This module was popular when using older CMake versions, but newer versions rely heavily on
testing the toolchain and working out the features it supports. The CMakeForceCompiler module was
mainly intended for cases where the compiler was not known to CMake, but use of such compilers
with recent CMake versions will likely result in non-trivial limitations. It is recommended to work
with the CMake developers to add the required support for such compilers.
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Be careful not to discard or mishandle the contents of variables that may already be set by the time
the toolchain file is processed. A common error is to modify variables like CMAKE_<LANG>_FLAGS rather
than CMAKE_<LANG>_FLAGS_INIT, which can discard values manually set by developers or interact
poorly with values already populated when the toolchain file is processed multiple times.

When targeting Android platforms, prefer to use the NDK and the toolchain file it provides, or a
simple wrapper around that toolchain file. To ensure a fully working, reliable build, use NDK r23 or
later and CMake 3.21 or later. Earlier versions had incompatibilities between the two and setup was
more involved. Avoid the once popular taka-no-me toolchain file frequently referred to by online
examples. It is overly complicated, has known issues and has not been maintained for a number of
years. Also use Android API 23 or later to avoid known issues with the Android PackageManager’s
native library loader.

Projects should generally avoid using the CMAKE_CROSSCOMPILING variable for any of its logic. This
variable can be misleading, since it can be set to true even when the target and host platform are
the same, or false when they are different. The inconsistency of its value makes it unreliable.
Project authors should also be aware that some multi configuration generators (e.g. Xcode) allow
the target platform to be selected at build time, so CMake logic based around whether cross-
compiling or not needs to be written very carefully to handle the different situations in which the
project may be generated.

Toolchain files often contain commands to modify where CMake searches for programs, libraries
and other files. See Chapter 25, Finding Things for recommended practices related to this area.
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Chapter 24. Apple Features
Apple platforms have a number of unique characteristics which directly affect the way software is
built. While simple command-line applications for macOS can be built in similar ways to other
Unix-based platforms, those applications with a graphical user interface are usually provided in an
Apple-specific format known as an application bundle (or just app bundle). These bundles are more
than a single executable file, they are a standardized directory structure containing a variety of
files associated with the application. These app bundles are intended to be self-contained, able to be
moved around as a unit and placed anywhere on a user’s file system.

There is an analogous situation for libraries too. Standalone static and shared libraries can be
created much like those on other Unix-based platforms, but they can also be built as part of a
framework, which is essentially the library equivalent of an app bundle. Frameworks have their
own standardized directory structure and may contain files other than just the library binaries.
They may even support multiple versions within that directory structure. Libraries intended to be
loaded at runtime can instead be built as a loadable bundle, which corresponds to Apple’s CFBundle
functionality.

Bundles and frameworks are essential parts of the machinery used to produce content for Apple’s
app store. Another key aspect is code signing, a process which verifies the integrity and origin of
software and is a mandatory part of app store distribution. Code entitlements are also an integral
part of the build process and govern which Apple features the code may use. These entitlements are
part of the information sealed by the code signing process and must be defined at build time if the
default entitlement set (which is empty) is not appropriate.

Together, these features present unique challenges for CMake projects. The sections that follow
provide the tools for understanding and handling these areas, or in some cases, highlight the
current limitations of CMake’s support. It should also be noted that formal support for tvOS and
watchOS was only added in CMake 3.14 (macOS and iOS have been formally supported before that).

24.1. CMake Generator Selection
The technologies and tools used to produce frameworks and bundles is constantly evolving, with
major Apple OS releases often introducing new features and changing the requirements around
signing, distribution, etc. The processes and technologies are tightly integrated into Xcode as the
primary tool Apple expects developers to use, with developers also typically expected to upgrade to
the current Xcode release rather than staying with past major releases. Areas like resource
compilation, code signing, etc. are automatically handled as part of building applications and
frameworks, many aspects of which are unique to the Apple ecosystem.

For CMake projects, this means that the Xcode generator is the most reliable and most convenient
for building with the Xcode toolchain. Other generators such as Makefiles or Ninja tend to lack
some of the automation of the Xcode generator, or they may lag behind implementing support for
some of the more recent Xcode features. With the exception of basic unsigned desktop applications
not intended for distribution through the app store, developers will be more or less required to use
the Xcode generator to get a build that supports the necessary features. Also note that the fast-
moving nature of Apple platforms means that developers will also generally want to be using fairly
recent CMake and Xcode releases to keep up with the changes. The arrival of Apple Silicon is a good
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example, where CMake 3.19.2 and Xcode 12.2 should be considered the minimum versions when
building on or for that architecture. These are also the minimum requirements for CMake to be
able to use Xcode’s modern build system.

One of the unique benefits of the Xcode generator is that it supports setting arbitrary Xcode project
attributes. Most project settings can be modified in a key-value fashion on a per-target basis using
target properties of the form XCODE_ATTRIBUTE_XXX, where XXX is the name of an Xcode property. These
names are defined in the Apple documentation, but a potentially more convenient way to find them
is to open an existing Xcode project, go to the build settings of a target and select the menu item
Editor > Show Setting Names. Alternatively, one can click on a build setting of interest and the
Quick Help assistant editor shows the setting name along with a description. A third method is to
obtain a listing of a project’s build settings from the command line using xcodebuild:

xcodebuild -showBuildSettings

CMake also supports variables of the form CMAKE_XCODE_ATTRIBUTE_XXX, but their relationship to the
corresponding target properties is different to the usual CMake arrangement. These variables are
used to set or override global defaults in the Xcode project rather than being used to initialize target
properties. They only have an effect in the top level CMakeLists.txt file, their value is ignored in all
other directory scopes. When a XCODE_ATTRIBUTE_XXX target property is set, it overrides the global
default.

The following example shows some of the more commonly used attributes:

# Set the default signing identity and team ID to use for
# all targets, must be in the top level of the project
set(CMAKE_XCODE_ATTRIBUTE_CODE_SIGN_IDENTITY "Apple Development")
set(CMAKE_XCODE_ATTRIBUTE_DEVELOPMENT_TEAM   XYZ123ABCD)

# Target-specific settings, can be in any directory scope
set_target_properties(MyApp PROPERTIES
    XCODE_ATTRIBUTE_TARGETED_DEVICE_FAMILY     1,2
    XCODE_ATTRIBUTE_IPHONEOS_DEPLOYMENT_TARGET 10.0
)

This feature can also be used to set an Xcode attribute for only one particular build type by
appending [variant=ConfigName] to the property name. Other suffix types can be appended to the
property name too for even more specific attribute settings, but their use would be unusual. Even
[variant=…] suffixes would not often be needed. The following example gives an idea of the sort of
use cases where this feature might be useful:

set_target_properties(MyApp PROPERTIES
    XCODE_ATTRIBUTE_GCC_UNROLL_LOOPS[variant=Release] YES
    XCODE_ATTRIBUTE_ENABLE_TESTABILITY[variant=Debug] YES
)

Some projects may require setting quite a few attributes in order to get the desired Xcode behavior
and features, whereas other projects may be quite simple and require only a minimal number of
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additional settings. Some attributes are only needed in very specific circumstances, whereas others
are so common they are (or should be) present in almost every Apple-focused project. A number of
these are discussed in the rest of this chapter, including some of those used in the above examples.

With CMake 3.24 or later, an additional method is available for specifying Xcode build settings.
Xcode supports *.xcconfig files, which are ordinary text files consisting of key = value assignments.
These provide similar functionality to the XCODE_ATTRIBUTE_… property and CMAKE_XCODE_ATTRIBUTE_…
variable. Projects moving to CMake from a traditional Xcode project may already have such files, so
this method may be more familiar and simplify the transition.

In Xcode, a .xcconfig file is assigned to a build configuration, or to a target under a particular build
configuration. The file may be assigned to multiple configurations and targets, as illustrated in the
following example:

In the above, AppWithFwk is the global project. The interesting targets are an app named AppWithFwk
and a framework named FranklyFwk. At the project level, the globals.debug.xcconfig file is used for
the Debug configuration, whereas globals.release.xcconfig is used for the Release configuration. A
single app.xcconfig file is used for the AppWithFwk target in all configurations, while the FranklyFwk
target has fwk.debug.xcconfig for its Debug configuration and fwk.release.xcconfig for its Release
configuration.

In CMake, the CMAKE_XCODE_XCCONFIG variable controls the global settings, while the XCODE_XCCONFIG
target property provides the target-specific settings. Both the variable and the property accept only
a single value. Generator expressions must be used where different files are needed for different
configurations. The following demonstrates how to reproduce the arrangement shown in the above
screenshot:
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cmake_minimum_required(VERSION 3.24)
project(AppWithFwkExample)

set(CMAKE_XCODE_XCCONFIG
    $<IF:$<CONFIG:Debug>,globals.debug.xcconfig,globals.release.xcconfig>
)

add_executable(AppWithFwk ...)
set_target_properties(AppWithFwk PROPERTIES
    XCODE_XCCONFIG app.xcconfig
)

add_library(FranklyFwk ...)
set_target_properties(FranklyFwk PROPERTIES
    XCODE_XCCONFIG $<IF:$<CONFIG:Debug>,fwk.debug.xcconfig,fwk.release.xcconfig>
)

Just as for CMAKE_XCODE_ATTRIBUTE_… variables, CMAKE_XCODE_XCCONFIG only has an effect when set in the
top level CMakeLists.txt file.

24.2. Application Bundles
Application bundles are a cornerstone of the Apple ecosystem. Understanding the structure of an
application bundle and how this affects the way the build should be configured is essential for any
developer targeting Apple platforms.

24.2.1. Bundle Structure

The structure of an application bundle for macOS is different to that for iOS, tvOS and watchOS. The
macOS structure separates out various categories of files into different subdirectories and looks
something like the following (applications might have only some of the subdirectories shown):

In contrast, the bundle structure for iOS, tvOS and watchOS is flattened, having very little in the
way of a defined structure:

305



When building an app bundle, CMake somewhat abstracts away these structural differences,
allowing at least some things to be handled the same way whether the bundle is being built for
macOS or for iOS, tvOS or watchOS. Developers should be aware, however, that some areas of that
abstraction have not been implemented correctly until more recent CMake releases (the handling
of resources being a specific example), so using the latest CMake release is strongly advised.

An application is identified as being a bundle by adding the MACOSX_BUNDLE keyword to
add_executable():

add_executable(MyApp MACOSX_BUNDLE ...)

This sets the MACOSX_BUNDLE target property to true, which non-Apple platforms simply ignore. A
project can alternatively set the CMAKE_MACOSX_BUNDLE variable to true and all subsequently defined
executable targets have their MACOSX_BUNDLE target property set as well, but it would be more
common and clearer to use the MACOSX_BUNDLE keyword with each add_executable() command instead
(projects typically define only a small number of application bundles, often only one).

Somewhat confusingly, MACOSX_BUNDLE applies not just to macOS, but also to iOS, tvOS and watchOS.
The keyword predates the non-desktop Apple platforms, hence the desktop-specific name. Rather
than creating new keywords for each of the other platforms, the use of the existing keyword was
expanded to cover all Apple platforms. This same pattern of expanding OSX-specific keywords and
variables to cover all the Apple platforms can be seen in a number of other cases as well, but note
that this is not universal across all OSX-related variables and properties. Those for which this holds
true are highlighted in this chapter.

24.2.2. Bundle Info.plist Files

Every application bundle must have at least an Info.plist file and a main executable (MyApp in the
directory structure examples above). By default, CMake will provide a basic Info.plist file from a
template file shipped with CMake itself. In most cases, however, projects will want to provide their
own Info.plist so that they have full control over the app configuration. When the app uses
storyboard or interface builder files, providing a custom Info.plist is pretty much required so that
the relevant key entries like NSMainStoryboardFile are present. The MACOSX_BUNDLE_INFO_PLIST target
property can be set to the name of a file to use as the Info.plist template (for all Apple platforms,
not just macOS). The default template file is called MacOSXBundleInfo.plist.in and can be found in
CMake’s modules directory. It may serve as a useful starting point for custom templates.

Regardless of whether a target uses the default Info.plist template or one provided by the project,
CMake will copy the template file into the app bundle, performing some specific substitutions along
the way. In the template file, any content of the form ${XXX} will be substituted by the value of the
XXX target property if XXX is one of the properties in the table below. Each of these properties is
mapped to a particular key in the default Info.plist file, so if the project provides its own template
file and uses these variables, it should generally follow the same mapping.
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Property Info.plist Key Example

MACOSX_BUNDLE_BUNDLE_NAME CFBundleName MyApp

MACOSX_BUNDLE_BUNDLE_VERSION CFBundleVersion 2.4.7

MACOSX_BUNDLE_COPYRIGHT NSHumanReadableCopyright © 2020 MyCompany

MACOSX_BUNDLE_GUI_IDENTIFIER CFBundleIdentifier com.example.myapp

MACOSX_BUNDLE_SHORT_VERSION_STRING CFBundleShortVersionString 2.4.7

MACOSX_BUNDLE_LONG_VERSION_STRING CFBundleLongVersionString see below

MACOSX_BUNDLE_INFO_STRING CFBundleGetInfoString see below

MACOSX_BUNDLE_ICON_FILE CFBundleIconFile see below

Apple no longer documents CFBundleLongVersionString as one of the Info.plist keys, so projects may
choose to not provide it. Their documentation also states that NSHumanReadableCopyright has replaced
CFBundleGetInfoString and that CFBundleIconFile is deprecated and recommends using
CFBundleIconFiles or CFBundleIcons instead. CFBundleIconFile is still honored if neither of the other
alternatives is set.

If multiple app targets are being defined, a project may set variables with exactly the same names
as the properties in the above table and the variables will be used to initialize the target properties.
Note that this differs from the usual CMake convention of variables having a CMAKE_… prefix before
the target property they act as defaults for.

When a project provides its own Info.plist template file, it is not required to make any use of the
above target properties. It is perfectly valid to hard-code values instead. Note, however, that
CFBundleVersion and CFBundleShortVersionString may need to be derived from version details
specified within the CMakeLists.txt files, so setting these via MACOSX_BUNDLE_BUNDLE_VERSION and
MACOSX_BUNDLE_SHORT_VERSION_STRING substitutions may still be the most convenient approach.

The Apple requirements around the version numbers have evolved over time, with
major.minor.patch now the documented format for both CFBundleShortVersionString and
CFBundleVersion. In the case of CFBundleVersion, only the major part is required — the minor and patch
version components are optional. One strategy is to set CFBundleVersion to the job number from a
continuous integration system, which will ensure that subsequent builds for the same
CFBundleShortVersionString during the pre-release phase will have unique and increasing build
numbers. When updating an already installed app with the same CFBundleShortVersionString, this
will ensure the operating system sees the latest build as a newer version.

The following CMake code and sample Info.plist file show one way to provide version numbers
that meet Apple’s requirements:

# CI systems typically provide some form of job ID as an
# environment variable. This example works for gitlab, but
# other CI systems are likely to be similar. When not run
# under a CI system, this will leave BUILD_VERSION unset.
set(BUILD_VERSION $ENV{CI_JOB_ID})
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if(BUILD_VERSION STREQUAL "")
    # This is a local build, not through CI system
    set(BUILD_VERSION 0)
endif()

add_executable(MyApp MACOSX_BUNDLE ...)

set_target_properties(MyApp PROPERTIES
    MACOSX_BUNDLE_BUNDLE_VERSION       "${BUILD_VERSION}"
    MACOSX_BUNDLE_SHORT_VERSION_STRING "${PROJECT_VERSION}"
    MACOSX_BUNDLE_INFO_PLIST           "${CMAKE_CURRENT_SOURCE_DIR}/Info.plist"
)

Info.plist

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
  "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0"><dict>
  <key>CFBundleDevelopmentRegion</key><string>en</string>
  <key>CFBundleExecutable</key>
    <string>$(EXECUTABLE_NAME)</string>
  <key>CFBundleIconFile</key>
    <string>${MACOSX_BUNDLE_ICON_FILE}</string>
  <key>CFBundleIdentifier</key>
    <string>${MACOSX_BUNDLE_GUI_IDENTIFIER}</string>
  <key>CFBundleInfoDictionaryVersion</key>
    <string>6.0</string>
  <key>CFBundleName</key>
    <string>${MACOSX_BUNDLE_BUNDLE_NAME}</string>
  <key>CFBundlePackageType</key><string>APPL</string>
  <key>CFBundleShortVersionString</key>
    <string>${MACOSX_BUNDLE_SHORT_VERSION_STRING}</string>
  <key>CFBundleVersion</key>
    <string>${MACOSX_BUNDLE_BUNDLE_VERSION}</string>
  <key>LSMinimumSystemVersion</key>
    <string>$(MACOSX_DEPLOYMENT_TARGET)</string>
  <key>NSHumanReadableCopyright</key>
    <string>${MACOSX_BUNDLE_COPYRIGHT}</string>
  <key>NSMainStoryboardFile</key><string>Main</string>
  <key>NSPrincipalClass</key><string>NSApplication</string>
</dict></plist>

In the example Info.plist file above, note how some field values are provided as CMake variables
using the ${} syntax, but the CFBundleExecutable and LSMinimumSystemVersion are provided using Xcode
variable substitution syntax $() instead. These two fields will be populated by Xcode itself based on
other information provided in the project file and the scheme being built. The value for
LSMinimumSystemVersion will be derived from the CMAKE_OSX_DEPLOYMENT_TARGET variable in the case of a
macOS app, or from the XCODE_ATTRIBUTE_IPHONEOS_DEPLOYMENT_TARGET target property for iOS (but note
that CMake 3.11 and later can use CMAKE_OSX_DEPLOYMENT_TARGET for all platforms, see discussion in
Section 24.5, “Build Settings” further below). Projects can instead hard-code a value directly in the
Info.plist file, if that is more convenient.
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When using Storyboard or interface builder files, the Info.plist file should contain one of the keys
NSMainStoryboardFile, NSMainNibFile or UIMainStoryboardFile (see the Apple documentation for details
on the meaning and appropriate use of these keys). Such an entry tells the operating system which
UI element to use when launching the app. In the above example, the NSMainStoryboardFile field has
the value Main, which specifies that a Main.storyboard UI will be used when the app starts. This is
discussed further in the next section.

24.2.3. Sources, Resources And Other Files

With an appropriate Info.plist file defined, attention can be turned to the source files to be
compiled and linked into the bundle. In addition to the usual C/C++ sources, Apple platforms also
support Objective-C/C++ source files. These typically have a .m or .mm file suffix and can be listed as
sources in add_executable() and target_sources() commands just like ordinary C/C++ files (see
Section 34.5, “Defining Targets” for more on defining target sources). Most of CMake’s generators
will recognize these file suffixes and compile the files appropriately, not just the Xcode generator.
Starting from CMake 3.16, OBJC and OBJCXX are recognized as distinct languages and can be enabled
separately from C and CXX. They also support their own language-specific sets of CMake variables
like CMAKE_OBJC_FLAGS, CMAKE_OBJCXX_STANDARD and so on.

Another group of source files unique to Apple platforms are those used to define the user interface.
Storyboard or interface builder files are like sources, but they require some additional handling to
compile them as resources and put the compiled result in the appropriate place in the app bundle.
Only the Xcode generator implements this automatic compilation and copying to the appropriate
location, so the use of Makefile or Ninja generators is generally not recommended when an app
bundle has these files.

Storyboard and interface builder sources need to be listed as sources in add_executable() or
target_sources(). To get them to be automatically compiled and copied to the appropriate location in
the bundle, they also need to be listed in the RESOURCE target property or have their
MACOSX_PACKAGE_LOCATION source property set to Resources. The main difference between these two
approaches is what happens if the target is installed (Chapter 27, Installing is dedicated to this
broad topic). Any file listed in the RESOURCE target property will be copied to the RESOURCE destination
given in the install(TARGET) command, regardless of what type of source file it is. This is usually
undesirable for source files that need to be compiled, but is suitable for other arbitrary files to be
added to the app bundle. On the other hand, source files that have their MACOSX_PACKAGE_LOCATION set
to Resources will not be installed if Xcode recognizes them as source files that should be compiled.
All other types of source files will be installed. Section 24.8.3, “Combined Device And Simulator
Binaries” discusses a specific scenario where this difference in behavior is particularly relevant.

set(compileRes
    Base.lproj/Main.storyboard
    Base.lproj/LaunchScreen.storyboard
    Assets.xcassets    ①
)

set(directCopyRes
    defaultConfig.xml
    inventoryDb.dat
)
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add_executable(MyApp MACOSX_BUNDLE
    AppDelegate.m
    AppDelegate.h
    ViewController.m
    ViewController.h
    main.m
    ${compileRes}
    ${directCopyRes}
)

set_target_properties(MyApp PROPERTIES
    RESOURCE "${directCopyRes}"   ②
)

set_source_files_properties(${compileRes} PROPERTIES
    MACOSX_PACKAGE_LOCATION Resources
)

① While CMake doesn’t officially support listing directories as sources, it is an important technique
for allowing things like asset catalogs to be compiled.

② Note the quotes to ensure the list of files is passed as a single value for the RESOURCE property.

A special case applies when setting the MACOSX_PACKAGE_LOCATION to a path starting with Resources and
the target is being built for iOS, tvOS or watchOS. Because app bundles for these platforms use a
flattened structure, CMake will strip off the Resources part of the path. Prior to CMake 3.9, this
behavior was implemented incorrectly and it was not always possible to get a file into the desired
location.

For cases where source files need to be copied into the app bundle with some sort of directory
structure, or where they need to be located somewhere other than the Resources directory, the
MACOSX_PACKAGE_LOCATION method must be used. For example:

set(sharedRes defaultConfig.xml defaultInventoryDb.dat)

add_executable(MyApp MACOSX_BUNDLE ... ${sharedRes})

set_source_files_properties(${sharedRes} PROPERTIES
    MACOSX_PACKAGE_LOCATION SharedSupport/defaults
)

24.3. Frameworks
Frameworks share some similarities with application bundles, but they also have a number of
unique features. A framework contains a main library, but unlike an application bundle, on macOS
there may be multiple versions of the library. In addition to the usual resources, frameworks also
support headers and in the case of macOS, both the resources and headers are version-specific.
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24.3.1. Framework Structure

A typical example of the macOS framework structure looks something like this.

The top level of the framework always has a name that ends with .framework and typically the only
non-symlinked contents in that top level directory is the Versions subdirectory (umbrella
frameworks being the exception, but those are outside the scope of framework support being
considered here). Everything else at that level is usually a symlink to something in the current
version’s subdirectory.

Within the Versions directory, each version of the library gets its own subdirectory whose name is
the version. In most cases, these directory names are just A, B, etc. Use of numeric versions is
another common convention, which aligns more closely with how shared libraries are versioned
on other platforms. Regardless of the style of versioning, a symlink called Current points to the most
recent version and it acts like a default version for the framework. Each version is expected to have
a Resources directory that contains at least an Info.plist file, which provides configuration details
about that particular version (discussed further below). There will also be a library (which is
usually a shared library, but it can be static) and often Headers and potentially PrivateHeaders
subdirectories as well.

In comparison, the structure on iOS, tvOS and watchOS is flattened and does not typically support
versions:

CMake supports the creation of frameworks (single-version only in the case of macOS) and it
provides features for handling the version details. There is also support for Info.plist files which
follows a similar approach to that used for application bundles. The first step is to define a library
in the usual way and then mark it as a framework by setting the FRAMEWORK target property to true.
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With CMake 3.15 or later, the FRAMEWORK target property is initialized with the value of the
CMAKE_FRAMEWORK variable, while for 3.14 and earlier, the target property is initially unset. Most
frameworks are defined as shared libraries, but as of CMake 3.8, static libraries can also be built as
frameworks. The FRAMEWORK target property is ignored on non-Apple platforms.

For macOS only, the framework version can be specified using the FRAMEWORK_VERSION target property,
or if omitted a default version of A will be set. Non-macOS Apple platforms will ignore the
FRAMEWORK_VERSION property if it is set, producing the same flattened, unversioned framework
structure produced by Xcode when it creates frameworks for these platforms.

add_library(MyFramework SHARED foo.cpp)

set_target_properties(MyFramework PROPERTIES
    FRAMEWORK         TRUE
    FRAMEWORK_VERSION 5
)

24.3.2. Framework Info.plist Files

The Info.plist file template is specified in the same way as for application bundles, except the
target property is called MACOSX_FRAMEWORK_INFO_PLIST (this is supported for all Apple platforms, not
just macOS):

set_target_properties(MyFramework PROPERTIES
    MACOSX_FRAMEWORK_INFO_PLIST
        "${CMAKE_CURRENT_SOURCE_DIR}/Info.plist"
)

As for application bundles, if a framework Info.plist file is not explicitly provided, a default one is
automatically generated. Whether the project provides its own Info.plist or it relies on the default,
CMake will perform a similar substitution as for application bundles when copying it into the
framework. The following target properties will be substituted where the Info.plist file refers to
them (the expected associated key name in the Info.plist file is also listed):

Property Info.plist Key

MACOSX_FRAMEWORK_BUNDLE_VERSION CFBundleVersion

MACOSX_FRAMEWORK_ICON_FILE CFBundleIconFile

MACOSX_FRAMEWORK_IDENTIFIER CFBundleIdentifier

MACOSX_FRAMEWORK_SHORT_VERSION_STRING CFBundleShortVersionString

Unlike for application bundles, the default framework Info.plist file is likely to be sufficient in
many cases, so the project can usually just set the above four target properties and let CMake
provide an appropriate Info.plist file.
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24.3.3. Headers

Frameworks often contain the headers associated with the framework’s library. This allows the
framework to be treated as a self-contained bundle which other software can build against.
Framework headers are separated into public and private groups, with only public headers
intended to be directly included or imported by consuming projects. The private headers are
usually needed as internal implementation details by the public headers and frameworks often do
not include any private headers at all.

CMake supports specifying the set of public and private headers with the PUBLIC_HEADER and
PRIVATE_HEADER target properties respectively. Both properties contain a list of header files and all
files mentioned must also be explicitly listed as sources for the target or they won’t be copied into
the framework. Files listed in PUBLIC_HEADER will be copied into the framework’s Headers directory
with paths stripped, while files listed in PRIVATE_HEADER will be copied into the PrivateHeaders
directory, again with any paths stripped. If paths need to be preserved, these target properties
cannot be used and the headers have to be added using techniques such as via
MACOSX_PACKAGE_LOCATION as described in Section 24.2.3, “Sources, Resources And Other Files”.

add_library(MyFramework SHARED
    foo.cpp
    foo.h
    foo_privateA.h
    nested/foo_privateB.h
)

set_target_properties(MyFramework PROPERTIES
    FRAMEWORK      TRUE
    PUBLIC_HEADER  foo.h
    PRIVATE_HEADER "foo_privateA.h;nested/foo_privateB.h"
)

The above example would result in the following structure on macOS:

The same example on iOS would result in a more flattened structure:
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Note that the PUBLIC_HEADER and PRIVATE_HEADER target properties are also used when installing
targets on non-Apple platforms (see Section 27.5.2, “Explicit Public And Private Headers”).

24.4. Loadable Bundles
In addition to application bundles and frameworks, Apple also supports loadable bundles for
macOS. These are often used as plugins or to provide optional features which might or might not be
supported at run time. The structure of a loadable bundle is the same as that of an application
bundle, but the top level directory usually has the extension .bundle or .plugin (any extension is
technically permitted). CMake supports the creation of loadable bundles through the MODULE library
type and the BUNDLE target property. By default, loadable bundles will be given the extension bundle,
but this can be overridden with the BUNDLE_EXTENSION target property.

add_library(MyBundle MODULE ...)
set_target_properties(MyBundle PROPERTIES
    BUNDLE           TRUE
    BUNDLE_EXTENSION plugin
)

All the target properties relating to application bundles can also be used for loadable bundles.

24.5. Build Settings
When building a project for Apple platforms, a number of properties work together to define what
platform to build for and to specify minimum platform version requirements. Unlike other CMake
generator types, the Xcode generator allows a number of these to be specified at build time by the
developer rather than being known at configure time, a characteristic which can be one of the
more difficult aspects to handle correctly for both new and experienced CMake users alike.

For single configuration generators, the target device is known exactly at configure time, but for
Xcode, some platforms support both the device and device simulators. Furthermore, some of these
devices have multiple architectures. In the case of iOS, this can mean up to five different target
platform combinations. In order to allow developers to switch between different device targets and
SDKs at build time, CMake projects must be careful to not over-specify or incorrectly specify these
details.

24.5.1. SDK Selection

The selection of the SDK for iOS, tvOS and watchOS is one area where many online examples
exhibit considerable complexity and often result in locking the developer out of the ability to switch
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between device and simulator builds without re-running CMake. With recent versions of CMake
and Xcode, however, specifying the SDK should be relatively straightforward. This is especially so
with improvements added in CMake 3.14, with potentially the only required setup being to set the
CMAKE_SYSTEM_NAME variable to iOS, tvOS or watchOS. A toolchain file may not even be needed,
CMAKE_SYSTEM_NAME can be set directly on the cmake command line, although some workarounds may
still be needed depending on the Xcode version (see Section 24.5.4, “Compiler Test Workarounds”).
With CMake 3.13 or earlier, a similar result can be achieved by setting the CMAKE_OSX_SYSROOT
variable to one of iphoneos, appletvos or watchos, although the support for tvOS and watchOS is less
complete and should be considered unreliable.

With either of these methods, Xcode will choose the latest SDK for that platform and it will allow
switching between device and simulator builds without having to re-run CMake. Furthermore,
Xcode can automatically populate the set of supported architectures based on the chosen SDK, so
the project shouldn’t need to specify them directly (see Section 24.8.2, “Intel And Apple Silicon
Binaries” for more on this topic). This gives the developer the most control over what they want to
build without having to re-run CMake.

The -sdk option can be given to choose the device or simulator at build time. For example, if
CMAKE_SYSTEM_NAME was set to iOS, then building for the simulator could be done like so:

xcodebuild -sdk iphonesimulator

For the curious, the available SDKs can be obtained by running the following command:

xcodebuild -showsdks

24.5.2. Deployment Target

For either method of setting CMAKE_OSX_SYSROOT or CMAKE_SYSTEM_NAME to the desired platform, the
project will have its deployment target set to the most recent one the SDK or host system supports
by default. This will often be undesirable, since projects typically want to remain compatible with a
specific minimum OS version.

For macOS, the OSX_DEPLOYMENT_TARGET target property controls the minimum macOS version the
target will support. A default value can be specified for this target property using the
CMAKE_OSX_DEPLOYMENT_TARGET variable, but this must be set before the first project() command is
called. Furthermore, CMAKE_OSX_DEPLOYMENT_TARGET needs to be a cache variable if it is being set
directly in the top level CMakeLists.txt file, otherwise it will be overwritten by the compiler checks
performed by the project() command.

An alternative strategy is to use a toolchain file and set CMAKE_OSX_DEPLOYMENT_TARGET within it, but the
use of toolchain files for macOS builds would be rather uncommon and this variable is something
that the project should define, not the developer. One more approach would be to set the
CMAKE_OSX_DEPLOYMENT_TARGET cache variable on the cmake command line, but this also puts the
responsibility on the developer to remember to set it and to provide the correct value, making it
less attractive.
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Prior to CMake 3.11, when targeting platforms other than macOS, the CMAKE_OSX_DEPLOYMENT_TARGET
variable had no effect. To control the minimum deployment target version for iOS before CMake
3.11, use the XCODE_ATTRIBUTE_IPHONEOS_DEPLOYMENT_TARGET target property instead. A default value for
this target property can be set using the CMAKE_XCODE_ATTRIBUTE_IPHONEOS_DEPLOYMENT_TARGET variable
and unlike for macOS, this variable can be set after the first project() call. From CMake 3.11
onward, CMAKE_OSX_DEPLOYMENT_TARGET can be used to define the minimum deployment target version
for any of the Apple platforms, not just macOS. If a target ends up with both OSX_DEPLOYMENT_TARGET
and XCODE_ATTRIBUTE_IPHONEOS_DEPLOYMENT_TARGET target properties defined, the latter takes
precedence when using the Xcode generator.

cmake_minimum_required(VERSION 3.9)

# Set the deployment target for macOS with any CMake version or all Apple
# platforms when using CMake 3.11 or later. Must be set before first call
# to project() and it must be a cache variable.
set(CMAKE_OSX_DEPLOYMENT_TARGET 10.11 CACHE STRING "")
project(AppleProject)

# Set the deployment target for iOS with any CMake version.

# Set defaults for all targets in the project
set(CMAKE_XCODE_ATTRIBUTE_IPHONEOS_DEPLOYMENT_TARGET 9.0)

# Build an app with the deployment target explicitly set
add_executable(MyApp MACOSX_BUNDLE ...)
set_target_properties(MyApp PROPERTIES
    XCODE_ATTRIBUTE_IPHONEOS_DEPLOYMENT_TARGET 10.0
)

24.5.3. Device Families

In the case of iOS, projects will also likely want to specify the device families being targeted. Apple
denotes devices with integer values specified in the TARGETED_DEVICE_FAMILY attribute. For iOS, valid
values are 1 for iPhone (and technically iPod touch too) or 2 for iPad. If the app should support both
iPhone and iPad, then specify both values separated by a comma. If this attribute is not set, it will
default to 1. Xcode will use this value to add a UIDeviceFamily entry in the app’s Info.plist file
automatically, so avoid setting this entry in any custom Info.plist supplied by the project.

# An iOS app that supports only iPad
add_executable(MyiPadApp MACOSX_BUNDLE ...)
set_target_properties(MyiPadApp PROPERTIES
    XCODE_ATTRIBUTE_TARGETED_DEVICE_FAMILY 2
)

# An iOS app that supports both iPhone and iPad
add_executable(RunEverywhereApp MACOSX_BUNDLE ...)
set_target_properties(RunEverywhereApp PROPERTIES
    XCODE_ATTRIBUTE_TARGETED_DEVICE_FAMILY 1,2
)
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24.5.4. Compiler Test Workarounds

When building for Apple platforms other than macOS, the compiler checks performed by CMake
and any try_compile() invocations initiated by the project have the potential to trigger a variety of
problems. Many of these problems come from code signing being enabled during compiler checks
or try_compile() invocations, but signing is usually not necessary nor desirable in those contexts.
The steps to avoid these problems depend on the combination of the Xcode and CMake versions
used, but in almost all cases, the workarounds are most easily implemented with a toolchain file.

Xcode 11 changed the handling of certain signing-related project options, among other things. To be
able to build successfully with Xcode 11 for iOS, watchOS or tvOS, the preferred CMake version
should be 3.18.2 or later. This requires no workarounds to get a successful build. CMake 3.14 or
later can still be used (earlier versions will fail), but the CMAKE_XCODE_ATTRIBUTE_CODE_SIGNING_ALLOWED
variable needs to be set to false inside try_compile() calls to prevent signing. This variable should
not be set for the main part of the build, since the main build’s targets will likely need to be signed.
The following toolchain file demonstrates how this can be achieved:

# Any of these platforms can be used with this approach
#set(CMAKE_SYSTEM_NAME watchOS)
#set(CMAKE_SYSTEM_NAME tvOS)
set(CMAKE_SYSTEM_NAME iOS)

# Only disable code signing for try_compile() calls. Leave
# signing details alone for the main part of the build.
get_property(__in_try_compile GLOBAL
    PROPERTY IN_TRY_COMPILE
)
if(__in_try_compile)
    set(CMAKE_XCODE_ATTRIBUTE_CODE_SIGNING_ALLOWED NO)
endif()
unset(__in_try_compile)

CMake 3.18.2 and later automatically sets CMAKE_XCODE_ATTRIBUTE_CODE_SIGNING_ALLOWED to false inside
try_compile() calls, so the above is not necessary in that case (but also not harmful). Only the
CMAKE_SYSTEM_NAME needs to be set for that Xcode/CMake combination, which can be done as a
command line option or in a toolchain file.

When using Xcode 10 or earlier with CMake 3.14 or later, the above toolchain file is also not
needed, but again it would not harm the build.

When using CMake 3.13 or earlier, the situation is more complex. The following toolchain file
works for iOS with Xcode 10, 9 and potentially earlier. It works at least as far back as CMake 3.7,
although that should really be considered too old for building iOS apps today:

set(CMAKE_OSX_SYSROOT iphoneos)
set(CMAKE_TRY_COMPILE_TARGET_TYPE STATIC_LIBRARY)

if(NOT DEFINED CMAKE_XCODE_ATTRIBUTE_CODE_SIGN_IDENTITY)
    set(CMAKE_XCODE_ATTRIBUTE_CODE_SIGN_IDENTITY "")
endif()
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The above prevents code signing in code checks and try_compile() invocations, but still leaves the
code signing identity untouched in the main build (when those details are provided). Setting
CMAKE_TRY_COMPILE_TARGET_TYPE prevents the checks from trying to build bundles, which would
require additional information such as a bundle ID. Other combinations of options can also be
used, but the above is the simplest. For tvOS and watchOS, variations on the above may work with
CMake versions prior to 3.14, but official support for those platforms is only provided with CMake
3.14 or later.

24.6. Code Signing
The above covers the main build-related settings that need to be defined for most Apple projects.
For simple unsigned macOS apps, they may be enough on their own, but most projects will need
further configuration to sign the build products before they can be useful.

Xcode functionality related to code signing has evolved with each successive major Xcode release.
The move toward automatic management of code signing and provisioning has made it easier to get
signed applications built with CMake, but it still requires an understanding of the signing process to
set the appropriate properties and variables. It should be noted that in Xcode 8, the way that
signing and provisioning works changed significantly, leaving many examples which demonstrate
methods for Xcode 7 and earlier no longer reflecting best practice.

24.6.1. Signing Identity And Development Team

For signing and provisioning to work, the app must have a valid bundle ID and at least two other
key pieces of information: the development team ID and the code signing identity. These need to be
specified as Xcode attributes, which follow the usual pattern of being set on individual targets
through target properties or through CMake variables to specify global defaults. Since both
quantities would typically need to be the same throughout the build, it is generally advisable to set
them as variables at the top of the project rather than per target.

The XCODE_ATTRIBUTE_DEVELOPMENT_TEAM target property or alternatively the corresponding
CMAKE_XCODE_ATTRIBUTE_DEVELOPMENT_TEAM variable should be set to the development team ID, which is
a short string typically of around 10 characters. The most convenient approach is usually to set the
CMAKE_XCODE_ATTRIBUTE_DEVELOPMENT_TEAM variable very early in the very top CMakeLists.txt file, usually
just after the first project() command. Depending on the project, the developer might or might not
need the ability to change this value. For example, if the project is company software that will
always be built by an employee, then the team ID will likely never change, whereas an open source
project available to the general public will almost certainly be built by developers with their own
development team ID. For cases where the team ID should never change, defining
CMAKE_XCODE_ATTRIBUTE_DEVELOPMENT_TEAM as an ordinary variable is sufficient, but where it is expected
that the developer may need to change it, it should be defined as a cache variable so that a default
value can be given but developers can override it without editing the CMakeLists.txt file.

Similarly, the XCODE_ATTRIBUTE_CODE_SIGN_IDENTITY target property or the corresponding
CMAKE_XCODE_ATTRIBUTE_CODE_SIGN_IDENTITY variable specifies the signing identity. In the past, this
should almost always have been the string Mac Developer for macOS applications or iPhone Developer
for iOS, tvOS or watchOS applications. Apple have since changed their certificate handling and
starting with Xcode 11, the string Apple Development should work for all platforms. These values will
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direct Xcode to select the most appropriate signing identity for the specified development team. In
unusual circumstances, the signing identity may need to be set to a string which identifies a
particular code signing identity in the developer’s keychain, but the onus is then on the developer
to ensure that this identity belongs to the specified development team.

The following example shows how a CMakeLists.txt might be structured for a macOS application
which allows the developer to change the team ID and the signing identity:

cmake_minimum_required(VERSION 3.14)
project(macOSexample)

set(CMAKE_XCODE_ATTRIBUTE_DEVELOPMENT_TEAM   "ABC12345DE"        CACHE STRING "")
set(CMAKE_XCODE_ATTRIBUTE_CODE_SIGN_IDENTITY "Apple Development" CACHE STRING "")

For an iOS application where the team ID is not expected to be changed, but where the developer
might still want control over the signing identity (e.g. to test a different identity in their keychain),
only the identity would need to be a cache variable:

cmake_minimum_required(VERSION 3.14)
project(iOSexample)

set(CMAKE_XCODE_ATTRIBUTE_DEVELOPMENT_TEAM   "ABC12345DE")
set(CMAKE_XCODE_ATTRIBUTE_CODE_SIGN_IDENTITY "Apple Development" CACHE STRING "")

One might be tempted to move the code signing details into a toolchain file to avoid having to set
CMAKE_XCODE_ATTRIBUTE_CODE_SIGN_IDENTITY altogether, but as highlighted in Section 24.5.4, “Compiler
Test Workarounds”, this can have negative consequences. The try-compile test that CMake performs
as part of the first project() command would then require a valid provisioning profile, which in
turn would require a valid bundle ID. It is not generally going to be desirable to have such bundle
IDs and provisioning profiles being created in the team account. The try-compile tests do not need
to perform code signing, so a toolchain file should not be used to enable signing globally.

If the app links to shared frameworks that are also built by the project, do not enable code signing
for those frameworks. The recommended way to add such frameworks to an app bundle is to
embed them with the Code sign on copy option enabled. This is discussed in Section 24.10,
“Embedding Frameworks”.

24.6.2. Provisioning Profiles

When configured as described in the preceding section, Xcode will automatically select an
appropriate provisioning profile. If an appropriate profile doesn’t exist, the Xcode IDE can
automatically create one. The xcodebuild command line tool also provides the
-allowProvisioningUpdates option for Xcode 9 or later. Automatic provisioning can be more
convenient compared to the manual process of earlier Xcode versions where provisioning profiles
had to be created manually through the online developer portal. For automatic provisioning to
work, the developer still needs an account on Apple’s developer portal. This can be a problem for
continuous integration builds or for team environments where individual developers might not
have such an account. In those situations, manual provisioning may still be preferred.
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The XCODE_ATTRIBUTE_PROVISIONING_PROFILE_SPECIFIER target property allows the provisioning profile
to be specified directly. It should be given the provisioning profile’s name rather than its UUID
because the profile will need to be updated from time to time, such as when a device or developer
certificate is added, updated or removed. The profile’s name will remain constant, but its UUID will
change with each update. The name to use is the one shown for the profile in the developer portal.

24.6.3. Entitlements

Apple applications also have an associated set of entitlements. These control which features the
operating system will allow the app to use, such as Siri, push notifications and so on. In the project
settings within the Xcode IDE, users are able to go to the Capabilities tab of an app target and turn
on the capabilities required. The associated entitlements are then enabled in the plist file that
Xcode automatically generates, the target is linked to any required frameworks and the capability is
added to the app ID in the team account. With a CMake-generated project, this Capabilities tab is
effectively bypassed. Instead, the CMake project is expected to provide its own entitlements plist file
if the default entitlements are not sufficient. The project must also handle linking of any required
frameworks itself and no changes are made to the app ID. In practice, for many applications these
are fairly mild restrictions, with only framework linking presenting some wrinkles.

Specifying entitlements is done by setting the XCODE_ATTRIBUTE_CODE_SIGN_ENTITLEMENTS target property
to the name of an appropriate entitlements file like so:

set_target_properties(MyApp PROPERTIES
    XCODE_ATTRIBUTE_CODE_SIGN_ENTITLEMENTS
        ${CMAKE_CURRENT_LIST_DIR}/MyApp.entitlements
)

As an example, an entitlements file which adds Siri to the default entitlements can be quite simple:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
 "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
    <key>com.apple.developer.siri</key>
    <true/>
</dict>
</plist>

24.7. Creating And Exporting Archives
In order to distribute an app via the App Store, an Enterprise distribution portal or ad hoc
distribution, an archive first needs to be created. While CMake doesn’t create a build target for
creating such an archive, the xcodebuild tool can be used with a project generated by CMake to
accomplish the task. The archive build action requires only a few options to be able to build the
necessary targets for release and create an archive. There are a few ways to specify what to
archive, but a fairly simple approach is to name the project, scheme and the name of the output,
which can be done like so:
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xcodebuild archive                      \
           -project MyProject.xcodeproj \
           -scheme MyApp                \
           -archivePath MyApp.xcarchive

CMake creates the .xcodeproj file when using the Xcode generator. Prior to CMake 3.9, the user then
had to load the project in the Xcode IDE to create the build schemes. This presented a problem for
headless continuous integration builds where the IDE cannot be accessed, so to address this
situation, CMake 3.9 introduced the CMAKE_XCODE_GENERATE_SCHEME variable. When this variable is set
to true, CMake will also generate schemes for the project. Subsequent CMake versions added
support for a variety of XCODE_SCHEME_… target properties and associated CMAKE_XCODE_SCHEME_…
variables which can be used to customize scheme properties. See the CMake documentation for the
set of supported properties and variables.

With scheme generation enabled, the name of the app target can be specified for the -scheme option
to xcodebuild and the archive task has all the information it needs. The above command will build
the MyApp target for the Release configuration for all supported architectures, sign it (still with the
developer signing identity), and then create an archive named MyApp.archive in the current
directory.

Archiving may fail if certain install attributes are not set appropriately. The Apple developer
documentation contains a few troubleshooting guidelines which may help overcome the more
common situations, some of the more relevant ones being to ensure the target’s INSTALL_PATH and
SKIP_INSTALL attributes are set correctly for the target type. In a CMake project aimed at producing a
signed application for distribution, a target’s XCODE_ATTRIBUTE_SKIP_INSTALL property must be set to
YES for libraries and embedded frameworks and to NO for applications. Where it is set to NO, the
XCODE_ATTRIBUTE_INSTALL_PATH must also be provided and it should generally be given the value
$(LOCAL_APPS_DIR). Failure to follow this advice will typically result in the archiving step producing a
generic archive rather than an application archive.

# Apps must have install step enabled
set_target_properties(macOSApp PROPERTIES
    XCODE_ATTRIBUTE_SKIP_INSTALL  NO
    XCODE_ATTRIBUTE_INSTALL_PATH  "$(LOCAL_APPS_DIR)"
)

After the application archive has been created, it needs to be exported for distribution. This is
achieved by running the xcodebuild tool again, this time providing the archive just created, an
options plist file and the location to write the output to. The basic form of the command is:

xcodebuild -exportArchive                          \
           -archivePath MyApp.xcarchive            \
           -exportOptionsPlist exportOptions.plist \
           -exportPath Products

The -archivePath option points to the archive file created by the earlier invocation of xcodebuild and
the -exportPath option specifies the directory in which to create the final output file. Everything else
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about the export step is defined by the plist file given to the -exportOptionsPlist option. The full set
of supported keys can be found in the tool’s help documentation (xcodebuild -help), but a minimal
plist file might look like this:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
 "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
    <key>method</key>
    <string>app-store</string>
</dict>
</plist>

The method specifies the intended distribution channel and is expected to be one of the following:

• app-store

• ad-hoc

• enterprise

• development

• developer-id

• package

The default is development, but the methods more likely to be of interest are app-store, enterprise or
ad-hoc. When exporting an archive, the tool will select an appropriate distribution signing identity
for the chosen method and re-sign the app. The developer is expected to have already created or
downloaded the appropriate distribution signing identity and provisioning profile (most easily
done within the Xcode IDE, but can be done manually for continuous integration servers, etc.).

24.8. Universal Binaries
When building for Apple platforms, it will often be desirable to build for multiple architectures. For
a given device or desktop platform, there may be multiple generations of CPU type and it would
usually be desirable to provide binaries for each architecture. For example, the set of architectures
for iOS typically includes some combination of armv7, armv7s, arm64 and arm64e, depending on the SDK
used and the deployment version being targeted. Another example is for macOS, where it is likely
that both Intel (x86_64) and Apple Silicon (arm64) architectures will need to be supported. The device
platforms also typically each come with a set of simulators for development and testing purposes.
These simulators run on the host machine’s architecture.

There are two main scenarios where it is desirable to build for multiple architectures:

• Producing an archive for upload to the App Store or a release package for direct distribution. An
app bundle should preferably contain slices for each of the supported architectures of that
platform. For example, an iOS app with a deployment target of iOS 11 or later would ideally
have both arm64 and arm64e slices in its binaries.
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• Producing a bundle or framework that should contain both device and simulator binaries. For
an iOS bundle or framework targeting iOS 11 or later, this would mean including arm64, arm64e
and x86_64 architectures. In the case of frameworks, this would be more appropriate for passing
along to other developers or customers for use in their own project’s build.

These scenarios present different problems for CMake builds and require different solutions.

24.8.1. Device-only Bundles

For an app bundle without any embedded frameworks, producing a universal binary doesn’t
require any additional changes to the project’s CMakeLists.txt files or specifying any new cache
variables. It can be achieved just by indicating which architectures to build for on the build
command line and overriding the ONLY_ACTIVE_ARCH setting. The final app bundle with the combined
binaries will be signed using the same settings as if doing a single architecture build. In the
following two examples, both commands are equivalent:

# Building via CMake
cmake --build . --config Release -- \
    ONLY_ACTIVE_ARCH=NO             \
    -arch arm64                     \
    -arch arm64e

# Invoking xcodebuild directly
xcodebuild -configuration Release \
    ONLY_ACTIVE_ARCH=NO           \
    -arch arm64                   \
    -arch arm64e

When building via cmake, all options after the -- are passed directly to the underlying build tool
(xcodebuild when using the Xcode generator). If building from within the Xcode IDE, the
ONLY_ACTIVE_ARCH build setting for the app bundle’s target can be set to NO and the build is then
performed in the usual way.

When producing an archive, cmake --build cannot be used and the xcodebuild tool must be invoked
directly. The same architecture information needs to be given when producing an archive as well.
The following extends the example from Section 24.7, “Creating And Exporting Archives” to build
an archive as a universal binary:

xcodebuild archive                      \
           -project MyProject.xcodeproj \
           -scheme MyApp                \
           -archivePath MyApp.xcarchive \
           ONLY_ACTIVE_ARCH=NO          \
           -arch arm64                  \
           -arch arm64e

The archive can then be exported and uploaded in the same way as for a single architecture app.
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It is very common to see online tutorials and examples recommend setting the architectures in the
project’s CMakeLists.txt files or as cache variables on the cmake command line. They set the
CMAKE_OSX_ARCHITECTURES variable and sometimes also set CMAKE_XCODE_ATTRIBUTE_ONLY_ACTIVE_ARCH to
false. These have the effect of changing the default behavior of the build to always produce
universal binaries with the specified architectures. For example:

cmake -G  Xcode                                          \
      -D  CMAKE_TOOLCHAIN_FILE=../toolchain.cmake        \
      -D "CMAKE_OSX_ARCHITECTURES:STRING=arm64;arm64e"   \
      -D  CMAKE_XCODE_ATTRIBUTE_ONLY_ACTIVE_ARCH:BOOL=NO \
      path/to/source

Whether this is desirable will depend on the situation. For day-to-day development, it is likely that
the developer will only need to build one architecture. In that case, it would be a nuisance if the
project hard-coded the architectures and forced building universal binaries, since it would build
more than the developer needs each time. Instead, the project should omit those details and let the
developer decide if they want that behavior by default or not. The above example shows how the
developer or an automated script can set the defaults using CMake cache variables alone. One could
make the argument that the project could specify the set of architectures, but still leave the
developer to choose whether to set CMAKE_XCODE_ATTRIBUTE_ONLY_ACTIVE_ARCH or not. If the project does
this, it should not force the value of CMAKE_OSX_ARCHITECTURES, but rather set it as a cache variable
which can still be overridden if the developer or a script driving the build needs to.

Developers should be aware of a side effect of setting CMAKE_OSX_ARCHITECTURES. With one exception
(see next section), the compiler checks will test the architectures listed in that variable instead of
just the default architecture. This not only increases the configure time, it can break the configure
step if the deployment version used by those compiler checks is incompatible with any of the
architectures requested. If not specified globally through a cache variable set before the first
project() command, the latest version supported by the SDK will be used for the deployment
version. In the case of iOS, the deployment version is required to be 10 or less for the armv7
architecture, which means using any reasonably current Xcode version will break by default
without explicitly setting the deployment version. Adding something like
-DCMAKE_OSX_DEPLOYMENT_TARGET=10 to the cmake command line may be needed to overcome this
situation.

24.8.2. Intel And Apple Silicon Binaries

With a recent CMake and Xcode, producing macOS universal binaries with slices for Intel and
Apple Silicon is very similar to the device-only case. In fact, it can be handled the same way, by
setting CMAKE_OSX_ARCHITECTURES to the desired architectures. Instead of listing the individual
architectures though, it may be more convenient to use the special Xcode variable
$(ARCHS_STANDARD). This will expand to the full set of architectures supported by that particular
version of Xcode for the selected SDK (macOS by default). When using at least CMake 3.19.2 and
Xcode 12.2, the following is sufficient to produce a universal binary containing Intel and Apple
Silicon slices:

cmake -G Xcode -D "CMAKE_OSX_ARCHITECTURES:STRING=$(ARCHS_STANDARD)" path/to/source
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CMake 3.19 also ensures that the initial compiler checks only test the host architecture when
targeting the macOS platform with the Xcode generator. This is in contrast to targeting one of the
device platforms, where all architectures specified by CMAKE_OSX_ARCHITECTURES would be tested.

If CMAKE_OSX_ARCHITECTURES is not set, CMake will only build for one architecture by default. The
choice may be influenced by the host machine’s architecture, by whether CMake is running under
Rosetta and by whether CMake itself has been built as a universal binary. With CMake 3.19.2 or
later, the official CMake packages contain universal binaries. The default architecture is then
chosen by which slice is being executed. On an Intel host, this will be the Intel slice. On an Apple
Silicon host, this will normally be the Apple Silicon slice, but if CMake is being forced to run under
Rosetta, it will select the Intel architecture instead. If required, the user can override the default
choice by setting a CMake cache variable named CMAKE_APPLE_SILICON_PROCESSOR to either x86_64 or
arm64. Alternatively, a CMAKE_APPLE_SILICON_PROCESSOR environment variable can be used in the same
way instead. Avoid CMake versions before 3.19.2 if building on an Apple Silicon host.

24.8.3. Combined Device And Simulator Binaries

The methods of the previous sections are suitable when only a single SDK is needed for the build.
When building for both a device and its simulators, there are two SDKs involved and producing
universal binaries requires more steps. One can either do two separate builds and then use the lipo
command to manually stitch the resultant binaries together, or the project can be configured to do
the building and stitching automatically as part of an install. The project needs to provide the
required install() commands for this to work, which is covered in Chapter 27, Installing.
Particularly relevant material can be found in Section 27.2.3, “Apple-specific Targets”.

To direct CMake to build and install both device and simulator builds, the CMAKE_IOS_INSTALL_COMBINED
variable needs to be set to true. This can also be set on a per-target basis using the
IOS_INSTALL_COMBINED target property, which is initialized by the value of the
CMAKE_IOS_INSTALL_COMBINED variable when the target is defined, but setting the variable would
typically be more convenient. Using this feature, universal binaries combining device and
simulator slices could be created with commands like the following:

cmake -G  Xcode                                        \
      -D  CMAKE_TOOLCHAIN_FILE=someToolchain.cmake     \
      -D "CMAKE_OSX_ARCHITECTURES=arm64;arm64e;x86_64" \
      -D  CMAKE_XCODE_ATTRIBUTE_ONLY_ACTIVE_ARCH=NO    \
      -D  CMAKE_IOS_INSTALL_COMBINED=YES               \
      -D  CMAKE_INSTALL_PREFIX=path/to/staging/area    \
      path/to/source
cmake --build . --config Release --target install

If building on an Apple Silicon host with Xcode 12 or later, it may also be necessary to prevent the
arm64 architecture from being added for simulator builds. This can avoid the situation where lipo
tries to add arm64 slices for both the device and simulator. One way to achieve this is by adding an
exclusion, which is a new feature for Xcode 12. The following example shows one method for
targeting iOS using the variant form of Xcode project settings:

set(CMAKE_XCODE_ATTRIBUTE_EXCLUDED_ARCHS[sdk=iphonesimulator*] arm64)
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24.9. Linking Frameworks
App bundles often link against frameworks to re-use functionality. These frameworks could be
provided by the SDK, by external providers or they could be built by the project. Frameworks
provided by external parties are the most straightforward to incorporate into the project. They are
linked using target_link_libraries() just like any other library. They will first need to be located,
which is usually done by a call to find_package() or find_library() (see Chapter 25, Finding Things).

Frameworks provided by the Xcode SDK are also fairly straightforward to handle. Xcode
automatically adds the relevant search path for the SDK’s frameworks. With CMake 3.24 or later,
they can be robustly linked using the generator expression $<LINK_LIBRARY:FRAMEWORK,FrameworkName>,
introduced back in Section 16.2.2, “Link Library Features”. This should be preferred for projects
that can set their minimum CMake version to 3.24 or later. If earlier CMake versions need to be
supported, frameworks can be linked using the form -framework FrameworkName instead. To prevent
CMake from erroneously merging these options, quoting must be used to keep the option together
with the name of the framework to link.

target_link_libraries(MyApp PRIVATE
    "-framework ARKit"
    "-framework HomeKit"
)

It gets more complicated when linking a framework built by the project. When creating an archive,
Xcode uses completely different paths to build the project compared to an ordinary build. The
frameworks built during the archive process will not be at the locations CMake expects them to be.
When using CMake 3.19 or later, the linker command lines are constructed in such a way that the
full path to the framework isn’t used directly. This allows the usual target_link_libraries()
command to be used and linking will succeed despite the different paths. For CMake 3.18 and
earlier, the wrong path breaks archive builds, so linking needs to be done without referring to the
CMake target directly. The -framework linker option can once again be used for this, following it with
the output name of the framework. This output name is usually the same as the target name, but
can be changed with the OUTPUT_NAME target property. Some kind of dependency also needs to be
added to ensure the framework is built before the executable is linked. The following example
assumes the default output name for simplicity:

# Workaround for CMake 3.18 and earlier
target_link_libraries(MyApp PRIVATE "-framework MyFwk")
add_dependencies(MyApp MyFwk)

A drawback to losing the direct linking to the CMake target is that usage requirements will not be
propagated from the framework target to the executable target. None of the framework’s PUBLIC or
INTERFACE properties will be applied to the executable target. If these are relevant, the project will
need to find another way to achieve this. One method would be to create a separate interface
library that both the framework and the executable targets link to. That is fairly fragile and
inconvenient, so prefer to use CMake 3.19 or later where possible.
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The technique outlined above can be extended to cases where a framework links against another
framework:

add_executable(MyApp ...)
add_library(MyFwk ...)
add_library(OtherFwk ...)

target_link_libraries(MyFwk PRIVATE "-framework OtherFwk")
target_link_libraries(MyApp PRIVATE "-framework MyFwk")
add_dependencies(MyFwk OtherFwk)
add_dependencies(MyApp MyFwk)

The same caveat applies regarding loss of usage requirements propagating from OtherFwk to MyFwk
using this approach.

CMake 3.19 introduced support for using Xcode’s Link Binary With Libraries build phase. A new
target property XCODE_LINK_BUILD_PHASE_MODE can be used to control the way CMake links libraries
and frameworks into some target types. The default value of this property results in the same
behavior as earlier CMake versions, except it no longer embeds paths in linker flags in a way that
would break an xcodebuild archive operation. This is why the above fragile workaround can be
avoided with CMake 3.19 or later.

A more familiar Xcode experience can be obtained by setting a target’s XCODE_LINK_BUILD_PHASE_MODE
property to BUILT_ONLY. Any other CMake targets that are built by the project and linked into the
target will then be linked via the Link Binary With Libraries build phase instead of using raw linker
flags. The property can alternatively be set to KNOWN_LOCATION, in which case any item CMake knows
the path to will be linked via this build phase, not just CMake targets built by the project. Examples
of items that would only be linked via the build phase using KNOWN_LOCATION but not BUILT_ONLY
include imported targets and externally provided libraries specified as full paths.



When building frameworks for any of the Apple device platforms, be aware that a
long-standing bug in CMake versions before 3.20.1 caused mishandling of a
framework’s install name. The full absolute path to the framework would be
embedded in the framework’s binary, but that path wouldn’t exist on the device.
Any app using that framework would therefore be unable to run. Use CMake 3.20.1
or later to avoid this problem. For further details, see the discussions in Section
27.2.3, “Apple-specific Targets”.

24.10. Embedding Frameworks
For shared frameworks, there are further steps to consider beyond linking. The project will need to
embed the shared framework into the app bundle so that it is available at run time. CMake 3.20
added direct support for this with the Xcode generator. Projects can specify a list of frameworks to
embed with the XCODE_EMBED_FRAMEWORKS target property. These can be CMake targets or paths to
frameworks (they can also be paths to bare libraries, but that would be unusual and not consistent
with normal practice of using frameworks). Xcode will copy the frameworks to a standard location
within the bundle by default. If required, the project can override this location with the
XCODE_EMBED_FRAMEWORKS_PATH property, but that should not normally be necessary.
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When embedding a framework, the project needs to decide whether or not it wants the framework
headers to be included. If the target being embedded into is an application bundle, then the headers
would likely be unnecessary and should be excluded. On the other hand, if the target being
embedded into is itself a framework, then it may be reasonable to include the headers. The project
can specify the behavior it wants with the boolean XCODE_EMBED_FRAMEWORKS_REMOVE_HEADERS_ON_COPY
property on the target being embedded into. It will apply to all frameworks being embedded into
that target.

Similarly, the project will likely want to indicate whether to code-sign the frameworks as part of
embedding them. This can be done with the boolean XCODE_EMBED_FRAMEWORKS_CODE_SIGN_ON_COPY
property on the target being embedded into. If enabling this feature, ensure that the frameworks
are not signed when they are built or else Xcode will complain about trying to sign an already-
signed framework.

The following example demonstrates how to apply the above for an application with a single
embedded framework:

set(CMAKE_BUILD_WITH_INSTALL_RPATH)

add_library(MyFwk SHARED ...)
add_executable(MyApp MACOSX_BUNDLE ...)
target_link_libraries(MyApp PRIVATE MyFwk)

set_target_properties(MyFwk PROPERTIES
    FRAMEWORK                            TRUE
    XCODE_ATTRIBUTE_CODE_SIGNING_ALLOWED FALSE
    ...
)

set_target_properties(MyApp PROPERTIES
    # CMake 3.20 or later required
    XCODE_EMBED_FRAMEWORKS                        MyFwk
    XCODE_EMBED_FRAMEWORKS_CODE_SIGN_ON_COPY      TRUE
    XCODE_EMBED_FRAMEWORKS_REMOVE_HEADERS_ON_COPY TRUE
    ...
)

Further tweaks to the above example are needed to complete the full picture. Target properties like
XCODE_ATTRIBUTE_SKIP_INSTALL and XCODE_ATTRIBUTE_INSTALL_PATH need to be set appropriately, as
discussed in Section 24.7, “Creating And Exporting Archives”. The binaries also need to be able to
find each other at run time, which requires embedding further details in the binaries themselves.
That topic is addressed in Section 27.2.2, “RPATH” and Section 27.2.3, “Apple-specific Targets”.

CMake 3.21 also extended the set of XCODE_EMBED_… properties to support embedding app extensions
too. These XCODE_EMBED_APP_EXTENSIONS properties work in a similar way to XCODE_EMBED_FRAMEWORKS
discussed above, apart from using a different default for the …_REMOVE_HEADERS_ON_COPY properties.
CMake 3.23 extended the set further to support embedding plugins using properties starting with
XCODE_EMBED_PLUGINS. See the official CMake documentation for specific details.

Embedding frameworks with CMake 3.19 and earlier is much less straightforward. More manual
(and more fragile) steps are needed to achieve a similar result. When using the Xcode generator, a
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workaround is available by also listing the shared frameworks as sources for the app bundle’s
executable target. They need to be specified in an unusual way to support all use cases robustly.

Ordinarily, embedding a source is a simple matter of listing its path in a call to add_executable() or
target_sources(). For externally provided frameworks, this is the case because the location of that
framework is typically fixed. The MACOSX_PACKAGE_LOCATION source file property can then be used to
copy the framework into the app bundle at build time, just like any other resource or file. The
following shows how that might be done for a macOS platform where frameworks are usually
collected under a Frameworks directory within the app bundle:

add_executable(MyApp MACOSX_BUNDLE ... ${pathToFramework})
target_link_libraries(MyApp PRIVATE ${pathToFramework})

set_source_files_properties(${pathToFramework} PROPERTIES
    MACOSX_PACKAGE_LOCATION Frameworks
)

When the shared framework is built by the project, the situation is more complicated because
framework locations for an archive operation are different to those of a regular build. Variables
populated by Xcode have to be used instead of mentioning the target directly. The first step is being
able to reliably locate where the shared framework will be built, whether for a regular build or an
archive action. The CONFIGURATION_BUILD_DIR Xcode project variable points to the directory in which
the framework will end up, so its final location can be captured like so:

add_library(MyFwk SHARED ...)

set(fwkLocation "/\$(CONFIGURATION_BUILD_DIR)/MyFwk.framework")   ①

① The leading forward slash (/) before $(CONFIGURATION_BUILD_DIR) is discussed further below.

The next step is to add the framework as a source to the executable target and set up an
appropriate dependency on the original framework target. The following defines a custom
command that CMake will treat as creating the framework, but it is the DEPENDS part that actually
enforces the relationship:

add_custom_command(OUTPUT ${fwkLocation}
    DEPENDS MyFwk
    VERBATIM
)
add_executable(MyApp MACOSX_BUNDLE ... ${fwkLocation})

It should be noted that the above will only work when the framework and the executable targets
are defined in the same directory scope. This is a limitation of how add_custom_command(OUTPUT)
interacts with targets that use the outputs of that command.

Now that the framework is seen as a source for the executable, the same method can be used to
place it in the bundle as for any other file. The following will embed the framework in the standard
location for a macOS app bundle:
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set_source_files_properties(${fwkLocation} PROPERTIES
    MACOSX_PACKAGE_LOCATION Frameworks
)

In some places above, CMake attempts to work out whether the source file has been given using an
absolute or relative path. Its logic assumes a relative path unless the path starts with a forward
slash, or in some cases a generator expression. The $(CONFIGURATION_BUILD_DIR) variable provided by
Xcode already supplies the full path where needed, so in order to prevent CMake from prepending
anything, a leading forward slash is included before $(CONFIGURATION_BUILD_DIR). This will produce
two forward slashes at the start of the path used during processing, but all tools involved handle
that without error.

For externally provided frameworks or frameworks built by the project, code signing on copy can
be achieved by adding an Xcode file attribute for the framework as a source file property:

set_source_files_properties(${fwkLocation} PROPERTIES
    XCODE_FILE_ATTRIBUTES "CodeSignOnCopy"
)

24.11. Limitations
CMake’s handling of entitlements is fairly rudimentary. It falls short of the automation that the
Xcode IDE provides in the Capabilities target properties tab, where turning on a particular
capability also takes care of adding any required frameworks and automatically updates app ID
details as needed. CMake’s support still allows all entitlements to be specified, but the process is
entirely manual. The project is responsible for defining the entitlements in raw plist format and it
must also manually link in any required frameworks itself. Nonetheless, the handling of
entitlements is at least possible without the workarounds or steps becoming too burdensome. Any
frameworks required by the entitlements are system-provided, so they do not need to be embedded
with the application.

On a more practical, day-to-day level, a word of caution is in order regarding a CMake behavior that
isn’t always obvious. With the Xcode generator, when CMake writes the Xcode project, it creates a
utility target called ZERO_CHECK. Most other targets in the project depend on ZERO_CHECK and its sole
purpose is to work out if CMake needs to be re-run before doing the rest of the build. Unfortunately,
if CMake is re-run by ZERO_CHECK, the rest of that build still uses the old project details, which can
result in subtle errors due to targets being built with out-of-date settings. Rebuilding a second time
should always ensure any such incorrectly built targets are rebuilt properly, but it can be easy to
miss. Developers may want to explicitly build the ZERO_CHECK target or re-run CMake first after
modifying CMakeLists.txt files or anything else that would cause CMake to be re-run automatically,
or simply build twice.

A more subtle problem related to ZERO_CHECK exists if the project contains multiple calls to the
project() command. Targets defined below the second or later project() calls may not have their
dependency on ZERO_CHECK set up correctly. The CMAKE_XCODE_GENERATE_TOP_LEVEL_PROJECT_ONLY variable
can be set to true to prevent this problem, which will also have the useful side effect of speeding up
the CMake stage. Support for this variable was added in CMake 3.11.
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24.12. Recommended Practices
CMake is able to handle projects targeting Apple platforms, but the limitations need to be
considered carefully. If an app bundle needs to embed shared frameworks, the framework
embedding features available for the Xcode generator since CMake 3.20 are by far the simplest
solution (use CMake 3.20.1 or later to avoid an RPATH-related bug if targeting iOS, tvOS or
watchOS). Using older CMake versions will require more work to set up and the steps involved are
not intuitive. If shared frameworks are not needed, then CMake’s support from 3.14 onward is
generally enough to automate the process without too much effort, again as long as the Xcode
generator is used. For Xcode 12 or later though, CMake 3.19.2 should be considered the bare
minimum. Other generators such as Makefiles or Ninja are fine for building an unsigned macOS
application, but for other platforms or for signed applications, these generators typically lack some
of the features needed to easily produce the final package for distribution. Except for unsigned
macOS application development, use of the Xcode generator for Apple development is strongly
advised.

Much of the information available in online tutorials and examples is relatively out of date when it
comes to using CMake for Apple platforms. In particular, it is very common to see fairly complex
toolchain files for iOS, but much of the logic contained in such toolchain files is either questionable
or should be moved to the project itself. Developers are strongly encouraged to set their minimum
CMake version no lower than 3.14 and take advantage of the improved support for Apple platforms.
This makes toolchain files vastly simpler or even unnecessary — just setting CMAKE_SYSTEM_NAME to iOS,
tvOS or watchOS would often be sufficient. Logic related to Xcode project settings, device- or platform-
specific configuration, etc. should go in the project itself.

One of the things that tutorials and examples often do is specify the target architecture by setting
the CMAKE_OSX_ARCHITECTURES variable. When using the Xcode generator with projects targeting iOS,
watchOS or tvOS, this can prevent the developer from being able to switch freely between device
and simulator builds. The target architecture is selectable at build time when working in the Xcode
IDE or when building at the command line. Projects should generally avoid setting
CMAKE_OSX_ARCHITECTURES to a specific list of architectures. Instead, let Xcode supply the standard set
of architectures based on the selected SDK. When using the Xcode generator, this can be achieved
by setting CMAKE_OSX_ARCHITECTURES to $(ARCHS_STANDARD). If a project wants to specify the architectures
for the convenience of its developers, it should do so as a cache variable and not force overwriting
an existing value. This will ensure that developers still have control.

SDK selection is ultimately determined by the value of CMAKE_OSX_SYSROOT. When using CMake 3.14 or
later, prefer to select the platform via CMAKE_SYSTEM_NAME, as this will take care of setting
CMAKE_OSX_SYSROOT to a suitable default value for the corresponding device SDK. If using CMake 3.13
or earlier cannot be avoided, the developer has to specify the SDK in CMAKE_OSX_SYSROOT, which
should typically be the generic device string iphoneos for iOS builds. Xcode recognizes a matching
simulator when a device SDK is chosen, so the device and simulator builds will both be available to
the developer.

While it is possible to specify the SDK version as part of the value given to CMAKE_OSX_SYSROOT, there is
usually little reason to do so. It is much more likely that the deployment target should be set via
MACOSX_DEPLOYMENT_TARGET or XCODE_ATTRIBUTE_IPHONEOS_DEPLOYMENT_TARGET than the SDK version be set.
It is the deployment target that ultimately determines whether the application will be able to run
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on the target and this is independent of the SDK used to build it (assuming the SDK supports that
deployment target, of course). Since the latest available version of the SDK will be used by default,
there is little to be gained by requiring the build to use a specific SDK version and it can even be
harmful. When a particular SDK version is specified, not all developer machines may have it
available, since it will depend on which Xcode version is being used. Some developers carry over
older SDKs to newer Xcode versions to try to work around this, but that should not be necessary
and is actively discouraged.

Some examples also set CMAKE_XCODE_ATTRIBUTE_ONLY_ACTIVE_ARCH to true so as to only build the
currently selected architecture in the Xcode IDE. Again, this is a decision that should typically be
left up to the developer at build time rather than being enforced by the project. The default value of
CMAKE_XCODE_ATTRIBUTE_ONLY_ACTIVE_ARCH depends on whether or not CMAKE_OSX_ARCHITECTURES has been
explicitly set, but in general the developer can/should set this according to their own needs. They
can do so within the project in the Xcode IDE, or they can override the project setting when
building on the command line with the -arch option to xcodebuild. The -arch option can be specified
multiple times to build more than one architecture and have xcodebuild generate universal binaries
for those architectures automatically.

One situation where it may make sense to restrict the build to just one architecture is where the
project contains targets that link to libraries or frameworks that do not provide universal binaries
(i.e. they were only built for a single target platform). In this case, since those libraries or
frameworks only support a single platform, the project can only be built for that platform.
Similarly, when using find_library() or find_package() (covered in Chapter 25, Finding Things), these
commands inherently assume they are building for a single platform, so they do not attempt to
define the things they find in a way that supports switching between multiple target platforms.

Some projects may choose to use CMake’s install functionality rather than assume Xcode does
everything needed for a distributable bundle at build time. For such cases, the IOS_INSTALL_COMBINED
target property can be set to true to build both device and simulator versions of the target and to
combine them into a single universal binary during the install step. The CMAKE_IOS_INSTALL_COMBINED
cache variable is a more convenient way to enable this behavior project-wide.

The build output from Xcode can be quite verbose, so developers may choose to use a tool like
xcpretty to hide much of the detail (this is more common for scripted builds to reduce log sizes).
Unfortunately, this particular tool will typically hide the output of any of CMake’s custom post-build
steps, even if those custom steps cause a build error. When such custom steps fail, it can therefore
be very difficult to work out the cause of the failure, so it is advisable to either avoid the use of this
tool or at least make it easy to switch it off in scripts to help diagnose build problems. The -quiet
option to the xcodebuild command may be an alternative to reduce log output without hiding
warnings or errors, but it may also hide too much detail.
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Part III: The Bigger Picture
For the lucky few, a project may be independent of anything else and only needs to satisfy mild
quality constraints or perhaps none at all for throw-away experiments. The more likely scenario is
that, at some point, the project needs to move beyond its own isolated existence and interact with
external entities. This occurs in two directions:

Dependencies

The project may depend on other externally provided files, libraries, executables, packages and
so on.

Consumers

Other projects may wish to consume the project in a variety of ways. Some may want to
incorporate it at the source level, others may expect a pre-built binary package to be available.
Another possibility is the assumption that the project is installed somewhere on the system.

Making a project available either as a standalone package or for consumption by other projects also
brings an expectation of a certain level of quality. Automated testing is usually a critical part of any
robust software delivery strategy, which means it must be easy to define and execute tests and also
to report on the results.

The CMake suite of tools provides assistance with all of the above. It provides commands that
operate at a lower level for finding individual files, libraries, etc. It also provides features that give
a higher level entry point for dependency management. The CTest framework provides a rich set of
automated testing capabilities, while CPack considerably eases the process of creating packages in
various formats. This part of the book covers these externally focused topics, showing how to get
the most out of what CMake offers while also highlighting common mistakes and pitfalls.

As projects grow in size, so does the complexity of configuring, building and testing for different
scenarios. CMake presets are an important tool for managing this complexity, both for developers
and for things like continuous integration builds. The essentials of how to use presets effectively are
covered in their own dedicated chapter.

Towards the end of this part of the book, two chapters bring the reader full circle back to thinking
about how to organize a project. Doing this well requires an appreciation for both the build level
features and how a project will interact with other projects. With the benefit of the knowledge
gained from the earlier chapters of the book, these two chapters show how to structure and define
a project to be flexible, robust and easier for developers to work with. A variety of techniques are
presented which can significantly improve the overall build performance.

The final chapter of the book covers the special topic of using CMake with Qt projects. It draws on
many of the techniques and features introduced throughout the book and covers Qt-specific
features provided by both CMake and Qt.
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Chapter 25. Finding Things
A project of at least modest size will likely rely on things provided by something outside the project
itself. For example, it may expect a particular library or tool to be available, or it may need to know
the location of a specific configuration or header file for a library it uses. At a higher level, the
project may want to find a complete package that potentially defines a range of things including
targets, functions, variables and anything else a regular CMake project might define.

CMake provides a variety of features which enable projects to find things and to be found by or
incorporated into other projects. Various find_…() commands provide the ability to search for
specific files, libraries or programs, or indeed for an entire package. CMake modules also add the
ability to use pkg-config to provide information about external packages, while other modules
facilitate writing package files for other projects to consume. This chapter covers CMake’s support
for searching for something already available on the file system. The ability to download missing
dependencies is covered in Chapter 29, ExternalProject, Chapter 30, FetchContent and Chapter 32,
Dependency Providers, while preparing a project for being found by other projects is addressed in
Section 27.8, “Writing A Config Package File” and Chapter 31, Making Projects Consumable.

The basic idea of searching for something is relatively straightforward, but the details of how the
search is conducted can be quite involved. In many cases, the default behaviors are appropriate,
but an understanding of the search locations and their ordering can allow projects to tailor the
search to account for non-standard behaviors and unusual circumstances.

25.1. Finding Files And Paths
Conceptually, the most basic search task is to find a specific file. The most direct way to achieve this
is with the find_file() command, which also serves as a good introduction to the whole family of
find_…() commands, since they all share many of the same options and have similar behavior.

find_file(outVar
    name | NAMES name1 [name2...]
    [HINTS path1 [path2...] [ENV var]...]
    [PATHS path1 [path2...] [ENV var]...]
    [PATH_SUFFIXES suffix1 [suffix2 ...]]
    [REGISTRY_VIEW viewMode]      # CMake 3.24 or later
    [NO_DEFAULT_PATH]
    [NO_PACKAGE_ROOT_PATH]
    [NO_CMAKE_PATH]
    [NO_CMAKE_ENVIRONMENT_PATH]
    [NO_SYSTEM_ENVIRONMENT_PATH]
    [NO_CMAKE_SYSTEM_PATH]
    [NO_CMAKE_INSTALL_PREFIX]     # CMake 3.24 or later
    [CMAKE_FIND_ROOT_PATH_BOTH | ONLY_CMAKE_FIND_ROOT_PATH | NO_CMAKE_FIND_ROOT_PATH]
    [DOC "description"]
    [REQUIRED]                    # CMake 3.18 or later
    [NO_CACHE]                    # CMake 3.21 or later
    [VALIDATOR function]          # CMake 3.25 or later
)
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The command can search for a single file name or it can be given a list of names with the NAMES
option. A list can be useful when the file being searched for may have a few variations on its name,
such as different operating system distributions choosing different naming conventions,
incorporating version numbers or not, accounting for a file changing names from one release to
another and so on. The names should be listed in preferred order, since the search will stop at the
first one found (the complete set of search locations is checked for a particular name before moving
on to the next name). When specifying names that contain some form of version numbering, the
CMake documentation recommends listing the name(s) without version details ahead of those that
do so that locally built files are more likely to be found ahead of files provided by the operating
system.

The search will be conducted over a set of locations checked according to a well-defined order.
Most locations have an associated option which will cause that location to be skipped if the option
is present, thereby allowing the search to be tailored as needed. The following table summarizes
the search order:

Location Skip Option

Package root variables NO_PACKAGE_ROOT_PATH

Cache variables (CMake-specific) NO_CMAKE_PATH

Environment variables (CMake-specific) NO_CMAKE_ENVIRONMENT_PATH

Paths specified via the HINTS option

Environment variables (system-specific) NO_SYSTEM_ENVIRONMENT_PATH

Cache variables (platform-specific) NO_CMAKE_SYSTEM_PATH

Paths specified via the PATHS option

Package root variables

The first location searched only applies when find_file() is invoked from a script invoked as
part of a find_package() call (discussed later in this chapter). It was initially added as a search
location in CMake 3.9.0, but was removed in 3.9.1 due to backward compatibility issues. It was
then re-added again in CMake 3.12 with the problems addressed. Further discussion of this
search location is deferred to Section 25.5, “Finding Packages” where its use is more relevant.

Cache variables (CMake-specific)

The CMake-specific cache variable locations are derived from the cache variables
CMAKE_PREFIX_PATH, CMAKE_INCLUDE_PATH and CMAKE_FRAMEWORK_PATH. Of these, CMAKE_PREFIX_PATH is
perhaps the most convenient, as setting it works not just for find_file(), but also for all the other
find_…() commands. It represents a base point below which a typical directory structure of bin,
lib, include and so on is expected and each find_…() command appends its own subdirectory to
construct search paths. In the case of find_file(), for each entry in CMAKE_PREFIX_PATH, the
directory <prefix>/include will be searched. If the CMAKE_LIBRARY_ARCHITECTURE variable is set, then
the architecture-specific directory <prefix>/include/${CMAKE_LIBRARY_ARCHITECTURE} will be
searched first to ensure architecture-specific locations take precedence over generic locations.
The CMAKE_LIBRARY_ARCHITECTURE variable is normally set automatically by CMake and projects
should not generally try to set it themselves.

335



For the cases where a more specific include or framework path needs to be searched and it is
not part of a standard directory layout or package, the CMAKE_INCLUDE_PATH and
CMAKE_FRAMEWORK_PATH variables can be used. They each provide a list of directories to be searched,
but unlike CMAKE_PREFIX_PATH, no include subdirectory is appended. CMAKE_INCLUDE_PATH is
supported by find_file() and find_path(), whereas CMAKE_FRAMEWORK_PATH is supported by those
two commands and by find_library(). Other than that, these two sets of paths are handled in the
same way. See Section 25.1.1, “Apple-specific Behavior” further below for additional details.

When using CMake 3.16 or later, the CMAKE_FIND_USE_CMAKE_PATH variable can be used to control the
default behavior of whether to consider CMake-specific cache variables in the search. If the
variable is not defined or is set to true, the search will consider the cache variables. If set to
false, the search will ignore them.

Environment variables (CMake-specific)

The CMake-specific environment variable locations are very similar to the cache variable
locations. The three environment variables CMAKE_PREFIX_PATH, CMAKE_INCLUDE_PATH and
CMAKE_FRAMEWORK_PATH are treated in the same way as the same-named cache variables, except that
on Unix platforms, each list item will be separated by a colon (:) instead of a semi-colon (;). This
is to allow the environment variables to use platform-specific path lists defined in the same style
as other path lists for each platform.

When using CMake 3.16 or later, the CMAKE_FIND_USE_CMAKE_ENVIRONMENT_PATH variable can be used
to control the default behavior in a similar way as for CMAKE_FIND_USE_CMAKE_PATH.

Environment variables (system-specific)

The system-specific environment variables are INCLUDE and PATH. Both may contain a list
separated by the platform-specific path separator (colon on Unix, semi-colon on Windows), with
each item being added to the set of search locations (INCLUDE is added before PATH).

On Windows only (including Cygwin), the PATH entries will be further processed in a more
complex manner. For each item in the PATH environment variable, a base path will be computed
by dropping any trailing bin or sbin subdirectory from the end. If CMAKE_LIBRARY_ARCHITECTURE is
defined, <base>/include/${CMAKE_LIBRARY_ARCHITECTURE} is added. After that, the <base>/include path
is added to the set of search paths regardless of whether CMAKE_LIBRARY_ARCHITECTURE is defined. In
the search path ordering, these paths are placed immediately before the unmodified PATH item
itself. For example, if CMAKE_LIBRARY_ARCHITECTURE was set to somearch and the PATH environment
variable contained C:\foo\bin;D:\bar, the following ordered set of search paths would be added:

• C:\foo\include\somearch

• C:\foo\include

• C:\foo\bin

• D:\bar\include\somearch

• D:\bar\include

• D:\bar

When using CMake 3.16 or later, the CMAKE_FIND_USE_SYSTEM_ENVIRONMENT_PATH variable can be used
to control the default behavior in a similar way as for CMAKE_FIND_USE_CMAKE_PATH.
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Cache variables (platform-specific)

The platform-specific cache variable locations are very similar to those used for the CMake-
specific ones. The names change slightly but the pattern is the same. The variable names are
CMAKE_SYSTEM_PREFIX_PATH, CMAKE_SYSTEM_INCLUDE_PATH and CMAKE_SYSTEM_FRAMEWORK_PATH. These
platform-specific variables are not intended to be set by the project or the developer. Rather,
they are set automatically by CMake as part of setting up the platform toolchain so that they
reflect locations specific to the platform and compilers being used. The exception to this is where
a developer provides their own toolchain file, in which case it may be appropriate to set these
variables within the toolchain file.

When using CMake 3.16 or later, the CMAKE_FIND_USE_CMAKE_SYSTEM_PATH variable can be used to
control the default behavior in a similar way as for CMAKE_FIND_USE_CMAKE_PATH.

For some platforms, the install prefix (see Section 27.1.2, “Base Install Location”) is included in
the CMAKE_SYSTEM_PREFIX_PATH. This might not always be desirable, it can lead to finding
unintended things. CMake 3.24 added support for a NO_CMAKE_INSTALL_PREFIX keyword, which
makes the command ignore an install prefix in the CMAKE_SYSTEM_PREFIX_PATH. The default
behavior can also be set with the CMAKE_FIND_USE_INSTALL_PREFIX variable (set it to true to block
searching an install prefix by default). For CMake 3.23 and earlier, the
CMAKE_FIND_NO_INSTALL_PREFIX variable serves a similar purpose, but with a negated meaning.
Prefer to use the new variable where possible, as it overrides the older one if both are defined.

HINTS and PATHS

Each of the various groups of variables discussed above is intended to be set by something
outside the project, but the HINTS and PATHS options are where the project itself should inject
additional search paths. The main difference between HINTS and PATHS is that PATHS are generally
fixed locations that never change and don’t depend on anything else, whereas HINTS are usually
computed from other values, such as the location of something already found previously or a
path dependent on a variable or property value. PATHS are the last directories searched, but HINTS
are searched before any platform- or system-specific locations.

Both HINTS and PATHS support specifying environment variables which may contain a list of paths
in the host’s native format (i.e. colon-separated for Unix systems, semicolon separated on
Windows). This is done by preceding the name of the environment variable with ENV, such as
PATHS ENV FooDirs. Prefer to use this form instead of $ENV{FooDirs} when the environment
variable’s contents may use the platform-specific path separator.

With CMake 3.24 or later, HINTS and PATHS can refer to registry locations when building on
Windows hosts. Both 32-bit and 64-bit views of the registry can be consulted. The REGISTRY_VIEW
keyword can be used to control these views, or if omitted, the behavior will be determined by
policy CMP0134. Including registry values and using registry views are covered in detail in the
official CMake documentation, so that material is not repeated here.

All but the HINTS and PATHS search locations have an associated skip option of the form NO_…_PATH
which can be used to skip just that set of locations. In addition, the NO_DEFAULT_PATH option can be
used to bypass all but the HINTS and PATHS locations, forcing the command to search just specific
places controlled by the project. These NO_… options override any default provided by
CMAKE_FIND_USE_… variables.
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The PATH_SUFFIXES option can be used to provide a list of additional subdirectories to check below
each search location. Each search location is used with each suffix in turn, then without any suffix
at all before moving on to the next search location. Use this option with care, as it greatly expands
the total number of locations to be searched.

In many cases, projects only need to specify a single file name to search for and the complexities of
the search order are not of particular interest. Perhaps just a few additional paths to search might
need to be provided (equivalent to the PATHS option). In such cases, a shorter form of the command
can be used:

find_file(outVar name [path1 [path2...]])

Whether the short or long form is used, the ordering of the search locations is designed to search in
more specific locations ahead of more generic ones. While this is typically the desired behavior,
there may be situations where this is not the case.

For example, a project may wish to always look in specific paths first ahead of any search locations
provided through cache or environment variables. Projects can enforce a different priority by
calling find_file() multiple times with different options controlling the search locations. Once the
file is found, the location is cached and all subsequent calls will skip their search. This is where the
various NO_…_PATH options are most useful. For example, the following enforces searching in the
location /opt/foo/include first and only if not found there will the full set of default locations be
searched:

find_file(FOO_HEADER foo.h
    PATHS /opt/foo/include
    NO_DEFAULT_PATH
)
find_file(FOO_HEADER foo.h)

An important requirement for this to work is that the same result variable must be used for each
call. It is that variable that gets set and that controls skipping subsequent calls once the file has
been found.

Because the result variable is a cache variable by default, it should follow that naming convention
and be all uppercase, with underscores separating words. The DOC option can be used to add
documentation to that cache variable, but it is very rarely used. Prefer instead to choose a variable
name that is self-documenting, making the need for explicit documentation unnecessary.

When using CMake 3.20 or earlier, certain corner cases related to the result variable may yield
surprising behavior. Care must be exercised when a non-cache variable with the same name as the
result variable already exists before find_file() is called. The non-cache variable might be ignored,
depending on whether a cache variable also exists and whether such a cache variable has a type
(see Section 5.3, “Cache Variables”). CMake 3.21 added policy CMP0125, which ensures that a non-
cache variable will be handled more like how one would intuitively expect. The NO_CACHE option was
also added in CMake 3.21 as a way to assign the result only to a non-cache variable, but projects
should generally avoid using it. NO_CACHE adversely affects the performance of the configure stage by
forcing find_file() to always repeat the search on every run.
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If the file could not be found, the value stored in the variable will evaluate to false if used in an if()
expression. The test only needs to be made after the final call to find_file().

find_file(FOO_HEADER foo.h
    PATHS /opt/foo/include
    NO_DEFAULT_PATH
)
find_file(FOO_HEADER foo.h)

if(NOT FOO_HEADER)
    message(FATAL_ERROR "Could not find foo.h")
endif()

The above form works for any CMake version, but from CMake 3.18, the REQUIRED option can be used
to express the logic more concisely:

find_file(FOO_HEADER foo.h
    PATHS /opt/foo/include
    NO_DEFAULT_PATH
)
find_file(FOO_HEADER foo.h REQUIRED)

25.1.1. Apple-specific Behavior

Although the find_file() command can be used to find any file, it has its origins in searching for
header files. This is why some of the default search paths have an include subdirectory appended.
On Apple platforms, frameworks sometimes contain their own header files (see Section 24.3,
“Frameworks”) and the find_file() command has additional behaviors related to searching in the
appropriate subdirectories within them. For each search location, the command may treat the
location as a framework, as an ordinary directory or both.

The behavior is controlled by the CMAKE_FIND_FRAMEWORK variable, which is expected to hold one of the
values FIRST, LAST, ONLY or NEVER. FIRST means to treat the search location as though it was the top
directory of a framework and to append the appropriate subdirectories to descend into the Headers
location within it. If the named file cannot be found there, then the search location is treated as an
ordinary directory rather than a framework and searched again. LAST reverses that order, ONLY will
not treat the location as an ordinary directory and NEVER will skip the step that treats the location as
a framework. The default for Apple systems is FIRST, which is usually the desired behavior.

25.1.2. Cross-compilation Controls

For cross-compiling scenarios, the set of search locations becomes considerably more complex.
Cross compiling toolchains are often collected under their own directory structure to keep them
separate from the default host toolchain. When conducting searches for a particular file, it is
generally desirable to first look in the toolchain’s directory structure ahead of those of the host so
that a target platform-specific version of the file will be found. This is especially important when
finding programs and libraries. Even for finding files, it may be the case that the content of files
could change between platforms (e.g. a platform-specific configuration header).
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To support cross-compilation scenarios, the entire set of search locations can be re-rooted to a
different part of the file system. The CMAKE_FIND_ROOT_PATH variable can be set to a list of additional
directories at which to re-root the set of search locations (i.e. prepend each item in the list to every
search location). The CMAKE_SYSROOT variable can also affect the search root in a similar way. It is
intended to specify a single directory acting as the system root for a cross-compiling scenario. It
affects flags used during compilation as well. From CMake 3.9, the more specialized variables
CMAKE_SYSROOT_COMPILE and CMAKE_SYSROOT_LINK also have a similar effect. All of these variables should
only be set in a toolchain file, not by the project.

If any of the non-rooted locations are already under one of the locations specified by
CMAKE_FIND_ROOT_PATH, CMAKE_SYSROOT, CMAKE_SYSROOT_COMPILE or CMAKE_SYSROOT_LINK, it will not be re-
rooted. A non-rooted path that sits under a path specified by the variable CMAKE_STAGING_PREFIX will
also not be re-rooted. Furthermore, an undocumented behavior of all find_…() commands is to not
re-root any non-rooted path that starts with a ~ character. This is intended to avoid re-rooting
directories that sit under the user’s home directory.

