

CONTENTS IN DETAIL

TITLE PAGE

COPYRIGHT

DEDICATION

ABOUT THE AUTHORS

ACKNOWLEDGMENTS

INTRODUCTION

Who Is This Book For?

What This Book Isn’t

What’s in the Book?

What You’ll Need

Online Resources

1

MEET THE FPGA

A Brief History of FPGAs

Popular FPGA Applications

Comparing Common Digital Logic Components

FPGAs vs. Microcontrollers

FPGAs vs. ASICs

FPGAs vs. Microcontrollers vs. ASICs

Verilog and VHDL

Summary

2

SETTING UP YOUR HARDWARE AND TOOLS

Choosing an FPGA Development Board

Requirements for the Book

Setting Up Your Development Environment

iCEcube2

Diamond Programmer

Project #1: Wiring Switches to LEDs

Writing the Code

Creating a New iCEcube2 Project

Adding Pin Constraints

Running the Build

Connecting Your Development Board

Programming the FPGA

Summary

3

BOOLEAN ALGEBRA AND THE LOOK-UP TABLE

Logic Gates and Their Truth Tables

AND Gates

OR Gates

NOT Gates

XOR Gates

NAND Gates

Other Gates

Combining Gates with Boolean Algebra

The Look-Up Table

Project #2: Lighting an LED with Logic Gates

Writing the Code

Building and Programming the FPGA

Summary

4

STORING STATE WITH THE FLIP-FLOP

How a Flip-Flop Works

The Clock Signal

A Flip-Flop in Action

A Chain of Flip-Flops

Project #3: Blinking an LED

Writing the Code

Adding Constraints

Building and Programming the FPGA

Combinational Logic vs. Sequential Logic

The Dangers of Latches

Resetting a Flip-Flop

Look-Up Tables and Flip-Flops on a Real FPGA

Summary

5

TESTING YOUR CODE WITH SIMULATION

Why Simulation Matters

FPGA Simulation Tools

The Testbench

Writing a Testbench

Running a Testbench and Viewing Waveforms

Project #4: Debouncing a Switch

Measuring Time on an FPGA

Writing the Code

Creating the Testbench and Simulation

Building and Programming the FPGA

Self-Checking Testbenches

Initial Signal Conditions

On-FPGA Debugging

Verification

Summary

6

COMMON FPGA MODULES

Multiplexers and Demultiplexers

Implementing a Multiplexer

Implementing a Demultiplexer

The Shift Register

Delaying Data

Converting Between Serial and Parallel Data

Creating a Linear Feedback Shift Register

Project #5: Selectively Blinking an LED

Writing the Code

Trying Another Way

Comparing the Two Approaches

Random Access Memory

A RAM Implementation

RAM on an FPGA

FIFO: First In, First Out

Input and Output Signals

A FIFO Implementation

Summary

7

SYNTHESIS, PLACE AND ROUTE, AND CROSSING

CLOCK DOMAINS

Synthesis

Notes, Warnings, and Errors

Non-synthesizable Code

Place and Route

Constraints

Timing Errors

Crossing Clock Domains

Crossing from Slower to Faster

Crossing from Faster to Slower

Using a FIFO

Addressing Timing Errors

Summary

8

THE STATE MACHINE

States, Transitions, and Events

Implementing a State Machine

Using Two always or process Blocks

Using One always or process Block

Testing the Design

State Machine Best Practices

Project #6: Creating a Memory Game

Planning the State Machine

Organizing the Design

Using the Seven-Segment Display

Coding the Top-Level Module

Coding the State Machine

Testing the Memory Game

Adding the Pin Constraints

Building and Programming the FPGA

Summary

9

USEFUL FPGA PRIMITIVES

How to Create Primitives

Instantiation

The GUI Approach

The Block RAM

Features and Limitations

Creation

The Digital Signal Processing Block

Analog vs. Digital Signals

Common DSP Tasks

Features

Creation

The Phase-Locked Loop

How It Works

Creation

Summary

10

NUMBERS AND MATH

Numerical Data Types

Representing Signed vs. Unsigned Values

Taking the Two’s Complement

Sizing Signals Appropriately

Converting Between Types in VHDL

Performing Mathematical Operations

Addition

Subtraction

Multiplication

Multiplication by Powers of 2

Division

How FPGAs Implement Math Operations

Working with Decimals

Adding and Subtracting with Fixed Point

Multiplying with Fixed Point

Summary

11

GETTING DATA IN AND OUT WITH I/O AND SERDES

Working with GPIO Pins

I/O Buffers

Electrical Characteristics

Faster Data Transmission with Double Data Rate

SerDes

Parallel vs. Serial Communication

Self-Clocking Signals

How SerDes Works

Summary

A

FPGA DEVELOPMENT BOARDS

The Nandland Go Board

The Lattice iCEstick

The Alchitry Cu

Switching Between Boards

B

TIPS FOR A CAREER IN FPGA ENGINEERING

The Resume

The Interview

The Job Offer and Negotiation

Summary

GLOSSARY

INDEX

GETTING STARTED WITH

FPGAS

Digital Circuit Design,

Verilog, and VHDL for

Beginners

by Russell Merrick

San Francisco

GETTING STARTED WITH FPGAS. Copyright © 2024 by Russell Merrick.
All rights reserved. No part of this work may be reproduced or transmitted in
any form or by any means, electronic or mechanical, including photocopying,
recording, or by any information storage or retrieval system, without the prior
written permission of the copyright owner and the publisher.
ISBN-13: 978-1-7185-0294-9 (print)
ISBN-13: 978-1-7185-0295-6 (ebook)
Publisher: William Pollock
Managing Editor: Jill Franklin
Production Manager: Sabrina Plomitallo-González
Production Editor: Jennifer Kepler
Developmental Editor: Nathan Heidelberger
Cover Illustrator: Gina Redman
Interior Design: Octopod Studios
Technical Reviewer: Mike D. Smith
Copyeditor: Rachel Head
Proofreader: James M. Fraleigh
Figure 9-3 was re-created based on an image by Mike Toews, used under the
CC BY-SA 3.0 license, https://commons.wikimedia.org/wiki/File:Analog_digital

_series.svg.
For information on distribution, bulk sales, corporate sales, or translations,
please contact No Starch Press® directly at infofnostarch.com or:
No Starch Press, Inc.
245 8th Street, San Francisco, CA 94103
phone: 1.415.863.9900
www.nostarch.com
Library of Congress Cataloging-in-Publication Data

Names: Merrick, Russell, author.

Title: Getting started with FPGAs : digital circuit design, Verilog, and VHDL for

beginners / by Russell Merrick.

Description: San Francisco, CA : No Starch Press, [2024] | Includes index.

Identifiers: LCCN 2023011303 (print) | LCCN 2023011304 (ebook) | ISBN 9781718502949

(paperback) | ISBN 9781718502956 (ebook)

Subjects: LCSH: Field programmable gate arrays. | Digital electronics. | Verilog

(Computer hardware description language). | VHDL (Computer hardware description

language).

Classification: LCC TK7895.G36 M47 2024 (print) | LCC TK7895.G36 (ebook) | DDC

621.39/5—dc23/eng/20230419

LC record available at https://lccn.loc.gov/2023011303
LC ebook record available at https://lccn.loc.gov/2023011304

https://commons.wikimedia.org/wiki/File:Analog_digital_series.svg
http://infofnostarch.com/
http://www.nostarch.com/
https://lccn.loc.gov/2023011303LC
https://lccn.loc.gov/2023011304

No Starch Press and the No Starch Press logo are registered trademarks of No
Starch Press, Inc. Other product and company names mentioned herein may be
the trademarks of their respective owners. Rather than use a trademark symbol
with every occurrence of a trademarked name, we are using the names only in
an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.
The information in this book is distributed on an “As Is” basis, without
warranty. While every precaution has been taken in the preparation of this
work, neither the author nor No Starch Press, Inc. shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be
caused directly or indirectly by the information contained in it.

For everyone who has supported me on this journey.

About the Author

Russell Merrick grew up near Boston, Massachusetts, and
graduated from the University of Massachusetts in 2007
with a degree in electrical engineering. Later he earned a
master’s in electrical engineering. He has worked in the
defense industry at BAE Systems and L-3 Communications,
in aerospace at a satellite propulsion startup called Accion
Systems, and most recently in commercial electronics at a
fitness wearable company called WHOOP. Russell has been
creating content for FPGA developers at https://nandland
.com and the accompanying YouTube channel since 2014,
helping them get a solid footing in their digital design
pursuits. He has three children and one very supportive
wife.

About the Technical Reviewer

Mike D. Smith is the founder and principal designer at Bold
Circuits LLC, which provides full-service electronic design
services to the commercial, military, and research markets.
He has over 20 years of industry experience and specializes
in system-level electronics design, high-speed digital
design, PCB layout, and FPGA development. Mike has a BS
in electrical engineering and a BA in German from the
University of Rhode Island and an MS in computer
engineering from the University of Massachusetts, with a
computing and embedded systems hardware and
architecture concentration. He teaches a senior course in
practical PCB design at the University of Rhode Island and
serves as a consulting technical director to their ELECOMP
Capstone Design Program, providing technical advisory
services to industry-sponsored senior design teams.

https://nandland.com/

ACKNOWLEDGMENTS

There are so many people who have helped make this book
a reality in small and large ways. Throughout my career,
I’ve had mentors who have guided me and pushed me to
become better at my craft. There’s nothing more rewarding
than working with someone who is smarter than you are, so
go find people who make you feel stupid in comparison. Try
to glean anything you can from them. Look at their code,
ask dumb questions, and you’ll improve.

I’d like to thank everyone who has supported me in my
Nandland pursuits—those who have liked, commented, or
subscribed to videos on my YouTube channel; purchased a
Go Board; or supported my Patreon. You’ve built up my
confidence and helped me stay motivated to keep cranking
out FPGA content for years and years.

I never imagined that writing a book would be as
lengthy a process as it turned out to be. Many thanks to my
editor, Nathan Heidelberger, who has had the biggest
impact on the quality of this book. Nathan doesn’t have an
engineering background, but he was able to give me
valuable feedback from an outsider’s perspective when
concepts were unclear. Similarly, I’m grateful to my
technical reviewer, Mike D. Smith, a coworker and friend
from my BAE Systems days. His attention to the technical
explanations ensured that this book would be accessible
and, equally importantly, accurate.

Finally, I’d like to thank my family for allowing me the
(significant) time required to write this book. Many nights

and weekends have been impacted, so to my wife,
Christine, I would like to say thank you for always being
supportive and encouraging. I couldn’t have done this
without your help.

INTRODUCTION

In my first job out of college as
an entry-level electrical

engineer, I once worked on an old design
that had a timer circuit on it. Using a
simple resistor and capacitor, the circuit
would wait for 50 milliseconds (ms) to
elapse, then trigger an action. We needed
to change that 50 ms timer to 60 ms, but
this small change required a monumental
effort: we would have to physically
remove the capacitors and resistors from
hundreds of circuit boards and replace
them with new ones.

Fortunately, we had a team of field programmable gate
array (FPGA) designers who came to the rescue. With their
help, we were able to implement the same functionality
inside an FPGA. Then, in a matter of minutes, we could
change code to set the timer to any arbitrary value we
wanted, without having to touch a soldering iron. This
faster pace of progress excited me, and I quickly got
hooked on FPGAs.

Eventually I transitioned to working with FPGAs full-
time, and it was around then that I started reading and
responding to FPGA-related questions on Stack Overflow.
Often these questions came from FPGA beginners who
were confused about basic concepts. I saw the same types
of questions asked again and again, and realized there
wasn’t a single place where people could learn about
FPGAs in a simple, easy-to-understand way. Sure, there
were many online references for Verilog and VHDL, the two
most popular FPGA programming languages, but there was
relatively little information on what those languages were
actually doing. What components are really being created
within your FPGA when you write a certain line of code?
How are things being wired up? What does it mean to run
operations in parallel versus serially?

Rather than continuing to answer the same questions
over and over, I started my own website, https://nandland
.com, where I began writing longer articles about FPGAs.
As traffic grew, I started making YouTube videos as well. I
even created my own FPGA development board to provide
hands-on experience for beginners. In all these endeavors,
my goal has been to demystify FPGAs while making the
information approachable and engaging for those just
starting out. Writing this book has allowed me to delve
even deeper into the subject, to build a solid foundation for
anyone interested in exploring the exciting world of FPGA
design.

https://nandland.com/

Who Is This Book For?

I’ve tried to make this book as accessible as possible so
that a broad range of people will be able to read and
understand the material. The intended audience is anyone
who is curious about how digital programmable logic works
and how FPGAs can be used to solve a wide variety of
problems. Maybe you’re a college student who encountered
FPGAs in a class and was left intrigued but confused, or
someone in the electronics industry who has been exposed
to FPGAs at work. Perhaps you’re a tinkerer or hardware
hacker, or a software developer interested in programming
at a much lower level than you’re used to. This book is very
approachable for all of these groups.

I’m assuming you’ve had at least some exposure to a
conventional programming language, like Python, C, or
JavaScript. It will be helpful if you understand concepts like
functions, conditional statements (if…else), loops, and other
basic programming techniques. You don’t need any prior
experience with Verilog or VHDL, however; this book will
introduce the basics of these languages.

FPGAs lie at the intersection of hardware and software,
so having some interest in electronics is helpful. We’ll
sometimes discuss concepts like voltage and current within
the FPGA. Here again, it will be useful if you’ve had some
basic introduction to these terms, but it won’t be required
to get value out of those sections.

What This Book Isn’t

This book isn’t intended to teach you every facet of Verilog
or VHDL. As I said earlier, there are many online resources
if that’s your goal. Instead, my aim is to teach you how
FPGAs work so you can understand what your Verilog or
VHDL is doing, and thus make more intelligent choices
about your designs. That said, we will look at a large
amount of code throughout the book. All of it is thoroughly
explained, so you won’t need prior experience with these
programming languages to follow along. You’ll gain a
strong base of Verilog and VHDL knowledge as you read,
and the confidence to augment that knowledge through
independent study.

The book includes various projects that you’ll be able to
carry out on real hardware using the iCE40 line of FPGAs
from Lattice Semiconductor. I’ve focused on these
comparatively cheap, simple FPGAs to make the hands-on
parts of the book as accessible as possible. More expensive
FPGAs have many extra bells and whistles; they’re very
cool, but they can be overwhelming for beginners. iCE40
FPGAs are still highly capable, but with fewer of these
high-end features available. As such, this book won’t
explore sophisticated features like SerDes and hard-core
processors in a hands-on way, nor will we dwell on the
more complicated FPGA tools required to use them. We will

discuss some of these features at a high level, however, so
you’ll gain the background knowledge to work with them if
you choose to upgrade to a fancier FPGA.

What’s in the Book?

This book combines high-level discussion, detailed code
examples, and hands-on projects. Each code listing is
shown in both Verilog and VHDL, so whichever language
you want to use for FPGA development, you’ll be able to
follow along. There’s also an extensive glossary at the end

of the book for your reference. Here’s what you’ll find in
each chapter:

Chapter 1: Meet the FPGA   Introduces FPGAs and
talks about their strengths and weaknesses. Being an
engineer is about knowing which tool to use in which
scenario. Understanding when to use an FPGA—and
when not to—is crucial.
Chapter 2: Setting Up Your Hardware and Tools   
Gets you set up with the Lattice iCE40 series of FPGAs.
You’ll download and install the FPGA tools and learn
how to run them to program your FPGA.
Chapter 3: Boolean Algebra and the Look-Up

Table   Explores one of the two most fundamental FPGA
components: the look-up table (LUT). You’ll learn how
LUTs perform Boolean algebra and take the place of
dedicated logic gates.
Chapter 4: Storing State with the Flip-Flop   
Introduces the second fundamental FPGA component:
the flip-flop. You’ll see how flip-flops store state within
an FPGA, giving the device memory of what happened
previously.
Chapter 5: Testing Your Code with Simulation   
Discusses how to write testbenches to simulate your
FPGA designs and make sure they work correctly. It’s
hard to see what’s going on inside a real physical FPGA,
but simulations let you investigate how your code is
behaving, find bugs, and understand strange behaviors.
Chapter 6: Common FPGA Modules   Shows how to
create some basic building blocks common to most
FPGA designs, including multiplexers, demultiplexers,
shift registers, and first in, first out (FIFO) and other
memory structures. You’ll learn how they work and how
to combine them to solve complex problems.

Chapter 7: Synthesis, Place and Route, and

Crossing Clock Domains    Expands on the FPGA build
process, with details about synthesis and the place and
route stage. You’ll learn about timing errors and how to
avoid them, and how to safely cross between clock
domains within your FPGA design.
Chapter 8: The State Machine   Introduces the state
machine, a common model for keeping track of the
logical flow through a sequence of events in an FPGA.
You’ll use a state machine to implement an interactive
memory game.
Chapter 9: Useful FPGA Primitives   Discusses other
important FPGA components besides the LUT and the
flip-flop, including the block RAM, the DSP block, and
the phase-locked loop (PLL). You’ll learn different
strategies for harnessing these components and see
how they solve common problems.
Chapter 10: Numbers and Math   Outlines simple
rules for working with numbers and implementing math
operations in an FPGA. You’ll learn the difference
between signed and unsigned numbers, fixed-point and
floating-point operations, and more.
Chapter 11: Getting Data In and Out with I/O and

SerDes   Examines the input/output (I/O) capabilities of
an FPGA. You’ll learn the pros and cons of different
types of interfaces and be introduced to SerDes, a
powerful FPGA feature for high-speed data
transmission.
Appendix A: FPGA Development Boards   Suggests
some FPGA development boards that you can use for
this book’s projects.
Appendix B: Tips for a Career in FPGA

Engineering   Outlines strategies for finding an FPGA-
related job, in case you want to pursue FPGA design

professionally. I’ll make suggestions on how to build a
good resume, prepare for interviews, and negotiate for
the best-possible job offer.

What You’ll Need

Although not strictly required, I recommend having a
development board with a Lattice iCE40 FPGA so you can
complete the book’s hands-on projects. There’s nothing
more satisfying than learning about a concept and then
being able to implement that concept on real hardware.
Chapter 2 discusses what to look for in a development
board and exactly what you’ll need for the book’s projects
in more detail. Briefly, the development board should have
a USB connection and peripherals like LEDs, push-button
switches, and a seven-segment display. Appendix A
describes some development boards that will work.

The software tools for working with iCE40 FPGAs run
best on Windows. If you don’t have a Windows computer, I
recommend running the tools inside a Windows virtual
machine. We’ll discuss installing these tools in Chapter 2.

Online Resources

The code presented in this book is available online via a
GitHub repository. You can access it at https://github.com
/nandland/getting-started-with-fpgas. You’ll also find more
information and FPGA project ideas online at https://
nandland.com.

https://github.com/nandland/getting-started-with-fpgas
https://nandland.com/

1

MEET THE FPGA

An FPGA, short for field

programmable gate array, is a
highly capable type of integrated circuit,
an electronic circuit in a single package.
The field programmable part of the name
indicates that FPGAs can be
reprogrammed when in the field (that is,
without having to return them to the
manufacturer). The gate array part
indicates that an FPGA is made up of a
two-dimensional grid featuring a large
number of gates, fundamental units of
digital logic that we’ll discuss in depth in
Chapter 3.

The name is actually a bit of an anachronism. The
reality is that some FPGAs aren’t field programmable, and
most are no longer just an array of simple gates. In fact,
they’re much more sophisticated than that. Despite these

exceptions, the name has stuck over the years, and it
highlights a unique characteristic of FPGAs: their
incredible flexibility. An FPGA’s uses are limited only by the
designer’s imagination. Other digital programmable
devices, such as microcontrollers, are designed with a
specific set of capabilities; you can only do something if
that feature is built in. By contrast, an FPGA’s array of
gates (or the more modern equivalent) is like a blank slate
that you can program, and reprogram, and reprogram to do
almost anything you want, with fewer restrictions. This
freedom doesn’t come without trade-offs, however, and
FPGA development demands a unique set of skills.

Learning how to work with FPGAs requires a different
style of thinking from traditional computer programming.
Traditional software engineering, like programming in C,
for example, is serial: first this happens, then this happens,
and finally this happens. This is because C is compiled to
run on a single processor, or CPU, and that CPU is a serial
machine. It processes one instruction at a time.

FPGAs, on the other hand, work in parallel: everything
is happening at the same time. Understanding the
difference between serial and parallel programming is
fundamental to working with FPGAs. When you can think
about solving a problem using parallel methods, your
overall problem-solving skills will increase. These skills will
also translate to other, non-FPGA applications; you’ll begin
to see problems differently than if you were only thinking
about them serially. Learning how to think in parallel
rather than serially is a critical skill for becoming an FPGA
engineer, and it’s one you’ll develop throughout this book.

FPGAs are a lot of fun to work with. When you create an
FPGA design using Verilog or VHDL (more on these
languages later in this chapter), you’re writing code at the
lowest possible level. You’re literally creating the physical
connections, the actual wires, between electrical
components and input/output pins on your device. This

allows you to solve almost any digital problem: you have
complete control. It’s a much lower level of programming
than working with a microcontroller that has a processor,
for example. For this reason, learning about FPGAs is an
excellent way to become familiar with hardware
programming techniques and better understand how
exactly digital logic works in other applications. You’ll gain
a newfound respect for the complexities of even the
simplest integrated circuits once you start working with
FPGAs.

This first chapter sets you up for diving deeper into
FPGAs by providing some background information. We’ll
briefly cover the history of FPGAs, from their initial
creation in the 1980s through today, and explore some of
their common uses. We’ll also consider how FPGAs
compare to other common digital components, such as
microcontrollers and application-specific integrated circuits
(ASICs). Finally, we’ll discuss the differences between
Verilog and VHDL, the two most popular languages for
working with FPGAs.

A Brief History of FPGAs

The very first FPGA was the XC2064, created by Xilinx in
1985. It was very primitive, with a measly 800 gates, a
fraction compared to the millions of gate operations that
can be performed on today’s FPGAs. It was also relatively
expensive, costing $55, which adjusted for inflation would
be around $145 today. Still, the XC2064 kicked off an
entire industry, and (alongside Altera) Xilinx has remained
one of the dominant companies in the FPGA market for
more than 30 years.

Early FPGAs like the XC2064 were only able to perform
very simple tasks: Boolean operations such as taking the
logical OR of two input pins and putting the result onto an
output pin (you’ll learn much more about Boolean

operations and logic gates in Chapter 3). In the 1980s, this
type of problem required a dedicated circuit built of OR
gates. If you also needed to perform a Boolean AND on two
different pins, you might have to add another circuit, filling
up your circuit board with these dedicated components.
When FPGAs came along, a single device could replace
many discrete gate components, lowering costs, saving
component space on the circuit board, and allowing the
design to be reprogrammed as the requirements of the
project changed.

From these humble beginnings, the capabilities of
FPGAs have increased dramatically. Over the years, the
devices have been designed with more hard intellectual

property (IP), or specialized components within the FPGA
that are dedicated to performing a specific task (as
opposed to soft components that can be used to perform
many tasks). For example, hard IP blocks in modern FPGAs
let them interface directly with USB devices, DDR memory,
and other off-chip components. Some of these capabilities
(like a USB-C interface) would simply not be possible
without some dedicated hard IP to do the job. Companies
have even placed dedicated processors (called hard

processors) inside FPGAs so that you can run normal C
code within the FPGA itself.

As the devices have evolved, the FPGA market has
undergone many mergers and acquisitions. In 2020, the
chip-making company AMD purchased Xilinx for $35
billion. It’s plausible that this purchase was a response to
its main competitor Intel’s 2015 acquisition of Altera for
$16.7 billion. It’s interesting that two companies focused
predominantly on CPUs decided to purchase FPGA
companies, and there’s much speculation as to why. In
general, it’s thought that as CPUs mature, dedicating some
part of the chip to FPGA-like reprogrammable hardware
seems to be an idea worth pursuing.