The default order of searching among the re-rooted and non-rooted locations is controlled by the
CMAKE_FIND_ROOT_PATH_MODE_INCLUDE variable. That can also be overridden on a per-call basis by
providing one of the CMAKE_FIND_ROOT_PATH_BOTH, ONLY_CMAKE_FIND_ROOT_PATH or NO_CMAKE_FIND_ROOT_PATH
options to the find_file() command. The following table summarizes the effects of this mode
variable, the associated options and the final search order:

Find
Mode

find_file() Option Search order

BOTH CMAKE_FIND_ROOT_PATH_BOTH • CMAKE_FIND_ROOT_PATH

• CMAKE_SYSROOT_COMPILE

• CMAKE_SYSROOT_LINK

• CMAKE_SYSROOT

• All non-rooted locations

NEVER NO_CMAKE_FIND_ROOT_PATH • All non-rooted locations

ONLY ONLY_CMAKE_FIND_ROOT_PATH • CMAKE_FIND_ROOT_PATH

• CMAKE_SYSROOT_COMPILE

• CMAKE_SYSROOT_LINK

• CMAKE_SYSROOT

• Any non-rooted locations already under one of the
re-rooted locations or under CMAKE_STAGING_PREFIX

Developers should be aware that find_file() can only provide one location, but some cross
compiling situations support build arrangements that can switch between device and simulator
builds without re-running CMake. This means that if the results of find_file() depend on which of
the two is being used, they are unreliable. This aspect is even more important for finding libraries
and is discussed in more detail in Section 25.4, “Finding Libraries” further below.
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Cross-compilation scenarios also sometimes require ignoring certain paths during the search. See
Section 25.6, “Ignoring Search Paths” for a discussion of that topic.

25.1.3. Validators

Typically, the existence of a file is enough for it to be accepted as the found file. In more advanced
scenarios, the file may need to pass other criteria for it to be accepted. With CMake 3.25 or later, the
VALIDATOR keyword can be used to specify a function that implements an arbitrary check on each
candidate file. A validator function must take two arguments:

• The name of a result variable to be set in the calling scope.

• The absolute path to the file.

Unless the function sets the result variable to false in the calling scope before returning, the
candidate file is accepted as the result of the call to find_file(). The following two examples
demonstrate the usage.

# Only accept files that define a version string
function(has_version result_var file)
    file(STRINGS "${file}" version_line
        REGEX "#define +THING_VERSION" LIMIT_COUNT 1
    )

    if(version_line STREQUAL "")
        set(${result_var} FALSE PARENT_SCOPE)
    endif()
endfunction()

find_file(THING_HEADER thing.h VALIDATOR has_version)

# Require a companion version file in the same directory
function(has_version_file result_var file)
    cmake_path(GET file PARENT_PATH dir)

    if(NOT EXISTS "${dir}/thing_version.h")
        set(${result_var} FALSE PARENT_SCOPE)
    endif()
endfunction()

find_file(THING_HEADER thing.h VALIDATOR has_version_file)

25.2. Finding Paths
A project may wish to find the directory containing a particular file rather than the actual file itself.
The find_path() command provides this functionality and is identical to find_file() in every way
except that the directory of the file to be found is stored in the result variable.
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25.3. Finding Programs
Finding programs is only slightly different to finding files. The find_program() command takes
exactly the same set of arguments as find_file(), as well as one more optional argument,
NAMES_PER_DIR. The find_program() command also supports a similar short form. The following
describes the differences for find_program() compared to find_file(), and while it may seem
complicated, for the most part it just describes the differences one might logically expect, but with a
few exceptions highlighted:

Cache variables (CMake-specific)

• When searching under CMAKE_PREFIX_PATH, find_file() appends include to each item.
find_program() instead appends bin and sbin as search locations to be checked. The
CMAKE_LIBRARY_ARCHITECTURE variable has no effect for find_program().

• CMAKE_PROGRAM_PATH replaces CMAKE_INCLUDE_PATH but is otherwise used in exactly the same way.
CMAKE_PROGRAM_PATH is used only by find_program().

• CMAKE_APPBUNDLE_PATH replaces CMAKE_FRAMEWORK_PATH but is otherwise used in exactly the same
way. It is used only by find_program() and find_package().

Environment variables (system-specific)

• The search locations for standard system environment variables are handled in a
considerably simpler manner. INCLUDE has no meaning for find_program() and each item in the
PATH is checked without any modification. The behavior is the same on all platforms.

General

• Normally, all search locations are checked for a given name before moving on to search for
the next name in the list when the NAMES option is used to provide multiple names. The
find_program() command supports a NAMES_PER_DIR option which reverses this order, checking
each name for a particular search location before moving on to the next location. The
NAMES_PER_DIR option was added in CMake 3.4.

• On Windows (including Cygwin and MinGW), file extensions .com and .exe are automatically
checked as well, so there is no need to provide such extensions as part of the program name
to find. These extensions are checked first before names without the extensions. Note that
.bat and .cmd files will not be searched for automatically.

• Whereas find_file() uses CMAKE_FIND_FRAMEWORK to determine the search order between
framework and non-framework paths, find_program() uses CMAKE_FIND_APPBUNDLE. It provides
similar control between app bundle and non-bundle paths for Apple platforms. The
supported values are the same for both variables and they have the expected equivalent
meaning for bundles. Whereas finding files will look in a Headers subdirectory, finding
programs will look in the Contents/MacOS subdirectory and set the result to the executable
within the app bundle.

• CMAKE_FIND_ROOT_PATH_MODE_INCLUDE has no effect on find_program(), it is replaced by the
CMAKE_FIND_ROOT_PATH_MODE_PROGRAM variable which has the equivalent effect but applies
exclusively to find_program() only. When cross-compiling, it is usually the case that it is a host
platform tool being sought rather than a program on the target platform, so
CMAKE_FIND_ROOT_PATH_MODE_PROGRAM is frequently set to NEVER.
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25.4. Finding Libraries
Finding libraries is also similar to finding files. The find_library() command supports the same set
of options as find_file() plus an additional NAMES_PER_DIR option. The following differences apply:

Cache variables (CMake-specific)

• When searching under CMAKE_PREFIX_PATH, find_file() appends include to each item, whereas
find_library() instead appends lib. The CMAKE_LIBRARY_ARCHITECTURE variable is also honored in
the same way as for find_file().

• CMAKE_LIBRARY_PATH replaces CMAKE_INCLUDE_PATH but is otherwise used in exactly the same way.
CMAKE_LIBRARY_PATH is used only by find_library(). The CMAKE_FRAMEWORK_PATH variable is used in
exactly the same way as for find_file().

Environment variables (system-specific)

• The search locations for standard system environment variables are handled in a very
similar way to find_file(). Instead of INCLUDE, the LIB environment variable is consulted.
Furthermore, the search locations based on PATH follow the same complex logic as for
find_file(), except that lib is appended to each prefix rather than include. Just as for
find_file(), the complex PATH logic only applies on Windows.

General

• The NAMES_PER_DIR option has exactly the same meaning as it does for find_program(). It is only
available with CMake 3.4 or later.

• Both find_file() and find_library() use CMAKE_FIND_FRAMEWORK to determine the search order
between framework and non-framework paths. In the case of find_library(), if a framework
is found then the name of the top level .framework directory is stored in the result variable.

• CMAKE_FIND_ROOT_PATH_MODE_INCLUDE has no effect on find_library(), it is replaced by the
CMAKE_FIND_ROOT_PATH_MODE_LIBRARY variable which has the equivalent effect but applies
exclusively to find_library(). On Apple platforms, consider carefully before setting
CMAKE_FIND_ROOT_PATH_MODE_LIBRARY to ONLY, as libraries may be built as fat binaries which
support multiple target platforms. These fat binaries may not reside under target platform-
specific paths, so it may still be necessary to search host platform paths to find them.

Further behavioral differences apply with find_library(). Platforms have different library name
conventions, such as prepending lib on most Unix platforms. File extensions are also platform-
specific. DLLs on Windows can have an associated import library with a different file extension.

The find_library() command does its best to abstract away most of these differences, allowing
projects to specify just the base name of the library as the name to search for. Where a directory
contains both static and shared libraries, the shared library will be the one found. Most of the time,
this abstraction works well, but in some circumstances it can be useful to override this behavior.
One common case is to give priority to static libraries ahead of shared libraries, potentially only on
some platforms and not others. The following naive example would prefer a static foobar library
ahead of shared on Linux, but not on macOS or Windows:

# WARNING: Not robust!
find_library(FOOBAR_LIBRARY NAMES libfoobar.a foobar)
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Keep in mind that the priority override only applies to libraries found within a particular directory.
If the set of search locations is such that a directory containing just a shared library is searched
before a directory that contains a static library, then the above technique will not result in the static
library being found. The more robust way to ensure that a static library is given priority over
shared libraries across all search locations is to use multiple calls to find_library() like so:

# Better, static library now has priority across all search locations
find_library(FOOBAR_LIBRARY libfoobar.a)
find_library(FOOBAR_LIBRARY foobar)

Note that with CMake 3.24 or earlier, such techniques cannot be used on Windows because static
libraries and the import library for shared libraries (i.e. DLLs) have the same file name, including
suffix (e.g. foobar.lib). Therefore, the file name cannot be used to differentiate between the two
types of libraries. With CMake 3.25 or later, a VALIDATOR can be used to work out whether a file is an
import library or not. The Visual Studio toolchain includes a lib tool which can be used to list the
contents of a static or import library. CMake will make the location of this tool available through the
CMAKE_AR variable. If the content list obtained from that tool includes the same file except with .lib
replaced by .dll, then that is a reasonable hint that the file is very likely to be an import library. The
following shows a basic implementation of that logic:

function(is_import_lib result_var file)
    cmake_path(GET file FILENAME filename)
    string(TOLOWER "${filename}" filename_lower)
    string(REGEX REPLACE "\\.lib$" ".dll"
        dll_filename_lower "${filename_lower}"
    )
    # This assumes we are using the MSVC toolchain
    execute_process(
        COMMAND ${CMAKE_AR} /nologo /list "${file}"
        RESULT_VARIABLE result
        OUTPUT_VARIABLE output
        ERROR_VARIABLE  errors
    )
    string(TOLOWER "${output}" output_lower)
    if(result OR
       NOT errors STREQUAL "" OR
       NOT output_lower MATCHES "(^|\n|\\\\)${dll_filename_lower}(\n|$)")
        set(${result_var} FALSE PARENT_SCOPE)
    endif()
endfunction()

One could then do a more robust search that prefers static libraries like so:

if(MSVC)
    find_library(FOOBAR_LIBRARY foobar.lib VALIDATOR is_import_lib)
else()
    find_library(FOOBAR_LIBRARY libfoobar.a)
endif()
find_library(FOOBAR_LIBRARY foobar)
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Another complication unique to library handling is that many platforms support both 32- and 64-bit
architectures. There may be both 32- and 64-bit versions of libraries installed to different locations,
but with the same file names. The directory structure used to separate the different architectures
on such multilib systems can vary, even between distributions for the same platform. For example,
some distributions place 64-bit libraries under lib directories and 32-bit libraries under lib32.
Others place 64-bit libraries under lib64 and the 32-bit libraries under lib. Other platforms use yet
another variation, a libx32 subdirectory. CMake is generally aware of the variations and when
setting up the platform defaults, it populates the global properties FIND_LIBRARY_USE_LIB32_PATHS,
FIND_LIBRARY_USE_LIB64_PATHS and FIND_LIBRARY_USE_LIBX32_PATHS with appropriate values to control
which architecture-specific directories should be searched first, if any. Projects can override these
with their own custom prefix using the CMAKE_FIND_LIBRARY_CUSTOM_LIB_SUFFIX variable, but the need
for this should be very rare.

When an architecture-specific suffix is active (whether from one of the above global properties or
from the CMAKE_FIND_LIBRARY_CUSTOM_LIB_SUFFIX variable), the logic used to augment the search
locations with architecture-specific locations is non-trivial. Any directory anywhere in the search
location path that ends with lib is augmented with an architecture-specific equivalent. This occurs
recursively throughout the path, so a search location like /opt/mylib/foo/lib may result in the set of
search locations being expanded out to /opt/mylib64/foo/lib64, /opt/mylib64/foo/lib,
/opt/mylib/foo/lib64 and /opt/mylib/foo/lib on some 64-bit systems. Even if a search location does
not end with lib, it will still be augmented with an architecture-suffixed location, so a search
location /opt/foo may result in /opt/foo64 and /opt/foo being searched on some 64-bit systems.

The details of the architecture-specific search path augmentation are not typically something
developers need to concern themselves with. In those situations where undesirable libraries are
being found or desired libraries are being missed, it may be more straightforward to coerce the
result using variables like CMAKE_LIBRARY_PATH rather than trying to manipulate the architecture-
specific logic. A detailed knowledge of the intricacies involved is not typically needed, a simple
awareness of the above points should generally be sufficient, if for no other reason than to reduce
some of the mystery around how CMake finds libraries in architecture-specific locations.

Special care needs to be exercised when working with a CMake generator that supports switching
between device and simulator configurations at build time. Any find_library() results would
generally be unusable for such cases, since they could only ever find a library for either the device
or the simulator, but not both. Even if CMake is re-run, it would retain its cached results and so
would not update the library location unless the relevant cache entry was manually deleted first.
This is a particularly common problem with Xcode builds where projects might want to use
find_library() to locate various frameworks or common libraries such as zlib. For these situations,
projects have little choice but to specify the linker flags directly without paths instead, leaving the
linker to find the library on its search path. For Apple frameworks, this means specifying two
values since frameworks are added using -framework <FrameworkName>. For ordinary libraries like zlib,
the more traditional -lz would be sufficient.

25.5. Finding Packages
The various find_…() commands discussed in the preceding sections all focus on finding one
specific item. Quite often, however, these items are just one part of a larger package and the
package as a whole may have its own characteristics that projects could be interested in, such as a
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version number or support for certain features. Projects will generally want to find the package as
a single unit rather than piece together its different parts manually.

There are two main ways packages are defined in CMake, either as a module or through config
details. Config details are usually provided as part of the package itself and they are more closely
aligned with the functionality of the various find_…() commands discussed in the preceding
sections. Modules, on the other hand, are typically defined by something unrelated to the package
(usually by CMake or by projects themselves) and as a result, they are harder to keep up to date as
the package evolves over time.

Module and config files typically define variables and imported targets for the package. These may
provide the location of programs, libraries, flags to be used by consuming targets and so on.
Functions and macros can also be defined. There is no set of requirements for what will be
provided, but there are some conventions which are stated in the CMake developer manual. Project
authors must consult the documentation of each module or package to understand what is
provided. As a general guide, older modules tend to provide variables that follow a fairly consistent
pattern, whereas newer modules and config implementations usually define imported targets.
Where both variables and imported targets are provided, projects should prefer the latter due to
their superior robustness and better integration with CMake’s transitive dependency features.

Projects normally look for a package using the find_package() command, which has a short form
and a long form. The short form should generally be preferred because of its greater simplicity and
because it supports both module and config packages, whereas the long form does not support
modules. The long form does, however, provide more control over the search, making it preferable
in certain situations.

The short form has only a few options and can be summarized as follows:

find_package(packageName
    [version [EXACT] ]
    [QUIET] [REQUIRED]
    [ [COMPONENTS] component1 [component2...] ]
    [OPTIONAL_COMPONENTS component3 [component4...] ]
    [GLOBAL]                   # CMake 3.24 or later
    [REGISTRY_VIEW viewMode]   # CMake 3.24 or later
    [MODULE]
    [NO_POLICY_SCOPE]
)

The optional version argument indicates that the package must be of the specified version or higher,
or match exactly if EXACT is also given. When using CMake 3.19 or later, the version can be specified
as a version range instead. Version ranges are expressed in the form versionMin...versionMax or
versionMin...<versionMax. The versionMin part of the range is treated just like a single version
number. It is the minimum required version of the package. For the upper end of the version
constraint, the first form requires the package version to be no greater than versionMax, whereas the
second form requires it to be strictly less than versionMax. The EXACT keyword cannot be given if a
version range is used.
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Be aware that packages may not know about version ranges. Their module or config file may have a
fairly old implementation that pre-dates CMake’s version range support. In these cases, the
packages will typically ignore the versionMax part of the requirement. Section 27.8.1, “Config Files
For CMake Projects” discusses further implications for how packages may handle version ranges.
Section 30.4, “Integration With find_package()” and Chapter 32, Dependency Providers discuss
scenarios in which the version constraint may be ignored entirely.

A package may be optional, meaning the project can use it if available or work without it if an
appropriate package cannot be found. If a package is mandatory, the REQUIRED option should be
provided so that CMake will halt with an error if an appropriate package could not be found. Unlike
the other find_…() commands, all CMake versions support the REQUIRED option for find_package().

Normally, find_package() will log messages for failures, but the QUIET option can be used to suppress
them for optional packages (failure messages for a mandatory package cannot be suppressed). QUIET
will also suppress messages that would normally be printed the first time a package is found. A
typical use for QUIET is to prevent messages for a missing optional package so that developers are
less likely to think it is an error.

The component-related options allow a project to indicate what parts of the package they are
interested in. Not all packages support components, it is up to the module or config implementation
whether or not components are defined and what the components represent. An example where
components may be useful is a large package like Qt where not all components might be installed. It
may not be enough for a project to just say it wants Qt, it may also need to say which parts of Qt.
The find_package() command allows the project to specify components as mandatory with the
COMPONENTS arguments or as optional with the OPTIONAL_COMPONENTS arguments. For example, the
following call requires Qt 5.9 or later, the Gui component must be available and DBus is optional:

find_package(Qt5 5.9 REQUIRED
    COMPONENTS Gui
    OPTIONAL_COMPONENTS DBus
)

When the REQUIRED option is present, the COMPONENTS keyword can be omitted and the mandatory
components placed after REQUIRED. This is common when there are no optional components:

find_package(Qt5 5.9 REQUIRED Gui Widgets Network)

If a package defines components but no components are given to find_package(), it is up to the
module or config definition how this is handled. For some packages, it may be treated as though all
components were listed, for others it may be interpreted as no components are required (basic
details of the package may still be defined though, such as base libraries, package version, etc.).
Another possibility is that the lack of components could be treated as an error. Given the variation
in behavior, developers should consult the documentation for the package they wish to find.

Packages typically create imported targets. By default, these only have visibility in the current
directory scope and below. This historical CMake behavior exists to support finding different
versions of the same package in different directory scopes. Since the imported targets for the
different versions are created in unrelated directory scopes, the targets do not clash. In practice, the
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need for such flexibility is very rare, and mixing versions within a build doesn’t fit well with
modern practices. More recent CMake features strengthen the notion that there is only one version
of a dependency throughout a build. With CMake 3.24 or later, the project can force the package to
create global imported targets by adding the GLOBAL keyword to the find_package() call. The
CMAKE_FIND_PACKAGE_TARGETS_GLOBAL variable is used as the default if no GLOBAL keyword is given, so
projects can use that variable to set behavior for all of its find_package() calls. Consumers of the
project may not expect it to force those imported targets to be global, so use this facility with care.

The remaining options of the short form are less frequently used. The REGISTRY_VIEW keyword
controls how registry paths are interpreted (only supported with CMake 3.24 or later). Consult the
official CMake documentation for a full explanation of that functionality. The NO_POLICY_SCOPE
keyword is a historical hangover from the CMake 2.6 era and projects should avoid using it. The
MODULE keyword restricts the call to searching only for modules and not config packages. Projects
should generally avoid using this option since they should not have to concern themselves with the
implementation details of how a package is defined, only with stating the requirements on the
package. When MODULE is not present, the short form of the find_package() command will first search
for a matching module, then if no such module is found it will search instead for a config package.
CMake 3.15 added support for the CMAKE_FIND_PACKAGE_PREFER_CONFIG variable, which can be set to
true to reverse the search preference (it is unset by default to preserve the pre-3.15 behavior).

Modules were first discussed back in Chapter 11, Modules. While non-package modules are
incorporated into a project using the include() command, package modules have a file name of the
form Find<packageName>.cmake and are intended to be processed by a call to find_package() instead.
For this reason, they are commonly referred to as Find modules. Both include() and find_package()
respect the CMAKE_MODULE_PATH variable as a list of directories that CMake should search in before the
set of modules that come as part of every CMake release.

Find modules are responsible for implementing all aspects of the find_package() call, including
locating the package, performing version checks, fulfilling component requirements and logging or
not logging messages as appropriate. Not all find modules honor these responsibilities and they
may choose to ignore some or all of the information provided beyond the package name, so as
always, consult the module documentation to confirm the expected behavior.

Find modules are usually implemented in terms of calls to the various find_…() commands. As a
result, they can sometimes be affected by the cache and environment variables relevant to those
commands. The CMAKE_PREFIX_PATH variable is especially convenient for influencing find modules
because each path specified acts as a base point below which each find_…() command appends its
own command-specific subdirectories. For packages that follow a reasonably standard layout,
adding just the base install location of the package to CMAKE_PREFIX_PATH is often enough for the find
module to find all the package components it needs.

Compared to find modules, packages with config details offer a much richer, more robust way for
projects to retrieve information about that package. A much more extensive set of find_package()
options are available in config mode, with the full long form of the command having many
similarities to the other find_…() commands:
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find_package(packageName
    [version [EXACT] ]
    [QUIET | REQUIRED]
    [ [COMPONENTS] component1 [component2...] ]
    [OPTIONAL_COMPONENTS component3 [component4...] ]
    [NO_MODULE | CONFIG]
    [NO_POLICY_SCOPE]
    [NAMES name1 [name2 ...] ]
    [CONFIGS fileName1 [fileName2...] ]
    [HINTS path1 [path2 ... ] ]
    [PATHS path1 [path2 ... ] ]
    [PATH_SUFFIXES suffix1 [suffix2 ...] ]
    [REGISTRY_VIEW viewMode]    # CMake 3.24 or later
    [CMAKE_FIND_ROOT_PATH_BOTH | ONLY_CMAKE_FIND_ROOT_PATH | NO_CMAKE_FIND_ROOT_PATH]
    [<skip-options>]    # See further below
)

When find_package() is called with an option only supported by the long form, the search for a Find
module is skipped. The NO_MODULE or CONFIG keywords force a call that would match the short form to
be treated as long form (both keywords are equivalent).

When searching for config details, find_package() looks for a file named <packageName>Config.cmake or
<lowercasePackageName>-config.cmake by default. The CONFIGS option can be used to specify a different
set of file names to search for instead, but this is discouraged. Non-default file names require every
project wanting to find that package to be aware of the non-default file name.

When a config file is found, find_package() also looks for an associated version file in the same
directory. The version file has Version or -version appended to the base name, so FooConfig.cmake
would result in looking for a version file named FooConfigVersion.cmake or FooConfig-version.cmake,
while foo-config.cmake would result in looking for foo-configVersion.cmake or foo-config-
version.cmake. Packages are not required to provide a version file, but they usually do. If version
details are included in a call to find_package() but there is no version file for that package, the
version requirements are deemed to have failed.

The locations searched follow a similar pattern to the other find_…() commands, except package
registries are also supported. Each search location is then treated as a possible package install base
point below which a variety of subdirectories may be searched:

<prefix>/
<prefix>/(cmake|CMake)/
<prefix>/<packageName>*/
<prefix>/<packageName>*/(cmake|CMake)/
<prefix>/<packageName>*/(cmake|CMake)/<packageName>*/    ①
<prefix>/(lib/<arch>|lib*|share)/cmake/<packageName>*/
<prefix>/(lib/<arch>|lib*|share)/<packageName>*/
<prefix>/(lib/<arch>|lib*|share)/<packageName>*/(cmake|CMake)/
<prefix>/<packageName>*/(lib/<arch>|lib*|share)/cmake/<packageName>*/
<prefix>/<packageName>*/(lib/<arch>|lib*|share)/<packageName>*/
<prefix>/<packageName>*/(lib/<arch>|lib*|share)/<packageName>*/(cmake|CMake)/

① This path is only searched if using CMake 3.25 or later.
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The following are also checked on Apple platforms:

<prefix>/<packageName>.framework/Resources/
<prefix>/<packageName>.framework/Resources/CMake/
<prefix>/<packageName>.framework/Versions/*/Resources/
<prefix>/<packageName>.framework/Versions/*/Resources/CMake/
<prefix>/<packageName>.app/Contents/Resources/
<prefix>/<packageName>.app/Contents/Resources/CMake/

In the above, <packageName> is treated case-insensitively and the lib/<arch> subdirectories are only
searched if CMAKE_LIBRARY_ARCHITECTURE is set. The lib* subdirectories represent a set of directories
that may include lib64, lib32, libx32 and lib, the last of which is always checked. If the NAMES option
is given to find_package(), all of the above directories are checked for each name provided.

The set of search location base points checked follow the order defined in the table below. Most
search locations can be disabled by adding the associated NO_… keyword.

Location Skip Option

Package root variables NO_PACKAGE_ROOT_PATH

Cache variables (CMake-specific) NO_CMAKE_PATH

Environment variables (CMake-specific) NO_CMAKE_ENVIRONMENT_PATH

Paths specified via the HINTS option

Environment variables (system-specific) NO_SYSTEM_ENVIRONMENT_PATH

User package registry NO_CMAKE_PACKAGE_REGISTRY

Cache variables (platform-specific) NO_CMAKE_SYSTEM_PATH

System package registry NO_CMAKE_SYSTEM_PACKAGE_REGISTRY

Paths specified via the PATHS option

Package root variables

As for the other find_…() commands, support for package root variables was added as a search
location in CMake 3.9.0, removed in 3.9.1 due to backward compatibility issues and re-added
again in CMake 3.12. Each time find_package() is called, it pushes <packageName>_ROOT CMake and
environment variables onto an internally maintained stack of paths. These paths are used in
exactly the same way as CMAKE_PREFIX_PATH, not just for the current call to find_package(), but all
find_..() commands that might be called as part of the find_package() processing. In practice,
this means if a find_package() call loads a Find module, then any find_…() commands the Find
module calls internally will use each path in the stack as though it was a CMAKE_PREFIX_PATH first
before checking any other paths.

For example, say a find_package(Foo) call resulted in FindFoo.cmake being loaded. Any find_…()
command within FindFoo.cmake would first search ${Foo_ROOT} and $ENV{Foo_ROOT} (if they were
set) before moving on to check other search locations. If FindFoo.cmake contained a call like
find_package(Bar) that resulted in FindBar.cmake being loaded, then the stack would contain
${Bar_ROOT}, $ENV{Bar_ROOT}, ${Foo_ROOT} and $ENV{Foo_ROOT}. This feature means nested Find
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modules will search the prefix locations of each of their parent Find modules first, so that
information doesn’t have to be manually propagated down via CMAKE_PREFIX_PATH or another
similar method. For the most part, projects can ignore this functionality, since it should work
transparently without any specific action by the project. It should mostly just be thought of as an
automatic convenience.

Cache variables (CMake-specific)

The CMake-specific cache variable locations are derived from the cache variables
CMAKE_PREFIX_PATH, CMAKE_FRAMEWORK_PATH and CMAKE_APPBUNDLE_PATH. These work the same way as for
the other find_…() commands except that CMAKE_PREFIX_PATH entries already correspond to
package install base points, so no directories like bin, lib, include, etc. are appended.

Environment variables (CMake-specific)

These have the same relationship to the cache variables above as other find_…() commands. The
environment variables CMAKE_PREFIX_PATH, CMAKE_INCLUDE_PATH and CMAKE_FRAMEWORK_PATH all use the
platform-specific path separator (colons on Unix platforms, semi-colons on Windows). An
additional environment variable <packageName>_DIR is also checked before the other three.

Environment variables (system-specific)

The only supported system-specific environment variable is PATH. Each entry is used as a package
install base point, except any trailing bin or sbin is removed. This is the point at which default
system locations like /usr are likely to be searched on most systems.

Cache variables (platform-specific)

The platform-specific cache variable locations follow the same pattern as the other find_…()
commands, providing …_SYSTEM_… equivalents of the CMake-specific cache variables. The names
of these system variables are CMAKE_SYSTEM_PREFIX_PATH, CMAKE_SYSTEM_FRAMEWORK_PATH and
CMAKE_SYSTEM_APPBUNDLE_PATH and they are not intended to be set by the project.

HINTS and PATHS

These work exactly the same way as the other find_…() commands except they do not support
items of the form ENV someVar.

Package registries

Unique to find_package(), the user and system package registries are intended to provide a way
to make packages easily findable without having them installed in standard system locations.
See Section 25.5.1, “Package Registries” further below for a more detailed discussion.

The various NO_… options work the same way as for the other find_…() commands, allowing each
group of search locations to be bypassed individually. The NO_DEFAULT_PATH keyword causes all but
the HINTS and PATHS to be bypassed.

With CMake 3.16 or later, the various CMAKE_FIND_USE_… variables also have the same effects as for
the other find_…() commands. These variables allow the default behavior of each search location
to be controlled individually. CMAKE_FIND_USE_INSTALL_PREFIX is also supported with CMake 3.24 or
later. The PATH_SUFFIXES option has the expected effect too, accepting further subdirectories to check
below each search location.
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The find_package() command also supports the same search re-rooting logic as the other find_…()
commands. CMAKE_SYSROOT, CMAKE_STAGING_PREFIX and CMAKE_FIND_ROOT_PATH are all considered in the
same way as the other commands and the meanings of the CMAKE_FIND_ROOT_PATH_BOTH,
ONLY_CMAKE_FIND_ROOT_PATH and NO_CMAKE_FIND_ROOT_PATH options are also equivalent. The default re-
root mode when none of these three options is provided is controlled by the
CMAKE_FIND_ROOT_PATH_MODE_PACKAGE variable which has the predictable set of valid values (ONLY, NEVER
or BOTH).

Unlike the other find_…() commands, when looking for a config file, find_package() does not
necessarily stop searching at the first package it finds that matches the criteria. Parts of the search
consider a family of search locations and the search results may return multiple matches for that
particular sub-branch of the search. Typically, this might occur if there are multiple versions of the
package installed under some common directory, each of which has a versioned subdirectory
below that common point. In such cases, the following variables are consulted to sort the
candidates based on their version details.

CMAKE_FIND_PACKAGE_SORT_DIRECTION

Supported sort direction values are DEC for descending (choose the newest) or ASC for ascending
(choose the oldest). If this variable is not set, DEC is the default behavior.

CMAKE_FIND_PACKAGE_SORT_ORDER

This controls the type of sorting. Supported values are NAME, NATURAL or NONE. If set to NONE or not
set at all, no sorting is performed and the first valid package found will be used. The NAME setting
sorts lexicographically, while NATURAL sorts by comparing sequences of digits as whole numbers.
The following table demonstrates the difference between the last two methods when sorting in
descending order:

NAME NATURAL

1.9 1.10

1.10 1.9

1.0 1.0

With CMake 3.24 or later, a special directory is always checked first before any other location
mentioned above. This location is given by the CMAKE_FIND_PACKAGE_REDIRECTS_DIR variable and cannot
be disabled. See Section 30.4.3, “Redirections Directory” for a discussion of its purpose and usage.

In practice, the intricacies of the search logic are usually well beyond the level of detail needed to
use the find_package() command effectively. As long as a package follows one of the more common
directory layouts and sits under one of the higher level base install locations, the find_package()
command will usually find its config file without further help.

Once a suitable config file for a package has been found, the <packageName>_DIR cache variable will
be set to the directory containing that file. Subsequent calls to find_package() will then look in that
directory first and if the config file still exists, it is used without further searching. <packageName>_DIR
is ignored if there is no longer a config file for the package at that location. This arrangement
ensures that subsequent calls to find_package() for the same package are much faster, even from
one invocation of CMake to the next, but the search is still performed if the package is removed. Be
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aware, however, that the caching of the package location can also mean that CMake might not get
an opportunity to become aware of a newly added package in a more preferable location. For
example, the operating system might come with a fairly old version of a package pre-installed. The
first time CMake is run on a project, it finds that old version and stores its location in the cache. The
user sees that an old version is being used and decides to install a newer version of the package
under some other directory, adds that location to CMAKE_PREFIX_PATH and re-runs CMake. In this
scenario, the old version will still be used because the cache still points to the older package’s
location. The <packageName>_DIR cache entry would need to be removed or the old version
uninstalled before the newer version’s location would be considered.

Further controls are available to influence the handling of specific packages. It is possible to disable
every non-REQUIRED call to find_package() for a given packageName by setting the
CMAKE_DISABLE_FIND_PACKAGE_<packageName> variable to true early in the project, ideally at the top level
or as a cache variable. This can be thought of as a way of turning off an optional package,
preventing it from being found via find_package() calls. Note that it will not prevent such calls if
they include the REQUIRED keyword.

With CMake 3.22 or later, a CMAKE_REQUIRE_FIND_PACKAGE_<packageName> variable is also supported.
Setting it to true for a particular <packageName> forces all find_package() calls for that package to
behave as though they used the REQUIRED keyword. This can be used to catch situations where a
package is expected to be available, forcing CMake to halt with an error if it is missing. Testing of
logic that relies on optional packages is an example scenario where this variable may be useful, but
it has its limits. There are scenarios where this variable breaks project logic. For example, the
following is a common way to prefer finding a package at a specific location if available, falling
back to the regular search order otherwise:

find_package(MyThing PATHS /some/location NO_DEFAULT_PATH)
find_package(MyThing)

Setting CMAKE_REQUIRE_FIND_PACKAGE_MyThing to true would break the above logic. The package would
have to be found at /some/location, otherwise the first call would give a fatal error and the second
call would never be reached.

25.5.1. Package Registries

Packages tend to be found in standard system locations or in directories CMake has been told about
through CMAKE_PREFIX_PATH or similar. For non-system packages, it can be tedious or undesirable to
have to specify the location for each package if they don’t all share a common install prefix. CMake
supports a form of package registry which allows references to arbitrary locations to be collected
together in one place. This allows the user to maintain an account- or system-wide registry which
CMake will consult automatically without further direction. The locations referenced by the
registry don’t have to be a full package install, they can also be a directory within a build tree for
the package (or any other directory for that matter) as long as the required files are there.

On Windows, two registries are provided. A user registry is stored in the Windows registry under
the HKEY_CURRENT_USER key, while a system package registry is stored under HKEY_LOCAL_MACHINE:
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HKEY_CURRENT_USER\Software\Kitware\CMake\Packages\<packageName>\
HKEY_LOCAL_MACHINE\Software\Kitware\CMake\Packages\<packageName>\

For a given packageName, each entry under that point is an arbitrary name holding a REG_SZ value. The
value is expected to be a directory in which a config file for that package can be found. On Unix
platforms, there is no system package registry, only a user package registry stored under the user’s
home directory and entries under that point have the same meaning as for Windows:

~/.cmake/packages/<packageName>/

CMake provides very little assistance with how to actually create these entries on any platform. No
automated mechanism is provided for installed packages, but the export() command can be used
within a project’s CMakeLists.txt files to add parts of a project’s build tree to the user registry:

export(PACKAGE packageName)

This command can add the specified package to the user package registry and point that registry
entry to the current binary directory associated with wherever export() was called (see below for
conditions that can prevent this). It is then up to the project to ensure that an appropriate config file
for the package exists in that directory. If no such config file exists and a find_package() call is made
for that package for any project, the registry entry will be automatically removed if permissions
allow it. It is common practice for the name of each entry in the package registry to be the MD5
hash of the directory path it points to. This avoids name collisions and is the naming strategy
employed by the export(PACKAGE) command.

Adding locations from a build tree to the package registry has its dangers. While export(PACKAGE) is
available to add a location to the registry, there is no corresponding mechanism to remove it again
other than to manually delete the registry entry or to remove the package config file from the build
directory. It can be easy to forget to do this, so an old build tree left behind from past experiments
can easily be picked up unexpectedly. The use of export(PACKAGE) also has the potential to play havoc
with continuous integration systems by making projects pick up build trees of other projects built
on the same machine.

Because of the dangers associated with export(PACKAGE), developers will frequently want to disable
it. CMake provides two ways to achieve this, one using an opt-out method available since CMake 3.1
and another introduced in CMake 3.15 which uses a superior opt-in mechanism. With CMake 3.14
or earlier, the export(PACKAGE) command will modify the package registry unless the
CMAKE_EXPORT_NO_PACKAGE_REGISTRY variable is set to true. Because that variable is undefined by
default, the export(PACKAGE) command will modify the package registry by default. In CMake 3.15,
the default behavior was changed via policy CMP0090 such that when that policy is set to NEW, the
export(PACKAGE) command will be disabled unless the CMAKE_EXPORT_PACKAGE_REGISTRY variable is set to
true (note the different variable name). If policy CMP0090 is set to OLD or is not set, then the CMake
3.14 and earlier behavior is used. For most practical scenarios, developers can set
CMAKE_EXPORT_NO_PACKAGE_REGISTRY to true and regardless of policy settings or CMake version, the
export(PACKAGE) command will be disabled.
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Whereas CMAKE_EXPORT_NO_PACKAGE_REGISTRY and CMAKE_EXPORT_PACKAGE_REGISTRY control writing to the
registry, CMake provides a separate set of variables to control reading from it. The
CMAKE_FIND_PACKAGE_NO_PACKAGE_REGISTRY and CMAKE_FIND_PACKAGE_NO_SYSTEM_PACKAGE_REGISTRY variables
can be used to specify the default behavior of find_package() calls, controlling whether to read from
the user and system package registries respectively. CMake 3.16 deprecated both variables,
replacing them with CMAKE_FIND_USE_PACKAGE_REGISTRY and CMAKE_FIND_USE_SYSTEM_PACKAGE_REGISTRY to
maintain more consistent naming and behavior with the other CMAKE_FIND_USE_… variables
mentioned earlier in this chapter. These newer variables take precedence over the old ones where
both the old and new variables are defined.

While the two sets of CMAKE_EXPORT_… and CMAKE_FIND_… variables described above are
complementary, the CMAKE_FIND_… variables are more effective at isolating a build from the package
registry and are usually more relevant for developers.

In practice, package registries are not often used. The limited help provided for adding and
removing entries means maintaining the registry is somewhat of a manual process. When a
package is installed via the host’s standard package management system, it could conceivably add
itself to either the system or user registry as appropriate, then the package’s uninstaller could
remove that same entry. While the package locations are well defined and their definition is
conceptually easy, few packages bother to do the work to register and unregister themselves. The
various different ways a package may find its way onto an end user’s machine makes it somewhat
difficult to implement such register/unregister features robustly and simply.

25.5.2. FindPkgConfig

The find_package() command will generally be the preferred method for finding and incorporating
a package into a CMake project, but in certain cases the results can be less than ideal. Some Find
modules are yet to be updated to more modern practices and do not provide imported targets,
relying instead on defining a collection of variables that consuming projects must handle manually.
Other modules may fall behind the latest package releases, leading to incompatibilities or incorrect
information being provided.

In some instances, a package may have support for pkg-config, a tool that provides similar
information to find_package() but in a different form. If such pkg-config details are available, then
the PkgConfig Find module may be used to read that information and provide it in a more CMake-
friendly way. Imported targets can be automatically created, freeing projects from having to handle
various variables manually. The pkg-config details are also likely to match the installed version of
the package, since they are typically provided by the package itself.

The FindPkgConfig module locates the pkg-config executable and defines a few functions that invoke
it to find and extract details about packages that have pkg-config support. If the module finds the
executable, it sets the PKG_CONFIG_FOUND variable to true and the PKG_CONFIG_VERSION_STRING variable to
the tool’s version (except for CMake versions before 2.8.8). The PKG_CONFIG_EXECUTABLE variable is set
to the location of the tool. CMake 3.22 and later also sets PKG_CONFIG_ARGN to any additional
arguments to pass to the executable with each call. The user can explicitly set PKG_CONFIG_EXECUTABLE
and PKG_CONFIG_ARGN if the module’s defaults need to be overridden.

In practice, projects should rarely need to use the PKG_CONFIG_EXECUTABLE or PKG_CONFIG_ARGN variables.
The module defines two functions which wrap the tool to provide a more convenient way to query
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package details. These two functions, pkg_check_modules() and pkg_search_module(), accept exactly the
same set of options and have similar behavior. The main difference between the two is that
pkg_check_modules() checks all the modules given in its argument list, whereas pkg_search_module()
stops at the first one it finds that satisfies the criteria. The use of the term module rather than
package is established in the history of these commands and may cause some confusion, but they
have no direct relationship to regular CMake modules and can essentially be thought of as
packages.

pkg_check_modules(prefix
    [REQUIRED] [QUIET]
    [IMPORTED_TARGET [GLOBAL] ]
    [NO_CMAKE_PATH]
    [NO_CMAKE_ENVIRONMENT_PATH]
    moduleSpec1 [moduleSpec2...]
)
pkg_search_module(prefix
    [REQUIRED] [QUIET]
    [IMPORTED_TARGET [GLOBAL] ]
    [NO_CMAKE_PATH]
    [NO_CMAKE_ENVIRONMENT_PATH]
    moduleSpec1 [moduleSpec2...]
)

The behavior of these functions has some similarities to find_package(). The REQUIRED and QUIET
arguments have the same effect here as they do for the find_package() command. With CMake 3.1 or
later, CMAKE_PREFIX_PATH, CMAKE_FRAMEWORK_PATH and CMAKE_APPBUNDLE_PATH are all considered as search
locations in the same way too and the NO_CMAKE_PATH and NO_CMAKE_ENVIRONMENT_PATH keywords also
have the same meaning here. The PKG_CONFIG_USE_CMAKE_PREFIX_PATH variable can be set to change the
default behavior for whether or not these search locations are considered (it will be treated as a
boolean switch to turn the search locations on or off), but projects should generally avoid it unless
they need to support CMake versions older than 3.1.

The IMPORTED_TARGET option is only supported with CMake 3.6 or later. When given, if the requested
module is found then an imported target with the name PkgConfig::<prefix> is created. This
imported target will have interface details populated from the module’s .pc file, providing such
things as header search paths, compiler flags, etc. For this reason, it is highly recommended that
this option be used if the minimum CMake version required by the project is 3.6 or later. If using
CMake 3.13 or later, the GLOBAL keyword can also be added to make imported targets have global
visibility instead of only to the current directory scope and below.

The functions expect one or more moduleSpec arguments to define what to search for. These can be a
bare module/package name or they can combine the name with a version requirement. Such
version requirements have the form name=version, name<=version or name>=version. With CMake 3.13
or later, < and > are also supported. When no version requirement is included, any version is
accepted.

Upon return, the functions set a number of variables in the calling scope by calling pkg-config with
the appropriate option(s) to extract the relevant part of the package details. Where multiple items
are returned by a set of options (e.g. multiple libraries or multiple search paths), the corresponding
variable will hold a CMake list.
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Variable pkg-config options used

prefix_LIBRARIES --libs-only-l

prefix_LIBRARY_DIRS --libs-only-L

prefix_LDFLAGS --libs

prefix_LDFLAGS_OTHER --libs-only-other

prefix_INCLUDE_DIRS --cflags-only-I

prefix_CFLAGS --cflags

prefix_CFLAGS_OTHER --cflags-only-other

prefix_STATIC_LIBRARIES --static --libs-only-l

prefix_STATIC_LIBRARY_DIRS --static --libs-only-L

prefix_STATIC_LDFLAGS --static --libs

prefix_STATIC_LDFLAGS_OTHER --static --libs-only-other

prefix_STATIC_INCLUDE_DIRS --static --cflags-only-I

prefix_STATIC_CFLAGS --static --cflags

prefix_STATIC_CFLAGS_OTHER --static --cflags-only-other

The above variables are only set if the module requirements are satisfied. The canonical way to
check this is using the prefix_FOUND and prefix_STATIC_FOUND variables. For pkg_check_modules(), all
moduleSpec requirements must be satisfied for these variables to have a value of true, whereas
pkg_search_module() only has to find one matching moduleSpec. With CMake 3.16 or later,
pkg_search_module() populates the <prefix>_MODULE_NAME with the module that was found.

For pkg_check_modules(), some additional per-module variables are also set when modules are found
successfully. In the following, if only one moduleSpec is given then YYY = prefix, otherwise YYY =
prefix_moduleName.

YYY_VERSION

The version of the module found, extracted from output of the --modversion option.

YYY_PREFIX

The module’s prefix directory. This is obtained by querying for a variable named prefix, which
most .pc files typically define and which pkg-config provides by default anyway.

YYY_INCLUDEDIR

The result of querying for a variable named includedir. This is a common but not required
variable.

YYY_LIBDIR

The result of querying for a variable named libdir. Again, this is a common but not required
variable.

In CMake 3.4 and later, the FindPkgConfig module provides an additional function which can be used
to extract arbitrary variables from .pc files:

pkg_get_variable(resultVar moduleName variableName)
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This is used internally by pkg_check_modules() to query the prefix, includedir and libdir variables,
but projects can use it to query the value of any arbitrary variable. Note that before CMake 3.15,
pkg_get_variable() contained a bug which resulted in it effectively ignoring CMAKE_PREFIX_PATH, so
consider making CMake 3.15 the minimum version if relying on this functionality.

For most common systems, the functions provided by the FindPkgConfig module work fairy reliably.
The implementations of those functions do, however, rely on features introduced in pkg-config
version 0.20.0. Some older systems (e.g. Solaris 10) come with older versions of pkg-config which
result in all calls to the FindPkgConfig functions failing to find any modules successfully and no error
message is logged to highlight that the pkg-config version is too old.

25.6. Ignoring Search Paths
In some situations, it may be desirable to force the find_…() commands to ignore certain search
paths. This is mostly relevant when cross-compiling, where some specific host paths may need to be
ignored so that files for the target platform are found rather than files for the host platform. The
variables described below apply regardless of whether cross-compiling or not, but it would be
unusual for them to be set when not cross-compiling.

The CMAKE_IGNORE_PATH variable is intended to be set by the user or by the project. It can be set to a
list of directories to exclude from the search. The CMAKE_SYSTEM_IGNORE_PATH variable does the same
thing, but is intended to be populated by the toolchain setup.

For find_file(), find_path(), find_library() and find_program(), the ignored directories should be the
directories of the file being searched for. The ignored paths are not recursive, so they cannot be
used to exclude a whole section of a directory structure. They must specify the absolute path of
each individual directory to ignore.

For find_package(), the variables only affect searching in CONFIG mode. They can be used to ignore
specific directories that contain config package files (PackageNameConfig.cmake or packageName-
config.cmake). They can also be used to ignore search prefixes (e.g. those defined by
CMAKE_PREFIX_PATH, CMAKE_SYSTEM_PREFIX_PATH, etc.). Importantly, CMAKE_IGNORE_PATH and
CMAKE_SYSTEM_IGNORE_PATH do not affect the search for Find modules, but they do affect find_…()
commands called from within Find module implementations.

CMake 3.23 added support for two more variables, CMAKE_IGNORE_PREFIX_PATH and
CMAKE_SYSTEM_IGNORE_PREFIX_PATH. These affect the search prefixes of all find_…() commands, not just
find_package(). Because of this more consistent behavior, they should be preferred over using
CMAKE_IGNORE_PATH or CMAKE_SYSTEM_IGNORE_PATH when specifying a search prefix to ignore. Note that
these two newer variables do not affect search prefixes for Find modules either.

All ignored directories and prefixes will be automatically re-rooted in the same way as the search
paths, as described in Section 25.1.2, “Cross-compilation Controls”. Paths intended to ignore host
locations may also result in the corresponding paths in re-rooted locations being ignored too.
Consider carefully the interaction of ignored paths with variables like CMAKE_FIND_ROOT_PATH,
CMAKE_SYSROOT, CMAKE_STAGING_PREFIX and so on to avoid unexpectedly ignoring paths for the target
platform.
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25.7. Debugging find_…() Calls
As the preceding sections demonstrate, the logic for the locations and names CMake searches for
the various find_…() commands is complex. When a search returns something unexpected or it
fails to find something that was thought to exist, it can be non-trivial to work out what went wrong.
To help with this, CMake 3.17 added a new --debug-find command-line option which enables logging
for calls to the built-in find_…() commands. This output may include a brief summary of the search
settings and a list of each location and name that was checked. If a find_…() command call uses a
cached value rather than actually performing a search, that call may produce no debug output.

CMake 3.23 added some more targeted options to help focus the debug output on specific things of
interest. The --debug-find-pkg=pkg1,pkg2,… option shows debug output only with find_package() calls
for the specified package(s). The --debug-find-var=var1,var2,… option does the same for the other
find_…() commands, where the call uses one of the specified result variables.

cmake --debug-find-pkg=Boost,fmt ...
cmake --debug-find-var=CCACHE_EXECUTABLE ...

The first example will show debug output for find_package() calls looking for Boost or fmt. This
includes any other find_…() commands made as part of those calls to find_package(). The second
example will provide debug output for calls like find_program(CCACHE_EXECUTABLE ccache).

The --debug-find option applies to the whole build, so for large projects with many find_…() calls,
the verbose output can be overwhelming. The more targeted --debug-find-pkg and --debug-find-var
options may help reduce the volume of output, but they may not always be enough. If developers
only want to target a specific call or section of a project, a more effective strategy is to only enable
find_…() command debugging around the specific calls of interest. This can be achieved by setting
a variable called CMAKE_FIND_DEBUG_MODE to true before the calls of interest and to false after them
(support for this variable was added in CMake 3.17). For example:

set(CMAKE_FIND_DEBUG_MODE TRUE)
find_program(...)
set(CMAKE_FIND_DEBUG_MODE FALSE)

The debugging output is meant as a development aid for human consumption. It should not be used
as input to any script or other form of automated processing, since the format and contents could
change from one CMake version to another.

25.8. Recommended Practices
From CMake 3.0, there has been a conscious shift toward the use of imported targets to represent
external libraries and programs rather than populating variables. This allows such libraries and
programs to be treated as a coherent unit, collecting together not just the location of the relevant
binary, but in the case of libraries, the associated header search paths, compiler defines and further
library dependencies that consuming targets will need are also part of the imported target. This
makes external libraries and programs as easy to use within a project as any other regular target
the project defines. This shift in focus means that finding packages has become much more
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important than finding individual files, paths, etc. and there is an increasing push for projects to
make themselves consumable by other CMake projects as packages. Finding individual files, etc.
still has its uses and it is helpful to understand how that can be done, but developers should see it
as a stepping stone to packages and/or imported targets rather than an end in itself. Wherever
possible, prefer to find packages rather than individual things within packages.

When finding packages, most complications that arise are related to situations where multiple
versions are installed in different locations. The user may not be aware of all the installed versions
or there may be expectations about which one should be found ahead of the others. Rather than the
project trying to predict such situations, it is generally more advisable to not deviate too far from
the default search behavior and let the user provide their own overrides via cache or environment
variables. CMAKE_PREFIX_PATH is usually the most convenient way to do this due to the way CMake
automatically searches a range of common directory layouts below each prefix path listed.

Be aware that find_package() calls can be redirected to completely different mechanisms for
fulfilling those requests. Features were added in CMake 3.24 which integrate find_package() with the
FetchContent module, along with related support for supplying dependencies via custom, developer-
specified dependency providers. Section 30.4, “Integration With find_package()” and Chapter 32,
Dependency Providers discuss these topics in detail.

Do not rely heavily on the version range support for find_package(), perhaps not even on the
version constraint at all. Version ranges are only available with CMake 3.19 or later, and older
packages will typically ignore the upper end of the version range constraint. Consider the upper
limit to be advisory rather than strictly enforced. The entire version constraint can be ignored
altogether in some situations too, as discussed in Section 30.4, “Integration With find_package()”
and Chapter 32, Dependency Providers. It may ultimately not be worth the effort to specify any form
of version constraint.

All the find_…() commands except find_package() work in a similar way. By default, they cache a
successful result to avoid having to repeat the whole find operation the next time the find_…()
command is asked to find the same thing. This is cached even across multiple CMake invocations.
Given the potentially large number of locations and directory entries each call may search through,
the caching mechanism can save a non-trivial amount of time when there are many such find_…()
invocations throughout the project. There are, however, at least two consequences of this that
developers need to be aware of. Firstly, once a find_file(), find_path(), find_program() or
find_library() command succeeds, it will stop searching for all subsequent invocations, even if
running the command would return a different result or if the entity found previously no longer
exists. If the entity is removed, this can result in build errors that can only be rectified by removing
the out-of-date entries from the cache. Developers often just delete their entire cache and rebuild
again from scratch rather than trying to figure out which cache variables need to be removed. The
other aspect of this find behavior that developers should be aware of is that where a call to one of
these find_…() commands fails to find the desired entity, the search will be repeated for every call,
even within the same project. An unsuccessful call is not cached. If a project has many such calls,
this can slow down the configure step. In extreme cases, tens of thousands of locations may be
checked on each call. Developers should therefore carefully consider how the project uses find_…()
commands and try to minimize the likelihood and number of unsuccessful searches. If the
minimum CMake version can be set to 3.21 or later, policy CMP0125 also allows some subtle
surprising behaviors to be avoided.
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The situation with find_package() is a little more complicated. If the package is found via a Find
module, then it is likely that all the above concerns will also apply to the package, since the logic is
likely to be built upon the other find_…() commands. If the package is instead found via config
mode, then find_package() will cache a successful result and check that location first on subsequent
invocations. If the package no longer has an appropriate config file at that location, the command
proceeds with its normal search logic. This unique behavior for config mode is much more robust
and is closer to what developers would naturally want.

A particularly tricky situation where the caching of find_…() results can lead to subtle problems is
with continuous integration systems. If incremental builds are being used where the CMake cache
of a previous run is kept, then changes made in a project to the way it searches for things might not
be reflected in the build. Only when the CMake cache is cleared might such changes take effect. The
caching often also means that no details are logged about the entity being found, so the build
output gives little clue about the use of the old search details. One might therefore be tempted to
require all CI builds to build from scratch, but this may not be feasible for longer builds. A strategy
which may help reduce the problem is to schedule a daily build job at a time of low CI load where
the build tree is cleared and then the project is built as per normal. This will still keep the
incremental behavior during regular hours and it will usually make any cache-related problems
self-resolving within a day. The effectiveness of this strategy is reduced during periods where
changes are being made on a branch and CI builds are alternating between that branch and other
branches, but one would hope that such periods are not common and can be tolerated as long as
developers are made aware of potential consequences during that time.

The package registry features of the find_package() command should be approached with caution.
They have the potential to give unexpected results for continuous integration systems where
projects may want to find packages that are also built on the same machine. Unfortunately, there is
no environment variable that can be set to disable the use of the registries, but it can be enforced
by the projects themselves by setting the CMAKE_FIND_PACKAGE_NO_PACKAGE_REGISTRY CMake variable to
OFF (CI jobs would not normally have the required permissions to modify the system package
registry, so setting CMAKE_FIND_PACKAGE_NO_SYSTEM_PACKAGE_REGISTRY as well should be unnecessary). In
practice, few projects write into the package registry, so unless it is known that such a project might
be using the CI system, the need to add this CMake variable to every potentially affected project is
low. Projects should also avoid making calls to export(PACKAGE) within CI jobs (arguably they should
avoid such calls in general).

Use of the FindPkgConfig module should be reserved only for those situations where find_package() is
not suitable. Typically this is for a package where CMake provides a find module, but that find
module is fairly old and does not provide imported targets, or where it falls behind the more recent
package releases. The FindPkgConfig module is also useful for searching for packages that CMake
knows nothing about and where the package does not provide its own CMake config file, but it does
provide a pkg-config (i.e. .pc) file.

When using a toolchain file for cross-compilation, prefer to set CMAKE_SYSROOT rather than
CMAKE_FIND_ROOT_PATH. While both affect the search paths of the various find_…() commands in the
same way, only CMAKE_SYSROOT also ensures that the compiler and linker flags are properly
augmented so that header inclusions and library linking work correctly.

In cross-compiling scenarios, it is also typical that searches for programs expect to find binaries
that will run on the host, whereas searches for files and libraries typically expect to find things for
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the target. Therefore, it is very common to see the following in toolchain files to enforce such
behavior by default:

set(CMAKE_FIND_ROOT_PATH_MODE_PROGRAM NEVER)
set(CMAKE_FIND_ROOT_PATH_MODE_LIBRARY ONLY)
set(CMAKE_FIND_ROOT_PATH_MODE_INCLUDE ONLY)

One could argue that this should be set in the project rather than relying on it being set in a
toolchain file. Technically the developer is free to use any toolchain file if they wish and it is the
project that implicitly relies on default behavior that it then chooses to override or not. An added
complexity here is that toolchain files may be re-read for each project() or enable_language() call, so
if a project wants to enforce a particular combination of defaults, it would have to do so after every
such call. A reasonable compromise, therefore, is for projects to include the above block before its
first project() call and for toolchain writers to also include it. Then, if toolchain authors do not
include such a block, at least the project still gets sensible defaults. If a toolchain file changes the
defaults to something else, they will then be applied consistently throughout the whole project.
Developers should be very wary of using settings other than those shown in the example just
above, since it is such a common pattern that projects frequently assume it.

For situations where the developer is able to switch between device and simulator builds without
re-running CMake (e.g. when using Xcode for an iOS project), avoid calls to find_library(). Any
results obtained by such calls can only ever point to one of either the device or simulator library,
not both. Add the underlying linker flags that link only by name and not by path in such cases, such
as -framework ARKit, -lz or $<LINK_LIBRARY:FRAMEWORK,abc>. If the frameworks or libraries cannot be
found on the default linker search path, the project will also need to provide linker options to
extend the search paths to allow them to be found.

It is quite common for online examples and blog posts to show conflicting recommendations over
whether to use CMAKE_MODULE_PATH or CMAKE_PREFIX_PATH to control where CMake searches for things.
An easy way to remember the difference is that CMAKE_MODULE_PATH is only used by CMake when
searching for FindXXX.cmake files or when a module is brought in via an include() command. For
everything else, including searching for config package files, CMAKE_PREFIX_PATH is used.

When specifying directories to ignore in searches conducted by find_…() commands, prefer using
CMAKE_IGNORE_PREFIX_PATH when ignoring a search prefix is sufficient. This works for all find_…()
commands with CMake 3.23 or later and avoids the need to specify every possible search location
under a prefix. For earlier CMake versions, CMAKE_IGNORE_PATH can be used to ignore prefixes only for
find_package(). For the other find_…() commands, every directory to ignore has to be added
individually. Neither of these variables prevent searching in locations for a Find module, although
they may affect the implementation of a Find module if it calls one of the find_…() commands
internally.
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Chapter 26. Testing
A natural follow-on to building a project is to test the artifacts it created. The CMake software suite
includes the CTest tool which can be used to automate the testing phase, or even the entire process
of configuring, building, testing and even submitting results to a dashboard. This chapter first
covers the simpler case of how to use CMake to define tests and execute them using the ctest
command line tool. Automating the entire configure-build-test process uses much of that same
knowledge and is discussed later in the chapter.

26.1. Defining And Executing A Simple Test
The first step to defining tests in a CMake project is to call enable_testing() somewhere in the top
level CMakeLists.txt file. This would typically be done early, soon after the first project() call. The
effect of this function is to direct CMake to write out a CTest input file in the
CMAKE_CURRENT_BINARY_DIR with details of all the tests defined in the project (more accurately, those
tests defined in the current directory scope and below). enable_testing() can be called in a
subdirectory without error, but without a call to enable_testing() at the top level, the CTest input file
will not be created at the top of the build tree, which is where it is normally expected to be.

Defining individual tests is done with the add_test() command:

add_test(NAME testName
         COMMAND command [arg...]
         [CONFIGURATIONS config1 [config2...]]
         [WORKING_DIRECTORY dir]
         [COMMAND_EXPAND_LISTS]   # CMake 3.16 or later
)

By default, the test will be deemed to pass if the command returns an exit code of 0, but more
flexible pass/fail handling is supported and is discussed in the next section. Prior to CMake 3.19, the
testName should not contain any spaces, quotes or other special characters. With CMake 3.19 or
later, these constraints are removed when policy CMP0110 is set to NEW. CMake 3.18.0 originally
introduced the same capability, but it was reverted in 3.18.1 after it was found to break some
projects. The capability was reintroduced again in 3.19.0, this time with a policy to ensure
backward compatibility for projects that relied on the old behavior.

The command can be a full path to an executable or it can be the name of an executable target defined
in the project. When a target name is used, CMake automatically substitutes the real path to the
executable. This is particularly useful when using multi configuration generators like Xcode, Visual
Studio or Ninja Multi-Config where the location of the executable will be configuration-dependent.

cmake_minimum_required(VERSION 3.0)
project(CTestExample)
enable_testing()

add_executable(TestApp testapp.cpp)
add_test(NAME noArgs COMMAND TestApp)
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The automatic substitution of a target with its real location does not extend to the command
arguments, only the command itself supports such substitution. If the location of a target needs to
be given as a command line argument, generator expressions can be used. For example:

add_executable(App1 ...)
add_executable(App2 ...)

add_test(NAME WithArgs COMMAND App1 $<TARGET_FILE:App2>)

When running the tests, the user can specify which configuration should be tested. When the
project is using a single configuration generator, the configuration does not have to match the build
type. In particular, if no configuration is provided, an empty configuration is assumed. Without the
optional CONFIGURATIONS keyword, the test will be run for all configurations regardless of the build
type or what configuration has been requested by the user. If the CONFIGURATIONS keyword is given,
only for those configurations listed will the test be run. Note that an empty configuration is still
considered valid, so for the test to run in that scenario, an empty string would have to be one of the
CONFIGURATIONS listed.

For example, to add a test that should only be executed for configurations that have debug
information, the Debug and RelWithDebInfo configurations can be listed. Adding the empty string also
makes the test run when no configuration is specified when running the tests:

add_test(NAME DebugOnly
    COMMAND TestApp
    CONFIGURATIONS Debug RelWithDebInfo ""
)

In most cases, the CONFIGURATIONS keyword is not needed and the test would be executed for all
configurations, including the empty one.

By default, the test will run in the CMAKE_CURRENT_BINARY_DIR directory, but the WORKING_DIRECTORY
option can be used to make the test run in some other location. An example of where this can be
useful is to run the same executable in different directories to pick up different sets of input files
without having to specify them as command line arguments.

add_test(NAME Foo
    COMMAND TestApp
    WORKING_DIRECTORY ${CMAKE_CURRENT_LIST_DIR}/Foo
)
add_test(NAME Bar
    COMMAND TestApp
    WORKING_DIRECTORY ${CMAKE_CURRENT_LIST_DIR}/Bar
)

If specifying a working directory, always use an absolute path. If a relative path is given, it will be
interpreted as being relative to the directory in which ctest itself was launched, but that might not
be the top of the build tree. In order to ensure the working directory is predictable, projects should
avoid using a relative WORKING_DIRECTORY.
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If the specified working directory does not exist when the test is run, CMake versions 3.11 and
earlier will not issue an error message and will still run the test, even though it fails to change the
working directory. CMake 3.12 and later will catch the error and treat the test as failed. Regardless
of what version of CMake is being used, it is the project’s responsibility to ensure the working
directory exists and has appropriate permissions.

CMake 3.16 added support for the COMMAND_EXPAND_LISTS keyword, which has the same effect as the
same-named option for the add_custom_command() and add_custom_target() commands. When this
keyword is present, any list given as a command name or argument is expanded. This list
expansion occurs after any generator expressions are evaluated. One of the primary motivations
for this feature is to avoid passing an unwanted empty string as a command argument after a
generator expression expands to nothing. For example:

add_test(NAME Expander
    COMMAND someCommand $<$<CONFIG:Debug>:-g>
    COMMAND_EXPAND_LISTS
)

If the above test is run for non-Debug configurations, COMMAND_EXPAND_LISTS ensures that after the
generator expression expands to nothing, no empty argument is added to the command line.

A reduced form of the add_test() command is also supported for backward compatibility reasons:

add_test(testName command [args...])

This form should not be used in new projects, since it lacks some of the features of the full NAME and
COMMAND form. The main differences are that generator expressions are not supported and if command
is the name of a target, CMake will not automatically substitute the location of its binary.

To run the tests, the ctest command line tool is used. It would normally be run from the top of the
build directory, although with CMake 3.20 or later, a --test-dir command line option can be given
to specify the directory for which tests should be run. By default, ctest will execute all defined tests
one at a time, logging a status message as each test is started and completed, but hiding all test
output. An overall summary of the tests will be printed at the end. Typical output would look
something like this:

Test project /path/to/build/dir
    Start 1: FooWithBar
1/2 Test #1: FooWithBar..............   Passed    0.00 sec
    Start 2: FooWithoutBar
2/2 Test #2: FooWithoutBar...........   Passed    0.00 sec

100% tests passed, 0 tests failed out of 2

Total Test time (real) =   0.02 sec

If using a multi configuration generator like Xcode, Visual Studio or Ninja Multi-Config, ctest needs
to be told which configuration to test. This is done by including the -C configType option where
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configType will be one of the supported build types (Debug, Release, etc.). For single configuration
generators, the -C option is not mandatory, since the build can only produce one configuration, so
there is no ambiguity for where to find the binaries to execute. Nevertheless, it can still be useful to
specify a configuration to avoid the less intuitive behavior of excluding tests that are defined to
only run under certain configurations and where the empty string is not among those listed.

ctest can be instructed to show all test output and various other details about the run with the -V
option. -VV shows an increased level of verbosity, but this is typically only needed by developers
working on ctest itself. Even the -V level of verbosity is usually more detail than users want to see.
It is more likely that only the output of failed tests needs to be shown, which can be achieved by
passing the --output-on-failure option. Alternatively, developers can set the CTEST_OUTPUT_ON_FAILURE
environment variable (the value isn’t used, ctest merely checks if CTEST_OUTPUT_ON_FAILURE has been
set). With CMake 3.18 or later, the --stop-on-failure option can also be given to end the test run
immediately upon the first error encountered.

As a convenience primarily for IDE applications, when testing has been enabled, CMake defines a
custom build target that invokes ctest with a default set of arguments. For the Xcode and Visual
Studio generators, this target will be called RUN_TESTS and it will pass the currently selected build
type as the configuration to ctest. For other generators, the target is simply called test and if it is a
single configuration generator, that target does not specify any configuration when invoking ctest.

With CMake 3.16 or earlier, there is no facility to specify which tests will be executed or any other
custom options to pass to ctest when using the RUN_TESTS or test build target. CMake 3.17 introduced
the CMAKE_CTEST_ARGUMENTS variable, which can be used to prepend arbitrary options to the ctest
command line for that build target.

26.2. Test Environment
By default, each test will be run with the same environment as the ctest command. If a test requires
changes to its environment, this can be done through the ENVIRONMENT test property. This property is
expected to be a list of NAME=VALUE items that define environment variables to be set before running
the test. Changes are local to that test only and do not affect other tests.

set_tests_properties(SomeTest PROPERTIES
    ENVIRONMENT "FOO=bar;HAVE_BAZ=1"
)

A major weakness of the way the ENVIRONMENT test property works is that list-valued variables are
problematic. The test properties are written to another file that ctest later reads. ctest will
interpret the semicolons in list values as separators between different environment variables to be
set, not as part of the value. To prevent that splitting, one has to add an extra level of escaping. Note
the backslash when defining the value for FOO in the following example:

set_tests_properties(SomeTest PROPERTIES
    ENVIRONMENT "FOO=one\;two;HAVE_BAZ=1"
)
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If building up the environment string in one or more variables before passing it to
set_tests_properties(), further escaping may be needed. CMake’s rules for escaping are
complicated, which makes handling these cases very fragile and easy to get wrong. Therefore, avoid
using ENVIRONMENT for variables with list values, if possible.

With CMake 3.22 or later, the ENVIRONMENT_MODIFICATION test property offers a more robust way of
modifying environment variables. Instead of replacing an environment variable with a value
determined at configure time, ENVIRONMENT_MODIFICATION can be used to apply a list of changes to one
or more environment variables based on the variable’s value when ctest runs. A change is
specified in the form varName=operation:value. A variety of operations are supported, but some of the
more useful ones include string_append, string_prepend, path_list_append, path_list_prepend,
cmake_list_append and cmake_list_prepend. The string_… operations have the expected behavior of
appending and prepending to the variable’s existing value. The cmake_list_… operations do
likewise, except they add a semicolon separator between the new value and the existing value as
well. The path_list_… operations do the same, except the separator will be the one the host
platform uses for PATH-like environment variables (i.e. a semicolon on Windows, a colon
everywhere else).

# In this example, Algo is assumed to be a shared library defined elsewhere in
# the project and whose binary will be in a different directory to test_Algo
add_executable(test_Algo ...)
target_link_libraries(test_Algo PRIVATE Algo)

add_test(NAME CheckAlgo COMMAND test_Algo)

set_property(TEST CheckAlgo PROPERTY
    ENVIRONMENT_MODIFICATION
        SOME_VAR=string_append:ExtraPart
        QT_LOGGING_RULES=cmake_list_append:*.debug=true
)

if(WIN32)
    # Ensure the required DLLs can be found at runtime
    set(algoDir "$<SHELL_PATH:$<TARGET_FILE_DIR:Algo>>")
    set(otherDllDir "C:\\path\\to\\another\\dll")
    set_property(TEST CheckAlgo APPEND PROPERTY
        ENVIRONMENT_MODIFICATION
            PATH=path_list_prepend:${algoDir}
            PATH=path_list_prepend:${otherDllDir}
    )
endif()

The same fragility with passing through values containing semicolons applies to
ENVIRONMENT_MODIFICATION. However, semicolons can often be avoided by incrementally applying
value changes one at a time, as shown for the PATH in the WIN32 block in the above example.

With CMake 3.21 or earlier, situations where an environment variable needs to modify rather than
replace an existing value are less straightforward. If the environment should be based on the one in
which CMake is run rather than the ctest command, then the form $ENV{SOMEVAR} can be used to
obtain existing values. Once again, extra care is needed for environment variable values that may
contain semicolons. For example:
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if(WIN32)
    set(algoDir  "$<SHELL_PATH:$<TARGET_FILE_DIR:Algo>>")
    set(execPath "PATH=${algoDir};$ENV{PATH}")

    # Add one level of escaping for any semicolons to prevent ctest from
    # treating them as separators between environment variable names instead
    # of as part of the PATH value.
    string(REPLACE ";" "\;" execPath "${execPath}")

    set_tests_properties(CheckAlgo PROPERTIES
        ENVIRONMENT "${execPath}"
    )
endif()

Modifying the environment based on the actual environment being used to invoke ctest rather
than CMake is even more involved. It can be achieved with a combination of cmake -E env invoking
a script, with CMake-provided locations being passed as variables to the cmake -E env part. Then the
script does the actual task of augmenting the run-time environment using those values and
invoking the test executable. Such an arrangement is complex, can be fragile and should be avoided
unless there is a definite need to support such a use case for CMake 3.21 or earlier.

26.3. Pass / Fail Criteria And Other Result Types
Basing the result of a test purely on the exit code of the test command can be quite restrictive.
Another supported alternative is to specify regular expressions to match against the test output.
The PASS_REGULAR_EXPRESSION test property can be used to specify a list of regular expressions, at least
one of which the test output must match for the test to pass. These regular expressions frequently
span across multiple lines. Similarly, the FAIL_REGULAR_EXPRESSION test property can be set to a list of
regular expressions. If any of these match the test output, the test fails, even if the output also
matches a PASS_REGULAR_EXPRESSION or the exit code is 0. A test can have both PASS_REGULAR_EXPRESSION
and FAIL_REGULAR_EXPRESSION set, just one of the two or neither. If PASS_REGULAR_EXPRESSION is set and is
not empty, the exit code is not considered when determining whether the test passes or fails.

# Ignore exit code, check output to determine the pass/fail status
set_tests_properties(test_Foo PROPERTIES
    FAIL_REGULAR_EXPRESSION "warning|Warning|WARNING"
    PASS_REGULAR_EXPRESSION [[
Checking some condition for test_Foo: passed
+.*
All checks passed]]
)

Sometimes a test may need to be skipped, perhaps for reasons that only the test itself can
determine. The SKIP_RETURN_CODE test property can be set to a value the test can return to indicate
that it was skipped rather than failed. A test that exits with the SKIP_RETURN_CODE will override any
other pass/fail criteria.
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CMakeLists.txt

add_executable(test_Foo test_Foo.cpp ...)
add_test(NAME Foo COMMAND test_Foo)

set_tests_properties(Foo PROPERTIES
    SKIP_RETURN_CODE 2
)

test_Foo.cpp

int main(int argc, char* argv[])
{
    if (shouldSkip())
        return 2; // Skipped

    if (runTest())
        return 0; // Passed

    return 1; // Failed
}

Output from the above test may look similar to the following:

Test project /path/to/build/dir
    Start 1: Foo
1/1 Test #1: Foo ....................***Skipped   0.00 sec

100% tests passed, 0 tests failed out of 1

Total Test time (real) =   0.01 sec

The following tests did not run:
      1 - Foo (Skipped)

From CMake 3.16, a SKIP_REGULAR_EXPRESSION can also be specified. This works in exactly the same
way as PASS_REGULAR_EXPRESSION and FAIL_REGULAR_EXPRESSION, causing the test to be skipped if the
output matches any of the skip expressions. A skip regular expression also takes precedence over
any pass or fail criteria.

When at least one test fails or is not run for some reason, a summary of all such tests and their
status is printed at the end. A test that indicates it should be skipped via its return code is still
counted in the total number of tests. These skipped tests are not considered failures with CMake 3.9
or later, but they are considered failures with CMake 3.8 and earlier. Regardless of CMake version, a
test may also be skipped for other reasons which could be deemed a failure, such as a test
dependency failing to be met (discussed in Section 26.7, “Test Dependencies” below).

With CMake 3.9 or later, a DISABLED test property is also supported. This can be used to mark a test
as temporarily disabled, which allows it to be defined, but not executed or counted in the total
number of tests. It will not be considered a test failure, but it will still be shown in the test results
with an appropriate status message. Note that such tests should not normally remain disabled for
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extended periods. The feature is intended as a temporary way to disable a problematic or
incomplete test until it can be fixed. The following example demonstrates the behavior:

add_test(NAME FooWithBar ...)
add_test(NAME FooWithoutBar ...)

set_tests_properties(FooWithoutBar PROPERTIES DISABLED YES)

The ctest output for the above may look something like this:

Test project /path/to/build/dir
    Start 1: FooWithBar
1/2 Test #1: FooWithBar ..............   Passed    0.00 sec
    Start 2: FooWithoutBar
2/2 Test #2: FooWithoutBar ...........***Not Run (Disabled)   0.00 sec

100% tests passed, 0 tests failed out of 1

Total Test time (real) =   0.01 sec

The following tests did not run:
      2 - FooWithoutBar (Disabled)

In some cases, a test may be expected to fail. Rather than disabling the test, it may be more
appropriate to mark the test as expecting failure so that it continues to be executed. The WILL_FAIL
test property can be set to true to indicate this, which will then invert the pass/fail result. This has
the added advantage that if the test starts to pass unexpectedly, ctest will consider that a failure
and the developer is immediately aware of the change in behavior.

Another aspect of a test’s pass/fail status is how long it takes to complete. The TIMEOUT test property,
if set, specifies the number of seconds the test is allowed to run before it will be terminated and
marked as failed. The ctest command line also accepts a --timeout option which has the same effect
for any test without a TIMEOUT property set (i.e. it acts as a default timeout). Furthermore, a time
limit can also be applied to the entire set of tests as a whole by specifying the --stop-time option to
ctest. The argument after --stop-time must be a real time of day rather than a number of seconds,
with local time assumed if no timezone is given.

add_test(NAME t1 COMMAND ...)
add_test(NAME t2 COMMAND ...)

set_tests_properties(t2 PROPERTIES TIMEOUT 10)

ctest --timeout 30 --stop-time 13:00

In the above example, the default per-test timeout is set to 30 seconds on the ctest command line.
Since t1 has no TIMEOUT property set, it will have a 30 second timeout, whereas t2 has its TIMEOUT
property set to 10, which will override the default set on the ctest command line. The tests will be
given until 1pm local time to complete.
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In some circumstances, a test may need to wait for a particular condition before it starts the test
proper. It may be desirable to apply a timeout to just the part of the run after that condition has
been met and the real test begins. With CMake 3.6 or later, the TIMEOUT_AFTER_MATCH test property is
available to support this behavior. It expects a list containing two items, the first being the number
of seconds to be used as a timeout after the condition is met and the second is a regular expression
to be matched against the test output. When the regular expression is found, the test’s timeout
countdown and start time is reset and the timeout value is set to the first list item.

For example, the following will apply an overall timeout of 30 seconds to the test, but once the
string Condition met appears in the test output, the test will have 10 seconds to complete from that
point and the original 30 second timeout condition will no longer apply:

set_tests_properties(t2 PROPERTIES
    TIMEOUT 30
    TIMEOUT_AFTER_MATCH "10;Condition met"
)

If the test took 25 seconds for the condition to be satisfied, the overall time of the test could be as
long as 35 seconds, but because the test’s start time is also reset, ctest would report a time between
0 and 10 seconds (i.e. the time for the condition to be met is not counted). If, on the other hand, the
condition fails to be met within 30 seconds, the test will show an overall test time of about 30
seconds.

The reported times for the above can be somewhat confusing. Therefore, where possible, the use of
TIMEOUT_AFTER_MATCH should generally be avoided in favor of other ways to handle preconditions.
Section 26.7, “Test Dependencies” and Section 26.5, “Parallel Execution” further below discuss
better alternative methods.

26.4. Test Grouping And Selection
In larger projects, it is quite common to want to run just a subset of all defined tests. The developer
may be focusing on a particular failing test and may not be interested in all the other tests while
working on that problem. CMake offers a few different ways to narrow down the set of tests to run.

26.4.1. Regular Expressions

One way to execute just a specific subset of tests is by giving the -R and -E options to ctest. These
options each specify a regular expression to be matched against test names. The -R option selects
tests to be included in the test set, whereas -E excludes tests. Both options can be specified to
combine their effects.

add_test(NAME FooOnly    COMMAND ...)
add_test(NAME BarOnly    COMMAND ...)
add_test(NAME FooWithBar COMMAND ...)
add_test(NAME FooSpecial COMMAND ...)
add_test(NAME Other_Foo  COMMAND ...)
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ctest -R Only                     # Run just FooOnly and BarOnly
ctest -E Bar                      # Run all but FooWithBar
ctest -R '^Foo' -E FooSpecial     # Run all tests starting with Foo except FooSpecial
ctest -R 'FooSpecial|Other_Foo'   # Run only FooSpecial and Other_Foo

Sometimes it isn’t always easy to work out a regular expression to capture just the desired tests, or
a developer may just want to see all the tests that have been defined without running them. The -N
option instructs ctest to only print the tests rather than run them, which can be a useful way to
check that the regular expressions yield the desired set of tests.

ctest -N

Test project /path/to/build/dir
  Test #1: FooOnly
  Test #2: BarOnly
  Test #3: FooWithBar
  Test #4: FooSpecial
  Test #5: Other_Foo

Total Tests: 5

ctest -N -R 'FooSpecial|Other_Foo'

Test project /path/to/build/dir
Test #4: FooSpecial
Test #5: Other_Foo

Total Tests: 2

26.4.2. Test Numbers

As each test is added, it is given a test number. This number will remain the same between runs
unless another test is added or removed before it in the project. The ctest output shows this
number beside the test. When using the -N option, tests are listed in the order they have been
defined by the project, but the tests might not necessarily be executed in that order. Tests to be run
can be selected by test number rather than name using the -I option. This method is rather fragile,
since the addition or removal of a single test can change the number assigned to any number of
other tests. Even passing a different configuration via the -C option to ctest can result in the test
numbers changing. In most cases, matching by name will be preferable.

One situation where test numbers can be useful is where two tests have been given exactly the
same name. Except when defined in the same directory, both tests are accepted without any
warnings being issued. While duplicate test names should generally be avoided, in hierarchical
projects involving externally provided tests, this may not always be possible.

The -I option expects an argument which has a somewhat complicated form. The most direct form
involves specifying test numbers on the command line, separated by commas with no spaces:
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ctest -I [start[,end[,stride[,testNum[,testNum...]]]]]

To specify just individual test numbers, the start, end and stride can be left blank like so:

ctest -I ,,,3,2     # Selects tests 2 and 3 only

The same details can be read from a file instead of being specified on the command line by giving
the name of the file to the -I option. This can be useful if regularly running the same complicated
set of tests and no tests are being added or removed:

testNumbers.txt

,,,3,2

ctest -I testNumbers.txt

26.4.3. Labels

Selecting tests individually by name or number can become cumbersome if a large set of related
tests needs to be executed. Tests can be assigned an arbitrary list of labels using the LABELS test
property and then tests can be selected by these labels. The -L and -LE options are analogous to the
-R and -E options respectively, except they operate on test labels rather than test names. Continuing
with the same tests defined in the earlier example:

set_tests_properties(FooOnly    PROPERTIES LABELS "Foo")
set_tests_properties(BarOnly    PROPERTIES LABELS "Bar")
set_tests_properties(FooWithBar PROPERTIES LABELS "Foo;Bar;Multi")
set_tests_properties(FooSpecial PROPERTIES LABELS "Foo")
set_tests_properties(Other_Foo  PROPERTIES LABELS "Foo")

ctest -L Bar

Test project /path/to/build/dir
    Start 2: BarOnly
1/2 Test #2: BarOnly .................   Passed    1.52 sec
    Start 3: FooWithBar
2/2 Test #3: FooWithBar ..............   Passed    1.02 sec

100% tests passed, 0 tests failed out of 2

Label Time Summary:
Bar      =   2.53 sec*proc (2 tests)
Foo      =   1.02 sec*proc (1 test)
Multi    =   1.02 sec*proc (1 test)

Total Test time (real) =   2.54 sec
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Labels not only enable convenient grouping for test execution, they also provide grouping for basic
execution time statistics. As seen in the above example output, the ctest command prints a label
summary when any tests in the set of executed tests has its LABELS property set. This allows the
developer to get an idea how each label group is contributing to the overall test time. The proc part
of the sec*proc units refers to the number of processors allocated to tests (described in Section 26.5,
“Parallel Execution” below). A test that ran for 3 seconds and required 4 processors would report a
value of 12. The label time summary can be suppressed with the --no-label-summary option.

With CMake 3.22 or later, labels can also be added dynamically to a test when the test runs. See the
discussion in Section 26.10.4, “Test Measurements And Results” for how to do this.

26.4.4. Repeating Tests

Another common need is to re-run just those tests that failed the last time ctest was run. This can
be a convenient way to re-check just the relevant tests after making a small fix or to re-run tests
that failed due to some temporary environmental condition. The ctest command supports a --rerun
-failed option which provides this behavior without needing any test names, numbers or labels to
be given.

Sometimes a particular test or set of tests only fails intermittently, so the test(s) may need to be run
many times to try to reproduce a failure. Rather than running ctest itself over and over, the
--repeat-until-fail option can be given with the upper limit on the number of times each test can
be repeated. If a test fails, it will not be re-run again for that ctest invocation.

ctest -L Bar --repeat-until-fail 3

Test project /path/to/build/dir
    Start 2: BarOnly
    Test #2: BarOnly .................   Passed    1.52 sec
    Start 2: BarOnly
    Test #2: BarOnly .................***Failed    0.00 sec
    Start 3: FooWithBar
    Test #3: FooWithBar ..............   Passed    1.02 sec
    Start 3: FooWithBar
    Test #3: FooWithBar ..............   Passed    1.02 sec
    Start 3: FooWithBar
2/2 Test #3: FooWithBar ..............   Passed    1.02 sec

50% tests passed, 1 tests failed out of 2

Label Time Summary:
Bar      =   1.02 sec*proc (2 tests)
Foo      =   1.02 sec*proc (1 test)
Multi    =   1.02 sec*proc (1 test)

Total Test time (real) =   4.59 sec

The following tests FAILED:
          2 - BarOnly (Failed)
Errors while running CTest
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The label summary doesn’t accumulate the total time for the repeated tests, it only uses the time of
a test’s last execution. The total test time does, however, count all repeats.

CMake 3.17 expanded the repeat capabilities to re-run tests covering more situations. A new ctest
option --repeat mode:n was added, where n is the maximum number of times a test will be run and
mode is one of the following:

until-fail

This corresponds to the --repeat-until-fail option and is provided for consistency.

until-pass

This mode re-runs a test until it passes. Ordinarily, tests should always pass, but occasionally this
option may be useful during development or to investigate a problem. It should not be relied
upon for a more permanent arrangement.

after-timeout

Certain types of tests may experience an occasional failure due to external environmental
factors. For example, a test case may need to perform a network operation and it may sometimes
take longer than expected or even block indefinitely. Tests that interact with websites across the
internet are especially susceptible to such timeouts. This option can be used to allow such tests
to be retried if they timeout. A low value for n should typically be used to avoid having repeated
timeouts significantly extend the overall test time.

26.5. Parallel Execution
Maximizing the test throughput can be an important consideration for large projects or where tests
take a non-trivial amount of time to complete. The ability to run tests in parallel is a key feature of
ctest and is enabled using command line options that are very similar to the standard make tool. The
-j option can be used to specify an upper limit on how many tests can be run simultaneously.
Unlike most make implementations, a value must be supplied or the option will have no effect. As an
alternative, the CTEST_PARALLEL_LEVEL environment variable can be used to specify the number of
jobs, but the command line option takes precedence if both are used. This arrangement is
particularly useful for continuous integration builds, since CTEST_PARALLEL_LEVEL can be set to the
number of CPU cores on each machine, freeing every project from having to compute the optimal
number of jobs themselves. For those projects that need to restrict the number of parallel jobs, they
can still override CTEST_PARALLEL_LEVEL with the -j command line option.

A related option is -l which is used to specify a desirable upper limit on the CPU load. ctest will try
to avoid starting a new test if it may cause the load to go above this limit. Unfortunately, the
shortcomings of this option are immediately apparent at the start of testing. Typically, ctest will
initially launch as many tests as the job limit from -j or CTEST_PARALLEL_LEVEL settings allow,
exceeding any limit specified by -l. The measured CPU load usually has a lag, which allows ctest to
start too many tests initially before the measured load increases. To prevent this occurring, the
number of parallel jobs specified by -j or CTEST_PARALLEL_LEVEL should be set to no more than the
limit imposed by -l. If neither -j nor CTEST_PARALLEL_LEVEL is set, the -l option will have no effect.
Despite these limitations, the -l option can still be useful in helping to reduce CPU overload on
shared systems where other processes may also be competing for CPU resources.
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By default, ctest will assume each test consumes one CPU. For test cases that use more than one
CPU, their PROCESSORS test property can be set to indicate how many CPUs they are expected to use.
ctest will then use that value when determining whether enough CPU resources are free before
starting the test. If PROCESSORS is set to a value higher than the job limit, ctest will behave as though
it was set to the job limit when determining whether the test can be started.

The effect of these options can be seen in the following examples, which use the same set of tests as
defined earlier (test summaries have been omitted for brevity).

ctest -j 5

Test project /path/to/build/dir
    Start 5: Other_Foo
    Start 2: BarOnly
    Start 3: FooWithBar
    Start 1: FooOnly
    Start 4: FooSpecial
1/5 Test #4: FooSpecial ..............   Passed    0.12 sec
2/5 Test #1: FooOnly .................   Passed    0.52 sec
3/5 Test #3: FooWithBar ..............   Passed    1.01 sec
4/5 Test #2: BarOnly .................   Passed    1.52 sec
5/5 Test #5: Other_Foo ...............   Passed    2.02 sec

Five tests were defined and the job limit was given on the command line as 5, so ctest was able to
start all tests immediately. The result of each test was recorded as it completed, not in the order
they were started. If the job limit is reduced to 2, the output may be more like the following:

ctest -j 2

Test project /path/to/build/dir
    Start 5: Other_Foo
    Start 2: BarOnly
1/5 Test #2: BarOnly .................   Passed    1.52 sec
    Start 3: FooWithBar
2/5 Test #5: Other_Foo ...............   Passed    2.01 sec
    Start 1: FooOnly
3/5 Test #1: FooOnly .................   Passed    0.52 sec
    Start 4: FooSpecial
4/5 Test #3: FooWithBar ..............   Passed    1.02 sec
5/5 Test #4: FooSpecial ..............   Passed    0.12 sec

With a large number of tests and a high job limit, the logging of each individual test start and
completion can be difficult to follow. The overall test summary at the end of the run then becomes
much more important, with each test that didn’t pass listed along with its result. The --progress
option to ctest, which was added in CMake 3.13, can also help reduce the output and focus on the
important details. It collapses the start and completion progress messages down to a single line,
similar to the output of the Ninja build tool.
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26.6. Managing Test Resources
Tests sometimes need to ensure that no other test is running in parallel with them. They may be
performing an action that is sensitive to other activities on the machine or they may create
conditions that would interfere with other tests. To enforce this constraint, the test’s RUN_SERIAL
property can be set to true.

RUN_SERIAL is a brutal constraint which can have a strong impact on test throughput. The
RESOURCE_LOCK test property is often a better alternative. It provides a list of resources the test needs
exclusive access to. These resources are arbitrary strings which ctest does not interpret in any way,
except to ensure no other test with any of those resources listed in its own RESOURCE_LOCK property
will run at the same time. This is a great way to serialize tests that need exclusive access to
something (e.g. a database, shared memory) without blocking tests that do not use that resource.

set_tests_properties(FooOnly FooSpecial Other_Foo PROPERTIES
    RESOURCE_LOCK Foo
)
set_tests_properties(BarOnly PROPERTIES
    RESOURCE_LOCK Bar
)
set_tests_properties(FooWithBar PROPERTIES
    RESOURCE_LOCK "Foo;Bar"
)

The following sample output (again with the test summary omitted) shows that even though the job
limit of 5 would allow all tests to be executed simultaneously, ctest delays starting some tests until
the resources they need are available.

ctest -j 5

Test project /path/to/build/dir
    Start 5: Other_Foo
    Start 2: BarOnly
1/5 Test #2: BarOnly .................   Passed    1.52 sec
2/5 Test #5: Other_Foo ...............   Passed    2.02 sec
    Start 3: FooWithBar
3/5 Test #3: FooWithBar ..............   Passed    1.01 sec
    Start 1: FooOnly
4/5 Test #1: FooOnly .................   Passed    0.52 sec
    Start 4: FooSpecial
5/5 Test #4: FooSpecial ..............   Passed    0.12 sec

The RESOURCE_LOCK test property is a good fit when a test needs exclusive access to something, but
when more fine-grained control over test resources is needed, the RESOURCE_GROUPS test property
available with CMake 3.16 or later may be more appropriate. Resource groups enable projects to
define not just what resources a test needs, but also how much of each resource is required. This
allows controlled sharing of resources and can be useful for a variety of interesting scenarios:
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• Tests that require non-trivial amounts of memory can specify how much memory they need.
The ctest scheduler will keep track of the memory resources it has allocated to all currently
running tests and ensure that the available memory resources are not exceeded, delaying test
execution until that test’s memory requirements can be met.

• Multiple tests may need access to a GPU, but they could potentially share a GPU with other jobs
as long as there are only a few of them sharing a given GPU. The end user’s machine might also
have one GPU or it might have multiple GPUs installed. The project only needs to define how
many slots of a GPU each test needs and the ctest scheduler will take care of distributing the
tests across however many GPUs are available to it at run time.

• There could be many tests all needing to communicate with a particular service. In order to
prevent flooding that service, the number of tests communicating with it can be capped. For
each such test, the project specifies that the test requires a resource representing that service.
The user running the test suite controls the upper limit on how many tests are allowed to
communicate with the service at the same time.

Compared to RESOURCE_LOCK, setting up resource groups is considerably more involved, requiring a
number of separate steps:

• Define the resources a test must have in order to run. This must be done by the project.

• Define the resources available on the system. This can be done by the user running the tests or
by the script used to invoke a CDash run (discussed in Section 26.10, “CDash Integration”).

• Write tests to make use of resource details passed to it by ctest via environment variables.

26.6.1. Defining Test Resource Requirements

A test defines its required resources as a list of resource groups. Each group consists of one or more
name:value pairs, with multiple pairs separated by commas. The name part of the pair is referred to as
the resource type. In the following example, the group specifies a requirement for 16 units of mem_gb
and 4 cpus:

mem_gb:16,cpus:4

A group can also be preceded by a count of how many of that whole group are needed. It is given as
an integer followed by a comma and then the group definition as described above. When this count
value is omitted, as in the above example, it is assumed to be 1. The following demonstrates how to
specify that the test requires 3 sets of resources where each set needs 2 gpus and 4 workers:

3,gpus:2,workers:4

A group can also list a particular resource type more than once. Consider the following example:

gpus:2,gpus:4
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The above group needs a total of 6 gpus, but they can be split across two separate instances of the
gpus resource type (instances are discussed in the next section). It is permitted for 2 gpus to come
from one instance and 4 from the other. They could also be satisfied with 6 gpus all on the one
instance if it has the slots available.

A test may need multiple sets of resource groups where the groups are not all the same. The
RESOURCE_GROUPS property accepts a list for exactly this purpose. For example:

set_property(TEST ParallelCoordinator PROPERTY
    RESOURCE_GROUPS
        producers:1,consumers:1
        producers:1,consumers:4
        producers:4,consumers:1
        4,producers:1,consumers:1
)

The above specification results in the ParallelCoordinator test requiring a total of seven resource
groups. The test won’t be executed unless enough resources are available to satisfy all seven groups
at once.