Apart from Xilinx and Altera (which from here on I’ll be
calling by their parent company names, AMD and Intel,
respectively), other companies have carved out their own
niches within the FPGA market. For example, Lattice
Semiconductor has done well for itself making mostly
smaller, less expensive FPGAs. Lattice has been happy to
play on its own in this lower end of the market, while
letting AMD and Intel slug it out at the higher end. Today,
the open source community has embraced Lattice FPGAs,
which have been reverse-engineered to allow for low-level
hacking. Another medium-sized player in the FPGA space,
Actel, was acquired by Microsemi in 2010 for $430 million.
Microsemi itself was acquired by Microchip Technology in
2018.

Popular FPGA Applications

In their modern, highly capable and flexible form, FPGAs
are used in many interesting areas. For example, they’re a
critical component in the telecommunications industry,
where they’re often found in cell phone towers. They route
internet traffic to bring the internet to your smartphone,
allowing you to stream YouTube videos on your bus ride to
work.

FPGAs are also widely used in the finance industry for
high-frequency trading, where companies use algorithms to
automatically buy and sell stocks incredibly quickly.
Traders have found that if you can execute a stock
purchase or sale slightly quicker than the competition, you
can gain a financial edge. The speed of execution is
paramount; a tiny bit of latency can cost a company
millions of dollars. FPGAs are well suited to this task
because they’re very fast and can be reprogrammed as new
trading algorithms are discovered. This is an industry
where milliseconds matter, and FPGAs can provide an
advantage.

FPGAs are used in the defense industry as well, for
applications like radar digital signal processing. FPGAs can
process received radar reflections using mathematical
filters to see small objects hundreds of miles away. They’re
also used to process and manipulate images from infrared
(IR) cameras, which can see heat rather than visible light,
allowing military operatives to see people even in complete
darkness. These operations are often highly math-intensive,
requiring many multiplication and addition operations to
happen at parallel—something that FPGAs excel at.

Another area where FPGAs have found a niche is in the
space industry: they can be programmed with redundancies
to hedge against the effects of radiation bombardment,
which can cause digital circuits to fail. On Earth, the
atmosphere protects electronics (and people) from lots of
solar radiation, but outer space doesn’t have that lovely
blanket, so the electronics on satellites are subjected to a
much harsher environment.

Finally, FPGAs are also getting interest from the
artificial intelligence (AI) community. They can be used to
accelerate neural nets, another massively parallel
computational problem, and thus are helping humans
attack issues that weren’t solvable using traditional
programming techniques: image classification, speech
recognition and translation, robotics control, game
strategy, and more.

This look at popular FPGA applications is far from
exhaustive. Overall, FPGAs are a good candidate for any
digital electronics problem where high bandwidth, low
latency, or high processing capability is needed.

Comparing Common Digital Logic Components

Despite how far they’ve come since their early days and the
wide range of applications they’re used for, FPGAs are still
a relatively niche technology compared to other digital

logic components like microcontrollers and ASICs. In this
section, we’ll compare these three technologies. You’ll see
why FPGAs are a good solution for some problems but not
others, and how they have tough competition from other
devices, especially microcontrollers.

FPGAs vs. Microcontrollers

Microcontrollers are everywhere. If you aren’t an
embedded software engineer, you may not realize how
many toys, tools, gadgets, and devices are controlled with
small and inexpensive microcontrollers: everything from TV
remote controls to coffee makers to talking toys. If you’re
an electronics hobbyist, you might be familiar with the
Arduino, which is powered by a small microcontroller from
Atmel (now Microchip Technology, the same company that
owns what used to be Actel). Millions of Arduinos have
been sold to hobbyists around the world. They’re cheap,
fun, and relatively easy to work with.

So why are microcontrollers everywhere, but not
FPGAs? Why isn’t there an FPGA controlling your coffee
maker or making your Elmo doll come to life? The main
reason is cost. The consumer electronics industry, which
uses the largest number of microcontrollers overall, is
incredibly sensitive to cost. Consumers like you and I want
the least expensive products we can possibly buy, and the
companies that make those products will shave off every
penny possible to make that happen.

Microcontrollers come in seemingly endless varieties,
with each one designed for a very specific purpose. This
helps companies drive costs down. For example, if your
product needs one analog-to-digital converter (ADC), two
USB interfaces, and at least 30 general purpose
input/output (GPIO) pins, there’s a microcontroller with
exactly those specifications. What if you realize you only
need one USB interface? There’s probably a different

microcontroller with those specifications, too. With such
variety, there’s no need to pay for extra features.
Companies can find a microcontroller with the bare
minimum of what they need, and save money in the
process.

FPGAs, on the other hand, are much more general. With
a single FPGA, you might create five ADC interfaces and no
USB interface, or three USB and no ADC interfaces. You
pretty much have a blank slate at your disposal. As you’ll
learn, however, FPGAs need to have many internal wires
(called routing) to support all these different possibilities,
and all that routing adds cost and complexity. In many
cases, you’ll end up paying more for extra features and
flexibility that you don’t need.

Another contributing factor to cost is quantity. If you
buy 10 million microcontrollers, which is not unrealistic in
the field of consumer electronics, you’ll pay less per chip
than you would if you only bought 100,000. FPGAs,
meanwhile, are typically produced and sold in relatively
low quantities, so they cost more per unit. It’s a bit of a
chicken-and-egg situation, where FPGAs could be less
expensive if there were more of them, but for there to be
more of them, they would have to be less expensive. If the
costs were the same as with microcontrollers, would there
be more FPGAs in use? I think it’s likely that there would
be, but FPGAs are also more complicated to use, so that
works against them as well.

Since microcontrollers are designed for specific
purposes, they can be very easy to set up. You can get a
basic design up and running on a microcontroller in a few
hours. By contrast, you need to program everything inside
the FPGA, and this is very time-consuming. Although there
are some hard IP blocks to get you started, the majority of
the device is programmable logic—that blank slate we
talked about—that you need to design yourself. Writing all

the code to do what you need also takes longer in a
language like Verilog or VHDL than C, which is commonly
used to program microcontrollers. With C, you’re writing
code at a higher level, so you can do more with a single
line. With Verilog and VHDL you’re writing at a much lower
level: individual gates and wires are literally being created
with your code. You can think of low-level programming
like working with individual LEGO bricks and high-level
programming like working with preconstructed LEGO sets.
This adds complexity, which adds time, which also
increases costs. Engineers want the simplest solution, and
most often a microcontroller is simpler than an FPGA.

Another factor to consider is how much power the
device consumes. Many electronic devices run off batteries,
and it’s critical to maximize their lifetime by making the
devices as low-power as possible. The more power they use,
the more often you’ll have to change the batteries, which is
something nobody wants to do. Again, since a
microcontroller is designed for a specific use, it can be
optimized to draw incredibly little power, enabling a single
AAA battery to power a Bluetooth mouse for months, for
example. FPGAs, with all their routing resources, are
simply unable to compete with microcontrollers in terms of
power consumption. That’s not to say you can’t use an
FPGA in a battery-powered application, but head-to-head
the microcontroller will win that battle every time.

Summarizing, microcontrollers almost always dominate
in terms of cost, ease of use, and power consumption. So
why would anyone use an FPGA over a microcontroller?
There are other factors to consider, such as speed and
flexibility, and here the tables turn in favor of the FPGA.

When I say speed, I mean two things: bandwidth and
computations. Bandwidth is the rate of data transfer across
a path. FPGAs can have incredibly large bandwidth, much
more than any microcontroller could ever attain. They can

process hundreds of gigabits per second with no trouble at
all. This might be useful, for example, when driving
multiple 4K displays. FPGAs are often used in video editing
hardware that requires enormous amounts of bandwidth to
keep up with the data streams. Their high bandwidth
allows them to move tremendous amounts of data from
various external interfaces (USB-C, Ethernet, ADCs,
memories, and more) at very fast rates.

As for computational speed, the number of
mathematical computations an FPGA can perform in a
second dwarfs anything a microcontroller can do. A
microcontroller usually has just one processor, and with all
computations going through the same processor, the
number of computations that can be performed each
second is limited. An FPGA, on the other hand, can run
many computations in parallel. For example, you can run
hundreds of multiplication operations at the same time,
something that simply isn’t possible with a microcontroller.
This might be useful when running large mathematical
filters on data, which often involve many multiplication and
addition operations occurring at very fast rates.

The other major benefit of an FPGA is its flexibility. I
said microcontrollers come in endless varieties, but of
course, this is a slight exaggeration. If your design has
some particularly exotic requirement—say, if it needs 16
ADC interfaces—there might not be any microcontroller in
the world that will meet your needs. FPGAs are much less
limited. As I’ve mentioned, an FPGA is like a blank slate
that can be programmed to do almost anything, providing
you with tremendous flexibility to tackle a wide range of
digital logic problems.

When you have an engineering problem, you need to
choose the best tool possible to solve it. Often a
microcontroller works very well, but occasionally it simply
won’t work due to speed or flexibility issues. In those

situations, an FPGA is a good candidate. However, there’s
also another kind of device worth considering: an ASIC.

FPGAs vs. ASICs

An ASIC is a type of integrated circuit designed for a
particular use. Unlike an FPGA, which can suit any number
of uses, an ASIC is designed to be really good at one thing.
You might think that it would always be better to have the
flexibility of an FPGA, but there are trade-offs to consider.
We’ve already compared FPGAs to microcontrollers in
terms of cost, ease of use, power, speed, and flexibility.
Let’s now compare FPGAs and ASICs along those same
lines.

ASICs are incredibly expensive to make in low
quantities because they have a large nonrecurring

engineering (NRE) cost: you need to pay a lot of money up
front to a semiconductor foundry (or fab) to get that first
ASIC chip. Often the NRE on an ASIC design can run into
the millions of dollars. Whether or not you choose to design
an ASIC highly depends on how many chips you’ll need. If
you’re making low quantities of something, even into the
tens of thousands, it’s unlikely you’ll ever be able to
recover the up-front cost of an ASIC. If you need millions of
chips, however, then an ASIC starts to become an
attractive option, since each chip after the first one is very
cheap (often under $1). Compare that to an FPGA, where a
single chip often costs more than $10, and you start to see
that FPGAs just don’t make financial sense in large
volumes. Generalizing, in smaller quantities FPGAs usually
win against ASICs, but in larger quantities they can’t
compete as well.

An area where FPGAs always win out over ASICs is in
terms of ease of use. The process of designing an ASIC is
very complicated. Plus, you need to make sure your design
is free of bugs before you go to the fab to make the chip, or

you’ll have wasted your NRE. Most FPGAs, on the other
hand, can be fixed in the field (hence field programmable),
so even if you find a bug after shipping your product to
customers, you can update the code and remedy the issue.
That’s simply not possible with an ASIC. Therefore, you
must spend significant engineering time and effort
verifying that your ASIC design is as bug-free as possible
before getting it fabricated. There’s actually an entire
discipline called verification engineering that does just this,
something we’ll explore in more detail in Chapter 5.

One large benefit to an ASIC is that it can be optimized
for low power. ASICs are finely tuned for their specific
application; they have what they need and no more.
Meanwhile, recall that an FPGA has a significant number of
wires and interconnections, which give it its flexibility but
mean it uses more power. A further advantage ASICs have
over FPGAs is that they can use fabrication techniques that
optimize them for low power at the transistor level. For a
real-life example, when Bitcoin was new, people were using
their home computers (CPUs) to mine it. This draws a lot of
power per Bitcoin mined. Eventually, people realized that
FPGAs could be programmed to mine Bitcoins, using less
power than CPUs. Electrical power is expensive, so mining
Bitcoins with FPGAs was more profitable. Further down the
line, people realized that ASICs could mine Bitcoins even
faster and using even less power than FPGAs. It became
worth the up-front cost to create an ASIC dedicated to
Bitcoin mining, because the cost savings from the lower
power consumption were so significant. Today, Bitcoins are
mined almost exclusively with ASICs.

When it comes to speed, FPGAs and ASICs both have
large bandwidth and can move lots of data around. They’re
also both very capable at math operations, particularly
multiplication and addition, and both can do those
operations in parallel. ASICs have a small edge in this

category: because they’re built specifically for one purpose,
they can often run a bit faster than FPGAs.

FPGAs, on the other hand, offer significantly more
flexibility than ASICs. Having flexibility in what your design
can do is very valuable, especially if you’re working on a
project that isn’t clearly defined. Unlike ASICs, which are
fixed, FPGAs can be reprogrammed over and over again,
with features and functionality added or removed.
Additionally, ASICs take a long time to design, make, and
verify, but you can get started with an FPGA right away, so
the speed of progress can be faster.

In general, ASICs win against FPGAs on cost when the
volumes are very high, but not when they’re low. They beat
FPGAs on power consumption and have a slight edge on
speed, but they lose to FPGAs on flexibility and ease of use.
In reality, though, ASICs and FPGAs often go hand in hand.
When a company wants to design an ASIC, it will typically
start by designing a prototype with an FPGA, and then
produce the ASIC. This method allows engineers to work
with the hardware sooner and gain confidence in the
product, prior to spending millions of dollars on a custom
chip. The engineers can work through the bugs in the
Verilog or VHDL code using the FPGA prototype, and fix
issues when it’s inexpensive and simpler to do so. This code
isn’t throwaway code either, since the same Verilog or
VHDL used on an FPGA can be used to create an ASIC.

FPGAs vs. Microcontrollers vs. ASICs

That was a lot to take in, so let’s briefly summarize what
we’ve just discussed about FPGAs, microcontrollers, and
ASICs. Table 1-1 provides an overview of where each type
of device sits on the scale across different parameters.
There are always exceptions, but the table provides a good
generalization.

Table 1-1: Comparing an FPGA vs. a Microcontroller vs. an ASIC

FPGA Microcontroller ASIC

Cost (low quantities) Moderate Cheap Expensive

Cost (high quantities) Moderate Cheap Cheap

Speed Fast Moderate Fast+

Power Moderate Low Low

Flexibility High Low None

Ease of use Medium Easy Difficult

Cost is often the dominant factor in why a
microcontroller or an ASIC is chosen over an FPGA for
large-volume applications. They’re simply cheaper, and that
counts in industries that are highly sensitive to cost. When
performance is the most important consideration and the
high initial cost and level of complexity are acceptable,
ASICs are often preferred. The sweet spot for FPGAs is
applications that are low volume but require high speed in
terms of either bandwidth or computations, or require a
very flexible and unique design (like having 16 ADCs to
interface to).

Ultimately, FPGAs, microcontrollers, and ASICs are
three tools in the engineer’s toolbox. When looking at the
requirements of your particular problem, you’ll need to
decide which of these tools provides the best solution. You
wouldn’t use a hammer to turn a screw; knowing which tool
to use for which application is critical to becoming a strong
engineer. The act of examining multiple possibilities and
selecting a technical solution is often referred to in
engineering as a trade study.

I love FPGAs, but when I look at a technical problem,
often the right solution is a microcontroller: they’re easy to
use and inexpensive. A microcontroller isn’t always the
right solution, though. Sometimes you need more speed, or
the problem is one that microcontrollers just aren’t
designed for. Selecting the right tool for your problem will
make solving the problem much more enjoyable. And as

you’ll hopefully see, working with FPGAs is certainly
enjoyable! It’s like working with LEGO or building a house
in Minecraft. Using simple, low-level building blocks, you
can create something wonderfully complex.

Verilog and VHDL

As I’ve mentioned, there are two main languages for
working with FPGAs (and ASICs): Verilog and VHDL. These
languages are known as hardware description languages

(HDLs) because they’re used to define the behavior of
digital logic circuits. Though syntactically Verilog and
VHDL may look similar to traditional programming
languages, it’s important to realize that HDLs are a
different beast entirely. When you write your FPGA code
with an HDL, you’re working directly with wires, logic
gates, and other discrete resources on the FPGA, whereas
when you code with a traditional programming language
you don’t have that same low level of control over your
device. Understanding the logic behind your Verilog or
VHDL code and knowing what FPGA components you’re
instantiating with that code is a critical skill for a digital
designer, and something we’ll return to throughout the
book.

FPGA beginners often wonder if it’s better to learn
Verilog or VHDL. There’s no right answer; it really depends
on your situation. To help you make that decision, let’s
compare and contrast the two languages to identify some
reasons why you might select one over the other.

NOTE

All the code examples in this book will be shown in both

Verilog and VHDL, back-to-back, so whichever language

you choose, you’ll be able to follow along.

VHDL stands for VHSIC Hardware Description
Language, and VHSIC, the acronym within an acronym,
stands for Very High-Speed Integrated Circuit. In full,
VHDL is the Very High-Speed Integrated Circuit Hardware

Description Language—quite a mouthful! It was developed
by the United States Department of Defense (DoD) in 1983
and borrows many features and syntax from another DoD-
developed language called Ada. VHDL, like Ada, is strongly
typed.

If you’ve never worked with a strongly typed language,
it can be a bit challenging at first. Strong typing forces the
designer to be very explicit with their code. For example, in
a weakly typed language like Python or C, you can add a
variable defined as an integer to a variable defined as a
float without any problem. A strongly typed language like
VHDL, however, would never allow something like this.
When adding two numbers in VHDL, their widths (number
of bits) and types need to match exactly, or the syntax
checker will throw some cryptic error. Until you
understand the strong type checking that the language is
performing, it can be cumbersome to get what you need
done as a beginner. When sorting out these issues in
VHDL, you often need to create intermediary signals of the
correct type, or use lots of type conversions throughout
your code. This is one of several reasons VHDL often
requires much more typing (on your keyboard, that is) than
Verilog to perform the same functionality. If you want to
use VHDL, it helps to be a fast typist.

Compared to VHDL, Verilog looks more similar to a
software language like C, which makes it easier for some
people to read Verilog code and understand what it’s doing.
Also, Verilog is weakly typed. It allows you to write code
that’s wrong, but more concise. It would have no problem
adding a float to an integer, even if the result of that
addition might be incorrect.

Another interesting point of comparison is that Verilog
is case sensitive but VHDL is not. This means that a
variable called RxDone isn’t the same as a variable called
rxDone in Verilog, but VHDL treats them as the same. It
might seem odd that strongly typed VHDL isn’t case
sensitive while weakly typed Verilog is, but that’s just the
way history turned out. In my experience, Verilog’s case
sensitivity can create issues that are hard to diagnose. You
might think two signals are the same, but the code sees
them as different due to a capitalization discrepancy.

Ultimately, none of these points is the most important
factor, though. You should choose between Verilog and
VHDL based on which language you’re more likely to use in
school or at work. If your university uses Verilog, learn
Verilog! If companies where you might want to work use
VHDL, learn VHDL! The breakdown of who uses VHDL
versus Verilog is highly dependent on where in the world
you’re living. If you compare VHDL and Verilog using
Google Trends, you can start to get a pretty good idea of
which language you should be learning first.

When you look at the overall search volumes for the two
terms throughout the world, you’ll find that “Verilog” tends
to have more searches than “VHDL.” Maybe that’s because
it’s used more often, or maybe people have more trouble
with Verilog and need to look up solutions online more than
they do with VHDL. In any case, it’s more revealing to
break down the trends on a country-by-country basis.
Figure 1-1 shows some examples.

Figure 1-1: Verilog vs. VHDL search volumes in selected countries

India and the United States have the largest volumes of
Google searches for the two terms, but while VHDL and
Verilog appear to be roughly equal in popularity in India,
Verilog is slightly more popular in the United States than
VHDL. In fact, I know from personal experience that in the
United States the defense industry favors VHDL, while the
commercial industry favors Verilog. Notice that in Germany
and France, VHDL is significantly more popular than
Verilog. If you are from either of these two countries, I
would highly recommend learning VHDL first! Conversely,
in China and South Korea Verilog is much more popular
than VHDL, so adjust your priorities accordingly.

In general, VHDL and Verilog are equally capable
languages. You should choose which language to learn
based on what suits your location and circumstances.

Summary

This chapter introduced you to FPGAs and provided you
with an overview of their history and common applications.
We compared FPGAs with microcontrollers and ASICs and
saw where each type of integrated circuit really shines. You
learned that FPGAs excel at applications that aren’t cost

sensitive, but where high speed, maximum flexibility, or
unique interfaces are required. Finally, we looked at the
two most popular hardware description languages used to
work with FPGAs, Verilog and VHDL, and discussed how to
choose the right language for you and your situation.

2

SETTING UP YOUR HARDWARE AND

TOOLS

This chapter walks you
through the process of

choosing an FPGA development board
and setting up the associated software
tools that you’ll need to translate your
Verilog or VHDL code into physical
circuits on your FPGA. You’ll learn about
the features to look for in a board,
download and install the tools you need to
work with it, and test them out by
designing your first FPGA project to
target your development board. This
project will also give you an overview of
the main steps in the FPGA development
process.

An FPGA development board isn’t strictly required to
use this book. You can still learn from the projects without
a board, and you can always test your Verilog or VHDL
code by running it through a free online FPGA simulator
tool like EDA Playground (a topic we’ll cover in Chapter 5).
However, there’s something satisfying about writing some
code, programming it to a development board, and seeing
the results in action—even when it does something as
simple as blinking an LED. For this reason, I highly
recommend that you have an FPGA development board on
hand when learning about FPGAs.

Choosing an FPGA Development Board

An FPGA development board (or dev board) is a printed
circuit board (PCB) with an FPGA on it that allows you to
program the FPGA with your Verilog or VHDL code and
test it out. The board may also have peripherals on it that
are connected to the FPGA, such as LEDs, switches, and
connectors for linking the FPGA to other devices. FPGA
development boards range from devices the size of a pack
of gum that cost less than $100 to laptop-size devices that
cost thousands of dollars. With such a wide range of
options, there are many factors you should consider when
choosing a development board, including price, ease of use,
and enjoyability:
Cost

For an FPGA beginner, I recommend starting off with
an inexpensive development board. Larger, more
expensive boards often have many extra features, like
SerDes and DDR memory, that are unnecessary and
potentially overwhelming for new users. You can always
invest in one of these more sophisticated boards as your
skills mature and you grow out of your first board.

Simplicity

The board you start out with and the software required
to work with it should be simple to use. It’s challenging
enough to learn how an FPGA works; if you also have to
learn how to use a complicated design tool, the process
becomes even more difficult. I recommend focusing on
boards built around Lattice Semiconductor’s iCE40
family of FPGAs, since these FPGAs are compatible with
a lightweight and simple set of software tools: iCEcube2
and Diamond Programmer. These programs are
streamlined to do the minimum required to build your
FPGA, without all the bells and whistles of more
advanced programs. You’ll learn how to use both of
them in this chapter.

Fun

An FPGA development board should be fun to use, with
peripherals like LEDs, push buttons, and seven-segment
displays that you can take advantage of in different
projects. Some cheaper boards cut costs by removing
peripherals; they just have an FPGA and nothing else.
FPGA development is much more fun and interesting
when you can interface the FPGA with other devices.
Keep these factors in mind as you consider the

development boards available on the market.

Requirements for the Book

You’ll get the most value out of this book if you follow along
with the projects and program your own development
board. To go through the projects exactly as written, you’ll
need your development board to have the following
features (Appendix A lists a few boards that meet these
requirements, or can meet them with a few modifications):
Lattice iCE40 FPGA

iCE40 FPGAs have emerged as the best option for FPGA
beginners. They’ve been available for many years at

affordable prices, while providing enough resources to
support interesting projects. The iCE40 architecture is
relatively simple, with few distracting bells and
whistles, so you can focus on what’s important. As I
mentioned earlier, iCE40 FPGAs are compatible with
the free, easy-to-use iCEcube2 and Diamond
Programmer software tools, which we’ll explore in this
chapter. The iCE40 family is also compatible with open
source FPGA tools, if you want to avoid proprietary
software altogether.

USB

Your development board should have a USB interface to
power and program the board. This way, all you need is
one USB cable and you’re ready to go. Older FPGA
development boards often require an external
programmer (a separate piece of hardware that can
itself cost hundreds of dollars), so make sure simple
built-in USB programming is possible with the board
you choose.

LEDs

The book’s projects assume that your board has four
LEDs. These are a convenient way to get output from
the FPGA. For example, our first project later this
chapter will involve lighting up the LEDs, which allows
you to get immediate feedback that you’ve successfully
programmed the FPGA. There’s nothing more satisfying
than getting that first LED to light up!

Switches

For each of the four LEDs, you’ll need a corresponding
push-button switch. These switches provide input to the
FPGA, allowing you to easily change the state of the
board.