Being able to split the total resource requirements across multiple groups is essential for
supporting certain system resource configurations. The next section discusses scenarios that take
advantage of this capability.

26.6.2. Specifying Available System Resources

In order for ctest to allocate resources to tests, it needs to be told what resources are available on
the system. The system resources are specified in a JSON file, which is passed to ctest in one of the
following ways (listed in order of precedence):

• Using the RESOURCE_SPEC_FILE keyword in a call to ctest_test() within a CDash script (see Section
26.10, “CDash Integration”).

• Setting the CTEST_RESOURCE_SPEC_FILE variable either in a CDash script or as a ctest -D command
line option when running a CDash script. This variable acts as a default value for the
RESOURCE_SPEC_FILE keyword in calls to ctest_test(), but it is only supported with CMake 3.18 or
later.

• Providing the --resource-spec-file command line option to ctest.

• Setting CTEST_RESOURCE_SPEC_FILE as a CMake variable (only supported with CMake 3.18 or later).
To ensure the user always has control, this variable should only be set using a cmake -D
command line option rather than hard-coding it directly in the project.

The format of this JSON file can be thought of as follows (a more formal description can be found in
the CMake documentation of the ctest command):
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{
  "version": { "major": 1, "minor": 0 },
  "local": [
    {
      "resource1": [ ... ],
      "resource2": [ ... ],
      ...
    }
  ]
}

The version object must exist at the top level and it must contain both a major and a minor element.
The first release of the resource allocation feature in CMake 3.16 requires major to be 1 and minor to
be 0. Future releases may support other version combinations.

The other top level JSON element must be named local and it must be an array with exactly one
element (future CMake releases may allow more). That array element is a JSON object that defines
each of the resource types provided by the system on which the tests will run. The name of each
resource type must be all lowercase and may contain numbers and underscores, but it must not
start with a number. Each resource type is specified as an array of items of the following format:

{ "id": "name", "slots": numericValue }

The id is the name used to identify this particular instance of the resource. This name must be
unique across all instances for this resource type and it must only contain lowercase letters,
numbers or underscores. The name is not required to start with a letter or underscore and it can
contain just a number if desired. The slots specifies the amount of the resource that this instance
provides and it must be given as an integer.

Example resource spec file

{
  "version": { "major": 1, "minor": 0 },
  "local": [
    {
      "mem_gb": [
        { "id": "pool_0", "slots": 64 }
      ],
      "gpus": [
        { "id": "0", "slots": 2 },
        { "id": "1", "slots": 2 }
      ],
      "workers": [
        { "id": "0", "slots": 8 },
        { "id": "1", "slots": 4 }
      ]
    }
  ]
}
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The above example demonstrates that values for the id only need to be unique within the same
resource type. Both gpus and workers have ids of 0 and 1, but that is okay because they are different
resource types.

Because units cannot be specified with the value given to slots, it may be advisable to include units
in the label for the resource type where the value’s meaning requires some sort of unit. In the
example above, the mem_gb resource type’s name makes it clear that the slots are to be interpreted as
gigabytes. In the case of gpus and workers, no units are needed, since it is already clear that the slots
value is a count of those resources. For resource type names that don’t require units, the
convention is that names should generally be in plural form.

When ctest tries to satisfy the resource requirements of a test from the available pool of resources,
it does not merge all the test’s resource groups together. Rather, it iterates over the resource groups
one by one and tries to satisfy each group individually. For each group, each name:value pair is
assessed. ctest will look up the system allocations for the resource type and try to find an item in
that resource type’s array that has enough slots unallocated to satisfy that resource requirement.
Importantly, ctest will not combine slots from multiple array elements to try to meet one name:value
pair’s resource requirements.

An example helps demonstrate the allocation logic. Consider the resource spec file given above and
a resource group defined as gpus:4. The system has a combined total of 4 slots of the gpus resource
type, but they are split across two separate items with ids 0 and 1. Because ctest is only allowed to
satisfy a name:value resource requirement from a single element of a resource type’s array, this
requirement cannot be satisfied and the test will fail to run. Conversely, if a test had a resource
group definition of 4,gpus:1, it requires 4 separate groups where each group needs one gpus slot.
This can be satisfied and two groups can even share one array item (e.g. two groups can share the
resource with id 0 and the other two groups can share resource id 1). A group defined as
gpus:1,gpus:1 could be satisfied three different ways. It could receive both slots from id 0, both slots
from id 1, or one slot from each.

26.6.3. Using Resources Allocated To A Test

The test receives information about the resources allocated to it through a number of environment
variables. The most basic of these is CTEST_RESOURCE_GROUP_COUNT, which will holds the total number of
resource groups the test specified. If this environment variable is not defined, it means that no
resource spec file was provided when ctest was invoked. It is up to the test to then decide what to
do in such cases. If the test cannot run without resource allocations being provided, the test should
either fail or it should indicate that it has been skipped (e.g. by a return code that matches the
SKIP_RETURN_CODE test property or by output that matches a SKIP_REGULAR_EXPRESSION.

For each resource group, there will be a set of environment variables with the pattern
CTEST_RESOURCE_GROUP_<num> which contains a list of resource types allocated for that group. In order
to see exactly which resources of a given resource type were allocated, another set of environment
variables of the form CTEST_RESOURCE_GROUP_<num>_<resourceType> must be consulted. The
<resourceType> will be the uppercased name of the resource type. The contents of these variables
will be a list containing one or more items of the form id:X,slots:Y, which can be read as "Y slots
from id X".
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To illustrate, one example in the previous section specified a set of resource groups as 4,gpus:1. This
might lead to the test receiving a set of environment variables like the following:

CTEST_RESOURCE_GROUP_COUNT=4
CTEST_RESOURCE_GROUP_0=gpus
CTEST_RESOURCE_GROUP_1=gpus
CTEST_RESOURCE_GROUP_2=gpus
CTEST_RESOURCE_GROUP_3=gpus
CTEST_RESOURCE_GROUP_0_GPUS=id:0,slots:1
CTEST_RESOURCE_GROUP_1_GPUS=id:0,slots:1
CTEST_RESOURCE_GROUP_2_GPUS=id:1,slots:1
CTEST_RESOURCE_GROUP_3_GPUS=id:1,slots:1

For another example, consider a test that has one resource group, where that group is defined as
gpus:2,gpus:2,workers:4. A possible set of environment variables it could receive would be:

CTEST_RESOURCE_GROUP_COUNT=1
CTEST_RESOURCE_GROUP_0=gpus,workers
CTEST_RESOURCE_GROUP_0_GPUS=id:0,slots:2;id:1,slots:2
CTEST_RESOURCE_GROUP_0_WORKERS=id:0,slots:4

Note how two list items are returned for CTEST_RESOURCE_GROUP_0_GPUS because the resource group
listed gpus:2 twice.

It is up to the test how it uses the information provided through the environment variables, but at
the very least it should always confirm whether CTEST_RESOURCE_GROUP_COUNT is defined.

26.7. Test Dependencies
Tests can be used to do more than simply verify a particular condition, they can also be used to
enforce them. For example, one test may need a server to connect to so that it can verify a client
implementation. Rather than relying on the developer to ensure such a server is available, another
test case can be created which ensures a server is running. The client test then needs to have some
kind of dependency on the server test to make sure they are run in the correct order.

The DEPENDS test property allows a form of this constraint to be expressed by holding a list of other
tests that must complete before that test can run. The above client/server example could loosely be
expressed as follows:

set_tests_properties(ClientTest1 ClientTest2
    PROPERTIES DEPENDS StartServer
)
set_tests_properties(StopServer
    PROPERTIES DEPENDS "ClientTest1;ClientTest2"
)

A weakness with the DEPENDS test property is that while it defines a test order, it does not consider
whether the pre-requisite tests pass or fail. In the above example, if the StartServer test case fails,
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the ClientTest1, ClientTest2 and StopServer tests will still run. These tests will then likely fail and the
test output will show all four tests as failed, where in reality only the StartServer test failed and the
others should have been skipped.

CMake 3.7 added support for test fixtures, a concept which allows dependencies between tests to be
expressed much more rigorously. A test can indicate it requires a particular fixture by listing that
fixture name in its FIXTURES_REQUIRED test property. Any other test with that same fixture name in its
FIXTURES_SETUP test property must complete successfully before the dependent test will be started. If
any of the setup tests for a fixture fail, all of the tests that require that fixture will be marked as
skipped. Similarly, a test can list a fixture in its FIXTURES_CLEANUP test property to indicate that it must
be run after any other test with that same fixture listed in its FIXTURES_SETUP or FIXTURES_REQUIRED
property. These cleanup tests do not require the setup or fixture-requiring tests to pass, since
cleanup may be needed even if the earlier tests fail.

All three fixture-related test properties accept a list of fixture names. These names are arbitrary
and do not have to relate to the test names, resources they use or any other property. The fixture
names should make clear to developers what they represent and so, while not required to, they
often do have the same value as those used for RESOURCE_LOCK properties.

Consider the earlier client/server example. This can be expressed rigorously using fixtures with the
following properties:

set_tests_properties(StartServer
    PROPERTIES FIXTURES_SETUP Server
)
set_tests_properties(ClientTest1 ClientTest2
    PROPERTIES FIXTURES_REQUIRED Server
)
set_tests_properties(StopServer
    PROPERTIES FIXTURES_CLEANUP Server
)

In the above, Server is the name of the fixture, ClientTest1 and ClientTest2 will only run if
StartServer passes and StopServer will run last regardless of the result of any of the other three tests.
If parallel execution is enabled, StartServer will run first, the two client tests will run
simultaneously and StopServer will only run after both client tests have been completed or skipped.

Another benefit of fixtures can be seen when the developer is running only a subset of tests.
Consider the scenario where the developer is working on ClientTest2 and is not interested in
running ClientTest1. When dependencies between tests are expressed using DEPENDS, the developer
is responsible for ensuring they also include required tests in the test set, which means they need to
understand all the relevant dependencies. This would lead to the ctest command line:

ctest -R "StartServer|ClientTest2|StopServer"

When fixtures are used, ctest automatically adds any setup or cleanup tests to the set of tests to be
executed in order to satisfy fixture requirements. This means the developer need only specify the
test they want to focus on and leave the dependencies to ctest:
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ctest -R ClientTest2

When using the --rerun-failed option, this same mechanism ensures that setup and cleanup tests
are automatically added to the test set to satisfy fixture dependencies of the previously failed tests.

A fixture may have zero or more setup tests and zero or more cleanup tests. Fixtures may define
setup tests with no cleanup tests and vice versa. While not particularly useful, a fixture can have no
setup or cleanup tests at all, in which case the fixture has no effect on the tests to be executed or
when the tests will run. Similarly, a fixture can have setup and/or cleanup tests associated with it
but no tests that require it. These situations can arise during development when tests are being
defined or temporarily disabled. For the case of a fixture having no tests that require it, a bug in
CMake 3.7 allowed that fixture’s cleanup tests to run before the setup tests, but that bug was fixed
in the 3.8.0 release.

A more involved example demonstrates how fixtures can be used to express more complex test
dependencies. Expanding the previous example, suppose one client test requires just a server,
whereas another requires both a server and a database to be available. This is succinctly expressed
by defining two fixtures: Server and Database. For the latter, it is acceptable to simply check whether
there is a database available and fail if not, so the Database fixture requires no cleanup test. The
Server and Database fixtures are not related, so they need no dependencies between them. These
constraints can be expressed like so:

# Setup/cleanup
set_tests_properties(StartServer
    PROPERTIES FIXTURES_SETUP Server
)
set_tests_properties(StopServer
    PROPERTIES FIXTURES_CLEANUP Server
)
set_tests_properties(EnsureDbAvailable
    PROPERTIES FIXTURES_SETUP Database
)

# Client tests
set_tests_properties(ClientNoDb
    PROPERTIES FIXTURES_REQUIRED Server
)
set_tests_properties(ClientWithDb
    PROPERTIES FIXTURES_REQUIRED "Server;Database"
)

While having ctest automatically add fixture dependencies into the test execution set is a useful
feature, there are also times when this can be undesirable. Continuing with the above example, the
developer may want to leave the server running and keep executing just one client test multiple
times. They may be making changes, recompiling the code and checking whether the client test
passes with each change. To support this level of control, CMake 3.9 introduced the -FS, -FC and -FA
options to ctest. Each requires a regular expression that will be matched against fixture names. The
-FS option disables adding fixture setup dependencies for those fixtures that match the regular
expression provided. -FC does the same for cleanup tests and -FA combines both, disabling both
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setup and cleanup tests that match. A common situation is to disable adding any setup/cleanup
dependencies at all, which can be done by giving a regular expression of a single period (.). The
following demonstrates various examples of the fixture control options and their effects:

Command line Tests in execution set

ctest -FS Server -R ClientNoDb ClientNoDb, StopServer

ctest -FC Server -R ClientNoDb ClientNoDb, StartServer

ctest -FA Server -R ClientNoDb ClientNoDb

ctest -FS . -R Client ClientNoDb, ClientWithDb, StopServer

ctest -FA . -R Client ClientNoDb, ClientWithDb

26.8. Cross-compiling And Emulators
When an executable target defined by the project is used as the command for add_test(), CMake
automatically substitutes the location of the built executable. For a cross-compiling scenario, this
won’t typically work, since the host cannot usually run binaries built for a different platform
directly.

To help with this, CMake provides a CROSSCOMPILING_EMULATOR target property which can be set to a
script or executable to be used to launch the target. CMake will prepend this to the target binary
when forming the command to run, so the real target binary becomes the first argument to the
emulator script or executable. This enables tests to be run even when cross-compiling. With CMake
3.15 or later, CROSSCOMPILING_EMULATOR can be a list to allow arguments to be included in the items
inserted before the target binary.

The CROSSCOMPILING_EMULATOR doesn’t have to be an actual emulator, it just has to be a command that
can be run on the host to launch the target executable. While a dedicated emulator for the target
platform is the obvious use case, one could also set it to a script that copies the executable to a
target machine and runs it remotely (e.g. over a SSH connection). Whichever method is used,
developers should be aware that the startup time for an emulator or for preparing to run the
binary could be non-trivial and may have an impact on the test timing measurements. This can, in
turn, mean that test timeout settings may need to be revised.

The default value for the CROSSCOMPILING_EMULATOR target property is taken from the
CMAKE_CROSSCOMPILING_EMULATOR variable, which is the usual way the emulator details would be
specified rather than setting each target’s property individually. The variable would typically be set
in the toolchain file, since it affects things like try_run() commands in a similar way to how it affects
tests and custom commands as described above. See the discussion in Section 23.5, “Compiler
Checks” for more on this aspect of the variable’s effects.

Even when not cross-compiling, CMake will still honor a non-empty CROSSCOMPILING_EMULATOR target
property and prepend it to the command line for tests and custom commands executing that target.
This can be quite useful, allowing the property to be temporarily set to a launch script to assist with
things like debugging or for data-gathering. It is not recommended to use this technique as a
permanent feature of a project’s build, but it may be useful in certain development situations.
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26.9. Build And Test Mode
ctest can not only execute a set of tests, it can drive an entire configure, build and test pipeline.
There are two main methods for doing this; a more basic, standalone way and a more powerful
approach closely associated with a dashboard reporting tool. The more basic approach is to invoke
the ctest tool with the --build-and-test command line option, which uses the following form:

ctest --build-and-test sourceDir buildDir
      --build-generator generator
      [options...]
      [--test-command testCommand [args...]]

Without any options, the above will run CMake with the specified sourceDir and binaryDir and use
the specified generator. All three of these must be specified. If the CMake run was successful, ctest
will then build the clean target and lastly it will build the default all target. To run tests as well after
the build step, the last option on the command line must be --test-command with its associated
testCommand and optionally some arguments. This can be another invocation of ctest to run all tests,
as demonstrated in the following example.

ctest --build-and-test sourceDir buildDir  \
      --build-generator Ninja              \
      --test-command ctest -j 4

The above carries out a full configure-clean-build-test pipeline. Various options are provided which
can be used to modify which parts of the pipeline are run and how they are run. For example,
--build-nocmake and --build-noclean disable the configure and clean steps respectively. The --build
-two-config option will invoke CMake twice, which handles certain special cases where a second
CMake pass is needed to fully configure a project. When using a generator like Visual Studio, it may
be necessary to specify extra generator details with --build-generator-platform and --build-generator
-toolset, which will be passed through as the -A and -T options respectively to cmake for the
configure step. Some generators like Xcode may require the project name to be given so it can find
the project file generated by the configure stage, which can be done with the --build-project option.
The target to build in the build step can be set using the --build-target option and the build tool can
be overridden by passing --build-makeprogram with the alternative tool.

As can be seen in the above, all of the options related to the --build-and-test mode begin with
--build. While most options have intuitive names, the common --build prefix can lead to some
unfortunate confusing anomalies. An option with the name --build-options exists which may
initially seem to be related to the build step, but is actually used to pass command line options to
the cmake command. It also has the additional constraint that it must be last on the command line,
unless --test-command is also given, in which case --build-options must precede --test-command.

The following example should clarify these constraints. It adds two cache variable definitions to the
cmake invocation and also runs the full test suite after the build step.
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ctest --build-and-test sourceDir buildDir                             \
      --build-generator Ninja                                         \
      --build-options -DCMAKE_BUILD_TYPE=Debug -DBUILD_SHARED_LIBS=ON \
      --test-command ctest -j 4

There are a few other --build-… options, but the above covers the most useful ones. The other
remaining option that should be mentioned is --test-timeout, which places a time limit (in seconds)
on how long the test command is allowed to run before it is forced to terminate.

It is situation-dependent whether controlling the whole pipeline using a single ctest command is
better or worse than invoking each of the tools needed for each stage explicitly. The last example
above could just as easily be done with the following equivalent sequence of commands on Unix:

mkdir -p buildDir
cd buildDir
cmake -G Ninja -DCMAKE_BUILD_TYPE=Debug -DBUILD_SHARED_LIBS=ON sourceDir
cmake --build . --target clean
cmake --build .
ctest -j 4

Invoking each tool individually allows them to be run with the full set of options, whereas the ctest
--build-and-test approach has only a very limited ability to control the build stage.

One situation where build and test mode is particularly convenient is where a project needs to
perform a complete configure-build-test cycle off to the side, separate from the main build. Since
the whole cycle can be controlled by a single ctest invocation, it can be used as the COMMAND part of a
call to add_test(), making the process of adding a basic CMake project to the main project’s test suite
relatively straightforward. CMake itself uses the ctest build and test mode extensively in its own
test suite in exactly this manner.

The following example shows how a separate build can be used to test the API provided by a library
built by the main project:

add_library(Decoder foo.c bar.c)

add_test(NAME Decoder.api
    COMMAND ${CMAKE_CTEST_COMMAND}
            --build-and-test  ${CMAKE_CURRENT_LIST_DIR}/test_api
                              ${CMAKE_CURRENT_BINARY_DIR}/test_api
            --build-generator ${CMAKE_GENERATOR}
            --build-options   -DDECODER_LIB=$<TARGET_FILE:Decoder>
            --test-command    ${CMAKE_CTEST_COMMAND}
)

The test_api source directory would contain its own CMakeLists.txt file whose sole purpose is to
configure a build that links against the Decoder library, the absolute path to which is set in the
DECODER_LIB variable (this is just one of a few ways to pass the library location to the test project).
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An interesting thing about this sort of test is that it can also be used to verify that a particular test
project does not build or to verify that configuring fails with a particular fatal error (e.g. a missing
symbol). Such expected fatal build errors cannot be tested in the main project, since it would cause
the main project’s build to fail. Separating the test build off to the side means it can fail without
affecting the main build and the test can verify the failure with an appropriate
FAIL_REGULAR_EXPRESSION or a non-zero return code.

Another scenario where such tests can be helpful is to test the output of a code generator created by
the main project. Test fixtures can be used to set up a pair of tests, one to generate the code and the
other to perform a test build with it. This is particularly helpful if the code generator creates files
that cmake would normally read, such as CMakeLists.txt files. For example:

add_executable(CodeGen generator.cpp)

add_test(NAME GenerateCode COMMAND CodeGen)
add_test(NAME BuildGeneratedCode
    COMMAND ${CMAKE_CTEST_COMMAND}
            --build-and-test  ${CMAKE_CURRENT_LIST_DIR}/test_gen
                              ${CMAKE_CURRENT_BINARY_DIR}/test_gen
            --build-generator ${CMAKE_GENERATOR}
            --test-command    ${CMAKE_CTEST_COMMAND}
)

set_tests_properties(GenerateCode
    PROPERTIES FIXTURES_SETUP Generator
)
set_tests_properties(BuildGeneratedCode
    PROPERTIES FIXTURES_REQUIRED Generator
)

Build and test mode could also be used to verify CMake utility scripts by including them in a small
test project and invoking its functionality as appropriate. In effect, this provides a fairly convenient
way to implement unit testing of CMake scripts that avoids having to put such tests into the
configure stage of the main project.

While build and test mode is certainly useful for cases like those mentioned above, it lacks the
flexibility of a fully scripted run where the full set of options are available for each individual
command. The next section introduces an alternative way of invoking ctest which offers more
powerful handling of the entire pipeline, including some useful additional reporting capabilities.

26.10. CDash Integration
CTest has a long history and close relationship with another product called CDash, which is also
developed by the same company behind CMake and CTest. CDash is a web-based dashboard which
collects results from a software build and test pipeline driven by ctest. It collects warnings and
errors from each stage of the pipeline and shows per-stage summaries with the ability to click
through to each individual warning or error. A history of past pipelines allows trends to be
observed over time and to compare runs.
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CMake itself has its own fairly extensive dashboard which tracks nightly builds, builds associated
with merge requests and so on. A few minutes exploring a sample dashboard will be helpful in
understanding the material covered in this section:

https://open.cdash.org/index.php?project=CMake

26.10.1. Key CDash Concepts

Three important concepts tie together how CTest and CDash execute pipelines and report results:
steps (sometimes also referred to as actions), models (also sometimes called modes) and groups
(previously called tracks with CMake 3.15 and earlier). Steps are the sequence of actions that a
pipeline performs. The main set of defined actions in the order they would normally be invoked is:

• Start

• Update

• Configure

• Build

• Test

• Coverage

• MemCheck

• Submit

Not all actions have to be executed, some may not be supported or do not need to be run. Loosely
speaking, each row in the CDash dashboard corresponds to a single pipeline and will typically show
a summary of each action taken (a commit hash, a total of warnings, errors, failures, etc.).

Each pipeline must be associated with a model, which is used to define certain behaviors, such as
whether or not to continue with later steps after a particular step fails. The model also provides a
default set of actions when no specific action is requested. The supported models are:

Nightly

Intended to be invoked once per day, usually by an automated job during a time when the
executing machine is less busy. The default set of actions includes all the steps listed above
except MemCheck. If the Update step fails, the rest of the steps will still be executed.

Continuous

Very similar to Nightly except that it is intended to be run multiple times a day as needed,
usually in response to a change being committed. It defines the same set of default actions as
Nightly, but if the Update step fails, the later steps will not be executed.

Experimental

As the name suggests, this model is intended for ad hoc experiments executed by developers as
needed. Its default set of actions includes all steps except Update and MemCheck. If a model
other than one of the three defined models is specified or if no model is specified at all, it will be
treated as Experimental.
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The group controls which group the pipeline results will be shown under in the dashboard results.
Group names can be anything the project or developer wishes to use, but if no group is specified, it
will be set to the same as the model. This has led to a common misunderstanding that the model
controls the grouping in the dashboard, but it is the group that does this. The Coverage and
MemCheck actions are a special case, they effectively ignore the group and their dashboard results
are shown in their own dedicated groups (Coverage and Dynamic Analysis respectively). With
CMake 3.22 or later, in addition to populating the dedicated Dynamic Analysis group, the MemCheck
action will also submit test results in the same way as the Test action, for which the nominated
group will be used.

26.10.2. Executing Pipelines And Actions

For a project with the necessary configuration files in place (covered in the next section), entire
pipelines or individual steps can be invoked using the following form of the ctest command:

ctest [-M Model] [-T Action] [--group Group] [otherOptions...]

If using CMake 3.16 or earlier, --track Track must be used rather than --group Group.

At least one or both of the Model and Action must be specified. As a convenience, the -M and -T
options can be combined into a single -D option like so:

ctest -D Model[Action] [--group Group] [otherOptions...]

Arguments to -D can omit the action or append it to the Model. Examples of valid arguments include
Continuous, NightlyConfigure, ExperimentalBuild and so on. The -T and -D options can be specified
multiple times to list multiple steps in the one ctest invocation if desired.



Note that -D is also used to define ctest variables and the ctest command will treat
any Model or ModelAction it doesn’t recognize as setting a variable instead. It is
advisable to use the -M and -T options rather than -D to minimize opportunities for
a mistyped command line option to be misinterpreted.

A nightly run using the default set of steps and reporting its results under the default group Nightly
is trivially invoked as:

ctest -M Nightly

For the same thing but with results reported under a group called Nightly Master:

ctest -M Nightly --group "Nightly Master"

Consider a custom Experimental pipeline consisting of just Configure, Build and Test steps with
results grouped under Simple Tests. This requires the set of steps to be explicitly specified, since it
differs from the default set of actions defined for an Experimental model (no Coverage step is being
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executed). This can be done as either a sequence of ctest invocations with one step per invocation,
or they could all be listed together using multiple -T options on the one command line. Both forms
are shown for comparison:

Separate commands

ctest -T Start -M Experimental --group "Simple Tests"
ctest -T Configure
ctest -T Build
ctest -T Test
ctest -T Submit

One command

ctest -M Experimental --group "Simple Tests" \
      -T Start -T Configure -T Build -T Test -T Submit

The first step should be a Start action, which is used to initialize the pipeline details and to record
the model and group names that later steps will use. These details do not need to be repeated for
any of the later steps if splitting each action out to its own separate ctest invocation. The last step
would be a Submit action, assuming the goal is to submit the final set of results to a dashboard.

All output from the above is collected under a Testing subdirectory below the directory in which
ctest is invoked. The Start action writes out a file named TAG which contains at least two lines, the
first being a date-time for the start of the run in the form YYYYMMDD-hhmm and the second being the
group name. CMake 3.12 adds a third line containing the model name.

As each step after the Start action is executed, it will create its own output file at Testing/YYYYMMDD-
hhmm/<Action>.xml and a log file at Testing/Temporary/Last<Action>_YYYYMMDD-hhmm.log. In the case of the
MemCheck step, the <Action> part will be DynamicAnalysis rather than MemCheck in these file names
(with CMake 3.22 or later, a second Testing/YYYYMMDD-hhmm/DynamicAnalysis-Test.xml file will also be
created). The Submit action collects the XML output files and some of the log files and submits them
to the nominated dashboard.

To attach a build note to the whole pipeline, use the -A or --add-notes option with the Submit step to
specify the file names to upload, separated by semi-colons if multiple files are being added. This can
be a useful way to record extra details about that particular pipeline, such as information from a
continuous integration system that initiated the run.

ctest -T Submit --add-note JobNote.txt

An --extra-submit option is also supported, but it is intended more for internal use by ctest. It is not
a general file upload mechanism, but is often mistakenly assumed to serve that purpose. It should
not be used by developers or projects directly.

While the above functionality is intended primarily for integration with CDash, it can also be used
for other scenarios too. For example, the Jenkins CI system has a plugin that allows it to read the
Test action’s Test.xml output file and record test results in a similar way to CDash. Instead of
running ctest in the ordinary way, it can be invoked as a dashboard run with just the Test action.
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The Jenkins plugin then only needs to be told where to find the Test.xml file and it can read the test
results. When used this way, even the Start action can be omitted. ctest will silently perform the
equivalent of a Start action with an Experimental model if one of the other steps is executed
without any prior Start action. Projects may want to clear any previous contents of the Testing
directory before doing so to ensure only the results of the current run are picked up by Jenkins.

When passing the XML output file of an action to a tool other than CDash, it may be necessary to
instruct ctest to not compress the output it captures. By default, the action’s output is compressed
and written to the XML file in an ASCII-encoded form, but this can be be prevented by passing the
--no-compress-output option to ctest. Only use this option if it is necessary, since it will result in
larger output files.

Another situation where dashboard steps can be useful without CDash is to take advantage of the
support for code coverage or memory checking (Valgrind, Purify, various sanitizers, etc.). These
dashboard actions can make invoking the relevant tool and collecting results easier. See the next
section for details on how to setup and use these tools.

26.10.3. CTest Configuration

Preparing a project for CDash integration is mostly handled by a CTest module provided by CMake.
It should be included soon after the project() command in the top level CMakeLists.txt file. This is
important because the module writes various files into the current build directory at the point it is
included, and developers typically expect to be able to run ctest from the top level build directory.

cmake_minimum_required(VERSION 3.0)
project(CDashExample)

# ... set any variables to customize CTest behavior

include(CTest)

# ... Define targets and tests as usual

The CTest module defines a BUILD_TESTING cache variable which defaults to true. It is used to decide
whether the module calls enable_testing() or not, so the project does not have to make its own call
to enable_testing() as well. This cache variable can also be used by the project to perform certain
processing only if testing is enabled. If the project has many tests that take a long time to build, this
can be a useful way to avoid adding them to the build when they are not needed.

cmake_minimum_required(VERSION 3.0)
project(CDashExample)

include(CTest)

# ... define regular targets

if(BUILD_TESTING)
    # ... define test targets and add tests
endif()
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The CTest module defines build targets for each Model and for each ModelAction combination.
These targets execute ctest with the -D option set to the target name and are intended as a
convenient way to execute the whole pipeline or just one dashboard action from within an IDE
application. The targets don’t offer any real advantage over invoking ctest directly if working from
the command line.

The more important task performed by the CTest module is to write out a configuration file called
DartConfiguration.tcl in the build directory. The name of this file is historical, with Dart being the
original name of the CDash project. This file records basic details like the source and build directory
locations, information about the machine on which the build is being performed, the toolchain
used, the location of various tools and other defaults. It will also contain the details of the CDash
server, but in order for it to do so, the project needs to provide a CTestConfig.cmake file at the top of
the source tree with the relevant contents. A suitable CTestConfig.cmake file can be obtained from
CDash itself (requires administrator privileges), but it is usually not difficult to create one manually.
A minimal example which works for all CMake versions would look something like this:

# Name used by CDash to refer to the project
set(CTEST_PROJECT_NAME "MyProject")

# Time to use for the start of each day. Used by CDash to group results by day,
# usually set to midnight in the local timezone of the CDash server.
set(CTEST_NIGHTLY_START_TIME "01:00:00 UTC")

# Details of the CDash server to submit to
set(CTEST_DROP_METHOD     "https")
set(CTEST_DROP_SITE       "my.cdash.org")
set(CTEST_DROP_LOCATION   "/submit.php?project=${CTEST_PROJECT_NAME}")
set(CTEST_DROP_SITE_CDASH YES)

# Optional, but recommended so that command lines can be seen in the CDash logs
set(CTEST_USE_LAUNCHERS YES)

From CMake 3.14, the various CTEST_DROP_… options can be replaced by a single CTEST_SUBMIT_URL
option. This is much simpler and more readable, so if the minimum CMake version of the project is
at least 3.14, this should be preferred. The equivalent for the above example would be:

set(CTEST_SUBMIT_URL "https://my.cdash.org/submit.php?project=${CTEST_PROJECT_NAME}")

The DartConfiguration.tcl file written out by the CTest module contains options for dashboard
actions. Most are set to appropriate values by default, but the Coverage and MemCheck steps have
options that may be of interest. These are controlled by CMake variables which the developer can
manipulate in the CMake cache or in the CMakeLists.txt file before the CTest module is included.

The Coverage step is assumed to be invoking gcov and the CTest module will search for a command
by that name. The COVERAGE_COMMAND cache variable holds the result of that search, but it can be
modified by the developer if needed. A second cache variable COVERAGE_EXTRA_FLAGS is used to hold
the options that should immediately follow the COVERAGE_COMMAND, so the developer has the ability to
control both the command used and the options passed to it.
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The MemCheck step is more interesting. A number of different memory checkers are supported,
including Valgrind, Purify, BoundsChecker, Dr Memory (with CMake 3.17 or later), Cuda Sanitizer
(with CMake 3.19 or later) and various other sanitizers. For the first five, they can be selected by
setting MEMORYCHECK_COMMAND to the location of the relevant executable. ctest will then identify the
checker from the executable name. For Valgrind, the VALGRIND_COMMAND_OPTIONS variable can also be
set to override the options given to valgrind itself. Dr Memory has a similar capability with the
DRMEMORY_COMMAND_OPTIONS variable. To use one of the sanitizers, set MEMORYCHECK_TYPE to one of the
following strings (MEMORYCHECK_COMMAND will then be ignored):

• AddressSanitizer

• LeakSanitizer

• MemorySanitizer

• ThreadSanitizer

• UndefinedBehaviorSanitizer

ctest will then launch test executables as normal but with the relevant environment variables set
to enable the requested sanitizer. Note that sanitizers require building with the relevant compiler
and linker flags (typically -fsanitize=XXX and perhaps -fno-omit-frame-pointer). For further details
on the relevant flags and what the various sanitizers do, consult the Clang or GCC documentation.

The above details are enough to be able to perform various dashboard actions and submit results to
a CDash server, but there is a chicken-and-egg problem. The Update and Configure steps need to
have already been performed to obtain the DartConfiguration.tcl file. Therefore, details of those two
steps cannot be captured, or in the case of the Configure step, the output from the first cmake run are
lost and one can only get the output from re-running CMake in an already-configured build
directory. Nevertheless, all the other steps will have their output captured and that may be enough
in some situations.

For example, when using a continuous integration system like Gitlab CI or Jenkins, the initial clone
or update of the source tree can be handled by the CI system itself. An initial cmake run can be
performed and then the rest of the steps can be run as dashboard actions. The final results can be
submitted to a CDash server, read directly by the CI system or possibly both.

To capture a complete pipeline, including the initial clone or update of a source tree and first
configure step, one has to write a custom ctest script to define the required setup details and call
the relevant ctest functions. This can be an involved process and isn’t typically necessary if already
using another CI system. If the clone/update step doesn’t need to be captured, then the complexity
of the custom script is reduced. When used this way, ctest is invoked with the -S option and the
name of the script to execute.

The following demonstrates a fairly straightforward example:

ctest -S MyCustomCTestJob.cmake
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MyCustomCTestJob.cmake

# Re-use CDash server details we already have
include(${CTEST_SCRIPT_DIRECTORY}/CTestConfig.cmake)

# Basic information every run should set, values here are just examples
site_name(CTEST_SITE)
set(CTEST_BUILD_NAME         ${CMAKE_HOST_SYSTEM_NAME})
set(CTEST_SOURCE_DIRECTORY   "${CTEST_SCRIPT_DIRECTORY}")
set(CTEST_BINARY_DIRECTORY   "${CTEST_SCRIPT_DIRECTORY}/build")
set(CTEST_CMAKE_GENERATOR    Ninja)
set(CTEST_CONFIGURATION_TYPE RelWithDebInfo)

# Dashboard actions to execute, always clearing the build directory first
ctest_empty_binary_directory(${CTEST_BINARY_DIRECTORY})
ctest_start(Experimental)
ctest_configure()
ctest_build()
ctest_test()
ctest_submit()

The following more interesting example shows how custom scripts allow more flexible pipeline
behavior to be defined:

include(${CTEST_SCRIPT_DIRECTORY}/CTestConfig.cmake)

site_name(CTEST_SITE)
set(CTEST_BUILD_NAME         "${CMAKE_HOST_SYSTEM_NAME}-ASan")
set(CTEST_SOURCE_DIRECTORY   "${CTEST_SCRIPT_DIRECTORY}")
set(CTEST_BINARY_DIRECTORY   "${CTEST_SCRIPT_DIRECTORY}/build")
set(CTEST_CMAKE_GENERATOR    Ninja)
set(CTEST_CONFIGURATION_TYPE RelWithDebInfo)
set(CTEST_MEMORYCHECK_TYPE   AddressSanitizer)
set(configureOpts
    "-DCMAKE_CXX_FLAGS_INIT=-fsanitize=address -fno-omit-frame-pointer"
    "-DCMAKE_EXE_LINKER_FLAGS_INIT=-fsanitize=address -fno-omit-frame-pointer"
)
ctest_empty_binary_directory(${CTEST_BINARY_DIRECTORY})
ctest_start(Experimental GROUP Sanitizers)
ctest_configure(OPTIONS "${configureOpts}")
ctest_submit(PARTS Start Configure)
ctest_build()
ctest_submit(PARTS Build)
ctest_memcheck()
ctest_submit(PARTS MemCheck)
ctest_upload(FILES
    ${CTEST_BINARY_DIRECTORY}/mytest.log
    ${CTEST_BINARY_DIRECTORY}/anotherFile.txt
)
ctest_submit(PARTS Upload Submit)
if(NOT CMAKE_VERSION VERSION_LESS "3.14")
    ctest_submit(PARTS Done)
endif()
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In this more production-quality example, rather than waiting to the very end of the run before
submitting results to the dashboard, results are submitted progressively after each step (useful if
some steps take a long time). The executables are built with address sanitizer support and the
address sanitizer check is run instead of regular testing. Some extra files are also uploaded at the
end.

The Done part was only added in CMake 3.14 and is used to tell CDash that the job is complete. It is
used by recent versions of CDash to enable them to report a more reliable total duration for the job.
Earlier CDash versions will simply ignore it. When not submitting by parts, the Done part is
handled automatically as part of the Submit action or a call to ctest_submit() with no parts specified.

Each of the various ctest_… commands is detailed in the CMake documentation, along with CTest
and CMake variables that can be used to customize each step or affect the processing in various
ways. The above should be a good base script that can be used to experiment with the different
parameters and variables.

Creating a script that also handles cloning/updating the project adds more complexity. Projects
often have their own special ways of doing this and they typically need to decide how things like
Nightly and Continuous builds should be scheduled. Supporting things like automated builds for
merge requests will depend heavily on the capabilities of the repository hosting the project. For
those interested in exploring this path, a recommended way to get started is to find a project using
a similar repository hosting arrangement and use it as a guide. Some projects include the custom
script in their repository for ease of access (many projects from Kitware do this and the scripts have
been documented reasonably well).

26.10.4. Test Measurements And Results

The above example briefly showed how file uploads can be incorporated into a custom CTest script.
The ctest_upload() command provides a basic mechanism for recording files to upload with the
build results. The upload is executed as part of a subsequent call to ctest_submit(). Sometimes,
however, file uploads should be associated with a particular test rather than the whole scripted
run. For this, CMake provides the ATTACHED_FILES and ATTACHED_FILES_ON_FAIL test properties. Both
hold a list of files to be uploaded and associated with that particular test, the only difference is that
the latter contains files that are only uploaded if the test fails. This is a very useful way to record
additional information about the failure to allow further investigation.

add_executable(CodeGen ...)
add_test(NAME GenerateFile COMMAND CodeGen)

set_tests_properties(GenerateFile PROPERTIES
    ATTACHED_FILES_ON_FAIL
        ${CMAKE_CURRENT_BINARY_DIR}/generated.c
        ${CMAKE_CURRENT_BINARY_DIR}/generated.h
)

Tests can also record a single measurement value which will be recorded and tracked in CDash. A
measurement generally has the form key=value, although the =value part can be omitted to use an
assumed default value of 1. The measurement is recorded as a test property like so:
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set_tests_properties(PerfRun PROPERTIES
    MEASUREMENT mySpeed=${someValue}
)

Because the measurement value has to be defined before the test is even run, this has limited
usefulness. Much more useful is a feature which has long been supported, but only been
documented since CMake 3.21, where measurements can be embedded in the test output in a form
similar to HTML tags. ctest scans the test output for these measurements, extracts the relevant data
and uploads it to CDash as part of the test results. These measurements are then displayed in a
result table near the top of the test details page. The simplest type of measurement is defined by the
following form:

<DartMeasurement name="key" type="someType">value</DartMeasurement>

The name attribute will be used as the label for the measurement in the results table and the type
attribute will typically be something like text/string, text/link (for URLs) or numeric/double. The
value is whatever text or numerical content makes sense for the measurement. For numerical
values, CDash provides a facility to plot the history of each measurement across recent test runs,
which is very useful for spotting changes in behavior over time.

Another form can be used to embed a file rather than a specific value:

<DartMeasurementFile name="key" type="someType">filePath</DartMeasurementFile>

This second form is most useful for uploading images, where the type attribute would be something
like image/png or image/jpeg. The filePath should be the absolute path to the file to be uploaded.

CDash recognizes a few special measurement names when it comes to images. These can be used to
help compare expected and actual images, with CDash even providing a useful interactive UI
element for overlapped comparisons. The recognized name attributes and their meanings include:

TestImage

This is interpreted as the image generated by the test. It can be thought of as the test output and
will be shown both on its own and also as part of the interactive comparison image.

ValidImage

This is equivalent to the expected image for the test. It should generally be of the same
dimensions as the TestImage, but is not necessarily required to be of the same image format. It
will be included in the interactive image only. BaselineImage can also be used as the name and it
means the same thing as ValidImage.

DifferenceImage2

Various tools can be employed to generate an image that represents the difference between two
other images. Where the test provides such an image file, it can use this name to include it in the
test output measurements uploaded to CDash. It will be incorporated into the interactive
comparison image.
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Names other than the above and types other than images can be uploaded, but bugs in CMake 3.20
and earlier may make that unreliable. For best results, use 3.21 or later if possible. CMake 3.21 also
provides better handling for non-image files when the type is set to file. The file will then be
uploaded as an attachment, just like the ATTACHED_FILES test property would. With any other type, it
will be treated as a named measurement instead and may not display as appropriately in CDash.

CMake 3.21 also added the ability for the test output to override the test’s details field in CDash. The
default contents normally state whether the test completed and what the test result was, but the
test can use this facility to provide more specific information. It should still be relatively short
though, ideally no more than one line.

<CTestDetails>Replacement test details go here</CTestDetails>

Starting with CMake 3.22, a test can also dynamically add labels at runtime by including the
relevant tags in its output like so:

<CTestLabel>Some dynamic label</CTestLabel>
<CTestLabel>Another label</CTestLabel>

These labels are uploaded to CDash along with the test results, just like regular labels assigned to
the test at configure time with the LABELS test property (see Section 26.4.3, “Labels”). These dynamic
labels are also included in the results summary at the end of the ctest run.

Because dynamic labels are only assigned when the test is executed, they cannot be used to include
or exclude tests to be run. If the user specifies ctest options like -L or -LE to control which tests to
execute, only the statically assigned labels set through the LABELS test property are considered. If a
test adds a label dynamically to its output and that same label is set statically on another test, it may
be a source of confusion for users if they then try to filter the test set based on that label. Tests they
thought they had filtered out might still show up in the output, or those they thought were included
might be missing. Consider using non-overlapping sets of labels for static and dynamic cases to
avoid setting up this situation.

26.11. Output Control
While CDash can be very effective for collecting and tracking test results, many projects use other
tools for such purposes. To support these workflows, CMake 3.21 added the ability to provide test
results in the widely supported JUnit XML format. JUnit XML files are often able to be imported into
CI tools and various test reporting software.

For non-dashboard runs, a JUnit result file can be generated by adding an option to the ctest
command line, specifying the file name to write the results to:

ctest --output-junit /path/to/resultFile.xml ...

For dashboard runs, an additional argument to the ctest_test() command achieves a similar thing:
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ctest_test(OUTPUT_JUNIT /path/to/resultFile.xml)

Features like named measurements and file attachments are not supported by the JUnit output. It
therefore isn’t a complete replacement for what can be accomplished with CDash, but the reduced
feature set may still be good enough for many projects.

Tests can sometimes produce a lot of output. A dashboard run will truncate the reported output
beyond a configurable limit, both in the default CDash results and in JUnit XML file output (where
enabled). By default, the output from any test that passes will be truncated at 1024 bytes. For failing
tests, the output will be truncated at 307,200 bytes (i.e. 300kB). These limits can be overridden by
setting variables in the dashboard script. CTEST_CUSTOM_MAXIMUM_PASSED_TEST_OUTPUT_SIZE and
CTEST_CUSTOM_MAXIMUM_FAILED_TEST_OUTPUT_SIZE can be used to specify the number of bytes to truncate
at instead of the default values. These variables have long been supported by CMake, but have only
been officially documented since CMake 3.4.

With CMake 3.24 or later, the type of output truncation can also be controlled using the
CTEST_CUSTOM_TEST_OUTPUT_TRUNCATION variable. The default setting is usually the most appropriate, but
in some circumstances it can be useful to truncate differently. Valid values are:

tail

Retain the start of the output, cutting off the end. This is the default behavior.

head

Retain the end of the output, skipping the start. This can be useful if the end of test output is
more likely to hold interesting information. Beware that quite often the first error is the most
important, with later errors often being spurious or a consequence of earlier errors. Using head
truncation can increase the chance of missing the first error and leading the user to focus on a
later error that might not be the actual cause of the problem.

middle

The start and end of the output are retained, with the middle of the output omitted. This is less
likely to be useful, but may be appropriate if important details are typically logged first and
errors are likely to be captured at the end.

# Save more output, keeping the start and end
set(CTEST_CUSTOM_MAXIMUM_PASSED_TEST_OUTPUT_SIZE 10000)
set(CTEST_CUSTOM_TEST_OUTPUT_TRUNCATION middle)

ctest_test()

Non-dashboard runs that use the --output-junit option can similarly customize the output with the
equivalent ctest command line options --test-output-size-passed, --test-output-size-failed and
--test-output-truncation.

ctest --output-junit some-file.xml     \
      --test-output-size-passed 10000  \
      --test-output-truncation middle
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With CMake 3.21 or later, individual tests can override the output limits by logging the special
string CTEST_FULL_OUTPUT somewhere in their output. The entire output from that test will then be
included in the test results, regardless of any output limit. Use this feature sparingly, as it has the
potential to significantly increase the amount of data reported and uploaded.

26.12. GoogleTest
CMake/ctest provide support for building, executing and determining pass/fail status of tests. The
project is responsible for providing the test code itself and this is where testing frameworks like
GoogleTest can be useful. Such frameworks complement the features provided by CMake and ctest
to facilitate the writing of clear, well-structured test cases that integrate well into the way CMake
and ctest work.

CMake has supported GoogleTest via a FindGTest module for quite a long time. The module searches
for a pre-built GoogleTest location and creates variables that projects can use to incorporate
GoogleTest into their build. From CMake 3.5, imported targets GTest::GTest and GTest::Main are also
provided, which are strongly preferred over the use of variables. Using imported targets results in
much more robust handling of usage requirements and properties. Unfortunately, these target
names do not match those defined by the upstream GoogleTest project, which defines slightly
different imported target names GTest::gtest and GTest::gtest_main. CMake 3.20 therefore added
these new imported target names to the FindGTest module and deprecated the old names. It is
therefore recommended that projects use at least CMake 3.20 as their minimum version and use
these newer imported targets. The following is a simple example of how to use the module with
CMake 3.20 or later:

add_executable(MyGTestCases ...)

find_package(GTest REQUIRED)
target_link_libraries(MyGTestCases PRIVATE GTest::gtest)

add_test(NAME MyGTestCases COMMAND MyGTestCases)

The imported target takes care of ensuring the relevant header search path is used when building
MyGTestCases and that things like the appropriate threading library is linked in if needed. The above
works on all platforms, hiding a fair amount of complexity associated with different names,
runtimes, flags, etc. that are used on the different platforms and compilers. If using the variables
defined by the module instead of the imported targets, these things mostly have to be handled
manually, which is a fairly fragile task.

An even more robust approach is to incorporate GoogleTest’s sources directly into the build rather
than relying on having pre-built binaries available. This ensures that GoogleTest is built with
exactly the same compiler and linker settings as the rest of the project, which avoids many of the
subtle issues that can arise when using pre-built GoogleTest binaries. Projects can do this in a
number of ways, each with their advantages and drawbacks. Embedding a copy of the sources and
headers in the project is the simplest, but it disconnects the project from improvements that may be
made to GoogleTest in the future. The GoogleTest git repository can be added to the project as a git
submodule, but that too comes with its own robustness issues. A third option of downloading the
GoogleTest sources as part of the configure step is discussed in detail in Chapter 30, FetchContent
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and doesn’t have the drawbacks of the other methods (it is also made very easy with features added
in CMake 3.11 onward).

A test executable that uses GoogleTest typically defines more than one test case. The usual pattern
of running the executable once and assuming it is a single test case isn’t really appropriate. Ideally,
each GoogleTest test case should be visible to ctest so that each one can be run and assessed
individually. The FindGTest module provides a gtest_add_test() function which scans the source
code looking for uses of the relevant GoogleTest macros and extracts out each individual test case
as its own ctest test. The form of this command has traditionally been the following:

gtest_add_tests(executable "extraArgs" sourceFiles..)

From CMake 3.1, the list of sourceFiles to scan can be replaced by the keyword AUTO. The sources are
then obtained by assuming executable is a CMake target and using its SOURCES target property.

In CMake 3.9, it was recognized that projects may want to use the gtest_add_tests() function with
GoogleTest built by the project itself. This meant the project didn’t need a Find module, so the
function was moved out to a new GoogleTest module and FindGTest then included it to maintain
backward compatibility. An improved form of the function with keyword arguments was also
added as part of that work:

gtest_add_tests(
    TARGET target
    [SOURCES src1...]
    [EXTRA_ARGS arg1...]
    [WORKING_DIRECTORY dir]
    [TEST_PREFIX prefix]
    [TEST_SUFFIX suffix]
    [SKIP_DEPENDENCY]
    [TEST_LIST outVar]
)

The old form is still supported, but projects should prefer to use the new form instead where
possible, since it is more flexible and more robust. For example, the same target can be given to
multiple calls to gtest_add_tests() with different arguments, with each call having a different
TEST_PREFIX and/or TEST_SUFFIX to differentiate the sets of tests that get generated. The new form also
provides the set of tests found when the TEST_LIST option is given. With the test names available, the
project is able to modify the tests’ properties as needed. The following example demonstrates these
various capabilities:

# Assume GoogleTest is already part of the build, so we don't need
# FindGTest and can reference the GTest::gtest target directly
include(GoogleTest)

add_executable(TestDriver ...)
target_link_libraries(TestDriver PRIVATE GTest::gtest)

# Run the TestDriver twice with two different arguments
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gtest_add_tests(
    TARGET      TestDriver
    EXTRA_ARGS  --algo=fast
    TEST_SUFFIX .Fast
    TEST_LIST   fastTests
)
gtest_add_tests(
    TARGET      TestDriver
    EXTRA_ARGS  --algo=accurate
    TEST_SUFFIX .Accurate
    TEST_LIST   accurateTests
)
set_tests_properties(${fastTests}     PROPERTIES TIMEOUT 3)
set_tests_properties(${accurateTests} PROPERTIES TIMEOUT 20)

set(betaTests ${fastTests} ${accurateTests})
list(FILTER betaTests INCLUDE REGEX Beta)
set_tests_properties(${betaTests} PROPERTIES LABELS Beta)

The above example creates two sets of tests and applies different timeout limits to them. The test
names will have different suffixes in each group. Without the TEST_SUFFIX options, the second call to
gtest_add_tests() would fail because it would try to create tests with the same name as the first call.
The example also sets a Beta label to some tests regardless of which test set they belong to.

gtest_add_tests() works well for simple cases, but it doesn’t handle parameterized tests or tests
defined through custom macros. It also forces CMake to re-run on the next build to rescan the
source files whenever the test sources change, which can be frustrating if the CMake step is slow.
The SKIP_DEPENDENCY option prevents that behavior and relies on the developer manually re-running
CMake to update the set of tests. This is a temporary workaround for when working on a test, not
something that should be left in the project permanently.

CMake 3.10 added a new function to address the shortcomings of gtest_add_tests(). It queries the
executable for its list of tests during the build or when running ctest rather than scanning the
source code during the configure stage. CMake does not need to be re-run whenever the test source
is changed, parameterized tests are supported, and there is no restriction on the formatting or the
way tests are defined. A trade-off is the list of tests is not available during the CMake run.

gtest_discover_tests(target
    [EXTRA_ARGS arg1...]
    [WORKING_DIRECTORY dir]
    [TEST_PREFIX prefix]
    [TEST_SUFFIX suffix]
    [NO_PRETTY_TYPES]
    [NO_PRETTY_VALUES]
    [PROPERTIES name1 value1...]
    [TEST_LIST var]
    [TEST_FILTER filter]         # CMake 3.22 or later
    [DISCOVERY_TIMEOUT seconds]  # See notes below
    [DISCOVERY_MODE]             # CMake 3.18 or later
    [XML_OUTPUT_DIR]             # CMake 3.18 or later
)
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With CMake 3.22 or later, the set of tests reported by the executable can be constrained using the
TEST_FILTER option. When the executable is asked to list its tests with --gtest_list_tests, the
specified filter is also passed as --gtest_filter=filter. This allows a subset of the available tests to
be selected.

By default, when generating the names of parameterized tests, the function will attempt to use type
or value names rather than a numerical index. This will generally result in much more readable
and useful names. For those cases where this is undesirable, the NO_PRETTY_TYPES and
NO_PRETTY_VALUES options can be used to suppress the substitution and just use the index values. Note
that if TEST_FILTER is used, the filter is matched against the original test names with indexes as
reported by --gtest_list_tests, not the pretty test names used by ctest.

The DISCOVERY_TIMEOUT option refers to the time taken to run the executable to obtain the list of tests.
The default of 5 seconds should be sufficient for all but those executables with a huge number of
tests or some other behavior that causes it to take a long time to return the test list. This option was
originally added in CMake 3.10.1 with the keyword name TIMEOUT, but it was found to cause name
clashes with the TIMEOUT test property in a way that led to unexpected but legal behavior. The
keyword was changed to DISCOVERY_TIMEOUT in CMake 3.10.3 to prevent those scenarios.

Since the list of tests is not returned to the caller, it is not possible to call set_tests_properties() or
set_property() to modify properties of the discovered tests. Instead, gtest_discover_tests() allows
properties and their values to be specified as part of the call, which are then written into the ctest
input file to be applied when ctest is run. While not providing all the flexibility of being able to
iterate through the set of discovered tests in CMake and processing them individually, the ability to
set properties of the discovered tests as a whole is usually all that is needed and is not typically a
significant restriction. The main exception to this is that it is not possible to set test properties that
have names which correspond to keywords in the gtest_discover_tests() command, or where
properties require values that are lists. A custom ctest script must be used to handle such cases, an
example of which is given below.

The TEST_LIST option works differently for gtest_discover_tests() than for gtest_add_tests(). In this
case, the variable name given with this option is used in the ctest input file written out by CMake
rather than being available to CMake directly. The TEST_LIST option would only be needed if the
project adds some of its own custom logic to the generated ctest input file and wants to refer to the
list of generated tests. Even then, only if the same target is being used in multiple calls to
gtest_discover_tests() would this be necessary. A default variable name of <target>_TESTS is used if
not set by a TEST_LIST option.

Custom code can be added by appending file names to the list of files held in the TEST_INCLUDE_FILES
directory property. Projects must not overwrite this directory property, they should only append to
it since gtest_discover_tests() uses the property to build up the set of files to be read by ctest.

The following example shows how to use a custom file to manipulate properties on discovered tests
and implement the same equivalent logic as the earlier example for gtest_add_tests(), including a
workaround for the TIMEOUT name clash corner case:
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gtest_discover_tests(
    TestDriver
    EXTRA_ARGS  --algo=fast
    TEST_SUFFIX .Fast
    TEST_LIST   fastTests
)
gtest_discover_tests(
    TestDriver
    EXTRA_ARGS  --algo=accurate
    TEST_SUFFIX .Accurate
    TEST_LIST   accurateTests
)

set_property(DIRECTORY APPEND PROPERTY
    TEST_INCLUDE_FILES ${CMAKE_CURRENT_LIST_DIR}/customTestManip.cmake
)

customTestManip.cmake

# Set here to work around the TIMEOUT keyword clash for the
# gtest_discover_tests() call, works for all CMake versions
set_tests_properties(${fastTests}     PROPERTIES TIMEOUT 3)
set_tests_properties(${accurateTests} PROPERTIES TIMEOUT 20)

set(betaTests ${fastTests} ${accurateTests})
list(FILTER betaTests INCLUDE REGEX Beta)
set_tests_properties(${betaTests} PROPERTIES LABELS Beta)

Using a custom ctest script adds a little more complexity to the project, but it allows full control
over test properties. There is no concern about name clashes with gtest_discover_tests() and
properties with list values can be handled safely.

With CMake 3.17 and earlier, the executable is queried for the list of tests as a POST_BUILD step
during the build. With CMake 3.18 or later, it is possible to defer querying the list of tests until ctest
is run. This has at least the following advantages:

• It might not always be possible to run the test executable during the build stage. On the other
hand, the test executable must be runnable at test time, either natively or via an emulator.

• Because the query happens during the test stage rather than the build, the cost of performing
the query is only paid during testing. This improves turnaround time when the developer is
focused on getting the test code to compile. In the cross-compilation case where emulator start-
up time may be non-trivial, the potential benefits of this deferral could be significant.

• On Windows, executing the test list query during the build would require the PATH environment
variable to be set such that all the test executable’s DLLs can be found. This is not only
inconvenient, it also has the potential to change the way things are built. Deferring the query to
the test stage means executables don’t have to be runnable at build time, thereby avoiding these
problems.

The DISCOVERY_MODE option controls when the test list query is performed. It gets its default value
from the CMAKE_GTEST_DISCOVER_TESTS_DISCOVERY_MODE variable. If that variable is not set, the mode
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defaults to POST_BUILD to preserve backward compatibility. Instead of using POST_BUILD, the mode can
be set to PRE_TEST, which delays the query until the test stage. In practice, the PRE_TEST mode should
always be preferable. It will generally be more convenient to set the discovery mode project-wide
via the variable instead of explicitly setting it in every call to gtest_discover_tests().

Another feature added in CMake 3.18 is the XML_OUTPUT_DIR keyword. When this keyword is present,
the tests will save their output to an XML file in the directory given after the keyword. The file
name will be based on the test name, including its prefix and suffix, if set. This ensures that every
test will have its own unique output file, so tests can safely run in parallel without fear of any
output file corruption. These XML output files can be processed by some continuous integration
systems and test reporting tools, making them a potentially convenient way of providing results in
merge requests and other similar use cases.

26.13. Recommended Practices
Aim to make each test name short, but sufficiently specific to the nature of the test. This makes it
easy to narrow down a test set using regular expressions with the -R and -E options given to ctest.
Avoid including test in the name, since it adds extra content to the test output with no benefit.

Assume that the project may one day be incorporated into a much larger hierarchy of projects
which may have many other tests. Aim to use test names that are specific enough to reduce the
chances of name clashes. More importantly, prefer to give parent projects control over whether to
add the tests at all and define the default behavior to only add tests if there is no parent project. Use
a non-cache variable to implement the control so that a parent project can choose whether to
expose it in the cache or not. A suitable variable name would be TEST_XXX where XXX is the
uppercased project name. The following example demonstrates such an arrangement for a top level
project called FooBar:

if(TEST_FOOBAR OR CMAKE_SOURCE_DIR STREQUAL FooBar_SOURCE_DIR)
    add_test(...)
endif()

To further improve integration with parent projects, consider using the LABELS test property to
include a project-specific label for each test. These per-project labels should allow tests to be easily
included or excluded by regular expressions given to ctest via -L and -LE options. Tests can have
multiple labels, so this places no restriction on how else labels can be used, but it may be difficult to
ensure that the project-specific label is rigorously set on all of a project’s tests.

Another good use of labels is to identify tests that are expected to take a long time to run.
Developers and continuous integration systems may want to run these less frequently, so being able
to exclude them based on test labels can be very convenient. Consider adding a label to tests that
run for a non-trivial amount of time and that don’t need to run as often. In the absence of any other
existing convention, a label of LongRunning is a good choice.

As well as using regular expression matching against test names and labels, it is also possible to
narrow the set of tests down to a particular directory and below. Instead of running ctest from the
top of the build tree, it can be run from subdirectories below it. Only those tests defined from that
directory’s associated source directory and below will be known to ctest. To be able to take full
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advantage of this, tests should not all be collected together in one place and defined with no
directory structure. It may be useful to keep tests close to the source code they are testing so that
the natural directory structure of the source code can be re-used to also give structure to the tests. If
the source code is ever moved around, this approach also makes it easier to move the associated
tests with it.

It can be tempting to write tests that simply turn on a lot of logging and then use pass/fail regular
expressions to determine success. This can be a fairly fragile approach, as developers frequently
change logged output under the assumption that it is just for informational purposes. Adding
timestamps into the logged output further complicates that approach. Rather than relying on
matching logged output, where possible prefer to make the test code itself determine the success or
failure status by explicitly testing the expected pre- and post-conditions, intermediate values, etc.
Testing frameworks such as GoogleTest make writing and maintaining such tests considerably
easier and are strongly recommended (which framework is less important than at least using some
suitable framework).

If using the GoogleTest framework, consider using the gtest_add_tests() and gtest_discover_tests()
functions provided by the GoogleTest module. If the test code is simple enough for gtest_add_tests()
to find all tests, it offers the simplest and most flexible way of manipulating individual test
properties, but it can be less convenient while working on the test code itself since it can require re-
running CMake frequently. If the project can require CMake 3.10.3 or later as a minimum version,
gtest_discover_tests() may be more suitable. The main drawback to this function is that setting test
properties to values that are lists requires more work, which is particularly relevant if following
the advice above regarding the use of test labels. If supporting CMake versions before 3.9 is
required, only gtest_add_tests() can be used and only the simpler form of the command. The
project will also need to use the FindGTest module rather than the GoogleTest module, which adds
further complexity if GoogleTest is being built as part of the project itself. Projects are therefore
strongly advised to move to CMake 3.9 or later if using GoogleTest, ideally 3.10.3 or later. Also
prefer to set the CMAKE_GTEST_DISCOVER_TESTS_DISCOVERY_MODE variable to PRE_TEST. This gives more
robust and more convenient behavior for gtest_discover_tests() when using CMake 3.18 or later.

If a test’s environment variables need to be modified, prefer to use the ENVIRONMENT_MODIFICATION test
property. It is more flexible and more robust than the older ENVIRONMENT property. Avoid passing list
values to either test property so that fragile escaping of semicolons won’t be required.

For projects where cross-compiling for a different target platform is a possibility, consider whether
tests can be written to run under an emulator or be copied and executed on a remote system via a
script or an equivalent mechanism. CMake’s CMAKE_CROSSCOMPILING_EMULATOR variable and the
associated CROSSCOMPILING_EMULATOR target property can be used to implement either of these
strategies. Ideally, CMAKE_CROSSCOMPILING_EMULATOR would be set in the toolchain file used for the cross-
compilation.

Make the most of the support for parallel test execution in ctest. Where tests are known to use
more than one CPU, set those tests’ PROCESSORS property to provide better guidance to ctest for how
to schedule them. If tests need exclusive access to a shared resource, use the RESOURCE_LOCK property
to control access to that resource and avoid using the RUN_SERIAL test property unless there is no
other alternative. RUN_SERIAL can have a big negative impact on parallel test performance and is
rarely justified apart from quick, temporary developer experiments. If the machine on which ctest
is being run may have other processes contributing to the CPU load, consider using the -l option to
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help limit the CPU over-commit. This can be especially useful on developer machines where
developers may be building and running tests for multiple projects simultaneously.

If the minimum CMake version can be set to 3.7 or later, prefer to use test fixtures to define
dependencies between tests. Define test cases to set up and clean up resources required by other
tests, to start and stop services and so on. When running with a reduced test set as a result of
regular expression matching or options like --rerun-failed, ctest automatically adds the required
fixture tests to the test set. Fixtures also ensure that tests whose dependencies fail are skipped,
unlike the DEPENDS test property which merely controls test order without enforcing a success
requirement. To gain fine-grained control over which tests will be automatically added to the test
set to satisfy fixture dependencies, use CMake 3.9 or later for the ctest options -FS, -FC and -FA
added in that release. Projects can still require only CMake 3.7 as a minimum version. Also prefer to
use fixtures over the TIMEOUT_AFTER_MATCH test property due to the clearer dependency relationship
and timing control.

The ctest build and test mode can be a useful way of incorporating small test builds off to the side
as test cases in the main project’s test suite. These can be especially effective when some of those
test builds need to verify that certain situations lead to configure or build errors. Since test cases
can be defined as expected to fail, they can verify such conditions without making the main
project’s build fail. Consider using the ctest build and test mode as the COMMAND part of a call to
add_test() to define such test cases.

For running the complete configure, build and test pipeline of the main project, consider the
functionality offered by the CDash integration features rather than using the ctest build and test
mode. These do a better job of capturing output from the whole pipeline and providing
mechanisms for customizing each step’s behavior. It also has additional features that facilitate
using code coverage and dynamic analysis tools such as memory checkers, sanitizers, etc. and these
features can be used whether submitting results to a CDash server or not. In fact, the custom ctest
scripting functionality that drives the whole CDash pipeline can be used without CDash, making it a
potentially convenient platform-independent way of scripting the whole build and test pipeline for
other continuous integration systems as well. The JUnit output support available with CMake 3.21
or later can be especially useful in that scenario. A CDash server can also be used in conjunction
with other CI systems to provide a richer set of features for recording and comparing build
histories, test failure trends and so on.

With CMake 3.18 or later, the ctest --stop-on-failure option can be used to end a test run
immediately upon the first error encountered. This can be a time-saving measure during
development where any failure is likely to be related to the area the developer is working on at the
time. It can also be used to quickly end a continuous integration run so that the failure can be
reported as early as possible. This comes at the expense of only providing feedback about one of
possibly many errors, so it should normally only be considered when the time to run all tests is
high. The STOP_ON_FAILURE option to the ctest_test() command has a similar effect, but hard-coding
this behavior into a dashboard script may be less flexible than using the --stop-on-failure
command line option.
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Chapter 27. Installing
After all the hard work of developing the source code of a project, creating its various resources,
making the build robust and implementing automated tests, the final step of making the software
available for distribution is critical. It has a direct effect on the end user’s first impressions of the
project and if done poorly, may result in the software being rejected before it even gets a chance to
be used.

Developers and users may have different expectations for how a project should be made available.
For some, simply providing access to the source code repository and expecting end users to
checkout and build it themselves is adequate. While this may be part of the delivery model, not all
end users may want to get involved at such a low level. Instead, they will frequently expect a pre-
built binary package that they can install and use on their machine, preferably via some already
familiar package management system. Given the variety of package managers and delivery formats
involved, this can present a daunting challenge for project maintainers. Nevertheless, there are
enough common elements between most of them that with some judicious planning, it is possible to
support most of the popular ones and cover all major platforms.

The earlier in a project’s life cycle the delivery phase is considered, the smoother the final
packaging and deployment phases are likely to be. A good starting point is to ask the following
questions before development begins, or as early as possible for existing projects:

• What platforms should be supported, both initially and potentially in the future? Are there
minimum platform API or SDK version requirements in order to support the features of the
project?

• What are the package formats that users will be familiar with on each platform? Can the project
be delivered in those formats? Are there any specific package formats that are more important
than others or that are mandatory?

• Do any of the required or desirable package formats have requirements for how software must
be laid out, built or delivered? Do project resources have to be provided in specific formats,
resolutions, locations, etc.?

• Might end users want to install multiple versions of the software simultaneously?

• Should the software support being installed without administrative privileges?

• Can the software be made relocatable so that users can install it anywhere on their system
(including on any drive, in the case of Windows)?

• Does the project expect one or more of its executables to be made available on the deployment
machine through the user’s PATH environment variable? Are there parts of the project which
should not be exposed on the PATH?

• Does the project provide anything that other CMake projects may want to use in their own
builds (libraries, executables, headers, resources, etc.)?

These questions will strongly impact how the software is laid out when installed, which in turn
affects how the source code needs to access its own resources and so on. It may even impact the
functionality available to the software, so understanding these things early can save wasted effort
later.
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This chapter focuses on the layout aspects and how to assemble the necessary files in their required
locations. It also demonstrates how to make a project easy for other CMake projects to consume by
providing config package support. Developers from some backgrounds may identify with these
aspects as belonging to the realm of make install. The next chapter completes the picture by
discussing the various package formats that CMake and CPack can produce. The implementation of
that support uses the install functionality described here to install to a clean staging area and then
produce the final packages from those contents.

27.1. Directory Layout
Understanding the constraints imposed by the deployment platform(s) is an essential step before
decisions can be made about how an installed product should be laid out. Only once those details
are clear can a CMake project go about defining what to install to where. A few high level
observations can be made which potentially have a strong influence on the installed layout of a
project.

• Apple formats (bundles, frameworks, etc.) are heavily prescribed and offer little flexibility, but
that also makes it very clear how a project needs to structure its deliverables. As covered back
in Chapter 24, Apple Features, CMake already handles most of this automatically as part of the
build phase, making the app ready for the last part of the Xcode-driven process that performs
the final app signing, package creation and submission to the app store. If an install stage is
used in CMake/CPack at all, it will largely be to simply package up bundles that follow the
prescribed layout.

• For projects intending to support being included as part of a Linux distribution, there will
almost certainly be very specific guidelines on where each type of file should be installed. The
Filesystem Hierarchy Standard forms the basis of most distributions’ layout and many other
Unix-based systems follow a similar structure. Even if not aiming for inclusion in a distribution
directly, the FHS still serves as a good guide for how to structure a package to achieve a smooth
and robust installation on many Unix-based systems.

• Some projects may want to make one or more executables available on the user’s PATH so they
can be invoked easily from a terminal or command line. On Windows, if a project installation
modifies the PATH by adding a directory that also contains some of its own DLLs, other
applications may then pick up those DLLs instead of the ones that were expected (e.g. from their
own private directories or one of the standard system-wide locations). DLLs from popular
toolkits such as Qt regularly fall victim to this scenario as a result of packages modifying the
PATH in ways they shouldn’t. If a project wants to augment the PATH for its own executables, it
should ensure that no DLLs are present in that directory, but this is directly at odds with the
need to have the DLLs in the same directory as executables so that Windows can find them at
run time. The typical solution to this is to create a directory containing only launch scripts
which can then safely be added to the PATH.

27.1.1. Relative Layout

With the exception of deployments to Apple platforms, there is a large degree of commonality (or at
least potential commonality) across all the major platforms. The install location can be thought of
as consisting of a base path and a relative layout below that path. The base path may be something
like /usr/…, /opt/… or C:\Program Files and obviously varies widely between platforms, but the
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relative layout below that base point is often very similar. A common arrangement sees executables
(and for Windows, also DLLs) installed to a bin directory, libraries to lib or some variant thereof
and headers under an include directory. Other file types have somewhat more variability in where
they are typically installed, but these three already cover some of the most important file types a
project will install.

On Windows, another variation is for packages to put executables and DLLs at the base install
location rather than under a bin subdirectory. While this may be a relatively common practice, it
can lead to a fairly crowded base directory, making it harder for users to find other package
components. Another variation is for launch scripts to be located in a subdirectory named cmd,
which keeps them separated from DLLs in other locations such as bin.

Finding a directory structure that works for most platforms is desirable, since it minimizes the
platform-specific logic that has to be implemented by the project’s source code. If the project uses
the same relative layout on all platforms, it is easier for an application to find things it needs at run
time.

In the absence of any other requirements, CMake’s GNUInstallDirs module provides a very
convenient way to use a standard directory layout. It is consistent with the common cases
mentioned above and it also provides various other standard locations that conform to both GNU
coding standards and the FHS. Putting aside the parts that relate to the base install path (covered in
the next section), the layout can even be used for Windows deployments. Starting with CMake 3.14,
a number of install-related commands take their defaults from GNUInstallDirs or fall-back locations
that are very similar.

Using the GNUInstallDirs module is fairly straightforward, it is included like any other module:

# Minimal inclusion, but see caveat further below
include(GNUInstallDirs)

This will create cache variables of the form CMAKE_INSTALL_<dir> where <dir> denotes a particular
location. The module’s documentation gives full details of all the defined locations, but some of the
more commonly used ones and their intended use include:

BINDIR

Executables, scripts and symlinks intended for end users to run directly. Defaults to bin.

SBINDIR

Similar to BINDIR except intended for system admin use. Defaults to sbin.

LIBDIR

Libraries and object files. Defaults to lib or some variation of that depending on the host/target
platform (including possibly a further architecture-specific subdirectory).

LIBEXECDIR

Executables not directly invoked by users, but might be run via launch scripts or symlinks
located in BINDIR or by other means. Defaults to libexec.
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INCLUDEDIR

Header files. Defaults to include.

DATAROOTDIR

Root point of read-only architecture-independent data. Not typically referred to directly, except
perhaps to work around caveats for DOCDIR.

DATADIR

Read-only architecture-independent data such as images and other resources. Defaults to the
same as DATAROOTDIR and is the preferred way to refer to locations for arbitrary project data not
covered by other defined locations.

MANDIR

Documentation in the man format. Defaults to DATAROOTDIR/man.

DOCDIR

Generic documentation. Defaults to DATAROOTDIR/doc/PROJECT_NAME (see notes below for why
relying on this default value is relatively unsafe).

Since each location is defined as a cache variable, they can be overridden if needed. Developers
would not normally change them, as install locations should be under the control of the project.
Even for the project though, changing the locations from the defaults is not generally advisable, but
it can be useful if the project wants to mostly follow the standard layout and only needs to make a
few small tweaks.

The DOCDIR location deserves special mention, as it defaults to a value that incorporates the
PROJECT_NAME variable. PROJECT_NAME is updated by each call to project() and therefore can vary
throughout the project hierarchy. The GNUInstallDirs module sets cache variables only if they are
not already defined, so the value of CMAKE_INSTALL_DOCDIR will be determined by where the
GNUInstallDirs module is first included. To protect against this and allow the default documentation
directory to follow the project hierarchy, projects may want to explicitly set the DOCDIR location
every time the module is included (the non-cache variable will override the cache variable):

# Explicitly set DOCDIR location each time
include(GNUInstallDirs)
set(CMAKE_INSTALL_DOCDIR ${CMAKE_INSTALL_DATAROOTDIR}/doc/${PROJECT_NAME})

For the remainder of this chapter, examples will use the CMAKE_INSTALL_<dir> variables for most
relative install destinations.

27.1.2. Base Install Location

After the relative layout of installed files has been determined, the base install location of that
layout must be decided. A number of considerations impact this decision, but perhaps the first
question to answer is whether the install should be relocatable. This just means that any install
base point can be used and as long as the relative layout is preserved, the installed project will still
work as intended. Being relocatable is highly desirable and should be the goal of most projects,
since it opens up more use cases, such as:
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• Multiple versions can be installed simultaneously.

• Relocatable packages can be installed to shared drives which may have different mount points
on different end users’ machines.

• A set of self-contained relocatable files can be more easily packaged up by a wider range of
packaging systems.

• Non-admin users can install a relocatable project locally under their own account.

Not all projects can be made relocatable, some need to place their files in very specific locations
(e.g. kernel packages). Some projects can be relocatable except for a few configuration files, in
which case a useful strategy can sometimes be to handle those specific files as a scripted post-install
step (the next chapter discusses some aspects of this for specific packaging systems).

The choice of base install location is closely tied to the target platform, with each one having its
own common practices and guidelines. On Windows, the base install location is usually a
subdirectory of C:\Program Files, whereas on most other systems, it is /usr/local or a subdirectory
of /opt. CMake provides a number of controls for managing the base install location to mostly
abstract away these platform differences. Perhaps the most important is the CMAKE_INSTALL_PREFIX
variable, which controls the base install location when the user builds the install target (the target
may be called INSTALL with some generator types). The default value of CMAKE_INSTALL_PREFIX is
C:\Program Files\${PROJECT_NAME} on Windows and /usr/local on Unix-based platforms.

When installing on Linux, the default value does not conform to the File System Hierarchy
standard. The FHS requires system packages to use a base location of / or /usr, with the latter more
likely to be the desired choice. For add-on packages, they should be installed to /opt/<package> or
/opt/<provider>, with a recommendation to use /opt/<provider>/<package>. If <provider> is used, it is
formally expected to be a LANANA-registered name or just the lowercase fully qualified domain
name of the organization providing the package. This is to avoid clashes between different
packages trying to use the same base install location.

For most projects, on non-Windows platforms it is advisable to explicitly set CMAKE_INSTALL_PREFIX to
a FHS-compliant /opt/… path. This should generally be done only in the top level CMakeLists.txt and
it should be protected by an appropriate check that the project is in fact the top level of the source
tree (to support hierarchical project arrangements).

if(NOT WIN32 AND CMAKE_SOURCE_DIR STREQUAL CMAKE_CURRENT_SOURCE_DIR)
    set(CMAKE_INSTALL_PREFIX "/opt/mycompany.com/${PROJECT_NAME}")
endif()

For cross-compiling scenarios, the CMAKE_STAGING_PREFIX variable can be defined to provide an
override for where the install rule installs to. This is to allow installing to an alternate part of the
file system while still preserving all the other effects of CMAKE_INSTALL_PREFIX, such as embedding of
paths in the installed binaries (covered in Section 27.2.2, “RPATH” later in this chapter).
CMAKE_STAGING_PREFIX also affects the search paths of most find_…() commands.

For some packaging scenarios and to allow testing the install process in a location off to the side,
CMake supports the common DESTDIR functionality for non-Windows platforms. DESTDIR is not a
CMake variable, but rather it is a variable passed to the build tool or set as an environment variable
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for the build tool to read. It allows the install base location to be placed under some arbitrary
location rather than the root of the file system. It is typically used on a command line when
invoking the build tool directly, such as:

make DESTDIR=/home/me/staging install
env DESTDIR=/home/me/staging ninja install

The DESTDIR functionality is conceptually similar to CMAKE_STAGING_PREFIX, but DESTDIR is specified only
at install time and does not affect things like find_…() commands. CMAKE_STAGING_PREFIX is saved as a
cache variable, whereas DESTDIR is an environment variable and is not saved between invocations
of the build tool. See Section 27.9, “Executing An Install” for an even more flexible and more
convenient method for carrying out an install when using CMake 3.15 or later.

The combination of CMAKE_INSTALL_PREFIX, CMAKE_STAGING_PREFIX and DESTDIR gives the project and the
developer the flexibility to set the base install location as needed and to perform test installs
without actually touching the final intended install location. Be aware, however, that the various
packaging formats may have their own default base install locations and may completely ignore
these three variables in preference to their own package-specific ones.

27.2. Installing Project Targets
With the structure of the install area defined, attention can now move to the installed content itself.
Projects use the install() command to define what to install, where those things should be located
and so on. This command has a number of different forms, each focused on a particular type of
entity which is specified by the first argument to the command. One of the key forms is for
installing targets provided by the project (as opposed to imported targets provided by something
external to the project):

install(TARGETS targets...
        [EXPORT exportName]
        [CONFIGURATIONS configs...]
        # RUNTIME_... dependency options require CMake 3.21 or later
        [RUNTIME_DEPENDENCIES runtimeDepArgs... |
         RUNTIME_DEPENDENCY_SET runtimeSetName]
        # One or more blocks of the following
        [ [entityType]
               [DESTINATION dir]   # Mandatory for CMake 3.13 and earlier
               [PERMISSIONS permissions...]
               [NAMELINK_ONLY | NAMELINK_SKIP]
               [COMPONENT component]
               [NAMELINK_COMPONENT component]   # CMake 3.12 or later only
               [EXCLUDE_FROM_ALL]
               [OPTIONAL]
               [CONFIGURATIONS configs...]
        ]...
        # Special case
        [INCLUDES DESTINATION incDirs...]
)
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One or more targets are provided and then the entityType blocks specify how to handle installing
the various parts of those targets. With CMake 3.12 or earlier, each of the targets must be defined in
the same directory scope as the install() command, but CMake 3.13 removed this restriction. For
all CMake versions, the entityType must be one of the following:

RUNTIME

Install executable binaries. On Windows, this also installs the DLL part of library targets. Apple
bundles are excluded.

LIBRARY

Install shared libraries on all platforms except Windows. Apple frameworks are excluded.

ARCHIVE

Install static libraries (all platforms). On Windows, this also installs the import library (i.e. .lib)
part of shared library targets. Apple frameworks are excluded.

OBJECTS

Install the objects associated with object libraries (CMake 3.9 or later only).

FRAMEWORK

On Apple platforms, install frameworks (shared or static), including any content that has been
copied into them (e.g. by POST_BUILD custom rules).

BUNDLE

On Apple platforms, install bundles, including any content that has been copied into them.

PUBLIC_HEADER

On non-Apple platforms, this installs files listed in a framework library target’s PUBLIC_HEADER
property. On Apple platforms, these header files are handled as part of the FRAMEWORK entity type
instead. See Section 27.5.2, “Explicit Public And Private Headers” for further discussion.

PRIVATE_HEADER

Analogous to the PUBLIC_HEADER entity type, except the affected target property is PRIVATE_HEADER.

RESOURCE

On non-Apple platforms, this installs files listed in a framework or bundle target’s RESOURCE
property. On Apple platforms, they are installed as part of the framework or bundle instead.

FILE_SET

This must be followed by the name of a file set to install (CMake 3.23 or later only). This is
covered in detail in Section 27.5.1, “File Sets”.

After the entityType, various options can be listed, which only apply to that entity type. For instance,
the following shows how to install libraries in a way that puts the respective parts in their expected
place on all platforms (assuming they are not Apple frameworks):
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install(TARGETS MySharedLib MyStaticLib
    RUNTIME DESTINATION ${CMAKE_INSTALL_BINDIR}
    LIBRARY DESTINATION ${CMAKE_INSTALL_LIBDIR}
    ARCHIVE DESTINATION ${CMAKE_INSTALL_LIBDIR}
)

The above example shows how the DESTINATION option can specify different locations for different
parts of the same target. The command is flexible enough to handle multiple targets of different
types all at once. For MySharedLib, on Windows the DLL would go to the RUNTIME destination and the
import library to the ARCHIVE destination. On other platforms, the shared library would be installed
to the LIBRARY destination. The static library of the MyStaticLib target would be installed to the
ARCHIVE destination.

CMake will usually issue a warning or error if a target provides a particular entity for which there
is no corresponding entityType section (e.g. one of the targets is a static library but no ARCHIVE
section is provided). As an exception to this, the entityType can be omitted, in which case the options
that follow the list of targets will apply to all entity types. This is usually only done when it is
obvious that there can only be one entity type for the targets listed:

# Targets are both executables, so specifying the entity type isn't needed
install(TARGETS exe1 exe2
        DESTINATION ${CMAKE_INSTALL_BINDIR}
)

For CMake 3.13 and earlier, a DESTINATION must be provided. CMake 3.14 relaxed this requirement,
allowing default destinations for executables, static libraries and shared libraries, but not module
libraries, Apple bundles or frameworks. Public and private headers attached to library targets also
have default destinations available, as do HEADERS file sets (see Section 27.5.1, “File Sets”). For the
supported target types, the default destinations are given by the same CMAKE_INSTALL_… variables
that the GNUInstallDirs module provides for those entities. If no such variables are defined (i.e. the
GNUInstallDirs module has not been included), hard-coded defaults that mostly follow the same
defaults as the GNUInstallDirs module will be used instead. Note that the hard-coded defaults lack
the logic for handling subtle differences across various Linux/Unix distributions, so projects should
generally include the GNUInstallDirs module to obtain the broadest platform support. The hard-
coded defaults are detailed in the CMake documentation for the install() command.

include(GNUInstallDirs)

# Only legal with CMake 3.14 or later
install(TARGETS MyExe MySharedLib MyStaticLib)

The above would install MyExe to CMAKE_INSTALL_BINDIR, MyStaticLib to CMAKE_INSTALL_LIBDIR and
MySharedLib to one or both of those two locations depending on the platform. Any public or private
headers or HEADERS file sets attached to these targets would be installed to CMAKE_INSTALL_INCLUDEDIR.
While this can be very convenient and concise, it forces the project to require CMake 3.14 as its
minimum version. For the remainder of this chapter, the destinations are still explicitly given in
most examples so that they remain applicable to the broadest range of CMake versions.
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Options following an entity type can specify more than just the destination. They can also override
the default permissions with the PERMISSIONS option, specifying one or more of the same values as
for the file(COPY) command described back in Section 20.2, “Copying Files”:

OWNER_READ OWNER_WRITE OWNER_EXECUTE

GROUP_READ GROUP_WRITE GROUP_EXECUTE

WORLD_READ WORLD_WRITE WORLD_EXECUTE

SETUID SETGID

As for file(COPY), permissions not supported for the platform will simply be ignored. Note that
CMake usually sets appropriate permissions for all targets by default. One would typically only
need to explicitly provide permissions if the installed location needs more restrictive permissions
than normal or if one of the SETUID or SETGID permissions needs to be added. The following example
demonstrates both scenarios.

# Intended to only be run by an administrator, so only allow the owner to have access
install(TARGETS OnlyOwnerCanRunMe
        DESTINATION ${CMAKE_INSTALL_SBINDIR}
        PERMISSIONS
            OWNER_READ OWNER_WRITE OWNER_EXECUTE
)

# Install with set-group permission
install(TARGETS RunAsGroup
        DESTINATION ${CMAKE_INSTALL_BINDIR}
        PERMISSIONS
            OWNER_READ OWNER_WRITE OWNER_EXECUTE
            GROUP_READ GROUP_EXECUTE SETGID
)

For the LIBRARY entity type, some platforms support the creation of symbolic links when version
details have been provided for a library target (see Section 22.3, “Shared Library Versioning”). The
set of files and symlinks that might exist for a shared library typically look something like this:

libMyShared.so.1.3.2                        ①
libMyShared.so.1 --> libMyShared.so.1.3.2   ②
libMyShared.so   --> libMyShared.so.1       ③

① The actual versioned binary built by the project.

② Symbolic link whose name is the soname of the library. When following semantic versioning,
this will contain only the major part of the version in its name.

③ Namelink with no version details embedded in the file name. This is required for the library to
be found when a linker command line contains an option like -lMyShared.

When installing LIBRARY entities, the NAMELINK_ONLY or NAMELINK_SKIP options can be given. The
NAMELINK_ONLY option will result in only the namelink being installed, whereas NAMELINK_SKIP will
result in all but the namelink being installed. If a library target has no version details or the
platform doesn’t support namelinks, the behavior of these two options changes. NAMELINK_ONLY will
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then install nothing and NAMELINK_SKIP will install the real library. These options are especially
useful when creating separate runtime and development packages, with the namelink part going
into the development package and the other files/links going into the runtime package.

When a NAMELINK_ONLY option is given, CMake will not warn about missing entity type blocks for
other parts of the library not mentioned in that install() command. This is needed because
NAMELINK_SKIP and NAMELINK_ONLY cannot both be given in the same install() call, the two have to be
split across separate calls (see example below).

Each entityType section can also specify a COMPONENT option. Components are a logical grouping used
mainly for packaging and are discussed in detail in the next chapter. For now, think of them as a
way of separating out different install sets. The above mentioned scenario for separate runtime and
development packages could be set up as follows:

install(TARGETS MyShared MyStatic
    RUNTIME
        DESTINATION ${CMAKE_INSTALL_BINDIR}
        COMPONENT MyProj_Runtime
    LIBRARY
        DESTINATION ${CMAKE_INSTALL_LIBDIR}
        NAMELINK_SKIP
        COMPONENT MyProj_Runtime
    ARCHIVE
        DESTINATION ${CMAKE_INSTALL_LIBDIR}
        COMPONENT MyProj_Development
)

# Because NAMELINK_ONLY is given, CMake won't complain about a missing RUNTIME block
install(TARGETS MyShared
    LIBRARY
        DESTINATION ${CMAKE_INSTALL_LIBDIR}
        NAMELINK_ONLY
        COMPONENT MyProj_Development
)

From CMake 3.12, a simpler way of splitting out the namelink to a different component is available
using the NAMELINK_COMPONENT option. This option can be used in conjunction with COMPONENT, but only
within a LIBRARY block. Using this new option, the above can be expressed more concisely:

install(TARGETS MyShared MyStatic
    RUNTIME
        DESTINATION ${CMAKE_INSTALL_BINDIR}
        COMPONENT MyProj_Runtime
    LIBRARY
        DESTINATION ${CMAKE_INSTALL_LIBDIR}
        COMPONENT          MyProj_Runtime
        NAMELINK_COMPONENT MyProj_Development   # Requires CMake 3.12 or later
    ARCHIVE
        DESTINATION ${CMAKE_INSTALL_LIBDIR}
        COMPONENT MyProj_Development
)

417



If no COMPONENT is given for a block, it is associated with a default component whose name is given by
the variable CMAKE_INSTALL_DEFAULT_COMPONENT_NAME. If that variable is not set, Unspecified is used as
the default component name. An example where it can be helpful to change the default component
name is where a third party child project doesn’t use any install components. To keep that child
project’s install artifacts separate from the main project, the default name can be changed just
before calling add_subdirectory() to pull the child project into the main build.

The EXCLUDE_FROM_ALL option can be used to restrict an entity block to only get installed for
component-specific installs. By default, an install is not component-specific and all components are
installed, but packaging implementations may install specific components individually.
Documentation was added in CMake 3.12 to show how to do this from the command line as well.
For most projects, EXCLUDE_FROM_ALL is unlikely to be needed.

The OPTIONAL keyword is also rarely used. If the entity type of a target is expected to be present but it
is missing (e.g. the import library of a Windows DLL for an ARCHIVE entity type section), CMake will
not consider it an error. Use this option with caution, as it has the ability to mask misconfiguration
of the build/install logic.

An entity type block can also be made configuration-specific by adding a CONFIGURATIONS option to it.
That entity type will only be installed if the current build type is one of those listed. An entity type
cannot be listed more than once for a single install() command, so if different configurations need
different details, multiple calls are needed. The following example shows how to install the Debug
and Release versions of static libraries in different directories:

install(TARGETS MyStatic
    ARCHIVE
        DESTINATION ${CMAKE_INSTALL_LIBDIR}/Debug
        CONFIGURATIONS Debug
)

install(TARGETS MyStatic
    ARCHIVE
        DESTINATION ${CMAKE_INSTALL_LIBDIR}/Release
        CONFIGURATIONS Release RelWithDebInfo MinSizeRel
)

The CONFIGURATIONS keyword can also precede all entity blocks and act as a default for those that
don’t provide their own configuration override. In the following example, all blocks get installed
only for Release builds, except for the ARCHIVE block which is installed for Debug and Release.

install(TARGETS MyShared MyStatic
    CONFIGURATIONS Release
    RUNTIME
        DESTINATION ${CMAKE_INSTALL_BINDIR}
    LIBRARY
        DESTINATION ${CMAKE_INSTALL_LIBDIR}
    ARCHIVE
        DESTINATION ${CMAKE_INSTALL_LIBDIR}
        CONFIGURATIONS Debug Release
)
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See Section 27.7.1, “Runtime Dependency Sets” for how to use the RUNTIME_DEPENDENCIES and
RUNTIME_DEPENDENCY_SET keywords.

27.2.1. Interface Properties

If the targets are exported (discussed in Section 27.3, “Installing Exports” further below), they have
the opportunity to set interface properties to be consumed by other projects’ targets. The various
INTERFACE target properties are carried through to the exported details of the installed target
automatically, but special handling is needed to account for the distinctly different needs of
building the target versus those for consuming the installed target. Consider the following code
sample:

add_library(Foo STATIC ...)
target_include_directories(Foo
    INTERFACE
        ${CMAKE_CURRENT_BINARY_DIR}/somewhere
        ${MyProject_BINARY_DIR}/anotherDir
)
install(TARGETS Foo DESTINATION ...)

Within the build, anything linking to Foo will have the absolute paths to somewhere and anotherDir
added to its header search path. When Foo is installed, it may be packaged up and deployed to an
entirely different machine. Clearly the path to somewhere and anotherDir would no longer make
sense, but the above example would add them to consuming targets’ header search path anyway.
What is needed is a way to say "Use path xxx when building and path yyy when installing", which is
exactly what the BUILD_INTERFACE and INSTALL_INTERFACE generator expressions do:

include(GNUInstallDirs)
target_include_directories(Foo
    INTERFACE
        $<BUILD_INTERFACE:${CMAKE_CURRENT_BINARY_DIR}/somewhere>
        $<BUILD_INTERFACE:${MyProject_BINARY_DIR}/anotherDir>
        $<INSTALL_INTERFACE:${CMAKE_INSTALL_INCLUDEDIR}>
)

$<BUILD_INTERFACE:xxx> will expand to xxx for the build tree and expand to nothing when installing,
whereas $<INSTALL_INTERFACE:yyy> does the opposite, ensuring that yyy is only added for the installed
target. In the case of INSTALL_INTERFACE, yyy is usually a relative path, which is treated as being
relative to the base install location.

While the header search path within the build tree may vary from target to target, it is common for
the targets to share the same header search path once installed. In the above example,
CMAKE_INSTALL_INCLUDEDIR is likely to be repeated for every target, but specifying it individually for
each one is not the most convenient approach. The INCLUDES option of the install() command can be
used instead to specify the same information for a group of targets. All the directories given after
INCLUDES DESTINATION are added to the INTERFACE_INCLUDE_DIRECTORIES property of each installed target
listed. This leads to a more concise description of header search paths.
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add_library(MyStatic STATIC ...)
add_library(MyHeaderOnly INTERFACE ...)

target_include_directories(MyStatic
    PUBLIC $<BUILD_INTERFACE:${CMAKE_CURRENT_BINARY_DIR}/static_exports>
)
target_include_directories(MyHeaderOnly
    INTERFACE $<BUILD_INTERFACE:${CMAKE_CURRENT_LIST_DIR}>
)
install(TARGETS MyStatic MyHeaderOnly
    ARCHIVE  DESTINATION ${CMAKE_INSTALL_LIBDIR}
    INCLUDES DESTINATION ${CMAKE_INSTALL_INCLUDEDIR}
)

Unlike the other entity type blocks, multiple directories can be listed for INCLUDES DESTINATION if
required, although this is likely to be less common in practice. Also note that an INCLUDES block
supports none of the other details that other entityType blocks support. It may only specify a
DESTINATION keyword followed by one or more locations.

27.2.2. RPATH

When a library or executable is loaded by the operating system, it has to find all the other shared
libraries the binary has been linked against. Different platforms have different ways of handling
this. Windows relies on finding all required libraries by searching the locations in the PATH
environment variable as well as the directory in which the binary is located. Other platforms use
different environment variables specifically intended for the purpose, such as LD_LIBRARY_PATH or
variations thereof, in conjunction with other mechanisms such as libraries listed in conf files. A
drawback to the dependence on environment variables is that it relies on the person or process
loading the binary to have set up the environment correctly.

In many cases, the package providing the binary already knows where many of the dependent
libraries can be found, since they may have been part of the same package. Most non-Windows
platforms support binaries being able to encode library search paths directly into the binaries
themselves. The generic name for this feature is run path or RPATH support, although the actual
name may have platform-specific variations. With embedded RPATH details, a binary can be self-
contained and not have to rely on any paths being provided by the environment or system
configuration. Furthermore, an RPATH can contain certain placeholders that allow it to effectively
define relative paths that are only resolved to absolute paths at run time. The placeholders allow
that resolution to be made based on the location of the binary, so relocatable packages can define
RPATH details that only hard-code paths based on the package’s relative layout.

Just as was the case for interface properties in the previous section, there are conflicting needs for
RPATH in the build tree and for installed binaries. In the build tree, developers need the binaries to
be able to find the shared libraries they link to so that executables can be run (e.g. for debugging,
test execution and so on). On platforms that support RPATH, CMake will embed the required paths by
default, thereby giving developers the most convenient experience without requiring any further
setup. These RPATH details are only suitable for that particular build tree though, so when the targets
are installed, CMake rewrites them with replacement paths (the default replacement yields an
empty RPATH).
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The RPATH defaults are a reasonable starting point, but they are unlikely to be suitable for installed
targets. Projects will want to override the default behavior to ensure that both build tree and
installed scenarios are suitably catered for. CMake allows separate control of the build and install
RPATH locations, so projects can implement a strategy that best fits their needs. The following target
properties and variables can be useful for influencing the RPATH behavior:

BUILD_RPATH

This target property can be used to provide additional search paths to be embedded in the build
tree’s binary. This will be in addition to the paths automatically added by CMake for that
binary’s link dependencies, so only extra paths CMake cannot work out on its own should be
specified. This property should only be needed if the binary loads non-linked libraries at run
time using dlopen() or some equivalent mechanism, such as when loading optional plugin
modules. This property is initialized by the value of the CMAKE_BUILD_RPATH variable at the time the
target is created by add_library() or add_executable(). While the automatically added paths have
been supported in CMake for a long time, the BUILD_RPATH property and the CMAKE_BUILD_RPATH
variable were only added in CMake 3.8.

BUILD_RPATH_USE_ORIGIN

This target property is only supported for CMake 3.14 or later. For those platforms that support
$ORIGIN in an RPATH (see further below), setting this property to true results in CMake embedding
$ORIGIN-relative paths rather than absolute paths in the build tree’s binaries. This is to facilitate
being able to make reproducible, relocatable builds. The initial value for BUILD_RPATH_USE_ORIGIN
is taken from the value of the CMAKE_BUILD_RPATH_USE_ORIGIN variable at the time the target is
created. This property will only affect those paths CMake determines automatically, it will not
affect any paths specified in the BUILD_RPATH property. It will also not have any effect on the
embedded RPATH of installed binaries.

INSTALL_RPATH

This target property specifies the RPATH of the binary when it is installed. Unlike the build RPATH,
CMake does not provide any install RPATH contents by default, so the project should set this
property to a list of paths that reflect the installed layout. Details further below discuss how this
can be done. This property is initialized by the value of the CMAKE_INSTALL_RPATH variable when
the target is created.

INSTALL_RPATH_USE_LINK_PATH

When this target property is set to true, the path of each library this target links to is added to
the set of install RPATH locations, but only if the path points to a location outside the project’s
source and binary directories. This is mainly useful for embedding absolute paths to external
libraries that are not part of the project, but that are expected to be at the same location on all
machines the project will be deployed to. Use this with caution, as such assumptions can reduce
the robustness of the installed package (paths may change with future releases of the external
libraries, system administrators may choose non-default installation configurations, etc.). This
property is initialized by the value of the CMAKE_INSTALL_RPATH_USE_LINK_PATH variable when the
target is created.

BUILD_WITH_INSTALL_RPATH

Some projects use a build layout that mirrors the installed layout. Targets may expect to find
certain files relative to their own location, or they could be self-contained app bundles with
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embedded frameworks. For these cases, the install RPATH may also be suitable for the build tree.
By setting this target property to true, the build RPATH is not used and the install RPATH will be
embedded in the binary at build time instead. Note that this may cause problems during linking
if using placeholders supported by the loader but not the linker (discussed below). This property
is initialized by the CMAKE_BUILD_WITH_INSTALL_RPATH variable when the target is created.

SKIP_BUILD_RPATH

When this target property is set to true, no build RPATH is set. BUILD_RPATH will be ignored and
CMake will not automatically add RPATH entries for libraries the target links to. Note that this can
cause builds to fail if dependent libraries link to other libraries, so use with caution. This
property is initialized by the value of the CMAKE_SKIP_BUILD_RPATH variable when the target is
created. It is also overridden by BUILD_WITH_INSTALL_RPATH if that property is set to true.

CMAKE_SKIP_INSTALL_RPATH

This variable is the install equivalent of CMAKE_SKIP_BUILD_RPATH. Setting it to true causes
INSTALL_RPATH target properties to be ignored and will likely cause the installed targets to fail to
find their dependent libraries at run time, so its usefulness is questionable. Note that there is no
SKIP_INSTALL_RPATH target property, only the CMAKE_SKIP_INSTALL_RPATH variable.

CMAKE_SKIP_RPATH

Setting this variable to true causes all RPATH support to be disabled and all of the above
properties and variables will be ignored. It is generally not desirable to do this unless the project
is managing the run time library loading itself in some other way, but in general the RPATH
functionality should generally be preferred.

Install RPATH locations should ideally be based on relative paths. This is achieved on most Unix-
based platforms by using the $ORIGIN placeholder to represent the location of the binary in which
the RPATH is embedded. For example, the following is a common way of defining install RPATH details
for projects that follow a similar layout to that defined by the GNUInstallDirs module:

set(CMAKE_INSTALL_RPATH $ORIGIN $ORIGIN/../lib)

To make this more robust and account for potential changes from the default layout, a little more
work is needed. One has to work out the relative path from the executables directory to the
libraries directory, which can be achieved as follows:

include(GNUInstallDirs)
file(RELATIVE_PATH relDir
     ${CMAKE_CURRENT_BINARY_DIR}/${CMAKE_INSTALL_BINDIR}
     ${CMAKE_CURRENT_BINARY_DIR}/${CMAKE_INSTALL_LIBDIR}
)
set(CMAKE_INSTALL_RPATH $ORIGIN $ORIGIN/${relDir})

All targets defined after the above will have an INSTALL_RPATH that directs the loader to look in the
same directory as the binary as well as something like ../lib or its platform equivalent relative to
the binary’s location. Thus, for executables installed to bin and shared libraries installed to lib, this
will ensure both can find any other libraries provided by the project. This is highly recommended
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as a starting point when first adding RPATH support to projects. Note that Apple targets work a little
differently and may have a considerably different layout, so the above needs to be adapted further
to cover that platform (discussed in the next section).

One weakness to be aware of is that while loaders understand $ORIGIN, the linker most likely will
not. This can lead to problems when something links to a library which itself links to another
library. The first level of linking does not present a problem, since the library will be listed directly
on the linker command line, but the second level of library dependency has to be found by the
linker. When the linker doesn’t understand $ORIGIN, it can’t find the second level library via RPATH
details. Therefore, unless the path is also specified by some other option like -L, linking will fail,
even though the first level library technically contains all the information needed. This is a known
issue that is not specific to CMake, it is a weakness of popular linkers (notably the GNU ld linker).

Depending on the various properties and variables mentioned above, CMake may be required to
change the embedded RPATH details of a target when it is being installed. There are two ways this
can be done. If the binary is in the ELF format, then by default, CMake uses an internal tool to
rewrite the RPATH directly in the installed binary. From CMake 3.20, equivalent functionality for the
XCOFF format on AIX is also provided (the feature is called LIBPATH for XCOFF, but within CMake it
is still referred to as RPATH for convenience). CMake ensures there will be enough space for the
install RPATH by padding the build RPATH if necessary. The details of how this is done are largely
hidden from the developer, other than perhaps some odd-looking options on the linker command
line at build time. For other binary formats, CMake re-links the binary at install time, specifying the
install RPATH details instead. Historically, this can sometimes confuse developers who wonder why
something that has already been built needs to be linked again, but ultimately the re-linking is a
pragmatic way to get the desired end result. The re-linking behavior can be forced for ELF or
XCOFF binaries too by setting the CMAKE_NO_BUILTIN_CHRPATH variable to true, but this should not
generally be used unless the internal RPATH rewriting fails for some reason.

When cross compiling, a few other variables can modify the RPATH locations embedded in binaries.
Any RPATH location that starts with the CMAKE_STAGING_PREFIX will automatically have that prefix
replaced with the CMAKE_INSTALL_PREFIX. This is true for both build and install RPATH locations. Any
install RPATH location that begins with the CMAKE_SYSROOT will have that prefix stripped entirely.

27.2.3. Apple-specific Targets

Apple’s loader and linker work a little differently to other Unix platforms. Whereas libraries on
platforms like Linux encode just the library name into a shared library (i.e. the soname), Apple
platforms encode the full path to the library. This full path is referred to as the install_name and the
path part of the install_name is sometimes called the install_name_dir. Anything linking to the
library also encodes the full install_name as the library to search for.

When everything is installed to the expected location, this works well, but for relocatable packages
(which includes most app bundles), this is too inflexible. As a way of dealing with this, Apple
supports relative base points similar to $ORIGIN, but the placeholders are different:

@loader_path

This is more or less Apple’s equivalent of $ORIGIN, but the linker is able to understand it and
therefore doesn’t suffer the problems other linkers experience with being unable to decode
$ORIGIN.
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@executable_path

This will be replaced by the location of the program being executed. For libraries pulled in as
dependencies of other libraries, this is less helpful, since it requires the libraries to know the
location of any executable that may use them. This is generally undesirable, so @loader_path is
usually the better choice.

@rpath

This can be used as a placeholder for all or part of the install_name_dir.

The combination of @loader_path and @rpath can provide equivalent behavior to $ORIGIN on other
platforms. CMake provides additional Apple-specific controls to help set things up appropriately:

MACOSX_RPATH

When this target property is set to true, CMake automatically sets the install_name_dir to @rpath
when building for Apple platforms. This is the default behavior since CMake 3.0 and is almost
always desirable. It can be overridden by INSTALL_NAME_DIR. If the CMAKE_MACOSX_RPATH variable is
set at the time the target is created, it is used to initialize the value of the MACOSX_RPATH property.

INSTALL_NAME_DIR

This target property is used to explicitly set the install_name_dir part of the library’s install_name.
The default install_name usually has the form @rpath/libsomename.dylib, but for cases where @rpath
is not appropriate, INSTALL_NAME_DIR can specify an alternative. The property is initialized with
the value of the CMAKE_INSTALL_NAME_DIR variable at the time it is created. This property is ignored
on non-Apple platforms.



A long-standing bug in CMake versions before 3.20.1 results in mishandling of the
install_name_dir when targeting iOS, watchOS or tvOS. The bug forces the
install_name_dir to be the full path to the binary instead of the default @rpath.
Furthermore, the INSTALL_NAME_DIR target property has no effect. If an app bundle
contains embedded frameworks (see Section 24.10, “Embedding Frameworks”),
this results in the app failing to run because it is unable to find its frameworks at
run time. The full paths that were embedded won’t exist on the device or a device
simulator. Use CMake 3.20.1 or later to avoid this problem.

For non-bundle layouts, the $ORIGIN behavior can be extended to cover the Apple case as well:

if(APPLE)
    set(base @loader_path)
else()
    set(base $ORIGIN)
endif()

include(GNUInstallDirs)
file(RELATIVE_PATH relDir
     ${CMAKE_CURRENT_BINARY_DIR}/${CMAKE_INSTALL_BINDIR}
     ${CMAKE_CURRENT_BINARY_DIR}/${CMAKE_INSTALL_LIBDIR}
)
set(CMAKE_INSTALL_RPATH ${base} ${base}/${relDir})
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Once Apple bundles or frameworks are used, the layout is completely different and alternative
strategies are needed for defining the run time search paths. For example, a macOS app bundle
may end up with the following structure after installing the relevant targets or as a result of
embedding frameworks (discussed in Section 24.10, “Embedding Frameworks”). Only relevant parts
of the bundle structure are shown:

RPATH details for the above arrangement could be implemented by setting the INSTALL_RPATH target
property of MyApp to @executable_path/../Frameworks and for Fmwk1 and Fmwk2 it would be set to
@loader_path/../../... For an iOS app, the paths would be @executable_path/Frameworks and
@loader_path/.. instead. The install RPATH details should also be used at build time so that embedded
frameworks are handled correctly. In the following example, only the RPATH-related properties are
shown. See Section 24.6, “Code Signing”, Section 24.7, “Creating And Exporting Archives” and
Section 24.10, “Embedding Frameworks” for additional details that would need to be set.

set(CMAKE_BUILD_WITH_INSTALL_RPATH YES)
add_executable(MyApp MACOSX_BUNDLE ...)
add_library(Fmwk1 SHARED ...)
add_library(Fmwk2 SHARED ...)

# Direct linking like this assumes CMake 3.19 or later
target_link_libraries(MyApp PRIVATE Fmwk1)
target_link_libraries(Fmwk1 PRIVATE Fmwk2)

set_target_properties(MyApp PROPERTIES
    INSTALL_RPATH @executable_path/../Frameworks
)
set_target_properties(Fmwk1 Fmwk2 PROPERTIES
    FRAMEWORK TRUE
    INSTALL_RPATH @loader_path/../../..
)

The app bundle and its embedded frameworks can then be installed like so:

install(TARGETS Fmwk1 Fmwk2 MyApp
    BUNDLE    DESTINATION .
    FRAMEWORK DESTINATION MyApp.app/Contents/Frameworks
)
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Frameworks also have the ability to contain headers. When present, these would be installed as
part of the framework. Section 27.5.2, “Explicit Public And Private Headers” discusses that area in
more detail.

27.3. Installing Exports
When project targets are installed, they can specify the name of an export set to which they belong
using the EXPORT option with install(TARGETS). That export set can then be installed using a different
form of the command:

install(EXPORT exportName
        DESTINATION dir
        [FILE name.cmake]
        [NAMESPACE namespace]
        [PERMISSIONS permissions...]
        [EXPORT_LINK_INTERFACE_LIBRARIES]
        [COMPONENT component]
        [EXCLUDE_FROM_ALL]
        [CONFIGURATIONS configs...]
)

Installing an export set creates a file at the nominated destination dir with the specified name.cmake
file name (it must end in .cmake). If the FILE option is not given, a default file name based on the
exportName is used. The generated file will contain CMake commands that define an imported target
for each target in the export set. The purpose of this file is for other projects to include it so that
they can refer to this project’s targets and have full information about the interface properties and
inter-target relationships. With some limitations, the consuming project can then treat the imported
targets just like any of its own regular targets. These export files are not usually included directly
by projects, they are intended to be used by a config package, which is then found by other projects
using the find_package() command (this is covered in more detail in Section 27.8, “Writing A Config
Package File” later in this chapter).

When the NAMESPACE option is given, each target will have namespace prepended to its name when
creating its associated imported target. Consider the following example:

add_library(MyShared SHARED ...)
add_library(BagOfBeans::MyShared ALIAS MyShared)

install(TARGETS MyShared
    EXPORT BagOfBeans
    DESTINATION ${CMAKE_INSTALL_LIBDIR}
)

install(EXPORT BagOfBeans
    DESTINATION ${CMAKE_INSTALL_LIBDIR}/cmake/BagOfBeans
    NAMESPACE BagOfBeans::
)
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The above example follows the advice from Section 18.4, “Recommended Practices” where each
regular target also has a namespaced ALIAS associated with it. When installing the export for the
non-alias MyShared target, the same namespace is used as for the alias target (i.e. BagOfBeans::). This
allows projects that consume the exported details to refer to the target in the same way as this
project can refer to the alias (BagOfBeans::MyShared). Consuming projects can then elect to add this
project directly via add_subdirectory() or pull in the export file via find_package(), yet still use the
same BagOfBeans::MyShared target name regardless of which method was chosen. This important
pattern is emerging as a fairly common expectation on projects among the CMake community, so it
is in most projects’ interests to try to follow it.

One problem that can arise when combining multiple projects into a single build via
add_subdirectory() (a powerful technique covered in depth in Chapter 30, FetchContent) is that
different projects may define targets with the same name. CMake requires all global targets to be
unique, so such projects cannot be combined in that way. To avoid this situation, projects can give
their targets a project-specific name, such as MyProj_Algo rather than just Algo. Whatever is used as a
namespace prefix for an export will typically also serve as a suitable prefix for a target name
(replacing the :: with an underscore or removing it completely). With this strategy, to avoid
repeating the prefix in the exported name, the target’s EXPORT_NAME target property can be set to a
different name for use only when exporting the target. The OUTPUT_NAME target property can be used
to also override the name of the target’s built binaries (both during the build and at install time). It
is very common for EXPORT_NAME and OUTPUT_NAME to be the same, but this is by no means a
requirement. If the OUTPUT_NAME is not project-specific, it may clash with binaries from other projects.
For example:

add_library(MyProj_Algo SHARED ...)
add_library(MyProj::Algo ALIAS MyProj_Algo)

set_target_properties(MyProj_Algo PROPERTIES
    OUTPUT_NAME MyProjAlgo
    EXPORT_NAME Algo
)

install(TARGETS MyProj_Algo
    EXPORT MyProj
    DESTINATION ${CMAKE_INSTALL_LIBDIR}
)

install(EXPORT MyProj
    DESTINATION ${CMAKE_INSTALL_LIBDIR}/cmake/MyProj
    NAMESPACE MyProj::
)

With the above example, MyProj_Algo will end up with the exported name MyProj::Algo instead of
MyProj::MyProj_Algo. The library will have file names like libMyProjAlgo.so or MyProjAlgo.dll,
depending on the platform. Projects are encouraged to make use of these features to minimize the
chances of target name clashes with other projects and still provide concise exported target names.

The name of the export set given after the EXPORT keyword does not have to be related to the
NAMESPACE. The namespace is usually closely associated with the project name, but a range of
different strategies can be appropriate for the naming of export sets. For example, a project could
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define multiple export sets with targets that share a single namespace and where the export sets
might correspond to logical units that could be installed as a whole. These export sets might each
correspond to a single install COMPONENT or they might collect together multiple components. The
following demonstrates these cases:

# Single component export
install(TARGETS algo1   EXPORT    MyProj_algoFree
        DESTINATION ... COMPONENT MyProj_free
)

install(EXPORT MyProj_algoFree
        DESTINATION ... COMPONENT MyProj_free
)

# Multi component export
install(TARGETS algo2   EXPORT    MyProj_algoPaid
        DESTINATION ... COMPONENT MyProj_licensed_A
)

install(TARGETS algo3   EXPORT    MyProj_algoPaid
        DESTINATION ... COMPONENT MyProj_licensed_B
)

install(EXPORT MyProj_algoPaid
        DESTINATION ... COMPONENT MyProj_licensed_dev
)

In the single component example above, the export set contains just the algo1 target, which is a
member of the MyProj_free component. The export file is also a member of the MyProj_free
component, so when that component is installed, both the library and the export file will be
installed together. For the multi component example, the export set contains algo2 from the
MyProj_licensed_A component and algo3 from the MyProj_licensed_B component, but the export file is
in its own separate component. Therefore, the targets can be installed with or without the export
file based on whether the MyProj_licensed_dev component is installed.

The multi component export case above highlights an important aspect of how export sets and
components need to be installed. It is an error to install the export file without also installing the
actual targets that the export file points to. Thus, if the user installs the MyProj_licensed_dev
component, then the MyProj_licensed_A and MyProj_licensed_B components must also be installed.

Of the remaining options of the install(EXPORT) command, a number have similar effects as they do
for install(TARGETS). The PERMISSIONS, EXCLUDE_FROM_ALL and CONFIGURATIONS options apply to the
installed export file rather than the targets themselves, but are otherwise equivalent. The
destination used for install(EXPORT) is up to the project, but there are some conventions that may be
useful to follow. The motivations for these are tied to the main way the exported files are used as
part of config packages, so discussion of this topic is delayed to Section 27.8, “Writing A Config
Package File” further below.
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The EXPORT_LINK_INTERFACE_LIBRARIES option is for supporting old pre-3.0 CMake behavior and relates
to link interface libraries. Its use is discouraged and projects are advised to update to at least 3.0 as
a minimum CMake version instead.

There is a very similar form of the install() command specifically for exporting targets for use
with Android ndk-build projects:

install(EXPORT_ANDROID_MK exportName
        DESTINATION dir
        [FILE name.mk]
        [NAMESPACE namespace]
        [PERMISSIONS permissions...]
        [EXPORT_LINK_INTERFACE_LIBRARIES]
        [COMPONENT component]
        [EXCLUDE_FROM_ALL]
        [CONFIGURATIONS configs...]
)

Whereas install(EXPORT) creates a file for other CMake projects to consume,
install(EXPORT_ANDROID_MK) creates an Android.mk file that ndk-build can include. The Android.mk file
provides all the usage requirements attached to the exported targets, so the ndk-build project will be
aware of all the compiler defines, header search paths and so on needed to link to them. The name
of the exported file can be changed with the FILE option, but the name must end with .mk. All other
options have the same behavior as for the install(EXPORT) form. install(EXPORT_ANDROID_MK) requires
CMake 3.7 or later, but projects may want to require at least 3.11 to avoid a bug that affected static
libraries with private dependencies.

In some situations, it may be desirable to have an export file without actually having to do an
install. Example scenarios include sub-builds that compile for a different platform to the main build
or third party projects that cannot be added to the main build directly due to clashing target names,
misuse of variables like CMAKE_SOURCE_DIR and so on. For these sorts of situations, CMake provides the
export() command which writes an export file directly into the build tree:

export(EXPORT exportName
       [NAMESPACE namespace]
       [FILE fileName]
)

The above is essentially equivalent to a simplified install(EXPORT) command, except the export file
is written immediately. The reduced set of available options all have the same meaning as they do
for install(EXPORT), although the fileName can include a path (it must still end in .cmake).

Some other forms of the export() command allow exporting individual targets instead of an export
set. But if export sets are already defined, the above form is likely to be the easiest to use and
maintain, and should therefore be preferred.
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27.4. Installing Imported Targets
With CMake 3.21 or later, the runtime artifacts of imported targets can also be installed. This is
useful when the installed package needs to be fully self-contained, but some of the project’s targets
link to shared libraries provided by external packages.

install(IMPORTED_RUNTIME_ARTIFACTS targets...
        [RUNTIME_DEPENDENCY_SET runtimeSetName]
        [ [entityType]
               [DESTINATION dir]
               [PERMISSIONS permissions...]
               [COMPONENT component]
               [EXCLUDE_FROM_ALL]
               [OPTIONAL]
               [CONFIGURATIONS configs...]
        ]...
)

With this form, entityType can only be one of LIBRARY, RUNTIME, FRAMEWORK or BUNDLE. When building for
Apple platforms, the entire framework or bundle will be installed, including headers, resources,
etc. When building for Windows, only the DLL binary is installed, not any associated import library
(because the latter is a build time rather than a run time artifact). For other platforms, only the
shared library is installed.

All the per-entity-type keywords have the same meaning as for the install(TARGETS...) form. See
Section 27.7.1, “Runtime Dependency Sets” for details on the use of the RUNTIME_DEPENDENCY_SET
keyword.

In the following example, the externally-provided ExtProj::Blah imported target is expected to be
the only dependency of MyApp. Since the location of the ExtProj::Blah target is already known, it can
be installed directly. No runtime dependencies need to be computed, so no runtime dependency set
is required. Section 27.2.2, “RPATH” details have been omitted for brevity, but would be needed for
a more complete example to allow MyApp to find the dependency library at run time.

add_executable(MyApp ...)
find_package(ExtProj REQUIRED)
target_link_libraries(MyApp PRIVATE ExtProj::Blah)

install(TARGETS MyApp)
install(IMPORTED_RUNTIME_ARTIFACTS ExtProj::Blah)

The install(IMPORTED_RUNTIME_ARTIFACTS) command has an important limitation. It will halt with an
error if asked to find the runtime artifacts of an imported target that is a library of unknown type.
Imported targets are often created by Find modules, some of which will define a library as UNKNOWN
rather than SHARED or STATIC. They do this because the actual library type is determined later after
the library target has been created. Such imported targets cannot be used with
install(IMPORTED_RUNTIME_ARTIFACTS).
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27.5. Installing Files
CMake supports a number of ways to install files. Which method is most appropriate for a project
will depend on a few factors. Some methods offer a degree of integration with CMake targets,
others are completely separate. The minimum CMake version supported by the project may limit
which methods can be used. Varying support for frameworks may also be a factor.

27.5.1. File Sets

CMake 3.23 introduced the concept of file sets. A file set is a group of files of a specific type. They are
located under one or more common base directories, allowing relative paths to be derived for each
file. The primary use for file sets is to install them to a location, preserving their relative paths
below that base point.

File sets are associated with a target. They are defined using a different form of the target_sources()
command:

target_sources(targetName
    <PRIVATE|PUBLIC|INTERFACE>
        FILE_SET setName
        [TYPE fileType]
        [BASE_DIRS dir1 [dir2...]]
        [FILES file1 [file2...]]
    ...
)

What differentiates this from the more traditional form presented back in Section 15.2.6, “Source
Files” is the FILE_SET option, which follows immediately after the PRIVATE, PUBLIC or INTERFACE
keyword. The effects of the PRIVATE, PUBLIC and INTERFACE keywords are more complex with this form
and are discussed further below.

The type of files associated with the file set are given by the TYPE option. With CMake 3.23, the only
valid type is HEADERS. Future CMake versions may expand the set of supported types. The TYPE must
always be given, except for the special case where the setName is the same as the type. Since only one
type is currently supported, this means the TYPE can only be omitted if the setName is HEADERS. If using
a different set name, that name is not allowed to begin with a capital letter or underscore. Set
names may only use letters, numbers and underscores.

BASE_DIRS and FILES are closely related. All files must be located under one of the BASE_DIRS. No base
directory is allowed to be a subdirectory of one of the other base directories in the set. This means
every file has one relative path below exactly one base directory.



A common pattern with continuous integration systems is for the build directory
to be a subdirectory immediately below the top of the source tree. If any file from
the build directory will be added to a file set, do not specify the top of the source
tree as a base directory. Doing so would prevent any location in the build directory
from being added as a base directory too, since it would always be a subdirectory
of another base directory.
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Any relative path given to BASE_DIRS or FILES will be interpreted as being relative to
CMAKE_CURRENT_SOURCE_DIR, unless it starts with a generator expression. It is advisable to ensure any
such generator expression evaluates to an absolute path. If BASE_DIRS is omitted in the first
target_sources() call for a given file set, CMAKE_CURRENT_SOURCE_DIR is automatically added to that file
set as a base directory.

somewhere/CMakeLists.txt

target_sources(Colors
    PUBLIC
        FILE_SET HEADERS
        BASE_DIRS
            include
            ${CMAKE_CURRENT_BINARY_DIR}/include
)
add_subdirectory(include/Colors)

somewhere/include/Colors/CMakeLists.txt

include(GenerateExportHeader)
generate_export_header(Colors)

target_sources(Colors
    PUBLIC
        FILE_SET HEADERS
        FILES
            colors.h
            ${CMAKE_CURRENT_BINARY_DIR}/colors_export.h
)

The above example demonstrates a very common structure where headers from both the source
and build directories are part of a target. The first call to target_sources() adds both base
directories. The headers could also have been added in that call, but for this example, it is more
convenient to generate the colors_export.h header down in the include/Colors subdirectory. See
Section 22.5.2, “Specifying Individual Symbol Visibilities” for discussion of the
generate_export_header() command.

For file sets of the HEADERS type, each base directory will be added to the header search path of the
target, its consumers, or both. PRIVATE file sets add each base directory to the target’s INCLUDES
property, wrapped in a $<BUILD_INTERFACE:…> generator expression. INTERFACE file sets add each base
directory to the target’s INTERFACE_INCLUDES property instead, again wrapped in a
$<BUILD_INTERFACE:…> generator expression. PUBLIC file sets populate both target properties. Once a
particular setName has been specified once, all subsequent calls to target_sources() for the same
setName must use the same PRIVATE, PUBLIC or INTERFACE keyword.

The example above takes full advantage of this convenience. The file set’s base directories are
automatically added as header search paths. This means target_include_directories() doesn’t need
to be called to explicitly add them.

While the population of the target’s INCLUDES and INTERFACE_INCLUDES properties is a useful benefit, a
primary advantage of file sets is their install behavior. PUBLIC and INTERFACE file sets can be installed
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as part of the target. When doing so, each file in the set installs to the relative location below their
base directory. This is done with the FILE_SET entity type of the install(TARGETS) command.
Continuing the example:

include(GNUInstallDirs)
install(TARGETS Colors
    RUNTIME ...  # Details omitted for brevity
    LIBRARY ...  #
    ARCHIVE ...  #
    FILE_SET HEADERS
    INCLUDES DESTINATION ${CMAKE_INSTALL_INCLUDEDIR}
)

Since no DESTINATION was specified after FILE_SET, the default destination provided by
CMAKE_INSTALL_INCLUDEDIR for HEADERS file sets will be used. The example then adds that location to the
header search path of consumers of the installed target with the INCLUDES DESTINATION line. The files
in the file set have relative paths Colors/colors.h and Colors/colors_export.h. Assuming
CMAKE_INSTALL_INCLUDEDIR has its default value, the headers will be installed to
include/Colors/colors.h and include/Colors/colors_export.h respectively. Note how even though the
two headers were under different base directories, only their relative paths under their respective
base directories matter for their install destinations.

The above example demonstrates a key advantage of file sets. The common install location of all
headers can be defined in one place, with the default destination typically being appropriate. The
relative path of each file below that point is determined by the file set. Other methods for installing
files typically don’t preserve these relative paths, or they require the relative paths be specified as
part of the install() command.

When installing headers for others to use, those headers should not rely on any other headers
having been included first. It should always be possible to include a header as the first and
potentially only header that a source file brings in with an #include statement. The header should
itself include any other headers it relies on. One can verify this by creating a source file that
includes just that header and trying to compile it.

Manually creating a source file for each installed header would be tedious for large projects. With
CMake 3.24 or later, INTERFACE and PUBLIC file sets of type HEADERS can be verified automatically at
build time by setting the CMAKE_VERIFY_INTERFACE_HEADER_SETS variable to true. This variable is
intended to be set by the developer, not the project. The developer should be in control of whether
to enable header verification or not. File sets belonging to STATIC, SHARED, OBJECT and INTERFACE
libraries will be verified, as will those belonging to executable targets whose ENABLE_EXPORTS
property is set to true (a rarely needed arrangement).

When verification is enabled, CMake will define a <targetName>_verify_interface_header_sets target
for each eligible target that has at least one non-private HEADERS file set. These extra verification
targets are object libraries, each one consisting of generated sources that include just one header
from the file set(s) being verified. The generated #include statement within a source file will use the
path to the header relative to the file set’s base directory under which the header is located, not just
the bare header file name (see the example further below).
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Building one of these extra verification targets confirms that all the headers being verified for that
target do not rely on some other header having been included first.
<targetName>_verify_interface_header_sets is also linked to <targetName>, so the usage requirements
from <targetName> are applied to the verification target. CMake will also define an
all_verify_interface_header_sets target which depends on all the other
<targetName>_verify_interface_header_sets targets. The developer needs to explicitly build the
individual or catch-all verification targets, none of them are part of the default all target. Building
all_verify_interface_header_sets will typically be the most convenient.

add_library(Colors colors.cpp color_mixers.cpp)
target_sources(Colors
    PUBLIC
        FILE_SET installed
        TYPE HEADERS
        BASE_DIRS include
        FILES include/colors.h include/algo/color_mixers.h
    PRIVATE
        FILE_SET internal
        TYPE HEADERS
        BASE_DIRS private
        FILES private/colors_impl.h
)

cmake -DCMAKE_VERIFY_INTERFACE_HEADER_SETS=TRUE ...
cmake --build ... --target all_verify_interface_header_sets

In the above example, CMake would generate a target called Colors_verify_interface_header_sets.
That target would have two C++ source files generated, one including only colors.h and the other
including only algo/color_mixers.h. No source file would be generated for the colors_impl.h header
because it is only in a PRIVATE file set.

By default, all PUBLIC and INTERFACE header sets for a target are eligible for verification. If some
header sets are not suitable, the project can set the INTERFACE_HEADER_SETS_TO_VERIFY target property
to a list of file set names to be verified instead. If none of a target’s header file sets are suitable for
verification, the project can disable it for the target by setting the VERIFY_INTERFACE_HEADER_SETS
target property to false. Thus, the project is responsible for what is eligible for verification, while
the developer controls whether to enable verification globally.

An important limitation of file sets is that they currently cannot be used with framework targets.
CMake 3.23.1 and later issues a fatal error in such cases, but a future CMake release may remove
this constraint.

27.5.2. Explicit Public And Private Headers

Installing files with different relative paths below a base install location is not always necessary.
For some project targets, all headers might be installed to the same directory. For frameworks, this
is the typical arrangement. It allows those headers to be included with the canonical form:
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#include <FrameworkName/somefile.h>

The PUBLIC_HEADER and PRIVATE_HEADER target properties can be used to conveniently handle both the
framework and non-framework case. Section 24.3.3, “Headers” covered these properties in detail,
focusing on their use with frameworks. Files listed in these properties are copied into the
framework at build time. This makes them suitable for use with the Xcode generator, where
frameworks may be signed directly in the build directory without going through an install step. If
the framework is installed, the headers are installed as part of it.

If the target is not a framework, or if building for a non-Apple platform, no special handling is
performed at build time. When the target is installed, files listed in these properties are also
installed, but with their paths removed. This path stripping is another key difference compared to
file sets. The end result is that an #include line like the one shown above can be made to work for
both the framework and non-framework cases like so:

# Headers must be added as sources if using PUBLIC_HEADER
add_library(SomeThings SHARED somewhere/somefile.h ...)

set_target_properties(SomeThings PROPERTIES
    FRAMEWORK      TRUE
    PUBLIC_HEADER  somewhere/somefile.h
)

set(destHeaders ${CMAKE_INSTALL_INCLUDEDIR}/SomeThings)

install(TARGETS SomeThings
    # Apple framework case
    FRAMEWORK ...

    # Non-framework case
    RUNTIME ...
    LIBRARY ...
    ARCHIVE ...
    PUBLIC_HEADER  DESTINATION ${destHeaders} ...
    PRIVATE_HEADER DESTINATION ${destHeaders} ...
)

The PUBLIC_HEADER and PRIVATE_HEADER properties have been supported by CMake for much longer
than file sets. For projects that need to support frameworks, they are the more suitable method for
installing headers.

27.5.3. Simple Files And Programs

When neither of the two preceding approaches are suitable, or for file types other than headers, a
more direct, manual method is available. CMake provides the following form of the install()
command for installing individual files:
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install(<FILES | PROGRAMS> files...
        DESTINATION dir | TYPE type
        [RENAME newName]
        [PERMISSIONS permissions...]
        [COMPONENT component]
        [EXCLUDE_FROM_ALL]
        [OPTIONAL]
        [CONFIGURATIONS configs...]
)

The main difference between install(FILES) and install(PROGRAMS) is that the latter adds execute
permissions by default if PERMISSIONS is not given. This is intended for installing things like shell
scripts which need to be executable, but are not CMake targets. Most of the options are already
familiar and have the same meaning as they do for install(TARGETS). The RENAME option can only be
given if files is a single file. It allows that file to be given a different name when installed.

CMake 3.13 and earlier require the DESTINATION option to be provided, but from CMake 3.14, the TYPE
option can be given instead. Unlike for the install(TARGETS) case, one of the two must be provided,
since CMake cannot infer the file type on its own. The set of supported file types is broader than for
targets, since various non-target files can be installed with this form. The destination associated
with each type is still defined the same way, taking the appropriate variable from GNUInstallDirs or
falling back to a hard-coded default if that variable is undefined. See the CMake documentation of
the install() command for the full set of supported types, variables and fallback values. For the
broadest CMake version support, projects may wish to continue to use DESTINATION rather than TYPE,
but they should still base the destination on the appropriate variable from GNUInstallDirs.

In some situations, a project may want to install the binaries associated with an imported target,
but the install(TARGETS) form does not allow imported targets to be installed directly. One way
around this is to install the file(s) associated with the imported target as ordinary files. The usage
requirements associated with the target won’t be preserved, but it does at least allow the binaries to
be installed. The $<TARGET_FILE:…> generator expression and others like it are particularly useful
when employing this technique. A disadvantage is that the project has to handle all the platform
differences, which is particularly problematic for imported library targets.

# Assume MyImportedExe is an imported target for an
# executable not built by this project
install(PROGRAMS $<TARGET_FILE:MyImportedExe>
    DESTINATION ${CMAKE_INSTALL_BINDIR}
)

27.5.4. Whole Directories

In certain situations, a project may choose to prepare a whole directory structure of files and install
them with that structure preserved. Complex resources or data file hierarchies are one example,
headers spread across multiple levels of subdirectories is another. Where none of the methods of
the preceding sections can be used, or those approaches are inconvenient, installing a prepared
tree of directory contents may be an alternative. Installing directories follows a similar pattern to
files, but the set of supported options is expanded:
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install(DIRECTORY dirs...
        DESTINATION dir | TYPE type
        [FILE_PERMISSIONS permissions... |
         USE_SOURCE_PERMISSIONS]
        [DIRECTORY_PERMISSIONS permissions...]
        [COMPONENT component]
        [EXCLUDE_FROM_ALL]
        [OPTIONAL]
        [CONFIGURATIONS configs...]
        [MESSAGE_NEVER]
        [FILES_MATCHING]
        # The following block can be repeated as needed
        [ [PATTERN pattern | REGEX regex]
          [EXCLUDE]
          [PERMISSIONS permissions...] ]
)

Without any of the optional arguments, for each dirs location the entire directory tree starting at
that point is installed into the destination dir. If the source name ends with a trailing slash, then the
contents of the source directory are copied rather than the source directory itself. The same
comments regarding the DESTINATION and TYPE arguments apply to this form as for installing files.

# Results in somewhere/foo/...
install(DIRECTORY foo DESTINATION somewhere)

# Results in somewhere/...
install(DIRECTORY foo/ DESTINATION somewhere)

The COMPONENT, EXCLUDE_FROM_ALL, OPTIONAL and CONFIGURATIONS options have the same meaning as for
other install() commands. The MESSAGE_NEVER option prevents the log message for each file installed,
but one could argue that this should not be used for consistency with messages for all other
installed contents.

A few options are supported for controlling the permissions of files and directories separately. If
USE_SOURCE_PERMISSIONS is given, each file installed will retain the same permissions as its source.
FILE_PERMISSIONS overrides that and uses the specified permissions instead. If neither option is
given, files will have the same default permissions as if the install(FILE) command had been used.
For directories created by the install, the DIRECTORY_PERMISSIONS option can be used to override the
defaults, which are the same as for files except execute permissions are also added.

The remaining options allow the set of files to be filtered according to one or more wildcard
patterns or regular expressions. Each pattern or regex is tested against the full path to each file and
directory (always specified with forward slashes, even on Windows). Wildcard patterns must
match the end of the full path, not just some portion in the middle, whereas a regex can match any
part of the path and is therefore more flexible. If the pattern or regex is followed by the EXCLUDE
keyword, then all matching files and directories will not be installed. This is a useful way of
excluding just a few specific things from the directory tree, but the reverse can also be
implemented by giving the FILES_MATCHING keyword (once) before any PATTERN or REGEX blocks, which
then means only those files and directories that do match one of the patterns or regexes will be
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installed. If neither FILES_MATCHING nor EXCLUDE is given, then the only effect of the pattern or regex is
to override the permissions with a PERMISSIONS block.

Some examples should help clarify the above points. The following example adapted slightly from
the CMake documentation installs all headers from the src directory and below, preserving the
directory structure.

install(DIRECTORY src/
    DESTINATION include
    FILES_MATCHING
    PATTERN *.h
)

The following installs documentation, skipping over some common hidden files:

install(DIRECTORY doc/ todo/ licenses
    DESTINATION doc
    FILES_MATCHING
    REGEX \\.(DS_Store|svn) EXCLUDE
)

The next example installs sample code and scripts, ensuring the latter have executable permission:

install(DIRECTORY src/
    DESTINATION samples
    FILES_MATCHING
    REGEX "example\\.(h|c|cpp|cxx)"
    PATTERN *.txt
    PATTERN *.sh
      PERMISSIONS OWNER_READ OWNER_WRITE OWNER_EXECUTE
                  GROUP_READ GROUP_EXECUTE
                  WORLD_READ WORLD_EXECUTE
)

The example below omits any FILES_MATCHING or EXCLUDE options so that patterns and regexes only
modify permissions and not filter the list of files and directories:

install(DIRECTORY admin_scripts
    DESTINATION private
    PATTERN *.sh
      PERMISSIONS OWNER_READ OWNER_WRITE OWNER_EXECUTE
                  GROUP_READ GROUP_EXECUTE
)

In all cases, install(DIRECTORY) preserves the directory structure of the source. If the list of sources is
empty, the DESTINATION will still be created as an empty directory.

install(DIRECTORY DESTINATION somewhere/emptyDir)
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27.6. Custom Install Logic
Sometimes simply copying things into the install area isn’t enough. Arbitrary processing may need
to be performed as part of the install, such as rewriting parts of a file or generating content
programmatically. For these cases, CMake supports adding custom logic to the install step.

install(SCRIPT fileName | CODE cmakeCode
        [ALL_COMPONENTS | COMPONENT component]
        [EXCLUDE_FROM_ALL]
)

The CODE form can be used to embed CMake commands directly as a single string, whereas the
SCRIPT form will use include() to read in the script at install time. The COMPONENT and EXCLUDE_FROM_ALL
options have their usual meanings. CMake 3.21 added support for the ALL_COMPONENTS option, which
has the effect of executing the custom script or code for every component in a component-based
install. It is an error to specify both ALL_COMPONENTS and COMPONENT.

With CMake 3.13 or earlier, it is unspecified at what point during installation the custom code runs.
Generally, install() commands are processed in the order they appear in the directory scope, but
this does not extend to install() calls nested within subdirectories. With CMake 3.14 or later, the
order is clearly defined and is controlled by policy CMP0082. When this policy is set to NEW, install
commands are executed in the order they are declared, including accounting for descending into
subdirectories. Consider the following example:

install(CODE [[ message("Main A") ]])
add_subdirectory(subInstall)
install(CODE [[ message("Main B") ]])

subInstall/CMakeLists.txt:

install(CODE [[ message("subdir X") ]])
install(CODE [[ message("subdir Y") ]])

With policy CMP0082 unset or set to OLD, the output during install would likely contain the following:

Main A
Main B
subdir X
subdir Y

With policy CMP0082 set to NEW, the order is clearly defined and the installation output would contain:

Main A
subdir X
subdir Y
Main B

439



Multiple SCRIPT and/or CODE blocks can be given, in which case they will be executed in order. The
rest of the options can only be specified at most once.

install(CODE      [[ message("Starting custom script") ]]
        SCRIPT    myCustomLogic.cmake
        CODE      [[ message("Finished custom script") ]]
        COMPONENT MyProj_Runtime
)

With CMake 3.14 or later, the contents given with CODE or the name of the file provided for SCRIPT
can contain generator expressions (only the file name/path, not the file’s contents). This requires
policy CMP0087 to be set to NEW, but unlike most other policies, it is the policy’s setting at the end of the
directory scope that determines the behavior. The value of the CMP0087 policy when the install()
command is called is not relevant. This is because CMake defers processing the contents until the
end of the directory scope, not immediately as part of the install() command.

27.7. Installing Dependencies
When creating packages, a common desire is to make them self-contained. This can extend to
including not just the project’s own build artifacts, but also external dependencies such as compiler
runtime libraries. CMake provides some features which can potentially make this task easier.

27.7.1. Runtime Dependency Sets

CMake 3.21 added direct support to install() sub-commands for automatically determining
external runtime dependencies and adding them as installed artifacts. The install(TARGETS) and
install(IMPORTED_RUNTIME_ARTIFACTS) sub-commands both support a RUNTIME_DEPENDENCY_SET keyword.
When RUNTIME_DEPENDENCY_SET is given, both sub-commands will add their targets to the named set.
The following sub-command is then used to automatically install all externally provided runtime
artifacts needed by any targets in that set:

install(RUNTIME_DEPENDENCY_SET setName
        [ [entityType]
               [DESTINATION dir]
               [PERMISSIONS permissions...]
               [COMPONENT component]
               [NAMELINK_COMPONENT component]
               [EXCLUDE_FROM_ALL]
               [OPTIONAL]
               [CONFIGURATIONS configs...]
        ]...
        [PRE_INCLUDE_REGEXES regexes...]
        [PRE_EXCLUDE_REGEXES regexes...]
        [POST_INCLUDE_REGEXES regexes...]
        [POST_EXCLUDE_REGEXES regexes...]
        [POST_INCLUDE_FILES files...]
        [POST_EXCLUDE_FILES files...]
        [DIRECTORIES directories...]
)
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If entityType is given, it can only be LIBRARY, RUNTIME or FRAMEWORK, since these are the only type of
runtime artifacts that targets can link to. The details following an entityType apply to the
dependencies that are found, not to the targets in the runtime dependency set. The keywords
following entityType have the same meaning and effect as for install(TARGETS). As usual, entityType
can be omitted and the keywords that follow it will apply to all dependency entity types.

The PRE_..., POST_... and DIRECTORIES arguments are forwarded through to an internal call to
file(GET_RUNTIME_DEPENDENCIES), which is used to compute the dependencies of the targets in the set.
The official documentation for file(GET_RUNTIME_DEPENDENCIES) provides a detailed explanation of
these options, so it is not repeated here. Since file(GET_RUNTIME_DEPENDENCIES) only supports finding
dependencies for Windows, Linux and macOS target platforms, the same limitations apply to
install(RUNTIME_DEPENDENCY_SET). The file(GET_RUNTIME_DEPENDENCIES) command is also known to have
problems that prevent it from being used in common cross-compiling scenarios.

The following is a minimal example showing the steps for installing an application and its external
dependencies to the default install locations:

add_executable(MyApp ...)

install(TARGETS MyApp RUNTIME_DEPENDENCY_SET appDeps ...)
install(RUNTIME_DEPENDENCY_SET appDeps)

The install(TARGETS) sub-command also provides a RUNTIME_DEPENDENCIES option. This combines the
two install() calls, using a random, internally-generated runtime dependency set name:

add_executable(MyApp ...)

install(TARGETS MyApp RUNTIME_DEPENDENCIES ...)

The install(RUNTIME_DEPENDENCY_SET) command searches for all dependencies of targets in the
runtime dependency set. This means it also adds system libraries to the set of dependencies to
install, which will often be undesirable. Even for a simple "hello world" executable, building with
GCC for a typical Linux desktop system may add system libraries to satisfy dependencies like
libc.so.6, libgcc_s.so.1, libm.so.6 and libstdc++.so.6. One can use the PRE_EXCLUDE_REGEXES option to
skip these dependencies:

add_executable(MyApp main.cpp)

install(TARGETS MyApp
    RUNTIME_DEPENDENCY_SET appDeps
)
install(RUNTIME_DEPENDENCY_SET appDeps
    PRE_EXCLUDE_REGEXES
        [[libc\.so\..*]] [[libgcc_s\.so\..*]] [[libm\.so\..*]] [[libstdc\+\+\.so\..*]]
)

A similar situation exists on Windows, where the runtime API sets will be added to the
dependencies. These should not be installed, they are abstractions for libraries that will be
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provided by the operating system. These can be excluded in a similar way (this is just an example,
projects will want to tweak the set of regular expressions to suit their needs):

install(RUNTIME_DEPENDENCY_SET appDeps
    PRE_EXCLUDE_REGEXES
        [[api-ms-win-.*]]
        [[ext-ms-.*]]
        [[kernel32\.dll]]
    POST_EXCLUDE_REGEXES
        [[.*/system32/.*\.dll]]
)

In some cases, a dependency may itself require further libraries. The file(GET_RUNTIME_DEPENDENCIES)
command is able to resolve these recursively, including following RPATH locations where
appropriate. A common problem though is that an RPATH can contain special strings like $ORIGIN.
file(GET_RUNTIME_DEPENDENCIES) does not handle these and will ignore them, which can lead to some
dependencies not being found. A workaround on Linux is to manually specify additional places for
the command to look using the DIRECTORIES keyword of install(RUNTIME_DEPENDENCY_SET). This can
lead to warnings, but will at least allow the operation to succeed.

27.7.2. InstallRequiredSystemLibraries Module

The InstallRequiredSystemLibraries module is intended to provide projects with the details of
relevant run time libraries for the major compilers. It is much more mature than the runtime
dependency set support, but also more restricted in the type of dependencies it can install. The
module provides compiler runtimes for Intel (all major platforms) and Visual Studio (Windows
only). Using the module is fairly straightforward, with projects either choosing to let the module
define the install() commands on its behalf, or it can ask for the relevant variables to be populated
so it can create the necessary commands for itself. In the simplest case, projects can rely on the
defaults, although setting at least the component for the install() commands is recommended.

set(CMAKE_INSTALL_SYSTEM_RUNTIME_COMPONENT MyProj_Runtime)
include(InstallRequiredSystemLibraries)

The default install locations are bin for Windows and lib for all other platforms. This is likely to
match the typical install layout of most projects, but it can be overridden with the
CMAKE_INSTALL_SYSTEM_RUNTIME_DESTINATION variable:

include(GNUInstallDirs)
if(WIN32)
    set(CMAKE_INSTALL_SYSTEM_RUNTIME_DESTINATION ${CMAKE_INSTALL_BINDIR})
else()
    set(CMAKE_INSTALL_SYSTEM_RUNTIME_DESTINATION ${CMAKE_INSTALL_LIBDIR})
endif()

set(CMAKE_INSTALL_SYSTEM_RUNTIME_COMPONENT MyProj_Runtime)
include(InstallRequiredSystemLibraries)
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If a project wants to define the install() commands itself, it needs to set
CMAKE_INSTALL_SYSTEM_RUNTIME_LIBS_SKIP to true before including the module. The project can then
access the list of runtime libraries using the CMAKE_INSTALL_SYSTEM_RUNTIME_LIBS variable:

set(CMAKE_INSTALL_SYSTEM_RUNTIME_LIBS_SKIP TRUE)
set(CMAKE_INSTALL_SYSTEM_RUNTIME_COMPONENT MyProj_Runtime)
include(InstallRequiredSystemLibraries)

include(GNUInstallDirs)
if(WIN32)
    install(FILES ${CMAKE_INSTALL_SYSTEM_RUNTIME_LIBS} DESTINATION ${CMAKE_INSTALL_BINDIR})
else()
    install(FILES ${CMAKE_INSTALL_SYSTEM_RUNTIME_LIBS} DESTINATION ${CMAKE_INSTALL_LIBDIR})
endif()

When using Intel compilers, the default install() commands install more than just the contents of
CMAKE_INSTALL_SYSTEM_RUNTIME_LIBS. They also install some directories not provided to the project
through any documented variable. For those developers interested in exploring whether these
additional contents are desirable or not, search for CMAKE_INSTALL_SYSTEM_RUNTIME_DIRECTORIES in the
module’s implementation to see how these additional contents are constructed.

Some further controls are available when using Visual Studio compilers to install various other run
time components, such as Windows Universal CRT, MFC and OpenMP libraries. The installation of
debug versions of runtime libraries can also be enforced. These are all described clearly in the
module’s documentation, so the interested reader is referred to there for further details.

27.7.3. BundleUtilities And GetPrerequisites

Another pair of modules can also be used to install a project’s run time dependencies. The
BundleUtilities and GetPrerequisites modules can be thought of as forerunners to the run time
dependency set approach. These two modules directly interrogate the installed binaries using
platform-specific tools and recursively copy in missing libraries. These modules can be
considerably more difficult to use and should be avoided where either of the approaches presented
above can be used.

27.8. Writing A Config Package File
The preferred way for an installed project to make itself available for other CMake projects to
consume is to provide a config package file. This file is found by consuming projects using the
find_package() command, as introduced back in Section 25.5, “Finding Packages”. The name of the
config file must match either <packageName>Config.cmake or <lowercasePackageName>-config.cmake. The
former is perhaps a little more common and is consistent with other functionality provided by
CMake discussed further below, but both are otherwise equivalent. The file is expected to provide
imported targets for all the libraries and executables the installed project wants to make available.

The directory into which the config file is installed should be one of the default locations that
find_package() will search if the base point of the install is added to the CMAKE_PREFIX_PATH variable.
This ensures that the config file will be easy to find. From Section 25.5, “Finding Packages”, the full
set of search locations is:
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<prefix>/
<prefix>/(cmake|CMake)/
<prefix>/<packageName>*/
<prefix>/<packageName>*/(cmake|CMake)/
<prefix>/<packageName>*/(cmake|CMake)/<packageName>*/
<prefix>/(lib/<arch>|lib*|share)/cmake/<packageName>*/
<prefix>/(lib/<arch>|lib*|share)/<packageName>*/
<prefix>/(lib/<arch>|lib*|share)/<packageName>*/(cmake|CMake)/
<prefix>/<packageName>*/(lib/<arch>|lib*|share)/cmake/<packageName>*/
<prefix>/<packageName>*/(lib/<arch>|lib*|share)/<packageName>*/
<prefix>/<packageName>*/(lib/<arch>|lib*|share)/<packageName>*/(cmake|CMake)/

On Apple platforms, the following subdirectories may also be searched:

<prefix>/<packageName>.framework/Resources/
<prefix>/<packageName>.framework/Resources/CMake/
<prefix>/<packageName>.framework/Versions/*/Resources/
<prefix>/<packageName>.framework/Versions/*/Resources/CMake/
<prefix>/<packageName>.app/Contents/Resources/
<prefix>/<packageName>.app/Contents/Resources/CMake/

Clearly that’s a large set of candidates, but the best choice depends somewhat on how the project
expects to be installed. When packaging for inclusion in a Linux distribution, the distribution itself
may have policies for where such files are expected to be. Rather than forcing each distribution to
carry its own patches to the project to ensure the config file is installed according to its policies,
projects should ideally provide a way to pass the required details into the build. A cache variable is
ideal for this purpose, since the project can specify a default, but it can be overridden without
having to change the project at all. In the absence of any other constraints, two very simple and
commonly used locations are <prefix>/cmake and <prefix>/lib/cmake/<packageName>, with variations
on the latter being a little friendlier to multi-architecture deployments (see examples below).

For projects that provide an Android.mk file from an install(EXPORT_ANDROID_MK) command, CMake has
no specific convention for its location. A reasonable arrangement would be to use a dedicated ndk-
build directory within the package layout, but it is ultimately up to the project.

27.8.1. Config Files For CMake Projects

For simple CMake projects that use only a single export set and have no dependencies, the
install(EXPORT) command can be used to create a basic config file directly. The install destination of
that file should use the variables defined by the GNUInstallDirs, which simplifies customization by
Linux distributions and other packaging systems.

# Use the export file directly as the package config file (NOT GENERALLY RECOMMENDED)
include(GNUInstallDirs)
install(EXPORT MyProj
    DESTINATION ${CMAKE_INSTALL_LIBDIR}/cmake/MyProj
    NAMESPACE MyProj::
    FILE MyProjConfig.cmake
)
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In practice, the config file is not normally directly generated like this. More typically, a separate
config file is prepared which brings in exported files via include() commands. A slightly expanded
example using two export sets demonstrates the technique:

CMakeLists.txt

include(GNUInstallDirs)
install(EXPORT MyProj_Runtime
    DESTINATION ${CMAKE_INSTALL_LIBDIR}/cmake/MyProj
    NAMESPACE MyProj::
    FILE MyProj_Runtime.cmake
    COMPONENT MyProj_Runtime
)
install(EXPORT MyProj_Development
    DESTINATION ${CMAKE_INSTALL_LIBDIR}/cmake/MyProj
    NAMESPACE MyProj::
    FILE MyProj_Development.cmake
    COMPONENT MyProj_Development
)
install(FILES MyProjConfig.cmake
    DESTINATION ${CMAKE_INSTALL_LIBDIR}/cmake/MyProj
)

MyProjConfig.cmake

include(${CMAKE_CURRENT_LIST_DIR}/MyProj_Runtime.cmake)
include(${CMAKE_CURRENT_LIST_DIR}/MyProj_Development.cmake)

The above MyProjConfig.cmake is still very simple. No externally provided dependencies are needed.
It is also assumed that the runtime and the development components are always both installed.
Consider then a scenario where the runtime component depends on some other package named
BagOfBeans. The config file is responsible for ensuring that the required targets from BagOfBeans are
available, which it typically does by calling find_package(). As a convenience, the find_dependency()
macro from the CMakeFindDependencyMacro module can be used as a wrapper around find_package() to
handle the QUIET and REQUIRED keywords. The find_dependency() macro also has the behavior that if it
fails to find the requested package, processing of the config file ends as though a return() call was
made immediately after the failed find_dependency() call. In practice, this results in simple, clean
specification of dependencies with graceful handling of dependency failures.

MyProjConfig.cmake

include(CMakeFindDependencyMacro)
find_dependency(BagOfBeans)

include(${CMAKE_CURRENT_LIST_DIR}/MyProj_Runtime.cmake)
include(${CMAKE_CURRENT_LIST_DIR}/MyProj_Development.cmake)

Be aware that prior to CMake 3.15, find_dependency() contained an optimization that bypassed the
call if it detected that the requested package had previously been found. This optimization worked
fine unless later calls needed to request a different set of package components. The first time
find_dependency() succeeds, the pre-3.15 behavior effectively locks in the set of components found. If
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later calls to find_dependency() pass a different set of components, they would be ignored. Because
find_dependency() calls are typically made within files that are installed for other projects to use, it
usually cannot be guaranteed what CMake version will ultimately be used. Therefore, if the
dependency supports package components, projects should avoid find_dependency() and call
find_package() directly, handling the QUIET and REQUIRED options themselves. These two options are
passed to the config file as the variables ${CMAKE_FIND_PACKAGE_NAME}_FIND_QUIETLY and
${CMAKE_FIND_PACKAGE_NAME}_FIND_REQUIRED. Always use ${CMAKE_FIND_PACKAGE_NAME} rather than hard-
coding the package name, because there may be upper/lowercase differences.

unset(extraArgs)

if(${CMAKE_FIND_PACKAGE_NAME}_FIND_QUIETLY)
    list(APPEND extraArgs QUIET)
endif()

if(${CMAKE_FIND_PACKAGE_NAME}_FIND_REQUIRED)
    list(APPEND extraArgs REQUIRED)
endif()

find_package(BagOfBeans COMPONENTS Foo Bar ${extraArgs})

If the project wants to support some of its own components being optional, the config file
complexity increases significantly. A set of steps to support this can be summarized as follows:

• Build up the set of components to find. Start with the required and optional components given
to find_package() and add any that are needed to satisfy project dependencies.

• Work out the external dependencies needed by that set of components. Some will be mandatory,
others may be optional, so two separate external dependency sets will need to be derived.

• Find the external dependencies and if any required dependencies fail to load, the project find
operation must also fail and control should return immediately with an appropriate error
message. Missing optional external dependencies should not cause failure or an error message.

• Update the set of project components to remove any that depend on a missing optional external
dependency. This may require further culling of the project component set if the removed
components are themselves dependencies of other components.

• Load the project components that remain.

Projects also need to decide what to do if no components are specified at all. This could be treated
as though all components had been specified as optional components or even as required
components. Another strategy is to load the minimal set of essential components and omit all
others. The most appropriate strategy will depend on the nature of the project’s components. The
set of requested components will be available in the ${CMAKE_FIND_PACKAGE_NAME}_FIND_COMPONENTS
variable and if a component was specified as being required rather than optional,
${CMAKE_FIND_PACKAGE_NAME}_FIND_REQUIRED_<comp> will be true for that component.

Config files should not report errors using message(), they should instead store the error message in
a variable named ${CMAKE_FIND_PACKAGE_NAME}_NOT_FOUND_MESSAGE. This will be picked up by
find_package() which will wrap it with details about where in the project the error was raised.
${CMAKE_FIND_PACKAGE_NAME}_FOUND should also be set to false to indicate failure. This allows
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find_package() to properly implement a call that does not use the REQUIRED keyword. If the package
config file called message(FATAL_ERROR …), the package could never be treated as optional.

Another often neglected but highly recommended practice is to avoid creating any imported targets
before first checking whether the required components can be satisfied. This prevents imported
targets from being created for some components but not others in the event of a failure.

The following example demonstrates how to incorporate the above points. Note the impact of using
if(…IN_LIST…) in this case, which requires additional checking at the beginning to handle CMake
versions 3.2 and older. Projects may wish to avoid using IN_LIST and implement equivalent logic
using list(FIND) instead. IN_LIST is used in the example mostly to raise awareness of its
consequences and to show how to use it safely in config files.

# We use if(...IN_LIST...), make sure it is available
if(CMAKE_VERSION VERSION_LESS 3.3)
    set(${CMAKE_FIND_PACKAGE_NAME}_NOT_FOUND_MESSAGE
        "MyProj requires CMake 3.3 or later"
    )
    set(${CMAKE_FIND_PACKAGE_NAME}_FOUND FALSE)
    return()
endif()

cmake_minimum_required(VERSION 3.3...3.21)

# Work out the set of components to load
if(${CMAKE_FIND_PACKAGE_NAME}_FIND_COMPONENTS)
    set(comps ${${CMAKE_FIND_PACKAGE_NAME}_FIND_COMPONENTS})
    # Ensure Runtime is included if Development was given
    if(Development IN_LIST comps AND NOT Runtime IN_LIST comps)
        list(APPEND comps Runtime)
    endif()
else()
    # No components given, look for all components
    set(comps Runtime Development)
endif()

# Find external dependencies, storing comps in a safer variable name.
# In this example, BagOfBeans is required by the mandatory Runtime component.
set(${CMAKE_FIND_PACKAGE_NAME}_comps ${comps})
include(CMakeFindDependencyMacro)
find_dependency(BagOfBeans)

# Check all required components are available before trying to load any
foreach(comp IN LISTS ${CMAKE_FIND_PACKAGE_NAME}_comps)
    if(${CMAKE_FIND_PACKAGE_NAME}_FIND_REQUIRED_${comp} AND
       NOT EXISTS ${CMAKE_CURRENT_LIST_DIR}/MyProj_${comp}.cmake)
        set(${CMAKE_FIND_PACKAGE_NAME}_NOT_FOUND_MESSAGE
            "MyProj missing required component: ${comp}"
        )
        set(${CMAKE_FIND_PACKAGE_NAME}_FOUND FALSE)
        return()
    endif()
endforeach()
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foreach(comp IN LISTS ${CMAKE_FIND_PACKAGE_NAME}_comps)
    # All required components are known to exist. The OPTIONAL keyword
    # allows the non-required components to be missing without error.
    include(${CMAKE_CURRENT_LIST_DIR}/MyProj_${comp}.cmake OPTIONAL)
endforeach()

A close companion to the config file is its associated version file. If a version file is provided, it must
be in the same directory and have a name conforming to either <packageName>ConfigVersion.cmake or
<lowercasePackageName>-config-version.cmake. The form of the version file name generally follows the
same form as its associated config file (i.e. FooConfigVersion.cmake would go with FooConfig.cmake,
whereas foo-config-version.cmake would typically be paired with foo-config.cmake).

The purpose of the version file is to inform find_package() whether the package meets the specified
version requirements. find_package() sets a number of variables before the version file is loaded:

• PACKAGE_FIND_NAME

• PACKAGE_FIND_VERSION

• PACKAGE_FIND_VERSION_MAJOR

• PACKAGE_FIND_VERSION_MINOR

• PACKAGE_FIND_VERSION_PATCH

• PACKAGE_FIND_VERSION_TWEAK

• PACKAGE_FIND_VERSION_COUNT

These variables contain the version details specified as the version argument to find_package(). If no
such argument was given, then PACKAGE_FIND_VERSION will be empty and the other
PACKAGE_FIND_VERSION_* variables will be set to 0. PACKAGE_FIND_VERSION_COUNT holds the number of
version components that were specified. The rest of the variables have their obvious meaning.

If the find_package() call specified a version range rather than just a single version, the above
version-related variables refer to the lower end of the version range and the following variables
will also be set:

• PACKAGE_FIND_VERSION_RANGE

• PACKAGE_FIND_VERSION_RANGE_MIN

• PACKAGE_FIND_VERSION_RANGE_MAX

• PACKAGE_FIND_VERSION_MIN

• PACKAGE_FIND_VERSION_MIN_MAJOR

• PACKAGE_FIND_VERSION_MIN_MINOR

• PACKAGE_FIND_VERSION_MIN_PATCH

• PACKAGE_FIND_VERSION_MIN_TWEAK

• PACKAGE_FIND_VERSION_MIN_COUNT

• PACKAGE_FIND_VERSION_MAX

• PACKAGE_FIND_VERSION_MAX_MAJOR
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• PACKAGE_FIND_VERSION_MAX_MINOR

• PACKAGE_FIND_VERSION_MAX_PATCH

• PACKAGE_FIND_VERSION_MAX_TWEAK

• PACKAGE_FIND_VERSION_MAX_COUNT

CMake 3.19 or later will also set PACKAGE_FIND_VERSION_COMPLETE if a version or version range was
given. This will be the exact version specification as provided to find_package().

The version file needs to check the requested details against the actual version of the package and
then set the following variables:

PACKAGE_VERSION

This is the actual package version, which is expected to be in the usual major.minor.patch.tweak
format (not all components are required).

PACKAGE_VERSION_EXACT

Only set to true if the package version and the requested version are an exact match.

PACKAGE_VERSION_COMPATIBLE

Only set to true if the package version is compatible with the requested version details. It is up to
the package itself how it determines compatibility. For projects that follow semantic versioning
principles as covered back in Section 22.3, “Shared Library Versioning”, the variable would be
set according to the following rules:

• If any version component is missing, treat it as 0.

• If the major version components are different, the result is false.

• If the major version components are the same, the result is false if the minor version
component of the package is less than the one required.

• If the major and minor version components are the same, the result is false if the patch
version component of the package is less than the one required.

• If the major, minor and patch version components are the same, the result is false if the
tweak version component of the package is less than the one required.

• For all other cases, the result is set to true.

PACKAGE_VERSION_UNSUITABLE

Only set to true if the version file needs to indicate that the package cannot satisfy any version
requirement (basically the package doesn’t have a version number, so any version requirement
should be treated as a failure).

The find_package() command will use this information to pass back the following variables to its
caller, all of which are analogous to the similar ones it passed in to the version file (the returned
values here will be the actual version of the package, not the version requirements passed to the
find_package() command):

• <packageName>_VERSION

• <packageName>_VERSION_MAJOR
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• <packageName>_VERSION_MINOR

• <packageName>_VERSION_PATCH

• <packageName>_VERSION_TWEAK

• <packageName>_VERSION_COUNT

While projects are free to manually create a version file, a much simpler and most likely more
robust approach is to use the write_basic_package_version_file() command provided by the
CMakePackageConfigHelpers module:

write_basic_package_version_file(outFile
    [VERSION requiredVersion]
    COMPATIBILITY compat
    [ARCH_INDEPENDENT]   # Requires CMake 3.14 or later
)

If a VERSION argument is given, the requiredVersion is expected to be in the usual
major.minor.patch.tweak form, but only the major part is compulsory. If the VERSION option is not
given, the PROJECT_VERSION variable is used instead (as set by the project() command). The
COMPATIBILITY option specifies a strategy for how the compatibility should be determined. The compat
argument must be one of the following values (be aware that most of the names are a little
misleading):

AnyNewerVersion

The package version must be equal to or greater than the specified version. Version ranges will
be supported if CMake 3.19.0 or later is being used to write out the package version file.

SameMajorVersion

The package version must be equal to or greater than the specified version and the major part of
the package version number must be the same as the one in the requiredVersion. This
corresponds to the same compatibility requirements as semantic versioning. Note that this
strategy will only support version ranges if CMake 3.19.2 or later is being used to write out the
package version file.

SameMinorVersion

The package version must be equal to or greater than the specified version and the major and
minor parts of the package version number must be the same as those in the requiredVersion.
This choice is only supported with CMake 3.11 or later. This strategy will also only support
version ranges if CMake 3.19.2 or later is being used to write out the package version file.

ExactVersion

The major, minor and patch parts of the package version number must be the same as those in
the requiredVersion. The tweak part is ignored. This strategy is particularly misleading and
discussions are in progress to potentially deprecate it in favor of a new, clearer strategy. It does
not support version ranges.

The ARCH_INDEPENDENT option (available with CMake 3.14 or later) indicates that the package is
architecture-independent. Normally, CMake will check that the package was built for the same
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architecture, typically by verifying that the package’s binaries were built for the same pointer size,
but specifying the ARCH_INDEPENDENT option disables the check.

Architecture-independent packages usually contain no binaries, since those are normally specific to
a particular architecture (universal binaries supporting multiple architectures being a notable
exception). Such packages often contain documentation, scripts, images and various other non-
executable files. A package consisting of a header-only library could take advantage of this option to
create a single package for all architectures.

The CMakePackageConfigHelpers module also provides one other command that may sometimes be
useful. The configure_package_config_file() command is intended to make it easier for projects to
define a relocatable package by providing some path handling conveniences. It is not typically
needed for most projects, but when the package config file needs to refer to installed files relative
to the base install location rather than the location of the config file itself, it provides a simpler way
to do so robustly. The command has the following form:

configure_package_config_file(inputFile outputFile
    INSTALL_DESTINATION path
    [INSTALL_PREFIX prefix]
    [PATH_VARS var1 [var2...] ]
    [NO_SET_AND_CHECK_MACRO]
    [NO_CHECK_REQUIRED_COMPONENTS_MACRO]
)

The command should be used as a replacement for configure_file() to copy a
<Project>Config.cmake.in file with substitutions. It will replace variables of the form
@PACKAGE_<somevar>@ with the contents of <somevar> converted to an absolute path. The original
contents are treated as being relative to the base install location. Each variable to be transformed in
this way needs to be listed with the PATH_VARS option. For this functionality to work, the input file
must have @PACKAGE_INIT@ at or near the top before any use of the variables being replaced (see
example further below).

The INSTALL_DESTINATION is the directory into which outputFile will be installed, relative to the
INSTALL_PREFIX. When INSTALL_PREFIX is omitted, it defaults to CMAKE_INSTALL_PREFIX, which is usually
the desired value. The INSTALL_PREFIX would normally only be provided if the outputFile will be used
directly in a build tree rather than being installed (i.e. it is used in conjunction with an
export(EXPORT) command).

The NO_SET_AND_CHECK_MACRO and NO_CHECK_REQUIRED_COMPONENTS_MACRO options prevent @PACKAGE_INIT@
from defining some helper functions. Before imported targets became the preferred way to provide
package targets, variables needed to be used. To facilitate this, a set_and_check() macro was
provided by configure_package_config_file() which would only set a variable if it was not already
defined. Projects providing imported targets should not need this macro and can add the
NO_SET_AND_CHECK_MACRO to prevent it being defined.

An example should help clarify the typical usage of this command. The package config file would be
generated from an input file such as the following:
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MyProjConfig.cmake.in

@PACKAGE_INIT@

list(APPEND CMAKE_MODULE_PATH "@PACKAGE_cmakeModulesDir@")
# Include the project's export files, etc...

This would then be transformed by the project into the final package config file, including an
appropriate replacement for the cmakeModulesDir variable:

CMakeLists.txt

include(GNUInstallDirs)
include(CMakePackageConfigHelpers)

# This will be used to replace @PACKAGE_cmakeModulesDir@
set(cmakeModulesDir cmake)

configure_package_config_file(
    MyProjConfig.cmake.in MyProjConfig.cmake
    INSTALL_DESTINATION ${CMAKE_INSTALL_LIBDIR}/cmake/MyProj
    PATH_VARS cmakeModulesDir
    NO_SET_AND_CHECK_MACRO
    NO_CHECK_REQUIRED_COMPONENTS_MACRO
)

install(FILES ${CMAKE_CURRENT_BINARY_DIR}/MyProjConfig.cmake
    DESTINATION ${CMAKE_INSTALL_LIBDIR}/cmake/MyProj
    COMPONENT ...
)

In the past when all details about a package were provided through variables, it was customary to
check whether all required variables were set at the end of the config file before returning. A
macro called check_required_components() was defined for this purpose, but projects that provide
imported targets should perform these checks themselves. The imported targets should only be
created if all required components will be found. Otherwise, a failed find_package() call will still
leave behind targets, which would interfere with any later call to find_package() for the same
package name but with different arguments (e.g. to search in different locations). This makes the
check_required_components() macro largely redundant.

27.8.2. Config Files For Non-CMake Projects

The config file mechanism isn’t restricted to projects built by CMake. It can also be used for non-
CMake projects. While CMake projects can make use of CMake features to more easily create the
required files, non-CMake projects have to define them manually. For such projects, it is important
to keep the files simple, since they will likely be maintained by people less familiar with CMake.

A good first step is to initially forgo component support and just make the package available as a
simple set of imported targets. For projects that only need to provide libraries, the following
example shows a fairly basic config file that should serve as a good starting point. It includes a few
different types of libraries for illustration purposes.
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# Compute the base point of the install by getting the directory of
# this file and moving up the required number of directories
set(_IMPORT_PREFIX "${CMAKE_CURRENT_LIST_DIR}")
foreach(i RANGE 1 NumSubdirLevels)                                  ①
    get_filename_component(_IMPORT_PREFIX "${_IMPORT_PREFIX}" PATH)
    if(_IMPORT_PREFIX STREQUAL "/")
        set(_IMPORT_PREFIX "")
        break()
    endif()
endforeach()

# Use a prefix specific to this project
set(projPrefix MyProj)

# Example of defining a static library imported target
add_library(${projPrefix}::MyStatic STATIC IMPORTED)
set_target_properties(${projPrefix}::MyStatic PROPERTIES
    IMPORTED_LOCATION "${_IMPORT_PREFIX}/lib/libMyStatic.a"         ②
)

# Example of defining a shared library imported target with version details
add_library(${projPrefix}::MyShared SHARED IMPORTED)
set_target_properties(${projPrefix}::MyShared PROPERTIES
    IMPORTED_LOCATION "${_IMPORT_PREFIX}/lib/libMyShared.so.1.6.3"  ③
    IMPORTED_SONAME   "libMyShared.so.1"                            ④
)

# Another shared library example, this time for Windows
add_library(${projPrefix}::MyDLL SHARED IMPORTED)
set_target_properties(${projPrefix}::MyDLL PROPERTIES
    IMPORTED_LOCATION "${_IMPORT_PREFIX}/bin/MyShared.dll"
    IMPORTED_IMPLIB   "${_IMPORT_PREFIX}/lib/MyShared.lib"          ⑤
)

① NumSubdirLevels is how many directories this config file is below the base install point. For
example, if the file is at lib/cmake/Foo/FooConfig.cmake, then NumSubdirLevels should be 3.

② The path to the library relative to the base install point (provided by _IMPORT_PREFIX).

③ The example shows how the shared library version number would be placed at the end of the
file name for platforms such as Linux. This is obviously going to be platform specific.

④ For platforms that support sonames, IMPORTED_SONAME is essentially the name that will be
embedded in binaries that link to this target. On Apple platforms, this would typically have a
form that includes @rpath and potentially some subdirectory components.

⑤ For Windows, the location of the import library associated with the DLL must also be provided
for anything to be able to link to it. If the intention is only to provide the DLL (e.g. so it is
available at run time but not for directly linking against), the IMPORTED_IMPLIB can be omitted.

The above is quite basic and obviously the various IMPORTED_… properties would need to be tailored
for each platform, but the non-CMake project is free to use whatever mechanisms it finds
convenient to produce the installed config file’s contents. For added robustness, each imported
library should only be added if it does not already exist, as the following demonstrates:
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if(NOT TARGET ${projPrefix}::MyStatic)
    add_library(${projPrefix}::MyStatic STATIC IMPORTED)
    set_target_properties(${projPrefix}::MyStatic PROPERTIES
        IMPORTED_LOCATION "${_IMPORT_PREFIX}/lib/libMyStatic.a"
    )
endif()

27.9. Executing An Install
An install is typically done as part of creating a final package, but it can also be run on its own.
Developers may wish to check the set of files included in an install and where they get installed to,
so installing to a temporary staging area can be desirable. Section 27.1.2, “Base Install Location”
already discussed how to do this by building the install target (or INSTALL for some generators).

CMake 3.15 added support for invoking an install directly without going through the build tool. To
make use of this capability, the --install option can be given as the first argument on the cmake
command line, followed by the top of the build directory for the CMake project to install. Other
command-line arguments can be given to control where to install to, which components to install,
which build configuration to use (in the case of multi-configuration generators) and whether to
perform stripping before carrying out the install. The ability to specify these additional pieces of
information is one of the main reasons to use this method as opposed to building the install build
target. The following examples demonstrate the convenience and flexibility:

Check development component only with a specific build config

cmake --install   /path/to/build/dir    \
      --prefix    /path/to/staging/area \
      --config    Debug                 \
      --component MyProj_Development

Install to a mounted device directory for testing, stripping binaries to reduce install size

cmake --install /path/to/build.dir \
      --prefix  /mnt/rpi4/staging  \
      --strip

It is also possible to do most of the above using cmake -P script mode with the cmake_install.cmake file
at the top of the build directory, but it is less convenient and lacks a documented equivalent for
--strip.

27.10. Recommended Practices
Installation is a non-trivial topic that requires good planning and an understanding of each
intended deployment platform. It is common for a project to initially focus on only a subset of the
intended set of platforms, but delaying any planning for installation and deployment can result in
having to deal with unexpected complexities and platform differences late in a project’s release
cycle. Projects should have a clear understanding of the installed file and directory structure, as
well as the full set of packaging scenarios that will eventually be supported. This can strongly
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influence project structure, including such fundamental things as how functionality is split
between libraries and what symbols need to be visible in the binaries as a result.

Where possible, projects should prefer to follow standard package layouts. The GNUInstallDirs
module greatly simplifies that task, even for packages on Windows. CMake 3.14 added support for
default install locations based on the type of file or target being installed. Those defaults are based
on the variables defined by GNUInstallDirs, so there is increasing momentum toward encouraging
projects to use the package layout facilitated by that module. If a standard layout is not suitable,
projects may still want to at least consider if a common directory structure can be used across all
platforms to simplify application development.

Projects are strongly encouraged to make their packages relocatable. Unless the package needs to
be installed to a very specific location, relocatable packages have significant advantages. They offer
much greater flexibility to end users. They more easily support a wide range of packaging systems.
Relocatable packages are also typically easier to test during development.

The selection of the default install base point is platform-specific. The defaults provided by CMake
are not always ideal, but package creation often overrides them anyway. Avoid including a package
version number in the install base path, especially for relocatable packages. Prefer to leave that
decision up to the user doing the install, since different usage scenarios call for different directory
structures which might not be compatible with a version-specific path. Projects should also prefer
to follow appropriate standards where relevant, such as the Filesystem Hierarchy Standard for
Linux (also generally appropriate for most other Unix-based platforms except Apple). If testing out
installs locally, consider using the cmake --install feature available with CMake 3.15 or later for its
improved flexibility and ease of use.

When defining target usage requirements, use the $<BUILD_INTERFACE:…> generator expression to
properly express the header search paths to be used by the build. For any library target that will be
installed, prefer to set the header search path using the INCLUDES DESTINATION section of the
install(TARGETS) command rather than using $<INSTALL_INTERFACE:…> generator expressions on the
target itself. This can be more convenient and more concise. Ensure that the INCLUDES DESTINATION
uses a relative path that is relative to the install base point.

add_library(Foo ...)

# Not ideal: embeds build paths in installed export files
target_include_directories(Foo
    PUBLIC ${CMAKE_CURRENT_BINARY_DIR}
)

# Better: separate paths for build and install, with the latter added
# as part of the install() command rather than with the target
include(GNUInstallDirs)
target_include_directories(Foo
    PUBLIC $<BUILD_INTERFACE:${CMAKE_CURRENT_BINARY_DIR}>
)
install(TARGETS Foo ...
    INCLUDES DESTINATION ${CMAKE_INSTALL_INCLUDEDIR}
)
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If installing headers, choose the most appropriate method based on the project’s constraints. If the
project does not define framework targets, and it can use CMake 3.23 or later for its minimum
version, file sets should be preferred. They support preservation of a relative directory structure
and provide convenient handling of include directories within the build. With CMake 3.24 or later,
the developer can also enable header file set verification by setting the
CMAKE_VERIFY_INTERFACE_HEADER_SETS cache variable to true (the project should not set this, it is a
developer control). If the project does define framework targets, file sets cannot be used. The
PUBLIC_HEADER and PRIVATE_HEADER target properties are the more typical way of handling headers
when frameworks are involved. These properties have mature support, but they do not preserve
relative directory structures. For all other cases, headers can be installed more generically using
install(FILES) or install(DIRECTORY).

Always assign a COMPONENT to each installed entity and use project-specific component names. When
the project is used as part of a large project hierarchy, this allows a parent project to control how
child components should be treated. A good pattern to follow is <ProjectName>_<ComponentName> (e.g.
MyProj_Runtime). When installing export sets, use the same project name as the namespace, with two
colons appended (e.g. MyProj::). A similar pattern can be used for target names, using a real target
name like MyProj_Algo with an exported name MyProj::Algo. The EXPORT_NAME target property can be
used to customize the name appended to the namespace to construct the full exported name for the
target. Following these naming conventions will make working with the installed project more
intuitive. It will also prevent name clashes with other projects’ packages.

If the project provides libraries that other projects are expected to link against, prefer to define
separate components for runtime support and for development. This allows a parent hierarchical
project to re-use the runtime component to package up just the shared libraries and things needed
for execution, and avoid packaging development-only entities like static libraries, header files and
so on. It also potentially reduces the work of package maintainers (e.g. for Linux distributions)
where packages are often split up into runtime and development packages.

CMake 3.22 added the ability to use symlinks instead of copying files at install time. The feature is
controlled by the CMAKE_INSTALL_MODE environment variable and affects the behavior of the
file(INSTALL) and install() commands. While there are some scenarios where this functionality
may be useful, it comes with a number of caveats and can easily be misused. Consider carefully the
caveats mentioned in the CMAKE_INSTALL_MODE documentation before using this feature.

In package config files, always ensure no imported targets are created unless the find_package() call
is going to be successful. This means all required components must be available and all required
target dependencies should exist before creating any imported targets. To bring in the
dependencies, use find_dependency() from the CMakeFindDependencyMacro module rather than calling
find_package() from within a package config file, unless the dependency supports package
components. If calling find_package() to bring in a dependency, ensure the QUIET and REQUIRED
options are passed through correctly to the dependency’s find_package() call. Also use the
appropriate variables to define success and failure, and to report an error message back to the
original find_package() command rather than calling message(FATAL_ERROR…) or similar.

If a project wants to include all runtime dependencies in its packages, CMake provides a number of
ways to find and install them automatically. That said, most projects will be better off spending the
effort to work out their actual dependencies and install them directly. This will ensure that the
build process is more predictable and reliable.
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If the project does want to use one of the automatic dependency find-and-install methods, the
functionality offered by the install(IMPORTED_RUNTIME_ARTIFACTS) and install(RUNTIME_DEPENDENCY_SET)
commands is the most advanced and most actively developed. It is also the least mature and does
have known issues (see Section 27.4, “Installing Imported Targets” and Section 27.7.1, “Runtime
Dependency Sets” for details). If the project is not affected by those deficiencies or is able to use
suitable workarounds, this method should still be considered the preferred choice.

The InstallRequiredSystemLibraries module is suitable if only compiler runtime dependencies need
to be automatically found and installed. This module allows the project to avoid having to duplicate
all the complex logic for finding the appropriate files for different Visual Studio versions, SDKs,
toolkit selection, etc. If support for Intel compilers is important, understand the various libraries
that this module installs by default and decide whether these libraries are all needed. Projects using
OpenMP in particular will most likely want to use the default install commands rather than define
their own so that the required libraries do not have to be manually defined.

Avoid the BundleUtilities and GetPrerequisites modules. They are difficult to use and have known
problems that are unlikely to be fixed. Neither module is being actively developed.
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Chapter 28. Packaging
The creation of release packages is an area where developers frequently feel out of their depth. The
various packaging systems, platform differences and conventions can present a very steep learning
curve for anyone wanting to master the art of creating robust, well presented packages across
multiple platforms. Each package management system invariably uses its own unique form of
input specification for what each package contains, how it should be installed, how package
components relate to each other, how to integrate with the operating system and so on. Differences
between platforms and even between different distributions of the same platform are not always
obvious and are frequently only learned after experiencing problems from an unforeseen behavior
or constraint (Windows path length restrictions and differing conventions on Linux for system
library directory names are great examples of this).

Despite all these differences, there is a substantial degree of commonality in terms of the packaging
concepts used. While each system or platform might implement things differently, much of their
packaging functionality can be described in a fairly generic way. CMake and CPack take advantage
of this and present a well defined interface for specifying these common aspects, which are then
translated into the necessary package system input files and commands to produce packages in
various formats. This provides a much shorter learning curve for developers, resulting in a
relatively quick path to producing packages across the platforms of interest.

CMake and CPack not only abstract away the common aspects of packaging, they also simplify the
use of many packager-specific features as well. By providing a simpler interface to these features,
CMake and CPack enable developers to exploit more advanced packaging features in a more
familiar way. For the most part, this is done by setting a few relevant variables or calling functions
with the appropriate arguments, all of which are defined in the documentation for the CPack
module and the various package generators.

CPack packaging is implemented internally as one or more installs to a staging area which is then
used to produce the final package(s). These installs are controlled by calls to the install()
command, which were covered in depth in the preceding chapter. This chapter now presents the
second half of that process, describing the variables and commands that specify the package meta
data and configuration of the packages themselves.

28.1. Packaging Basics
Setting up and executing packaging is handled in a similar way to testing. The cpack command line
tool reads an input file and produces the appropriate package(s) based on that file’s contents. If no
input file is explicitly given on the command line, cpack will use CPackConfig.cmake in the current
directory. This input file is most commonly produced by CMake through the inclusion of the CPack
module, just like how including the CTest module generates the input file for ctest. Projects can
customize the content of the generated packaging input file through CMake variables and
commands.

The CPack module enables a few default package formats based on the target platform. The set of
package formats to be created can be overridden on the cpack command line with the -G option. If
multiple formats should be built, they can be provided as a semicolon-separated list like so:
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cpack -G "ZIP;RPM"

If the CMake project was configured to use a multi configuration generator like Xcode, Visual Studio
or Ninja Multi-Config, cpack needs to know which configuration’s executables it should package up.
This is done by giving a -C option to cpack (the -C option is ignored by single configuration CMake
generators):

cpack -C Release

The cpack command supports a few other options, but -G and -C are two of the more commonly
used. Most other details are typically provided through the input file. This is in part because instead
of invoking cpack directly, developers can build the package build target which will first build the
default all target and then invoke cpack with minimal options. It is therefore more convenient for
the project to ensure the cpack input file defines all required settings. CMake will automatically
create the package target if the top of the build tree contains a file called CPackConfig.cmake.

The easiest way to create the cpack input file is by including the CPack module, which should only be
done once for the entire CMake project. At the point where the CPack module is included, the
CPackConfig.cmake file is written to the top of the build tree (i.e. CMAKE_BINARY_DIR). The call to
include(CPack) is best performed at or near the end of the top level CMakeLists.txt file, either directly
or through a subdirectory’s CMakeLists.txt. Making the inclusion conditional on whether the project
has a parent also ensures the project only tries to define packaging if it is the top level project.

cmake_minimum_required(VERSION 3.0)
project(MyProj)

# ...Define targets, add subdirectories, etc...

# End of the CMakeLists.txt file
if(CMAKE_SOURCE_DIR STREQUAL CMAKE_CURRENT_SOURCE_DIR)
    # include(CPack) will happen inside the following call
    add_subdirectory(packaging)
endif()

While defaults are provided for most aspects of the packaging configuration, these defaults are not
always appropriate. Most projects will want to set some basic details before including the CPack
module to provide better alternatives. In particular, it is recommended that the following variables
be explicitly set before calling include(CPack):

CPACK_PACKAGE_NAME

The package name is one of the more fundamental pieces of metadata. It is used as part of the
default file name for packages, it may appear in various places within UI installers and it will
most likely be the name that end users will use to refer to the project. Ideally, it would not
contain spaces, since spaces are replaced by other characters in some contexts. If this variable is
not explicitly set, CMAKE_PROJECT_NAME is used as a default.
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CPACK_PACKAGE_DESCRIPTION_SUMMARY

This variable provides a short sentence of no more than a few words about the project. It should
be suitable for being shown in lists of packages where space is restricted and it should give end
users an idea of what the package is about. It may also be shown to the user in other situations
and is only used for informational purposes. From CMake 3.9, the default value is taken from
CMAKE_PROJECT_DESCRIPTION, whereas for earlier CMake versions the default is an empty string.

CPACK_PACKAGE_VENDOR

The vendor is usually only used for information rather than affecting package structure or
behavior, but it is helpful for end users if it is set appropriately. The default value of Humanity is
not generally suitable for anything other than acting as a placeholder until it is set properly.
Prefer to use a real company or organization name rather than a domain name.

CPACK_PACKAGE_VERSION_MAJOR, CPACK_PACKAGE_VERSION_MINOR, CPACK_PACKAGE_VERSION_PATCH

These are used to construct the overall package version and may appear as part of package file
names, in package metadata and in installer UIs. The version information is a critical part of
packaging that projects should always explicitly set. The default values of 0, 1 and 1 respectively
are only helpful as placeholders and should never be relied upon for formal release packages. A
convenient pattern is to use the version details provided to the project() command:

set(CPACK_PACKAGE_VERSION_MAJOR ${PROJECT_VERSION_MAJOR})
set(CPACK_PACKAGE_VERSION_MINOR ${PROJECT_VERSION_MINOR})
set(CPACK_PACKAGE_VERSION_PATCH ${PROJECT_VERSION_PATCH})

cpack will automatically populate CPACK_PACKAGE_VERSION based on these three variables, but this
only occurs when cpack runs, so CPACK_PACKAGE_VERSION won’t yet be populated during CMake
processing. From CMake 3.12, the default values for these variables are taken from the
CMAKE_PROJECT_VERSION_MAJOR, CMAKE_PROJECT_VERSION_MINOR and CMAKE_PROJECT_VERSION_PATCH
variables instead, which were only added in CMake 3.12. These variables are set by the VERSION
details of the project() command in the top level CMakeLists.txt file, so they are much more likely
to provide sensible defaults than the fairly arbitrary pre-3.12 values of 0, 1 and 1. That said,
relying on these variables to provide defaults assumes that the project is always the top level
project, which might not always be the case. Therefore, it is safer to always explicitly set them to
what the project really wants.

CPACK_PACKAGE_INSTALL_DIRECTORY

Some packagers will append this to the base install point to create a package specific directory.
Its default value can vary, but may include the package name and version. The presence of the
version number in the default value is often undesirable, such as for installers that are able to
upgrade a project in-place. To ensure better default behavior, projects may want to set this to the
same as CPACK_PACKAGE_NAME.