Seven-Segment Display

Your board will need one seven-segment display to
implement the memory game project in Chapter 8. This
kind of display provides a fun way to output data.
Lighting up individual LEDs is one thing, but lighting up
numbers and letters on a seven-segment display is
much more engaging.

If your development board doesn’t meet all these
requirements, don’t worry: you can still work through this
book’s projects with a few adjustments. For example, if
you’d prefer to work with a board built around a different
kind of FPGA, you can. As we’ll discuss in later chapters,
there are advanced features that vary from one FPGA to
another, but the code for this book’s projects is general
enough that it should work on any modern FPGA. That’s
part of the beauty of Verilog and VHDL: they’re FPGA-
agnostic.

Do be aware that if you aren’t working with an iCE40
FPGA, however, you’ll need to use a different set of
software tools than the ones discussed in this chapter. Each
FPGA company provides its own tools specifically aimed at
its FPGAs. For example, AMD (Xilinx) has Vivado, and Intel
(Altera) has Quartus. If your board has an FPGA from one
of these companies, look online for resources about using
the appropriate software.

If you don’t have all the necessary peripherals for the
projects in this book, you have a few options. First, you can
modify the projects’ Verilog or VHDL code to use fewer
LEDs and switches. This will work in most cases, although
the memory game project in Chapter 8 will be less
satisfying the fewer LEDs and switches you use.

Alternatively, many FPGA development boards,
including some of the boards discussed in Appendix A, have
connection points for wiring up your own peripherals. In
particular, look for a development board with a Pmod
(peripheral module) connector. Pmod is a standard

connector made famous by Digilent for attaching accessory
boards with extra peripherals— not just the ones used in
this book, but also devices like temperature sensors,
accelerometers, audio jacks, microSD cards, and more. If
you’ve ever worked with Arduino Shields, it’s the same
concept. If your board has a Pmod connector, that will
greatly expand the range of projects you can work on with
your FPGA.

Setting Up Your Development Environment

To use the iCE40 FPGA on your development board, you’ll
need to install two software tools on your computer:
iCEcube2 and Diamond Programmer. These free tools from
Lattice Semiconductor are designed specifically for
working with iCE40 FPGAs. This section walks you through
the process of setting them up. If you’re on Windows, you’ll
have the easiest time, since the tools are designed for the
Windows operating system. For Linux or macOS users, I
recommend creating a Windows virtual machine on your
computer, then running the Lattice tools in that. There are
many tutorials online for setting up a Windows virtual
machine using VirtualBox or a similar product.

iCEcube2

iCEcube2 is Lattice’s free integrated development
environment (IDE) for turning the VHDL or Verilog code
you write on your computer into a file that the FPGA can be
programmed with. It’s much easier to use than other IDEs
like Vivado, Quartus, or even Lattice Diamond (not to be
confused with Diamond Programmer), Lattice’s tool for
working with more sophisticated FPGAs. Their
compatibility with iCEcube2 is part of what makes iCE40
FPGAs an especially good choice for beginners. Those other
programs are all several gigabytes in size and extremely
complicated. They have many bells and whistles, most of

which you won’t need when you’re getting started. By
contrast, iCEcube2 is more streamlined, making it a more
straightforward tool for learning about FPGAs.

To download and install iCEcube2, follow these steps:
1.  Visit https://latticesemi.com/icecube2 or search the

internet for “iCEcube2 download.”
2.  Find the download link for the latest Windows version

of iCEcube2, whether you’re running Windows natively
or in a virtual machine. If you’re a Linux user, you may
be tempted to download the Linux version instead, but I
wouldn’t recommend it. That version is buggy; you
might have success, or you might not.

3.  When you click the download link, you’ll be asked to
create an account on the Lattice website. You must
create an account to get a license for this tool. Make
sure to use a real email address, as they’ll email you the
free license. Once you create an account, you should be
able to download the software.

4.  As the software is downloading, find the iCECube2

Software Free License link on the download page and
click it to request a license.

5.  You’ll need your computer’s MAC address to obtain the
license. To find it on Windows, open a command prompt
by clicking the Start button and searching for “cmd.”
Then enter ipconfig /all at the command line. You
should see something like this:

C:\> ipconfig /all

--snip--

Ethernet adapter Local Area Connection:

 Connection-specific DNS Suffix . :

 Description : Intel(R) Ethernet Con

nection I217-V

 Physical Address. : 38-D3-21-F5-A3-09

https://latticesemi.com/icecube2

 DHCP Enabled. : Yes

 Autoconfiguration Enabled : Yes

6.  Your MAC address is the 12-digit hexadecimal number
next to Physical Address. Copy this into the Lattice license
request form and submit the form to have a license file
sent to your email address.

7.  Launch the iCEcube2 installer once it finishes
downloading and point it to your license file.

NOTE

If you already installed iCEcube2 before obtaining the

license, you can use the program LicenseSetup.exe in the

same folder where you installed the tool to point it at your

license file.

When it’s done installing, launch iCEcube2. The main
window will look something like Figure 2-1.

Figure 2-1: The iCEcube2 main window

Click around to get a feel for the program. We’ll explore
it in more detail later in this chapter with a project that will
take you through the entire FPGA build process.

Diamond Programmer

Diamond Programmer is a free standalone programming
tool from Lattice that takes the output of iCEcube2 and
uses it to program your FPGA via your development board’s
USB connection. More sophisticated software tools like
Vivado and Quartus have a built-in programmer, so you
don’t need to download a separate program. It’s
unfortunate that iCEcube2 doesn’t have one built in, but
such is the life of an iCE40 FPGA designer! Here’s how to
install Diamond Programmer:
1.  Go to https://latticesemi.com/programmer or search the

internet for “lattice diamond software” to locate the
download page.

2.  The Diamond Programmer page has many download
links to choose from. Find and click the link for the
latest version of Programmer Standalone 64-bit for
Windows.

WARNING

Be sure to download Programmer Standalone and not the

Programmer Standalone Encryption Pack. The latter isn’t

needed.

3.  Diamond Programmer doesn’t require a license, so
simply run the installer once it downloads.
You’re now ready to dive into your first FPGA project,

where you’ll learn how to work with these tools and
program your FPGA.

Project #1: Wiring Switches to LEDs

In this project, you’ll get familiar with the build process by
creating a simple FPGA design: when you press one of the
push-button switches on your FPGA development board,
one of the LEDs should light up. The project assumes that

https://latticesemi.com/programmer

you have four switches and four LEDs, so you’ll design and
program your FPGA to wire up each switch to one of the
LEDs. (As mentioned earlier, you can adapt the project to
use fewer switches and LEDs if needed.) Figure 2-2 shows
a diagram of what we want to do.

Figure 2-2: The Project #1 block diagram

On the left we have the board’s four switches, labeled
SW1 through SW4. By default, these will be open (not
connected), meaning the corresponding input pin of the
FPGA will have a low voltage when the switch isn’t pressed,
due to an onboard pull-down resistor. When you press a
switch down, the FPGA will see a high voltage present at
the input pin connected to that switch. On the output side
we have four LEDs, labeled D1 through D4. We want to
create an FPGA that will connect the switches and LEDs
such that, for example, when the user presses SW1, the D1
LED illuminates. We’ll literally be creating a physical wired
connection between the SW1 input and the D1 output using
our FPGA. In other words, with FPGAs you’re programming
at such a low level that you’re creating wires between pins,
throughout your device.

To implement this project, we’ll go through four main
steps. These steps, summarized in Figure 2-3, form the
main phases of the FPGA build process.

Figure 2-3: The FPGA build process

You’ll familiarize yourself with the steps at a high level
through this project. Then you’ll expand your knowledge of
each step throughout the book. The four steps are:
1.  Design. In this step, you write the Verilog or VHDL

code that describes how the FPGA will function. You
might also write tests to ensure that your code will work
as you intend, a concept we’ll discuss in Chapter 5.

2.  Synthesis. The synthesis process is what turns your
code into low-level components that perform the actual
functionality on your FPGA. It’s similar to how a
compiler in a programming language like C turns your C
code into Assembly instructions. In this book, we’ll use
iCEcube2 as a synthesis tool.

3.  Place and route. This process will take your
synthesized design and map it to the physical layout of
your specific FPGA. It will wire up (route) the
connections between components, including connecting
the input and output pins to the inner FPGA
components. Creating links between pins and signals in
your code is one of the purposes of the physical

constraints file. You’ll see how to write a constraint file
in this project. iCEcube2 handles the place and route
step at the same time that it handles synthesis.

4.  Programming. This is where you take the output of the
previous steps and load it onto your physical FPGA. The
programming file literally creates wired connections
between pins and FPGA components, and within the

FPGA itself. This project will simply create wires
between pins, but in future projects we’ll use other
FPGA components as well. The programming step
happens within Diamond Programmer.
All the projects in this book will follow this same basic

process. As you work on later projects, refer back to this
section if you need a refresher on using iCEcube2 and
Diamond Programmer.

Writing the Code

Let’s design an FPGA that links the switch inputs to the
LED outputs using Verilog or VHDL. Hopefully by this point
you’ve chosen which language you want to learn; I suggest
focusing on just one for now, but you can always pick up
the other later. All of this book’s code examples are shown
in both languages, so you can compare and contrast the
code as well.

I’ve had success writing FPGA code with Visual Studio
Code (VS Code), a free tool from Microsoft. You can
download extensions that will enable Verilog or VHDL
syntax highlighting and other useful features, like the
ability to tie to GitHub repositories directly from the code
editor. You could also write your code directly in iCEcube2,
but I wouldn’t recommend it, as it doesn’t have syntax
highlighting.

Whatever tool you choose, enter the following Verilog
or VHDL code and save it on your computer. Take note of
the filename and location, as you’ll need it later. All of the
code in this book is also available in the book’s GitHub
repository, https://github.com/nandland/getting-started-

with-fpgas.

Verilog

https://github.com/nandland/getting-started-with-fpgas

❶ module Switches_To_LEDs

❷ (input i_Switch_1,

 input i_Switch_2,

 input i_Switch_3,

 input i_Switch_4,

❸ output o_LED_1,

 output o_LED_2,

 output o_LED_3,

 output o_LED_4);

❹ assign o_LED_1 = i_Switch_1;

 assign o_LED_2 = i_Switch_2;

 assign o_LED_3 = i_Switch_3;

 assign o_LED_4 = i_Switch_4;

endmodule

VHDL

library ieee;

use ieee.std_logic_1164.all;

❶ entity Switches_To_LEDs is

 port (

 ❷ i_Switch_1 : in std_logic;

 i_Switch_2 : in std_logic;

 i_Switch_3 : in std_logic;

 i_Switch_4 : in std_logic;

 ❸ o_LED_1 : out std_logic;

 o_LED_2 : out std_logic;

 o_LED_3 : out std_logic;

 o_LED_4 : out std_logic);

end entity Switches_To_LEDs;

architecture RTL of Switches_To_LEDs is

begin

❹ o_LED_1 <= i_Switch_1;

 o_LED_2 <= i_Switch_2;

 o_LED_3 <= i_Switch_3;

 o_LED_4 <= i_Switch_4;

end RTL;

Let’s consider broadly how this code is structured, since
all our projects will follow this same general format. The
design for an FPGA is encapsulated inside one or more
modules (in Verilog) or entities (in VHDL). These
modules/entities define the interface to a block of code.
The interface has signals, which can be inputs or outputs.
At the highest level of your FPGA, these signals will
connect to physical pins on your device, thereby creating
the interfaces to other components, such as switches and
LEDs.

To create a module in Verilog, you use the module
keyword and provide a descriptive name—in this case,
Switches_To_LEDs ❶. Inside the module, the first thing you do
is declare all the input ❷ and output ❸ signals, enclosed in
a set of parentheses. Then comes the code for what you
want the module to actually do, which we’ll discuss in
detail momentarily, followed by the endmodule keyword.

Looking at the VHDL version, the first thing you might
notice is that it’s a bit longer than the Verilog version. This
is typical; VHDL generally takes more typing to accomplish
the same task compared to Verilog. Some of the extra
length comes at the very beginning of the listing, where we
specify which VHDL library and package we’ll be using. In
this case, we use the std_logic_1164 package from the ieee
library. We need this to get access to the std_logic data
type, which is commonly used to represent binary values
(0, 1) within your FPGA. Get used to including this library
and package. You’ll need it for every VHDL design you
create.