CPACK_VERBATIM_VARIABLES

This variable should always be explicitly set to true. It ensures all contents written to the cpack
configuration file are properly escaped. The default value is false only to preserve backward
compatibility with earlier CMake versions, but the old behavior can lead to an ill-formed
configuration file and should not be used.
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More variables will often be set to improve the end user experience, especially for UI installers:

CPACK_PACKAGE_DESCRIPTION_FILE

This is the name of a text file containing a slightly longer description of the project. The contents
of the file may be shown in introductory screens of an installer or added to package meta data.
Always use an absolute path to the file. As an alternative, the description can be provided
directly as the contents of a variable named CPACK_PACKAGE_DESCRIPTION. While this was not
documented for CMake 3.11 or earlier, it has been supported even from early versions of CMake.

CPACK_RESOURCE_FILE_WELCOME

Some installers show a welcome message in their opening screen. This variable specifies a file
name whose contents should be shown for such cases. If it is not set, then for those installers
that show a welcome message, CPack provides a default which acts as a placeholder, but it is a
relatively poor substitute not suitable for official releases. Projects should always set this if
distributing an installer that shows a welcome screen. Always use an absolute path to the file.

CPACK_RESOURCE_FILE_LICENSE

Most UI installers present a license page to the user and may ask them to accept the license
before continuing. The text shown for the license is taken from the file named by this variable.
Some generic placeholder text may be used if the variable is not set, so projects are advised to
provide their own more suitable license details. Always use an absolute path to the file. See
Section 28.4.5, “DragNDrop” for discussion of deprecated behavior related to this variable.

CPACK_RESOURCE_FILE_README

Some UI installers provide a separate page showing the contents of the file named by this
variable. It serves as an opportunity to give the user some information before they proceed with
the installation and by default has generic but typically unsuitable text. Projects should prefer to
give a file with some more appropriate content via this variable if they intend to create installers
which show such pages. Always use an absolute path to the file.

CPACK_PACKAGE_ICON

This variable may also be commonly set, but be aware that most of the package generators have
their own different requirements for the format and use of icons within the package and
associated places. Some generators ignore this variable, others use it in different ways.

# Example that follows the above guidelines
set(CPACK_PACKAGE_NAME                MyProj)
set(CPACK_PACKAGE_VENDOR              MyCompany)
set(CPACK_PACKAGE_DESCRIPTION_SUMMARY "CPack example project")
set(CPACK_PACKAGE_INSTALL_DIRECTORY   ${CPACK_PACKAGE_NAME})
set(CPACK_PACKAGE_VERSION_MAJOR       ${PROJECT_VERSION_MAJOR})
set(CPACK_PACKAGE_VERSION_MINOR       ${PROJECT_VERSION_MINOR})
set(CPACK_PACKAGE_VERSION_PATCH       ${PROJECT_VERSION_PATCH})
set(CPACK_VERBATIM_VARIABLES          YES)
set(CPACK_PACKAGE_DESCRIPTION_FILE    ${CMAKE_CURRENT_LIST_DIR}/Description.txt)
set(CPACK_RESOURCE_FILE_WELCOME       ${CMAKE_CURRENT_LIST_DIR}/Welcome.txt)
set(CPACK_RESOURCE_FILE_LICENSE       ${CMAKE_CURRENT_LIST_DIR}/License.txt)
set(CPACK_RESOURCE_FILE_README        ${CMAKE_CURRENT_LIST_DIR}/Readme.txt)
include(CPack)
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To facilitate running cpack with no arguments and the use of the package build target, the
CPACK_GENERATOR variable should be set to the desired package formats. If not set, a fairly
conservative default set of generators will be used. Since not all formats are supported or
appropriate on all platforms, setting this variable requires logic to specify only those formats that
make sense. The following example selects one generic archive format and one native package
format for the target platform (if identified):

if(WIN32)
    set(CPACK_GENERATOR ZIP WIX)
elseif(APPLE)
    set(CPACK_GENERATOR TGZ productbuild)
elseif(CMAKE_SYSTEM_NAME STREQUAL "Linux")
    set(CPACK_GENERATOR TGZ RPM)
else()
    set(CPACK_GENERATOR TGZ)
endif()

The CPack module also defines the necessary details that allow a source package to be produced. It
creates a CPackSourceConfig.cmake file which can be used instead of CPackConfig.cmake and when the
project is configured to use a Makefile or Ninja generator, a package_source build target is defined as
well. Producing the source package is relatively straightforward, with either of the following two
commands achieving the same thing.

# All build generators
cpack -G TGZ --config CPackSourceConfig.cmake

# Makefile and Ninja build generators only
cmake --build . --target package_source

The source package contains the entire source directory tree. The CPACK_SOURCE_IGNORE_FILES variable
can be used to filter out parts of the source tree, holding a list of regular expressions that each full
file path will be compared against. All matching files will be omitted from the source package. The
default value of this variable ignores repository directories like .git, .svn, etc. as well as some
common temporary files. If a project overrides CPACK_SOURCE_IGNORE_FILES, it will need to ensure it
also specifies any such relevant patterns. To avoid problems with escaping and quoting in the
regular expressions, it is strongly recommended to set CPACK_VERBATIM_VARIABLES to true.

set(CPACK_VERBATIM_VARIABLES YES)

set(CPACK_SOURCE_IGNORE_FILES
    /\\.git/
    \\.swp
    \\.orig
    /CMakeLists\\.txt\\.user
    /privateDir/
)
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28.2. Components
If a project defines no components in any of its install() commands, then all package generators
will produce a single monolithic package that contains all installed contents. When a project does
define components, it provides more flexibility for how it can be packaged. Relationships can also
be specified between components, allowing hierarchical component structures to be defined and
dependencies between them to be enforced at install time. Each package generator makes use of
these component details in different ways, with some creating separate packages for different
components, while others present user selectable components in a single UI installer. Some
installers even support downloading individual components on demand at install time.

The previous chapter demonstrated how to define components as part of install() commands.
Those commands only assign content to components, they do not define any other component
details. The relationships between components are specified using commands from the
CPackComponent module, which is automatically included as part of including the CPack module. These
commands also provide additional metadata for components which some installers use to present
information to the user during installation.

The most important command from the CPackComponent module is cpack_add_component(), which
describes a single component:

cpack_add_component(componentName
    [DISPLAY_NAME name]
    [DESCRIPTION description]
    [DEPENDS comp1 [comp2...] ]
    [GROUP group]
    [REQUIRED | DISABLED]
    [HIDDEN]
    [INSTALL_TYPES type1 [type2...] ]
    [DOWNLOADED]
    [ARCHIVE_FILE archiveFileName]
    [PLIST plistFileName]
)

While all keywords are optional, the DISPLAY_NAME and DESCRIPTION should at least be provided so that
meaningful details are presented to the user during installation and so that non-UI installers have
enough metadata for users to understand what a package is for. If the component should only be
installed if one or more other components are installed, those components should be listed with the
DEPENDS option. Note that not all package types fully enforce these dependencies. A component can
be placed under a particular group with the GROUP option, which can be further described using the
cpack_add_component_group() command (discussed further below).

If a component should always be installed, the REQUIRED keyword should be given. The user will then
not be able to disable that component through an installer’s UI. Without this keyword, the
component can be enabled or disabled by the user, with the default initial state being enabled. To
change this default to disabled, add the DISABLED keyword. Whether a component is required or not,
it can also be hidden from installer UIs by adding the HIDDEN keyword. A non-required but hidden
component would generally also be disabled and the installer would then only install that
component if another enabled component depended on it.
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The remaining options have more specialized effects that apply to only a small number of package
generators. An install type is a preset selection of components which can be used to simplify the
choices a user has to make at install time. A component can be assigned to any number of install
types with the INSTALL_TYPES option, where each type is a name that is defined separately by the
cpack_add_install_type() command like so:

cpack_add_install_type(typeName [DISPLAY_NAME uiName])

The DISPLAY_NAME option can be omitted if typeName is already sufficiently descriptive, but for install
types that should be shown using multiple words, DISPLAY_NAME must be used and uiName will be a
quoted string. There are no predefined install types, but it is common to see packages provide
install types with names like Full, Minimal or Default. Of the actively maintained package generators
provided by CMake, only NSIS supports the install types feature.

For those generators that support downloadable components, adding the DOWNLOADED keyword to
cpack_add_component() makes the component downloaded on demand rather than being included in
the package directly. The ARCHIVE_FILE option can be used to customize the file name of the
downloadable component. The only actively maintained generator provided by CMake that
supports downloadable components is IFW, so discussion of this feature is deferred to Section
28.4.2, “Qt Installer Framework (IFW)”. Similarly, the PLIST option (only available with CMake 3.9 or
later) is used exclusively by the productbuild package generator (see Section 28.4.6, “productbuild”).

If no components are defined with GROUP details, the components will act as a simple flat list in most
UI installers. When grouping is used, it enables an arbitrarily deep hierarchical structure to be
defined instead, where groups can contain components and other groups. A group is defined using
the following command from the CPackComponent module:

cpack_add_component_group(groupName
    [DISPLAY_NAME name]
    [DESCRIPTION description]
    [PARENT_GROUP parent]
    [EXPANDED]
    [BOLD_TITLE]
)

This command can appear before or after cpack_add_component() calls that refer to the groupName. The
DISPLAY_NAME and DESCRIPTION options serve the same purpose as their counterparts in the
cpack_add_component() command. The PARENT_GROUP is the group’s equivalent of the GROUP option,
allowing it to be placed under another group to support arbitrary group hierarchies. When the
EXPANDED keyword is given, the group will initially be expanded in the installer UI and the presence
of the BOLD_TITLE keyword will make that group show up as bold.

Component names should ideally be project specific to allow hierarchical project arrangements to
effectively select which components to package and how to present them in installers (or in the
case of non-UI installers, how to structure the component-specific packages). Group names are less
restrictive, since they may contain components and groups from across different projects. A group
name cannot be the same as any component name.
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The effect of both cpack_add_component() and cpack_add_component_group() is to define a range of
component-specific variables in the current scope. The CPackComponent documentation lists some of
these variables and suggests that the variables can be set directly, but this is not recommended. The
commands offer a more robust and more readable way of defining component and group details
and should be preferred. They should also be called in the same scope as the include(CPack) call,
ideally immediately after it. Technically the constraint is not quite as strict as this, but defining the
component details in a different scope can be more fragile.

An example should help consolidate some of the above concepts and discussions.

set(CPACK_PACKAGE_NAME ...)
# ... set other variables as per earlier example

include(CPack)

cpack_add_component(MyProj_Runtime
    DISPLAY_NAME  Runtime
    DESCRIPTION   "Shared libraries and executables"
    REQUIRED
    INSTALL_TYPES Full Developer Minimal
)
cpack_add_component(MyProj_Development
    DISPLAY_NAME  "Developer pre-requisites"
    DESCRIPTION   "Headers/static libs needed for building"
    DEPENDS       MyProj_Runtime
    GROUP         MyProj_SDK
    INSTALL_TYPES Full Developer
)
cpack_add_component(MyProj_Samples
    DISPLAY_NAME  "Code samples"
    GROUP         MyProj_DevHelp
    INSTALL_TYPES Full Developer
    DISABLED
)
cpack_add_component(MyProj_ApiDocs
    DISPLAY_NAME  "API documentation"
    GROUP         MyProj_DevHelp
    INSTALL_TYPES Full Developer
    DISABLED
)
cpack_add_component_group(MyProj_SDK
    DISPLAY_NAME  SDK
    DESCRIPTION   "Developer tools, libraries, etc."
)
cpack_add_component_group(MyProj_DevHelp
    DISPLAY_NAME  Documentation
    DESCRIPTION   "Code samples and API docs"
    PARENT_GROUP  MyProj_SDK
)
cpack_add_install_type(Full)
cpack_add_install_type(Minimal)
cpack_add_install_type(Developer DISPLAY_NAME "SDK Development")
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Project generators can be asked to process components in one of three ways, the choice being
controlled by the CPACK_COMPONENTS_GROUPING variable which can be set to one of the following values:

ALL_COMPONENTS_IN_ONE

A single package with all requested components will be created. The component and group
structure may be used or ignored, depending on the generator.

ONE_PER_GROUP

Each top level component group should create a package. Those components that are not part of
a group will also create their own package. This is the default if CPACK_COMPONENTS_GROUPING is not
set and is usually the desirable arrangement, but for some UI installers it hides components that
projects may prefer be shown.

IGNORE

Each component creates its own package irrespective of any component groups. This setting can
be more suitable for some UI installers to ensure that no components are hidden unless
explicitly configured to be so.

Two more variables also affect how generators interpret components. If CPACK_MONOLITHIC_INSTALL is
set to true, components are disabled completely and all components are installed and bundled into
a single package. This is a fairly brutal switch, so test the results carefully on all relevant platforms,
paying special attention to look out for any unexpected files. For legacy reasons, each generator
also has its own setting for whether or not components are supported by default. This setting can be
overridden on a per-generator basis by the CPACK_<GENNAME>_COMPONENT_INSTALL variable, which can be
set to true or false as needed.

When performing a component-based install, projects are not required to include all components
in the final package(s). The set of components that will be included are controlled by the
CPACK_COMPONENTS_ALL variable, which must be set before the call to include(CPack). When not set,
cpack packages all components, but the project can explicitly set this variable to only list the
components it wants packaged. For example, if a project wanted to control whether documentation
and code samples should be packaged, it could be achieved like so:

if(NOT MYPROJ_PACKAGE_HELP)
    set(CPACK_COMPONENTS_ALL
        MyProj_Runtime
        MyProj_Development
    )
endif()

include(CPack)

Rather than explicitly listing all the components to be packaged, a project may want to install all
but a few specific components. The full set of components is available in the read-only pseudo
property COMPONENTS, which can only be retrieved via the get_cmake_property() command. The project
can start with that list of components and then remove the unwanted entries.
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if(NOT MYPROJ_PACKAGE_HELP)
    get_cmake_property(CPACK_COMPONENTS_ALL COMPONENTS)
    list(REMOVE_ITEM CPACK_COMPONENTS_ALL
        MyProj_Samples
        MyProj_ApiDocs
    )
endif()

include(CPack)

The selection of which set of components to install and how the components should be handled
may seem a little complex at first. In practice, the main area that causes difficulty is understanding
how each package generator handles the different values of CPACK_COMPONENTS_GROUPING. The later
sections in this chapter explain the behavior of each generator type, but some quick experiments
on a test project can often be just as instructional for coming to terms with the effects of the
different settings.

28.3. Multi Configuration Packages
CPack is primarily geared towards producing packages for a single build configuration. In most
cases, packages are created for the Release build type, but for things like SDK projects, it may be
desirable to include both debug and release versions of libraries, especially for multi-config
generators.

There are two main approaches to creating a multi-config package. The first method can be adapted
to work for both single and multi-config generators and has been available in CMake for a long
time. It is more complex to set up, but it also supports other interesting scenarios. The second
method only supports multi-config generators and is only available with CMake 3.16 or later, but it
is very straightforward to setup and use.

28.3.1. Multiple Build Directories

CPack provides the advanced variable CPACK_INSTALL_CMAKE_PROJECTS which can be used to
incorporate multiple build trees into the one packaging run. It is expected to hold one or more
quadruples where each quadruple consists of:

• The build directory.

• The project name (only important for multi configuration generators).

• The component to install. The special value ALL means to install the components listed in the
CMAKE_COMPONENTS_ALL variable. Other values require a similar CMAKE_COMPONENTS_XXX variable to be
defined which holds just that one component name. For example, if the component to install
was called Runtime, then a variable CMAKE_COMPONENTS_RUNTIME would need to be defined and have
the value Runtime.

• The relative location within the package to install to. The only safe value for this is a single
forward slash (/) due to the way different package generators use it.
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The project can define sets of quadruples, one for the release build and the rest for the debug build.
The build directory for the release build can simply be CMAKE_BINARY_DIR, but for the debug build, a
second separate build directory needs to have been created and built.

The debug quadruples would only need to add those components that are different between the
two build configurations, but whether using the default ALL component or using specific
components, special care needs to be exercised to ensure installed files don’t unexpectedly
overwrite each other. Listing the release component last will ensure that any files that have the
same name and install location will end up with the release version when packaged.

set(CPACK_COMPONENTS_MYPROJ_RUNTIME     MyProj_Runtime)
set(CPACK_COMPONENTS_MYPROJ_DEVELOPMENT MyProj_Development)

unset(CPACK_INSTALL_CMAKE_PROJECTS)
if(MYPROJ_DEBUG_BUILD_DIR)
    list(APPEND CPACK_INSTALL_CMAKE_PROJECTS
        ${MYPROJ_DEBUG_BUILD_DIR} ${CMAKE_PROJECT_NAME} MyProj_Runtime     /
        ${MYPROJ_DEBUG_BUILD_DIR} ${CMAKE_PROJECT_NAME} MyProj_Development /
    )
endif()

list(APPEND CPACK_INSTALL_CMAKE_PROJECTS
    ${CMAKE_BINARY_DIR} ${CMAKE_PROJECT_NAME} ALL /
)

include(CPack)

When using multi configuration generators like Xcode, Visual Studio or Ninja Multi-Config, the
MYPROJ_DEBUG_BUILD_DIR directory in the above example needs to be configured to support only the
Debug build type rather than the usual default set. This is the only way to force it to install debug
build outputs. When running cmake in that debug build directory, explicitly set the
CMAKE_CONFIGURATION_TYPES cache variable to Debug to get the necessary arrangement.

While it is possible to use just the one build directory for multi configuration generators, the
techniques to do so are more fragile and complex. In contrast, the above technique works for all
build and package generator types. Furthermore, it can be extended to incorporate builds for
different architectures or even completely separate projects into one unified package.

28.3.2. Pass Multiple Configurations To cpack

The cpack tool provides a -C command line option which can be used to specify the configuration to
package. This option only has a useful meaning for multi-config generators. From CMake 3.16, more
than one configuration can be given to that option as a semicolon-separated list. cpack will then add
all the listed configurations to the package.

This functionality is only available when invoking cpack directly, it is not available using the package
build target because a build is inherently a single configuration. It should be noted that this means
the user is responsible for ensuring that all configurations listed have already been built before
invoking cpack. A typical example of the steps required looks like this:
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cd /path/to/build/directory
cmake --build . --config Debug
cmake --build . --config Release
cpack -C "Debug;Release"

A significant advantage of this method is its simplicity. No additional setup is required and the steps
are easily scripted. When using a multi-config generator and CMake 3.16 or later, this is likely to be
the preferred approach.

28.4. Package Generators
CPack can generate a variety of package formats, each falling into one of the following categories:

Simple archives

Archives can be in a variety of formats, such as zip, tarball, bz2 and so on. They are the most
basic of all the package formats, since they are just an archive of files that the user is expected to
unpack somewhere on their file system. They are the most widely supported of all the package
formats and are the easiest to work with when the end user wants to have multiple different
versions of a project available or installed simultaneously.

UI installers

These tend to have deep integration with the target platform, providing features like adding and
removing components once installed, integration with desktop menus and so on. They typically
present the user with some means of selecting which components to install and are usually very
intuitive, so novice users tend to prefer them. CMake supports NSIS and WIX installers on
Windows, DragNDrop (i.e. DMG) and productbuild on Mac and the Qt Installer Framework (IFW)
on Windows, Mac and Linux. On Mac, some older installer types are still supported, but they
should be considered deprecated and are only mentioned briefly in the sections that follow.

Non-UI packages

These are aimed at a specific package manager. RPM and DEB are very popular on Linux, with
FreeBSD and Cygwin packages also being supported for their respective platforms.

Niche and product-specific packages

CMake 3.12 added initial support for the NuGet package format for .NET. CMake 3.13 added a
special External generator which doesn’t produce packages itself, but instead creates a JSON file
which some other process can consume to produce packages outside of CPack.

Regardless of which package generators are used, the same CPackConfig.cmake file is processed. This
doesn’t generally present an issue, since generator-specific configuration is normally made possible
through generator-specific variables where needed. If certain logic needs to be added for only a
particular generator and the existing variables offered by CMake and CPack are insufficient, the
CPACK_PROJECT_CONFIG_FILE variable can be set to the name of a file that will be included once for
each package generator being invoked. Each time it is read, the CPACK_GENERATOR variable will hold
the name of the generator being processed rather than the whole list of generators. This allows that
file to override settings made in CPackConfig.cmake for only those specific generators that require it.
The full cpack run loosely follows the steps in the following pseudo code:
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include(CPackConfig.cmake)

function(generate CPACK_GENERATOR)
    # CPACK_GENERATOR is a single generator local to this function scope
    if(CPACK_PROJECT_CONFIG_FILE)
        include(${CPACK_PROJECT_CONFIG_FILE})
    endif()

    # ...invoke package generator
endfunction()

# Here CPACK_GENERATOR is the list of generators to be processed,
# as set by CPackConfig.cmake or on the cpack command line
foreach(generator IN LISTS CPACK_GENERATOR)
    generate(${generator})
endforeach()

An example where the above can be useful is to set CPACK_PACKAGE_ICON to a generator specific value,
since different generators expect this icon to be in different formats and therefore the file name
needs to be generator specific.

The remainder of this chapter discusses each of the actively maintained package generators
provided by CMake/CPack.

28.4.1. Simple Archives

CPack supports the creation of archives in various formats. The most widely supported are ZIP and
TGZ, the former being common for Windows platforms and the latter producing gzipped tarballs
(.tar.gz or .tgz) that are supported essentially everywhere else. Other available archive formats
include TBZ2 (.tar.bz2), TXZ (.tar.xz), TZ (.tar.Z) and 7Z (7zip archives, .7z). CMake 3.16 added
support for tarballs using Zstandard compression with the TZST (.tar.zst) format. For maximum
portability, ZIP and TGZ should generally be preferred, but other formats may produce smaller
archives and may be suitable for platforms where those formats are commonly supported.

A self-extracting archive format is also supported by cpack. This can be requested using the
generator name STGZ, which produces a Unix shell script with the archive embedded at the end of
that script. This can be thought of as a form of console-based UI installer, but in practice it offers
only very basic functionality and users may prefer a simple archive that they can unpack
themselves.

For legacy reasons, archive generators have components disabled by default. To enable component-
based archive creation, CPACK_ARCHIVE_COMPONENT_INSTALL must be set to true and then
CPACK_COMPONENTS_GROUPING will determine the set of archive files that will be generated.

When performing a non-component install, the final package file name can be controlled using the
CPACK_ARCHIVE_FILE_NAME variable. For component-based installs, the name of each component’s
package is controlled by CPACK_ARCHIVE_<COMP>_FILE_NAME, where <COMP> is the uppercased component
or group name. The appropriate archive extension will be appended to the specified file name (i.e.
.tar.gz, .zip, etc.). CMake 3.25 and later allows the extension to be overridden with the
CPACK_ARCHIVE_FILE_EXTENSION variable, but this should not normally be needed.
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A common convention for archive files is to make the top level of the extracted directory structure
be the same as the name of the archive file without the file extension (i.e. the same as
CPACK_PACKAGE_FILE_NAME). For non-component installs, this is already the default behavior for the
archive generators, but for multi component packages, no top level directory is used by default.
Projects can enforce a common top level directory for component archives by setting
CPACK_COMPONENT_INCLUDE_TOPLEVEL_DIRECTORY to true. Since this variable is shared by all package
generators, a generator specific override would be the most appropriate way to do this:

CMakeLists.txt

set(CPACK_PROJECT_CONFIG_FILE
    ${CMAKE_CURRENT_LIST_DIR}/cpackGeneratorOverrides.cmake
)

cpackGeneratorOverrides.cmake

if(CPACK_GENERATOR MATCHES "^(7Z|TBZ2|TGZ|TXZ|TZ|TZST|ZIP)$")
    set(CPACK_COMPONENT_INCLUDE_TOPLEVEL_DIRECTORY YES)
endif()

Developers should note that some archive formats, platforms and file systems have limitations on
the length of file names and paths. For example, POSIX.2 requires file names to be 100 characters or
less and paths to be 255 characters or less for the extended tar interchange format, while older tar
formats may restrict the entire path to 100 characters or less. When unpacking an archive onto an
eCryptFS file system, file names have an empirically derived limit of about 140 characters.
Unpacking on Windows can have a 260 character path length limit, depending on certain settings
and OS version. UTF-8 file names and paths further complicate the picture and may shorten the
effective character limits even more. With these constraints in mind, projects should avoid using
long paths and file names in their package contents. These restrictions are most evident with
archive package types, but since other non-archive formats also use archives internally and deploy
to systems with these restrictions, shorter paths and file names should be preferred in general.

28.4.2. Qt Installer Framework (IFW)

The IFW package generator offers the broadest platform support of all UI-based package formats
provided by CPack. Installers can be built for Windows, Mac and Linux from the same
configuration details, making it a good choice when a project wants to have a consistent UI installer
across all major desktop platforms. It also has easy to use localization of component and group
display names and descriptions as well as extensive customizability.

The defaults for the UI appearance and installer icons are often sufficient, but some projects may
want to customize a few aspects to improve the branding, especially around the use of icons. The
CPACK_PACKAGE_ICON variable is ignored for this generator, which relies instead on three separate
IFW-specific variables to control the icons for different contexts:

• CPACK_IFW_PACKAGE_ICON (.ico for Windows, .icns for Mac, ignored for Linux)

• CPACK_IFW_PACKAGE_WINDOW_ICON (always .png)

• CPACK_IFW_PACKAGE_LOGO (preferably .png)
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Unfortunately, these variables are not handled consistently between platforms, so it can be difficult
to set them correctly. For simplicity, it may be preferable to set all three to the same image, albeit
potentially in different formats and/or sizes. Testing on each platform of interest is recommended
to ensure the installer presents itself as expected. The following example shows how such a
configuration may be specified:

# Define generic setup for all generator types...

# IFW-specific configuration
if(WIN32)
    set(CPACK_IFW_PACKAGE_ICON ${CMAKE_CURRENT_LIST_DIR}/Logo.ico)
elseif(APPLE)
    set(CPACK_IFW_PACKAGE_ICON ${CMAKE_CURRENT_LIST_DIR}/Logo.icns)
endif()
set(CPACK_IFW_PACKAGE_WINDOW_ICON ${CMAKE_CURRENT_LIST_DIR}/Logo.png)
set(CPACK_IFW_PACKAGE_LOGO        ${CMAKE_CURRENT_LIST_DIR}/Logo.png)

include(CPack)
include(CPackIFW)
# Define components and component groups...

Component-based installation is enabled by default for the IFW generator. A single installer is
always produced, but CPACK_COMPONENTS_GROUPING controls how much of the component hierarchy is
shown to the user:

ALL_COMPONENTS_IN_ONE

No component hierarchy is shown, the default enabled components will always be installed.

ONE_PER_GROUP

Only the first level of groups is shown along with any components that do not belong to any
groups. Subgroups and components under any group will be hidden.

IGNORE

All components that are not explicitly hidden will be shown regardless of where they are in the
group hierarchy. This is likely to be the option most projects will want to use.

Components and groups can be further configured beyond what the generic commands provide:

cpack_ifw_configure_component(componentName
    [NAME componentNameId]
    [DISPLAY_NAME displayName...]
    [DESCRIPTION description...]
    [VERSION <version>]
    [DEPENDS compId1 [compId2...] ]   ①
    [REPLACES compId3 [compId4...] ]
    # Other options not shown
)
# The cpack_ifw_configure_component_group() command supports the same options

① DEPENDENCIES is also accepted, but prefer DEPENDS for consistency with other CMake commands.
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The DISPLAY_NAME and DESCRIPTION of each component or group can be given alternative contents for
different languages and locales. These two options accept a list of pairs where the first value of a
pair is the language or locale ID and the second value is the text for that language. The first value in
the list can be given without a preceding language or locale ID and it will be used as the default text
if none of the languages or locale IDs match the user’s current setting at install time.

cpack_ifw_configure_component(MyProj_Docs
    DISPLAY_NAME Documentation
                 de Dokumentation
                 pl Dokumentacja
)
cpack_ifw_configure_component_group(MyProj_Colors
    DISPLAY_NAME en    Colors
                 en_AU Colours
    DESCRIPTION  en    "Available color palettes"
                 en_AU "Available colour palettes"
)

The VERSION option allows per-component and per-group version numbers to be specified. This is
used by online installers to determine whether an update is available (see further below). If VERSION
is not given, it defaults to CPACK_PACKAGE_VERSION.

The DEPENDS option is analogous to the same option in cpack_add_component() except that the form of
the compId1… entries is different. These need to follow the QtIFW style, which is a hierarchical string
rather than a raw componentName. Each level of the grouped hierarchy is dot-separated, as
demonstrated by the following example:

include(CPack)
include(CPackIFW)

cpack_add_component(foo GROUP groupA)
cpack_add_component(bar GROUP groupB)

cpack_add_component_group(groupA)
cpack_add_component_group(groupB)

cpack_ifw_configure_component(bar DEPENDS groupA.foo)

One can also append a version requirement to the DEPENDS value. This can be achieved by appending
a separator (discussed shortly), an operator (one of =, <, <=, > or >=) and the version number.
Technically the QtIFW format allows the operator to be omitted, which should result in using a
default operator of =. CMake 3.20 and earlier contains a bug which causes the version number to be
dropped when no operator is given. Therefore, prefer to always specify an operator if including a
version constraint on an IFW component dependency.

The separator between the package name and operator can be either a colon (:) or a hyphen (-).
Colons are more readable and have the advantage that component and group names can contain
hyphens. A colon can only be used as the separator if using CMake 3.21 or later and QtIFW 3.1 or
later. If using older CMake or QtIFW versions, a hyphen must be used as the separator and the
component and group names cannot contain any hyphens.
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# Colons as separators, supports hyphens in names
# NOTE: Requires CMake 3.21+ and QtIFW 3.1+.
cpack_ifw_configure_component(baz DEPENDS a-b-c:=7.8.2)
cpack_ifw_configure_component(baz DEPENDS old-thing:<3)
cpack_ifw_configure_component(baz DEPENDS newbie:>=6)

# Hyphens as separators, no hyphens in names
cpack_ifw_configure_component(baz DEPENDS exacto-=7.8.2)
cpack_ifw_configure_component(baz DEPENDS oldie-<3)
cpack_ifw_configure_component(baz DEPENDS newbie->=6)

The name used internally within the installer for a component can be overridden with the NAME
option. This name would be used to identify the component in DEPENDS arguments and also when
checking if a newer version of a component is available. A top level group name can be set with the
CPACK_IFW_PACKAGE_GROUP variable and is often set to a reverse domain name to ensure component
names don’t clash in large, multi-vendor installers. This top level group name must then be
included when listing dependencies with the DEPENDS option, as the following modification of the
earlier example shows:

set(CPACK_IFW_PACKAGE_GROUP com.examplecompany.product)

include(CPack)
include(CPackIFW)

cpack_add_component(foo GROUP groupA)
cpack_add_component(bar GROUP groupB)

cpack_add_component_group(groupA)
cpack_add_component_group(groupB)

cpack_ifw_configure_component(bar
    DEPENDS com.examplecompany.product.groupA.foo
)

CPACK_IFW_PACKAGE_GROUP is just one example of a large number of extra variables that can be set to
provide IFW-specific configuration. Such variables should be set before include(CPackIFW) is called
and can modify the appearance and behavior of the installer in a variety of ways. The CPackIFW
module documentation provides a complete listing of all supported variables and their effects,
many of which have analogous settings in the QtIFW product’s native configuration settings. Most
of those variables have sensible defaults and should be seen more as opportunities for
customization rather than things that need to be set.

One exception to this is the variables relating to the name of the maintenance tool installed along
with the rest of the product. This tool allows the user to modify the set of installed components or
remove the product completely. By default, the tool is given the name maintenancetool, but this gives
no indication of what the tool relates to. On some platforms, the tool name can show up in desktop
or application menus and the default name can be confusing for users. Therefore, projects should
provide a more specific name, which can be done like so:
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set(CPACK_IFW_PACKAGE_MAINTENANCE_TOOL_NAME
    ${PROJECT_NAME}_MaintenanceTool
)
set(CPACK_IFW_PACKAGE_MAINTENANCE_TOOL_INI_FILE
    ${CPACK_IFW_PACKAGE_MAINTENANCE_TOOL_NAME}.ini
)
include(CPackIFW)

The .ini file is used by the installer to maintain state information between invocations. Setting the
name of the .ini file is optional, but making the name consistent with the installer itself is
preferable. With the above settings, the user will see a name that relates to the project if the
maintenance tool shows up in their desktop or applications menu.

A significant feature of the IFW generator is its ability to create online installers. Some or all
components can be downloaded on demand instead of bundling them as part of the installer. This
is particularly advantageous if some optional components are large. An added benefit of an online
installer is that individual components can be upgraded if newer versions are made available from
the online repositories, which provides a very convenient upgrade path. Users run the maintenance
tool which contacts the set of online repositories to determine the available components and their
versions. Individual components can then be added, removed or upgraded as desired.

The first step in configuring a project to support downloadable components is to specify where the
installer will download them from. A primary default repository is specified with the generic
cpack_configure_downloads() command:

cpack_configure_downloads(baseUrl
    [ALL]
    [ADD_REMOVE | NO_ADD_REMOVE]
    [UPLOAD_DIRECTORY dir]
)

The baseUrl is the location where the installer will look for downloadable components. The installer
will expect to find a file called Updates.xml under that location. If the ALL keyword is present, all
components are treated as downloadable regardless of whether they were explicitly marked as to
be downloadable or not. This is a convenient way of making a fully online installer with no
embedded packages, which yields the smallest possible installer.

The ADD_REMOVE keyword directs the installer to make the package available to Windows'
Add/Remove Programs functionality, which will then run the maintenance tool when the user elects
to modify the package through that part of the Windows system settings. The ALL keyword implies
ADD_REMOVE, but giving NO_ADD_REMOVE overrides that behavior.

The UPLOAD_DIRECTORY option is used by other CPack generator types that support downloadable
components (although none of those are actively maintained), but it is ignored by the IFW
generator. When cpack runs, it creates downloadable packages in a separate directory so that the
contents of that whole directory can be uploaded to the baseUrl location (which must be done
manually). The UPLOAD_DIRECTORY option is intended to allow the project to override where this
separate directory is located, but the IFW generator always creates a directory called repository
located multiple levels deep under the base _CPack_Packages directory.
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The IFW generator allows projects to specify additional repositories for the maintenance tool and
installer to access. This can be useful if different components are provided by different vendors or
where some components have a different release schedule to others.

cpack_ifw_add_repository(repoName
    URL baseUrl
    [DISPLAY_NAME displayName]
    [DISABLED]
    [USERNAME username]
    [PASSWORD password]
)

The repoName is an internal tracking name and the baseUrl has a similar meaning as for
cpack_configure_downloads(). The DISPLAY_NAME option should generally be used to give a meaningful
name, otherwise the baseUrl is shown as the repository name, which tends to be less user friendly. If
the repository needs a user name and password, it can be supplied, but keep in mind that the
password will be stored unencrypted and should be considered insecure. The DISABLED keyword
indicates that the repository should be disabled by default, but the user can enable it in the installer
or maintenance tool’s UI.

An example of a main repository for release packages and a secondary repository for preview
packages (disabled by default) could be configured like this:

include(CPack)
include(CPackIFW)

cpack_configure_downloads(https://example.com/packages/product/release ALL)
cpack_ifw_add_repository(secondaryRepo
    DISPLAY_NAME "Preview features"
    URL          https://example.com/packages/product/preview
    DISABLED
)

Unfortunately, the cpack_configure_downloads() command does not currently support specifying a
display name, so the main URL it supplies will always be shown as a bare URL rather than a more
user-friendly name.

Starting with QtIFW 4.0, the generated installers support unattended command-line installs. No
extra configuration is needed on the part of the project. The developer only has to ensure that
QtIFW 4.0 or later is used to generate the installer. The ability to perform scripted installs on the
command line can be an important feature for some users, so it is highly recommended to use
QtIFW 4.0 or later, if possible.

CMake 3.23 added further capabilities requiring QtIFW 4.0 or later. When the installer completes an
installation, it can be configured to run an executable. This is achieved by setting the
CPACK_IFW_PACKAGE_RUN_PROGRAM variable to the location of the executable to run. This must point to
the installed location, which is configurable by the user at install time. Therefore, the path should
begin with one of the predefined variables supported by QtIFW, typically @TargetDir@. If arguments
need to be passed to the executable, they can be specified as a list in the associated
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CPACK_IFW_PACKAGE_RUN_PROGRAM_ARGUMENTS variable. The user will be shown a checkbox on the last
page of the installer where they can choose whether to run the executable or not. The message
shown next to that checkbox can be specified with the CPACK_IFW_PACKAGE_RUN_PROGRAM_DESCRIPTION
variable.

set(CPACK_IFW_PACKAGE_RUN_PROGRAM
    "@TargetDir@/bin/LicenseApp"
)
set(CPACK_IFW_PACKAGE_RUN_PROGRAM_ARGUMENTS
    --check-update
    --post-install
)
set(CPACK_IFW_PACKAGE_RUN_PROGRAM_DESCRIPTION
    "Run application to check for an updated license"
)

Another QtIFW 4.0 feature supported with CMake 3.23 or later is the ability to provide a set of
product images to be shown during installation. This feature is only useful when the installation
may take a long time. As the installation proceeds, the installer will cycle through the provided
images, showing them one at a time for about 10 seconds each. They are often used to highlight
things like major new features, related products and other marketing-related content. The product
images are specified as a list of absolute paths in the CPACK_IFW_PACKAGE_PRODUCT_IMAGES variable. The
images must be in .png format.

CMake 3.23 also added support for signing the installer application (only on macOS). The Apple
code signing identity can be specified in the CPACK_IFW_PACKAGE_SIGNING_IDENTITY variable. Note that
this is an application signing identity, not an Apple installer identity. From the point of view of
macOS, QtIFW produces an ordinary application, not an installer. See Section 28.4.6, “productbuild”
for producing a native macOS installer instead.

One drawback of the IFW package generator is that the installer produced has extra overhead
compared to most other generator types. It includes the Qt support needed for the installer’s
interface, networking and so on. This can make the size of even a trivial installer 18Mb or more,
compared to a few hundred kB for other generator types.

The above discussion only covers the main aspects of the IFW generator, there are considerably
more capabilities available which allow projects to customize the installer and maintenance tool
extensively. For many projects, the above functionality already allows flexible, robust and cross-
platform installers to be created. If further tailoring is needed, the features presented will serve as
a solid base on which to extend.

28.4.3. WIX

The WIX package generator produces .msi installers for Windows using the WiX toolset. Compared
to the IFW package generator, it has a similar degree of UI customizability and offers the following
advantages:

• Support for unattended, command-line installs is mature. It is provided through an option to the
msiexec tool.
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• Installers are tightly integrated into Windows’ Add/Remove functionality.

• The default appearance should be familiar to most users.

On the other hand, it has the following disadvantages compared to IFW:

• No simple, direct way of providing localized component names and descriptions.

• CPACK_WIX_COMPONENT_INSTALL and CPACK_COMPONENTS_GROUPING are both ignored (see below).

• No support for downloadable components.

• Multiple versions with the same upgrade GUID cannot be installed simultaneously (see below).
Each install replaces the previous one, even if in a completely different directory.

By default, the WIX generator produces a component-based package which will always be
presented in the UI as though CPACK_COMPONENTS_GROUPING had been set to IGNORE. If a component-based
package is undesirable, CPACK_MONOLITHIC_INSTALL can be set to true, but then all defined components
are always installed. It is not possible to only include some components in a monolithic installer
and if CPACK_COMPONENTS_ALL is set, CMake will issue a warning and ignore CPACK_COMPONENTS_ALL.

A key part of a WIX installer is that it contains a product GUID and an upgrade GUID. If any other
installed package has the same upgrade GUID, that other package will be upgraded rather than
installing the new package as a separate product. If the upgrade GUIDs are the same but the
product GUIDs are different, then the upgrade is considered a major upgrade and the new installer
will completely replace the old package. Where the product GUID is also the same, the new installer
should be able to perform a minor upgrade as long as the installer reports a newer version number
than the currently installed package. Service packs are an example where the same product GUID is
maintained as the base version they apply to. Unless creating a fairly advanced installer or
packaging strategy, projects will typically need to change the product GUID with each release, as the
constraints from Windows itself for keeping the same product GUID from one package to another
are fairly stringent.

CPack provides support for setting the product and upgrade GUIDs. The CPACK_WIX_PRODUCT_GUID and
CPACK_WIX_UPGRADE_GUID variables can be set before calling include(CPack) to control them manually,
or they can be left unset to allow cpack to generate new values each time it is invoked. For the
product GUID, this automatic generation is likely to be the desired behavior, but the upgrade GUID
should ideally never change for the life of the product. Projects should obtain a GUID and set
CPACK_WIX_UPGRADE_GUID to that value, then ideally never change it again. This will ensure all future
releases are able to upgrade older releases seamlessly. The actual GUID can be obtained by a variety
of means such as command line tools, web-based UUID generators or even with CMake itself using
the string(UUID) command. For some products, it may make sense for the upgrade GUID to change
with each major release to allow an older major release to co-exist with a newer one, thereby
facilitating the users’ migration path.

One of the criteria around when a product GUID must change is if the name of the .msi file changes.
Since the installer’s file name would typically include some version details, this means each release
would be considered a major upgrade. If the user installs the new version, it would completely
replace any previously installed version. The new version can be installed to a different directory
and the old one would be removed. It may be tempting to then use a default installation directory
(controlled by CPACK_PACKAGE_INSTALL_DIRECTORY) that includes a version number, but users would
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likely prefer the default directory to stay the same across upgrades. The default directory should
ideally only change if the upgrade GUID changes, since that is the identifier that provides the
continuity from one version to another.

When installing a new package and another package with the same upgrade GUID is already
installed, a check is made between the versions. Only if the new package is of a later version will
the upgrade be allowed to proceed. Only the first three version number components are considered
in this test, so versions 2.7.4.3 and 2.7.4.9 would be considered the same version from an upgrade
perspective. Projects intending to use the WIX generator should therefore avoid using more than
three version number components. If allowing CPACK_PACKAGE_VERSION to be automatically set from
the individual CPACK_PACKAGE_VERSION_xxx version parts, this will already be enforced.

Most of the UI defaults are acceptable for a basic WIX package. Projects may want to provide a
product icon to use in place of the generic MSI installer icon for improved branding in the
Add/Remove area, but the defaults are otherwise generally acceptable. The following example
shows basic configuration of a WIX installer.

# Define generic setup for all generator types...

# WIX-specific configuration
set(CPACK_WIX_PRODUCT_ICON ${CMAKE_CURRENT_LIST_DIR}/Logo.ico)
set(CPACK_WIX_UPGRADE_GUID XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX)

include(CPack)
# Define components and component groups...

28.4.4. NSIS

The NSIS package generator produces installer executables for Windows using the Nullsoft
Scriptable Install System. It shares a number of similar characteristics with the IFW and WIX
generators, including a degree of UI customizability and support for component hierarchies.
Advantages of the NSIS generator include:

• Support for unattended, command-line installs is mature and provided directly by the installer
executable.

• It is the only actively maintained CPack generator that supports install types.

• Pre/post-install and pre-uninstall commands are directly supported, although these must be
implemented as NSIS commands.

The NSIS generator has a few drawbacks:

• CPACK_NSIS_COMPONENT_INSTALL and CPACK_COMPONENTS_GROUPING are both ignored. The NSIS generator
has the same restrictions as the WIX generator in this regard.

• No support for downloadable components.

• Once a product is installed, users cannot change the set of installed components without
redoing the install.
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• Only basic UI customization is supported and there is no direct support for localization of any
UI contents. These are limitations of CPack’s generator, not of NSIS itself, which does offer some
facilities via its own native scripting language.

• Although it is possible to install different versions to different locations, they share registry
details and so are not fully isolated from each other. Only one version will show up in the
Add/Remove area of the Windows settings.

By default, these installers will only perform an upgrade of an existing product installation if the
new package is installed to the same directory as the old one. Projects can set the
CPACK_NSIS_ENABLE_UNINSTALL_BEFORE_INSTALL variable to true to force the installer to check the registry
for an existing installation of the package first. This check does not rely on the install location, so it
is a more reliable way to check for an existing installation to be upgraded. As a result, setting this
variable to true is recommended for most projects.

NSIS installers benefit from overriding the default appearance in a number of areas. The icons used
for the installer, uninstaller and the product itself as shown in the Add/Remove area should be set,
as the defaults are either of low quality or produce blank boxes. The name displayed for the
product should also be explicitly set to avoid inappropriate default text supplied by CPack. The
following example shows a basic configuration with overrides to avoid the defaults that most
projects would find unsuitable.

# Define generic setup for all generator types...

# NSIS-specific configuration
set(CPACK_NSIS_MUI_ICON    ${CMAKE_CURRENT_LIST_DIR}/InstallerIcon.ico)   ①
set(CPACK_NSIS_MUI_UNIICON ${CMAKE_CURRENT_LIST_DIR}/UninstallerIcon.ico) ②
set(CPACK_NSIS_INSTALLED_ICON_NAME bin/MainApp.exe)     ③
set(CPACK_NSIS_DISPLAY_NAME        "My Project Suite")  ④
set(CPACK_NSIS_PACKAGE_NAME        "My Project")        ⑤
set(CPACK_NSIS_ENABLE_UNINSTALL_BEFORE_INSTALL YES)

include(CPack)
# Define components and component groups...

① The icon used for the installer itself. Windows may overlay further content to indicate that the
installer requires administrator privileges. Use an absolute path to ensure NSIS can find the icon
when creating the installer.

② The icon used for the uninstaller that will be copied to the installation directory. Again, use an
absolute path to the icon.

③ This controls the icon used for the product in the Add/Remove area. It must be a path to either
an icon file (.ico) or an executable that has an embedded application icon of its own. The path
should be to the installed location, relative to the base point of the install.

④ The name shown for the package in the Add/Remove area only.

⑤ The name used in many places in the installer’s UI and also in the title bar during installation.
The word Setup may be appended to it in some contexts.

CMake 3.17 added a few more customization options. The default welcome and finishing titles can
be overridden using the variables CPACK_NSIS_WELCOME_TITLE and CPACK_NSIS_FINISH_TITLE respectively.
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The header image shown on each page of the installer can be specified with the
CPACK_NSIS_MUI_HEADERIMAGE variable. CMake 3.20 added support for the CPACK_NSIS_BRANDING_TEXT and
CPACK_NSIS_BRANDING_TEXT_TRIM_POSITION variables, which can be used to replace the generic Nullsoft
Install System message along the bottom of the installer pages. If the package does not need to show
a license page during installation, the CPACK_NSIS_IGNORE_LICENSE_PAGE variable can be set to true with
CMake 3.22 or later to disable it.

Another customization made available by CMake 3.17 is the ability to change the name of the
uninstaller from its generic default. The CPACK_NSIS_UNINSTALL_NAME variable can be used to specify a
different name. This can improve the usability of the uninstaller by making its relationship to the
package more obvious. This makes the uninstaller more identifiable in a list of running processes
or when the user is switching between running applications.

An important change that also occurred in CMake 3.17 was the minimum NSIS version was raised
to 3.0 (previously it was 2.09). The CMake 3.17.0 release did not check the NSIS version and would
fail with a NSIS parsing error if the NSIS version was not 3.0 or later. From CMake 3.17.1, the
updated minimum NSIS version is properly checked and reported.

With CMake 3.18 or later, installers can be made DPI-aware by setting CPACK_NSIS_MANIFEST_DPI_AWARE
to true. Note that icon handling and some NSIS plugins might not yield acceptable results in all
cases, so it is advisable to test the installer at different DPI settings if enabling this option.

28.4.5. DragNDrop

On Mac, products are commonly distributed as a .dmg file. These act like a disk image and can
contain anything from a single application through to a whole suite of applications, documentation
links and so on. A symlink to the /Applications area is frequently provided as part of the image so
that users can easily drag applications onto it to install them, hence the name DragNDrop for this
generator type. Configuration variables specific to this generator type use DMG in their name rather
than DRAGNDROP, but note that cpack will only recognize DragNDrop as the name of the generator itself.

The .dmg format is closer to an archive than a UI installer. Components are used to control whether
one or multiple .dmg files are created and what each .dmg file contains, but there is no install-time UI
to choose components. The user is expected to open the .dmg file(s) and drag the contents to the
desired location to install them. CPACK_COMPONENTS_ALL controls which components are installed and
the CPACK_COMPONENTS_GROUPING variable controls how those components are distributed between .dmg
file(s) as follows:

ALL_COMPONENTS_IN_ONE

All components will be included in a single .dmg file.

ONE_PER_GROUP

Each top level component group and each component not in a group will be put in its own
separate .dmg file.

IGNORE

Each component will be put in its own separate .dmg file and all component groups will be
ignored.
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When using CMake 3.17 or later, the file name for each component’s .dmg file can be specified using
variables of the form CPACK_DMG_<component>_FILE_NAME if required (only relevant for the ONE_PER_GROUP
or IGNORE cases).

This package generator type typically requires little customization beyond the defaults. The size
and layout of the Finder window displayed when the disk image is opened can be controlled by
providing a custom .DS_Store file. The project will need to either prepare such a file manually using
an example folder containing the same things as the final disk image, or it can be created
programmatically in AppleScript. The CPACK_DMG_DS_STORE variable can be used to name a pre-
prepared .DS_Store file or CPACK_DMG_DS_STORE_SETUP_SCRIPT can point to an AppleScript file to be run
at package generation time. For either case, a background image can be set with the
CPACK_DMG_BACKGROUND_IMAGE variable if desired, but leaving the background at the blank default is
relatively common. For cases where the disk image should not provide a symlink to the
/Applications folder, the project should set CPACK_DMG_DISABLE_APPLICATIONS_SYMLINK to true.

An icon can be specified for the disk image by setting CPACK_PACKAGE_ICON to an icon in .icns format.
This icon is only used to represent the .dmg file when mounted, not for the .dmg file itself. The
specified icon may show up in the Finder title bar or certain Finder views, but it is otherwise not a
prominently displayed icon.

Section 28.1, “Packaging Basics” outlines how CPACK_RESOURCE_FILE_LICENSE can be used to add a
license file to installers. For the DragNDrop generator, the file’s contents are shown in a license
dialog presented to the user when they open the DMG image. The command CMake uses internally
to add the license file to the DMG image was deprecated by macOS 12.0, and will be removed
altogether in a future macOS version. Thus, CMake will eventually lose the ability to provide that
license dialog. CMake 3.23 added a separate CPACK_DMG_SLA_USE_RESOURCE_FILE_LICENSE variable which
controls whether to consider CPACK_RESOURCE_FILE_LICENSE for just the DragNDrop generator. This
allows the project to leave CPACK_RESOURCE_FILE_LICENSE set for other CPack generators, but avoid
using the deprecated tool for the DragNDrop generator. CPACK_DMG_SLA_USE_RESOURCE_FILE_LICENSE
defaults to true when using CMake 3.23 with a project that sets CPACK_RESOURCE_FILE_LICENSE. This
preserves the old behavior and adds the license dialog to the DMG image. With CMake 3.24 or later,
the default value for CPACK_DMG_SLA_USE_RESOURCE_FILE_LICENSE is controlled by policy CMP0133. The OLD
policy behavior continues to default the variable to true, whereas the NEW policy behavior defaults it
to false. Projects that set CPACK_RESOURCE_FILE_LICENSE should be updated to either set
CPACK_DMG_SLA_USE_RESOURCE_FILE_LICENSE to false, or to set policy CMP0133 to NEW. A different
mechanism for handling license acceptance by the user will then need to be found (e.g. presenting
an acceptance dialog the first time the user runs the application).

Limited language localization is provided through the CPACK_DMG_SLA_LANGUAGES and CPACK_DMG_SLA_DIR
variables. These can be used to provide specific phrases used during the license agreement phase of
opening the disk image and to provide a localized version of the license agreement. See the
DragNDrop generator’s documentation for how these two variables are used and the requirements
around the language files that need to be provided. As mentioned above, projects should transition
away from using these and find a different license acceptance mechanism.

CMake 3.21 added the ability to specify the file system format used for the .dmg image. The
CPACK_DMG_FILESYSTEM variable can be set to any value that the hdiutil -fs option supports, but the
most typical values are either APFS or HFS+. If this variable is not set, the default is HFS+. Note that
APFS file systems are only officially supported on macOS 10.13 or later.
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The Bundle generator type is related to the DragNDrop generator. It uses the same set of DMG
variables, plus some of its own. The Bundle generator was originally intended for producing a
single app bundle potentially for submission to the Apple App Store. These days, such app bundles
are better prepared during the build itself using CMake’s Xcode generator, as this more closely
follows the process expected by Apple. See Chapter 24, Apple Features for the recommended way of
preparing such app bundles rather than using the CPack Bundle generator type.

28.4.6. productbuild

An alternative to the DragNDrop generator is productbuild. Instead of producing a .dmg disk image,
it produces a .pkg package for use with the macOS Installer app. CPACK_MONOLITHIC_INSTALL should not
be set to true with this generator, as doing so can produce broken installers. Installer types are not
supported and there is very little ability to customize the UI, although the defaults are typically
sufficient anyway.

Component handling with this generator has some quirks. Due to long-standing bugs in the
implementation, projects should always define at least one component by calling
cpack_add_component() after the include(CPack) call. Failing to do so can result in a package containing
no files. Other workarounds also exist, but this is the simplest and most robust.
CPACK_COMPONENTS_GROUPING is ignored and the installer will always replicate the whole component
and component grouping hierarchy. The installer will respect any REQUIRED, HIDDEN or DISABLED
directives given to cpack_add_component().

Packages created using CMake 3.22 or earlier are unable to be installed to the user’s home
directory. CMake 3.23 added a number of variables which provide more flexibility around
allowable install locations:

CPACK_PRODUCTBUILD_DOMAINS

Setting this variable to true enables customizing where the package may be installed to. The
permitted install destinations are then controlled by the other CPACK_PRODUCTBUILD_DOMAINS_…
variables below. In order to preserve backward compatibility, CPACK_PRODUCTBUILD_DOMAINS is unset
by default, but projects should generally set it to true. When enabled, it allows CPack to avoid
using deprecated methods internally and results in a more flexible installer.

CPACK_PRODUCTBUILD_DOMAINS_ANYWHERE

Setting this to true allows the package to be installed to any drive. It defaults to true and projects
should usually leave this at the default setting. It only has an effect if CPACK_PRODUCTBUILD_DOMAINS
is set to true.

CPACK_PRODUCTBUILD_DOMAINS_USER

Setting this to true allows the package to be installed to a user’s home directory. Such an
installation does not require administrative access, since it runs as the user’s account rather
than as root. Note that a consequence of this is that the installer is not permitted to write to any
location outside the user’s home directory (e.g. in pre- or post-flight scripts).
CPACK_PRODUCTBUILD_DOMAINS_USER defaults to false, but if the package supports a user home
directory installation, it would be desirable to set it to true. CPACK_PRODUCTBUILD_DOMAINS_USER only
has an effect if CPACK_PRODUCTBUILD_DOMAINS is set to true.
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CPACK_PRODUCTBUILD_DOMAINS_ROOT

Setting this to true allows the package to be installed to the system drive. It defaults to true the
only reason to change it is if the package only supports installation to a user’s home directory
(which would be unusual). It only has an effect if CPACK_PRODUCTBUILD_DOMAINS is set to true.

The productbuild generator supports signing the installer package. This is achieved by setting
CPACK_PRODUCTBUILD_IDENTITY_NAME to the signing details. CPACK_PRODUCTBUILD_KEYCHAIN_PATH can also be
set, if required. Often just specifying the default identity is enough, which can be done like so:

set(CPACK_PRODUCTBUILD_IDENTITY_NAME "Developer ID Installer")
include(CPack)

The productbuild generator lacks support for downloadable components, so the creation of online
installers is not possible. Upgrades are handled by replacing the previous contents of an existing
install. Like for NSIS installers, the set of installed components cannot be modified without
reinstalling the product. It is also not typically possible to install multiple versions simultaneously
to different directories.

Installers produced by the productbuild generator are relocatable by default. When the package is
installed on an end user’s machine, if the OS knows of an app bundle with the same name as one of
the apps provided by the package, the installer will overwrite that existing app no matter where it
is on the file system. The app will not be installed to the default /Applications area in these cases,
which usually means it also won’t show up in places where the user expects it to.

The above situation commonly arises for developers on the machine they are using to build and
test packages. The app bundle produced by the build is known to the OS, so when installing the
package, the build tree’s app bundle is used as the install location for that app instead of the
expected location in /Applications. There will also be another copy of the app in the _CPack_Packages
staging directory of the build tree which can yield similar behavior. To properly test the installer,
all copies of the app bundles being installed would need to be removed from the developer’s
machine first before running the installer.

One workaround to the above relocation problem is to mark components as not relocatable. This
prevents the installer from selecting the location of an existing app bundle. The trade-off is that it
also prevents the user from moving app bundles around should they so wish. To make a component
non-relocatable, a custom plist file needs to be provided for each component. This is achieved by
using the PLIST option with the cpack_add_component() command:

cpack_add_component(MyProj_Runtime
   ...   # Other options
   PLIST runtime.plist
)

The plist file should be obtained by using the --analyze option with the pkgbuild command and
updating that file as needed. Verbose output of a cpack command for the project can also be helpful:

cpack -G productbuild -V
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A typical plist file might look something like this:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
    "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<array>
    <dict>
        <key>BundleHasStrictIdentifier</key>
        <true/>
        <key>BundleIsRelocatable</key>
        <true/>
        <key>BundleIsVersionChecked</key>
        <true/>
        <key>BundleOverwriteAction</key>
        <string>upgrade</string>
        <key>RootRelativeBundlePath</key>
        <string>Applications/MyApp.app</string>
    </dict>
</array>
</plist>

Change the BundleIsRelocatable dictionary item to false to prevent the OS from relocating the app
on install. There will be one <dict></dict> section for each app bundle in the component.

The productbuild generator should be considered a replacement for the older and no longer
supported PackageMaker generator. Apple no longer provides the PackageMaker app, so
developers using newer versions of macOS must use productbuild instead. The PackageMaker
generator was officially deprecated in CMake 3.17 and was removed completely in CMake 3.24.

28.4.7. RPM

On Linux systems, RPM is one of the two dominant package management formats. RPM packages
do not have UI features of their own, they are essentially just archives with a fairly extensive set of
metadata and some scripting features. The system’s package manager uses these to manage
dependencies between packages, provide information to the user, trigger pre/post install and
uninstall scripts and so on.

Since the package itself has no UI features, there is no customization needed in that area, but the
RPM generator provides extensive customizability of the metadata through a large number of
variables. Many of these variables do not need to be explicitly set, since the majority of the defaults
are appropriate for projects that don’t need to do anything complex. For packages that do not need
to invoke pre/post install or uninstall scripts and for which inter-package dependencies can be
automatically determined by the underlying package creation tool, the amount of customization is
similar to that of other package generators.

The RPM generator supports component installs, but components are disabled by default. When
components are disabled, only a single .rpm is produced and the behavior is as though
CPACK_MONOLITHIC_INSTALL was set to true. All components are included in the package in such cases.
If components are enabled, then CPACK_COMPONENTS_GROUPING has its usual meaning and multiple .rpm
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files will be created. Components are enabled by setting CPACK_RPM_COMPONENT_INSTALL to true and the
set of installed components is controlled by CPACK_COMPONENTS_ALL as usual.

# Define generic setup for all generator types...
set(CPACK_COMPONENTS_GROUPING ONE_PER_GROUP)

# RPM-specific configuration
set(CPACK_RPM_COMPONENT_INSTALL YES)

include(CPack)
# Define components and component groups...

The component or group names might not be suitable for use as package names, which are
typically visible to the user as part of the .rpm file name, within RPM package manager UI
applications, etc. These names can be set on a per-component basis with
CPACK_RPM_<COMP>_PACKAGE_NAME where <COMP> is the uppercased component name. When creating a
package with components disabled, the single monolithic package name can be overridden by
setting CPACK_RPM_PACKAGE_NAME instead.

add_executable(sometool ...)
install(TARGETS sometool ... COMPONENT MyProjUtils)

set(CPACK_RPM_MYPROJUTILS_PACKAGE_NAME myproj-tools)
include(CPack)

The name of the .rpm files can also be customized and it is likely that projects will want to do so. The
name of each component’s .rpm file is controlled by the CPACK_RPM_<COMP>_FILE_NAME variable (or just
CPACK_RPM_FILE_NAME for non-component packaging). The default value follows this pattern:

<CPACK_PACKAGE_FILE_NAME>[-<component>].rpm

The <component> part is the original component name (i.e. no change in upper/lowercase). One
drawback to this default file name is that it does not include any version or architecture details, but
such information would normally be required (or at least desirable). It is generally preferable to
instruct cpack to let the underlying package creation tool select a better default package name,
which can be done by setting CPACK_RPM_<COMP>_FILE_NAME to the special string RPM-DEFAULT. Examples
of typical file names produced by this arrangement are given below.

The RPM-DEFAULT package file name will automatically include the architecture. If the architecture
needs to be explicitly specified, such as to mark a package as noarch to indicate it is not architecture
specific, the per-component CPACK_RPM_<COMP>_PACKAGE_ARCHITECTURE variable can be set to the
required value or CPACK_RPM_PACKAGE_ARCHITECTURE can be set to act as the default if no component
specific override is set (it is also used for monolithic packages). The default value for the
architecture is computed by cpack as the output of uname -m, but if building a 32-bit package on a 64-
bit host, this would be wrong and so the project would need to explicitly set the architecture value.

RPM files are required to have version information. The RPM generator will use
CPACK_PACKAGE_VERSION by default, but a RPM-specific version number can also be set using
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CPACK_RPM_PACKAGE_VERSION if required (but the need for this should be rare). Note that it is not
currently possible to specify per-component versions, the CPack RPM generator is currently limited
to using the same version for all components. In addition to the package version, RPM packages
also have a separate release number, which is specified using CPACK_RPM_PACKAGE_RELEASE. This
release number is the release of the package itself, not of the product, so the package version would
normally remain constant if the release number is increased (e.g. to fix a packaging issue). If the
package version changes, the release number is usually reset back to 1, which is the default value if
CPACK_RPM_PACKAGE_RELEASE is not specified. An optional epoch can also be specified by
CPACK_RPM_PACKAGE_EPOCH and its use may be more common on some systems or repositories than
others. The full version has the format E:X.Y.Z-R where E is the epoch and must be a number if
provided. When no epoch is set, the full version has the format X.Y.Z-R. Unless it is known that an
epoch value is required, projects should generally leave the epoch unset.

Unless the project explicitly overrides CPACK_PACKAGE_VERSION and CPACK_RPM_PACKAGE_ARCHITECTURE,
their values won’t be available within CMakeLists.txt files because the defaults for these variables
are only computed when cpack processes the input file, not when CMake runs. This means it is a lot
more work to robustly set the package file name directly rather than using RPM-DEFAULT. The
following example shows how to make use of the RPM-DEFAULT feature:

set(CPACK_RPM_PACKAGE_RELEASE 5)   # Optional, default of 1 is often okay
if(CMAKE_SIZEOF_VOID_P EQUAL 4)
    set(CPACK_RPM_PACKAGE_ARCHITECTURE i686)
endif()

set(CPACK_RPM_MYPROJUTILS_PACKAGE_NAME myproj-tools)
set(CPACK_RPM_MYPROJUTILS_FILE_NAME    RPM-DEFAULT)
include(CPack)

For the above, assuming CPACK_PACKAGE_VERSION evaluates to a string of the form X.Y.Z, the example
would typically lead to package file names like:

myproj-tools-X.Y.Z-5.i686.rpm
myproj-tools-X.Y.Z-5.x86_64.rpm

As discussed in the previous chapter, the default base install point is unlikely to be desirable on
Linux systems and this extends to the creation of RPM packages. In fact, for all but Windows
systems, a more appropriate base point should generally be set for packaging too by explicitly
setting the CPACK_PACKAGING_INSTALL_PREFIX variable. Extending the example from the previous
chapter, the project may want to do something like the following:

if(NOT WIN32 AND CMAKE_SOURCE_DIR STREQUAL CMAKE_CURRENT_SOURCE_DIR)
    set(CMAKE_INSTALL_PREFIX "/opt/mycompany.com/${PROJECT_NAME}")
    set(CPACK_PACKAGING_INSTALL_PREFIX ${CMAKE_INSTALL_PREFIX})
endif()

A feature unique to RPM packages is that they can include relocation paths. Packages can specify
one or more path prefixes which the user can then choose to relocate to another part of their file
system at install time. To support this feature, the CPACK_RPM_PACKAGE_RELOCATABLE variable must be set
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to true and then CPACK_RPM_RELOCATION_PATHS can contain a list of path prefixes that the user will be
allowed to relocate. If using this feature, developers should consult the RPM generator’s
documentation to understand how relative paths are treated and the various default fall backs that
apply to both of these variables. Note also that if the project is included as part of a Linux
distribution, the distribution maintainers will likely need to override both the install prefix
variables and the relocation directories, so prefer to keep things simple.

The RPM package creation tool would normally be expected to strip executables and shared
libraries of all debug symbols before adding them to the package. The rationale is that the size of
release binaries should be minimized and they would normally hide implementation details and
not provide debugging facilities. Normally, stripping is controlled by the CPACK_STRIP_FILES variable,
which determines whether or not stripping is performed as part of the staged install during
packaging, but in the case of the RPM generator, the RPM package creation tool often performs its
own stripping by default. Therefore, even if CPACK_STRIP_FILES is false or unset, stripping may still
occur. The underlying problem is that the package creation tool rpmbuild typically has a post staging
install section which strips binaries and performs other tasks before creating the final .rpm package.
Traditionally, the workaround offered by cpack is to override that behavior by setting the
CPACK_RPM_SPEC_INSTALL_POST variable, usually to something like /bin/true. That approach is
deprecated in favor of using CPACK_RPM_SPEC_MORE_DEFINE instead:

# Prevent stripping and other post-install steps during package creation
set(CPACK_RPM_SPEC_MORE_DEFINE "%define __spec_install_post /bin/true")

While the above technique for preventing stripping works, it also discards all the other operations
that would normally be applied (e.g. automatic byte code compilation for python files, architecture-
specific post processing). A potentially better alternative is to allow stripping of the binaries in the
.rpm and produce a separate debuginfo package. Initial support for producing debuginfo packages
was added in CMake 3.7 and was further improved in 3.8 and 3.9. To enable this feature, all that is
usually required is to set either CPACK_RPM_DEBUGINFO_PACKAGE or the component-specific equivalent
CPACK_RPM_<COMP>_DEBUGINFO_PACKAGE to true. The debuginfo packages produced will contain source
files as well as the debug information. The sources are taken from CMAKE_SOURCE_DIR and
CMAKE_BINARY_DIR by default, but this can be overridden with the CPACK_BUILD_SOURCE_DIRS variable if
required. Parts of the source directory hierarchy can be excluded using the
CPACK_RPM_DEBUGINFO_EXCLUDE_DIRS and CPACK_RPM_DEBUGINFO_EXCLUDE_DIRS_ADDITION variables, although
projects probably only want to set the latter. The former is typically used to exclude system
directories and has an appropriate default value. Distribution maintainers may want to override
CPACK_RPM_DEBUGINFO_EXCLUDE_DIRS independently of what the project would set in
CPACK_RPM_DEBUGINFO_EXCLUDE_DIRS_ADDITION, hence the use of two separate variables.

When producing debuginfo packages, errors like the following may sometimes be encountered:

CPackRPM: source dir path '/path/to/source/dir' is shorter
than debuginfo sources dir path
'/usr/src/debug/SomeProject-X.Y.Z-Linux/src_0'! Source dir path must be
longer than debuginfo sources dir path.  Set
CPACK_RPM_BUILD_SOURCE_DIRS_PREFIX variable to a shorter value or make
source dir path longer.  Required for debuginfo packaging.  See
documentation of CPACK_RPM_DEBUGINFO_PACKAGE variable for details.
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Due to the way paths are rewritten as part of the debuginfo processing, the path to the source tree
needs to be longer than the intended installed location of the sources. Note that this may impact
continuous integration systems where the location of the source tree is typically fixed. This need for
a longer path length may be in conflict with other constraints where the path length may need to be
minimized, so consider carefully whether such constraints may apply to the project.

Source RPMs can also be produced by the RPM generator. These are similar to the debuginfo
packages but only contain the sources and no debugging information. They are produced in the
same way as source packages for other package generators and the RPM generator’s
documentation includes basic instructions showing how to build a binary RPM from the source
RPM, which may be a useful verification step.

# Create source RPM
cpack -G RPM --config CPackSourceConfig.cmake

# Verify that a binary RPM can be produced from it
mkdir -p build_dir/{BUILD,BUILDROOT,RPMS,SOURCES,SPECS,SRPMS}
rpmbuild --define "_topdir build_dir" --rebuild <source-RPM-filename>

The RPM generator supports many more variables than the ones discussed above. Details about
what the packages provide or require can be specified or the package creation tool can be directed
to automatically compute them. If the package replaces or conflicts with other packages, this can
also be specified. Scripts to be run before or after package installation and uninstallation can be
given, or if complete control is needed the project can provide its own custom .spec file template
instead of using the default one provided by cpack (although this should be avoided if possible, since
it negates much of the functionality already provided by cpack).

28.4.8. DEB

The DEB format is the other dominant package format for Linux systems and both DEB and RPM
share many similar characteristics. DEB packages are also basically just archives with associated
metadata, which the system’s package manager uses to enforce dependencies, trigger scripts and so
on.

One difference between DEB and RPM is that the preparation of DEB packages does not require a
special tool, unlike RPM packages which do. This allows DEB packages to be created on systems that
do not themselves use the DEB format, which means it is possible to produce both RPM and DEB
packages on RPM-based systems such as RedHat, SuSE, etc. The main caveat to this is that when
creating DEB packages on non-DEB systems, tools such as dpkg-shlibdeps are not available, so things
like automatic dependencies cannot be computed.

Components are handled in a very similar way to RPM and have analogous configuration variables.
Components are enabled by setting CPACK_DEB_COMPONENT_INSTALL to true (this variable does not follow
the naming used for all other DEB-specific variables, which have a name prefixed by CPACK_DEBIAN_
rather than CPACK_DEB_). Package names have analogous CPACK_DEBIAN_PACKAGE_NAME and
CPACK_DEBIAN_<COMP>_PACKAGE_NAME variables, while file names are controlled by CPACK_DEBIAN_FILE_NAME
and CPACK_DEBIAN_<COMP>_FILE_NAME. The same file naming issues apply to DEB as for RPM, except the
special value DEB-DEFAULT should be used instead of RPM-DEFAULT. If providing any other value, the file
name must end in .deb or .ipk. Versioning for DEB is also handled in a very similar way to RPM, as
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is specifying an architecture. Equivalent DEB variables are provided, with DEBIAN replacing RPM in
the variable names.

The DEB package generator has fewer variables to influence how dependencies are handled
compared to RPM. If packaging is being performed on a DEB-based host where the dpkg-shlibdeps
tool is available, the shared library dependencies can be automatically computed by setting
CPACK_DEBIAN_PACKAGE_SHLIBDEPS or the component specific CPACK_DEBIAN_<COMP>_PACKAGE_SHLIBDEPS
variables to true. Manually specified dependencies can be provided through the
CPACK_DEBIAN_PACKAGE_DEPENDS and CPACK_DEBIAN_<COMP>_PACKAGE_DEPENDS variables and will be merged
with the automatically determined ones if both manual and automatic dependencies are used.
Note, however, that if a component-specific dependency variable is set, the non-component
variable is not used for that component. If automatic dependency computation is enabled, it
populates the component-specific variables, so if the project sets only CPACK_DEBIAN_PACKAGE_DEPENDS,
it will be ignored for those components where automatic dependencies are populated. Therefore, it
may be more robust to always populate CPACK_DEBIAN_<COMP>_PACKAGE_DEPENDS rather than
CPACK_DEBIAN_PACKAGE_DEPENDS when automatic dependencies are enabled. Projects should also set
CPACK_DEBIAN_ENABLE_COMPONENT_DEPENDS to true if inter-component dependencies are specified via the
DEPENDS option to cpack_add_component(), which will then enforce those dependencies in the
generated component packages.

Related to the above, each package can also specify the shared libraries it requires. On platforms
that provide the readelf tool, these library dependencies can be determined automatically by
setting CPACK_DEBIAN_PACKAGE_GENERATE_SHLIBS to true. The readelf tool is then used to determine the
shared libraries each shared object needs and that information is added to the package. The
CPACK_DEBIAN_PACKAGE_GENERATE_SHLIBS_POLICY variable controls whether exact (=) or minimum (>=)
requirements are enforced.

The DEB generator’s documentation details a number of other DEB-specific variables not
mentioned above. In particular, some variables can be used to specify what the package(s) require,
provide, replace and so on. Some DEB-specific metadata items can also be set, such as maintainer
details, package group or category, etc. Developers should consult the DEB generator’s
documentation for the full set of supported variables.

28.4.9. FreeBSD

The FreeBSD package generator was added in CMake 3.10. It does not support components and
always produces a single .pkg file. Some FreeBSD-specific variables can be set to specify basic
package metadata, with a few falling back to DEB or RPM specific variables. Much of the package
configuration can be specified by the generic CPACK_… variables rather than generator specific
variables, so configuration of this generator can be fairly basic. Project developers are advised to
consult the FreeBSD generator’s documentation for available features and limitations.

28.4.10. Cygwin

An even more basic package generator is that for Cygwin. It is essentially just a wrapper around a
BZip2 archive and offers next to no configuration beyond the generic variables. Projects may wish
to consider using one of the simple archive formats instead.
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28.4.11. NuGet

The options supported by the NuGet generator follow a similar pattern to the other generators
already discussed. Support for the NuGet package format first became available with CMake 3.12.
CMake 3.20 expanded the set of available configuration variables further, providing generator-
specific control of package icons, license files and the locale. See the generator’s documentation for
the full list of supported options.

28.4.12. External

The External generator was added in CMake 3.13 and is very different to all the other package
generators. This particular generator writes out a JSON file containing package metadata,
component details and other CPack information, but it does not produce a package itself. It can
install the files that would normally be packaged into a temporary staging area if requested. Other
tools are expected to consume the JSON file and staged install area to produce packages using their
own methods. The main goal of this generator is to present the details accumulated by CPack in a
way that platforms and distributions can easily use within their own policy and technical
constraints. Instead of having to delegate the entire package creation process to CPack, systems can
read the description CPack provides and optionally use the staged install area and feed these into
their own existing methods. As such, this generator has a fairly narrow audience and is only likely
to be relevant for distribution maintainers, system integrators, etc. The interested reader should
consult the latest CMake documentation for a detailed description of the JSON format and
supported customization options.

28.5. Recommended Practices
One of the first decisions to be made regarding packaging is which package formats the project will
provide for its releases. A good starting point is to consider providing at least one simple archive
format and then one native format for each target platform. The archive format is convenient when
end users want to install multiple versions of the product simultaneously, since they can then just
unpack the release archives to different directories. As long as the packages are fully relocatable,
this is a simple and effective strategy. For the broadest compatibility, ZIP archives are
recommended for Windows and TGZ for Unix-based systems.

Different non-archive formats are appropriate depending on the target platform. If a UI installer is
appropriate for all platforms, then consider using the IFW generator for a consistent end user
experience regardless of platform. These installers also offer the greatest customizability,
localization and options for downloadable components. If more native installers are preferred,
then the choices will depend on what the project considers more important. For Windows, either
WIX or NSIS may be appropriate and the capabilities are fairly similar. For Mac, a multi component
project may prefer the productbuild generator for a cleaner installation experience, but the
DragNDrop generator is more likely to be preferred by end users for non-component projects since
it offers greater simplicity and more flexibility. On Linux, consider providing both RPM and DEB
packages for the broadest adoption by end users if not using the IFW generator for cross-platform
consistency.

Give particular consideration to whether end users should be able to install the product on a
headless system. This directly impacts both the choice of package formats and the way components
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need to be defined and packaged. For a headless system, a non-UI installation method must be
available and packages should not require UI-related dependencies. This means UI components
need to be separated out from non-UI components. This is especially important for RPM and DEB
package formats where inter-package dependencies are typically enforced by the package
manager, so a component package that requires UI dependencies would potentially pull in a large
number of unwanted UI-related packages for a headless system.

When defining component names, allow for the possibility that the project may be used as a child
of some larger project hierarchy. Include the project name in the component name to prevent name
clashes between projects. The component names shown to users in UI installers, package file
names, etc. can be set to something different rather than relying on the component name used
internally within the CMake project. In fact, setting custom display names and descriptions for
components is encouraged, including providing localized values where the package format
supports it.

When setting component details, prefer to use the commands defined by the relevant CMake
modules rather than setting variables directly. Commands such as cpack_add_component(),
cpack_add_component_group(), etc. use named arguments which make setting various options very
readable and easier to maintain. They are also more robust, since any error in argument names
will be caught by the command, whereas setting variables directly will silently go unnoticed if
variable names are misspelled.

When configuring details for the various generators, a potentially large number of variables can
influence the way contents are packaged. In many cases, the defaults are acceptable, but some
details should always be set by the project. Projects should explicitly set all three of the
CPACK_PACKAGE_VERSION_MAJOR, CPACK_PACKAGE_VERSION_MINOR and CPACK_PACKAGE_VERSION_PATCH variables,
since the default version details are rarely suitable or might not always be reliable. The package
name, description and vendor details should also always be set. To ensure robust escaping of
variable values in generated input files, always explicitly set CPACK_VERBATIM_VARIABLES to true.

In most cases, projects will want to avoid including a version number in the name of the default
installation directory. A number of installers support updating an existing install in-place, so any
version number in the directory name will be inappropriate after a product upgrade. Users may
also prefer the directory name to stay the same across upgrades so that they can write wrapper
scripts, launchers, etc. that work across versions. Simple archive packages are the exception to this,
which is why the default behavior for non-component archive generation mostly follows the
common convention of placing extracted contents under an appropriately named subdirectory that
includes both the package name and the version. For component based packages, projects will want
to set CPACK_COMPONENT_INCLUDE_TOPLEVEL_DIRECTORY to true to get similar behavior.

RPM and DEB packages should prefer to set package file names to RPM-DEFAULT and DEB-DEFAULT
respectively. This ensures that package file names follow the common naming conventions. It is
also a much simpler way of incorporating the package version and architecture details into the
package file names. Do not rely on the default RPM or DEB package file names provided by CPack,
since they omit the version and architecture details.

If debug information should be retained for release packages when using the RPM generator,
consider using the debuginfo functionality rather than preventing the stripping step of package
creation. Preventing stripping requires disabling other potentially desirable aspects of package
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generation and requires exposing debug details as part of the release package. The debuginfo
functionality allows a proper release package to be provided, with debugging details captured in a
separate package that can be distributed or not to end users. The DEB generator also supports
creating debuginfo packages when using CMake 3.13 or later.

If multi-architecture packages need to be produced from a single cpack invocation, use the
CPACK_INSTALL_CMAKE_PROJECTS variable to incorporate components from multiple build trees. This
method can also be used to create debug-and-release packages regardless of the CMake version or
CMake generator used. If using CMake 3.16 or later with a multi-config generator, a simpler way to
produce a multi-config package is to invoke the cpack tool directly and specify the set of
configurations to be packaged with the -C command line option. With either method, always list the
release components last in case both debug and release configurations install artifacts to the same
file name and directory. Ideally this should not occur anyway, but for cases where it may make
sense to do so, the release artifact is likely to be the preferred one.

Explore and understand the UI customization options provided by each UI installer that the project
will support. Defining appropriate product icons is highly recommended to ensure a professional
look and feel. Projects should also always provide their own readme, welcome and license details so
that the placeholder text provided by CPack is not used by any of the installers or packages’
metadata. The DragNDrop generator is a partial exception to this, where projects should transition
away from attaching license details to the DMG image. A future macOS version will remove the
deprecated tools CMake relies on to provide that feature. Projects should set
CPACK_DMG_SLA_USE_RESOURCE_FILE_LICENSE to false and find an alternative way of handling user license
acceptance for the DragNDrop generator (e.g. a modal dialog shown the first time the application is
run).
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Chapter 29. ExternalProject
For any project of modest complexity, it is likely to rely on one or more external dependencies.
These could be commonly available toolkits such as zlib, OpenSSL, Boost, etc. Dependencies might
be private projects by the same organization, or content to be used as resources, test data and so on.

In some scenarios, a project may be able to call find_package() to specify things it needs (see Section
25.5, “Finding Packages”), but leave the developer to take care of providing those packages. This
keeps the project simple, at the expense of placing more of a burden on the developer. In other
scenarios, the project may want or need to support providing its own dependencies directly. This
chapter and the next focus on such use cases.

CMake provides a few choices for how to bring external content into a build. At a fairly raw level,
the file(DOWNLOAD) command can be used to retrieve a specific file, either during the configure stage
or as part of processing a CMake file in script mode (i.e. cmake -P). While this has its uses, it is
usually well short of the level of functionality needed to incorporate whole projects. For
downloading and building an entire dependency, the traditional approach in CMake has been to
use the ExternalProject module. This has been a part of CMake for a long time and has a variety of
uses apart from simply doing a download and build. The FetchContent module, discussed in the next
chapter, builds on top of ExternalProject.

29.1. High Level Overview
The ExternalProject module’s main purpose is to enable downloading and building external projects
that cannot be easily made part of the main project directly. The external project is added as its own
separate sub-build, effectively isolated from the main project and treated more or less as a black
box. This means it can be used to build projects for a different architecture, different build settings
or even to build a project with a build system other than CMake. It can also be used to handle a
project that defines targets or install components that clash with those of the main project or its
dependencies.

ExternalProject works by defining a set of build targets in the main project that represent the
distinct steps of obtaining and building the external project. These are then collected under a single
CMake target which represents the whole sequence. Timestamps are used to keep track of which
steps have already been performed and do not need to be repeated unless relevant details change.
The default set of steps are as follows:

Download

Various methods can be used to obtain the external project’s source. These include downloading
an archive from a URL and unpacking it automatically, or cloning/checking out from a source
code repository such as git, subversion, mercurial or CVS. Alternatively, projects can define their
own custom commands if none of the supported download options are appropriate.

Update

For source code repository download methods, an existing download can be efficiently brought
up-to-date to account for things like changes to which commit to check out. Custom commands
can be provided to override the default update behavior if necessary.
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Patch

Once the source code has been downloaded and updated, a patch can be applied. A custom
command has to be provided for the patch step to do anything. This should generally only be
done for archive downloads. The behavior is difficult to make robust for any of the other source
repository download methods.

Configure

If the external project uses CMake as its build system, this step executes cmake on the downloaded
source. Some information is passed through from the main build to make configuring external
CMake projects fairly seamless. For non-CMake external projects, a custom command can be
provided to run the equivalent steps, such as running a configure script with appropriate
options.

Build

By default, if CMake was used to configure the build, the configured external project is built with
the same build tool as the main project. Custom commands can be provided for the build step to
use a different build tool or to perform some other task.

Install

The external project can be installed to a local directory, typically to somewhere within the main
project’s build tree. The main project then knows where to expect the external project’s build
artifacts to be and can incorporate them into its own build. The default behavior depends on
whether the configure step assumed a CMake build was being invoked.

Test

The external project may come with its own set of tests, which the main project might or might
not wish to run. The ExternalProject module provides flexibility in whether to run a test stet (by
default it doesn’t) and whether it should come before or after the install step. If the test step is
enabled, a default test target will be assumed to exist in the external project, but custom
commands can be specified to provide full control over what the test step does.

The module allows other custom steps to be defined and inserted into any point in the above
workflow, but the default set of steps are typically sufficient for most projects. The details for the
default steps are all set by the main function provided by the module, ExternalProject_Add(). This
function accepts many options, all of which are detailed in the module’s documentation. Only a
selection of the more commonly used ones and some typical scenarios are discussed in this chapter.

The simplest use case involves downloading a source archive from a URL and building it as a
CMake project. The minimal information needed to achieve this is just the URL, which is provided
like so:

include(ExternalProject)
ExternalProject_Add(SomeExtProj
    URL https://example.com/releases/myproj_1.2.3.tar.gz
)
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The first argument to the function is always the name of a build target to be created in the main
project. This target will be used to refer to the external project’s whole build process. By default, it
is added to the main project’s all target, but this can be disabled by adding the usual
EXCLUDE_FROM_ALL option, which has the same effect as it does for commands like add_executable(),
add_custom_target(), etc. In the above example, building the SomeExtProj target will result in the
following being performed during the build stage of the main project:

• Download the tarball and unpack it.

• Run cmake with default options based on the main build.

• Invoke the same build tool as the main project for the default target.

• Build the external project’s install target.

This is just one common scenario. The ExternalProject module supports much more than the above
workflow.

29.2. Directory Layout
The various steps all use a separate set of directories created in the build directory to hold the
sources, build outputs, timestamps and other temporary files associated with the external project’s
build. The structure of these directories depends on a few different factors and the module
documentation provides a detailed explanation of how the directory structure is chosen. For the
most part, projects won’t typically need to know much about the directory structure, unless it needs
to directly refer to things within it. An awareness of the directory structure is therefore useful, but
not always necessary.

The directory structure is perhaps most easily introduced by showing how the main project can
control the structure rather than relying on the defaults. The base location of the directories can be
set using the PREFIX option.

ExternalProject_Add(SomeExtProj
    PREFIX prefixDir
    URL    https://example.com/releases/myproj_1.2.3.tar.gz
)

When used this way, the directory layout will be based under prefixDir, which should generally be
provided as an absolute path and would normally be somewhere within the main project’s build
area. The default relative directory layout created under this location is shown below. The
unpacked archive will be in prefixDir/src/SomeExtProj and the CMake build will use
prefixDir/src/SomeExtProj-build as its build directory.
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The EP_PREFIX and EP_BASE directory properties can be set to influence the above layout. See the
ExternalProject documentation for details. The prefix and these directory properties only provide
coarse control over the directory structure. For those cases where it is needed, ExternalProject_Add()
allows some or all of the individual directories to be set directly:

ExternalProject_Add(SomeExtProj
    DOWNLOAD_DIR downloadDir
    SOURCE_DIR   sourceDir
    BINARY_DIR   binaryDir
    INSTALL_DIR  installDir
    TMP_DIR      tmpDir
    STAMP_DIR    stampDir
    URL          https://example.com/releases/myproj_1.2.3.tar.gz
)

In practice, the TMP_DIR and STAMP_DIR would rarely be used, but the others are more relevant to the
main project and are sometimes provided. The default install location will be up to the external
project, which will typically be a system-wide location. Therefore, it is very common for INSTALL_DIR
to be specified to facilitate collecting all the final artifacts of external projects in a more appropriate
place. This would typically be somewhere under the build directory. Further steps are required to
make the external projects use the specified INSTALL_DIR, as later examples will show.

Another useful technique is to provide SOURCE_DIR and give a location of an existing directory that
has already been populated. When used this way, no download method needs to be given, in which
case the command will use the existing contents of the specified source directory. This can be a very
convenient way of building a part of the main project’s source tree for a different platform. For
example:

ExternalProject_Add(Firmware
    SOURCE_DIR  ${CMAKE_CURRENT_LIST_DIR}/Firmware
    INSTALL_DIR ${CMAKE_CURRENT_BINARY_DIR}/Firmware-artifacts
    #... other options to configure differently
)

29.3. Built-in Steps
For the vast majority of cases, projects will generally find the built-in steps provided by
ExternalProject_Add() to be sufficient. They provide a rich set of capabilities that cover many
common use cases. For those they do not cover directly, custom steps and step relationships can be
defined (these are as discussed in Section 29.4, “Step Management” and Section 29.5, “Miscellaneous
Features”).

29.3.1. Archive Downloads

Archive download methods are identified by their use of the URL keyword. ExternalProject has
considerably more downloading support than just a basic URL to download though. For archives, it
supports the main project giving a hash of the file to be downloaded. This not only has the obvious
advantage of verifying the downloaded contents, it also allows the module to check a file it might
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have downloaded previously and avoid re-downloading it again if it knows it already has one with
the correct hash. The hash value can be for any algorithm that the file() command supports, but it
is typically either MD5 or SHA1. The hash is given with the URL_HASH option, as in the following
example:

ExternalProject_Add(SomeAutotoolsProj
    URL      someUrl
    URL_HASH MD5=b4a78fe5c9f2ef73cd3a6b07e79f2283
    #... other options
)

Specifying a hash is strongly recommended. CMake will issue a warning if the URL option is used
without an accompanying URL_HASH option. As a special case to maintain backward compatibility
with older CMake versions, the URL_MD5 option can be used to provide a MD5 hash, but projects
should avoid it in favor of the more flexible URL_HASH option.

It is also possible to specify more than one URL and let the project try each in turn until one
succeeds. This can be useful when the available servers to connect to might change depending on
the network connection, VPN settings, etc., or to try local servers before potentially slower remote
servers. This feature cannot be used with file:// urls.

set(archive someproj-1.2.3.tar.gz)

ExternalProject_Add(SomeProj
    URL      https://mirror.example.com/releases/${archive}
             https://somewhereelse.com/artifacts/${archive}
    URL_HASH MD5=b4a78fe5c9f2ef73cd3a6b07e79f2283
    #... other options
)

When downloading archives, the archive format is detected based on the file contents after
download. The archive is then unpacked automatically. The automatic unpacking can be disabled if
needed and various aspects of how the download itself is configured can be controlled. See the
module documentation for details on the relevant options for these less common scenarios.

Archive-based URL download methods can be susceptible to an important timestamp-related
problem. When archive contents are unpacked with CMake 3.23 or earlier, the files and directories
are given timestamps that match those in the archive. These timestamps can be arbitrarily far back
in the past. When the URL is changed for an existing build, ExternalProject correctly detects this and
re-downloads and unpacks the archive from the new URL. But the build step might then incorrectly
decide that some things don’t need to be recompiled, since the timestamps of the source from the
new archive are still older than the compiler outputs built with the previous archive’s contents.

CMake 3.24 introduced policy CMP0135 to address this problem. When that policy is set to NEW, the
contents of an unpacked archive will have their timestamps set to the time of extraction, not the
timestamps from the archive. This ensures the build step sees inputs as being newer than things
built from them, triggering recompilation as expected. Projects are strongly encouraged to ensure
CMP0135 is set to NEW where possible to use the more robust behavior. This can be done with or
without requiring CMake 3.24 as a minimum version.
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# Require at least CMake 3.24, policy always set to NEW
cmake_minimum_required(VERSION 3.24)

ExternalProject_Add(SomeExtProj URL ...)

# Use NEW policy if available
if(POLICY CMP0135)
    cmake_policy(SET CMP0135 NEW)
endif()

ExternalProject_Add(SomeExtProj URL ...)

The timestamp behavior can also be specified directly as part of the call to ExternalProject_Add()
with the DOWNLOAD_EXTRACT_TIMESTAMP option:

# Override policy for just one call
if(CMAKE_VERSION VERSION_GREATER 3.24)
    set(timestampOpt DOWNLOAD_EXTRACT_TIMESTAMP NO)
else()
    set(timestampOpt "")
endif()

ExternalProject_Add(SomeExtProj URL ... ${timestampOpt})

29.3.2. Repository Download Methods

Downloaded contents don’t have to be from an archive, the module can also work directly with
source code repositories for git, subversion, mercurial or CVS. Each of these require the repository
to be named with a <REPOTYPE>_REPOSITORY option and then other repository specific options may also
be given.

ExternalProject_Add(MyProj
    GIT_REPOSITORY git@example.com/git/myproj.git
    GIT_TAG        3a281711d1243351190bdee50a40d81694aa630a
)

The above example shows the typical information needed to clone a git repository and checkout a
particular commit. If the GIT_TAG option is omitted, the latest commit on the master branch will be
used. The name of a tag or branch can also be given with GIT_TAG instead of a commit hash. While
GIT_TAG does support these different choices, it should be noted that only a commit hash is truly
unambiguous. With git, the commit referenced by a branch or tag name can move over time, so
using them does not guarantee a repeatable build. Similarly, omitting GIT_TAG altogether is the same
as giving master, so it too won’t always point at the same commit. A future CMake release is likely to
make omitting the GIT_TAG an error when using the GIT_REPOSITORY method.
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There is another reason to only use commit hashes with GIT_TAG. Because a tag or branch can
change over time, ExternalProject_Add() may need to contact the remote end every time CMake is
run, even if it already has the named tag or branch locally. CMake cannot be sure that the tag or
branch hasn’t moved without fetching from the remote. This round trip every time CMake is re-run
can be expensive, especially if the project is using many external projects. As a special case, if a tag
is requested and that tag is already checked out, it will be assumed that the tag hasn’t moved and
no fetch will be performed. This trade-off between performance and robustness is typically safe for
most projects where tags never move once created, but it does open an avenue for a non-
reproducible build. If a commit hash is used instead, ExternalProject_Add() knows robustly whether
it already has the commit locally without needing to contact the remote.