Whereas in Verilog you declare the inputs and outputs
and code the actual logic of the module as part of the same
code block, in VHDL you do this with two separate code
blocks. This is another reason why the VHDL version is
longer. First, you use the entity keyword to declare the
VHDL entity ❶, giving it a name and specifying its inputs ❷

and outputs ❸. Then, in a separate code block, you use the
architecture keyword to declare the architecture of the
entity, which is the code that defines the entity’s
functionality. You’ll almost always have a single
entity/architecture pair in a VHDL file, with the entity
describing the input/output interface and the architecture
describing the functionality.

Now that we’ve covered the structure of the code, let’s
look at the specifics. In both the Verilog and VHDL
versions, we define the four input signals ❷ corresponding
to the four switches: i_Switch_1, i_Switch_2, i_Switch_3, and
i_Switch_4. In Verilog, these inputs will be defined as 1 bit
wide (a single 0 or 1) by default, whereas in VHDL we
explicitly define them as std_logic, which is a 1-bit-wide
data type. We similarly define the four outputs, o_LED_1,
o_LED_2, o_LED_3, and o_LED_4, for the four LEDs ❸. Notice
that I like to precede my input signal names with i_ and my
output signal names with o_. This helps me to keep track of
which direction each signal is going in.

NOTE

You can define your inputs and outputs in any order, but it’s

customary to put inputs first.

Finally, we define the logic of the design—the code that
actually does the work—by assigning the inputs to the
outputs ❹. For example, we take the value on input
i_Switch_1 and assign it to the output o_LED_1. When the
FPGA is built, this will create a physical wire between these
two pins. In Verilog we use the assign keyword, which
requires the = for the actual signal assignment. In VHDL,
we can just use the <= assignment to create the wire
between the input and the output.

Creating a New iCEcube2 Project

Once you have the coding done, it’s time to bring the
design into iCEcube2 so you can build it. Open iCEcube2
and select File�New Project. You’ll be taken to a window
asking for information about your FPGA board, as shown in
Figure 2-4. Let’s review the settings in this window.

Figure 2-4: The iCEcube2 New Project window

For the Project Name, give your project whatever name
you like, and for the Project Directory, choose where on
your computer you want it saved. Next, you need to tell the
tool which FPGA you’re using. It needs to know how many
resources the FPGA has, which pins go where, and
everything about how it works to properly turn your code
into something compatible with your specific device. To do
this, select iCE40 from the Device Family drop-down, then
choose your FPGA’s specific device name and package from
the Device and Device Package drop-downs. For example, if

you were using the Nandland Go Board (one of the boards
discussed in Appendix A), you would choose HX1K for the
device and VQ100 for the package, then select 3.3 from the
topBank, leftBank, bottomBank, and rightBank drop-downs.
This tells the tool that all the pins on the device operate at
3.3 volts. Everything else in the window can remain at the
default settings. Click Next when you’re done.

NOTE

You’ll use these same settings for every single project, so

you can refer back to this section each time you create a

new project.

You’ll be taken to another dialog that prompts you to
add the Verilog or VHDL source file that you created
previously. Go ahead and add your file, or click Finish to
skip this step for now. If you choose to skip adding your file
from the dialog, you can do so later by expanding the
Synthesis Tool menu on the left side of the main iCEcube2
project window, right-clicking Design Files, and selecting
Add Files, as shown in Figure 2-5.

Figure 2-5: Adding Verilog or VHDL source files to your project

This Design Files menu also makes it possible to add
additional files to an existing project after it’s been created,
or to remove and replace files that you’ve added previously.

Adding Pin Constraints

The next step in the build process is to add the pin
constraints to your project. These constraints, which you
declare in a .pcf (physical constraints file) file (sometimes
referred to as pin constraint file), tell the tool which signals
in your Verilog or VHDL code will be connected to which
physical pins on your FPGA. This information is critical to
the place and route stage of the build process, when the
output of the synthesis process is mapped to the physical
resources on your FPGA. The tool needs to know which pins
are connected to the switches and LEDs so all the wires in
the design can be routed to where they need to go.

Each FPGA manufacturer has its own keywords for
writing constraints. To declare a pin constraint for Lattice’s
iCEcube2, you use the set_io keyword, followed by the
name of one of the signals in your design, followed by the
corresponding pin number on the FPGA itself. Here’s an
example of what the physical constraint file should look like
for this project, but keep in mind that the actual pin
numbers will vary depending on your development board.
As an example, these pin numbers would work for the
Nandland Go Board:

LED pins:

❶ set_io o_LED_1 56

set_io o_LED_2 57

set_io o_LED_3 59

set_io o_LED_4 60

Push-button switches:

set_io i_Switch_1 53

set_io i_Switch_2 51

set_io i_Switch_3 54

set_io i_Switch_4 52

Each line maps one of the signals in our code to one of
the pins on the FPGA. For example, we set the
Verilog/VHDL signal o_LED_1 to be connected to pin 56 on

the FPGA ❶. The signal names you use in the physical
constraint file must match the signal names in your
Verilog/VHDL code exactly. If the names don’t match, the
tool won’t know which signal goes to which physical pin on
the device.

NOTE

Notice that comments in the physical constraint file are

preceded with a # symbol—an octothorpe, pound sign, or

hashtag, depending on your age.

When setting your pin constraints, you’ll need to look at
the reference schematic for your FPGA development board.
The schematic contains the wiring diagram for the circuit
board. It tells you which pin of the FPGA is connected to
which LED, button, connector pin, or other device.
Learning how to read this basic schematic information is a
critical skill for an FPGA designer, as setting pin
constraints is a common task.

To add the physical constraint file to your project, find
the P&R Flow section in the menu on the left side of the
iCEcube2 project window, expand Add P&R Files, and
right-click Constraint Files. Then click Add Files and
select your .pcf file. Once you do this, you’ll see the file
listed under Constraint Files.

Forgetting to add a physical constraint file is a common
mistake when working with FPGAs. If you don’t add one,
the tool won’t warn you about it. Instead, they’ll just
connect the signals in your code to randomly chosen pins
on your device. This will almost certainly be wrong, and
your design won’t work as you expect.

Running the Build

You’re now ready to run the build in iCEcube2. To do this,
simply click Tool�Run All. This will execute both the

synthesis and place and route processes, creating the FPGA
image file that you’ll use to program the FPGA. iCEcube2
generates a report for each of these steps, visible under the
Reports section. You’re welcome to explore these reports to
see what type of information they contain; we’ll dive into
the details in future chapters.

Connecting Your Development Board

You now need to connect your board to your computer to
program the FPGA. Take a minute to make sure this
connection works and that your computer recognizes the
device. With the board unplugged, open up Device
Manager in Windows and expand the Ports (COM & LPT)
section. Now go ahead and plug in the board via USB. You
should see two devices labeled “USB Serial Port (COMX)”
pop up, as shown in Figure 2-6. The specific COM port
index numbers don’t matter. If this works for you, then
your board is connected to your computer and you’re ready
to go.

Figure 2-6: Viewing the board connection in Device Manager

If you don’t see the USB serial ports in Device Manager,
there are a few troubleshooting techniques to try. First,
check if your board has a power LED for indicating when
it’s on. If it does, but that LED isn’t illuminated, you don’t
have power, so check that the USB cable is firmly plugged
into the board and into your computer. If the LED is
illuminated, then the next most likely issue is the USB
cable itself. Some Micro-USB cables are “charge only,”
meaning they don’t have the wires that allow for data
transfer. Get another cable that you know works to transfer
data to and from a computer.

Programming the FPGA

The final step in the process is to program your design to
your FPGA using Diamond Programmer. An FPGA
development board typically features an integrated circuit
that turns its USB connection into the SPI interface, which
Diamond Programmer uses to program a flash memory chip
installed on the board. Once that’s done, the FPGA will boot
up from the flash, and you’ll see the fruits of your labor!

With your board connected, open up Diamond
Programmer to get started. You’ll be greeted with the
dialog shown in Figure 2-7. Click OK to create a new
project.

Figure 2-7: The Diamond Programmer dialog

Once you click OK, the tool will try to scan the board to
automatically identify which FPGA is connected. It will fail.
That’s fine; we can manually tell Diamond Programmer
which FPGA to target from the next screen, which is shown
in Figure 2-8.

Figure 2-8: The Diamond Programmer device selection screen

Set the Device Family to iCE40 and choose your
specific FPGA from the Device drop-down, as shown in
Figure 2-8. Next, double-click the field under Operation.
You’ll be greeted with a new window, shown in Figure 2-9.
Note that you may need to change the access mode to SPI
Flash Programming to see the contents shown here.

Figure 2-9: The Diamond Programmer Device Properties window

This window lets you tell Diamond Programmer how to
program your FPGA. In the Device Operation section, set
the access mode to SPI Flash Programming. For the SPI
Flash Options section, you’ll have to consult the
programming guide for your development board to
determine which SPI flash device is used. For the Go
Board, for example, you’d set the family to SPI Serial Flash,
the vendor to Micron, and the device to M25P10, as shown
in Figure 2-9.

Finally, in the Programming Options section, click the
three dots next to the Programming File box and choose
the .bin file to program to the FPGA. This is the file you
generated using iCEcube2, located in the
/<Project_Name>_Implmnt/sbt/outputs/bitmap/

subdirectory inside the directory where you saved your
iCEcube2 project. Leave all the other settings on their

defaults, and click OK to close this window. Now you’re
ready to program.

Open the Design menu and select Program. If
everything was done correctly, you should see INFO —
Operation: successful after a few seconds. This means that
your SPI flash has been programmed and your FPGA is
running! Try pushing each switch on your board. You
should see the corresponding LED light up when the button
is held down. Congratulations, you’ve built your first FPGA
project!

NOTE

I recommend saving your Diamond Programmer project so

you can reuse the settings for the other projects in the

book. All you’ll have to do is select a different .bin file to

program to the FPGA.

If the programming fails, you might get a CHECK_ID error
like this:

ERROR — Programming failed.

ERROR — Function:CHECK_ID

Data Expected: h10 Actual: hFF

ERROR — Operation: unsuccessful.

If you see this error, go to the Cable Settings section in
the right pane of Diamond Programmer and change your
port from FTUSB-0 to FTUSB-1, as shown in Figure 2-10.

Figure 2-10: Troubleshooting a CHECK_ID error

Once you make the change, try to program your device
again. This time it should work.

Summary

In this chapter, you created an FPGA development
environment and learned how to work with a development
board. Through your first project, you learned about the
main steps in the FPGA development process: design,
where you write code for the FPGA using Verilog or VHDL;
synthesis, where you translate that code into FPGA
components; place and route, where you map the
synthesized design to the resources on your specific FPGA;
and programming, where the design is physically
transferred to the FPGA. We’ll explore these concepts in
more detail later in the book, but as you work through
other projects, remember that you can refer back to this
chapter if you need a refresher on the basics of using your
FPGA tools.

3

BOOLEAN ALGEBRA AND THE LOOK-

UP TABLE

Boolean algebra is a field of
mathematics and logic

essential to understanding how to work
with devices like FPGAs. In Boolean
algebra, the input and output values are
all true or false, which we can equate
with 1s and 0s, or high and low voltages.
Instead of operations like multiplication
and division, Boolean algebra has
operations such as AND, OR, and NOT.
Each of these operations takes in some
number of 0s and 1s as input, evaluates
them, and produces a 0 or 1 as an output.
Algebra class would have been much
simpler if it had been about Boolean
algebra!

You may have encountered Boolean operations in other
programming languages, such as C or Python. For example,
you might want your program to write to a file only if the
user chooses to do so and the filename is valid. Similarly,
inside an FPGA, you’ll often want to check multiple inputs
to determine the state of an output. Let’s say you want to
turn on an LED when either of two switches is pressed. An
FPGA can make this happen using an OR operation: if
either one switch or the other (or both) provides a 1 as an
input, the FPGA provides a 1 as an output to the LED, and
the LED lights up.

Boolean algebra makes tasks like this possible. But
more importantly, Boolean algebra describes all the
underlying operations on data in your FPGA. String
together enough Boolean operations and you can do math,
store data, and more. You can do a surprising amount by
manipulating 1s and 0s.

In this chapter, we’ll explore how to represent simple
Boolean operations with logic gates, and we’ll see how
these gates can be combined into more complicated
Boolean equations. Then we’ll explore how FPGAs actually
perform logic operations by combining the functionality of
different logic gates into a single device called a look-up
table. As you’ll see, look-up tables are one of the most
important components in an FPGA.

Logic Gates and Their Truth Tables

When designing FPGAs, we represent simple Boolean
operations with logic gates, devices that take in electrical
signals as inputs, perform a Boolean operation on them,
and produce the appropriate electrical signal as an output.
There are different logic gates corresponding to all the
different Boolean operations, such as AND, OR, NOT, XOR,
and NAND. Each of these logic gates can be described with
a truth table, a table that lists all the possible input

combinations for a Boolean algebra equation and shows the
corresponding outputs.

We’ll discuss some common logic gates and examine
their truth tables next. But first, it’s important to
understand what the 1s and 0s in the truth tables we’ll be
looking at actually mean. Inside an FPGA, digital data is
represented by voltages: 0 volts for a 0, and some higher-
than-zero voltage, called the core voltage, for a 1. The core
voltage depends on the specific FPGA, but often is around
0.8 to 1.2 volts. When we talk about a signal being high, we
mean that the signal is at the core voltage and represents a
data value of 1. Likewise, a low signal is at 0 volts and
represents a data value of 0. With this in mind, let’s look at
some logic gates.

AND Gates

An AND gate is a logic gate whose output is high when all
its inputs are high. We’ll use the example of a two-input
AND gate, but AND gates can have any number of inputs.
For a two-input AND gate, the output is high when input A
and input B are both high, hence the name AND gate. Table
3-1 shows the truth table for this AND gate. Notice that the
output is a 1 only when both inputs are a 1.

Table 3-1: Truth Table for a Two-Input AND Gate

Input A Input B Output Q

0 0 0

0 1 0

1 0 0

1 1 1

In a truth table, the rows are usually arranged in
increasing decimal order, based on the inputs. In the case
of the AND truth table, the first row shows when input A =
0 and input B = 0, which is represented as b00, which

means 00 in binary, or 0 in decimal. Next comes b01
(decimal 1), then b10 (decimal 2), then b11 (decimal 3). If
the AND gate had additional inputs, then there would be
more rows in our truth table that we would have to fill out.
In the case of a three-input AND gate, for example, there
would be eight rows, going from b000 to b111, or 0 to 7 in
decimal.

NOTE

The output of a logic gate is denoted with a Q. This

convention comes from the English mathematician Alan

Turing, who used the letter Q to denote states in his

famous Turing machines. The Q stood for quanta, which is

a discrete state (such as 0 or 1), rather than something that

can have a continuous range of values.

Each logic gate has a distinctive symbol for use in
schematics. A two-input AND gate is drawn as shown in
Figure 3-1. The symbol depicts the inputs A and B going
into the gate on the left, and the output Q emerging on the
right.

Figure 3-1: The AND gate symbol

As we continue our exploration of logic gates, most of
the gates we’ll look at will have two inputs and one output.
As with AND gates, it’s possible that these other types of
gates could have additional inputs, but for simplicity we’ll
stick to the two-input versions. (The exception is the NOT
gate, which can only have one input and one output.) For
brevity, I’ll omit the words two-input from this point
forward when referring to a given logic gate.

OR Gates

An OR gate (Figure 3-2) is a logic gate whose output is high
when either of the inputs is high; that is, when either input
A or input B is high.

Figure 3-2: The OR gate symbol

Table 3-2 shows the truth table for an OR gate.

Table 3-2: Truth Table for an OR Gate

Input A Input B Output Q

0 0 0

0 1 1

1 0 1

1 1 1

Notice that when both inputs are high, the OR gate’s
output is high as well. All that matters to an OR gate is that
at least one of the inputs is high, which is also the case
when both inputs are high.

NOT Gates

A NOT gate (Figure 3-3) has a single input and a single
output. This kind of gate simply inverts the input (the
output is not the input), so it’s also known as an inverter.

Figure 3-3: The NOT gate symbol

Notice the bubble at the tip of the triangle in the NOT
gate symbol, which indicates inversion. It also appears in

the NAND gate, which we’ll look at later, and can even
appear on some inputs. The truth table for a NOT gate is
shown in Table 3-3.

Table 3-3: Truth Table for a NOT Gate

Input A Output Q

0 1

1 0

As the truth table indicates, whatever the input value to
the gate is, the output is the opposite.

XOR Gates

The output of an XOR gate (pronounced “ex-or,” short for
exclusive or) is high when either of the inputs is high, but
not both. In other words, the gate checks for exclusively
one or the other input being high. The symbol for an XOR
gate is shown in Figure 3-4.

Figure 3-4: The XOR gate symbol

The symbol looks like that of an OR gate, but the extra
line on the left side of the gate sets it apart. Table 3-4
shows the XOR gate’s truth table.

Table 3-4: Truth Table for an XOR Gate

Input A Input B Output Q

0 0 0

0 1 1

1 0 1

1 1 0

Though this type of gate might not seem particularly
useful at first blush, it comes up more often than you might
expect. For example, XOR gates are used for generating a
cyclic redundancy check (CRC), a way to validate data to
verify the integrity of transmitted information.

NAND Gates

A NAND gate (short for not and) has the opposite output of
an AND gate. You can infer this from the NAND gate’s
schematic symbol, shown in Figure 3-5: it looks exactly like
an AND gate, except with a bubble on the output to
indicate an inversion.

Figure 3-5: The NAND gate symbol

The output of the NAND gate is thus the same as an
AND gate, but inverted. If both input A and input B are
high, output Q will be low. In all other cases, output Q will
be high. This is shown in the truth table in Table 3-5.

Table 3-5: Truth Table for a NAND Gate

Input A Input B Output Q

0 0 1

0 1 1

1 0 1

1 1 0

NAND gates are commonly used in USB flash drives,
solid state drives (SSDs), and other types of data storage
devices. They also inspired the name of my website, https://

nandland.com.

Other Gates

https://nandland.com/

We’ve explored the most common types of logic gates here
to give you an idea of how they work, but this isn’t an
exhaustive list. There are other types as well, such as NOR
(short for not or) and XNOR (exclusive not or) gates.
Additionally, as mentioned previously, though we focused
on the two-input versions here, all of these gates (with the
exception of NOT) can have more than two inputs. This
section was just intended to get you comfortable with the
standard logic operations from Boolean algebra. Next, we’ll
explore how these operations can be combined to make
more complicated expressions.

Combining Gates with Boolean Algebra

You’ve seen how individual logic gates work. However,
often you’ll want to write code that’s more complex than
just a single logic operation. The good news is that you can
chain together multiple logic gates to represent more
elaborate Boolean equations, and use Boolean algebra to
determine the outcome.

In Boolean algebra, each logic operation has its own
symbol. One common set of symbols is shown in Table 3-6.
For example, * represents an AND operation, and +
represents an OR operation. These symbols make it easier
to write more elaborate Boolean algebraic equations.

Table 3-6: Boolean Algebra Symbols

Symbol Meaning

* AND

+ OR

′ NOT

^ XOR

Boolean algebra also has its own order of operations. To
solve a Boolean equation, first you evaluate NOTs, then

ANDs, and finally ORs. As in conventional algebra, you can
use parentheses to bypass the order of operations; anything
in parentheses will be evaluated first.

You now know everything you need to write and
evaluate Boolean equations with more than one logic
operation, such as Q = A * B + A′. In plain language, you’d
read this as “The output Q equals A and B or not A.” Table
3-7 shows the truth table for this equation.

Table 3-7: Truth Table for A * B + A′

Input A Input B Output Q

0 0 1

0 1 1

1 0 0

1 1 1

Figure 3-6 shows the circuit equivalent of this equation,
created by combining logic gates.

Figure 3-6: The circuit diagram for A * B + A′

As you can see, we still have only two inputs, but
because those inputs go through three different logic
operations, the possible outputs of our truth table are more
interesting than they were for individual logic gates. Let’s
consider what happens with this equation when both inputs
are 0, the first row of our truth table. The equation has no
parentheses, so first we look at NOT A, which evaluates to
1. Then we perform the AND operation of A and B, which
evaluates to 0. Finally, we OR the results of both of those
expressions, giving us an output of 1. Considering the other

possible inputs, you should see that any time A is 0, or any
time A and B are both 1, the output Q will be 1. Otherwise,
the output will be 0.

While this example featured two inputs, it’s possible to
have Boolean equations with any number of inputs. Each
input increases the number of rows in the truth table by a
factor of 2: for one input there are two truth table rows, for
two inputs there are four rows, for three inputs there are
eight rows, and so on. In mathematical terms, for n inputs,
there are 2n truth table rows.

To demonstrate, let’s consider an example equation
with three inputs: Q = A + (C * B′). Note that the
parentheses indicate that the operation C AND NOT B
occurs prior to the OR operation. In fact, that follows the
regular Boolean algebra order of operations, but the
parentheses make the equation a little easier to read. The
truth table with three inputs is shown in Table 3-8.

Table 3-8: Truth Table for A + (C * B′)

Input A Input B Input C Output Q

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 1

The corresponding circuit is shown in Figure 3-7.

Figure 3-7: The circuit diagram for A + (C * B′)

To generate this truth table, first we should perform the
operation inside the parentheses. This is C AND NOT B.
Within the parentheses, the highest precedence is the
inversion applied to B, which is then ANDed with C. In all,
the part of the equation in parentheses evaluates to high
when C is high and B is low, and since the remainder of the
equation is an OR operation, we also know that the overall
output will be high when C is high and B is low. This case
occurs on the second line of the truth table. It also occurs
on the fifth line of the truth table, so we can fill those in
with a 1. Finally, consider the A on the other side of the OR
operation. When it’s high, as in the last four lines of the
truth table, the output will be high. We can fill in the
remaining lines with a 0 to complete the truth table.

Combining logic operations to perform more
complicated functionality is common throughout
programming. In FPGAs, this same capability is possible by
chaining together simple logic gate functions.

The Look-Up Table

So far we’ve been learning about individual logic gates, but
it might surprise you to find out that these logic gates don’t
physically exist inside an FPGA. There isn’t a bank of AND
gates and OR gates that you can just pull from and wire
together to create your Boolean algebra logic. Instead,
there’s something much better: look-up tables (LUTs).
These are devices that can be programmed to perform any
Boolean algebra equation you can think of, regardless of

the specific logic gate(s) involved. If you need an AND gate,
a LUT can do it. If you need an XOR gate, a LUT can do
that too. A single LUT can also evaluate an equation
involving multiple logic gates, like the ones we considered
in the previous section. Any truth table you can think of, a
LUT can produce. This is the power of the look-up table.

NOTE

Early programmable logic devices like Programmable Array

Logic (PAL) did actually have banks of AND and OR gates.

With FPGAs, these have been superseded by the more

capable LUTs.

LUTs are classified by the number of inputs they can
accept. For example, there are two-, three-, four-, five-, and
even six-input LUTs on the newest FPGAs. Most LUTs
produce a single output. Figure 3-8 shows what a three-
input LUT (often referred to as LUT-3) looks like.

Figure 3-8: A three-input LUT

This LUT is a blank slate that can be programmed to
perform any Boolean algebra operation with three inputs
and one output. For example, look back at the circuit drawn
in Figure 3-7 to represent the Boolean equation Q = A + (C
* B′). Drawing the circuit for that equation required three
logic gates—a NOT gate, an AND gate, and an OR gate—
but we can replace those three gates with our single three-
input LUT. The same LUT could also be programmed to
represent the equation Q = (A + B + C)′, or Q = (A + B)′ *
C.

What happens if we have a Boolean algebra equation
with more than three inputs? That’s just fine, as LUTs can
be chained together to perform very long sequences of
logic. In fact, the typical FPGA contains hundreds or even
thousands of LUTs, all ready to be programmed to carry
out whatever logic operations you need. This is why look-up
tables are one of the two most important components to
understand inside of an FPGA: they perform the logical
operations of your code. The other key component is the
flip-flop, which we’ll talk about in the next chapter.