Other options can be used to customize the git behavior, including specifying a different default
remote name, control of git submodules, shallow clones and arbitrary git config options. Consult the
module documentation for further details.

Checking out from a subversion repository is fairly similar to git:

ExternalProject_Add(MyProj
    SVN_REPOSITORY svn+ssh@example.com/svn/myproj/trunk
    SVN_REVISION   -r31227
)

The SVN_REVISION option specifies a svn command line option that is expected to specify the commit
to check out. This will frequently be a global revision number specified with the -r option as shown
above, but could technically be any valid command line option. If SVN_REVISION is omitted, the latest
revision is used, but projects should strive to always provide this option to ensure that the build is
repeatable. A few other security-related subversion options are also supported by
ExternalProject_Add(), such as for authenticating with the repository and specifying certificate trust
settings. Consult the ExternalProject module documentation for details on these less frequently used
options.

In comparison, the support for Mercurial and CVS is very basic. In the case of Mercurial, only the
repository and tag can be specified, while for CVS, the module is also required:

ExternalProject_Add(MyProjHg
    HG_REPOSITORY  https://example.com/hg/myproj
    HG_TAG         dd2ce38a6b8a
)
ExternalProject_Add(MyProjCVS
    CVS_REPOSITORY https://example.com/cvs/myproj
    CVS_MODULE     someModule
    CVS_TAG        -rsomeTag
)

The CVS_TAG option is analogous to the SVN_REVISION option in that it is placed on the cvs command
line directly, so it must include any required command option prefix, such as shown above.
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29.3.3. Configuration Step

By default, the configure step assumes the external project also uses CMake as its build system.
Support is provided for passing custom options to its cmake command line to influence its
configuration. The most direct way to achieve this is using the CMAKE_ARGS option, which should be
followed by the arguments to be passed to the external project’s cmake command. The earlier
example from Section 27.1, “Directory Layout” can be extended to use a toolchain file, configure a
release build, and use the nominated install directory like so:

ExternalProject_Add(Firmware
    SOURCE_DIR  ${CMAKE_CURRENT_LIST_DIR}/Firmware
    INSTALL_DIR ${CMAKE_CURRENT_BINARY_DIR}/Firmware-artifacts
    CMAKE_ARGS
        -D CMAKE_TOOLCHAIN_FILE=${CMAKE_CURRENT_LIST_DIR}/fwtoolchain.cmake
        -D CMAKE_BUILD_TYPE=Release
        -D CMAKE_INSTALL_PREFIX=<INSTALL_DIR>   # See below
)

The above example uses a placeholder for the install directory passed as the value for
CMAKE_INSTALL_PREFIX. A placeholder is just the option name for a particular directory surrounded by
angle brackets. The most commonly used placeholders are <SOURCE_DIR>, <BINARY_DIR> and
<INSTALL_DIR>. <DOWNLOAD_DIR> is also available with CMake 3.11 or later. The full list of placeholders is
given in the ExternalProject module documentation.

If more than a couple of CMake options need to be set, the length of the generated cmake command
line could become a problem. An alternative is to specify cache variables to be defined using
CMAKE_CACHE_ARGS rather than defining them via CMAKE_ARGS. These arguments are expected to be in
the form -Dvariable:TYPE=value and will be converted to a file containing commands of the form
set(variable value CACHE TYPE "" FORCE). This file is then passed to the cmake command line with a -C
option. The effect is the same as if the variables had been set directly on the cmake command line via
-D options.

ExternalProject_Add(Firmware
    SOURCE_DIR  ${CMAKE_CURRENT_LIST_DIR}/Firmware
    INSTALL_DIR ${CMAKE_CURRENT_BINARY_DIR}/Firmware-artifacts
    CMAKE_ARGS
        -DCMAKE_TOOLCHAIN_FILE:FILEPATH=${CMAKE_CURRENT_LIST_DIR}/fwtoolchain.cmake
        -DCMAKE_BUILD_TYPE:STRING=Release
        -DCMAKE_INSTALL_PREFIX:PATH=<INSTALL_DIR>
)

There are other options which can be used to change the CMake generator and a few other less
common aspects of how CMake is invoked, but these are less frequently used. Consult the module
documentation for further details.

If the external project does not use CMake as its build system, the CONFIGURE_COMMAND option can be
given to provide an alternative custom command to be executed instead of running cmake. For
example, many projects provide a configure script, which could be set up like so:
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ExternalProject_Add(SomeAutotoolsProj
    URL               someUrl
    CONFIGURE_COMMAND <SOURCE_DIR>/configure
    ...
)

The configure command is run in the build directory, but the configure script will be in the source
directory. Rather than explicitly having to define the directory layout to be used for the external
project, the above demonstrates an alternative strategy whereby the default structure is used, but
the command’s placeholder support provides the location of the source directory.

29.3.4. Build Step

If the CONFIGURE_COMMAND option is not used, the project is assumed to be a CMake build and the
external project’s build step will use the same build tool as the main project. For such cases, the
default behavior of the build step is suitable and no special handling is needed. When
CONFIGURE_COMMAND is provided, the default build tool is assumed to be make and the default build
command is to invoke make without any explicit target. If a non-default target should be built
instead or a build tool other than make is needed, a custom build command must be provided. For
example:

find_program(MAKE_EXECUTABLE NAMES nmake gmake make)
ExternalProject_Add(SomeAutotoolsProj
    URL               someUrl
    CONFIGURE_COMMAND <SOURCE_DIR>/configure
    BUILD_COMMAND     ${MAKE_EXECUTABLE} specialTool
)

The custom build command could do anything, it doesn’t have to be a known build tool. It can even
be set to an empty string to effectively bypass the build step.

29.3.5. Install Step

Predictably, the same pattern continues for the install step too. For CMake projects, the main
project’s build tool will be invoked to build a target called install by default, whereas for non-
CMake projects, the default command is make install. The INSTALL_COMMAND option can be used to
provide a custom install command, or it can be set to an empty string to disable the install step
altogether. This is often done when the main project can use the results of the build step without
needing any further install.

ExternalProject_Add(SomeAutotoolsProj
    URL               someUrl
    CONFIGURE_COMMAND <SOURCE_DIR>/configure
    BUILD_COMMAND     ${MAKE_EXECUTABLE} specialTool
    INSTALL_COMMAND   ""   # Disables the install step
)
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Care should be taken to handle the install step properly. If the external project uses CMake as its
build system, the destination of the default install rule is controlled by the CMAKE_INSTALL_PREFIX
cache variable. If this variable is not set, the default location will be used, which typically results in
the external project being installed to a system-wide location, which is not usually the desired
outcome (certainly not if the project is being built within a continuous integration system).
Similarly, if the external project uses a build system other than CMake, the default install command
will be make install, which again will likely try to install to a system-wide location. For the CMake
case, setting the cache variable via CMAKE_ARGS as shown in the earlier example addresses the
situation. For a Makefile based project, something like the following is usually appropriate:

ExternalProject_Add(otherProj
    URL               ...
    INSTALL_DIR       ${CMAKE_CURRENT_BINARY_DIR}/otherProj-install
    CONFIGURE_COMMAND <SOURCE_DIR>/configure
    INSTALL_COMMAND   ${MAKE_EXECUTABLE} DESTDIR=<INSTALL_DIR> install
)

The INSTALL_DIR option doesn’t do anything other than define a value for the <INSTALL_DIR>
placeholder. It is up to the caller to use the <INSTALL_DIR> placeholder to pass that information
through to wherever it is needed. Projects should use INSTALL_DIR to define the location and then use
the <INSTALL_DIR> placeholder rather than embedding the path directly in options like
INSTALL_COMMAND. This ensures that the location can be queried later if required, as covered in Section
29.5, “Miscellaneous Features” further below.

29.3.6. Test Step

The test step is handled slightly differently and does nothing by default. To enable it, one of the test-
specific options must be given, such as TEST_BEFORE_INSTALL YES or TEST_AFTER_INSTALL YES. Once
enabled, the pattern is the same as for the build and install steps, with the appropriate build tool
invoking the test target by default, but TEST_COMMAND can be given to provide alternative behavior.

29.4. Step Management
Sometimes it can be useful or even necessary to refer to one of the steps in the ExternalProject
sequence, such as to add a dependency on another CMake target that provides an input to a
particular step. The STEP_TARGETS option can be given to ExternalProject_Add() to tell it to create
CMake targets for the specified set of steps. These targets have names of the form mainName-step,
where mainName is the target name given as the first argument to ExternalProject_Add() and step is
the step the target represents. For example, the following would result in targets named MyProj-
configure and MyProj-install being defined:

ExternalProject_Add(MyProj
    GIT_REPOSITORY git@example.com/git/myproj.git
    GIT_TAG        3a281711d1243351190bdee50a40d81694aa630a
    STEP_TARGETS   configure install
)
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Adding dependencies for these step targets requires a little more care. To make a step target depend
on some other CMake target, the project should use the ExternalProject_Add_StepDependencies()
function provided by the module rather than calling add_dependencies(). This ensures that things
like the step timestamps are handled correctly. The form of that command is as follows:

ExternalProject_Add_StepDependencies(mainName step otherTarget1...)

The following example shows how to use this function to make the configure step of the previous
example depend on an executable built by the main project:

add_executable(PreConfigure ...)
ExternalProject_Add_StepDependencies(MyProj configure PreConfigure)

To make an ordinary CMake target depend on a step target, add_dependencies() is fine:

add_executable(PostInstall ...)
add_dependencies(PostInstall MyProj-install)

If a particular step of one external project needs to depend on a step of a different external project,
ExternalProject_Add_StepDependencies() must once again be used:

ExternalProject_Add(Earlier
    STEP_TARGETS build
    ...
)
ExternalProject_Add(Later
    STEP_TARGETS build
    ...
)
ExternalProject_Add_StepDependencies(Later build Earlier-build)

The above arrangement can be useful if Earlier defines tests that are time-consuming to run, but in
a parallel build the Later project doesn’t need to wait for those tests, only for Earlier to be built.

When the same set of step targets need to be defined for multiple external projects, rather than
repeating them each time, they can be made the default by setting the EP_STEP_TARGETS directory
property instead.

set_property(DIRECTORY PROPERTY EP_STEP_TARGETS build)
ExternalProject_Add(Earlier ...)
ExternalProject_Add(Later ...)
ExternalProject_Add_StepDependencies(Later build Earlier-build)

For many projects though, such granularity of dependencies offers only limited gains and the
complexity may not be worth it. The whole external project can be made dependent on another
target by using the DEPENDS option with ExternalProject_Add(), which is much simpler:
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add_executable(PreConfigure ...)
ExternalProject_Add(MyProj
    DEPENDS PreConfigure
    ...
)

The DEPENDS option takes care of ensuring all the step dependencies are handled correctly, just as
ExternalProject_Add_StepDependencies() does when setting up more granular dependencies.

Projects are not limited to only the default steps, they can create their own custom steps and insert
them into the step workflow with whatever dependency relationships they require. The
ExternalProject_Add_Step() function provides this capability:

ExternalProject_Add_Step(mainName step
    [COMMAND           command [args...] ]
    [COMMENT           comment]
    [WORKING_DIRECTORY dir]
    [DEPENDS           filesWeDependOn...]
    [DEPENDEES         stepsWeDependOn...]
    [DEPENDERS         stepsDependOnUs...]
    [BYPRODUCTS        byproducts...]
    [INDEPENDENT       bool]  # CMake 3.19 or later
    [ALWAYS            bool]
    [EXCLUDE_FROM_MAIN bool]
    [LOG               bool]
    [USES_TERMINAL     bool]
)

COMMAND is used to define the action to take when the step is executed. It is analogous to the custom
command that can be specified for each of the default steps. COMMENT can be supplied to provide a
custom message when executing the step, but as noted back in Section 19.1, “Custom Targets”, such
comments are not always shown. Therefore, consider them helpful, but not essential. The
WORKING_DIRECTORY option has the same meaning as for an add_custom_target() command.

Comprehensive dependency details can be provided with the custom step. If the command depends
on a specific file or set of files, they should be listed with the DEPENDS option. For files generated as
part of the build, they must be generated by custom commands created in the same directory scope.
The DEPENDEES and DEPENDERS options define where this custom step sits in the step workflow of the
external project. Care must be taken to fully specify all direct dependencies. Otherwise, the custom
step will potentially execute out of sequence. The BYPRODUCTS option should also be used if the
custom step produces a file that something else in the external project or main project depends on.
Without this, the Ninja generators will likely complain about a missing build rule.

CMake 3.19 added support for the INDEPENDENT keyword, which must be followed by a boolean true
or false value. Where the step does not depend on anything outside the external project, it can be
specified as independent. It may still depend on other steps within the mainName external project, as
long as those other steps are also considered independent. For example, the update step depends on
the download step, but both are created as independent because they don’t rely on any targets from
other parts of the build. Specifying a step to be independent can improve parallelism and may
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avoid unnecessarily re-executing the step when unrelated external dependencies change. If the
INDEPENDENT option is given a value of false or is not present, the step target will depend on
everything that the mainName target depends on. The reader is referred to the policy CMP0114
documentation, which discusses the use, limitations and relevant historical notes around this
functionality in considerable depth.

A custom step can be made to always appear out of date by setting the ALWAYS option to true. Projects
should generally only do this if no other step depends on it, since anything depending on it would
then also be always considered out of date. This may lead to builds doing more work than they
need to. If the custom step is intended to only be built on demand, then setting both ALWAYS and
EXCLUDE_FROM_MAIN to true is usually the desired combination. The remaining options LOG and
USES_TERMINAL are discussed in the next section.

All the default steps are created by calls to ExternalProject_Add_Step() internally from within
ExternalProject_Add(). Projects must not try to redefine them, which means custom steps cannot be
named mkdir, download, update, skip-update, patch, configure, build, install or test.

The actions and inter-step dependencies are defined by ExternalProject_Add_Step(), but in order for
a target to be created for a custom step, the ExternalProject_Add_StepTargets() function must be
called as well. This function is also called internally by ExternalProject_Add() to create targets for
steps listed in its STEP_TARGETS option or set via the EP_STEP_TARGETS directory property.

ExternalProject_Add_StepTargets(mainName [NO_DEPENDS] steps...)

The NO_DEPENDS option is rarely desirable and is not recommended for most scenarios. It is
deprecated since CMake 3.19 and is not available if policy CMP0114 is set to NEW. See the discussion of
this option in the module documentation for further details.

The following example demonstrates how to define a package custom step which depends on the
build step, but is only executed when explicitly requested:

ExternalProject_Add_Step(MyProj package
    COMMAND           ${CMAKE_COMMAND} --build <BINARY_DIR> --target package
    DEPENDEES         build
    ALWAYS            YES
    EXCLUDE_FROM_MAIN YES
)
ExternalProject_Add_StepTargets(MyProj package)

29.5. Miscellaneous Features
For any of the default or custom steps, a custom command can be specified. For
ExternalProject_Add(), the relevant options are those that end with _COMMAND, while for
ExternalProject_Add_Step() it is the COMMAND option that provides the custom command to execute.
Both of these functions allow more than one command to be given by appending further COMMAND
options that immediately follow the first. Each command is then executed in order for that step.
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ExternalProject_Add(MyProj
    CONFIGURE_COMMAND ${CMAKE_COMMAND} -E echo "Starting custom configure"
              COMMAND ./configure
              COMMAND ${CMAKE_COMMAND} -E echo "Custom configure completed"
    BUILD_COMMAND     ${CMAKE_COMMAND} -E echo "Starting custom build"
          COMMAND     ${MAKE_EXECUTABLE} MySpecialTarget
          COMMAND     ${CMAKE_COMMAND} -E echo "Custom build completed"
)
ExternalProject_Add_Step(MyProj package
    COMMAND           ${CMAKE_COMMAND} -E echo "Starting packaging step"
    COMMAND           ${CMAKE_COMMAND} --build <BINARY_DIR> --target package
    COMMAND           ${CMAKE_COMMAND} -E echo "Packaging completed"
    DEPENDEES         build
    ALWAYS            YES
    EXCLUDE_FROM_MAIN YES
)
ExternalProject_Add_StepTargets(MyProj package)

Commands can also be given access to the terminal. This can be important for things like repository
access which may require the user to enter a password for a private key, etc. While this is not
applicable to continuous integration builds, it is sometimes useful for developers in their day-to-day
activities. Access to the terminal is controlled on a per-step basis with ExternalProject_Add() options
of the form USES_TERMINAL_<STEP>, where <STEP> is the step name in uppercase, and the value given
for the option is a true or false constant. For custom steps, the USES_TERMINAL option for the
ExternalProject_Add_Step() command has the same effect. If using a git or subversion repository for
the download, it may be desirable to give the download and update steps access to the terminal.

ExternalProject_Add(MyProj
    GIT_REPOSITORY         git@example.com/git/myproj.git
    GIT_TAG                3a281711d1243351190bdee50a40d81694aa630a
    USES_TERMINAL_DOWNLOAD YES
    USES_TERMINAL_UPDATE   YES
)

Steps should only be given access to the terminal if it is needed. The effect of doing so is mostly
relevant for the Ninja generators, where the custom step will be placed into the console job pool. All
targets allocated to the console pool are forced to run serially and the output of any tasks running in
other job pools in parallel is buffered until the current console job completes. Be especially careful
not to give the build step access to the terminal unless absolutely necessary, since it has the
potential to have a significant negative impact on the overall build performance of the project.
Section 35.3.2, “Ninja Generators” discusses further aspects of Ninja job pools in general.

In some cases, it can be useful to capture the output from individual steps to file rather than have it
go to the terminal. This is especially useful where there is a large amount of output that will only be
of interest if there is an error or other unexpected problem. To redirect a step’s output to file, set
the LOG_<STEP> option in ExternalProject_Add() or the LOG option in ExternalProject_Add_Step() to a
true value. The terminal output will then only show a short message indicating whether the step
was successful and where the log files can be found.
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Prior to CMake 3.14, log files were always created in the timestamp directory (i.e. STAMP_DIR), which
isn’t always the most intuitive location. With CMake 3.14 and later, the log file directory can be
specified with the LOG_DIR keyword. If a relative path is given, it will be treated as being relative to
CMAKE_CURRENT_BINARY_DIR. The LOG_MERGED_STDOUTERR option was also added in CMake 3.14 and when it
is set to true, the stdout and stderr streams will be merged into a single log file for each step with
LOG_<STEP> also set to true.

ExternalProject_Add(MyProj
    GIT_REPOSITORY       git@example.com/git/myproj.git
    GIT_TAG              3a281711d1243351190bdee50a40d81694aa630a
    LOG_BUILD            YES
    LOG_TEST             YES
    LOG_DIR              logs   # Requires CMake 3.14 or later
    LOG_MERGED_STDOUTERR YES    # Requires CMake 3.14 or later
)

A project may want to know the value of an ExternalProject_Add() option. Placeholders such as
<SOURCE_DIR> cover many of the common scenarios where values are needed within the call to
ExternalProject_Add(), but for other cases the ExternalProject_Get_Property() command is useful:

ExternalProject_Get_Property(mainName propertyName...)

Its syntax differs significantly from other property retrieval commands like get_property(). No
output variable name is given, instead a variable matching the name of the property to be retrieved
is created. This allows multiple properties to be retrieved in one call.

ExternalProject_Get_Property(MyProj SOURCE_DIR LOG_BUILD)
set(msg "MyProj source will be in ${SOURCE_DIR}")
if(LOG_BUILD)
    string(APPEND msg " and its build output will be redirected to log files")
endif()
message(STATUS "${msg}")

29.6. Common Issues
The ExternalProject module is both powerful and effective when used correctly, but it can also
sometimes lead to problems that can be difficult to trace. One of the most common problems
encountered is when trying to set up multiple external projects where one project wants to be able
to use build outputs from another. This generally requires the main project to do two things:

• Specify the dependency relationships between the two projects.

• Give the depender project the information it needs to find the dependee.

The first point is easy enough to establish by creating a dependency for the configure step of the
depender on the main target of the dependee. The second point requires understanding how the
depender wants to know about the location of the dependee. For example, if it uses find_package(),
find_library(), etc. to locate the dependee, then setting its CMAKE_PREFIX_PATH may be sufficient. The
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following example demonstrates this technique, building both zlib and libpng as external projects
and installing them to the same directory. Since libpng requires zlib, giving it the common install
area for CMAKE_PREFIX_PATH allows it to find zlib. The example ensures zlib is installed before libpng
runs its configure step, which is when libpng will use CMAKE_PREFIX_PATH.

set(installDir ${CMAKE_CURRENT_BINARY_DIR}/install)

include(ExternalProject)
ExternalProject_Add(zlib
    INSTALL_DIR ${installDir}
    URL         https://zlib.net/zlib-1.2.11.tar.gz
    URL_HASH    SHA256=c3e5e9fdd5004dcb542feda5ee4f0ff0744628baf8ed2dd5d66f8ca1197cb1a1
    CMAKE_ARGS  -DCMAKE_INSTALL_PREFIX:PATH=<INSTALL_DIR>
)
ExternalProject_Add(libpng
    INSTALL_DIR ${installDir}
    URL         ftp://ftp-osl.osuosl.org/pub/libpng/src/libpng16/libpng-1.6.34.tar.gz
    URL_HASH    MD5=03fbc5134830240104e96d3cda648e71
    CMAKE_ARGS  -DCMAKE_INSTALL_PREFIX:PATH=<INSTALL_DIR>
                -DCMAKE_PREFIX_PATH:PATH=<INSTALL_DIR>
)
ExternalProject_Add_StepDependencies(libpng configure zlib)

Another dependency-related issue that can arise when using the Ninja generators is Ninja
complaining that it doesn’t know how to build a particular file that an external project is supposed
to be supplying. The following example demonstrates such a situation.

ExternalProject_Add(MyProj
    # Options to download and build a library "someLib"
    ...
)
ExternalProject_Get_Property(MyProj INSTALL_DIR)

add_library(MyProj::someLib STATIC IMPORTED)

set_target_properties(MyProj::someLib PROPERTIES
    # Platform-specific due to hard-coded library location and file name
    IMPORTED_LOCATION ${INSTALL_DIR}/lib/libsomeLib.a
)

add_dependencies(MyProj::someLib MyProj)

The Ninja generators will try to find libsomeLib.a at the expected location, but it won’t yet exist
before the MyProj external project is built for the first time. Ninja will then halt with an error saying
it doesn’t know how to build the missing dependency. Other generators may be more relaxed in
their dependency checking and not complain, but that should not be considered confirmation of
correctly specified dependencies. A solution to the above is to add a BUILD_BYPRODUCTS option to the
ExternalProject_Add() call to specify the build outputs (available in CMake 3.2 or later). Ninja will
then have all the information it needs to satisfy its dependencies.
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ExternalProject_Add(MyProj
    BUILD_BYPRODUCTS <INSTALL_DIR>/lib/libsomeLib.a
    # Options to download and build the above library
    ...
)

The above situation is an example of the sort of problems that arise when mixing ExternalProject
with targets defined in the main project. This is difficult to do robustly and usually involves having
to manually specify platform-specific details that CMake normally handles on the project’s behalf
(e.g. library names and locations). Projects should consider whether a superbuild arrangement
would be more appropriate and not try to create build targets of their own when using
ExternalProject.

Dependency problems can also arise in other situations. Consider the earlier example where
ExternalProject was used to enable building firmware artifacts with a different toolchain to the
main build.

ExternalProject_Add(Firmware
    SOURCE_DIR  ${CMAKE_CURRENT_LIST_DIR}/Firmware
    INSTALL_DIR ${CMAKE_CURRENT_BINARY_DIR}/Firmware-artifacts
    CMAKE_ARGS  -D CMAKE_TOOLCHAIN_FILE=${CMAKE_CURRENT_LIST_DIR}/fwtoolchain.cmake
                -D CMAKE_BUILD_TYPE=Release
                -D CMAKE_INSTALL_PREFIX=<INSTALL_DIR>
)

The above would build successfully and all would appear to be in order. If the developer then went
and made a change to the sources in the Firmware source directory, the main project would not
rebuild the firmware targets. This is because ExternalProject uses timestamps to record successful
completion of the steps, so unless something changes in the way the dependencies are computed,
the main project thinks the Firmware project is still up-to-date. This can be addressed by forcing the
Firmware build target to always be considered out of date using the BUILD_ALWAYS option:

ExternalProject_Add(Firmware
    SOURCE_DIR   ${CMAKE_CURRENT_LIST_DIR}/Firmware
    INSTALL_DIR  ${CMAKE_CURRENT_BINARY_DIR}/Firmware-artifacts
    CMAKE_ARGS   -D CMAKE_TOOLCHAIN_FILE=${CMAKE_CURRENT_LIST_DIR}/fwtoolchain.cmake
                 -D CMAKE_BUILD_TYPE=Release
                 -D CMAKE_INSTALL_PREFIX=<INSTALL_DIR>
    BUILD_ALWAYS YES
)

This will result in the Firmware project’s build tool being invoked every time the main project is
built. If nothing has changed in the Firmware project, its build step will do no actual work. But if
there has been a change, then anything that has become out of date will be rebuilt as expected. The
main drawback to setting BUILD_ALWAYS to true is that it effectively makes the main external project
target always appear out of date to the main build, so the main build will never be a true no-op,
even when nothing actually needs rebuilding.
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29.7. ExternalData
Another module called ExternalData provides an alternative way of managing files to be
downloaded at build time. The focus of this module is on downloading test data when a particular
target representing that data is built. In some ways, it is similar to how ExternalProject works, but
the way the two modules define the content to be downloaded is considerably different. The
ExternalProject module allows the download details to be explicitly defined and it supports a
variety of methods. The ExternalData module takes a different approach, expecting individual files
to be available under one of a set of project-defined base URL locations, with paths and file names
encoded using a particular hashing method. The actual file is represented in the project’s source
tree by a placeholder file of the same name, except with the name of a hashing algorithm appended
as a file name suffix. The module provides a function to translate string arguments of a special
form into their final downloaded location and name, along with a wrapper around the add_test()
function to make it easier to pass these resolved locations to test commands.

In practice, the steps involved in setting up the necessary support for ExternalData tend to make it
less attractive. The server from which the data is to be downloaded has to use a defined structure
and treat every file separately. Every time a new file is added or an existing file is updated, it has to
be manually hashed and uploaded to a path and file name that matches that hash. If the file is large
but has only a small difference to the previous iteration, the file still has to be fully copied. In
comparison, the ExternalProject module can achieve the same thing with one of its repository-based
download methods, but the steps involved are easy and familiar for most developers. These
methods also typically handle small changes in large textual files efficiently.

One reason to consider using ExternalData is its support for a file series rather than just an
individual file. This is more of a niche scenario that typically arises for tests that process a sequence
of files. Even then, one could potentially implement similar functionality with ExternalProject and a
foreach() loop, which may still be simpler to set up than the fairly rigid structure ExternalData
requires. If the project has tests that are heavily focused on time series data or other similarly
sequential data sets, then it may be worth at least evaluating whether ExternalData offers a
preferable way to obtain that data on demand at build time. Consult the module’s documentation
for reference details, or for a more practical introduction, the article on this topic available from
the same site as this book may be helpful.

29.8. Recommended Practices
ExternalProject provides one way to incorporate external content into a parent project. It can be
well-suited to bringing in external projects that are mature, have good packaging and provide well-
defined config files that find_package() can use to import the relevant targets. It also has the
advantage that external dependencies are only downloaded if the build needs them. Furthermore,
the downloading can be done in parallel with other build tasks. ExternalProject can be less
convenient when developers need to work across multiple projects and make changes, especially if
any modest amount of refactoring is involved.

Since ExternalProject has been part of CMake for a long time, there is also an established body of
material available for it online. Despite this, it is common to see developers struggle with getting it
set up robustly. A particularly common weakness is hard-coding paths and file names of libraries in
platform-specific ways, usually as a result of blending ExternalProject with other targets in the main
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project instead of a classical superbuild arrangement (see Section 34.1, “Superbuild Structure”).
Give careful thought to the maturity and quality of packaging of the external dependencies and
whether the main project can use a superbuild arrangement before choosing to make use of
ExternalProject. Prefer not to use it if the main project cannot be converted to a superbuild
arrangement. Also avoid ExternalProject if users might want to provide the external package
themselves, such as through a package manager (see Chapter 32, Dependency Providers) or building
it directly from sources. FetchContent (covered in the next chapter) or plain find_package()
commands may be a better alternative in many cases.

If download details are being defined for a git repository, prefer to set GIT_TAG to the commit hash
rather than a branch or tag name. This is more efficient, since it avoids making any network
connection if the local clone already has that commit.

If the project wants to download test data on demand, check whether the ExternalData module is an
appropriate choice. The ExternalProject module may be simpler to use and is likely to be better
understood by most developers, but in specific cases such as working with file sequences,
ExternalData could potentially be simpler. If in doubt, prefer ExternalProject for its easier interface
and potentially more efficient handling of small changes to large data sets.
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Chapter 30. FetchContent
The FetchContent module was added in CMake 3.11, with significant improvements added in CMake
3.14 and 3.24. While it is closely related to ExternalProject, it has some fundamental differences.
These differences strongly impact the way FetchContent is used and the scenarios it addresses.

30.1. Comparison With ExternalProject
Some strengths of ExternalProject are also its weaknesses. It allows external project builds to be
completely isolated from the main project. This means it can use a different toolchain, target a
different platform, use a different build type or even an entirely different build system. The cost of
these benefits is that the main project knows nothing about what the external project produces.
That information has to be provided to the main build manually if anything in the main build needs
to refer to the external project’s outputs. This is the sort of thing that CMake is meant to do on the
project’s behalf, so it can be a backward step to use ExternalProject in this way.

For external projects that do use CMake as their build system, the flexibility to build them with
different settings to the main project is often unnecessary. In fact, the more common case is likely
to be that the external project should be built with the same settings as the main project. This is not
all that easy to do using ExternalProject. Often a much more convenient arrangement would be to
add it to the main build directly using add_subdirectory() as though it was part of the main project’s
own sources. This cannot be done with the traditional use of ExternalProject because the source
isn’t downloaded until build time. Projects may use alternative strategies such as git submodules to
overcome this, but they are not without their own drawbacks too.

The FetchContent module was added to solve problems like those mentioned above, and more. It
uses ExternalProject internally to set up a sub-build which downloads and updates the external
content, but it does this during the configure stage. All the same download methods are supported
for FetchContent as for ExternalProject, including custom commands.

Because FetchContent downloads the external content during the configure stage, the external
project’s sources are available much earlier than with ExternalProject. This is the most fundamental
difference between the two modules. With the content available during the configure stage, it is
possible to bring the external project’s sources directly into the main build. FetchContent does this
automatically by default by calling add_subdirectory() internally if the external project has a
CMakeLists.txt file (for the basic usage at least, see next section). This means all the external
project’s targets, functions, etc. are all visible to the main project. There is no need to manually tell
the main build where to find the built artifacts from the external project, because they are part of
the same build. This also potentially makes installing things provided by the external project easier
too. The same compiler flags and toolchain are also used consistently throughout the project
without any extra handling.

Files downloaded at configure time can be used for a variety of purposes, not just adding sources to
the build for compilation. For example, Section 30.6, “Other Uses For FetchContent” discusses
providing CMake modules and toolchain files to the main build.
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30.2. Basic Usage
FetchContent has a number of capabilities. This section introduces the most common use case, and
later sections expand the discussion to include more recently added features.

Bringing in a dependency with FetchContent is always a two-step process. The canonical pattern is
demonstrated by the following example:

include(FetchContent)

FetchContent_Declare(googletest
    GIT_REPOSITORY https://github.com/google/googletest.git
    GIT_TAG        ec44c6c1675c25b9827aacd08c02433cccde7780  # release-1.8.0
)

# This command requires CMake 3.14 or later
FetchContent_MakeAvailable(googletest)

First, details about how to obtain the dependency are given using FetchContent_Declare(). The first
argument is the name of the dependency. The rest of the arguments are mostly anything that
ExternalProject_Add() supports, except those arguments that relate to configure, build, install or test
steps. In practice, the only options typically given are those that define a download method, such as
the git details in the example above. A SYSTEM keyword may also be present when using CMake 3.25
or later (see further below).

FetchContent follows a "first to declare, wins" philosophy. If FetchContent_Declare() has not been
called previously anywhere in the build for the same dependency, it saves the provided details for
later. The details are discarded if there has been a previous call that already saved details for the
specified dependency. The reasoning behind this behavior is discussed in Section 30.3, “Resolving
Dependencies”. Importantly, this command does not perform any download or content population.

The second step is to call FetchContent_MakeAvailable(), which ensures the dependency is populated
by the time it returns. This is effectively the when part of obtaining a dependency.
FetchContent_MakeAvailable() accepts a list of dependencies, not just a single dependency. In simple
terms, the following pseudocode is executed for each argument passed to the command:

if the dependency is not yet populated:
    populate it using the saved details
    if the populated content has a CMakeLists.txt file:
        call add_subdirectory() on the populated content

With CMake 3.25 or later, if the SYSTEM keyword was included in the call to FetchContent_Declare(),
the SYSTEM keyword will be added to the add_subdirectory() call made by
FetchContent_MakeAvailable(). Unless the dependency is logically directly part of the main project
rather than something provided by a third party, this will be desirable. Therefore, adding the SYSTEM
keyword is usually recommended unless the project needs to support CMake 3.24 or earlier. See
Section 15.7.2, “System Header Search Paths” for further discussion of this topic.
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If a dependency is populated but there is no CMakeLists.txt file at the top of its source tree,
add_subdirectory() will not be called. This is not considered an error. It allows the command to be
used to populate arbitrary projects which may only contain a collection of files to be used as
resources, scripts, toolchain files, etc. With CMake 3.18 or later, the SOURCE_SUBDIR option can be
given with FetchContent_Declare() to specify an alternative location to search for a CMakeLists.txt file
instead of the top of the dependency’s source tree.

In practice, FetchContent_MakeAvailable() does much more than the pseudocode above. It also
provides integration with find_package() and dependency providers, both of which can fulfill the
request to make the dependency available in very different ways. These more complex cases are
discussed in detail in Section 30.4, “Integration With find_package()” and Chapter 32, Dependency
Providers.



FetchContent_MakeAvailable() was only added in CMake 3.14. When using earlier
CMake versions, the above pattern had to be implemented manually like so:

FetchContent_GetProperties(foo)
if(NOT foo_POPULATED)
    FetchContent_Populate(foo)
    add_subdirectory(${foo_SOURCE_DIR} ${foo_BINARY_DIR})
endif()

Projects should no longer manually implement this pattern. They should be
updated to call FetchContent_MakeAvailable() instead, which is far more feature-rich
and will increasingly be expected by developers.

30.3. Resolving Dependencies
Separating the declaration of how to obtain a dependency from the command that actually
populates it is a critical aspect of how FetchContent works. In order to understand why this is
necessary, and more importantly how to take full advantage of it, one needs to consider how
dependencies are resolved in less trivial projects.

Consider a project that depends on a set of external packages, and where those packages in turn
share some common dependencies. It would be undesirable to download and build those common
dependencies multiple times. It would also typically be undesirable to have different parts of the
build using different versions of the same dependency. Such inconsistencies invite undefined
behavior at run time, if the project is even able to build at all.

FetchContent handles this situation by only populating a particular dependency once for the whole
CMake configure run. Later calls that ask for that dependency to be populated will re-use the same
one that was populated by the first call. Furthermore, it uses the details from the first call to
provide them for a dependency, and it ignores all later calls for the same dependency. Together, this
"first setter wins" and "only populate once" approach means that a parent project can override
dependency details of external child projects.

The following example highlights the way the FetchContent module allows a top level project to
override the details set by the lower level dependencies. Consider a top level project TopProj which
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depends on external projects Foo and Bar. Both Foo and Bar in turn both depend on another external
project, Jerry, but they each want slightly different versions of it.

TopProj

Foo Bar

Jerry
1.3

??? Jerry
1.5

Only one copy of Jerry should be downloaded and built, which Foo and Bar would then use. When
these projects are combined into one build, the selected version of Jerry has to override the version
normally used by Foo or Bar, or possibly even both. The top level project is responsible for ensuring
that a valid version is selected such that Foo and Bar can build against it. This example assumes that
while Foo uses version 1.3 when built on its own, it can safely use a later version. The desired
arrangement and an example that implements it looks like this:

TopProj

Foo Bar

Jerry
1.5
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TopProj CMakeLists.txt

# Declare the direct dependencies
include(FetchContent)
FetchContent_Declare(foo GIT_REPOSITORY ... GIT_TAG ...)
FetchContent_Declare(bar GIT_REPOSITORY ... GIT_TAG ...)

# Override the Jerry dependency to force our preference
FetchContent_Declare(jerry
    URL      https://example.com/releases/jerry-1.5.tar.gz
    URL_HASH ...
)

# Populate the direct dependencies but leave Jerry to be populated by foo
FetchContent_MakeAvailable(foo bar)

Foo CMakeLists.txt

include(FetchContent)
FetchContent_Declare(jerry
    URL      https://example.com/releases/jerry-1.3.tar.gz
    URL_HASH ...
)
FetchContent_MakeAvailable(jerry)

The CMakeLists.txt file for Bar would be identical to that of Foo, except the URL would specify jerry-
1.5.tar.gz instead of jerry-1.3.tar.gz. The above skeleton example allows Foo and Bar to be built as
standalone projects on their own, or they can be incorporated into another project like TopProj and
still have the required flexibility to resolve the common dependencies.

If TopProj wanted to completely take over the way Jerry is populated and added to the main build, it
could do so by listing jerry before the other dependencies in the call to FetchContent_MakeAvailable().

include(FetchContent)
FetchContent_Declare(foo   GIT_REPOSITORY ... GIT_TAG ...)
FetchContent_Declare(bar   GIT_REPOSITORY ... GIT_TAG ...)
FetchContent_Declare(jerry URL ... URL_HASH ...)

# Because jerry is first in the list, it will be populated
# here rather than by either foo or bar.
FetchContent_MakeAvailable(jerry foo bar)

This might be useful if foo or bar had used the old population pattern instead of calling
FetchContent_MakeAvailable(jerry).

30.4. Integration With find_package()
The behavior described in Section 30.2, “Basic Usage” is powerful, but it isn’t the only way a
dependency can be provided to the main build. CMake has a long history of providing
dependencies using find_package(), whereas FetchContent only became available starting with
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CMake 3.11. Sometimes, it isn’t clear whether the best way to provide a dependency is to use
find_package() or FetchContent. The better approach may depend on how the main project will be
used.

For example, if the project will be packaged up to be part of a Linux distribution, the distribution
maintainers will almost certainly prefer find_package(). The distribution is expected to provide all
dependencies, and their packaging workflow is very likely to be built around find_package(). On the
other hand, a company may prefer FetchContent so that they can fully control where dependencies
are obtained from, apply patches to the sources, control how the dependencies are built, and so on.

Developers too may have different preferences to project maintainers. A common example would
be a developer working on a new feature in a dependency project, and at the same time, testing out
that feature with their main project. That workflow is directly supported by FetchContent (see
Section 30.5, “Developer Overrides”), but is more difficult if using find_package().

With CMake 3.24 or later, features are available which enable projects to support both methods.
This section focuses on features for consuming dependencies. The integration is driven
predominantly from the FetchContent side. Chapter 31, Making Projects Consumable focuses on what
projects should do so that other projects can more easily consume them as a dependency. That
chapter details the conditions which must be satisfied for a dependency to support the integration
features discussed here.

30.4.1. Try find_package() Before FetchContent

The integration features are most directly enabled by the FIND_PACKAGE_ARGS keyword of the
FetchContent_Declare() command:

FetchContent_Declare(somedep
    ...other options...
    # If present, the following keyword and its arguments must be the last
    FIND_PACKAGE_ARGS [args...]
)

When the FIND_PACKAGE_ARGS keyword is given, it indicates that the dependency can be fulfilled using
find_package(). Not every dependency will be able to support this. Certain constraints must be
satisfied in order for it to work robustly, as discussed in Chapter 31, Making Projects Consumable.

When the FIND_PACKAGE_ARGS keyword is present, the FetchContent_MakeAvailable() command will try
calling find_package() first, unless disabled by conditions discussed further below. The name of the
dependency is automatically used as the first argument to the find_package() call, followed by any
arguments that were provided after the FIND_PACKAGE_ARGS keyword. If that find_package() call fails to
find a package, FetchContent_MakeAvailable() falls back to populating the dependency using the
saved details from the FetchContent_Declare() call (i.e. the behavior as discussed in Section 30.2,
“Basic Usage”).

One common use case this enables is to look for and use a pre-built version of a dependency before
falling back to building it from sources. It is an ideal solution where a project wants to support the
developer using a package manager to provide dependencies, but without requiring them to do so.
See Chapter 32, Dependency Providers for a deeper discussion of this topic.
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The following example from the official FetchContent documentation shows calls with and without
extra arguments following the FIND_PACKAGE_ARGS keyword:

FetchContent_Declare(googletest
  GIT_REPOSITORY https://github.com/google/googletest.git
  GIT_TAG        703bd9caab50b139428cea1aaff9974ebee5742e
  FIND_PACKAGE_ARGS NAMES GTest
)
FetchContent_Declare(Catch2
  GIT_REPOSITORY https://github.com/catchorg/Catch2.git
  GIT_TAG        de6fe184a9ac1a06895cdd1c9b437f0a0bdf14ad
  FIND_PACKAGE_ARGS
)

# This will try calling find_package() first for both dependencies
FetchContent_MakeAvailable(googletest Catch2)

Note how the googletest dependency includes NAMES GTest as additional arguments. This shows how
to handle the situation where the dependency name used with FetchContent might not match the
name typically used with find_package() (also see Section 30.4.3, “Redirections Directory” which
discusses additional steps needed to fully handle this scenario). For Catch2, no additional arguments
are needed, but the FIND_PACKAGE_ARGS keyword is still required to enable the find_package()
integration for that dependency. The find_package() calls constructed internally by
FetchContent_MakeAvailable() would look something like this:

find_package(googletest QUIET NAMES GTest)

find_package(Catch2 QUIET)

The QUIET keyword is inserted automatically if not already included as one of the arguments
following FIND_PACKAGE_ARGS. This is to limit messages from unsuccessful find_package() calls, which
could be misleading given that the package would subsequently be provided by the build-from-
source fallback implementation.

If the internally generated find_package() call fails to find the dependency and
FetchContent_MakeAvailable() populates it from the saved details instead, hooks are automatically set
up to force any future call to find_package() for that dependency to re-use the populated content. As
a result, the same dependency is re-used for the remainder of the CMake configure run. The
method used to achieve this is discussed in Section 30.4.3, “Redirections Directory”.

FetchContent_Declare(Catch2
  GIT_REPOSITORY https://github.com/catchorg/Catch2.git
  GIT_TAG        de6fe184a9ac1a06895cdd1c9b437f0a0bdf14ad
  FIND_PACKAGE_ARGS
)

# This will try calling find_package() first
FetchContent_MakeAvailable(Catch2)

519



# Later on, possibly in another CMakeLists.txt file...
# If the above call populated Catch2 from sources, the following
# call will use that instead of finding one from somewhere else.
find_package(Catch2)

FetchContent also provides a FETCHCONTENT_TRY_FIND_PACKAGE_MODE variable which controls whether
FetchContent_MakeAvailable() is allowed to call find_package() (unless overridden as discussed in
Section 30.5, “Developer Overrides”). The variable affects the details saved by
FetchContent_Declare(), so what matters is the variable’s value when FetchContent_Declare() is called,
not when FetchContent_MakeAvailable() is called. If set, the variable may contain one of three values:

OPT_IN

This is the behavior as described above. find_package() will only be called if the FIND_PACKAGE_ARGS
keyword was given to FetchContent_Declare(). If FETCHCONTENT_TRY_FIND_PACKAGE_MODE is not set, this
is also the default behavior.

ALWAYS

find_package() will be called by FetchContent_MakeAvailable() regardless of whether the
FetchContent_Declare() call included a FIND_PACKAGE_ARGS keyword or not. If no FIND_PACKAGE_ARGS
keyword was given, the behavior will be as though FIND_PACKAGE_ARGS had been provided with no
additional arguments after it.

NEVER

FetchContent_MakeAvailable() will not call find_package(). Any FIND_PACKAGE_ARGS given to
FetchContent_Declare() will be ignored. This is essentially the behavior of CMake 3.23 and earlier.

FETCHCONTENT_TRY_FIND_PACKAGE_MODE should not be set by the project, it is intended to be a developer
control. Projects should use the keywords in FetchContent_Declare() calls instead.

In practice, FETCHCONTENT_TRY_FIND_PACKAGE_MODE should rarely be needed. One use case would be
where Linux distribution or package manager maintainers might elect to set it to ALWAYS in their
packaging scripts. This would route all FetchContent_MakeAvailable() requests through find_package(),
which their existing infrastructure may be better equipped to handle. This won’t always be
appropriate, but it may work for a reasonable number of packages as a quick and simple technique.

30.4.2. Redirect find_package() To FetchContent

In some situations, a project may want to force find_package() to use a dependency built from
sources as part of the project. One such use case is where the project requires a specific patch that
isn’t in any public release, or where the project needs direct access to something from the
dependency’s sources that would not be available from an installed package. The
OVERRIDE_FIND_PACKAGE keyword provides this capability.

FetchContent_Declare(somedep
    OVERRIDE_FIND_PACKAGE
    ...   # other options as usual
)
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If this is the first call to FetchContent_Declare() for the given dependency, any future call to
find_package() for that dependency will automatically be redirected to call
FetchContent_MakeAvailable() instead. If the find_package() call contains a NAMES keyword, redirection
will occur if any of the specified names match the dependency name given to
FetchContent_Declare().

FetchContent_Declare(Catch2
  GIT_REPOSITORY ...
  GIT_TAG        ...
  OVERRIDE_FIND_PACKAGE
)

# This will be redirected to FetchContent_MakeAvailable()
find_package(Catch2)

Conceptually, the OVERRIDE_FIND_PACKAGE and FIND_PACKAGE_ARGS keywords invoke more or less
opposite behaviors. The former redirects find_package() to use FetchContent_MakeAvailable(). The
latter works the other way around and allows FetchContent_MakeAvailable() to try find_package().
Therefore, at most only one of the two keywords may be given in a call to FetchContent_Declare().

30.4.3. Redirections Directory

Starting with CMake 3.24, every call to find_package() will first look for config package files in a
special directory before searching anywhere else (unless intercepted by a dependency provider, see
Chapter 32, Dependency Providers). The location of this special directory is given by the read-only
CMAKE_FIND_PACKAGE_REDIRECTS_DIR variable. FetchContent_MakeAvailable() may write files to this
directory, as might a project in some circumstances, as explained further below. The directory is
automatically cleared at the start of every CMake run. Any contents from a previous run are always
discarded. This ensures that no stale redirection files are left from earlier CMake invocations and
only files created by the current run are used.

When a call to FetchContent_MakeAvailable() populates a dependency as described in Section 30.2,
“Basic Usage”, it checks to see if future calls to find_package() for that dependency should be
redirected to use the populated content. It will set up that redirection if either of the following
conditions are met:

• A FIND_PACKAGE_ARGS or OVERRIDE_FIND_PACKAGE keyword was given in the FetchContent_Declare()
call.

• FETCHCONTENT_TRY_FIND_PACKAGE_MODE was set to ALWAYS at the time FetchContent_Declare() was called.

Once population has occurred, the behavior of FIND_PACKAGE_ARGS and OVERRIDE_FIND_PACKAGE is the
same. Both will result in future find_package() calls for that dependency using the populated
content.

FetchContent_MakeAvailable() sets up the redirection by generating a pair of <lowercaseDepName>-
config.cmake and <lowercaseDepName>-config-version.cmake files in the CMAKE_FIND_PACKAGE_REDIRECTS_DIR
directory. Because find_package() always looks there first, these files will always be found and used
ahead of files in any other location.
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The generated <lowercaseDepName>-config.cmake file is very minimal. The only thing it does is look for
a couple of optional extra files in the CMAKE_FIND_PACKAGE_REDIRECTS_DIR directory:

• <lowercaseDepName>-extra.cmake

• <depName>Extra.cmake

If either file is present, it will be read using include(). CMake doesn’t generate these "extra" files,
they are intended as a customization point for dependency projects to create, if they want to. They
allow dependency projects to define things that would normally be available using find_package(),
but which would otherwise not be available in the calling scope when the dependency is built from
source. Targets and commands defined by the build-from-source method already have global
visibility, so the only thing that would normally be defined in such files would be variables. Where
possible, projects should prefer to provide information through targets and commands rather than
through variables, so this mechanism would generally only be used to preserve backward
compatibility. Section 31.4, “Avoid Package Variables If Possible” discusses this particular topic in
more detail.

The generated <lowercaseDepName>-config-version.cmake file is also very simple. All it does is set the
PACKAGE_VERSION_COMPATIBLE and PACKAGE_VERSION_EXACT variables to true (the latter will only be set
with CMake 3.24.2 or later due to a bug in earlier versions). This has the effect of accepting any
version requirement which may have been part of a find_package() call. It is assumed that the
FetchContent-provided (typically built-from-source) dependency always satisfies any version
requirements of consumers.

The "first to declare, wins" philosophy is also applied when FetchContent_MakeAvailable() looks to
generate the <lowercaseDepName>-config.cmake and <lowercaseDepName>-config-version.cmake files. If a
file already exists, FetchContent_MakeAvailable() will not replace it. This gives the dependency a
chance to provide the file first if it wants to. A dependency therefore always has control over how it
is presented to consumers, just like it would if using an installed package.

The <lowercaseDepName>-config.cmake file would not typically be overridden. The <lowercaseDepName>-
extra.cmake file mechanism already provides the necessary functionality to fully customize the
behavior, so that file should be provided by a dependency project instead if additional things need
to be set. On the other hand, a dependency may want to provide its own <lowercaseDepName>-config-
version.cmake file to set the PACKAGE_VERSION variable. When overriding this file, it must obey the
following requirements:

• The PACKAGE_VERSION_COMPATIBLE and PACKAGE_VERSION_EXACT variables must be set to true,
regardless of what version was requested or is being provided.

• The PACKAGE_VERSION_UNSUITABLE variable must not be set to true, and ideally shouldn’t be set at
all.

These requirements mean a version file generated using write_basic_package_version_file() from
the CMakePackageConfigHelpers module is not appropriate for overriding the default generated
<lowercaseDepName>-config-version.cmake file. For projects with a version number, the file contents
should be no more than something like this:
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set(PACKAGE_VERSION 1.2.3)
set(PACKAGE_VERSION_COMPATIBLE TRUE)
set(PACKAGE_VERSION_EXACT TRUE)

In some situations, a project may want to write a *-config.cmake file to the
CMAKE_FIND_PACKAGE_REDIRECTS_DIR directory for a different but related dependency name. In Section
30.4, “Integration With find_package()”, an example was given where the FIND_PACKAGE_ARGS keyword
was used to provide alternate names for googletest:

FetchContent_Declare(googletest
  GIT_REPOSITORY https://github.com/google/googletest.git
  GIT_TAG        703bd9caab50b139428cea1aaff9974ebee5742e
  FIND_PACKAGE_ARGS NAMES GTest
)

This ensures that a call like find_package(googletest) will be redirected to
FetchContent_MakeAvailable(googletest). However, because CMake provides a module called
FindGTest, projects will typically (and rightfully) call find_package(GTest) instead. Therefore,
additional steps are needed to redirect find_package(GTest) as well. The official documentation for
FetchContent contains an example with the necessary logic to achieve this, shown here for
reference:

FetchContent_Declare(googletest ...)
FetchContent_MakeAvailable(googletest)

if(NOT EXISTS ${CMAKE_FIND_PACKAGE_REDIRECTS_DIR}/gtest-config.cmake AND
   NOT EXISTS ${CMAKE_FIND_PACKAGE_REDIRECTS_DIR}/GTestConfig.cmake)
  file(WRITE ${CMAKE_FIND_PACKAGE_REDIRECTS_DIR}/gtest-config.cmake
[=[
include(CMakeFindDependencyMacro)
find_dependency(googletest)
]=])
endif()

if(NOT EXISTS ${CMAKE_FIND_PACKAGE_REDIRECTS_DIR}/gtest-config-version.cmake AND
   NOT EXISTS ${CMAKE_FIND_PACKAGE_REDIRECTS_DIR}/GTestConfigVersion.cmake)
  file(WRITE ${CMAKE_FIND_PACKAGE_REDIRECTS_DIR}/gtest-config-version.cmake
[=[
include(${CMAKE_FIND_PACKAGE_REDIRECTS_DIR}/googletest-config-version.cmake OPTIONAL)
if(NOT PACKAGE_VERSION_COMPATIBLE)
  include(${CMAKE_FIND_PACKAGE_REDIRECTS_DIR}/googletestConfigVersion.cmake OPTIONAL)
endif()
]=])
endif()

By writing the gtest-config.cmake and gtest-config-version.cmake files to the
CMAKE_FIND_PACKAGE_REDIRECTS_DIR directory, find_package(GTest) calls will be redirected. All the gtest-
config.cmake file has to do is call find_dependency(googletest), which is equivalent to
find_package(googletest) but with some additional handling of arguments like QUIET and REQUIRED
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(see Section 27.8.1, “Config Files For CMake Projects”). The gtest-config-version.cmake file is also
very simple. It only needs to include the equivalent googletest-config-version.cmake or
googletestConfigVersion.cmake file, if present in the CMAKE_FIND_PACKAGE_REDIRECTS_DIR directory. The
names of variables set by these version files don’t contain the package name, so they can be re-used
for an alternative name for the same thing.

As shown in the example, these files should only be written if they don’t already exist. This follows
the "first to declare/define, wins" principle of FetchContent, which ensures a higher level project
always has full control of its dependencies.

30.5. Developer Overrides
There may be occasions when a developer wants to work on multiple projects at once, making
changes in both the main project and its dependencies or across multiple dependencies, etc. When
changing parts of an external project, the developer will want to work with a local copy rather than
having to update the remote location it is downloaded from or found in each time. The FetchContent
module offers direct support for this mode of operation by allowing the source directory of any
external dependency to be overridden with a CMake cache variable. These variables have names of
the form FETCHCONTENT_SOURCE_DIR_<DEPNAME>, where <DEPNAME> is the dependency name in uppercase.

For the example scenario used earlier in Section 30.3, “Resolving Dependencies”, consider a
situation where the developer wants to make a change to Foo and see how it affects the main TopProj
project. They can create a separate clone of Foo outside the main project and then set
FETCHCONTENT_SOURCE_DIR_FOO to that location. The TopProj project would use the source of that local
copy and not modify it in any way, but it would still use the same build directory for it within its
own TopProj build area. The only difference would be where the source comes from. By setting
FETCHCONTENT_SOURCE_DIR_FOO, the developer would take over control of the content. They would be
free to change anything in their local copy, make further commits, switch branches or whatever
else may be needed, then rebuild the main TopProj project without having to change TopProj at all.

An arrangement that works well for the above usage is to have a common directory under which
the developer checks out the different projects they want to work with. The main project can then
be pointed at these local checkouts when needed, but still use the default downloaded or found
contents otherwise. Such an arrangement may look like this for the above example:

If the developer wanted to make some changes to Foo and test it with a build of TopProj, they could
set FETCHCONTENT_SOURCE_DIR_FOO to /…/Projects/Foo, but all the build output from the Foo dependency
would still be under Projects/builds/TopProj-debug. If FETCHCONTENT_SOURCE_DIR_BAR was left unset, then
Bar would still be downloaded rather than using the local checkout in Projects/Bar. The developer
could switch to that local checkout just as easily by setting FETCHCONTENT_SOURCE_DIR_BAR at any time.
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Because the relevant cache variables all share the same prefix, they are easy to find in the CMake
GUI or ccmake tool. This in turn makes it trivial to see which projects are currently using a local copy
instead of the default downloaded or found contents.

A significant advantage of the above scenario is that it integrates well with IDE features like code
refactoring tools, etc. The IDE sees the whole project, including its dependencies. As a result, when
local checkouts of those dependencies are used, refactoring can be performed transparently across
multiple projects just as easily as if they were all part of the same project. Even if local dependency
checkouts are not used, the IDE has greater opportunity to build up a more complete code model
for autocompletion, following symbols and so on.

When a dependency has details declared via FetchContent_Declare() and either the FIND_PACKAGE_ARGS
keyword was used or FETCHCONTENT_TRY_FIND_PACKAGE_MODE was set to ALWAYS, the
FETCHCONTENT_SOURCE_DIR_<DEPNAME> variable also takes priority over find_package() calls for that
dependency. If a dependency provider is registered (see Chapter 32, Dependency Providers), the
provider will not see the request for a dependency that has the FETCHCONTENT_SOURCE_DIR_<DEPNAME>
variable set. The assumption is that if the developer sets this variable, they expect it to override all
other methods for fulfilling a dependency request, whatever the form.
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30.6. Other Uses For FetchContent
FetchContent enables more than just downloading an external project’s source code and building it
as part of the main project. The following example takes advantage of the fact that the FetchContent
module can be used even before the first project() call. This feature allows the module to provide
toolchain files which the developer can then use for the main project.

cmake_minimum_required(VERSION 3.14)

include(FetchContent)
FetchContent_Declare(CompanyXToolchains
    GIT_REPOSITORY ...
    GIT_TAG        ...
    SOURCE_DIR     ${CMAKE_BINARY_DIR}/toolchains
)
FetchContent_MakeAvailable(CompanyXToolchains)

project(MyProj)

cmake -DCMAKE_TOOLCHAIN_FILE=toolchains/beta_cxx.cmake ...

In the above example, the directory into which the toolchains are downloaded is overridden using
the SOURCE_DIR option. Assuming CompanyXToolchains is just a collection of toolchain files with no
subdirectories, their location is both predictable and easy for developers to use. Where
organizations work with very specific toolchains that are expected to always be installed to the
same place, this can be a very effective way to facilitate a whole team using common build setups.
When combined with CMake presets (see Chapter 33, Presets), the entire setup can be fully
automated. The technique could even be extended to download the toolchains themselves.

Another use case is to collect commonly used CMake modules and commands in a central
repository and re-use them across many projects. Multiple collections can be pulled in via this
mechanism, which makes it relatively straightforward to incorporate useful CMake scripts from
other projects without having to embed copies in the main project’s own sources.

The following demonstrates an example where an external git repository is downloaded and its
cmake subdirectory is added to the CMake module search path of the main project.

include(FetchContent)
FetchContent_Declare(JoeSmithUtils GIT_REPOSITORY ... GIT_TAG ...)
FetchContent_MakeAvailable(JoeSmithUtils)

if(NOT "${joesmithutils_SOURCE_DIR}" STREQUAL "")
    list(APPEND CMAKE_MODULE_PATH ${joesmithutils_SOURCE_DIR}/cmake)
endif()

The above example relies on a specific behavior of the FetchContent_MakeAvailable() command.
Unless it is redirected to provide the dependency using find_package(), it will normally define a set
of variables in the calling scope. One of these variables is <lowercaseDepName>_SOURCE_DIR. When
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defined, this variable provides the location of the source directory of the populated content, even if
it was populated by an earlier call rather than this one. The variable might also not be defined if the
dependency request is fulfilled by a dependency provider (see Chapter 32, Dependency Providers),
hence the need to test if the variable is set before using it.

A more flexible and arguably more robust alternative to the above arrangement is for the
dependency to provide its own setup command. Consumers then call this after
FetchContent_MakeAvailable() instead of having to manually set things like CMAKE_MODULE_PATH using
variables which might not be defined in all use cases. Using a setup command has the advantage
that it should work for all methods that FetchContent_MakeAvailable() might use to obtain the
dependency. The dependency needs to ensure the command is defined regardless of whether it is
consumed via find_package() or if it is brought directly into the consumer’s build as though via
add_subdirectory(). In practice this means the dependency’s <lowercaseDepName>-config.cmake file
should define the command, as should the dependency’s own CMakeLists.txt file. A dependency that
implements this approach might be structured something like this:

cmake/joesmithutils-extra.cmake

function(JoeSmithUtilsSetup)
    # Only modify caller's scope once
    if(JoeSmithUtilsSetupDone)
        return()
    endif()

    set(CMAKE_MODULE_PATH
        ${CMAKE_MODULE_PATH}
        ${CMAKE_CURRENT_FUNCTION_LIST_DIR}
        PARENT_SCOPE
    )
    set(JoeSmithUtilsSetupDone TRUE PARENT_SCOPE)
endfunction()

JoeSmithUtils' CMakeLists.txt file

cmake_minimum_required(VERSION 3.14)
project(SomeDep)
include(cmake/joesmithutils-extra.cmake)
...

JoeSmithUtilsConfig.cmake

include(${CMAKE_CURRENT_LIST_DIR}/joesmithutils-extra.cmake)
# Usual contents to define targets, etc...

The project consuming the dependency would then do something like this:

include(FetchContent)
FetchContent_Declare(JoeSmithUtils ...)
FetchContent_MakeAvailable(JoeSmithUtils)
JoeSmithUtilsSetup()

527



30.7. Restrictions
For the most part, the FetchContent module comes with some strong advantages, but there are some
restrictions to be aware of. The main limitation is that CMake target names must be unique across
the whole set of projects being combined. If two external projects define a target with the same
name, they cannot both be added via add_subdirectory(), which FetchContent_MakeAvailable() will
typically call internally. This can be easily avoided if projects use project-specific target names, but
this practice is not always followed, especially in older projects.

Another common problem is projects that assume they are the top level project. A frequently
observed symptom of this is the use of variables like CMAKE_SOURCE_DIR and CMAKE_BINARY_DIR where
alternatives like CMAKE_CURRENT_SOURCE_DIR and CMAKE_CURRENT_BINARY_DIR would be more appropriate.
Again, this is usually easy to fix, it is often just an awareness issue for the project maintainers.

Chapter 31, Making Projects Consumable presents a more comprehensive discussion of things
projects can do to facilitate other projects consuming them as dependencies. It covers the broader
discussion of how to make projects compatible with different ways of incorporating a project into
another build, not just via FetchContent.

30.8. Recommended Practices
The FetchContent module is a good choice where other projects need to be added to the build in a
way that allows them to be worked on at the same time. It affords developers the freedom to work
across projects and temporarily switch to local checkouts, change branches, test with different
release versions and various other use cases in a seamless manner. It is also friendly to IDE tools,
since the whole build appears as a single project. Code completion often provides greater insight
and may be more reliable than if the projects had been loaded separately. Refactoring can also be
performed across repositories much more robustly.

If adding dependencies to an existing mature project, FetchContent can be much less disruptive than
ExternalProject, since it doesn’t require any restructuring of the main project. It is also well-suited
to incorporating external projects that are relatively immature and which don’t yet have install
components and packaging implemented. A further advantage of FetchContent is that it inherently
results in using the same compiler and settings across the whole project hierarchy. If a minimum
CMake version of 3.11 or higher is acceptable, consider whether FetchContent is a more convenient
and natural fit for the project than ExternalProject. It is also strongly recommended to become
familiar with tools like ccache for speeding up the build, as the benefits are especially pronounced
when using FetchContent. See Section 35.4, “Compiler Caches” for a detailed discussion of how to set
this up for various compilers.

Just as for ExternalProject, if download details are being defined for a git repository, prefer to set
GIT_TAG to the commit hash rather than a branch or tag name. This is more efficient, since it avoids
making any network connection if the local clone already has that commit.

When adding a dependency using FetchContent, check if the dependency project can be treated the
same way regardless of whether it is consumed as an installed binary package using find_package(),
or it is being built from sources as described in Section 30.2, “Basic Usage”. The requirements for
being able to treat both the same are given in Chapter 31, Making Projects Consumable. If a
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dependency can be consumed identically for both scenarios, add the FIND_PACKAGE_ARGS keyword to
the FetchContent_Declare() call. This gives the developer the flexibility to choose how they want to
obtain that dependency instead of being locked in to the project’s choice. It also allows the project
to be mixed with other projects which might have requested the same dependency with
find_package() rather than FetchContent.

Avoid using the OVERRIDE_FIND_PACKAGE keyword with FetchContent_Declare() unless it is absolutely
necessary. It reduces developer choice for how to obtain that dependency, or forces them to make
their own earlier call to FetchContent_Declare() just to prevent the override. If the project making
the call to FetchContent_Declare() is an open source project, OVERRIDE_FIND_PACKAGE is usually
inappropriate. Prefer to give developers the freedom to provide the dependency through the
method that best suits their needs.

Do not set FETCHCONTENT_TRY_FIND_PACKAGE_MODE in project code. It is intended as a developer control
and should be left for the developer or driving script author to use as appropriate in their own
situation. This variable is probably not of great use to developers apart from short-term
experiments. It may be more useful to package manager maintainers with established
infrastructure built around find_package().

Prefer to call FetchContent_MakeAvailable() to populate content rather than using the older, more
manual pattern of calling FetchContent_GetProperties() and FetchContent_Populate(). The
FetchContent_MakeAvailable() command offers far more flexibility and choice for the developer, it is
easier to use, and developers will increasingly come to expect it over the manual pattern.

Section 31.5, “Use Appropriate Methods To Obtain Dependencies” also provides a condensed
summary of recommendations covering much of the above which may be a helpful reference.
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Chapter 31. Making Projects Consumable
Projects should make as few assumptions as possible about how they will be consumed by other
projects or packages. Consumers could use a variety of different methods, but most of them
ultimately reduce down to one of the following two main scenarios:

• The project is installed as a binary package. Consumers would then use standard CMake
methods like find_package() to use the project as a dependency in their own build.

• Consumers incorporate the project’s sources directly into its own build, using standard CMake
methods like FetchContent or add_subdirectory(). The consumer and the dependency project are
both built together in a single, combined build.

Projects tend to have more difficulty with the second case above, since there are more
opportunities for problems due to the shared global build state. However, some problems and their
solutions span both scenarios.

Consumers also want to avoid having to treat a dependency differently based on to how it was
brought into the build. Ideally, they just want to say "I need X", and then they do everything the
same regardless of how "X" was provided. In practice, this means a project should present the same
things (targets, commands, etc.) to the consumer, regardless of which of the above two main
approaches they use. It also means the project should ensure all of its own dependencies are
satisfied too.

Projects can avoid most problems by following a few basic principles. This chapter collects and
condenses a number of guidelines mentioned in earlier chapters and combines them with
additional recommendations to demonstrate those principles.

31.1. Use Project-specific Names
When a consumer pulls in multiple dependencies, there are certain restrictions that may apply to
the names of things the dependencies define. Perhaps the most relevant is that global targets must
be unique. If dependencies are built from sources, their targets will be global. In certain cases,
targets from binary packages may also need to be global. Therefore, projects should ensure that any
targets they define have project-specific names to avoid clashing with other projects.

A recommended naming strategy was discussed in detail in Section 27.3, “Installing Exports”. The
main points of that discussion can be summarized as follows:

• In the project’s CMakeLists.txt files, use a <projectName>_… prefix on target names.

• Use the target’s OUTPUT_NAME property to specify a more appropriate name for a target’s built
binary, if required. Ideally, this name would still be project-specific to minimize the chance of
the binary’s name clashing with other projects' binaries.

• When exporting targets as part of install logic, follow the strong convention of using
<projectName>:: as the export namespace.

• To avoid repeating the project name in the final exported target name, use the EXPORT_NAME target
property to override the default exported target name.
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• Define an ALIAS target in the project’s CMakeLists.txt files which matches the full exported name
of the target. This allows consumers to link to this name and not care whether the project is
provided as a binary package or built from source as part of the main build.

The following (slightly reduced) example from Section 27.3, “Installing Exports” demonstrates the
above points:

add_library(MyProj_Algo SHARED ...)
add_library(MyProj::Algo ALIAS MyProj_Algo)

set_target_properties(MyProj_Algo PROPERTIES
    OUTPUT_NAME MyProjAlgo
    EXPORT_NAME Algo
)

install(TARGETS MyProj_Algo EXPORT MyProj ...)
install(EXPORT MyProj NAMESPACE MyProj:: ...)
)

If the project defines install components (see Section 27.2, “Installing Project Targets” and Section
28.2, “Components”), ideally its component names should also be project-specific. When the project
is consumed in a build-from-source scenario, this should prevent its install components from being
merged with install components from other projects. The consumer gains more precise control over
how it manages the different install components of each of its individual dependencies without any
overlap between them.

install(TARGETS MyProj_Algo
    RUNTIME COMPONENT MyProj_Runtime ...
    LIBRARY COMPONENT MyProj_Runtime
            NAMELINK_COMPONENT MyProj_Development ...
    ARCHIVE COMPONENT MyProj_Development
)

Test names are another place where name conflicts may need to be considered, although the
consequences are usually less severe. Section 31.2, “Don’t Assume A Top Level Build” discusses why
tests should typically only need to be enabled for the top level project. But for situations where tests
from dependencies may still be desirable, it is helpful if test names from dependencies are uniquely
identifiable from those of other dependencies or the top level project. The ctest tool doesn’t
currently raise an error if there are duplicate test names between different directories. However,
duplicate test names can be confusing for users, as they can’t differentiate between them in the test
results. Therefore, test names should be globally unique. A simple but effective way to achieve this
is to prefix them with the project name followed by a dot. This format has the advantage that it may
already be familiar and feel natural to developers accustomed to other languages and test
frameworks.

add_test(NAME MyProj.Algo COMMAND test_Algo)
add_test(NAME MyProj.Core COMMAND test_Core)

531



Cache variables are yet another place where using project-specific names is advisable. This avoids
unintended coupling of the behavior of two different projects that happen to use the same cache
variable name. A recommended strategy is to prefix cache variable names with the project name in
uppercase, followed by an underscore. When IDEs present variables to the user, some support
grouping them by the prefix up to the first underscore, so this naming convention has the nice
benefit of grouping all of a project’s variables together in such IDEs. This makes them very easy for
the developer to find, especially in large, complex projects.

# BAD: Name is generic, may clash with other projects.
option(ENABLE_HUGE_TESTS "Build and run expensive tests")

# GOOD: Name starts with project-specific prefix.
option(MYPROJ_ENABLE_HUGE_TESTS "...")

# COULD BE IMPROVED: Variable name doesn't start with the
# project name, so project cache variables won't be
# grouped in IDEs that support that feature.
option(ENABLE_HUGE_MYPROJ_TESTS "...")

31.2. Don’t Assume A Top Level Build
Many projects have never considered the use case of being absorbed into a larger parent build
directly. For such projects, there are a few common problems that are often encountered. The first
and perhaps most prevalent is the use of global path variables like CMAKE_SOURCE_DIR and
CMAKE_BINARY_DIR. When the project is absorbed into a larger parent build, the relative location of the
global path variables will change. The project might then no longer find things at the locations it
expected. In general, avoid using CMAKE_SOURCE_DIR or CMAKE_BINARY_DIR unless a path truly needs to be
relative to the top level of the source or build tree, even when absorbed into a larger parent build.
Prefer instead to use directory-relative variables like CMAKE_CURRENT_SOURCE_DIR and
CMAKE_CURRENT_BINARY_DIR, or project-relative variables like PROJECT_SOURCE_DIR and PROJECT_BINARY_DIR.

Another common problem is modifying variables that have the potential to affect the whole build,
not just the project. A classic example is forcing the value of cache variables like BUILD_SHARED_LIBS,
BUILD_TESTING, CMAKE_BUILD_TYPE, CMAKE_MODULE_PATH or CMAKE_RUNTIME_OUTPUT_DIRECTORY. Using the FORCE
or INTERNAL keywords with the set() command on these variables prevents a parent project from
overriding that choice. Quite often, these variables shouldn’t be defined by the project as cache
variables at all, and maybe shouldn’t even be set by the project to begin with. For variables like
CMAKE_MODULE_PATH, append to existing values rather than replace them.

Another variable-related problem is the way the initial value of cache variables are set. Policies
CMP0077 and CMP0126 affect how a non-cache variable is interpreted when a cache variable of the
same name is first initialized. As discussed in Section 5.5, “Potentially Surprising Behavior Of
Variables”, the NEW behavior of these policies minimize the opportunities for surprise. Where
possible, projects should require CMake 3.21 or later and ensure policies CMP0077 and CMP0126 are set
to NEW. This will prevent the project from discarding values set by parent projects as non-cache
variables. Note that these policies can also result in no cache variable being defined if a non-cache
variable of the same name already exists. Protect any logic that assumes a cache variable exists
with an appropriate check:
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if(DEFINED CACHE{TRAFFIC_LIGHT})
    set_property(CACHE TRAFFIC_LIGHT PROPERTY STRINGS
        Red Orange Green
    )
endif()

It is also worth mentioning a usability aspect that is often forgotten. Projects should provide good
default behavior when brought in as part of a larger build. Two areas where this is often neglected
are testing and packaging. Tests are much less likely to be of interest to the developer when a
project is not the top level of the build, so they should be disabled by default when they are not the
top level. It may be appropriate to provide a project-specific cache variable in this case, since the
user may still want to enable the project’s tests in some situations. And while install components
may be useful to a parent project, only top level projects should call include(CPack) to configure
packaging. The following example shows a pattern that provides good default behavior whether the
project is the top level or not (see Section 7.3, “Project-relative Variables” for an expanded
discussion of PROJECT_IS_TOP_LEVEL and alternatives).

# CMake 3.21 or later is required for PROJECT_IS_TOP_LEVEL

option(MYPROJ_ENABLE_TESTING "..." ${PROJECT_IS_TOP_LEVEL})
if(MYPROJ_ENABLE_TESTING)
    add_subdirectory(tests)
endif()

if(PROJECT_IS_TOP_LEVEL)
    add_subdirectory(packaging)
else()
    # Users are unlikely to be interested in testing this
    # project, so don't show it in the basic options
    mark_as_advanced(MYPROJ_ENABLE_TESTING)
endif()

31.3. Avoid Hard-coding Developer Choices
Some CMake features are intended for the developer or a script driving the build to use, not for the
project. Sometimes, projects are tempted to use these features and hard-code specific behaviors
instead of allowing the developer to choose. Some examples of this include:

• Hard-coding logic that forces the use of a specific package manager.

• Forcing compiler warnings to be treated as errors.

• Discarding previous contents of CMAKE_MODULE_PATH or CMAKE_PREFIX_PATH instead of appending to
the existing values.

• Prepending to search paths instead of appending, causing those paths to always take
precedence over values the developer or driving script might set.

The problem is not always that the project wants to set or do these things. The main issue is
whether the developer, driving script, or even a parent project still has the ability to override that
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behavior, and how hard it is for them to do so. Avoid forcing non-essential choices on the consumer
of the project.

31.4. Avoid Package Variables If Possible
Before CMake 3.0, packages and Find modules would typically provide information to consumers
through variables like foo_INCLUDE_DIRECTORIES, foo_LIBRARIES and so on. In the post-3.0 era, such
information should be provided through target properties instead (see Section 9.4, “Target
Properties” and Section 15.2, “Target Property Commands”). Targets are more robust and convey
usage requirements, whereas variables require the consumer to know and apply the variables
appropriately where they are needed.

If a project needs to define such variables for backward compatibility reasons, consider supporting
find_package() integration with FetchContent_MakeAvailable(). This involves writing a
<lowercaseDepName>-extras.cmake file to the CMAKE_FIND_PACKAGE_REDIRECTS_DIR directory (see Section
30.4.3, “Redirections Directory”), setting each of the package variables. Without this file, consumers
won’t be able to rely on having the variables available with all dependency methods.

Conversely, if a project doesn’t need to provide such variables to satisfy backward compatibility
requirements, don’t add them. They do not help consumers, they only promote poor habits. Prefer
to offer targets exclusively and record any information that needs to be conveyed as properties on
those targets. This includes additional details like package version, a list of enabled features, etc.
Even then, avoid providing details "just in case". Good package APIs should be complete and
minimal.

Providing commands to obtain information about a package is also sometimes an acceptable
alternative to defining package variables. Commands have global visibility, so they don’t have the
scope concerns that variables can bring.

# GOOD: Information is available everywhere the target is
set_target_properties(MyThing PROPERTIES
    MYTHING_VERSION 1.2.3
    MYTHING_BACKEND CoolBeans
)

# GOOD: Commands are global, information always available
function(mything_get_info key outVar)
    # ...
endfunction()

# BAD: Variables will not be available to the consumer
#      without further help for some dependency methods
set(MYTHING_VERSION 1.2.3)
set(MYTHING_BACKEND CoolBeans)

As a special case, if a project normally provides a <packageName>-config-version.cmake file when
installed, it can write a simplified version of that file to the CMAKE_FIND_PACKAGE_REDIRECTS_DIR
directory when building from source, as detailed in Section 30.4.3, “Redirections Directory”. Such
files need be no more complicated than these three lines:

534



set(PACKAGE_VERSION 1.2.3)
set(PACKAGE_VERSION_COMPATIBLE TRUE)
set(PACKAGE_VERSION_EXACT TRUE)

By writing this file to the CMAKE_FIND_PACKAGE_REDIRECTS_DIR directory, any redirected find_package()
call for that dependency will populate the usual set of <PackageName>_VERSION… variables for that
package automatically (see the official find_package() documentation for the full list). Consumers
frequently don’t use this version information, but by providing it, a project ensures that the details
are available for those few consumers that need it.

31.5. Use Appropriate Methods To Obtain
Dependencies
Making a project consumable also means ensuring it consumes its own dependencies in an
appropriate way. The following recommendations are mostly a condensed form of discussions that
directly relate to this topic from other chapters, especially Section 30.4, “Integration With
find_package()” and Chapter 32, Dependency Providers.

• If the project can use find_package() to obtain a dependency and doesn’t need any functionality
provided by FetchContent, prefer calling find_package(). Where it is not reasonable or desirable to
put the responsibility for supplying a dependency on the developer, prefer using FetchContent.
Internal company projects or patched dependencies are typical examples of the latter.

• Regardless of the approach used, aim to give every dependency an opportunity to be found
using find_package(). This maximizes the chances it can be supplied by a third party package
manager.

• If a project calls FetchContent_Declare():

◦ Add the FIND_PACKAGE_ARGS keyword if the dependency package meets the criteria for being
consumed that way. If CMake versions earlier than 3.24 need to be supported, use a CMake
version test to add it conditionally.

◦ Reserve OVERRIDE_FIND_PACKAGE for meeting strict requirements in controlled environments
(e.g. where dependencies must be built from source, or a particular patched version needs
to be used).

◦ Use the same dependency name as would be used for find_package(), including
upper/lowercase.

• Avoid using the <lowercaseDepName>_SOURCE_DIR or <lowercaseDepName>_BINARY_DIR variables which
may be provided by FetchContent_MakeAvailable(). They assume building from source, which
precludes using find_package().

• Don’t use the manual FetchContent population pattern. Update projects to use
FetchContent_MakeAvailable() instead.

• For open source projects, be prepared for FETCHCONTENT_TRY_FIND_PACKAGE_MODE being set to ALWAYS
(package managers or Linux distributions may do that).

• Don’t set or modify FETCHCONTENT_TRY_FIND_PACKAGE_MODE in the project.
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31.6. Recommended Practices
Much of this chapter already provides a fairly comprehensive set of guidelines for ensuring a
project is consumable by a broad range of methods. The following summarizes the main over-
arching principles that underpin those recommendations:

• Use project-specific names for things that are visible outside the project.

• Always assume the project will some day be used as a child of some other parent project, so it
won’t always be the top level.

• Don’t interfere with or block features that developers, driving scripts or parent projects should
be able to control.

• Prefer to define only targets, target properties and commands for packages. Avoid setting
package variables except to preserve backward compatibility.

• Enable find_package() integration for any call to FetchContent_Declare() where that dependency
meets the requirements for doing so.
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Chapter 32. Dependency Providers
Projects have always had to specify the things they depend on, or the "what" part of the dependency
picture. The "how" part of managing dependencies tends to be more challenging. Different
developers or use cases may require dependencies to be provided by very different mechanisms for
the same project. One developer may want to use package manager X to provide all dependencies,
but another developer may want to choose a different package manager Y. A Linux distribution or
package manager maintainer may want to completely take over all dependency provision
altogether. Another developer might want to replace just one particular dependency with their own
forked version that contains local changes. A company may want to provide some dependencies
from an internal binary artifact system, but obtain other dependencies as built from source or from
third party services. Yet another developer might want to avoid dealing with any of it and expect
the project to provide a working out-of-the-box experience on its own.

CMake 3.24 added a number of features aimed at better supporting the variety of needs around
dependency handling. The integration between find_package() and FetchContent enables projects to
provide more complete fallbacks for the "how" part of obtaining a dependency. Importantly, it does
so without taking away the developer’s ability to override that and provide the dependency in their
own preferred way instead. The mechanics of that integration was discussed in Section 30.4,
“Integration With find_package()”. This chapter focuses on the features available to the developer
for controlling how dependency requests are fulfilled.

Two features added in CMake 3.24 give the developer full control of the project’s dependencies:

• A dedicated, clearly-defined injection point for executing one-time setup logic in the top project.

• Dependency providers which can intercept find_package() and FetchContent_MakeAvailable()
requests and choose how they should be fulfilled.

These two features work together. A dependency provider can only be registered at the top level
injection point. Projects cannot change the provider later, ensuring the developer remains in
control for the whole build.

32.1. Top Level Setup Injection Point
With CMake 3.24 or later, the developer can specify a list of files in a variable named
CMAKE_PROJECT_TOP_LEVEL_INCLUDES. Those files will be read by the very first project() command, and
only by the very first project() command. The files will be read in the order provided, each one as
though by an include() command.

The CMAKE_PROJECT_TOP_LEVEL_INCLUDES files are included after any toolchain file has been read, but
before any languages are enabled. Therefore, variables that describe the host or target platform
will be set (e.g. CMAKE_SYSTEM_NAME), but not necessarily any variables related to specific languages.

Projects should never set, modify or use CMAKE_PROJECT_TOP_LEVEL_INCLUDES directly. It is intended
exclusively for the developer, who may use it to inject files that are specific to their host machine
and personal needs. It might also be set by scripts that are driving the CMake configure step. In
more controlled environments, such as within an organization, CMake presets might also set it as a
convenience for the developer, which still gives the developer ultimate control.
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A primary use case for CMAKE_PROJECT_TOP_LEVEL_INCLUDES is to provide a place where dependency
providers can register themselves and perform any provider-specific setup at the start of the
project. Dependency providers should supply such a file, developers should not have to write it
themselves. A developer should be able to pass the provider-supplied setup file directly to CMake
via CMAKE_PROJECT_TOP_LEVEL_INCLUDES and not need to know anything more about how it works.



Since CMAKE_PROJECT_TOP_LEVEL_INCLUDES is still relatively new, it may take some time
for existing dependency providers to implement that support and provide an
appropriate file. The reader is encouraged to check with their preferred
dependency provider regarding availability of support for this feature.

Some package managers hijack the toolchain file as a way to hook into the CMake configuration
process for things not related to the toolchain. This is not recommended, as it isn’t what a toolchain
file is meant for (see Section 23.1, “Toolchain Files”). It is also not particularly intuitive for
developers, and it complicates the situation when the developer wants to use a real toolchain file.
With CMake 3.24 or later, CMAKE_PROJECT_TOP_LEVEL_INCLUDES should be the preferred mechanism if
the dependency provider supports it. This allows the developer to cleanly separate how they define
their toolchain from other services wanting to perform setup steps at the start of the project.

The setup files don’t have to be related to managing dependencies, they can be used for other
purposes too. Another use case for CMAKE_PROJECT_TOP_LEVEL_INCLUDES is as a hook for IDEs. Such tools
may take advantage of this feature by prepending their own setup files to the list already specified
by the developer. This may allow an IDE to define things like cmake_language(DEFER) calls to record
information at the very end of the CMake run, or to add an IDE-specific build target that extends
the project in some way.

32.2. Dependency Provider Implementation


This section is intended for those implementing their own dependency provider,
or using the provider hooks for information-gathering purposes. These details are
not needed to use a provider if it has supplied a setup file, as discussed above.

When a project calls find_package() or FetchContent_MakeAvailable(), that call can be intercepted by a
dependency provider. These are implemented as a single CMake command, which will be called
with the appropriate arguments for the request type. A provider is registered with the following
command:

cmake_language(
    SET_DEPENDENCY_PROVIDER commandName
    SUPPORTED_METHODS methods...
)

At most, only one dependency provider can be registered. Registering a new one will replace any
previously registered provider. Importantly, the only time a provider can be registered is while
processing the CMAKE_PROJECT_TOP_LEVEL_INCLUDES files at the start of the project. Any attempt to
register a provider outside that context will result in a fatal error.
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The command named by commandName must already be defined. Typically, the command will be
defined in the same file just before registering it with cmake_language(). Making the file self-
contained simplifies re-using it between different projects.

For reasons explained in Section 32.2.1, “Accepting find_package() Requests” further below,
provider commands should almost always be macros, not functions. By convention, the command
name should follow the pattern xxx_provide_dependency(), where xxx is some provider-specific string
to prevent name clashes with other dependency providers.

The SUPPORTED_METHODS is a list that specifies which types of requests the provider accepts. Supported
values for the methods are:

• FIND_PACKAGE

• FETCHCONTENT_MAKEAVAILABLE_SERIAL

A dependency provider is not required to accept all methods. Requests for any methods it does not
accept will be passed through transparently to the default built-in implementation. The request
method is always passed as the first argument to the provider command, so if it does accept
multiple methods, it can always tell what type of request each call is for.

cmake_minimum_required(VERSION 3.24)

macro(example_provide_dependency method)
    # ...
endmacro()

# Accepts find_package() only
cmake_language(
    SET_DEPENDENCY_PROVIDER example_provide_dependency
    SUPPORTED_METHODS
        FIND_PACKAGE
)

# Accept find_package() and FetchContent_MakeAvailable()
cmake_language(
    SET_DEPENDENCY_PROVIDER example_provide_dependency
    SUPPORTED_METHODS
        FIND_PACKAGE
        FETCHCONTENT_MAKEAVAILABLE_SERIAL
)

The general pattern for a provider implementation is that it must explicitly indicate if it fulfills the
request given to it. When the provider returns, CMake checks a set of method-specific conditions,
discussed in the sub-sections below. If the provider didn’t fulfill the request, CMake forwards it to
the default built-in implementation.

32.2.1. Accepting find_package() Requests

If a provider lists FIND_PACKAGE as one of the methods it accepts, all find_package() calls will be routed
through the provider. The arguments passed to the provider’s command will be the request
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method, followed by all the arguments originally given to the find_package() call. Since the first
argument to find_package() is always the package name, it is customary to hard-code that as the
second positional argument to the provider command for convenience (see example below).

If the provider fulfills the request, it has to set the same variables the built-in find_package()
implementation expects to indicate success. That typically means, at a minimum, setting
<depName>_FOUND to true. If the provider command doesn’t do this, CMake will assume the request
was not fulfilled and will try its own built-in implementation next.

The following example file is suitable for listing in the CMAKE_PROJECT_TOP_LEVEL_INCLUDES variable. In
this scenario, dependencies with names that start with restricted_… are intercepted and replaced
with placeholder artifacts. These might be stubs, alternative algorithm implementations,
placeholder resources and so on. This might be a way for a developer who is subject to security or
export constraints to work on code without access to restricted packages. No changes need to be
made to the project itself, since the provider contains all the logic and the developer injects the
provider from outside the project.

setup_provider.cmake

cmake_minimum_required(VERSION 3.24)

function(get_artifact_placeholder)
    # ...
endfunction()

macro(mycomp_provide_dependency method depName)
    if("${depName}" MATCHES "^restricted_.*")
        # Assume this halts with an error if it fails
        get_artifact_placeholder(${depName} ${ARGN})
        set(${depName}_FOUND TRUE)
    endif()
endmacro()

cmake_language(
    SET_DEPENDENCY_PROVIDER mycomp_provide_dependency
    SUPPORTED_METHODS
        FIND_PACKAGE
)

The above example demonstrates how one can write a custom provider that handles a subset of
dependencies differently to others. The restricted_… dependencies are explicitly handled and the
provider indicates it fulfilled the request by setting ${depName}_FOUND to true. For all other
dependencies, ${depName}_FOUND is not set and the request is left to be handled by CMake’s normal
built-in processing.

The example also demonstrates why provider commands should almost always be implemented as
a macro rather than a function. Provider commands are expected to set variables like
${depName}_FOUND and often many others in the calling scope. This will not be just for the direct
dependency, but also for any further transitive dependencies that might get pulled in. A provider is
unlikely to be able to robustly know all variables it would have to forward to the caller, so it is safer
to make it a macro and operate directly in the caller’s scope. The main caveat is that the provider
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shouldn’t leak unnecessary variables. It should minimize the extra variables it defines for its own
internal purposes and ensure they are removed before returning to the caller. Those extra
variables should also all have provider-specific names to avoid clashing with project variables.

Another interesting feature of the example is that it only accepts the FIND_PACKAGE method. Because
it doesn’t list FETCHCONTENT_MAKEAVAILABLE_SERIAL as one of its accepted methods, it can assume it will
never receive a call for anything but a find_package() request. That simplifies its implementation,
since it doesn’t have to switch behavior based on the request type and can ignore the method
argument. CMake already guarantees it will only be called for the type of requests it said it could
handle.

32.2.2. Accepting FetchContent_MakeAvailable() Requests

The FETCHCONTENT_MAKEAVAILABLE_SERIAL method indicates the provider accepts dependency requests
from FetchContent_MakeAvailable() one at a time. The arguments passed to the provider for such
requests will be the method, followed by the associated FetchContent_Declare() arguments for the
dependency, with some modifications. Since the fist argument to FetchContent_Declare() is always
the dependency name, it is again customary to hard-code that as the second positional argument of
the provider command (see example below). For the arguments after the dependency name, if
find_package() integration is not enabled for that dependency, any FIND_PACKAGE_ARGS will be stripped
out. The OVERRIDE_FIND_PACKAGE keyword is also always stripped out. The SOURCE_DIR and BINARY_DIR
keywords will always be present, even if the original call didn’t have them (they will be passed in
with their default values in that case).

If the provider fulfills the request, it must call FetchContent_SetPopulated() with appropriate details:

FetchContent_SetPopulated(
  depName
  [SOURCE_DIR srcDir]
  [BINARY_DIR binDir]
)

The built-in implementation always provides a SOURCE_DIR and BINARY_DIR, but a dependency
provider is not required to do so. This gives the provider the freedom to provide the dependency in
a way that might not include source or build directories. This would be the case if it was providing
pre-built artifacts instead of building the dependency from source, for example. Note that some
projects may have been written to expect the source to be available. In such cases, a provider that
doesn’t satisfy that requirement should not be used.

The following example implements a provider that checks if a pre-built package is available from a
custom location or service and uses it if available. If no such pre-built artifact is found, the provider
leaves the request to be fulfilled by the default built-in implementation.

cmake_minimum_required(VERSION 3.24)

function(get_prebuilt_artifact)
    # ...
endfunction()
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macro(prebuilt_provide_dependency method depName)
    get_prebuilt_artifact(${depName}
        RESULT_VAR havePrebuilt
        SOURCE_DIR_VAR sourceDir
        BINARY_DIR_VAR binaryDir
    )

    if(havePrebuilt)
        FetchContent_SetPopulated(${depName}
            SOURCE_DIR "${sourceDir}"
            BINARY_DIR "${binaryDir}"
        )
    endif()
endmacro()

cmake_language(
    SET_DEPENDENCY_PROVIDER prebuilt_provide_dependency
    SUPPORTED_METHODS
        FETCHCONTENT_MAKEAVAILABLE_SERIAL
)

In the above example, the pre-built artifact might still provide a source and build directory. The
pre-built artifact could be provided by a separate build the developer has been working with, for
example. It is not an error for empty strings to be given as the SOURCE_DIR or BINARY_DIR values in a
call to FetchContent_SetPopulated().

32.2.3. Accepting Multiple Request Methods

Providers supporting multiple methods can use the first argument to the provider command to
differentiate between the request types. For the two methods currently supported by CMake, the
second argument is always the name of the dependency, so it can be a positional argument too.

cmake_minimum_required(VERSION 3.24)

macro(multimethod_provide_dependency method depName)
    message(VERBOSE "Provider for ${depName} using method ${method}")
    if("${method}" STREQUAL "FIND_PACKAGE")
        # find_package() implementation...
    else()  # FETCHCONTENT_MAKEAVAILABLE_SERIAL
        # FetchContent_MakeAvailable() implementation...
    endif()
endmacro()

cmake_language(
    SET_DEPENDENCY_PROVIDER multimethod_provide_dependency
    SUPPORTED_METHODS
        FIND_PACKAGE
        FETCHCONTENT_MAKEAVAILABLE_SERIAL
)

542



32.2.4. Wrapping The Built-in Implementations

In certain situations, a provider might want to perform some action before or after a find_package()
call, but not actually change how the built-in find_package() implementation works. For example, a
package manager may want to prepare some files that the built-in implementation might use, or
special case post-find handling may need to be applied for a few specific dependencies. For such
situations, a provider can call the built-in implementation directly by adding the BYPASS_PROVIDER
keyword to find_package(). This prevents CMake from re-routing the request back to the provider
again, which would otherwise cause an infinite loop. Inside a provider command is the only place
the BYPASS_PROVIDER keyword should ever be used in a find_package() call. Future versions of CMake
may halt with an error if it detects use of the BYPASS_PROVIDER keyword outside a provider.

A similar thing can be done with FetchContent_MakeAvailable(). The FetchContent_MakeAvailable()
implementation automatically detects if a call to the provider is already in progress for a
dependency and will not re-route a nested call back to the provider again. Infinite loops are
therefore avoided. A provider can take advantage of this to call FetchContent_MakeAvailable() directly
if it wants to keep the built-in implementation and just wrap it with pre- or post-call logic.

cmake_minimum_required(VERSION 3.24)

function(pre_provider depName)
    # ...
endfunction()

function(post_provider depName)
    # ...
endfunction()

macro(wrapper_provide_dependency method depName)
    pre_provider(${depName})

    if("${method}" STREQUAL "FIND_PACKAGE")
        find_package(${depName} ${ARGN} BYPASS_PROVIDER)
    else()  # FETCHCONTENT_MAKEAVAILABLE_SERIAL
        FetchContent_MakeAvailable(${depName})
    endif()

    post_provider(${depName})
endmacro()

cmake_language(
    SET_DEPENDENCY_PROVIDER wrapper_provide_dependency
    SUPPORTED_METHODS
        FIND_PACKAGE
        FETCHCONTENT_MAKEAVAILABLE_SERIAL
)

32.2.5. Preserving Variable Values

Both find_package() and FetchContent_MakeAvailable() operate directly in the variable scope from
which they are called. This means a provider command also operates in that scope, which it needs
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to do in order to pass back any relevant variables for the requested dependency and any of its sub-
dependencies. As part of fulfilling nested dependencies, a provider command might also end up
with nested calls in the same scope. This means any variable set in the provider’s implementation
could hold a different value after any place it calls find_package() or FetchContent_MakeAvailable().

Note that macro arguments are not variables, so they are not susceptible to being changed by a call
to find_package() or FetchContent_MakeAvailable(). The example in the previous section took
advantage of this when it referred to ${depName} in the call to post_provider(). The value of ${depName}
will be the same as when the provider was called. If the provider had been implemented as a
function instead of a macro, this would not be the case.

Providers sometimes need to define variables within their implementation. If those variables need
to be persisted across calls to find_package() or FetchContent_MakeAvailable(), they need to be
explicitly saved and restored. One technique for achieving that is to use a provider-specific list
variable like a stack. One can append values to that list before calling find_package() or
FetchContent_MakeAvailable(), then pop those values off in reverse order afterwards. This simple
approach only works for single-valued variables. If the variables could hold lists, a more complex
implementation would be required.

The following example logs the time taken to provide each dependency. The time shown will
include all nested dependencies. See Appendix A, Timer Dependency Provider for the full
implementation, including the startTimer() and reportTimeSince() commands.

cmake_minimum_required(VERSION 3.24)

macro(timer_provide_dependency method depName)
    startTimer(t0)
    list(APPEND providerVarStack "${t0}")

    if("${method}" STREQUAL "FIND_PACKAGE")
        find_package(${depName} ${ARGN} BYPASS_PROVIDER)
    else()  # FETCHCONTENT_MAKEAVAILABLE_SERIAL
        FetchContent_MakeAvailable(${depName})
    endif()

    list(POP_BACK providerVarStack t0)
    reportTimeSince("Time for ${depName}" "${t0}")
endmacro()

cmake_language(
    SET_DEPENDENCY_PROVIDER timer_provide_dependency
    SUPPORTED_METHODS
        FIND_PACKAGE
        FETCHCONTENT_MAKEAVAILABLE_SERIAL
)

32.2.6. Delegating Providers

CMake only allows a single dependency provider to be registered at any point in time. Registering a
second provider replaces the first. However, it is possible to define forwarding or composing
providers which delegate to other providers internally. This might be desirable if there are clearly
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separated groups of dependencies with no overlap, where one set should be obtained with provider
A and another set with provider B. Another example is where an off-the-shelf provider should
supply all the dependencies, but the developer also wants to gather information about each
dependency, so they need to wrap the off-the-shelf provider.

Forwarding arguments to providers that accept the FETCHCONTENT_MAKEAVAILABLE_SERIAL method
requires special care. Some arguments for that request type could be empty strings, and these are
interpreted differently to no value being provided at all. Therefore, empty strings must be retained,
if present. Because all variables set by providers need to propagate up to the original caller making
the dependency request, delegating providers must be implemented as macros, not functions. This
has implications for forwarding the command arguments.

As discussed back in Section 8.8.1, “Parsing Arguments Robustly”, naively forwarding ${ARGN} would
silently drop empty strings. To avoid that, a technique such as that presented at the end of Section
8.8.2, “Forwarding Command Arguments” must be used. The main compromise involved is that list
flattening of arguments cannot be avoided. This is because there is no way to obtain the original
unflattened argument list of a macro. However, this shouldn’t impact the arguments for either
request method, so it is an acceptable compromise in this specific situation.

The following example demonstrates how to combine the time reporting wrapper in the previous
section’s example with an off-the-shelf provider supplying the dependencies.

# This provides cots_provide_dependency()
include(/path/to/commercialOffTheShelfProvider.cmake)

macro(wrapper_provide_dependency method depName)
    startTimer(t0)
    list(APPEND providerVarStack "${t0}")

    # Preserve empty strings, flattened lists are ok
    string(REPLACE ";" "]===] [===[" args "[===[${ARGV}]===]")
    cmake_language(EVAL CODE "cots_provide_dependency(${args})")

    list(POP_BACK providerVarStack t0)
    reportTimeSince("Time for ${depName}" "${t0}")
endmacro()

32.3. Recommended Practices
CMAKE_PROJECT_TOP_LEVEL_INCLUDES is the most appropriate code injection method for once-per-run
setup logic controlled by the developer. The project() command supports a number of other
injection variables (see Section 34.9, “Injecting Files Into Projects”), but those should be reserved for
cases where logic is needed for every project() call, or for one specific project() call at somewhere
other than the top level.

Ensure every file given to CMAKE_PROJECT_TOP_LEVEL_INCLUDES starts with its own
cmake_minimum_required() call. This sets the expected policy behavior for that file instead of relying
on the policy settings of the project the file is being injected into. This will also make the injected
file more resilient and more reusable across multiple projects.
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Avoid adding any provider-specific logic to a project. Expect all provider-specific code to be
contained in a file injected using the CMAKE_PROJECT_TOP_LEVEL_INCLUDES variable, which the developer
ultimately controls. Prefer to use a provider-supplied setup file if one is available.

If implementing a dependency provider command, use a macro rather than a function. In most
cases, providers must not introduce a new variable scope so that variables set by dependencies will
propagate back out properly to the caller.

Be careful about handling arguments if forwarding them on to a delegated provider command.
Always preserve empty strings, which means you must not naively forward arguments using a bare
${ARGN}. Use appropriate bracket quoting of arguments in conjunction with the cmake_language(EVAL)
command to preserve empty values.
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Chapter 33. Presets
As a developer becomes more experienced with CMake, certain usage patterns and scenarios tend
to be repeated. Some common examples include:

• A preferred way of placing and naming build directories relative to the source directory.

• A preference for a particular CMake generator on a given platform.

• Setting a certain combination of CMake cache variables to particular values for a given project.

• Re-using a toolchain file across projects, sometimes in conjunction with setting a few CMake
cache variables or selecting a particular CMake generator.

• Automating a sequence of configure, build, test and packaging steps for continuous integration
and release processes.

CMake 3.19 added a new feature called presets which allow scenarios like those above to be
handled in a more reliable, automated and convenient way. Presets can specify the build directory,
CMake generator, target architecture, host toolset, CMake variables, environment variables and
even vendor-specific content (e.g. for certain IDE tools). These affect the configure phase of the
developer workflow. CMake 3.20 extended the presets functionality, adding support for sections
that affect the build and test phases. CMake 3.25 extended the functionality further, adding support
for packaging and workflow presets.

The material in this chapter covers the more commonly used aspects of presets. They are best
learned by experimenting with real world projects, trying out different ideas and exploring how
the various capabilities can be used. Consult the presets manual in the CMake documentation for a
comprehensive coverage of all the available features.

33.1. High Level Structure
CMake looks in the top source directory of a project for files named CMakePresets.json and
CMakeUserPresets.json. Neither file is required to be present, but if the user tries to list or use presets,
at least one of the files must exist. If both files are present, they will effectively be merged by
reading the CMakePresets.json file first and then the CMakeUserPresets.json file. The two files have
exactly the same format, but they serve different purposes:

CMakePresets.json

This file should only be provided by the project. It can be used to define presets for things like
continuous integration jobs or cross-compilation setups using toolchains provided as part of the
project (see Section 30.6, “Other Uses For FetchContent” for one way this might be done). It
should not refer to any paths or files outside the source or build directories, except perhaps well-
known locations that would typically be present on most host systems. The preset file should be
kept under version control, just like other parts of the project.

CMakeUserPresets.json

This file provides presets defined by the developer for use on their own machine. The file
contents can refer to any file or path without restriction, since they only have to make sense for
that user’s local machine. Projects should never provide a CMakeUserPresets.json file. It should
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ideally be excluded from source control. Developers may want to add this file name to their
global git ignore configuration or other equivalent source control settings.

The CMake documentation includes a detailed explanation of the format of preset files. The
following example shows the most important top level elements:

{
  "version": 6,
  "include": [...],
  "configurePresets": [...],
  "buildPresets": [...],
  "testPresets": [...],
  "packagePresets": [...],
  "workflowPresets": [...]
}

The version field specifies the JSON schema and must always be present.

Schema
Version

CMake Version
Required

Comments And Main Changes

1 3.19 First release, only supports configurePresets.

2 3.20 Adds support for buildPresets and testPresets.

3 3.21 Adds support for conditions and drops the constraint that the
generator and build directory must be specified.

4 3.23 Adds support for include.

5 3.24 Minor additions.

6 3.25 Adds support for packagePresets and workflowPresets.

For large projects (especially those using a monorepo structure), it is common for the set of presets
to grow quite large. Maintaining them all in a single CMakePresets.json file can become difficult.
Developers who create a lot of their own presets in the CMakeUserPresets.json file experience the
same problem. With CMake 3.23 or later, the include array can be used to break up the set of presets
into more manageable pieces. Each array item is the name of another presets file to read. Relative
paths are treated as being relative to the directory of the file specifying the include array.

Files included from CMakePresets.json should always be provided by the project. This would
typically mean the included files are in the project’s source control repository, or potentially in a git
submodule of the repository. Any paths outside the project are not under the project’s control, so
files included from such locations might not exist on every developer’s machine.
CMakeUserPresets.json can freely include files from anywhere, since it is specific to the user’s
machine and is under the user’s control.

File inclusion can be nested to any practical level, but it would be unusual to need more than a few
levels. It is not an error for a file to be included more than once, but there must not be any cycles
among the included files. Section 33.2.2, “Inheritance” discusses additional requirements on
included files.
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33.2. Configure Presets
Configure presets apply to the configure phase of the developer workflow. They can be used when
running CMake to set up a build directory for a project. For a preset file to be useful, it needs to
provide a configurePresets section containing an array of one or more presets. The following shows
a fairly simple example:

{
  "version": 1,
  "configurePresets": [
    {
      "name": "ninja",
      "displayName": "Ninja Debug",
      "generator": "Ninja",
      "binaryDir": "build-debug",
      "cacheVariables": { "CMAKE_BUILD_TYPE": "Debug" }
    }
  ]
}

33.2.1. Essential Fields

Every preset must provide a name. It is a single word that serves as the unique name of the preset. A
displayName is optional, but recommended. It is shown in GUI applications in combo boxes, etc. The
name and displayName (if defined) of all available (non-hidden) configure presets can be obtained by
running the following command from the top source directory of a project:

cmake --list-presets

Available configure presets:

  "ninja" - Ninja Debug

The CMake GUI also shows the available configure presets for the currently selected source
directory. Presets are listed by their displayName, falling back to the name if no displayName is provided.
The ccmake tool does not support presets.

The name is used to select a configure preset on the cmake command line. When run from the top
source directory of the project, the following would select the configure preset defined above:

cmake --preset ninja
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With schema version 1 or 2, configure presets must also provide a generator and binaryDir, although
these can be inherited (see further below). Schema version 3 allows the generator and binaryDir to
be omitted, in which case they follow the same behavior as when presets are not used.

If the configure preset provides a binaryDir field (and also a generator field if it is a schema version 1
or 2 presets file), the --preset=… option is enough on its own to configure a build directory.

Any of the usual CMake options can still be provided on the cmake command line too and will
override the preset, where relevant. For instance, the above example defines the CMAKE_BUILD_TYPE
cache variable. Other cache variables can be added with -D options on the command line, or even
override the CMAKE_BUILD_TYPE.

Cache variables can be defined in the simple key:value form as shown in the above example, or they
can be defined as a JSON object. The non-object form will define the variable as type STRING unless
the value is an unquoted true or false, in which case it will be of type BOOL. The object form allows
the variable type to be specified, which can improve the way the variable is presented in GUI
applications. For example:

{
  "version": 1,
  "configurePresets": [
    {
      "name": "ninja",
      "generator": "Ninja",
      "binaryDir": "build",
      "cacheVariables": {
        "CMAKE_TOOLCHAIN_FILE": {
          "type": "FILEPATH",
          "value": "/path/to/toolchain.cmake"
        }
      }
    }
  ]
}

33.2.2. Inheritance

Presets can inherit from one or more other presets of the same type (configure, build, test or
package) to add or override fields. This can be used to compose presets from common building
blocks, thereby avoiding duplication and reducing errors. A preset can also be hidden, indicating it
only exists so that other presets can inherit from it.

The include field adds constraints to what may be inherited. Each preset file must include other files
that define any preset it inherits. This is analogous to the C/C++ #include behavior, where each
source file is required to include headers to define anything that source file references. For the
purposes of this constraint, CMakeUserPresets.json implicitly includes CMakePresets.json, so user
presets can inherit project presets, but not vice versa.
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CMakePresets.json

{
  "version": 1,
  "configurePresets": [
    {
      "name": "ci-enable-all",
      "hidden": true,
      "binaryDir": "build",
      "cacheVariables": { "MYPROJ_FEATURE_X": true, "MYPROJ_FEATURE_Y": true }
    },
    {
      "name": "ci-linux",
      "inherits": "ci-enable-all",
      "displayName": "Linux continuous integration setup",
      "generator": "Ninja",
      "cacheVariables": { "CMAKE_BUILD_TYPE": "Release" }
    },
    {
      "name": "ci-macos",
      "inherits": "ci-enable-all",
      "displayName": "macOS continuous integration setup",
      "generator": "Xcode"
    }
  ]
}

CMakeUserPresets.json

{
  "version": 1,
  "configurePresets": [
    {
      "name": "sibling-build-dir",
      "hidden": true,
      "binaryDir": "${sourceParentDir}/build/${sourceDirName}"
    },
    {
      "name": "ninja",
      "inherits": ["sibling-build-dir", "ci-enable-all"],
      "displayName": "Ninja Debug",
      "generator": "Ninja",
      "cacheVariables": { "CMAKE_BUILD_TYPE": "Debug" }
    }
  ]
}

The CMakePresets.json file defines a base configure preset called ci-enable-all which the other two
configure presets in that file both inherit from. This allows the common set of cache options and
the binaryDir to be shared without having to repeat them everywhere. The ci-linux and ci-macos
configure presets only need to define the information specific to their own generator and platform.
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The CMakeUserPresets.json file shows how to inherit from multiple presets, including one defined in
CMakePresets.json. Both ci-enable-all and sibling-build-dir define a binaryDir. In such cases where
multiple base presets define the same field and the derived preset doesn’t override it, the one that
appears earlier in the inherits list takes precedence. In this case, for the ninja preset, the binaryDir
from sibling-build-dir is used because it appears before ci-enable-all. If the ninja preset itself
defined a binaryDir, that would override the others.

Note how the names given to the presets in CMakePresets.json all have a ci- prefix. Good practice is
to choose preset names in CMakePresets.json that would be unlikely to clash with names a developer
might define in their own CMakeUserPresets.json file. Since continuous integration setup is
something that the project should define, a ci- prefix is typically a good choice. This also clearly
communicates the intended use case for the presets.

33.2.3. Macros

Another feature demonstrated by the CMakeUserPresets.json example above is the use of macros of
the form ${macroName}. These evaluate to a computed value much like how CMake variables work.
The CMake documentation provides the full list of available macro names and the fields that
support them. Some of the more useful macro names include:

presetName

The name of the preset selected by the developer. When used in a base preset, it provides the
name of the final preset that was selected, not the name of the base preset.

generator

The generator as seen by the final selected preset (i.e. taking inheritance into account).

sourceDir

The full absolute path to the project source directory.

sourceParentDir

The full absolute path to the parent of the project source directory.

sourceDirName

The name of the project source directory without any path. This is the same as the last part of
sourceDir, i.e. the part after the last path separator.

fileDir

The full absolute path to the directory containing the preset file being processed. For
CMakePresets.json and CMakeUserPresets.json, this will be the same as sourceDir, but for included
files, it may be different. This macro requires schema version 4 or higher.

hostSystemName

Provides the same value as the CMAKE_HOST_SYSTEM_NAME variable. Requires schema version 3 or
higher.
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The CMakeUserPresets.json in the earlier example shows how ${sourceParentDir} and ${sourceDirName}
can be used to make a preset file more generic. This could be important if re-using it across
multiple projects (e.g. by copying or symlinking it into each project’s source directory).
${sourceParentDir} allows the build directories to be placed outside the project source directory, as
recommended in Section 2.2, “Out-of-source Builds”. When all project sources are siblings of each
other, this conveniently collects all build directories under a single location. ${sourceDirName}
provides the project-specific part that ensures each project’s build directory is unique.

33.2.4. Environment Variables

Configure presets can modify the configure step’s environment with an environment map. This does
not carry forward to the build step unless a build preset is used (discussed further in Section 33.3,
“Build Presets”). Environment variables can also be evaluated with either $env{varName} or
$penv{varName} in fields where macros are supported. The only difference between the two is that
$penv{varName} always provides the value from the parent environment, whereas $env{varName} will
take into account changes made to the environment by the preset. $penv{varName} is necessary when
the current value of an environment variable needs to be included in the new value, as is common
for variables like PATH. An environment variable can also be given the value null to cause it to be
unset.

{
  "version": 1,
  "configurePresets": [
    {
      "name": "ninja",
      "generator": "Ninja",
      "binaryDir": "build",
      "environment": {
        "PATH": "${sourceDir}/scripts:$penv{PATH}",
        "PATH_COPY": "$env{PATH}",
        "CLEAR_ME_PLEASE": null
      }
    }
  ]
}

When a preset inherits from another and they both define an environment, the result is a merged
union of all presets in the inheritance hierarchy. If multiple presets define the same environment
variable, the value taken follows the same inheritance rules as described earlier (base values are
overridden by derived presets, earlier inherited presets take precedence over later ones in the
inherits list). Similar merging behavior is used for cacheVariables as well.

33.2.5. Toolchains

Details about the toolchain are typically provided by a toolchain file. All schema versions allow a
toolchain file to be specified by setting the CMAKE_TOOLCHAIN_FILE cache variable in a configure preset.
Schema version 3 and later support a dedicated toolchainFile field which achieves the same thing.
The following example shows both ways of setting the toolchain file:
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{
  "version": 3,
  "configurePresets": [
    {
      "name": "gcc",
      "displayName": "GNU toolchain",
      "generator": "Ninja",
      "binaryDir": "build-gcc",
      "cacheVariables": {
        "CMAKE_TOOLCHAIN_FILE": "toolchain-gcc.cmake"
      }
    },
    {
      "name": "clang",
      "displayName": "Clang toolchain",
      "generator": "Ninja",
      "binaryDir": "build-clang",
      "toolchainFile": "toolchain-clang.cmake"
    }
  ]
}

When a configure preset uses a Visual Studio generator, it may also want to specify an architecture
or host toolset. Dedicated fields are provided for this and can be specified as either simple strings or
as objects. The following example shows the simple string case:

{
  "version": 1,
  "configurePresets": [
    {
      "name": "vs2019-arm64",
      "displayName": "Visual Studio 2019 - ARM64",
      "generator": "Visual Studio 16 2019",
      "architecture": "ARM64",
      "toolset": "host=x86",
      "binaryDir": "build-arm64"
    }
  ]
}

A common problem when using the Visual Studio toolchain with other generators is the need to set
up the environment in which CMake runs and in which the build is performed. Traditionally,
CMake requires the user to manage the toolchain environment on their own. However, when
presets are used, some IDEs attempt to infer the toolchain environment from the information
provided by the preset. A good example of this is VS Code. It analyzes the architecture and toolset
fields, along with the CMAKE_C_COMPILER and CMAKE_CXX_COMPILER cache variables. The architecture and
toolset fields need to be defined as objects and they must set the strategy to external. The external
strategy means CMake won’t enforce the setting, it expects the environment to already be set up
(e.g. by the IDE).
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The following example shows how one might define a preset that uses the 64-bit host toolchain with
the standard cl compilers, and a second preset that uses the clang-cl toolchain.

{
  "version": 2,
  "configurePresets": [
    {
      "name": "msvc",
      "displayName": "Visual Studio cl toolchain",
      "generator": "Ninja",
      "binaryDir": "build-msvc",
      "architecture": {
        "value": "x64",
        "strategy": "external"
      },
      "toolset": {
        "value": "host=x64",
        "strategy": "external"
      },
      "cacheVariables": {
        "CMAKE_C_COMPILER": "cl.exe",
        "CMAKE_CXX_COMPILER": "cl.exe"
      }
    },
    {
      "name": "msvc-clang",
      "displayName": "Visual Studio clang-cl toolchain",
      "generator": "Ninja",
      "binaryDir": "build-msvc-clang",
      "architecture": {
        "value": "x64",
        "strategy": "external"
      },
      "toolset": {
        "value": "ClangCL,host=x64",
        "strategy": "external"
      },
      "cacheVariables": {
        "CMAKE_C_COMPILER": "clang-cl.exe",
        "CMAKE_CXX_COMPILER": "clang-cl.exe"
      }
    }
  ]
}

Note that a user building directly from the command line would still need to set up the toolchain
environment themselves. The above only shows how to provide enough information to VS Code so
that it can do that on the user’s behalf when configuring and building directly from the IDE.

33.2.6. Conditions

The version 3 schema supports a condition object, which can be used to enable a preset based on
certain rules. For example, a preset with a Xcode generator would only be useful on a macOS
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machine. The condition can be a constant, string equality, inequality, regular expression match or a
check for whether a list contains a particular value. Boolean logic can also be expressed using allOf,
anyOf and not relationships. The official CMake documentation defines the supported conditions
fairly comprehensively, but the following examples give an idea of some typical uses:

{
  "version": 3,
  "configurePresets": [
    {
      "name": "default-generator",
      "binaryDir": "build"
    },
    {
      "name": "xcode",
      "generator": "Xcode",
      "binaryDir": "build-xcode",
      "condition": {
        "type": "equals",
        "lhs": "${hostSystemName}",
        "rhs": "Darwin"
      }
    }
  ]
}

{
  "version": 3,
  "configurePresets": [
    {
      "name": "package-release",
      "generator": "Ninja",
      "binaryDir": "build",
      "condition": {
        "type": "allOf",
        "conditions" : [
          {
            "type": "equals",
            "lhs": "$penv{CI_COMMIT_REF_PROTECTED}",
            "rhs": "true"
          },
          {
            "type": "matches",
            "string": "$penv{CI_COMMIT_TAG}",
            "regex": "release/.*"
          }
        ]
      }
    }
  ]
}
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33.3. Build Presets
The preceding discussions focused on configurePresets, which apply to the configure phase. The
buildPresets provide a similar capability for when running the build tool. The developer can select a
build preset to use at build time like so:

cmake --build --preset name

Build presets support many of the same fields as configure presets, such as name, displayName,
inherits, hidden and environment. Each of these work the same way as for configure presets. In
addition, a build preset must specify (or inherit) the name of a configure preset in a field called
configurePreset, which is used to determine the location of the build directory. A build preset also
inherits any environment from the configure preset by default, although this can be disabled. The
following example demonstrates these capabilities:

{
  "version": 2,
  "configurePresets": [
    {
      "name": "ninja",
      "generator": "Ninja Multi-Config",
      "binaryDir": "build",
      "environment": {
        "PATH": "/tools/dir:$penv{PATH}"
      }
    }
  ],
  "buildPresets" : [
    {
      "name": "base",
      "hidden": true,
      "configurePreset": "ninja",
      "configuration": "Release"
    },
    {
      "name": "devtools",
      "inherits": "base",
      "inheritConfigureEnvironment": false,
      "targets": ["hexdump", "logger"]
    },
    {
      "name": "alldocs",
      "inherits": "base",
      "targets": ["manual", "api", "quickstart"]
    }
  ]
}
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Listing the available build presets for the above example, it can be confirmed that two build presets
are available. Either of the following commands can be used to list the non-hidden build presets:

cmake --list-presets build

cmake --build --list-presets

Available build presets:

  "devtools"
  "alldocs"

Both of these build presets inherit the hidden base build preset, which in turn is associated with the
ninja configure preset. The result is that both devtools and alldocs will be associated with the build
directory defined by the ninja configure preset. The devtools build preset also explicitly discards the
environment changes defined by the configure preset.

Many other command line options can also be expressed as part of a build preset. For instance, the
above example specifies the Release configuration as part of the base build preset, which is then
inherited by devtools and alldocs too. The CMake documentation specifies the full list of available
fields and the command line option each one corresponds to.

It should be noted that build presets can be problematic in practice. They are useful in
CMakeUserPresets.json for defining a few custom build scenarios of interest to the developer. They
are much less convenient if trying to cover all combinations of configure presets and different
build configurations. This largely stems from the constraint that each build preset must be
associated with exactly one configure preset. The result is a combinatorial explosion of build
presets, which becomes difficult to maintain and typically isn’t well presented in IDE environments.
The early design of presets expected that IDEs would base their UI around build presets. As
experience with presets grows and problems like the above emerge, IDEs are tending toward
making configure presets more of a primary part of their UI instead.

33.4. Test Presets
Test presets follow a very similar pattern to build presets, except they are applied to invocations of
ctest:

ctest --list-presets
ctest --preset name

Test presets support the same common fields, such as name, displayName, inherits, hidden and
environment, plus others that map to various ctest command line options. They can specify
commonly used combinations of test fixture settings, regular expressions for selecting or excluding
tests, test output options and so on. The following illustrates how some of these features can be
used:

558



{
  "version": 2,
  "configurePresets": [
    {
      "name": "ninja", ...
    }
  ],
  "testPresets" : [
    {
      "name": "mytests",
      "configurePreset": "ninja",
      "filter": {
        "include": {
          "name": "SomeFeature"
        },
        "exclude": {
          "label": "Slow"
        }
      }
    }
  ]
}

Test presets suffer from the same combinatorial explosion as build presets. For the same reasons,
they are potentially useful for a few developer-specific test presets in CMakeUserPresets.json, but they
are not well-suited to covering a wide range of scenarios.

33.5. Package Presets
The primary use of package presets is as part of a workflow (see Section 33.6, “Workflow Presets”).
Package presets follow the same pattern as build and test presets, but they apply to invocations of
cpack:

cpack --list-presets
cpack --preset name

Again, the usual common fields like name, displayName, inherits, hidden and environment are supported.
Other options specific to the cpack command can also be given. Most details related to packaging
would typically be set within the project, but a preset may want to override some settings for
specific scenarios.

The generators field can be used to specify the types of packages to be produced. This is an array of
CPack generator names. Normally, this would be specified by the project using the CPACK_GENERATOR
variable, as discussed in Section 28.1, “Packaging Basics”. However, a preset may want to narrow
the focus to produce only a particular type of package for a particular workflow.

The configurations field is important if the package needs to include things from both Debug and
Release builds (see Section 28.3, “Multi Configuration Packages”). An array of configurations can be
specified with this field. These configurations will be passed to the cpack command using the -C
command line option, and they will be added to the package in the order specified. The order may
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be important if the same file is installed by different configurations with different contents
(executable binaries being a common example). See Section 33.6, “Workflow Presets” for further
discussion of this scenario.

{
  "version": 6,
  "configurePresets": [
    { "name": "ci-multi-config", ... }
  ],
  "packagePresets": [
    {
      "name": "ci-sdk",
      "configurePreset": "ci-multi-config",
      "generators": [ "7Z", "ZIP" ],
      "configurations": [ "Debug", "Release" ]
    }
  ]
}

33.6. Workflow Presets
Workflows specify a sequence of steps, where each step is defined by other non-workflow presets.
They are especially useful for defining the steps of a continuous integration job.

The set of defined workflow presets can be queried with either of the following commands:

cmake --list-presets workflow
cmake --workflow --list-presets

Executing a workflow preset is done like so:

cmake --workflow --preset name

Workflows are specified by a workflowPresets array. Each item of that array must have a unique name,
which is used to identify the workflow preset to run. A displayName may also be provided. As usual,
it is the name and displayName that are shown by --list-presets.

A workflow preset must have a steps array, which defines the sequence of steps for that workflow.
The first item in that steps array must be a configure preset. After that, any number of build, test or
package presets can be given, all of which are required to specify the configure preset from the first
step as their own configurePreset.

Each step must contain a type and a name. The type corresponds to the preset type of that step
(configure, build, test or package). The name must match one of the defined presets of the nominated
type. The workflow can have multiple items of the same preset type, except for configure presets.
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{
  "version": 6,
  "configurePresets": [
    { "name": "ci-multi-config", ... }
  ],
  "buildPresets": [
    { "name": "ci-sdk-debug", "configurePreset": "ci-multi-config", ... },
    { "name": "ci-sdk-release", "configurePreset": "ci-multi-config", ... }
  ],
  "test": [
    { "name": "ci-release", "configurePreset": "ci-multi-config", ... }
  ],
  "packagePresets": [
    { "name": "ci-sdk", "configurePreset": "ci-multi-config", ... }
  ],
  "workflowPresets": [
    {
      "name": "ci-sdk",
      "steps": [
        { "type": "configure", "name": "ci-multi-config" },
        { "type": "build",     "name": "ci-debug" },
        { "type": "build",     "name": "ci-release" },
        { "type": "test",      "name": "ci-release" },
        { "type": "package",   "name": "ci-sdk" }
      ]
    }
  ]
}

The above example demonstrates typical steps for producing a package that contains contents from
both Debug and Release builds. Note how it contains two build steps, building the ci-debug and then
the ci-release build presets. This allows package presets to list Debug and Release in their
configurations array to install both configurations (see the example in Section 33.5, “Package
Presets” which does this).

Note also how the second build preset and the test preset both have the same name, ci-release. This
is fine, since the type field specifies what type of preset each step corresponds to, and all presets of a
particular type must be unique within that preset type. Names are not required to be unique across
different preset types.

In schema version 6, workflows do not support custom or script-based steps. However, it is
common for continuous integration jobs to need to carry out tasks that do not fit strictly into one of
the defined preset types. For example, code coverage results may need to be collected and
processed to produce a summary or report. One way to achieve this is to define a custom build
target which is not part of the default ALL build target, but which can be explicitly requested by a
build preset.

In the following example, the coverage_report.cmake script is assumed to implement the logic needed
to generate the code coverage report when run from the top of the build directory.
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add_custom_target(coverage_report
    WORKING_DIRECTORY ${CMAKE_BINARY_DIR}
    COMMAND ${CMAKE_COMMAND} -P ${CMAKE_CURRENT_LIST_DIR}/coverage_report.cmake
)

{
  "version": 6,
  "configurePresets": [ "name": "ci-coverage", ... ],
  "buildPresets": [
    { "name": "ci-coverage", ... },
    {
      "name": "ci-coverage-report",
      "configurePreset": "ci-coverage",
      "targets": [ "coverage_report" ]
    }
  ],
  "test": [ "name": "ci-coverage", ... ],
  "workflowPresets": [
    {
      "name": "ci-coverage",
      "steps": [
        { "type": "configure", "name": "ci-coverage" },
        { "type": "build",     "name": "ci-coverage" },
        { "type": "test",      "name": "ci-coverage" },
        { "type": "build",     "name": "ci-coverage-report" }
      ]
    }
  ]
}

33.7. Recommended Practices
Projects should only provide a CMakePresets.json file and let developers create their own
CMakeUserPresets.json file if they want to. Add CMakeUserPresets.json to the user-wide source control
ignore list to minimize the chances of that file ever being committed to a repository.

Avoid using preset names in CMakePresets.json that would be likely to clash with names developers
would use in their own user presets file. A good strategy is to start each preset name in
CMakePresets.json with a prefix like ci-.

Use inherits to compose presets in a "mix-in" fashion to avoid repeating the same details across
related presets. If the number of presets is large, consider using the include functionality to break
up the presets into more manageable chunks and inherit as needed to build up the final set of
desired presets.

For developers, consider creating a CMakeUserPresets.json file that captures common configurations
which can be used across different projects, or at least that require minimal tailoring per project.
The include functionality may also help with being able to reuse preset logic between projects.
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Prefer not to define many build or test presets that cover all conceivable scenarios. Instead, let the
developer define those build and test presets that matter to them. Defining too many build and test
presets makes them harder to use in IDE tools and lowers the maintainability of the project.

Consider using workflow presets to define the steps of continuous integration jobs. This makes local
testing of CI workflows very straightforward. It also avoids having to rely on a potentially platform-
specific scripting language to define the steps involved. When testing locally, use the --fresh
command line option to discard any configuration details from an earlier run:

cmake --workflow --preset ci-coverage --fresh
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Chapter 34. Project Organization
The factors that contribute to an effective project structure are many and varied. What works for
one project may not work for another, but there are typically some things that do tend to be
common. Choosing a flexible but predictable directory structure early in the life of a project allows
it to evolve with minimal friction and reorganization.

One of the most important decisions is whether a project should be structured as a superbuild or as
a regular project. The two are fundamentally different and have their own strengths and
weaknesses. The decision largely comes down to how the project wants to treat its dependencies
and whether there is a desire and opportunity to absorb them directly or keep them isolated in
their own sub-builds. For those projects without any dependencies (and importantly without any
future prospect of ever having any dependencies), a regular project is the obvious choice. But when
there are dependencies, the right project structure can be the difference between fighting against
the build and having it work smoothly.

One of the most common topics that comes up on mailing lists, issue trackers and Q&A sites relates
to problems stemming from trying to use one project structure but expecting it to have the
capabilities of another. In many cases, this arises because a project is started with a particular
structure, but then as dependencies are added, that structure no longer supports what the
developer wants the project to be able to do. Those involved have become accustomed to working
with the existing structure, so changing it will likely be very disruptive and will often meet with
considerable resistance. The older a project is, the harder such a change is likely be. Therefore,
decide how dependencies should be handled early in the life of the project, with due consideration
for future expectations.

34.1. Superbuild Structure
Where dependencies do not use CMake as their build system, a superbuild tends to be the preferred
structure. This treats each dependency as its own separate build, with the main project directing
the overall sequence and the way details are passed from one dependency’s build to another. Each
separate build is added to the main build using ExternalProject. Such an arrangement allows CMake
to look at what each build produces and automatically detect information that can then be passed
on to other dependencies. This avoids having to manually hard code such information in the main
build. Even if all the dependencies use CMake, a superbuild may still be preferred for other reasons,
such as to avoid target name clashes or problems with projects that assume they are always the top
level project.

A superbuild allows precise control over the sequencing of the separate dependency builds. One or
more dependencies can be required to fully complete their own build, including their install step,
before other dependencies run their own configuration phase. For such situations, the later
configuration steps can see the installed artifacts and work out the appropriate file names,
locations, etc. automatically. This is not possible in a regular build.

Superbuilds can be implemented with a top level CMakeLists.txt file that follows a fairly predictable
pattern. One variation uses a common install area for all dependencies. Another alternative is to
install each dependency to its own separate location. While both are similar, using a common
install area is slightly simpler to define:

564



cmake_minimum_required(VERSION 3.0)
project(SuperbuildExample)
include(ExternalProject)

set(installDir ${CMAKE_CURRENT_BINARY_DIR}/install)

ExternalProject_Add(someDep1   ①
    ...
    INSTALL_DIR ${installDir}
    CMAKE_ARGS  -DCMAKE_INSTALL_PREFIX:PATH=<INSTALL_DIR>
)
ExternalProject_Add(someDep2
    ...
    INSTALL_DIR ${installDir}
    CMAKE_ARGS  -DCMAKE_INSTALL_PREFIX:PATH=<INSTALL_DIR>
                -DCMAKE_PREFIX_PATH:PATH=<INSTALL_DIR>   ②
)
ExternalProject_Add_StepDependencies(someDep2 configure someDep1)   ③

① At least one dependency must require no others.

② For other dependencies that use find_package() to locate their dependencies, setting
CMAKE_PREFIX_PATH to the common install directory is typically enough.

③ A step dependency is added to ensure the configure step only runs after other required
dependencies have been installed.

A cleaner separation can be obtained by installing each dependency to its own subdirectory below
a common location. By carefully selecting the name of each subdirectory, it may still be possible to
set CMAKE_PREFIX_PATH to just the common base location. If each dependency provides a CMake config
package file and the name of the subdirectory matches the dependency’s package name in each
case, then find_package() will still find it with just the common base in CMAKE_PREFIX_PATH.

set(installBaseDir ${CMAKE_CURRENT_BINARY_DIR}/install)

ExternalProject_Add(someDep1
    ...
    INSTALL_DIR ${installBaseDir}/someDep1
    CMAKE_ARGS  -DCMAKE_INSTALL_PREFIX:PATH=<INSTALL_DIR>
)
ExternalProject_Add(someDep2
    ...
    INSTALL_DIR ${installBaseDir}/someDep2
    CMAKE_ARGS  -DCMAKE_INSTALL_PREFIX:PATH=<INSTALL_DIR>
                -DCMAKE_PREFIX_PATH:PATH=${installBaseDir}
)

If a dependency doesn’t use CMake as its build system, sharing a single install location may be the
easier of the two structural variations presented above. Such dependencies might not provide a
CMake config package file, so the main project will likely be relying on finding individual libraries
and headers rather than whole packages. If each dependency is in its own subdirectory, that would
require adding each subdirectory to CMAKE_PREFIX_PATH instead of just the common base location.
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For non-CMake dependencies, the general structure doesn’t need to change, only the way the
dependency’s build details are defined. For instance, a dependency that uses a build system like
autotools might be specified like so:

ExternalProject_Add(someDep3
    INSTALL_DIR ${installDir}
    CONFIGURE_COMMAND <SOURCE_DIR>/configure --prefix <INSTALL_DIR>
    ...
)

Other options might also need to be passed to such a configure script to tell it where to find its
dependencies. This will obviously vary based on the dependency’s configuration capabilities.

Packaging is a little less straightforward in superbuilds. In some respects, each dependency is really
in control of its own packaging, so the top level project is ultimately unlikely to be packaging
anything. Instead, one or more ExternalProject_Add() calls are likely to be given a custom packaging
step, if indeed packaging needs to be supported at all. Section 29.4, “Step Management”
demonstrated how to implement this with the ExternalProject_Add_Step() function like so (a similar
approach can be used for non-CMake subprojects):

ExternalProject_Add_Step(MyProj package
    COMMAND           ${CMAKE_COMMAND} --build <BINARY_DIR> --target package
    DEPENDEES         build
    ALWAYS            YES
    EXCLUDE_FROM_MAIN YES
)
ExternalProject_Add_StepTargets(MyProj package)

In general, the key thing to keep in mind is that superbuilds work well when all they do is bring
together other external projects. They usually rely on all the external projects having well-defined
install rules. Each project should also be able to find its own dependencies if made aware of the
location of the other external projects. If any of these things are not true, then the top level project
will inevitably end up having to hard code platform specific details about one or more projects, at
which point the benefits of a superbuild start decreasing.

34.2. Non-superbuild Structure
If a project has no dependencies, or if dependencies are being brought into the main build using
FetchContent or a mechanism like git submodules, then some forward planning will help avoid
difficulties later. A practice which really helps a project to remain easy to understand and work
with is to think of its top level CMakeLists.txt as more like a table of contents. The structure can be
divided up into the following sections:

Preamble

This includes the most basic setup, such as the calls to cmake_minimum_required() and project(). It
may also include some use of the FetchContent module to bring in things like toolchain files and
CMake helper repositories. This section should typically be quite short.
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Project wide setup

This high level section would do things like set some global properties and default variables,
perhaps define some build options in the CMake cache and may include a small amount of logic
to work out some things needed by the whole build. Setting default language standards, build
types and various search paths is common in this section.

Dependencies

Bring in external dependencies so that they are available to the rest of the project. If there are
more than a few simple find_package() calls, defining these in a separate dependencies.cmake file
and using include() to bring that into the top level CMakeLists.txt file can be cleaner and easier to
work with.

Main build targets

This section should ideally just be one or more add_subdirectory() calls.

Tests

While unit tests may be embedded within the same directory structure as the main sources,
integration tests may sit outside this in their own separate area. These would be added after the
main build targets.

Packaging

This should generally be the last thing the project defines, again ideally in its own subdirectory
or file to help keep the top level uncluttered.

The recurring pattern in the above is that apart from the preamble and project wide setup, most
things are best defined in subdirectories added via add_subdirectory(), or a separate file brought in
using include(). Not only does this make the top level CMakeLists.txt file easy to read and
understand, it allows each subdirectory or included file to focus on a particular area. This helps
make things easier to find. In the case of subdirectories, it also means directory scopes can be used
to minimize exposing variables from unrelated areas to things that don’t need to know about them.
An example of a simple top level CMakeLists.txt that follows the above guidelines might look like
this:

# Preamble
cmake_minimum_required(VERSION 3.21)
project(MyProj)

enable_testing()

# Project wide setup
set(CMAKE_CXX_STANDARD 11)
set(CMAKE_CXX_STANDARD_REQUIRED YES)
set(CMAKE_CXX_EXTENSIONS NO)

# Externally provided content
include(dependencies.cmake)

# Main targets built by this project
add_subdirectory(src)
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# Not typically needed if there is a parent project
if(PROJECT_IS_TOP_LEVEL)
    add_subdirectory(tests)
    add_subdirectory(packaging)
endif()

In practice, the project-wide setup will likely contain more than shown above, and there may be
other directories for things built by the project (e.g. for documentation, adding other installable
content such as scripts, images and so on). There may also be project-specific cache variables which
enable or disable some subdirectories to give the developer more granular control.

If following the above advice, the top directory of the project’s source tree will typically contain
mostly just administrative files. These might include a readme file of some kind, license details,
contribution instructions and so on. Continuous integration systems also frequently look for a
particular file name or subdirectory in the top level directory. Keeping source files out of this top
level directory ensures that it remains focused on the high level description of the project.

Past advice used to recommend delegating the dependency handling to its own subdirectory rather
than a dependencies.cmake file brought in using include(). Due to improvements in FetchContent and
its integration with find_package() in CMake 3.24, it is now more advantageous to bring
dependencies into the top level scope rather than a separate subdirectory scope. Defining the
dependencies in a separate file that the top level brings in via include() is now the recommended
structure. Such a file might mix FetchContent and find_package() to bring in the project’s
dependencies, each in the most appropriate way for that dependency.

dependencies.cmake

# Things that we expect will have to be built from source
include(FetchContent)
FetchContent_Declare(privateThing ...)
FetchContent_Declare(patchedDep ...)
FetchContent_MakeAvailable(privateThing patchedDep)

# Other things the developer is responsible for making
# available to us by whatever method they prefer
find_package(fmt REQUIRED)
find_package(zlib REQUIRED)

Of the other main project’s top level subdirectories, adding tests and packaging doesn’t require
anything special. They should just follow the recommended practices already covered in the
preceding chapters. The contents and structure of the tests subdirectory will be specific to the
project The packaging subdirectory typically only needs a CMakeLists.txt file and maybe a few other
files to be configured into the build directory for use by cpack. It may also contain resources used by
some package generators. The structure of the src directory is a larger topic covered in its own
section in Section 34.5, “Defining Targets” further below.

34.3. Common Top Level Subdirectories
The previous section already mentioned some directory names often found as subdirectories
immediately below the top of the source tree. Commonly used top level subdirectories include
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cmake, doc, src, tests and packaging. In the absence of any other conventions, projects are encouraged
to use these same directory names.

Collecting CMake helper scripts in a cmake subdirectory makes them easy to find, allowing
developers to browse through the contents of that directory and discover useful utilities they may
otherwise not have known about. With just a single list() call in the project-wide setup section of
the top level CMakeLists.txt file, they can be made available to the entire project.

list(APPEND CMAKE_MODULE_PATH ${CMAKE_CURRENT_SOURCE_DIR}/cmake)

The doc subdirectory can be a convenient place to collect documentation. This can be useful if using
formats like Markdown or Asciidoc and files contain relative links to each other.

There are a few subdirectory names that projects should avoid. By default, calling
add_subdirectory() with just a single argument will result in a corresponding directory of the same
name in the build directory. The project should avoid using a source directory name that may result
in a clash with one of the pre-defined directories created in the build area. Names to avoid include
the following:

• Testing

• CMakeFiles

• CMakeScripts

• Any of the default build types (i.e. any of the values of CMAKE_CONFIGURATION_TYPES).

• Any directory name starting with an underscore.

Since some file systems may be case-insensitive, all the above names should not be used in any
upper/lowercase combination. Other common directory names used as install destinations may also
appear in the build directory, depending on the strategy used for built binary locations (discussed
further below in Section 34.5.2, “Target Output Locations”). Therefore, it would also be wise to
avoid source directory names like bin, lib, share, man and so on.

A few projects choose to define a top level include directory and collect public headers there rather
than keeping them next to their associated implementation files. Be aware that some IDE tools may
be unable to find headers automatically if they are split out like this, so such an arrangement may
be less convenient for some developers. It also tends to make changes for a particular feature or
bug fix less localized. On the other hand, a dedicated include directory clearly communicates which
headers are intended to be public, and they can have the same directory structure as they would
when installed. Both approaches have their merits.

34.4. IDE Projects
When using project generators such as Xcode or Visual Studio, a project or solution file is created at
the top of the build directory. This can be opened in the IDE just like any other project file for that
application, but it is still under the control of CMake. Importantly, these project files are generated
as part of the build, so they should not be checked into a version control system. Also note that
changes made to the project from within the IDE will be lost the next time CMake runs.
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Because the Xcode or Visual Studio project files are generated by CMake, this means the way the
project’s targets and files are presented in the project hierarchy or file tree are also under the
CMake project’s control. CMake provides a number of properties that can influence how targets and
files are grouped and labeled in some IDE environments. The first level of grouping is for targets,
which can be enabled by setting the USE_FOLDERS global property to true. The location of each target
can then be specified using the FOLDER target property, which holds a case sensitive name under
which to place that target. To create a tree-like hierarchy, forward slashes can be used to separate
the nesting levels. If the FOLDER property is empty or not set, the target is left ungrouped at the top
level of the project. Both the Xcode and the Visual Studio generators honor the FOLDER target
property.

set_property(GLOBAL PROPERTY USE_FOLDERS YES)

add_executable(Foo ...)
add_executable(Bar ...)
add_executable(test_Foo ...)
add_executable(test_Bar ...)

set_target_properties(Foo Bar           PROPERTIES FOLDER "Main apps")
set_target_properties(test_Foo test_Bar PROPERTIES FOLDER "Main apps/Tests")

Up to CMake 3.11, the FOLDER target property is empty by default, whereas from CMake 3.12, it is
initialized from the value of the CMAKE_FOLDER variable.

The name displayed for the target itself within the IDE defaults to the same target name that CMake
uses. Visual Studio generators allow this display name to be overridden by setting the PROJECT_LABEL
target property, but the Xcode generator does not honor this setting.

set_target_properties(Foo PROPERTIES PROJECT_LABEL "Foo Tastic")

Some targets are created by CMake itself, such as for installing, packaging, running tests and so on.
For Xcode, most of these are not shown in the file/target tree, but for Visual Studio they are grouped
under a folder called CMakePredefinedTargets by default. This can be overridden with the
PREDEFINED_TARGETS_FOLDER global property, but there is usually little reason to do so.

The grouping of individual files under each target can also be controlled by the CMake project. This
is done using the source_group() command and is independent of the target folder grouping (i.e. it is
always supported, even if the USE_FOLDERS global property is false or unset). The command has two
forms, the first of which is used to define a single group:

source_group(group
    [FILES src...]
    [REGULAR_EXPRESSION regex]
)

The group can be a simple name under which to group the relevant files, or it can specify a
hierarchy similar to that for targets. With CMake 3.18 or later, either forward slashes or back
slashes can be used as the separator between nesting levels. For CMake 3.17 or earlier, only back
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slashes are supported. Be aware that to get through CMake’s parsing correctly, back slashes must be
escaped, so a group Foo with a nested Bar underneath it would be specified like so:

# Backslashes require escaping
source_group(Foo\\Bar ...)

# Forward slashes don't need escaping, but their support requires CMake 3.18 or later
source_group(Foo/Bar ...)

Individual files can be specified with the FILES argument, with relative paths assumed to be relative
to CMAKE_CURRENT_SOURCE_DIR. Because the command is not specific to a target, this option is the way to
ensure only specific files are affected by the grouping. If the project wants to define a grouping
structure that should be applied more generally, the REGULAR_EXPRESSION option is more appropriate.
It can be used to effectively set up grouping rules that will be applied to all targets in the project.
Where a particular file could match more than one grouping, a FILES entry takes precedence over a
REGULAR_EXPRESSION. Where a file matches multiple regular expressions, REGULAR_EXPRESSION groups
defined later take precedence over those defined earlier.

The following example sets up general rules for all targets such that files with commonly used
source and header file extensions will be grouped under Sources. Test sources and headers will
override that grouping and be placed under a Tests group instead, while the special case special.cxx
will be put in its own dedicated subgroup below Sources.

source_group(Sources REGULAR_EXPRESSION "\\.(c(xx|pp)?|hh?)$")
source_group(Tests REGULAR_EXPRESSION "test.*")   # Overrides the above
source_group(Sources\\Special FILES special.cxx)  # Overrides both of the above

CMake provides default groups Source Files for sources and Header Files for headers, but these are
easily overridden, as the above example demonstrates. Other default groups such as Resources and
Object Files are also defined.

The second form of the source_group() command allows the group hierarchy to follow the directory
structure for specific files. It is available with CMake 3.8 or later.

source_group(TREE    root
             [PREFIX prefix]
             [FILES  src...]
)

The TREE option directs the command to group the specified files according to their own directory
structure below root. The PREFIX option can be used to place that grouping structure under the
prefix parent group or group hierarchy. This can be used very effectively in conjunction with the
SOURCES target property to reproduce the directory structure of all sources that make up a target, but
only if all of those sources are below a common point (e.g. no generated sources from the build
directory). Many targets satisfy these conditions, so the following example pattern can often be
used to quickly and easily give some structure to the way a target is presented in an IDE.
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# Only suitable if SOURCES does not contain generated files in this example
get_target_property(sources someTarget SOURCES)
source_group(TREE ${CMAKE_CURRENT_SOURCE_DIR} PREFIX "Magic\\Sources" FILES ${sources})

IDEs generally only show files that are explicitly added as sources of a target. If a target is defined
with only its implementation files added as sources, its headers won’t usually appear in the IDE file
lists. Therefore, it is common practice to explicitly list headers as well, even though they won’t
actually be compiled. CMake will effectively ignore them except to add them to IDE source lists. This
extends to more than just header files, it can also be used to add other non-compiled files as well,
such as images, scripts and other resources. Some features such as those associated with the
MACOSX_PACKAGE_LOCATION source property require a file to be listed as a source file to have any effect.

In certain situations, it may be desirable for a source file to appear in IDE file lists but not be
compiled. Platform-specific files that should only be compiled and linked on other target platforms
are an example of this. To prevent CMake from trying to compile a particular file, that source file’s
HEADER_FILE_ONLY source property can be set to true (do not be confused by the property name, it can
be used for more than just headers).

add_executable(MyApp main.cpp net.cpp net_win.cpp)

if(NOT WIN32)
    # Don't compile this file for non-Windows platforms
    set_source_files_properties(net_win.cpp PROPERTIES
        HEADER_FILE_ONLY YES
    )
endif()

34.5. Defining Targets
The preceding chapters have presented a range of CMake features that allow a target to be defined
in detail. This includes the sources and other files that a target is built up from, how a target should
be built and how a target interacts with other targets. The focus of this section is to demonstrate
how to use these techniques in a way that makes the project easy to understand, produces a robust
build, provides flexibility and promotes maintainability.

For simple projects, the number of source files and targets is likely to be small, in which case it is
relatively manageable for all the relevant details to be given in a single CMakeLists.txt file. If
following the project directory structure recommended earlier in this chapter, this would mean the
src subdirectory would have no further subdirectories and its CMakeLists.txt file would define all
that was needed. Initially, it may look as simple as something like this:

src/CMakeLists.txt

add_executable(Planter main.cpp soy.cpp coffee.cpp)
target_compile_definitions(Planter PUBLIC COFFEE_FAMILY=Robusta)

add_test(NAME NoArgs   COMMAND Planter)
add_test(NAME WithArgs COMMAND Planter beanType=soy)
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This makes a number of assumptions about how the project will be used, but perhaps the biggest
ones are that the project won’t be installed or packaged and that it won’t be absorbed into a larger
project hierarchy by some other project. These limitations should be avoided (see Chapter 31,
Making Projects Consumable). The specific weaknesses of the simple case above include:

• The target name is not specific to the project. If this project was later incorporated into a larger
parent project, the target name may clash with targets defined elsewhere. Using a project-
specific prefix on the target name is an easy way to address this weakness.

• There are no install rules, so the target cannot easily be installed or be included in a package.

• No namespaced alias target is defined. Even if an install() command was later added and
packaging was implemented, other projects would have to use different target names for pre-
built binary versus source inclusion.

• The test names are not very specific and there’s no mechanism for a parent project to prevent
the tests from being added.

• Headers are not listed as sources, so they won’t show up in some IDEs.

Addressing the above points and following the recommended practices of the previous chapters,
the example expands out to more like the following (assuming a project name of BagOfBeans):

#=============================
# Define targets
#=============================
add_executable(BagOfBeans_Planter main.cpp soy.cpp soy.h coffee.cpp coffee.h)
add_executable(BagOfBeans::Planter ALIAS BagOfBeans_Planter)
set_target_properties(BagOfBeans_Planter PROPERTIES
    OUTPUT_NAME Planter
    EXPORT_NAME Planter
)
target_compile_definitions(BagOfBeans_Planter PUBLIC COFFEE_FAMILY=Robusta)

#=============================
# Testing
#=============================
if(BAGOFBEANS_ENABLE_TESTING OR PROJECT_IS_TOP_LEVEL)
    add_test(NAME Planter.NoArgs   COMMAND BagOfBeans_Planter)
    add_test(NAME Planter.WithArgs COMMAND BagOfBeans_Planter beanType=soy)
endif()

#=============================
# Packaging
#=============================
include(GNUInstallDirs)
install(TARGETS     BagOfBeans_Planter
        EXPORT      BagOfBeans_Apps
        DESTINATION ${CMAKE_INSTALL_BINDIR}
        COMPONENT   BagOfBeans_Apps
)
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That may be a surprising amount of detail for a fairly simple executable, but it highlights that for
real world projects, there’s more to consider than just building a binary in isolation. The added
complexity is mostly for unique names to reduce the likelihood of clashes. The addition of
packaging logic also tends to add a fair amount of detail that an inexperienced developer probably
hasn’t had much exposure to. Adding clear sections to the file as shown above can help make it
easier to understand for newer developers and also keep it organized as the project evolves.

34.5.1. Building Up A Target Across Directories

When the number of source files increases, having them all in the one directory can make them
more difficult to work with. This is generally addressed by placing them under subdirectories
grouped by functionality, which brings a few other benefits too. Not only does it help keep things
from becoming too cluttered, it also makes it easy to turn certain features on and off based on
CMake cache options or other configure time logic. For example:

add_executable(BagOfBeans_Planter main.cpp)

option(BAGOFBEANS_SOY    "Enable planting soy beans"    ON)
option(BAGOFBEANS_COFFEE "Enable planting coffee beans" ON)

if(BAGOFBEANS_SOY)
    add_subdirectory(soy)
endif()

if(BAGOFBEANS_COFFEE)
    add_subdirectory(coffee)
endif()

In the preceding chapters, executables and libraries were usually defined in the one directory. That
meant the full list of files could be supplied directly to the add_executable() or add_library() call. In
the above arrangement, the subdirectories add sources to the target after it has been defined using
the target_sources() command (see Section 15.2.6, “Source Files” for a detailed discussion of
important considerations when using this command in subdirectories).

src/coffee/CMakeLists.txt

# Assumes CMake 3.13 or later and policy CMP0076 set to NEW
target_sources(BagOfBeans_Planter
    PRIVATE
        coffee.cpp
        coffee.h
)

target_compile_definitions(BagOfBeans_Planter
    PUBLIC COFFEE_FAMILY=Robusta
)

target_include_directories(BagOfBeans_Planter
    PUBLIC $<BUILD_INTERFACE:${CMAKE_CURRENT_LIST_DIR}>
)
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The above also demonstrates how other target_…() commands can be moved into the
subdirectories too, not just target_sources(). This helps keep things local to the code they relate to.
For example, compile definitions, compiler flags and header search paths that are specific to a
particular feature can be added only if that feature is enabled. If the directory structure needed to
be reorganized and this directory moved elsewhere, nothing in this file would need to change.
Other sources in the target that had #include "coffee.h" would continue to work unmodified.

The one exception to this localization of details is target_link_libraries(). As mentioned in Section
15.2.1, “Linking Libraries”, CMake 3.12 and earlier prohibited target_link_libraries() from
operating on a target defined in a different directory. If a subdirectory needed to make the target
link to something, it couldn’t do so from within that subdirectory. The call to target_link_libraries()
would have to be made in the same directory as where add_executable() or add_library() was called.
If, for example, the BagOfBeans_Planter target needed to link against a library called Weather, it would
have to add the call in src/CMakeLists.txt rather than src/coffee/CMakeLists.txt. This would result in
something like the following:

option(BAGOFBEANS_COFFEE "Enable planting coffee beans" ON)
if(BAGOFBEANS_COFFEE)
    add_subdirectory(coffee)
    target_link_libraries(BagOfBeans_Planter PRIVATE Weather)
endif()

CMake 3.13 lifted this restriction, allowing subdirectories to be truly self-contained. For CMake
versions from 3.1 to 3.12, subdirectories can be fully self-contained apart from adding libraries that
a target should link to. Before CMake 3.1, a completely different approach was needed which relied
on building up lists of sources in a variable and only creating the target once all subdirectories had
been added. Such an arrangement might look like this:

# Pre-CMake 3.1 method, avoid using this approach
unset(planterSources)
unset(planterDefines)
unset(planterOptions)
unset(planterLinkLibs)

# Subdirs add to the above variables using PARENT_SCOPE
option(BAGOFBEANS_SOY    "Enable planting soy beans"    ON)
option(BAGOFBEANS_COFFEE "Enable planting coffee beans" ON)
if(BAGOFBEANS_SOY)
    add_subdirectory(soy)
endif()
if(BAGOFBEANS_COFFEE)
    add_subdirectory(coffee)
endif()

# Lastly define the target and its other details.
# All variables are assumed to name PRIVATE items.
add_executable(BagOfBeans_Planter ${planterSources})
target_compile_definitions(BagOfBeans_Planter PRIVATE ${planterDefines})
target_compile_options(BagOfBeans_Planter PRIVATE ${planterOptions})
target_link_libraries(BagOfBeans_Planter PRIVATE ${planterLinkLibs})
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The above would get even more complicated if some items needed to be anything other than
PRIVATE. The use of variables like this is fragile, as it relies on nothing in subdirectories using the
same variables for a different target. Typos in variable names would not be caught as an error by
CMake with this approach. Furthermore, it also enforces a stronger coupling between parent and
child directories, since each child subdirectory would have to pass all relevant variables back up to
its parent using set(… PARENT_SCOPE). For deeply nested directories, this quickly gets tedious and is
error-prone.

34.5.2. Target Output Locations

When a library or executable is built, its default location will be either CMAKE_CURRENT_BINARY_DIR or a
configuration-specific subdirectory below it, depending on the generator used. For projects with
many subdirectories or deeply nested hierarchies, this can be inconvenient for developers. This
default can be overridden using the following set of target properties:

RUNTIME_OUTPUT_DIRECTORY

Used for executables on all platforms and DLLs on Windows.

LIBRARY_OUTPUT_DIRECTORY

Used for shared libraries on non-Windows platforms.

ARCHIVE_OUTPUT_DIRECTORY

Used for static libraries on all platforms and import libraries associated with DLLs on Windows.

For all three of the above, multi configuration generators like Visual Studio, Xcode and Ninja Multi-
Config will automatically append a configuration-specific subdirectory to each value unless it
contains a generator expression. Associated per configuration properties with _<CONFIG> appended
are also supported for historical reasons, but those should be avoided in favor of using generator
expressions where configuration specific behavior is needed.

A common use of these target properties is to collect libraries and executables together in a similar
directory structure as they would have when installed. This is helpful if applications expect various
resources to be located at a particular location relative to the executable’s binary. On Windows, it
can also simplify debugging, since executables and DLLs can be collected into the same directory,
allowing the executables to find their DLL dependencies automatically (this isn’t needed on other
platforms, since RPATH support embeds the necessary locations in the binaries themselves).

Following the usual pattern, these target properties are each initialized by a CMake variable of the
same name with CMAKE_ prepended. When all targets should use the same consistent output
locations, these variables can be set at the top of the project so that the properties don’t have to be
set for every target individually. To allow the project to be incorporated into a larger project
hierarchy, these variables should only be set if they are not already set so that parent projects can
override the output locations. They should also use a location relative to CMAKE_CURRENT_BINARY_DIR
rather than CMAKE_BINARY_DIR. The following example shows how to safely collect binaries under a
stage subdirectory of the current binary directory unless a parent project overrides this.
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set(stageDir ${CMAKE_CURRENT_BINARY_DIR}/stage)

include(GNUInstallDirs)
if(NOT CMAKE_RUNTIME_OUTPUT_DIRECTORY)
    set(CMAKE_RUNTIME_OUTPUT_DIRECTORY ${stageDir}/${CMAKE_INSTALL_BINDIR})
endif()
if(NOT CMAKE_LIBRARY_OUTPUT_DIRECTORY)
    set(CMAKE_LIBRARY_OUTPUT_DIRECTORY ${stageDir}/${CMAKE_INSTALL_LIBDIR})
endif()
if(NOT CMAKE_ARCHIVE_OUTPUT_DIRECTORY)
    set(CMAKE_ARCHIVE_OUTPUT_DIRECTORY ${stageDir}/${CMAKE_INSTALL_LIBDIR})
endif()

Avoid creating CMAKE_…_OUTPUT_DIRECTORY as cache variables, they should not be under the control of
the developer. They should be controlled by the project because parts of the project may make
assumptions about the relative layout of the binaries. More importantly, leaving them as ordinary
variables also means they can be unset within subdirectories where test executables are defined,
allowing them to avoid being collected with the other main binaries and cluttering up that area.

Older projects sometimes read the LOCATION target property to try to obtain the output location of a
binary and use it in places like custom target commands. As already highlighted in Section 14.4,
“Recommended Practices”, this is problematic for multi-configuration generators, since the location
depends on the configuration and the LOCATION target property doesn’t account for that. Projects
should use generator expressions like $<TARGET_FILE:…> instead. CMake 3.0 and later will warn if a
project tries to set this target property.

34.6. Windows-specific Issues
Windows’ lack of support for RPATH causes a number of problems for developers. When running an
executable during development, any DLLs the executable requires must be either in the same
directory or be located in one of the directories listed in the PATH environment variable. For the
project’s main binaries, the various …_OUTPUT_PATH properties can be used to place executables and
libraries in the same location. This technique is less convenient for test executables, since there
could be many of them and having them all in the one output directory can be problematic. For
tests executed through ctest, the ENVIRONMENT_MODIFICATION or ENVIRONMENT test properties can be used
to add the required DLL directories to the PATH (see Section 26.2, “Test Environment” for why
ENVIRONMENT_MODIFICATION should be preferred).

add_executable(test_Foo ...)
target_link_libraries(test_Foo PRIVATE Algo)

add_test(NAME FooWithAlgo COMMAND test_Foo)
if(WIN32)
    set(algoDir "$<SHELL_PATH:$<TARGET_FILE_DIR:Algo>>")
    set_property(TEST FooWithAlgo APPEND PROPERTY
        ENVIRONMENT_MODIFICATION
            PATH=path_list_prepend:${algoDir}
    )
endif()
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This won’t help with trying to run the test executable directly outside of ctest. For the Visual Studio
IDE, CMake does offer additional functionality. CMake 3.12 introduced the VS_DEBUGGER_COMMAND and
VS_DEBUGGER_WORKING_DIRECTORY target properties. CMake 3.13 then expanded the set of target
properties further by adding VS_DEBUGGER_COMMAND_ARGUMENTS and VS_DEBUGGER_ENVIRONMENT, along with
generator expression support for all four properties. VS_DEBUGGER_ENVIRONMENT can be used to set the
PATH environment variable when running the target within the Visual Studio IDE. The above
example can be extended to use this property as follows:

set_target_properties(test_Foo PROPERTIES
    VS_DEBUGGER_ENVIRONMENT "PATH=${algoDir};$ENV{PATH}"
)

The VS_DEBUGGER_COMMAND and VS_DEBUGGER_COMMAND_ARGUMENTS properties can be used to customize the
command to be executed for the target within the IDE if needed. The VS_DEBUGGER_WORKING_DIRECTORY
property can be used to override the directory from which the command is executed. All of these
VS_DEBUGGER_… properties are supported for Visual Studio 2010 or later.

If the project’s minimum CMake version constraints prevent VS_DEBUGGER_… properties from being
used, more elaborate measures are needed. CMake 3.8 added support for the VS_USER_PROPS target
property which can be used to override the location of the user properties file on a per-target basis.
A custom properties file can be created with its LocalDebuggerEnvironment entry set to the additional
PATH entries to be merged with the default PATH. If the DLLs any tests need are collected together in a
small number of locations, one user properties file can be generated and re-used for each test (but
it is still possible to generate and use a custom user properties file for each target if required). The
configure_file() command can be used to fill in the output directory automatically. User property
files can do more than just set up the debugger environment, but the following basic example
provides a starting point for those wishing to explore this technique further:

file(TO_NATIVE_PATH ${CMAKE_RUNTIME_OUTPUT_DIRECTORY} baseDir)
configure_file(user.props.in user.props @ONLY)

user.props.in

<?xml version="1.0" encoding="utf-8"?>
<Project DefaultTargets="Build" ToolsVersion="15.0"
  xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
  <PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">
    <LocalDebuggerEnvironment>PATH=@baseDir@\Debug</LocalDebuggerEnvironment>
  </PropertyGroup>
  <PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Release|Win32'">
    <LocalDebuggerEnvironment>PATH=@baseDir@\Release</LocalDebuggerEnvironment>
  </PropertyGroup>
</Project>

Another aspect unique to Windows is that for executables and DLLs, it is typical for a PDB (program
database) file to be generated so that debugging information is available during development.
There are two kinds of PDB files and CMake provides features for both. For shared libraries and
executables, the PDB_NAME and configuration specific PDB_NAME_<CONFIG> target properties can be used
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to override the base name of the PDB file. The default name is normally the most appropriate
though, since it matches the DLL or executable name except it has a .pdb suffix instead of .dll or
.exe. The PDB file is placed in the same directory as the DLL or executable by default, but this can
be overridden with the PDB_OUTPUT_DIRECTORY and configuration specific PDB_OUTPUT_DIRECTORY_<CONFIG>
target properties. Note that unlike the other …_OUTPUT_DIRECTORY properties, PDB_OUTPUT_DIRECTORY
does not support generator expressions with CMake 3.11 or earlier.

A second kind of PDB file is also created which holds information for the individual object files
being built for a target. This PDB file is less useful during development, except perhaps for static
libraries. For C++, this latter PDB file has a default name VCxx.pdb where xx represents the version of
Visual C++ being used (e.g. VC14.pdb). Because the default name is not target-specific, it is easy to
make mistakes and mix up the PDBs for different targets in some situations. CMake allows the
name of each target’s object PDB file to be controlled with the COMPILE_PDB target property or the
associated configuration-specific COMPILE_PDB_<CONFIG> target properties. The location of these object
PDB files can also be overridden with the COMPILE_PDB_OUTPUT_DIRECTORY and
COMPILE_PDB_OUTPUT_DIRECTORY_<CONFIG> target properties. Note that these object PDB files are of little
use for DLL and executable targets, since the main PDB already contains all the debugging
information required.

34.7. Cleaning Files
Project generators usually provide some kind of clean target that can be used to remove all the
generated files, build outputs, etc. This is sometimes used by IDE tools to provide a basic rebuild
feature as a clean followed by a build, or by developers to simply remove build outputs to force
rebuilding everything on the next build attempt. Sometimes a project defines a custom rule in such
a way that it creates files that CMake doesn’t know about, so they are not included in the clean step
and have the potential to still affect the next build.

There are a variety of mechanisms by which files can become part of the set to be removed by a
clean operation. The Ninja generators will automatically add any generated files to the clean set.
Any files listed as BYPRODUCTS of a custom command or custom target are also recognized as
generated and are added to the clean set as well. With CMake 3.13 and later, Makefile generators
also add generated and byproduct files to the clean set.

For other files to be cleaned, the preferred approach depends on the minimum CMake version. For
CMake 3.15 or later, the ADDITIONAL_CLEAN_FILES directory and target properties can be used to
specify a list of files to be cleaned. Miscellaneous files created as part of building a particular target
should be added to the target property. If files are not associated with a single target, they should be
added to the directory property instead. Only the Ninja and Makefile generators support the
ADDITIONAL_CLEAN_FILES properties. If needing to support CMake 3.14 or earlier, the
ADDITIONAL_MAKE_CLEAN_FILES directory property can be used instead, but it is officially deprecated as
of CMake 3.15. It works the same way as the ADDITIONAL_CLEAN_FILES directory property, but it is only
supported by Makefile generators.

34.8. Re-running CMake On File Changes
Certain more advanced techniques may require CMake to be re-run if a particular file changes.
Normally, CMake does a good job of automatically tracking dependencies for things it controls, such
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as copying files with the configure_file() command, but custom commands and other tasks may
rely on files for which CMake isn’t aware of the dependency. Such files can be added to the
CMAKE_CONFIGURE_DEPENDS directory property and if any of the listed files change, CMake will be re-run
before the next build. If a file is specified with a relative path, it will be taken to be relative to the
source directory associated with the directory property.

Most projects won’t typically need to make use of the CMAKE_CONFIGURE_DEPENDS directory property, but
it can and should be used where CMake doesn’t have the opportunity to know about files which act
as input to the configure or generation steps. Most file dependencies are build time dependencies,
not configure or generation time, so before using this property, check whether the project really
does need to re-run CMake rather than simply recompiling a source file or target as part of the
regular build.

34.9. Injecting Files Into Projects
There will inevitably come a time when a project from some external source needs to be added to a
build, but it has some sort of problem that prevents it from working correctly. Common examples
include not setting variables or properties that should have been set, or old policy settings that
block otherwise desirable behavior. These things are especially common when working with
projects that support very old CMake versions and have not been updated to handle newer CMake
features and techniques. For some of these issues, it is possible to inject CMake code without having
to actually modify the external project and work around the problem.

Section 32.1, “Top Level Setup Injection Point” already introduced the
CMAKE_PROJECT_TOP_LEVEL_INCLUDES variable. It can be used to inject code at the first project()
command in the top level CMakeLists.txt file. This is ideal for inserting logic that should be applied
at the whole-of-build level, but it won’t typically help with targeting problems deeper in the project
hierarchy. For such cases, the project() command also supports additional variables which can be
used to inject code at other places in the build.

Each project() call will look for a variable with a name of the form CMAKE_PROJECT_<PROJNAME>_INCLUDE,
where <PROJNAME> is the project name as given to the project() command. If that variable is defined,
it is assumed to hold the name of a file that CMake should include as the last thing the project()
command does before returning. CMake 3.17 also added support for
CMAKE_PROJECT_<PROJNAME>_INCLUDE_BEFORE, which can name a file to include before a project()
command. For these variables, because the named file only gets read for that specific project, this
can be a great way to target a specific problem local to one project.

When using CMake 3.15 or later, two other variables are available to inject files as part of every
project() command, regardless of the project name given. These variables,
CMAKE_PROJECT_INCLUDE_BEFORE and CMAKE_PROJECT_INCLUDE, allow code to be inserted before or after the
normal processing of every project() command. They are mostly useful for situations where the
project name may not be readily known, such as when a build is driven by generic scripts that are
re-used across multiple project builds. The effective behavior of these variables is loosely
equivalent to the following:
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# CMake 3.15 or later only
if(DEFINED CMAKE_PROJECT_INCLUDE_BEFORE)
    include(${CMAKE_PROJECT_INCLUDE_BEFORE})
endif()

# CMake 3.17 or later only
if(DEFINED CMAKE_PROJECT_SomeProj_INCLUDE_BEFORE)
    include(${CMAKE_PROJECT_SomeProj_INCLUDE_BEFORE})
endif()

project(SomeProj)

# CMake 3.15 or later only
if(DEFINED CMAKE_PROJECT_INCLUDE)
    include(${CMAKE_PROJECT_INCLUDE})
endif()

# All CMake versions
if(DEFINED CMAKE_PROJECT_SomeProj_INCLUDE)
    include(${CMAKE_PROJECT_SomeProj_INCLUDE})
endif()

Injecting files into project() commands using these variables should not be part of the normal
development of a project. They have specific uses for overcoming deficiencies in older projects and
for very controlled situations such as in continuous integration builds. Outside those cases,
developers should generally prefer to modify the project’s CMakeLists.txt files to address the
underlying problems directly.

34.10. Recommended Practices
The way projects are structured and used can vary considerably. Some things that used to be
commonplace are now considered poor practice, as new features and lessons learned allow older
methods to be replaced by newer ones that are more robust, more flexible and allow things that
were not possible previously. Tools are upgraded, languages evolve, dependencies change - all of
these things mean that projects will also need to adapt over time. For CMake projects in particular,
those that continue to target older CMake versions before 3.0 will increasingly face a bumpy path.
There is a strong move toward a target-centric model and much of CMake’s development is geared
in that direction. Therefore, prefer to set a minimum CMake version that allows the project to make
use of those features. Anything less than CMake 3.1 is likely to be too restrictive. CMake 3.7 provides
updated language support and accompanying new features. If working with newer tools like CUDA
or a very recent language standard, the latest CMake release is strongly advised. New releases of
Visual Studio or Xcode also tend to require recent CMake versions in order to pick up fixes and
additions for changes in those toolchains.

A fundamental choice that every project needs to make is whether to structure itself as a
superbuild or as a regular build. If the project can set a minimum CMake version of 3.11, the non-
superbuild arrangement has more powerful features available to it for dependency management
which may make the need for a superbuild unnecessary. Consider whether the FetchContent module
and the promotion of local imported targets to global scope offer more flexibility and a better
experience for developers. Where all dependencies of a project are relatively mature and have
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well-defined install rules, a superbuild may still be a suitable alternative and comes with the
advantage that it can be used with much older CMake versions. Both methods have their place, but
the earlier in a project’s life that the decision can be made on whether to use a superbuild, the more
likely the project can avoid large scale disruptive restructuring later on.

Irrespective of whether a project is a superbuild or not, aim to keep the top level of the project
focused on the higher level details. Think of the top level CMakeLists.txt file as being more like a
table of contents for the project. The top level directory should mostly just contain administrative
files and a set of subdirectories each focused on a particular area. Avoid subdirectory names that
may cause clashes with those created in the build directory automatically. Prefer instead to use
fairly standard names unless there is an existing convention that must be followed. For regular
projects, aim to make the top level CMakeLists.txt file follow the common section pattern of:

• Preamble

• Project wide setup

• Dependencies

• Main build targets

• Tests

• Packaging

Clearly delineating each section with comment blocks will help encourage developers working on
the project to maintain that structure. Establishing this pattern across projects will help reinforce
the focus on keeping the top level CMakeLists.txt file streamlined and acting as a high level
overview.

When defining build targets that have sources spread across directories, prefer to create the target
first, then have each subdirectory add sources to it using target_sources(). Where appropriate,
group the subdirectories by functionality or feature so that they can be easily moved around or
enabled/disabled as a unit. In many cases, the other target-focused commands (i.e.
target_compile_definitions(), target_compile_options() and target_include_directories()) can then
also be used locally within the subdirectory that they relate to. This helps keep information close to
the location where it is relevant rather than spreading it across directories. Avoid using variables to
build up lists of sources to be passed back up through directory hierarchies and eventually used to
create a target, define compiler flags, etc. The use of variables instead of operating on targets
directly is much more fragile, more verbose and less likely to result in CMake catching typos or
other errors.

Following on from the above and reiterating one of the recommendations from Chapter 4, Building
Simple Targets, avoid the all too common practice of unnecessarily using a variable to hold the
name of a target or project. The following pattern in particular should be avoided:

set(projectName ...)
project(${projectName})
add_executable(${projectName} ...)

The above example ties together things that should not be so strongly related. The project name
should rarely change. Specify the name of the project directly in the project() command and use
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the standard variables CMake provides if it needs to be referred to elsewhere in the project. For
targets, the target name is used so widely that trying to carry it around in a variable is both
cumbersome and error-prone. Give the target a name and use that name consistently throughout
the project. Even if there is only one target in the whole project, it doesn’t necessarily have to be the
same as the project name and the two should be considered distinct.

When adding tests, consider keeping the test code close to the code being tested. This helps keep
logically related code together and encourages developers to keep tests up to date. Tests that are
distributed to other parts of the source directory hierarchy can easily be forgotten. For tests that
draw on multiple areas such as integration tests, the locality principle is not as strong, so collecting
these higher level tests in a common place may be appropriate. The top level tests subdirectory is
intended for situations such as this.

For larger projects, consider whether it is worth organizing the way the project is presented in IDE
tools. If there are many targets, it can be difficult to work with the project unless some structure is
added using the FOLDER target property. For those targets with many sources, they too can be
organized using the source_group() command, which can be used to define group hierarchies
around whatever concepts or features make sense.

Special consideration should be given to projects that are anticipated to be built on Windows,
especially where developers may use the Visual Studio IDE. The lack of RPATH support means
executables rely on being able to find their DLL dependencies in either the same directory or via
the PATH environment variable. This impacts both test programs run through ctest and the
developer’s ability to run executables from within the Visual Studio IDE. Forcing all executables
and DLLs into the same output directory is one solution to this problem, made possible by the
various …OUTPUT_DIRECTORY target properties and their associated CMAKE_…OUTPUT_DIRECTORY variables.
These are frequently used to create a directory layout that mirrors the one used when the project is
installed. Avoid copying DLLs in post build rules or custom tasks to put them in multiple locations
so that other executables can find them. This is fragile and can easily result in stale DLLs
mistakenly being used.

Test programs would ideally not be collected to the same place as the main programs and DLLs.
Some test code may need to find other files relative to their own location, so keeping them separate
may even be a requirement. Use the ENVIRONMENT_MODIFICATION test property to specify an appropriate
PATH to ensure tests can find their DLLs when run through ctest. Also consider populating the
VS_DEBUGGER_ENVIRONMENT property on all executable targets too so that they can be run directly from
within the Visual Studio IDE.

When using the Visual Studio generator, prefer to leave the PDB settings at their defaults. This
typically results in the PDB file appearing in the location developers expect and with a name that
matches the executable or library they correspond to. Trying to change the output directory of PDB
files has implementation complexities when generator expressions are used, and it can be difficult
to get the PDB files into the desired directory in some cases.
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Chapter 35. Build Performance
For larger projects, build times can be non-trivial, extending out to hours in extreme cases. The
impact of a long build time can go beyond mere annoyance, it can drive developer behavior toward
undesirable practices and discourage experimentation of new ideas. Long builds can also cause
difficulties with continuous integration systems, causing job delays and increasing requirements on
hardware resources to cope with the high build volumes.

A variety of factors can contribute to long build times. Poor project structure can lead to the same
source files being compiled multiple times with the same settings for different targets. Appropriate
use of libraries can usually eliminate such problems, although this may require some refactoring to
decouple parts of the code.

Specifying linking relationships between targets that don’t actually need to be linked is another
source of inefficiency. It reduces the ability of the build tool to execute build tasks in parallel and it
expands the set of targets that have to be relinked whenever the dependee is rebuilt.

Exposing private details in public headers of C or C++ projects is another example of how code
structure can cause more things to be rebuilt than necessary when a change is made. Reducing
coupling between code is one of the most effective ways to reduce incremental build times when
making changes during development. The material covered in Section 21.2, “Source Code Access To
Version Details” is a prime example of using code structure to minimize rebuild times.

When seeking to improve build performance, addressing structural problems such as those
mentioned above should be the first priority. Specifying correct relationships between entities is a
pre-requisite for many other techniques to be robust or effective. With those areas addressed,
attention can turn to the techniques discussed in the remainder of this chapter.

35.1. Unity Builds
A unity build (also sometimes referred to as a jumbo build) is where source files that would
normally be compiled individually are effectively concatenated to produce a smaller number of
larger files. If each of the individual source files include similar sets of headers, then the compiler
would normally be processing those headers multiple times, one for each individual source file.
When the individual sources are concatenated into a single combined source file, the compiler can
avoid processing each header more than once. If the header processing time is non-trivial, this can
lead to meaningful savings in build time.

CMake 3.16 and later supports automatically converting a target’s sources to a unity build. By
setting the UNITY_BUILD target property to true, CMake will take care of combining sources into one
or more unity sources and building those instead of the originals. This process is transparent to the
project, requiring nothing more than enabling the feature via the target property. Not all languages
can have their sources combined in this way, but CMake supports doing so for at least C and C++
sources (other languages’ sources will be left as they are and compiled individually). Sources will
only be combined with other sources of the same language.

The UNITY_BUILD target property is initialized by the CMAKE_UNITY_BUILD variable when the target is
created. Setting that variable to true can be an effective way to enable unity builds across the entire
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project, although it should usually be a cache variable to allow developers to easily switch it off if
they need to. Making it a non-cache variable could cause problems in hierarchical builds, since the
developer would not be able to easily disable unity builds in dependency sub-projects.

In practice, it may take more than simply turning on the unity build feature to get a worthwhile or
even buildable result. There are some restrictions to be aware of when combining source files in
this way:

• Source files often define their own local file scope entities, such as types, variables, pre-
processor macros and so on. When each source file is built individually, these file-scope entities
are kept separate, but when combined in a unity build, they can clash between files.

• Source files may already be quite large. This can be especially common for sources produced by
code generation tools. If combining sources results in an excessively large unity source file, the
compiler may run out of memory or exceed other internal limits during processing.

Strategies like using a naming convention to avoid duplicating symbol names of file scope entities
can help with the first of the above points. Sometimes, that may not be practical or there may be
other constraints preventing such changes. For the second point, large source files should be
excluded from unity builds, since there is little to gain when they are already of a substantial size.

CMake provides a few controls which may help in situations like the above. If a small number of
sources are problematic, they can be excluded from being combined with other sources on a case-
by-case basis. This is done by setting the SKIP_UNITY_BUILD_INCLUSION property on the problematic
source files to true. Those sources will then never be combined with others in a unity build. Note
that CMake already excludes any source file which isn’t normally compiled (e.g. header files) or any
source file which has any of the following source properties defined:

• COMPILE_OPTIONS

• COMPILE_DEFINITIONS

• COMPILE_FLAGS

• INCLUDE_DIRECTORIES

For resolving name clashes, especially for symbols in C++ anonymous namespaces, the
UNITY_BUILD_UNIQUE_ID target property available with CMake 3.20 or later may be useful. It’s official
documentation contains a description of the types of problems it is intended to solve, details of its
usage and a simple example. In general though, prefer to rework the source code to avoid the name
clashes if possible, as it will be simpler and much easier to understand.

With CMake 3.18 or later, the UNITY_BUILD_MODE target property specifies the method for choosing
which sources to combine together. If defined, this property may hold the values BATCH or GROUP. If
the property is not defined or if using CMake 3.17 or earlier, the behavior is the same as BATCH.

35.1.1. BATCH Mode

In BATCH mode, CMake combines sources based on the order in which they were added to the target.
The UNITY_BUILD_BATCH_SIZE target property controls the maximum number of sources which may be
combined. The first UNITY_BUILD_BATCH_SIZE files for a particular language will be combined into one
unity source, the next UNITY_BUILD_BATCH_SIZE sources will be combined into another unity source,
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and so on until all original sources have been included or skipped for reasons discussed above. This
property is initialized by the CMAKE_UNITY_BUILD_BATCH_SIZE variable if that variable is defined,
otherwise it is given an initial value of 8.

This method is suitable when none of the sources are particularly big. If some sources are much
larger than others, the large sources can be listed away from each other as a crude way of
minimizing the likelihood that they will be combined together. This is not particularly robust, but
may be good enough for some projects.

option(CMAKE_UNITY_BUILD "Enable unity builds")
add_executable(MyApp
    someBigSource.cpp
    little1.cpp
    little1.h             ①
    little2.cpp
    little2.h             ①
    # ---------
    anotherBigSource.cpp
    customFlags.cpp       ②
    mustBeSeparate.cpp    ③
    small1.cpp
    # ---------
    differentLang1.c
    differentLang2.c
)
set_target_properties(MyApp PROPERTIES
    UNITY_BUILD_BATCH_SIZE 3
)
set_source_files_properties(customFlags.cpp PROPERTIES
    COMPILE_DEFINITIONS
        COMPVER=${CMAKE_CXX_COMPILER_VERSION}
)
set_source_files_properties(mustBeSeparate.cpp PROPERTIES
    SKIP_UNITY_BUILD_INCLUSION YES
)

① Headers are not compiled, so they are not added to unity sources.

② Source files with certain source properties set are automatically excluded from being added to
unity sources.

③ Source file explicitly excluded from unity sources due to having its SKIP_UNITY_BUILD_INCLUSION
source property set to true.

The two big source files someBigSource.cpp and anotherBigSource.cpp are kept separate by limiting the
unity batch size to 3 and ensuring that there are enough source files listed between these two that
they are at least 3 sources apart in the source list. CMake will combine someBigSource.cpp, little1.cpp
and little2.cpp into the first unity source, then anotherBigSource.cpp and small1.cpp into a second
unity source. Note also that differentLang1.c and differentLang2.c are not combined with the other
C++ sources, they are placed in their own unity source because they are a different language. The
actual names of the unity sources are an internal implementation detail, projects should not
attempt to refer to them directly.
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35.1.2. GROUP Mode

When more precise control is needed over how sources should be combined, GROUP mode is more
appropriate. When UNITY_BUILD_MODE is set to GROUP, each source file in the target needs to specify the
name of the unity group it belongs to with the UNITY_GROUP source file property. Any source that does
not define this property will not be added to a unity source and will be compiled directly (i.e. as
though unity builds were not enabled).

No batch size limits are applied to unity groups, the UNITY_BUILD_BATCH_SIZE property is ignored. The
project is in full control over which sources are combined. There could be different strategies for
how the project groups sources. It could be based on file size, on the set of headers that are
included, on keeping related code together to maximize optimization opportunities, etc. The
following shows an alternative way of grouping the sources of the previous example:

option(CMAKE_UNITY_BUILD "Enable unity builds")
add_executable(MyApp
    someBigSource.cpp
    anotherBigSource.cpp
    little1.cpp
    little1.h
    little2.cpp
    little2.h
    small1.cpp
    customFlags.cpp
    mustBeSeparate.cpp
    differentLang1.c
    differentLang2.c
)
set_source_files_properties(customFlags.cpp PROPERTIES
    COMPILE_DEFINITIONS
        COMPVER=${CMAKE_CXX_COMPILER_VERSION}
)
set_target_properties(MyApp PROPERTIES
    UNITY_BUILD_MODE GROUP
)
set_source_files_properties(
    little1.cpp little2.cpp small1.cpp
    PROPERTIES UNITY_GROUP small
)
set_source_files_properties(
    differentLang1.c differentLang2.c
    PROPERTIES UNITY_GROUP different
)

In the above, only some of the source files have a group defined. Those that don’t will be compiled
individually, which is convenient in this case since someBigSource.cpp, anotherBigSource.cpp and
mustBeSeparate.cpp should all be excluded from unity builds. The customFlags.cpp source is also
excluded (it has to be since it has its COMPILE_DEFINITIONS source property set).

As the above example shows, the project can sometimes provide more appropriate grouping than
the BATCH method. The extra verbosity and maintenance burden it introduces should be weighed
against any overall gain in build performance.

587



35.2. Precompiled Headers
Another technique that can sometimes improve build times is to employ precompiled headers to
cache some of the work done by the compiler. For cases where header file processing is a non-
trivial contributor to build times, this technique can lead to a worthwhile saving.

Most major compilers support precompiled headers, but there are significant differences between
the various implementations. CMake 3.16 introduced direct support for precompiled headers which
takes away the burden of having to manage these differences in each project. The primary way to
instruct CMake to set up precompiled headers for a target is with the target_precompile_headers()
command. This follows the same form as all the other target_…() commands:

target_precompile_headers(targetName
    <PRIVATE|PUBLIC|INTERFACE> headers...
   [<PRIVATE|PUBLIC|INTERFACE> headers...] ...
)

The PRIVATE, PUBLIC and INTERFACE keywords have their usual meaning, specifying whether the
headers that follow the keyword should be applied to the specified target and/or to things linking
against the target. PRIVATE headers are appended to a target property called PRECOMPILE_HEADERS,
whereas INTERFACE headers are appended to the INTERFACE_PRECOMPILE_HEADERS property. PUBLIC
headers are appended to both properties. CMake uses these properties to build up a set of headers
that will be force-included when compiling sources for the specified target or things that link
against it, as appropriate. The method used to accomplish this varies between compilers, but from a
project perspective, an important point is that no source changes are required. CMake will generate
files and use command line arguments to make compilers include the specified headers rather than
requiring sources to be modified to explicitly include any special header.

In typical scenarios, precompile headers should be specified as PRIVATE. The main reason for
supporting non-private relationships for a precompile header is to support interface libraries
whose reason for existence is to collect together commonly used compiler definitions, options and
so forth. Targets opt in to having these applied to themselves by linking to the interface library. The
following example demonstrates such an arrangement:

add_library(MyCommonPCH INTERFACE)
target_precompile_headers(MyCommonPCH INTERFACE
    <iostream>
    <vector>
    <algorithm>
    [["myAlgo.h"]]
)
target_include_directories(MyCommonPCH INTERFACE
    $<BUILD_INTERFACE:${CMAKE_CURRENT_LIST_DIR}>
)

add_library(ShipBuilder ships.cpp)
add_library(CarBuilder  cars.cpp)
target_link_libraries(ShipBuilder PRIVATE MyCommonPCH)
target_link_libraries(CarBuilder  PRIVATE MyCommonPCH)
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In the list of headers provided to target_precompile_headers(), note how lua-style brackets have been
used to ensure that the quotes are included as part of the header. The delimiters around each
header name are significant, as they affect how that header is treated when CMake forms the
internal files used to collect the headers to be precompiled. Where a header is surrounded by angle
brackets or quotes, they are used as is. The effect is as though they were preceded by #include and
used verbatim. Such headers are expected to be found on the header search path for the source file
that is using them. This is why the example also adds CMAKE_CURRENT_LIST_DIR to the header search
path for things that link against MyCommonPCH (see Section 27.2.1, “Interface Properties” for why the
$<BUILD_INTERFACE:…> generator expression is also used here).

Where there are no angle bracket or quote delimiters at all, the target_precompile_headers()
command will assume headers are paths relative to the current source directory and will convert
them to an absolute path if they are not already absolute. This would make such interface libraries
unsuitable for being installed, since they would have paths from the build tree embedded in their
interface properties.

A potentially simpler and more efficient way to define a common set of precompile headers is to
use an alternative form of the target_precompile_headers() command:

target_precompile_headers(targetName
    REUSE_FROM otherTarget
)

The REUSE_FROM keyword instructs the command to apply the precompile headers from otherTarget to
targetName as well. Note that this is not copying the precompile header settings to targetName, it is
literally reusing the precompile header configuration from otherTarget, including the internal files
generated for it. This can lead to fewer generated files compared to using an interface library to
share common settings between targets, potentially resulting in lower disk space being used. In
projects with many targets sharing the same precompiled header, the savings can be significant.

An important prerequisite for the REUSE_FROM form is that both targets must use a compatible set of
compiler flags, definitions, etc. Without this restriction, the precompiled header from otherTarget
might be different to what should have been generated for targetName with its own unique settings.
Compiler flags or definitions which do not affect the precompiled header can potentially be
different between the two targets, or omitted in one but not the other. Projects should aim to
minimize such cases to avoid potential compiler warnings.

35.3. Build Parallelism
Each CMake generator has its own corresponding build tool which schedules and executes the
required tasks at build time. Most of those build tools support executing tasks in parallel. Some
build in parallel by default, while others require an explicit command line flag to turn it on. Where
the generator chosen might not be known, or where it may be inconvenient to know or specify it,
the generator-independent --parallel flag or its shorter equivalent -j can be used.

cmake --build <someDir> --parallel [limit]
cmake --build <someDir> -j [limit]
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The optional limit usually means an upper limit on the number of parallel tasks, but the precise
meaning is up to the build tool. If no limit is specified, again the behavior is generator-dependent.

In practice, while the --parallel flag may seem like a convenience, it is usually not the best solution.
It is often not needed at all. Where a generator doesn’t build in parallel by default, a better result
can sometimes be achieved by passing more appropriate tool-specific options directly. Since the
optimal choice for each generator is likely to be different, there is typically not much to gain by
trying to use the --parallel flag.

35.3.1. Makefiles Generators

Makefiles generators do not build in parallel by default. When invoking the build tool directly (for
example, typing make), it can be enabled with the -j option. It is usually followed by a number
specifying the maximum number of tasks allowed to execute at once. CMake’s own --parallel
option maps directly to the native build tool’s -j option. The following are therefore all equivalent
(options following -- are passed directly to the native build tool):

cmake --build . --parallel 8
cmake --build . -j 8
cmake --build . -- -j 8
make -j 8

If the number after -j or --parallel is omitted, some build tool implementations will halt with an
error, but most will just use no limit at all. For any non-trivial build, running with no limit is likely
to overwhelm the system with too many parallel tasks.

Most Makefiles build tools also support another option, -l <limit>. This option is intended to limit
the number of parallel tasks based on the system load. It would not normally be used without -j. In
practice, a load-based limit via -l usually performs very poorly. There is typically an almost
unconstrained initial spike before the measured system load can ramp up, so the start of the build
again typically overwhelms the system with too many tasks.

Unless there is a compelling reason that requires a Makefile-based generator to be used (e.g. using
an IDE that doesn’t support any other type of build tool), prefer to use the Ninja generator instead.
Ninja has better behavior by default, offers better overall build performance, and can be thought of
as having a superset of the capabilities available with Makefiles generators.

35.3.2. Ninja Generators

The Ninja and Multi-Config Ninja generators offer the best performance and broadest platform
support among all the generators supported by CMake. They build in parallel by default,
automatically select an appropriate upper limit for the host machine, and are supported on every
major platform.

While Ninja supports the same -j and -l flags as the Makefiles build tools, they are not usually
needed. CMake’s --parallel option maps to -j, but there should be little reason to use it either. Ninja
has its own algorithm for selecting the optimal value for the upper limit, and this is usually
different to the number of logical CPUs on the host machine.
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A key strength of Ninja is its global view of the whole build. This enables it to schedule parallel
tasks very efficiently. Scheduling is determined only by the actual dependencies between tasks
rather than any artificial limitations due to directory or project structure.

A capability unique to Ninja generators is the ability to assign tasks to job pools. Each job pool is
assigned a parallel task limit, which is applied in addition to the global limit. The number of tasks
from that pool that can execute simultaneously is restricted to the pool limit or less. Ninja schedules
tasks across all job pools and tasks with no job pool, and it still ensures the total number of tasks
doesn’t exceed the global limit.

For example, consider a project that defines a set of targets and assigns them to job pool A with a
limit of 5. It defines a second set of targets and assigns them to job pool B with a limit of 3. Lastly, it
defines another set of targets, this time not assigned to any job pool. If the build is executed using
ninja -j 16, it will be forced to have a global limit of 16 tasks that can run in parallel. At any time
during the build, there will never be more than a total of 16 tasks running at once. In addition,
there will never be more than 5 tasks from job pool A executing at once, and never more than 3
tasks from job pool B executing at once. Ninja will utilize all 16 of the available slots as much as
possible, balancing the constraints between the pools and unpooled tasks throughout the build.

The first step to using Ninja job pools with CMake is to define the set of job pools and their limits.
These are defined in the JOB_POOLS global property, which is expected to hold a list of pool_name=limit
items. It is empty by default. The following example defines two job pools, comp and link:

set_property(GLOBAL PROPERTY JOB_POOLS
    comp=10
    link=4
)

If the JOB_POOLS global property is not defined, the contents of the CMAKE_JOB_POOLS variable will be
used instead. This may be a more desirable way to specify the pools, since pool limits often depend
on the host machine’s capabilities and need to be under the developer’s control. The job pool details
can then be set on the command line or in a user preset. Note though that this variable will only
have an effect if the project does not set the JOB_POOLS global property.

cmake -G Ninja "-DCMAKE_JOB_POOLS=comp=10;link=4" ...

The second step is to assign targets to pools. For library and executable targets, compilation and
linking tasks can be directed to use different pools. They are assigned using the JOB_POOL_COMPILE
and JOB_POOL_LINK target properties. These properties are initialized by the values of the
CMAKE_JOB_POOL_COMPILE and CMAKE_JOB_POOL_LINK variables, which can be specified by the developer
rather than the project:

cmake -G Ninja \
    "-DCMAKE_JOB_POOLS=comp=10;link=4" \
    -DCMAKE_JOB_POOL_COMPILE=comp \
    -DCMAKE_JOB_POOL_LINK=link \
    ...
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In practice, it would be rare to use a job pool for compilation tasks. Those tasks normally form the
vast majority of all tasks, so it is usually more convenient to control them by the global limit. A job
pool for linker tasks is potentially more commonly useful though. When a compiler cache is used
(see Section 35.4, “Compiler Caches”), it is not unusual for all compiler tasks to finish very quickly,
leaving all the linker tasks to execute together at the end of the build. Linker tasks typically take
much more memory. On machines with a high number of CPUs but only modest RAM, this can
result in the linker tasks spilling over into swap, potentially even exhausting all memory in the
system. The developer may therefore want to use a job pool to limit just the linker tasks without
constraining the other non-linker tasks.

cmake -G Ninja \
    -DCMAKE_JOB_POOLS=link=4 \
    -DCMAKE_JOB_POOL_LINK=link \
    ...

In the absence of any other data for machine hardware specifications, a good starting point would
be to aim for at least 1.5-2Gb of RAM per logical CPU. If the host machine has less than that, there is
increased risk that linker task stacking as discussed above could significantly degrade the
machine’s build performance. Linker job pools may provide a means of mitigation for machines
that have lower RAM-to-CPU ratios.

With CMake 3.15 or later, custom targets and custom commands can also be assigned to job pools.
These have no corresponding variable, they can only be set directly in the add_custom_command() and
add_custom_target() calls with the JOB_POOL keyword. Thus, the use of job pools with custom targets
and commands is effectively hard-coded into the project. This may limit the developer’s ability to
customize other job pools used by the build if not handled carefully.

The following example shows one way to preserve developer control, but still apply settings that
allow the build to work out-of-the-box if the developer doesn’t provide any job pool details. The
example represents a scenario where source code is generated by some tool and where that tool is
expensive to run, either in terms of memory, licensing, or some other measure. The job pool allows
the number of concurrent invocations of the costly tool to be limited to no more than 2 without
limiting the parallelism of the rest of the build.

if(NOT DEFINED CMAKE_JOB_POOLS)
  set_property(GLOBAL PROPERTY JOB_POOLS costly=2)
endif()

add_library(CostlyThings)

foreach(src IN ITEMS a.cpp b.cpp c.cpp ...)
    set(genSrc ${CMAKE_CURRENT_BINARY_DIR}/gen_${src}
    add_custom_command(
        OUTPUT ${genSrc}
        COMMAND costly_generation --output ${genSrc}
        JOB_POOL costly
    )
    target_sources(CostlyThings PRIVATE ${genSrc})
endforeach()
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35.3.3. Visual Studio Generators

The Makefiles and Ninja generators have a fairly straightforward model for executing build tasks in
parallel. They typically schedule tasks according to the dependencies between the tasks. They don’t
typically have any artificial constraint between targets unless such constraints are added by the
project.

Visual Studio generators use MSBuild as their build tool. The interaction between MSBuild and the
compiler is more complex than for the Makefiles and Ninja generators. Both the build tool and the
compiler have their own support for parallel execution.

• The cl compiler’s parallel execution is enabled by adding the /MP compiler flag. It controls
whether source files within a single target can be compiled in parallel.

• The build tool’s parallel execution is enabled by adding /m to the MSBuild or cmake --build
command line (the latter after -- to denote options meant for MSBuild, not cmake). If building
inside the Visual Studio IDE, this is enabled by default. This option controls whether targets can
be built in parallel. It does not control parallel compilation of sources within a single target.

Both /MP and /m can optionally be followed by a number specifying the upper limit on the number of
parallel tasks. When no such number is provided, they each default to the number of available
logical processors.

For a CMake project with a small number of targets that each have many sources, adding the /MP
compiler flag would typically give a significant performance gain. For a project with many targets
where each target has relatively few sources, the /m build tool flag should give the bigger
performance boost. It may be tempting to enable both to try to get the best of both worlds, but this
can result in severe over-commitment of system resources. For a system with N logical cpus, it may
result in up to N×N tasks running in parallel. This can slow down overall performance, or even crash
the host machine in severe cases.

In practice, projects often have some targets with many sources and other targets with very few.
Projects with a few main targets but many test executables match this pattern. In such cases,
developers have to go through a trade-off exercise, experimenting to determine whether /MP or /m
gives the better overall build throughput. With either choice, there will often be periods during the
build where the CPU is under-utilized.

With Visual Studio 2019 update 16.3 or later (16.9 or later recommended), a new Multi-ToolTask
scheduler is available which behaves more like Ninja. It has the ability to schedule and limit tasks
both within and across targets (when the /m option is also used). Enabling the Multi-ToolTask
scheduler disables /MP automatically, since it takes over scheduling tasks within a target.

The Multi-ToolTask scheduler can be enabled using environment variables or with Visual Studio
project properties. If using environment variables, they need to be set when running MSBuild. The
environment variables should be set as follows:

UseMultiToolTask=true

This enables the new scheduler, but on its own would still allow over-commitment of system
resources.
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EnforceProcessCountAcrossBuilds=true

This prevents resource over-commitment when the new scheduler is enabled.

In practice, using environment variables may not be as convenient as setting Visual Studio project
properties. With CMake 3.13 or later, Visual Studio project properties can be set using the
CMAKE_VS_GLOBALS CMake variable. It should hold a list of key=value items which will be added to the
Visual Studio project for each target. Developers can set the CMAKE_VS_GLOBALS variable when
invoking CMake:

cmake -G "Visual Studio 16 2019" ... \
    "-DCMAKE_VS_GLOBALS=UseMultiToolTask=true;EnforceProcessCountAcrossBuilds=true"

It can also be set by the project, in which case it should be defined before any targets are created,
ideally right after the first project() call:

cmake_minimum_required(VERSION 3.13)
project(MyThings)

# NOTE: Not ideal, see text following this example
set(CMAKE_VS_GLOBALS
    UseMultiToolTask=true
    EnforceProcessCountAcrossBuilds=true
)

# Add targets here, etc.

One problem with hard-coding CMAKE_VS_GLOBALS as shown in the above example is that it prevents
the developer or driving script from selecting a different parallelism strategy. In fact, because it
discards any previous contents of CMAKE_VS_GLOBALS, it prevents setting any custom Visual Studio
project properties from outside the CMake project. Developers may want to be able to modify this
variable for their own custom purposes. In order to safely preserve any existing settings, a more
careful approach is needed:

if(NOT CMAKE_VS_GLOBALS MATCHES "(^|;)UseMultiToolTask=")
    list(APPEND CMAKE_VS_GLOBALS UseMultiToolTask=true)
endif()

if(NOT CMAKE_VS_GLOBALS MATCHES "(^|;)EnforceProcessCountAcrossBuilds=")
    list(APPEND CMAKE_VS_GLOBALS EnforceProcessCountAcrossBuilds=true)
endif()

Once CMAKE_VS_GLOBALS is set using one of the above methods, add the /m option if running the build
from the command line to make best use of available CPUs. The following are equivalent:

cmake --build <path> -- /m
msbuild /m
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A clear advantage of using CMAKE_VS_GLOBALS over environment variables is that the developer can
build within the Visual Studio IDE, or from the command line, and both will use the Multi-ToolTask
scheduler without any additional steps. No changes to user- or system-wide settings are needed,
and the IDE or command prompt do not need to be started or set up any differently to normal.

Multi-ToolTask is expected to give superior build throughput for any decent size project, with one
exception. If there are only a few targets, and those targets all have many sources, then using just
the compiler parallelism (/MP) alone may be slightly faster in some cases. This is because the cost of
starting a new process under Windows is quite high. The /MP-based approach re-uses processes,
whereas Multi-ToolTask will create a new process for each source file compilation. Even for such
projects though, using /MP may exclude using other methods that could otherwise drastically reduce
build times (see Section 35.4, “Compiler Caches”).

35.3.4. Xcode Generator

Projects using the Xcode generator can be built either within the Xcode IDE or from the command
line. A command line build uses xcodebuild as the native build tool. The parallel building behavior is
quite similar to Visual Studio’s Multi-ToolTask arrangement, except that it is already the default
behavior.

Inter-target parallelism can be enabled by adding the -parallelizeTargets option to xcodebuild
(analogous to the /m option for Visual Studio generators). If the project has properly expressed
dependencies between targets, there is little reason not to enable this. In fact, when CMake is
generating for the Xcode new build system (the default behavior when using Xcode 12 or later),
cmake --build automatically adds the -parallelizeTargets option when it invokes xcodebuild.

The global limit on parallel tasks defaults to the number of logical CPUs. This can be overridden by
passing the -jobs option to xcodebuild. That should rarely be needed though, as the default limit will
typically be appropriate.

35.3.5. Optimizing Build Dependencies

Ordinarily, a target’s dependencies must be built before the target itself, but there are cases where
this constraint can be relaxed or even removed entirely. Consider the following example:

CMakeLists.txt

cmake_minimum_required(VERSION 3.9)
project(simple LANGUAGES CXX)

add_executable(App main.cpp)
add_library(Func func.cpp)
target_link_libraries(App PRIVATE Func)

main.cpp

int func();
int main() { return func(); }
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func.cpp

int func() { return 42; }

Makefiles generators will compile func.cpp, create the libFunc.a static archive library, compile
main.cpp and finally link the App executable. None of these tasks can be performed in parallel, they
must be performed in that order. Since CMake 3.9, the Ninja generator recognizes that main.cpp can
be compiled without waiting for libFunc.a to be built. Compilation does not depend on libFunc.a in
this case. This relaxation is only possible when there are no custom commands associated with the
Func target. Even with this mild condition, the improved parallelism that the Ninja generator can
achieve as a result of this relaxation can be significant for some projects.

CMake 3.19 added support for the OPTIMIZE_DEPENDENCIES target property. When this is set to true on a
static or object library target, it allows further relaxation under certain conditions (for all CMake
generator types, not just Ninja). Consider this example:

CMakeLists.txt

cmake_minimum_required(VERSION 3.19)
project(moreRelaxed LANGUAGES CXX)

add_library(MyStatic STATIC func.cpp)
add_library(MyShared SHARED impl.cpp)
target_link_libraries(MyStatic PRIVATE MyShared)

set_target_properties(MyStatic PROPERTIES
    OPTIMIZE_DEPENDENCIES YES
)

func.cpp

int impl();
int func() { return impl(); }

impl.cpp

int impl() { return 42; }

In this case, the MyStatic target can technically be fully built without having to compile impl.cpp or
produce a shared library for MyShared at all. This is because MyStatic is a static library, so it doesn’t
need to actually link to MyShared. The relationship between the two library targets still exists and
will be applied to any other target that links to MyStatic, but it doesn’t affect building MyStatic itself.

This particular dependency relaxation can only be performed when CMake can be certain that
building the static or object library does not require the dependency to be built. Examples of things
that prevent this from occurring include:

• An explicit add_dependencies() command specifying the dependency.

• A custom command attached to the dependency.
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• A generated source file for the static or object library whose custom command depends on the
dependency.

• The dependency containing any generated source files.

• The dependency uses a language that produces side effects and that language is relevant to the
static or object library. For more detail on this particular aspect, see the discussion in the official
CMake documentation for the OPTIMIZE_DEPENDENCIES target property.

Rather than explicitly specifying the OPTIMIZE_DEPENDENCIES property on each target, it will usually be
more convenient to set the CMAKE_OPTIMIZE_DEPENDENCIES variable project-wide. This variable is used
to initialize the OPTIMIZE_DEPENDENCIES property when creating targets.



There is a CMake bug that prevents this feature from working with the Ninja
generator. Projects can still safely enable the feature, it’s just that the
dependencies won’t be optimized until the bug is fixed. For the latest status on this
problem, see https://gitlab.kitware.com/cmake/cmake/-/issues/21517

35.4. Compiler Caches
In many cases, significant improvements in build performance can be achieved by employing a
compiler cache. The purpose of such a cache is to keep previously built object files so that if the
compiler is asked to compile the exact same source file with the same set of flags, headers and
toolchain, the object file can be retrieved directly from the cache instead of having to be compiled
again. A well-configured compiler cache can be one of the most effective ways to reduce build
times.

Ccache is one of the most commonly used compiler cache tools when using GCC, Clang or any
compiler that claims to be compatible with either of those. With Ccache 4.6.1 or later, the Visual
Studio compilers are also supported. Ccache works in one of two ways:

• Replace the location of the default system compilers with symlinks to itself. Many Linux
distributions employ this arrangement.

• Precede the normal compiler command line with ccache.

The first option provides compiler caching as the default system-wide behavior, but it has
drawbacks. The main limitation is that it doesn’t allow the developer to choose which compiler to
use, instead locking in the choice of using the default system compiler. In many cases, the default
compiler is quite old, so developers frequently want to use newer compilers installed in other
locations. Another limitation is that it requires administrator access to set up if the system doesn’t
install Ccache that way by default. This method is also not suitable on Windows.

A much more flexible approach is to precede the usual compiler command line with ccache. This
method allows any supported compiler to be used, not just the system default. No system-wide
change is required, so the technique can be employed freely by any user. Depending on the
generator used, slightly different approaches are needed to invoke Ccache appropriately. These are
discussed in the subsections further below.
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35.4.1. Ccache Configuration

Certain Ccache configuration options should typically be set to ensure safe and efficient caching
behavior. To set these options on a per-project basis, various CCACHE_… environment variables can
be used. The supported variables are all detailed in the Ccache documentation, but some more
important ones are:

CCACHE_SLOPPINESS

If precompiled headers are enabled, it is important to set this option to pch_defines,time_macros.
The Precompiled headers section of the Ccache documentation explains why these settings are
needed. For improved cache hit performance, it may also be desirable to add include_file_mtime
and include_file_ctime to the list of sloppiness options. This comes with a theoretical risk of a
race condition, but for typical scenarios, that race condition is highly unlikely (files included by
the preprocessor would have to be updated while the source is being compiled). Consult the
Ccache manual for details before deciding whether to add include_file_mtime and
include_file_ctime to the sloppiness options.

CCACHE_PREFIX

Ccache supports being used in conjunction with another compiler command wrapper. Popular
examples include tools such as distcc, icecc and sccache-dist which distribute compilation across
multiple machines to reduce build times. When chaining multiple compiler wrappers, it is
recommended to have ccache as the first wrapper invoked and then specify the other wrapper
through the CCACHE_PREFIX environment variable (e.g. CCACHE_PREFIX=distcc). ccache then handles
chaining to the second wrapper if the result of the compile command is not already in its cache.

If using a version of Ccache older than 3.3, set CCACHE_CPP2=true to avoid spurious warnings with
some compilers (see the Ccache manual for details). Upgrading to a newer Ccache instead should be
preferred as a better solution.

Developers should also become familiar with the different modes of operation that Ccache offers.
Direct mode, preprocessor mode and depend mode all have their advantages and restrictions, with
direct mode being the default. Pay special attention to the interaction with features like
precompiled headers, as problems can sometimes occur. As one example, depend mode is advisable
when using precompiled headers with Clang to avoid issues with timestamps when switching
branches, but changing compiler definitions may not be handled correctly in depend mode. More
recent Ccache documentation also states that the -fno-pch-timestamp compiler flag must be used and
is only recognized by Ccache 4.0 or later. As this flag is specific to the Clang compiler, it must be
preceded by -Xclang, which also means it needs to be protected from flag de-duplication (see Section
15.4, “De-duplicating Options”).

foreach(lang IN ITEMS C CXX OBJC OBJCXX)
    if(CMAKE_${lang}_COMPILER_ID MATCHES "Clang")
        add_compile_options(
            "$<$<COMPILE_LANGUAGE:${lang}>:SHELL:-Xclang -fno-pch-timestamp>"
        )
    endif()
endforeach()
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If using the Visual Studio toolchain, note that Ccache does not support storing debug information in
a separate PDB file. If the /Zi or /ZI compiler option is used, Ccache will fall back to invoking the
compiler and perform no caching. Section 15.7.4, “Debug Information Format Selection” discussed
different ways these flags may be set by default. If policy CMP0141 is set to OLD or is unset, CMake adds
/Zi to the default value of some CMAKE_<LANG>_FLAGS_<CONFIG> variables. If CMP0141 is set to NEW, the
CMAKE_MSVC_DEBUG_INFORMATION_FORMAT variable controls the defaults instead, but with the same result
that /Zi will be the default for some configurations. Therefore, additional logic is needed to switch
to the /Z7 option instead. This stores debug information directly in the object files, which Ccache
does support.

if(MSVC)
    # Disable use of separate PDB, Ccache won't cache things otherwise
    foreach(lang IN ITEMS C CXX)
        foreach(config IN LISTS CMAKE_BUILD_TYPE CMAKE_CONFIGURATION_TYPES)
            set(var CMAKE_${lang}_FLAGS)
            if(NOT config STREQUAL "")
                string(TOUPPER "${config}" config)
                string(APPEND var "_${config}")
            endif()
            string(REGEX REPLACE "[-/]Z[iI]" "-Z7" ${var} "${${var}}")
            set(${var} "${${var}}" PARENT_SCOPE)
        endforeach()
    endforeach()

    if(DEFINED CMAKE_MSVC_DEBUG_INFORMATION_FORMAT)
        string(REGEX REPLACE "ProgramDatabase|EditAndContinue" "Embedded"
            replaced "${CMAKE_MSVC_DEBUG_INFORMATION_FORMAT}"
        )
        set(CMAKE_MSVC_DEBUG_INFORMATION_FORMAT "${replaced}" PARENT_SCOPE)
    else()
        set(CMAKE_MSVC_DEBUG_INFORMATION_FORMAT
            "$<$<CONFIG:Debug,RelWithDebInfo>:Embedded>"
            PARENT_SCOPE
        )
    endif()
endif()

35.4.2. Makefiles And Ninja Generators

Starting with CMake 3.4, the <LANG>_COMPILER_LAUNCHER target properties can be used to specify a list
of items to precede the compiler command line in a language-specific way. This is supported by the
Ninja and Makefiles generators only. The default value for these properties are taken from the
corresponding CMAKE_<LANG>_COMPILER_LAUNCHER variables when a target is created. The variable is the
typical and recommended way to use this feature.

The following demonstrates how to enable Ccache for the whole build, but only after first
confirming that a ccache executable is available. This ensures the build will work with or without
Ccache.
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find_program(CCACHE_EXECUTABLE ccache)

if(CCACHE_EXECUTABLE)
    set(CMAKE_C_COMPILER_LAUNCHER   ${CCACHE_EXECUTABLE})
    set(CMAKE_CXX_COMPILER_LAUNCHER ${CCACHE_EXECUTABLE})
endif()

For most projects, the above example is too simplistic. It does not set any Ccache environment
variables, it relies purely on the user-level configuration of that tool. CMake’s command mode can
be used to set the relevant environment variables when invoking Ccache on any platform. The
following is a more realistic example:

find_program(CCACHE_EXECUTABLE ccache)
if(CCACHE_EXECUTABLE)
    set(ccacheEnv
        CCACHE_SLOPPINESS=pch_defines,time_macros
    )

    foreach(lang IN ITEMS C CXX OBJC OBJCXX CUDA)   ①
        set(CMAKE_${lang}_COMPILER_LAUNCHER
            ${CMAKE_COMMAND} -E env ${ccacheEnv} ${CCACHE_EXECUTABLE}
        )
    endforeach()
endif()

① Enable Ccache for all supported languages (a more recent Ccache version is required for CUDA).

35.4.3. Xcode Generator

The above technique is suitable for the Ninja or Makefiles generators, but not for the Xcode
generator. Ccache does support the AppleClang compiler, but a different method must be used to
insert ccache before the compiler command and set the relevant environment variables.

When using the Xcode generator, the compilers to use for C and C++ can be overridden by setting
the CMAKE_XCODE_ATTRIBUTE_CC and CMAKE_XCODE_ATTRIBUTE_CXX variables. The linkers must also be set
with the CMAKE_XCODE_ATTRIBUTE_LD and CMAKE_XCODE_ATTRIBUTE_LDPLUSPLUS variables to work around a
bug in some versions of the Xcode IDE where it can select the wrong linker language if only
CMAKE_XCODE_ATTRIBUTE_CC and CMAKE_XCODE_ATTRIBUTE_CXX are set. Curiously, the bug is restricted to
building within the IDE, any command-line builds using xcodebuild are not affected. Also recall that,
as mentioned back in Section 24.1, “CMake Generator Selection”, the CMAKE_XCODE_ATTRIBUTE_…
variables only have an effect if set in the top level CMakeLists.txt file.

Each of the Xcode project variables allow specifying only a single value, but the command line
needs to have multiple options (at least the ccache executable and the real compiler to be invoked).
Therefore, a separate launch script needs to be written out and the project variables pointed at
them. Relevant environment variables can also be set in these launch scripts. For example:
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# Write out launch scripts for C and C++ languages
foreach(lang IN ITEMS C CXX)
    set(launch${lang} ${CMAKE_BINARY_DIR}/launch-${lang})

    file(WRITE ${launch${lang}}
       "#!/bin/bash\n\n"
       "export CCACHE_SLOPPINESS=pch_defines,time_macros\n"
       "exec \"${CCACHE_EXECUTABLE}\" \"${CMAKE_${lang}_COMPILER}\" \"$@\"\n"
    )

    execute_process(COMMAND chmod a+rx ${launch${lang}})
endforeach()

# Redirect Xcode to use our launchers
set(CMAKE_XCODE_ATTRIBUTE_CC         ${launchC})
set(CMAKE_XCODE_ATTRIBUTE_CXX        ${launchCXX})
set(CMAKE_XCODE_ATTRIBUTE_LD         ${launchC})
set(CMAKE_XCODE_ATTRIBUTE_LDPLUSPLUS ${launchCXX})

35.4.4. Visual Studio Generators

Using Ccache with the Visual Studio generators requires Ccache 4.6.1 or later. The
CMAKE_<LANG>_COMPILER_LAUNCHER variables don’t support Visual Studio generators, but Visual Studio
project properties can be used in conjunction with a launch script to achieve the same thing. The
CLToolPath and CLToolExe project properties redirect the compile steps to use a custom compiler
executable or script. The properties can be set with the CMAKE_VS_GLOBALS variable (see Section 35.3.3,
“Visual Studio Generators” for another closely related use of this variable).

The same compiler executable is used for C and C++ with these generators. Thus, only one launch
script is needed, unlike the Xcode generator which requires one launch script per language. The
following shows one way for a project to generate and use such a launch script (this should be
executed after the first project() call):

cmake_path(NATIVE_PATH CCACHE_EXECUTABLE ccache_exe)
file(WRITE ${CMAKE_BINARY_DIR}/launch-cl.cmd
    "@echo off\n"
    "set CCACHE_SLOPPINESS=pch_defines,time_macros\n"
    "\"${ccache_exe}\" \"${CMAKE_C_COMPILER}\" %*\n"
)

# Remove existing settings, we will replace them
list(FILTER CMAKE_VS_GLOBALS EXCLUDE
    REGEX "^(CLTool(Path|Exe)|TrackFileAccess)=.*$"
)
list(APPEND CMAKE_VS_GLOBALS
    CLToolPath=${CMAKE_BINARY_DIR}
    CLToolExe=launch-cl.cmd
    TrackFileAccess=false    # See below
)
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Like most generators, Visual Studio offers a "clean" feature which removes files created by previous
builds. It’s build tool (MSBuild) tracks files created or modified during compilation and removes
them upon a "clean". But this also deletes artifacts from the cache, ruining Ccache’s effectiveness.
To avoid losing the cached artifacts, file tracking must be disabled by setting the TrackFileAccess
project property to false. The above example includes that option in the CMAKE_VS_GLOBALS variable.

For Ccache to work, the /MP option must not be used. One can inhibit that by setting the
CMAKE_VS_NO_COMPILE_BATCHING variable to true (requires CMake 3.24 or later). But a more effective
strategy is to enable the Multi-ToolTask scheduler, as described earlier in Section 35.3.3, “Visual
Studio Generators”. Conveniently, in addition to giving more efficient task scheduling, that
scheduler automatically disables /MP. It is therefore a very good choice if using Ccache.

35.4.5. Combined Generator Support

Projects can combine the various generator-specific methods discussed above to provide support
for Ccache across the different generators. It may be useful to implement the logic in its own
function and call it from the top level CMakeLists.txt file, typically just after the project() command.
The function should do nothing if not called from the top level, since that is a requirement for the
Xcode generator. It also ensures that the top level project is in control for hierarchical builds. The
function can be in its own file, potentially in its own source repository, then added to the build via
FetchContent. This is a convenient way to share the same logic across many projects.

Appendix B, Full Compiler Cache Example provides a complete combined implementation, ready for
production use. The logic from Section 35.3.3, “Visual Studio Generators” to enable the Multi-
ToolTask scheduler for Visual Studio generators is also included.

35.5. Debug-related Improvements
A typical developer workflow is to make a code change, perform an incremental build to rebuild
anything that depends on the change and re-run one or more executables, tests, etc. Some of these
may be run under a debugger, which involves loading the relevant debug symbols for the
executable and any shared libraries used by it. With many common toolchains, the default settings
lead to a number of inefficiencies in this workflow.

One common default behavior is for compilers to store debug information directly in the generated
object files. At the link step, the linker then processes all this debug information, even though it isn’t
actually needed to produce a working binary. When creating an executable or shared library, the
linker may also embed a copy of the relevant debug information, which requires the linker to
process all the symbols across the object files to work out what to store, including handling multiple
definitions of the same symbol. This embedding also results in multiple copies of debug
information being stored across the various object files and binaries in the build. The size of this
information is frequently very significant, often making up the majority of the size of object files
and binaries. All this extra processing and duplication can have a noticeable impact on the build
performance. It can also lead to very high memory use during linking.

One solution to the above is to store the debug information in a separate file instead of directly in
the object file, shared library or executable. Any reasonably recent version of GCC or Clang
supports a feature called split dwarf which does exactly this, but it is not enabled by default. It can
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be turned on by adding the -gsplit-dwarf compiler option. The compiler will then create a .dwo file
beside the object file, then record a reference to the .dwo in that object file instead of the full debug
information. Furthermore, any executable or shared library that links in that object file will also
contain a reference to its .dwo file instead of embedding a copy of the debug information.

To gain the most benefit from split dwarf, it should be enabled for the whole build. This ensures
that all debug information for all targets will be separated from the object and binary files.
Developers can add it manually to the CMake cache or set it as part of a toolchain file. This is done
by appending -gsplit-dwarf to variables like CMAKE_C_FLAGS_DEBUG and CMAKE_CXX_FLAGS_DEBUG, or their
…_INIT counterparts in the case of toolchain files. This requires no changes to the project and gives
the developer full discretion over whether or not to use the feature.

In some cases, it may be desirable for the project itself to add the flag, such as in a company
environment where the project is built in a controlled setup. When doing this, consider the advice
in Chapter 15, Compiler And Linker Essentials and prefer to use the add_compile_options() command
to set the relevant directory properties rather than modifying the CMAKE_<LANG>_FLAGS_DEBUG
variables. The following example demonstrates how this can be done, including a test for whether
the flag is supported or not:

include(CheckCCompilerFlag)
check_c_compiler_flag("-gsplit-dwarf" HAVE_SPLIT_DWARF)

if(HAVE_SPLIT_DWARF)
    # Only add for debug builds, but could also expand the
    # generator expression to add for RelWithDebInfo too
    add_compile_options("$<$<CONFIG:Debug>:-gsplit-dwarf>")
endif()

Split dwarf has some subtleties around its interaction with options like -g, -g1 and so on. The
interaction of these flags with Ccache in particular has caused some issues in the past, so it is
advisable to use a recent Ccache release if adding this compiler flag (at least Ccache 3.7). Similarly,
having the debug information split out to a separate file may also interfere with distributed
compilation tools like distcc. Developers should check the documentation of the version of the tools
they are using and ensure the tools support split dwarf before enabling it.

35.6. Alternative Linkers
As discussed in the previous section, when working with debug builds, the link time can be
significant due to the debug symbol handling. The default BFD linker on many Unix systems does
not perform well in this regard, but alternative linkers can do a much better job. The gold linker is
relatively mature and is typically much faster and uses much less memory. It is generally reliable,
but may fail on certain projects (e.g. as a result of linking to a shared library that only works with
the default linker). The llvm linker (lld) potentially offers even better performance, but it is not as
mature and may not work in all cases.

Enabling an alternative linker follows a similar pattern to -gsplit-dwarf, except that a linker option
needs to be set rather than a compiler option. The relevant option can also be set for all build types,
since the linkers give better performance in general, so there’s no real reason to only use them for
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debug builds. The alternative linkers can be enabled with -fuse-ld=gold or -fuse-ld=lld, assuming
the relevant linker is installed and supported by the toolchain being used. If set by the developer
through the CMake cache, the linker option should be appended to the CMAKE_EXE_LINKER_FLAGS,
CMAKE_MODULE_LINKER_FLAGS and CMAKE_SHARED_LINKER_FLAGS variables. If being set via a toolchain file,
the same variables with _INIT appended to their names should be set.



If targeting Android and using the NDK, developers should be aware of a bug in
older versions of lld which effectively breaks debugging. If using NDK r21, set the
CMake variable ANDROID_LD to lld instead of adding the -fuse-ld=lld option directly
(from NDK r22, lld is already the default linker). The NDK toolchain file will then
apply the necessary workaround.

If the project wants to set the linker option, again it should follow the advice given in Chapter 15,
Compiler And Linker Essentials and modify directory properties rather than variables. This is most
easily done with the add_link_options() command available with CMake 3.13 or later:

# Force the gold linker
add_link_options(-fuse-ld=gold)

35.7. Recommended Practices
Always focus on build correctness before trying to optimize build performance. Ensure that
relationships between targets are properly expressed and that dependencies in custom commands
fully capture all dependencies. Under-specified dependencies can lead to build failures, or worse
still, silently using an old binary output from a previous build due to one task not waiting for that
output to be regenerated in the current build. Such problems can be notoriously hard to trace, often
going undetected for a very long time before being diagnosed as the underlying cause of unreliable
builds. Adding certain build optimizations into the mix before addressing such problems will likely
only make the build even more unreliable. Conversely, by not adding unnecessary dependencies
between targets, the build tool has a greater opportunity to execute parts of the build in parallel
and shorten the overall build time.

One simple and relatively safe build optimization is to enable project-wide optimization of
dependencies for static and object library targets. This can be done by setting the
CMAKE_OPTIMIZE_DEPENDENCIES variable to true in the top level CMakeLists.txt file, a toolchain file or via
a cache variable. When using CMake 3.19 or later, this can relax dependency relationships for static
and object library targets. This may improve build parallelism or reduce what has to be built during
day-to-day development. Earlier CMake versions will simply ignore the variable.

When seeking to optimize build performance, be careful about assuming characteristics of the
machine on which the build will be performed. Tuning values like the unity build batch size for one
machine may result in poor performance on another with very different characteristics (e.g. less
memory or a different number of cpus). Prefer to leave such tuning up to the developer using cache
variables, except for situations where the project already knows upper limits beyond which little
gain can be expected (e.g. source files that are already very large). Use the GROUP unity mode
sparingly and only where it provides a measurable improvement in build performance.
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When considering unity builds for a project, start from the point of view that unity builds will be
enabled project-wide rather than trying to turn it on for specific targets. Focus instead on
identifying those targets or source files that are incompatible with a unity build and disable it on
just those entities. This ensures hierarchical builds have the opportunity to enable unity builds as
widely as possible throughout the dependency tree.

Targets should build successfully with or without compiler support for precompiled headers. It
should be considered an optimization, not a requirement. In particular, do not explicitly include a
precompile header (e.g. stdafx.h) in the source code, let CMake force-include an automatically
generated precompile header on the compiler command line instead. This is more portable across
the major compilers and is likely to be easier to maintain. It will also avoid warnings being
generated from certain code checking tools like iwyu (include what you use).

Precompiled headers are most effective when the headers in the precompile set rarely change. This
is typically true for headers provided by the system or the compiler, but may not be the case for
headers provided by the project. If adding project headers to the precompile set, measure the effect
and confirm that it gives a worthwhile benefit. Avoid adding headers that change often, as this will
tend to have an overall negative effect on build times due to the increased scope of rebuilds when
those headers change.

Take full advantage of the parallelism available with the chosen build tool. If using Ninja, it is
generally best to let it select the optimal limit on the number of concurrent tasks. If using a
Makefiles generator, consider whether switching to Ninja for better build efficiency is possible,
otherwise make sure to explicitly enable parallel builds (they are not parallel by default for
Makefiles generators). For Visual Studio generators, consider enabling the Multi-ToolTask
scheduler, especially if also using a compiler cache like Ccache.

Where possible, use Ccache on both developer and continuous integration machines. It is one of the
most effective ways for reducing incremental build times and compiling code seen frequently by
the compiler with the same settings (a common characteristic of continuous integration builds).
Cache misses can result in an increase in compile time for that file of around 10-30%, but the gain
for cache hits in typical development or continuous integration workloads more than makes up for
that (order-of-magnitude improvements are not unusual).

Configure Ccache to store its cache on a fast disk such as a SSD, as the latency of that storage can
have a strong effect on the cache performance. Also increase the maximum cache size well above
the 5Gb default, since it is typically much too low for most real-world deployments. Ensure the
cache sloppiness options include pch_defines and time_macros if using precompiled headers.

For any modest size project, consider enabling split dwarf if it is supported by the toolchain. This
can drastically reduce disk space consumed by debug builds, it can speed up linking and it can
reduce memory used by some linkers. When using Ccache with split dwarf, ensure that Ccache 3.7
or later is used. Older versions were susceptible to using out-of-date .dwo files or generating more
cache misses. They also used to fail to handle the combination of precompiled headers and split
dwarf properly.

Avoid forcing the use of a non-default linker if there is any chance that the project may become a
child dependency of another project. A parent project may have restrictions which require it to use
the default linker, so it must have a way to prevent the child project from trying to use something
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else. A good strategy is to only try to change the linker if it is the top level project in the build, or
leave it for a toolchain file to specify. This follows the general recommendation that the developer
should be able to enable or disable most toolchain-related features except where it is an actual
requirement of a project.
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Chapter 36. Working With Qt
Qt has enjoyed direct support in CMake for some time. This support has evolved over many releases
of both projects and can loosely be grouped under the following three broad areas:

• Running Qt tools like moc, uic and rcc as needed during the build.

• Defining variables and imported targets to simplify building Qt applications and libraries.

• Deploying Qt applications to various platforms.

For Qt 4 and earlier, support for these features was provided exclusively by CMake. Starting with
Qt 5, most of the features are provided by Qt itself, with CMake only handling some of the more
automated aspects of the Qt tool support. This chapter focuses mostly on Qt 5 support.

Qt 6 takes things further, offering stronger support for CMake projects with an expanded CMake
API (the author has been involved in some of that work). Qt 6.2 in particular provided a step change
in CMake functionality, especially for QML projects. Improvements to the CMake API continue to be
developed for Qt 6.3 and beyond.

CMake 3.5 should be considered the bare minimum version required for convenient Qt 5 support,
while Qt 6 needs at least CMake 3.16. It is strongly advised to use a more recent CMake release if
possible, ideally the latest. For Qt 6, this is especially true. While it does support CMake 3.16, it is a
much smoother experience if using 3.21 or later. More recent CMake versions allow more
automated features and more efficient implementations in Qt’s CMake API. Some features require
at least CMake 3.19 to be used at all.

36.1. Basic Setup
Any project that uses Qt needs to find a suitable Qt installation. Given Qt’s size, it is not generally
practical to build Qt from source as part of the project. Instead, packages are usually obtained from
the official Qt website, a package manager or built separately from sources beforehand.

The most common way to bring Qt into the project’s build is to use find_package() to search for the
Qt5 package and specify which Qt components the project needs. The following example shows how
to require the Gui and Widgets components, but leave DBus as an optional component. It also specifies
that Qt 5.9 or later is needed.

find_package(Qt5 5.9 REQUIRED
    COMPONENTS          Gui Widgets
    OPTIONAL_COMPONENTS DBus
)

In many cases, Qt won’t be installed in one of CMake’s default search locations. Developers will
typically need to provide that information to CMake using the CMAKE_PREFIX_PATH cache variable.
When running CMake from an environment like Qt Creator, this has to be set in the project settings.
When running CMake from the command line, it can be done in the usual way, like so:
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cmake -D CMAKE_PREFIX_PATH=/Users/mylogin/Qt/5.12.0/clang_64 /path/to/my/project

If successful, the find_package() call will define an imported target for each component found. These
imported targets will be named Qt5::<ModuleName>, such as Qt5::Gui, Qt5::Widgets, etc. When project
targets link against these imported targets, they will automatically have the relevant compiler
defines, header search paths and library dependencies added to them. As a result, defining targets
that use Qt should generally be quite straightforward:

find_package(Qt5 5.9 REQUIRED COMPONENTS Widgets)

add_executable(SimpleGUI MACOSX_BUNDLE WIN32 main.cpp)
target_link_libraries(SimpleGUI PRIVATE Qt5::Widgets)

Alternatively, each Qt component could be found independently with separate calls to
find_package():

find_package(Qt5Widgets 5.9 REQUIRED)
find_package(Qt5Gui     5.9 REQUIRED)
find_package(Qt5DBus    5.9)

This is what the Qt documentation recommends, but it potentially allows mixing libraries from
different Qt installations. This would generally be discouraged, since it opens up the possibility of
using an inconsistent set of libraries and potentially hard to trace bugs. Using one find_package()
call to find the umbrella Qt5 package is safer and more clearly communicates the project’s intent for
component handling.

Regardless of whether finding the Qt5 umbrella package or the individual components separately,
the same set of imported targets and variables will be defined. In general, projects should prefer to
work with the imported targets rather than the variables, but there are a couple of per-component
variables which may be useful:

Qt5<component>_FOUND

This set of variables is most useful for checking whether an optional component was found.
Another choice would be to test whether or not the relevant imported target is defined, but
checking the variable may be more readable.

Qt5<component>_VERSION

This records the version of a found component. It can be useful for things like working around
known issues or recording build details.

Some of the Qt components also define associated CMake commands. A number of these are
discussed in Section 36.3, “Autogen” further below.

608



36.2. Build Details
Most projects should be able to link to the relevant imported targets and not have to concern
themselves too much with the compiler and linker details. That said, some important, less obvious
areas deserve special attention.

36.2.1. Standard Library Implementation

Qt 6.0 and later require a compiler that supports C++17. Qt 5.7 and later requires C++11 and Qt 5.6
optionally supports C++11. This draws attention to a subtle but important issue, that the project
should use the same C++ standard library as was used to build Qt. If the project does not define any
compiler feature requirements or any minimum language standard, then the Qt imported targets
will transitively set the relevant details via interface properties. The project would also normally
specify the language standard and perhaps the standard library implementation for the whole
build. Therefore, the project should be careful to ensure that its chosen language standard and
standard library implementation are consistent with those used by the Qt libraries.

A common example of inconsistent requirements would be a project that uses Qt 5 but makes use of
C++17 features. It might set its targets’ CXX_STANDARD and CXX_STANDARD_REQUIRED properties, or it might
add cxx_std_17 as a compile feature requirement. This can result in the Qt libraries linking against a
standard library for C++11 but the project linking against a standard library for C++17. This may be
safe for some library implementations, but it is not guaranteed to be so.

If the project is built with a different C++ standard or even just a different compiler version than
was used to build Qt, there is no guarantee that binary compatibility will be maintained. In
practice, for the mainstream compilers it is typically safe if all of the following are true:

• The project’s targets use a C++ standard setting that is the same as or higher than that used by
Qt itself.

• The project is built with a compiler of the same type and same or later version as was used to
build Qt (some restrictions apply, e.g. earlier Visual Studio versions may only be compatible
within the same major release).

• The project is built with the same standard library implementation as was used to build Qt (less
of an issue with more recent compilers and Qt versions).

36.2.2. Position Independent Code

As mentioned back in Section 22.6, “Mixing Static And Shared Libraries”, shared libraries require
sources to be compiled as position-independent code (PIC) on some platforms. This relates to
symbol relocation at runtime and is handled automatically by CMake through the
POSITION_INDEPENDENT_CODE target property. On such platforms, programs can also sometimes be built
as position-independent executables (PIE). This adds a layer of security by making addresses of
symbols less predictable through ASLR (Address Space Layout Randomization).

For Qt applications, PIE can present some challenges. When building with GCC on ELF platforms
(e.g. x86-based Linux systems), executables must not be compiled with the -fPIE flag or crashes will
likely occur due to the way Qt uses symbols. Following extensive discussions between GCC and Qt
developers, a recommendation to use -fPIC instead was put forward as a workaround. The use of
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-fPIC instead of -fPIE for executables is an unusual arrangement. The -fPIC flag is typically only
used for libraries.

CMake follows the typical usage of these options and adds -fPIE when compiling sources of
executable targets that have their POSITION_INDEPENDENT_CODE target property set to true (with some
caveats — see the CheckPIESupported module and CMP0083 policy, both of which were added in CMake
3.14). This is incompatible with the unique needs of Qt applications. For those executable targets,
projects should ensure the POSITION_INDEPENDENT_CODE target property is not set to true. If a project
wants ASLR for a Qt application, the -fPIC compiler flag must be added to the executable target.

From Qt 5.14, adding the -fPIC flag is automatically enforced by the Qt5::Core target through its
INTERFACE_COMPILE_OPTIONS property. Therefore, no special steps are required for projects building
against Qt 5.14 or later. When using earlier Qt versions, projects must add -fPIC to their executable
targets themselves using target_compile_options() or some other equivalent method. Note that this
only applies to executable targets, the POSITION_INDEPENDENT_CODE target property will yield the
correct compiler flags for library targets.

36.2.3. Windows GUI Applications

An aspect unique to Windows is that GUI and console programs have different entry points.
Console applications use main(), just like other platforms, but Windows GUI applications use
WinMain() as their entry point. To free projects from having to handle this difference, Qt provides a
special library that defines a simple WinMain() function which forwards to main(). The Qt5::Core
imported target will automatically link in this special library if the executable linking to Qt5::Core is
a GUI application. The WIN32_EXECUTABLE target property controls this choice and is most commonly
set by adding the WIN32 keyword to the add_executable() call.

find_package(Qt5 5.9 REQUIRED Core Gui)

add_executable(ConsoleApp ...)
add_executable(GuiApp WIN32 ...)

target_link_libraries(ConsoleApp PRIVATE Qt5::Core)
target_link_libraries(GuiApp PRIVATE Qt5::Gui Qt5::Core)

In the above example, ConsoleApp will not link in the special Qt5::WinMain library, whereas GuiApp will.
As this example shows, projects shouldn’t need to directly handle or even mention Qt5::WinMain. It is
handled automatically. In the event that this automatic linking of the Qt5::WinMain library needs to
be disabled, the Qt5_NO_LINK_QTMAIN target property can be set to false.

36.3. Autogen
Qt provides a number of command-line tools which process sources and generate other source files
to be consumed by the build. The three most important and heavily used of these tools are moc, uic
and rcc. CMake provides dedicated features that automate the way these tools are used within a
project. CMake commands provided by Qt also allow projects to use these tools in a more manual,
granular way for greater control if required.
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CMake 3.8 changed the way Qt-related auto-generated files are handled. Those files are now
generated into their own separate directory by default and that directory is automatically added to
things like the header search paths where needed. When using CMake 3.7 or earlier, projects must
take extra steps to account for such search paths. The following sections discuss how these changes
affect each of the tools.

36.3.1. Moc

Qt uses its own meta-object system to implement signals and slots, run-time type information and
its own property system. It provides the moc tool which scans source code looking for particular
macros (e.g. Q_OBJECT, Q_GADGET and so on) and generates C++ code implementing the underlying
functions the macros declare. The following is a typical example of a class that requires processing
by moc:

class SomeClass : public QObject
{
    Q_OBJECT
public:
    SomeClass(QObject* parent);
    ~SomeClass();
    // ... various signals, slots,
    // properties, member functions, etc....
};

CMake provides a fully automated way of managing how and when moc should be run on source
files of a given target. This functionality is enabled by setting the AUTOMOC target property to true. The
property is initialized from the value of the CMAKE_AUTOMOC variable when the target is created. When
AUTOMOC is enabled, files are scanned at build time and moc is run on the relevant files. The generated
code will be incorporated into the target in the appropriate way depending on how the project and
source files are structured. If extra command line options need to be passed to the moc tool, they can
be specified in the AUTOMOC_MOC_OPTIONS target property.

In the simplest scenario, a class like the one above is defined in a header and uses the Q_OBJECT
macro. No other project source files make any assumption about the file name(s) that moc will
generate. The project lets AUTOMOC take care of compiling the generated files and linking them into
the target. This is very simple to set up and gives AUTOMOC the most control over the way the
generated code is added to the build.

set(CMAKE_AUTOMOC YES)

add_executable(MyQtApp
    main.cpp
    myclass.cpp
    myclass.h
)

find_package(Qt5 COMPONENTS Core REQUIRED)
target_link_libraries(MyQtApp PRIVATE Qt5::Core)
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One weakness of the above approach is that all generated sources may be combined into a single
implementation file with more recent CMake versions. If the number of classes processed by
AUTOMOC in this way is very large, it can put pressure on compiler resources and even cause build
failure in extreme cases. At the very least, it can make larger builds less efficient, so it may be
desirable to have the generated files compiled individually to take advantage of build parallelism
and reduce resource requirements. One way to achieve this is for project sources to explicitly
include the generated sources themselves rather than leaving AUTOMOC to add them to the build. A
target can have a C++ source file which contains a line like the following (basename is just a
placeholder in this example):

basename.cpp

#include "moc_basename.cpp"

If a file called basename.h is found (or with any other recognized header file extension), then AUTOMOC
will run moc on that header such that it generates a file called moc_basename.cpp. Since the
implementation file already pulls in that generated file via an #include statement, AUTOMOC doesn’t
have to do anything more to add it to the build. It will already be compiled as part of basename.cpp.
In other words, adding an include for moc_basename.cpp makes that source file take over adding the
generated file to the build instead of letting AUTOMOC combine it with other generated files. An added
advantage is that it integrates quite naturally with CMake’s unity build support (see Section 35.1,
“Unity Builds”). The generated moc_basename.cpp effectively becomes part of the basename.cpp file it
belongs to. Unity builds have a configurable limit to how many target sources will be merged into
one batch, so this will indirectly limit how many generated moc_*.cpp files get combined into one
compilation unit as well.

In some cases, a private class may be declared in a C++ implementation file rather than in a header.
If such a class uses Q_OBJECT, moc must be run on that C++ file. To account for this, if a source file
contains a line that includes a .moc file like shown just below, AUTOMOC will run moc on that source file
even if it isn’t a header. In such cases, it will use the specified file name for the generated code:

#include "basename.moc"

Again, the source file pulls in the generated code on its own, so AUTOMOC doesn’t have to do anything
more to add it to the build. That has the same benefit for unity builds as mentioned previously.

By default, AUTOMOC scans for the macros Q_OBJECT, Q_GADGET and Q_NAMESPACE. CMake 3.17 added
Q_NAMESPACE_EXPORT to this list as well. From CMake 3.10, this list of macro names is taken from the
AUTOMOC_MACRO_NAMES target property, which is initialized from the CMAKE_AUTOMOC_MACRO_NAMES variable
when the target is created. For most projects, these defaults are fine. If the conventional macro
names are embedded within wrapper macros, the names of those wrapper macros need to be
added to AUTOMOC_MACRO_NAMES as well. The following contrived example demonstrates such a
scenario:

mywrapper.h

#define MY_WRAPPER Q_OBJECT
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someclass.cpp

#include mywrapper.h

class SomeClass : public QObject
{
    MY_WRAPPER
public:
    // ...
};

For such a case, the project would most conveniently handle this by adding the wrapper macro to
the global defaults like so:

list(APPEND CMAKE_AUTOMOC_MACRO_NAMES MY_WRAPPER)

If the wrapper macro refers to a file name that should be considered a dependency for the moc
generation, the AUTOMOC_DEPEND_FILTERS target property should be used to express that dependency.
This property is not often needed, so the interested reader is referred to the official CMake
documentation for that property for further details.

When using AUTOMOC, CMake 3.8 and later will generate the moc_*.cpp or *.moc files in a separate
directory set aside for such auto-generated files. That directory will be automatically added to the
target’s header search path, so the project doesn’t need to do anything else. When using CMake 3.7
or earlier, the generated files are created in the current build directory and that directory is not
automatically added to the header search path. It is therefore common practice for projects to set
the CMAKE_INCLUDE_CURRENT_DIR variable to true so that the current source and build directories are
always added to the header search path. If the project already requires CMake 3.8 or later, it should
avoid setting CMAKE_INCLUDE_CURRENT_DIR since it is not needed for AUTOMOC in that case.

In some situations, it may be necessary to prevent moc from processing a particular file. This is most
easily achieved by setting that file’s SKIP_AUTOMOC source property to true. If other autogen tools like
uic and rcc should also skip the file, the SKIP_AUTOGEN source property can be set to true instead.

add_executable(MyApp noMocPlease.cpp noAutoGen.cpp ...)

set_source_files_properties(noMocPlease.cpp PROPERTIES
    SKIP_AUTOMOC TRUE
)
set_source_files_properties(noAutoGen.cpp PROPERTIES
    SKIP_AUTOGEN TRUE
)

While setting AUTOMOC to true is the generally recommended way of enabling moc to be run on the
relevant sources, in very large projects the performance cost of scanning many sources may be
non-trivial. If only some sources need moc processing and others don’t, projects can manually
specify which ones to process with the following command provided by the Qt5::Core component
instead of using AUTOMOC:
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qt5_wrap_cpp(outVar sources... [OPTIONS ...])

The files to be processed with moc should be listed as the sources. The resultant set of generated
moc_*.cpp files will be provided back to the caller in the outVar variable. Any extra command-line
options to be passed to the moc tool can be specified after the OPTIONS keyword. The project is
responsible for ensuring that the generated sources are added to the build and at least one target
must depend on them.

The easiest way to satisfy these requirements is to add the generated sources to an executable or
library target. For example:

find_package(Qt5 COMPONENTS Core REQUIRED)

# Process this file manually rather than using AUTOMOC
qt5_wrap_cpp(genMocs myclass.h)

add_executable(MyQtApp
    main.cpp
    myclass.cpp
    myclass.h
    ${genMocs}
)

Another way to satisfy the requirements is to #include the generated moc_*.cpp file within one of the
existing source files and create a custom target that depends on the files listed in outVar. The custom
target is needed to ensure that build rules are created for the custom moc execution steps. Note that
the qt5_wrap_cpp() command will generate its output files in the current build directory similar to
the AUTOMOC behavior of CMake 3.7 and earlier, so CMAKE_INCLUDE_CURRENT_DIR may be needed if using
this method. Such an arrangement may look something like this:

find_package(Qt5 COMPONENTS Core REQUIRED)

# Process this file manually rather than using AUTOMOC
qt5_wrap_cpp(genMocs myclass.h)

set(CMAKE_INCLUDE_CURRENT_DIR YES)
add_executable(MyQtApp
    main.cpp
    myclass.cpp
    myclass.h
)

add_custom_target(MyMocs DEPENDS ${genMocs})

myclass.cpp

#include "moc_myclass.cpp"
// Rest of the file as normal...
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The first method is simpler, whereas the second method may be useful if AUTOMOC had been used
previously and the source files were already modified to #include the generated moc_*.cpp files
directly. Either method should integrate with unity builds in a natural way.

36.3.2. Widgets

Qt GUI applications can be based on different UI technologies. They can use the QML declarative
language, widgets based on the C++ QWidget hierarchy, or sometimes a combination of both. QML
requires no special handling from the build system, it is handled purely by the code (.qml files may
be stored in resources for the application to use at run time though and the build system may need
to process the resources). Widgets can be implemented purely in C++ code too, but they can also be
defined using a XML-based UI description file. These UI files typically have a .ui file extension and
are processed by the uic tool to produce C++ code, which is then compiled into the project just like
any other source file.

The uic tool has many similarities to moc, both in the way the tools work and the CMake support
available. CMake provides the AUTOUIC target property which fulfills a very similar role to AUTOMOC.
The AUTOUIC property is initialized from the value of the CMAKE_AUTOUIC variable when the target is
created. When AUTOUIC is set to true, CMake will scan that target’s source files at build time looking
for #include statements that pull in header files of the form ui_basename.h. When it finds such
statements, it searches for a matching basename.ui file in the same directory or any directories listed
in that target’s AUTOUIC_SEARCH_PATHS target property. If the #include statement has a path component
before the ui_basename.h, the search will be performed with and without that path. If a basename.ui
file is found, it will be processed with the uic tool to generate the header.

find_package(Qt5 COMPONENTS Widgets Core REQUIRED)

set(CMAKE_AUTOUIC YES)
add_executable(MyQtApp
    main.cpp
    mainwindow.cpp
    mainwindow.h
)
target_link_libraries(MyQtApp PRIVATE Qt5::Widgets Qt5::Core)

When using AUTOUIC, CMake 3.8 and later will generate the ui_*.h files in a separate directory set
aside for such auto-generated files. The behavior is exactly the same as for AUTOMOC, with that
directory being automatically added to the target’s header search path. When using CMake 3.7 or
earlier, the generated files are created in the current build directory and that directory is not
automatically added to the header search path. Therefore, the CMAKE_INCLUDE_CURRENT_DIR variable is
typically set to true when CMake 3.7 or earlier must be supported.

In another similarity to AUTOMOC, if a source file should not be scanned by AUTOUIC for some reason, its
SKIP_AUTOUIC source property can be set to true. If that source file should also be skipped by other Qt
tools like moc and rcc, the SKIP_AUTOGEN source property should be set to true instead.

In some projects, it may be necessary to customize the command-line options given to uic. For
example, the --tr option can be used to specify a different translation function. Such command-line
options can be specified in the AUTOUIC_OPTIONS target property, which takes its initial value from the
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CMAKE_AUTOUIC_OPTIONS variable when the target is created. In addition, a target can enforce uic
options transitively on anything that links to it by setting the INTERFACE_AUTOUIC_OPTIONS target
property. This is useful, for example, when the target itself provides the translation function and it
wants to ensure that libraries that link to it will use that translation function instead of the default
one. The CMake documentation contains examples of this scenario in its Qt manual.

The use of AUTOUIC on large projects can have similar performance implications as AUTOMOC. If a
project wants to avoid the automatic source scanning and specify the .ui files to be processed
directly, it can do so with the macro provided by the Qt5::Widgets component:

qt5_wrap_ui(outVar uiFiles... [OPTIONS ...])

Unlike qt5_wrap_cpp() which produces .cpp files, the qt5_wrap_ui() command produces headers. The
list of headers provided back to the caller in the output variable should be added directly to a target
to ensure that the custom build rules created by qt5_wrap_ui() are applied.

find_package(Qt5 COMPONENTS Widgets Core REQUIRED)

qt5_wrap_ui(genUiHeaders mainwindow.ui)

add_executable(MyQtApp
    main.cpp
    mainwindow.cpp
    mainwindow.h
    ${genUiHeaders}
)

Regardless of whether or not AUTOUIC is used, projects may choose to list .ui files as sources directly
for a target. This will not affect how those files are processed, but it does make those files show up
in the list of sources in some IDE tools. Projects may even want to define a source group to improve
the organization within some IDEs. For example:

source_group("UI Files" REGULAR_EXPRESSION [[.*\.ui]])

36.3.3. Resources

Qt resources are typically defined in files with a .qrc file extension. Such files are XML descriptions
of other files (images, .qml files, etc.) which the application will access using the Qt resource system.
These .qrc files need to be processed by the rcc tool, which generates either a source file embedding
the resources as C++ code or a binary file that can be dynamically loaded at run time.

The simplest way of handling .qrc files is to set the AUTORCC target property to true and add the .qrc
files to the list of sources for the target. This will result in the resources being encoded as a
generated C++ source file which AUTORCC automatically adds to the target. There is nothing more for
the project to do, so this method is very straightforward. The AUTORCC property takes its initial value
from the CMAKE_AUTORCC variable when the target is created.
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set(CMAKE_AUTORCC YES)
add_executable(MyQtApp
    main.cpp
    myclass.cpp
    myclass.h
    myApp.qrc
)

Command line options for rcc can be provided in the AUTORCC_OPTIONS target property, but this
should not typically be required. Similar to the other autogen capabilities, AUTORCC can be skipped
for a particular .qrc file by setting its SKIP_AUTORCC source file property, or by setting SKIP_AUTOGEN if it
should be skipped by moc and uic as well.

If the project wants to create a binary version of the resources to be dynamically loaded at run
time, AUTORCC cannot be used. An example scenario is where a very large resource only has to be
loaded into memory if an application setting enables a feature that requires it. For such use cases,
the Qt5::Core component provides the following commands:

qt5_add_resources(outVar qrcFiles... [OPTIONS ...])
qt5_add_big_resources(outVar qrcFiles... [OPTIONS ...])
qt5_add_binary_resources(target qrcFiles...
    [OPTIONS ...]
    [DESTINATION rccFile]
)

The qt5_add_resources() command provides the same capability as AUTORCC. It defines custom
commands that take the qrcFiles as input and produce source files whose names will be provided
in the variable named by outVar. Just as for AUTOMOC, these sources need to be added to a target to
ensure the custom build rules are enforced and the sources are compiled. There’s generally little
need for this command though, as AUTORCC is usually more appropriate (but see an exception related
to unity builds at the end of this section).

The qt5_add_big_resources() command is very similar and can generally be used as a drop-in
replacement for qt5_add_resources(). Its main difference is that instead of generating sources that
need to be compiled, it bypasses the compiler and generates object files directly. This is most useful
for very big resources which would otherwise generate huge source files that are too large for
compilers to process. The names of the generated object files will be provided in the variable
named by outVar. Once again, these need to be added to a target to ensure that the relevant build
rules are properly defined. Due to internal implementation details, the qt5_add_big_resources()
command is only made available by Qt when using CMake 3.9 or later.

The qt5_add_binary_resources() command provides the ability to compile .qrc files into a single
dynamically loadable .rcc file. It requires a target name which the command will create as part of
the call. The name of the generated .rcc file can be specified using the DESTINATION keyword, or if
omitted, the name of the target with .rcc appended will be used and it will be created in the
CMAKE_CURRENT_BINARY_DIR.
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find_package(Qt5 COMPONENTS Core REQUIRED)

qt5_add_resources(resCompiledIn compiledIn.qrc)
qt5_add_binary_resources(resLoadable runtimeLoadable.qrc
    DESTINATION runtimeLoadable.rcc
)

add_executable(MyQtApp
    ${resCompiledIn}
    ${CMAKE_CURRENT_BINARY_DIR}/runtimeLoadable.rcc
    ...
)
set_target_properties(MyQtApp PROPERTIES
    RESOURCE ${CMAKE_CURRENT_BINARY_DIR}/runtimeLoadable.rcc
)

Note in the above how the generated runtimeLoadable.rcc file is still added to the MyQtApp target. This
is so that it can be listed in the target’s RESOURCE property, which is a requirement for ensuring the
file is installed as part of the target. See Section 24.2, “Application Bundles” for a related discussion
of other ways that resources can be handled on Apple platforms.

Since AUTORCC is not used in the above example, the .qrc files could also be added to the list of
sources given to add_executable(). This may make them show up in source file lists in some IDEs but
won’t otherwise affect how CMake treats them.

It should be noted that the rcc tool generates C++ code with generic symbol names. This has
implications for unity builds. If multiple sources generated by rcc are added to the same target,
those sources should be excluded from unity builds to prevent compile-time errors due to symbols
being redefined. This can be done by setting the relevant source property, but the names of the
source files are not available to the project when AUTORCC is used. An example of setting the source
properties when using the manual commands provided by Qt instead might look like this:

find_package(Qt5 COMPONENTS Core REQUIRED)

qt5_add_resources(resourceSet1 resourceSet1.qrc)
qt5_add_resources(resourceSet2 resourceSet2.qrc)

add_executable(MyQtApp
    ${resourceSet1}
    ${resourceSet2}
    ...
)
set_source_files_properties(${resourceSet1} ${resourceSet2}
    PROPERTIES SKIP_UNITY_BUILD_INCLUSION TRUE
)

36.4. Translations
A core part of Qt is its ability to provide localized text. Strings are wrapped with a call to a special
translation function in the C++ code, then a separate tool named lupdate is run on the code to
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produce a separate .ts file which can be given to a translator. The tool can also process other file
types, such as QML, UI and resource files. The .ts file is updated by the translator with translations
for a given language. At some point, a tool named lrelease is run on the .ts file to produce a final
.qm translation file which is distributed with the application. The .qm file format is a more efficient
format intended only for run time, whereas .ts files are intended for translators to load into the Qt
Linguist application. The lupdate tool can be re-run at any time to rescan the sources and update a
.ts file with any changes without losing previously translated text.

CMake does not provide any direct assistance with coordinating the above process, but the
Qt5::LinguistTools component does provide two CMake commands which make the steps fairly
straightforward. The simpler of the two commands takes the names of one or more .ts files and
defines custom commands that run lrelease to generate the associated .qm files:

qt5_add_translation(outVar tsFiles...)

Projects need to ensure that at least one target depends on the generated .qm files so that the build
rules are enforced. This could be a dedicated custom target or it could be an ordinary executable or
library target. For example:

find_package(Qt5 COMPONENTS LinguistTools Core REQUIRED)

qt5_add_translation(qmFiles
    MyQtApp_de_AT.ts
    MyQtApp_de_DE.ts
    MyQtApp_ja.ts
)

# Choice 1: Use a custom target
add_custom_target(ProcessTranslations DEPENDS ${qmFiles})

# Choice 2: Add to a real target
add_executable(MyQtApp ${qmFiles} ...)

The qt5_add_translation() command never modifies the .ts files, it only produces .qm files. In order
to create or update a .ts file, the other command provided by the Qt5::LinguistTools component
must be used:

qt5_create_translation(outVar
    [directories...]
    [sources...]
    [tsFiles...]
    [OPTIONS ...]
)

This command will create any of the named tsFiles if they do not already exist. It will then scan the
specific sources as well as any sources it finds in the directories (recursively by default) and update
the tsFiles with any new translatable strings by running the lupdate tool. It will then call
qt5_add_translation() internally with the list of .ts files, so projects do not need to call that
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themselves. The OPTIONS keyword can be used to specify additional command-line options to pass to
the lupdate command, if required.

When performing the source code scan, the lupdate tool is given an -I option for each path in the
INCLUDE_DIRECTORIES directory property. Include directories defined on targets are not used, since the
source scanning is not associated with any particular target. The project needs to ensure that the
lack of target include directories won’t change the set of translatable strings seen by lupdate (if
needed, the OPTIONS keyword can be used to manually add paths with -I flags).

The following example sets up scans of all sources in the current directory and below, creating or
updating a single .ts file as appropriate (all performed at build time):

qt5_create_translation(qmFiles ${CMAKE_CURRENT_LIST_DIR} MyQtApp_ja.ts)

add_custom_target(ProcessTranslations DEPENDS ${qmFiles})

The .ts files only need to be updated by rescanning the sources just before the .ts files are handed
over to a translator to update the translations. There’s little point rescanning the sources with every
build because the .qm files generated won’t change until the translations are updated by the
translator. In very large projects, this rescanning could be annoying for developers in their
everyday workflow. Most of the time, calling qt5_add_translation() to provide the .qm files for the
existing .ts files is sufficient. The qt5_create_translation() command only needs to be called when
the .ts files are first created or when the developer specifically wants to rescan the sources and
update the .ts files. One strategy is to use a CMake cache option to switch between the two modes:

set(tsFiles MyQtApp_ja.ts)
option(ENABLE_TS_RESCAN "Enable rescanning sources to update .ts files" ON)
if(ENABLE_TS_RESCAN)
    qt5_create_translation(qmFiles ${CMAKE_CURRENT_LIST_DIR} ${tsFiles})
else()
    qt5_add_translation(qmFiles ${tsFiles})
endif()

add_custom_target(ProcessTranslations DEPENDS ${qmFiles})

This allows the developer to be in control of when the .ts files will be updated and when to pay the
cost of rescanning the sources.



CMake 3.17.0 introduced some undesirable behavior for the Ninja generator which
affects the above technique. When switching the ENABLE_TS_RESCAN cache option
from true to false, the .ts files would be deleted at the end of the CMake step if
using Ninja 1.10 or later. This relates to a Ninja feature called cleandead, which
CMake was invoking as a final step of project file generation. CMake 3.19.2
reverted that behavior and a fix was back-ported to the 3.18.6 release, but the
problem remains for the 3.17 series. Projects should strongly consider making at
least 3.19.2 their minimum CMake version if using this technique.

620



An important observation is that the qt5_create_translation() command updates .ts files in-place,
so the build rules would directly modify the files in the source tree. These files would typically be
under version control just like other sources. This is a rare example where a build step updating
something in the source tree is appropriate.

36.5. Deployment
Installing and packaging Qt applications is a non-trivial exercise due to the various different files
that must be included with the main application executable. An incomplete list of things that may
need to be installed includes:

• Qt libraries (unless Qt is linked statically).

• Qt plugins and platform files.

• A qt.conf file.

• Translation files from both Qt itself and the application, if not embedded directly as resources.

• Images, icons or other resources that are not compiled into the application.

The application must also be installed with the right RPATH settings to allow libraries and
frameworks to be found when the application is run (see the discussions in Section 27.2.2, “RPATH”
and Section 27.2.3, “Apple-specific Targets”). On Apple platforms, the unique directory layout of app
bundles further complicates deployment (see Chapter 24, Apple Features).

36.5.1. Qt Deployment Tools

Qt provides tools which automate some of the more difficult aspects of the deployment process.
These tools are not available for all platforms, but where they are available, they greatly simplify
installation and packaging. They include macdeployqt, windeployqt and androiddeployqt. The basic
syntax of these tools is:

macdeployqt [options...] app-bundle

windeployqt [options] files...

androiddeployqt options...

Each tool has its own set of options, but the general idea is the same. They copy the necessary Qt
libraries, frameworks, plugins and platform files to the relevant location within the application
bundle or directory structure. They may also create a simple qt.conf file in the appropriate location.
Command line options can be used to tailor the tool’s behavior, all of which are described in the Qt
documentation and the tool’s own --help output. The reader should consult the documentation for
the specific tool being used to familiarize themselves with its requirements and available options.

Discussion here in this section focuses on the CMake-specific aspects of integrating these tools into a
CMake project. It is assumed that the project already defines the relevant install() commands and
any associated properties are set appropriately. Chapter 27, Installing, Chapter 24, Apple Features
and Chapter 20, Working With Files are especially relevant.
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The Qt deploy tool needs to be invoked at install time after targets and files have been installed. The
install(CODE) or install(SCRIPT) command is used to implement the logic, but as noted in Section
27.6, “Custom Install Logic”, the timing of when such install-time code will be executed is only well-
defined with CMake 3.14 or later. These commands should generally be at the end of the directory
scope where the application and its files are installed, after all other install() commands.

Projects may find it more manageable to use a separate file to hold the custom install code. As the
application complexity grows, the number of custom steps required may increase and placing the
logic in a separate file avoids excessive escaping. An example of a fairly generic custom install
script invoking the deployment tool might look like this:

deployapp.cmake.in

execute_process(
    COMMAND "@DEPLOYQT_EXECUTABLE@" @DEPLOY_OPTIONS@
    WORKING_DIRECTORY ${CMAKE_INSTALL_PREFIX}
    RESULT_VARIABLE result
)
if(result)
    message(FATAL_ERROR "Executing @DEPLOYQT_EXECUTABLE@ failed: ${result}")
endif()

This file is expected to be copied into the build directory with configure_file(), substituting the
location of the deployment tool and its command-line options along the way. The following shows
how the associated CMakeLists.txt file might look for installing an application bundle on the macOS
platform (code for other platforms has been omitted for brevity):

CMakeLists.txt

add_executable(MyQtApp MACOSX_BUNDLE WIN32 ...)
set_target_properties(MyQtApp PROPERTIES
    INSTALL_RPATH @executable_path/../Frameworks
)
install(TARGETS MyQtApp
    BUNDLE DESTINATION .
    ...
)
get_target_property(mocExe Qt5::moc IMPORTED_LOCATION)
get_filename_component(qtBinDir "${mocExe}" DIRECTORY)

find_program(DEPLOYQT_EXECUTABLE macdeployqt PATHS "${qtBinDir}" NO_DEFAULT_PATH)

set(DEPLOY_OPTIONS [[MyQtApp.app -verbose=2 "-codesign=Apple Development"]])

configure_file(deployapp.cmake.in deployapp.cmake @ONLY)
install(SCRIPT ${CMAKE_CURRENT_BINARY_DIR}/deployapp.cmake)

It is worth noting that the DEPLOY_OPTIONS for macdeployqt can be used to do things like handle code
signing (shown in the above example) and to skip plugins that do not meet app store requirements
due to their use of private APIs. See the macdeployqt help for details.
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The above pattern would be very similar for windeployqt as well. The main differences would be:

• The INSTALL_RPATH target property would be ignored.

• find_program() would search for windeployqt instead of macdeployqt.

• The DEPLOY_OPTIONS would be specific to the windeployqt tool.

The windeployqt tool follows a different default directory layout to the one that CMake and the
GNUInstallDirs module uses. In particular, the tool assumes the application binary is at the base
install location instead of in a bin subdirectory below that point. Command line options can be used
to coerce the tool to produce a layout more closely aligned with CMake’s defaults if required
though. For example, if the MyQtApp target in the earlier example is using the standard GNUInstallDirs
layout described in Section 27.1, “Directory Layout”, the following set of windeployqt command line
options could be used:

set(DEPLOY_OPTIONS [[bin/MyQtApp.exe --dir . --libdir bin --plugindir plugins]])

The other step required is to install a qt.conf file that accounts for the above installed layout
changes. It should be installed to the same directory as the application binary, which will be in the
bin directory for the standard directory layout. The windeployqt tool doesn’t write a qt.conf file, so
the project has to create one itself, but only a very minimal file is needed:

qt.conf

[Paths]
Prefix = ..

36.5.2. Deploying Translation Files

Deploying translation files is similar to installing any other arbitrary file or resource, but the
translation files that come with Qt itself require special handling. Qt 5 splits its translation files
based on components, but the Qt documentation recommends merging those files the application
needs into one file per translated language for deployment (see the developers section of the
Qt Linguist manual). This makes development and deployment easier because only one file of the
form qt_xx.qm needs to be loaded at runtime to handle Qt’s translations. The windeployqt tool handles
this automatically and will create these translation files by default, but it can be disabled if desired.
The macdeployqt tool does not offer this functionality, so projects have to implement it themselves.
The lconvert tool provided by Qt can be used to merge the necessary .qm files and this can also be
done at install time in the same deployapp.cmake script used to invoke the deployment tool.

The following expands on the macOS example from the previous section. It shows how to combine
the base language file with the translations for the Qt Multimedia module (see Section 36.4,
“Translations” for how the qmFiles variable is populated in the CMakeLists.txt file):
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deployapp.cmake.in

set(outDir "${CMAKE_INSTALL_PREFIX}/@TRANSLATION_DIR@")
set(inDir  "@qtBinDir@/../translations")

# Loop over the set of languages to deploy
foreach(lang IN ITEMS ja de fr)
    execute_process(
        COMMAND "@LCONVERT_EXECUTABLE@"
                -o ${outDir}/qt_${lang}.qm
                ${inDir}/qtbase_${lang}.qm
                ${inDir}/qtmultimedia_${lang}.qm
        RESULT_VARIABLE result
    )
    if(result)
        message(FATAL_ERROR "Failed to create qt_${lang}.qm: ${result}")
    endif()
endforeach()

execute_process(
    COMMAND "@DEPLOYQT_EXECUTABLE@" @DEPLOY_OPTIONS@
    WORKING_DIRECTORY ${CMAKE_INSTALL_PREFIX}
    RESULT_VARIABLE result
)
if(result)
    message(FATAL_ERROR "Executing @DEPLOYQT_EXECUTABLE@ failed: ${result}")
endif()

CMakeLists.txt

add_executable(MyQtApp MACOSX_BUNDLE WIN32 ...)
set_target_properties(MyQtApp PROPERTIES
    INSTALL_RPATH @executable_path/../Frameworks
)
set_source_files_properties(${qmFiles} PROPERTIES
    MACOSX_PACKAGE_LOCATION translations
)
install(TARGETS MyQtApp BUNDLE DESTINATION . ...)

get_target_property(mocExe Qt5::moc IMPORTED_LOCATION)
get_filename_component(qtBinDir "${mocExe}" DIRECTORY)

find_program(LCONVERT_EXECUTABLE lconvert    PATHS "${qtBinDir}" NO_DEFAULT_PATH)
find_program(DEPLOYQT_EXECUTABLE macdeployqt PATHS "${qtBinDir}" NO_DEFAULT_PATH)

set(DEPLOY_OPTIONS [[MyQtApp.app -verbose=2 "-codesign=Apple Development"]])
set(TRANSLATION_DIR MyQtApp.app/Contents/translations)

configure_file(deployapp.cmake.in deployapp.cmake @ONLY)
install(SCRIPT ${CMAKE_CURRENT_BINARY_DIR}/deployapp.cmake)

The above example shows how to install the translation files to the translations directory. Assuming
the project is following the standard layout as recommended in Section 27.1, “Directory Layout”,
this matches the default location used by QLibraryInfo and qt.conf files. As a result, the project does
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not need to provide its own custom qt.conf file, the one provided by macdeployqt is sufficient. Note
that the deploy tool doesn’t typically provide a way to change the qt.conf file it produces. It may
issue warnings if the project tries to install its own, so following the defaults is desirable.

36.5.3. Linux Considerations

Qt does not provide an official deployment tool for Linux. There is a community-supported
linuxdeployqt tool, but it is not officially endorsed and has some philosophical and design
differences compared to the official Qt tools. If linuxdeployqt is not suitable, projects will need to
handle all aspects of deployment themselves. The appropriate way to do that depends on whether
the project will rely on the Linux distribution to provide Qt runtime support or whether it will be
packaged up as a self-contained, standalone application.

Relying on the Linux distribution to provide the Qt runtime support is, on the surface at least, the
simplest path. There is essentially nothing for the project to do other than package up its own
components. If the project is made part of the Linux distribution, the distribution maintainer would
add the necessary package dependency information. The main drawback to this approach is that
when not part of the Linux distribution, the project would need to create separate binary packages
for each distribution due to potential differences in binary compatibility, directory layout, etc.

Supporting self-contained, standalone packaging is a very different scenario. The Qt documentation
for Linux/X11 deployment details all the necessary things that need to be done, but it is a non-trivial
exercise. Developers would need to identify all of the items from that page that would apply to their
project and ensure those items are part of their project’s install logic. That logic may also need to
account for any changes in libraries, plugins, etc. between Qt versions.

If the project needs to support both standalone packaging and direct inclusion into Linux
distributions, all of the Qt-related install logic should be conditional on some kind of CMake cache
option to simplify the work of distribution maintainers.

36.6. Transition To Qt 6
Qt 5.15 added some features to help projects prepare for a transition to Qt 6. In addition to the
versioned imported targets and CMake commands, unversioned equivalents are also available. For
each target name starting with Qt5::, an equivalent unversioned target with the prefix Qt:: can be
used. Similarly, each of the qt5_…() commands have unversioned qt_…() equivalents as well.
Projects can switch to using the unversioned targets and commands, which may allow them to
build with either Qt 5 or Qt 6 during this period of transition.

# Use Qt 6 if available, otherwise fall back to Qt 5
set(qtComponents Core Widgets LinguistTools)
find_package(Qt6 COMPONENTS ${qtComponents} QUIET)
if (NOT Qt6_FOUND)
    find_package(Qt5 5.15 COMPONENTS ${qtComponents} REQUIRED)
endif()

add_executable(MyQtApp ...)
target_link_libraries(MyQtApp PRIVATE Qt::Widgets Qt::Core)
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The reader should be aware that there are differing views on whether using unversioned targets
and commands is advisable (see QTBUG-83774). Each project will need to consider whether these
concerns are important to them before adopting the above transitional approach.

The Qt 6 documentation recommends using unversioned commands and versioned targets. The
relevant discussion can be found at the following location:

https://doc.qt.io/qt-6/cmake-qt5-and-qt6-compatibility.html

36.7. Recommended Practices
Projects should already have migrated off Qt 4 and be using Qt 5, with preparations for supporting
Qt 6 soon. Development of CMake support for Qt is focused on Qt 5 and more recently on Qt 6.
Staying with Qt 4 will become increasingly problematic and is not recommended. For projects
working with Qt 6, prefer to use CMake 3.21 or later to take advantage of a range of new CMake
features and bug fixes relevant to Qt.

When bringing Qt into a project with find_package(), prefer to find the Qt5 umbrella package and
specify COMPONENTS in that one call rather than finding each component as its own separate
find_package() call. This communicates the intent more clearly and is more robust, since it ensures
all Qt components come from the same Qt installation.

Avoid referring to things Qt provides through variables. Instead, prefer to use the imported targets
like Qt5::Core, Qt5::Gui, etc. The imported targets are much more robust and more convenient to
use, as they come with transitive properties that greatly simplify the task of defining targets that
link against Qt libraries.

Projects should prefer to use AUTOMOC, AUTOUIC and AUTORCC over the manual commands provided by
Qt. The AUTOxxx functionality is considerably simpler and results in more concise project files. It is
also easier to maintain as files are added, modified, renamed and moved over the course of a
project’s lifetime. Only where it is clear that the impact on build performance warrants the extra
effort or where the desired processing isn’t supported (e.g. dynamically loadable resources) should
the manual commands provided by Qt be used.

When defining translation files to be part of the project, prefer to follow the same default naming
convention that Qt Linguist uses. Translation files should ideally be named according to the pattern
something_xx_YY.ts, where xx is a lowercase ISO639 language code and YY is an uppercase ISO3166
country code. The _YY part can be omitted if country-based localization isn’t needed. Avoid using
more than one period character in the name. In particular, do not use names of the form
something.xx_YY.ts, even though some examples in the Qt documentation do this. Prior to Qt 5.12.5,
such names can trigger a bug in the implementation of commands like qt5_create_translation() and
qt5_add_translation() which can lead to build failures when there is more than one .ts file.

Prefer to use the deployment tools provided by Qt where they are available. Tools like macdeployqt,
windeployqt and androiddeployqt handle much of the Qt-specific aspects of deploying an application,
freeing the project from having to maintain logic for the different platforms and Qt versions. For
projects that support localization, ensure that Qt’s .qm files are also included in the deployment and
that the application knows where to find them. Handling of these Qt-provided .qm files is not
covered by all deployment tools, so projects may need to implement that for themselves.
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If creating packages for a Qt GUI application, consider using the IFW package generator, which uses
the Qt Installer Framework. The same end user experience can be provided across all desktop
platforms, the look and feel can be customized to match the application, and localization is
supported.
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Appendix A: Timer Dependency Provider
This is the full implementation of the example in Section 32.2.5, “Preserving Variable Values”.

cmake_minimum_required(VERSION 3.24)

macro(startTimer var)
    string(TIMESTAMP ${var} "%ssec %fusec")
endmacro()

function(reportTimeSince label t0)
    set(regex "([0-9]+)sec ([0-9]+)usec")

    string(REGEX MATCH "${regex}" discard "${t0}")
    set(t0_sec ${CMAKE_MATCH_1})
    set(t0_usec ${CMAKE_MATCH_2})

    string(TIMESTAMP t1 "%ssec %fusec")
    string(REGEX MATCH "${regex}" discard "${t1}")
    set(t1_sec ${CMAKE_MATCH_1})
    set(t1_usec ${CMAKE_MATCH_2})

    math(EXPR dt_sec "${t1_sec} - ${t0_sec}")
    math(EXPR dt_msec "(${t1_usec} - ${t0_usec}) / 1000")
    if(t1_usec LESS t0_usec)
        math(EXPR dt_sec "${dt_sec} - 1")
        math(EXPR dt_msec "${dt_msec} + 1000")
    endif()

    message(STATUS "${label}: ${dt_sec}s ${dt_msec}ms")
endfunction()

macro(timer_provide_dependency method depName)
    startTimer(t0)
    list(APPEND providerVarStack "${t0}")

    if("${method}" STREQUAL "FIND_PACKAGE")
        find_package(${depName} ${ARGN} BYPASS_PROVIDER)
    else()  # FETCHCONTENT_MAKEAVAILABLE_SERIAL
        FetchContent_MakeAvailable(${depName})
    endif()

    list(POP_BACK providerVarStack t0)
    reportTimeSince("Time for ${depName}" "${t0}")
endmacro()

cmake_language(
    SET_DEPENDENCY_PROVIDER timer_provide_dependency
    SUPPORTED_METHODS
        FIND_PACKAGE
        FETCHCONTENT_MAKEAVAILABLE_SERIAL
)
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Appendix B: Full Compiler Cache Example
This example combines the individual generator-specific parts described in Section 35.4, “Compiler
Caches” into a single function. It provides a common default set of Ccache environment variables,
but allows the developer to override them. This would be suitable for production use in most
projects.

The function also forces the use of the Multi-ToolTask scheduler for the Visual Studio generator,
which is essential for Ccache to make efficient use of CPU resources. See Section 35.3.3, “Visual
Studio Generators” for more details about that scheduler.

In keeping with the principles discussed in Chapter 31, Making Projects Consumable, especially
those in Section 31.2, “Don’t Assume A Top Level Build”, it would only be appropriate to set up
compiler launchers if the caller is the top level project. The function includes a check and does
nothing if called from anywhere other than the top level.

cmake/UseCompilerCache.cmake

cmake_minimum_required(VERSION 3.20...3.25)

function(useCompilerCache)
    if(NOT CMAKE_CURRENT_SOURCE_DIR STREQUAL CMAKE_SOURCE_DIR)
        return()
    endif()

    find_program(CCACHE_EXECUTABLE ccache)
    if(NOT CCACHE_EXECUTABLE)
        return()
    endif()

    # Ccache 4.7.4 manual says -fno-pch-timestamp is required for Clang
    foreach(lang IN ITEMS C CXX OBJC OBJCXX)
        if(CMAKE_${lang}_COMPILER_ID MATCHES "Clang")
            add_compile_options(
                "$<$<COMPILE_LANGUAGE:${lang}>:SHELL:-Xclang -fno-pch-timestamp>"
            )
        endif()
    endforeach()

    if(MSVC)
        # Disable use of separate PDB, Ccache won't cache things otherwise
        foreach(lang IN ITEMS C CXX)
            foreach(config IN LISTS CMAKE_BUILD_TYPE CMAKE_CONFIGURATION_TYPES)
                set(var CMAKE_${lang}_FLAGS)
                if(NOT config STREQUAL "")
                    string(TOUPPER "${config}" config)
                    string(APPEND var "_${config}")
                endif()
                string(REGEX REPLACE "[-/]Z[iI]" "-Z7" ${var} "${${var}}")
                set(${var} "${${var}}" PARENT_SCOPE)
            endforeach()
        endforeach()
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        if(DEFINED CMAKE_MSVC_DEBUG_INFORMATION_FORMAT)
            string(REGEX REPLACE "ProgramDatabase|EditAndContinue" "Embedded"
                replaced "${CMAKE_MSVC_DEBUG_INFORMATION_FORMAT}"
            )
            set(CMAKE_MSVC_DEBUG_INFORMATION_FORMAT "${replaced}" PARENT_SCOPE)
        else()
            set(CMAKE_MSVC_DEBUG_INFORMATION_FORMAT
                "$<$<CONFIG:Debug,RelWithDebInfo>:Embedded>"
                PARENT_SCOPE
            )
        endif()
    endif()

    # Use a cache variable so the user can override this
    set(CCACHE_ENV CCACHE_SLOPPINESS=pch_defines,time_macros
        CACHE STRING "List of environment variables for ccache, each in key=value form"
    )

    if(CMAKE_GENERATOR MATCHES "Ninja|Makefiles")

        foreach(lang IN ITEMS C CXX OBJC OBJCXX CUDA)
            set(CMAKE_${lang}_COMPILER_LAUNCHER
                ${CMAKE_COMMAND} -E env ${CCACHE_ENV} ${CCACHE_EXECUTABLE}
                PARENT_SCOPE
            )
        endforeach()

    elseif(CMAKE_GENERATOR STREQUAL Xcode)

        foreach(lang IN ITEMS C CXX)
            list(JOIN CCACHE_ENV "\nexport " setEnv)
            if(NOT setEnv STREQUAL "")
                string(PREPEND setEnv "export ")
            endif()
            set(launch${lang} ${CMAKE_BINARY_DIR}/launch-${lang})
            file(WRITE ${launch${lang}}
                "#!/bin/bash\n"
                "${setEnv}\n"
                "exec \"${CCACHE_EXECUTABLE}\" \"${CMAKE_${lang}_COMPILER}\" \"$@\"\n"
            )
            execute_process(COMMAND chmod a+rx ${launch${lang}})
        endforeach()

        set(CMAKE_XCODE_ATTRIBUTE_CC         ${launchC}   PARENT_SCOPE)
        set(CMAKE_XCODE_ATTRIBUTE_CXX        ${launchCXX} PARENT_SCOPE)
        set(CMAKE_XCODE_ATTRIBUTE_LD         ${launchC}   PARENT_SCOPE)
        set(CMAKE_XCODE_ATTRIBUTE_LDPLUSPLUS ${launchCXX} PARENT_SCOPE)

    elseif(CMAKE_GENERATOR MATCHES "Visual Studio")

        cmake_path(NATIVE_PATH CCACHE_EXECUTABLE ccacheExe)
        list(JOIN CCACHE_ENV "\nset " setEnv)
        if(NOT setEnv STREQUAL "")
            string(PREPEND setEnv "set ")
        endif()
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        # At least one of C or CXX must be enabled
        get_property(langs GLOBAL PROPERTY ENABLED_LANGUAGES)
        if(CXX IN_LIST langs)
            set(compiler "${CMAKE_CXX_COMPILER}")
        else()
            set(compiler "${CMAKE_C_COMPILER}")
        endif()
        file(WRITE ${CMAKE_BINARY_DIR}/launch-cl.cmd
            "@echo off\n"
            "${setEnv}\n"
            "\"${ccacheExe}\" \"${compiler}\" %*\n"
        )

        list(FILTER CMAKE_VS_GLOBALS EXCLUDE REGEX "^(CLTool(Path|Exe)|TrackFileAccess)=.*$")
        list(APPEND CMAKE_VS_GLOBALS
            CLToolPath=${CMAKE_BINARY_DIR}
            CLToolExe=launch-cl.cmd
            TrackFileAccess=false
        )
        if(NOT CMAKE_VS_GLOBALS MATCHES "(^|;)UseMultiToolTask=")
            list(APPEND CMAKE_VS_GLOBALS UseMultiToolTask=true)
        endif()
        if(NOT CMAKE_VS_GLOBALS MATCHES "(^|;)EnforceProcessCountAcrossBuilds=")
            list(APPEND CMAKE_VS_GLOBALS EnforceProcessCountAcrossBuilds=true)
        endif()
        set(CMAKE_VS_GLOBALS "${CMAKE_VS_GLOBALS}" PARENT_SCOPE)

    endif()
endfunction()

The above function should be called after the first project() command, since it needs details of the C
and C++ compilers to already be available. The following minimal example demonstrates the usage.

CMakeLists.txt

cmake_minimum_required(VERSION 3.20)
project(CompilerCacheExample)

include(cmake/UseCompilerCache.cmake)
useCompilerCache()

# Define targets as usual...
add_executable(AppC   main.c ...)
add_executable(AppCXX main.cpp ...)
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