Although we’ve been drawing truth tables and logic
gate diagrams here, in the real world you’ll rarely define
FPGA operations this way. Instead, you’ll write code. Often,
the code you write is at a higher level than individual logic
gates: you might write code to compare two numbers, or
increment a counter, or check if a condition is true, and the
synthesis tools then break down that code into the
necessary Boolean logic operations and assign those
operations to LUTs. However, the purpose of this book is to
teach you how FPGAs work so you understand them, and at
a fundamental level, FPGAs work by performing Boolean
algebra. Once you know how FPGAs work, you’ll be able to
use Verilog or VHDL with a deeper understanding of what
you’re creating with your code. This will help you create
efficient and reliable FPGA designs.

LOGIC MINIMIZATION

You’ll often hear about logic minimization techniques such as De Morgan’s

law, Karnaugh maps, and the Quine–McCluskey algorithm in connection to

Boolean algebra. These are mathematical tricks to simplify Boolean algebra

equations to take up fewer computing resources. I feel that knowing the ins

and outs of these techniques isn’t necessary to begin learning about FPGAs,

however. Yes, LUTs are limited and should be used optimally, but there are

entire software tools responsible for minimizing logic resource usage for

you. Specifically, synthesis tools, which we’ll discuss in more detail in

Chapter 7, perform this task so you don’t have to. I’ve spent weeks of my

life learning about Karnaugh maps and performing Quine–McCluskey by

hand, and I can tell you that I’ve never needed to use this knowledge as a

professional FPGA engineer. All you need to do is write the VHDL or Verilog

and let the software tools work their magic.

Project #2: Lighting an LED with Logic Gates

You’re now ready to combine everything you’ve learned
about Boolean logic and look-up tables in a real-world
example on your FPGA development board. This project
should illuminate an LED, but only when two switches are
pushed at the same time. In other words, you’re using your
first LUT by implementing an AND gate. Figure 3-9 shows
the block diagram for this project.

Figure 3-9: The Project #2 block diagram

This project turns the entire FPGA into one single AND
gate. This might be overkill for a very capable FPGA, but
it’s an excellent way to visualize how a LUT works in the
real world. Table 3-9 shows the truth table corresponding
to the project.

Table 3-9: Truth Table for Project #2

SW1 SW2 D1

0 0 0

0 1 0

1 0 0

1 1 1

This truth table looks exactly like the one we created for
the AND gate, but the column labels have been replaced to
represent two switches and an LED on your development
board. As expected, the output D1 is only high when inputs
SW1 and SW2 are both high.

Writing the Code

Implementing an AND gate uses very few resources: three
connections (two input and one output) and a single LUT.
Let’s look at the Verilog and VHDL to get that LED to light
up:

Verilog

module And_Gate_Project

 (input i_Switch_1,

 input i_Switch_2,

 output o_LED_1);

❶ assign o_LED_1 = i_Switch_1 & i_Switch_2;

endmodule

VHDL

library ieee;

use ieee.std_logic_1164.all;

entity And_Gate_Project is

 port (

 i_Switch_1 : in std_logic;

 i_Switch_2 : in std_logic;

 o_LED_1 : out std_logic);

end entity And_Gate_Project;

architecture RTL of And_Gate_Project is

begin

 ❶ o_LED_1 <= i_Switch_1 and i_Switch_2;

end RTL;

We begin by defining our inputs as i_Switch_1 and
i_Switch_2, and our output as o_LED_1. Then we continuously
assign the output with the AND of the two inputs ❶. In
Verilog the symbol for an AND operation is &, whereas in
VHDL and is a reserved keyword.

Building and Programming the FPGA

You’re now ready to run your Verilog or VHDL through the
build process discussed in Chapter 2. The synthesis tool
will generate a report outlining the resource utilization on
your FPGA. Here’s the most interesting part of the report:

--snip--

Resource Usage Report for And_Gate_Project

Mapping to part: ice40hx1kvq100

Cell usage:

SB_LUT4 1 use

❶ I/O ports: 3

I/O primitives: 3

SB_IO 3 uses

I/O Register bits: 0

Register bits not including I/Os: 0 (0%)

Total load per clock:

Mapping Summary:

❷ Total LUTs: 1 (0%)

This report tells us that three I/O ports (input/output
ports, or pins, meaning connections to the outside world)
on the FPGA have been used to implement our circuit
design ❶ and, most importantly, that we’ve used a single
LUT ❷. That (0%) on the last line is indicating the resource
utilization on the FPGA. On this particular FPGA there are
over 1,000 LUTs available for usage, and we’re only making
use of 1 of them. Since the synthesis report is showing one
LUT with 0 percent resource utilization, the tool must be
doing some rounding down here (1 / 1,000 = 0.1).

Go ahead and program your development board, and
notice that the LED only illuminates when the two switches
are held down together. The LUT is working!

Feel free to change the code around to implement a
different Boolean operation than AND. For example, you
could create an OR gate or an XOR gate using the | or ^
symbols in Verilog, or the or or xor keywords in VHDL. You
could also try stringing together several operations to make
the LED light up based on whatever crazy Boolean algebra
equation you can think of, or try adding in more switch
inputs or more LED outputs to implement more
complicated truth tables. You can check that the synthesis
tools are really generating the correct LUTs based on your
code by writing out your own truth table using the switches
as inputs and the LED as the output, then testing all
possible switch combinations to see if they work as
expected.

Summary

In this chapter you’ve learned about one of the two most
important components of an FPGA: the look-up table.
You’ve seen how a LUT can implement any Boolean algebra
equation with a given number of inputs, from simple logic
gates like AND, OR, NOT, XOR, and NAND to more
complex equations that combine these gates. In the next
chapter, we’ll focus on the other crucial FPGA component:
the flip-flop.

4

STORING STATE WITH THE FLIP-FLOP

Alongside the look-up table,
the other main component in

an FPGA is the flip-flop. Flip-flops give
FPGAs the ability to remember, or store,
state. In this chapter, we’ll explore how
flip-flops work and learn why they’re
important to the functioning of FPGAs.

Flip-flops make up for a shortcoming of look-up tables.
LUTs generate output as soon as they’re provided input. If
all you had to work with was LUTs, your FPGA could
perform all the Boolean algebra you might want, but your
outputs would be determined solely based on the current
inputs. The FPGA would know nothing about its past state.
This would be very limiting. Implementing a counter would
be impractical, since a counter requires knowledge of a
previous value that can be incremented; so would storing
the result of some math operation as a variable. Even
something as critical as having a concept of time is
impractical with just LUTs; you can only calculate values
based on the now, not on anything in the past. The flip-flop

enables these interesting capabilities, which is why it’s
critical to the operation of an FPGA.

How a Flip-Flop Works

A flip-flop stores state in the form of a high or low voltage,
corresponding to a binary 1 or 0 or a true/false value. It
does this by periodically checking the value on its input,
passing that value along to its output, and holding it there.
Consider the basic diagram of a D flip-flop shown in Figure
4-1. D flip-flops are the most common type of flip-flop in
FPGAs, and they’re the focus of this chapter. (I’ll drop the
D in front of flip-flop going forward.)

Figure 4-1: A diagram of a D flip-flop

Notice that the component has three inputs on the left
and one output on the right. The top-left input, labeled D, is
the data input to the flip-flop. It’s where data, in the form of
1s or 0s, comes in. The bottom-left input, labeled with what
looks like a greater-than (>) sign, is the clock input, which
synchronizes the performance of the flip-flop. At regular
intervals, the clock input triggers the flip-flop to take the
value from the data input and pass it to the output (labeled
Q in the diagram).

The middle-left input, labeled En, is the clock enable. As
long as the clock enable is high, the clock input will
continue to trigger the flip-flop to update its output. If the
clock enable input goes low, however, the flip-flop will

ignore its clock and data inputs, essentially freezing its
current output value.

To better understand how a flip-flop operates, we need
to look more closely at the signal coming in to the clock
input.

FLIP-FLOP COMPONENT TERMINOLOGY

The component presented in Figure 4-1, a flip-flop with a clock enable pin,

isn’t always called a flip-flop. FPGA manufacturers such as AMD and Intel do

in fact use that terminology in their reference information, but a more

technically accurate name is a clocked D latch. It’s not valuable getting into

the details about why one name is better than another; instead, for the

purposes of this book, we’ll use the real-world terminology that the FPGA

manufacturers use and refer to these components as flip-flops.

The Clock Signal

A clock signal, often just called a clock, is a digital signal
that steadily alternates between high and low, as shown in
Figure 4-2. This signal is usually provided via a dedicated
electronic component external to the FPGA. A clock is key
to how FPGAs operate: it triggers other components, such
as flip-flops, to perform their tasks. If you think of an FPGA
as a set of gears, the clock is like the big gear that turns all
the other gears. If the main gear isn’t spinning, the others
won’t spin either. You could also think of the clock as the
heart of the system, since it keeps the beat for the entire
FPGA. Every flip-flop in the FPGA will be updated on the
pulse of the clock’s heartbeat.

Figure 4-2: A clock signal

Notice the vertical lines in the clock signal diagram,
where the signal jumps from low to high or high to low.
These abrupt changes in the signal are called edges. When
the clock goes from low to high, it’s called a rising edge,
and when it goes from high to low, it’s called a falling edge.
Flip-flops are conventionally triggered on each rising edge
of the clock: whenever the clock signal changes from low to
high, the flip-flop updates its output to match its data input.

NOTE

It’s possible to trigger a flip-flop with the falling edges of a

clock, but this is much less common than using the rising

edge.

Every clock has a duty cycle, the fraction of time that
the signal is high. For example, a signal with a 25 percent
duty cycle is high one-quarter of the time and low three-
quarters of the time. Almost all clocks, including the one
shown in Figure 4-2, have a 50 percent duty cycle: they’re
half-on, half-off.

A clock also has a frequency, which is the number of
repetitions from low to high and back again (called a cycle)
in a second. Frequency is measured in hertz (Hz), or cycles
per second. You may be familiar with your computer’s CPU
frequency, which can be measured in gigahertz (GHz),
where 1 GHz is 1 billion Hz. FPGAs don’t often run quite
that quickly. More commonly, FPGA clock signals run in the
tens to hundreds of megahertz (MHz), where 1 MHz is 1
million Hz. As an example, the clock on the Go Board
(discussed in Appendix A) runs at 25 MHz, or 25 million
cycles per second.

Another way to describe a clock’s speed is to refer to its
period, the duration of a single clock cycle. You can
calculate the period by finding 1 ÷ frequency. In the case

of the Go Board, for instance, the clock period is 40
nanoseconds (ns).

A Flip-Flop in Action

A flip-flop operates on the transitions of its clock input. As
mentioned previously, when a flip-flop sees a rising edge of
the clock, it checks the state of the data input signal and
replicates it at the output—assuming the clock enable pin is
set to high. This process is called registering, as in, “the
flip-flop registers the input data.” Thanks to this
terminology, a group of flip-flops is known as a register,
and by extension, a single flip-flop can also be called a one-

bit register. One flip-flop by itself is able to register a single
bit of data.

To see how registering works in practice, we’ll examine
a few example inputs to a flip-flop and their corresponding
outputs. First, consider Figure 4-3.

Figure 4-3: An example of flip-flop behavior

This figure shows three waveforms: the top one (Clk)
represents an FPGA’s clock signal, the middle one (D) is
the data input of a flip-flop, and the bottom one (Q) is the
flip-flop’s output. Let’s assume the clock enable is high, so
the flip-flop is always enabled. We can see the waveforms
across three cycles of the clock; the rising edge of each
clock cycle is indicated with the numbers 1, 2, and 3. In
between the first and second rising edges of the clock, the
D input goes from low to high, but notice that the output
doesn’t immediately go high when the input does. Instead,
it takes a bit of time for the flip-flop to register the change

in the input. Specifically, it takes until the next rising clock

edge for the flip-flop output to follow the input.
The flip-flop looks at the input data and makes the

output match the input only at the rising edge of the clock,
never between edges. In this case, at the rising edge of the
second clock cycle, the output Q sees that D has gone from
low to high. At this point, Q takes on the same value as D.
On the third rising edge, Q again checks the value of D and
registers it. Since D hasn’t changed, Q stays high. Q also
registered D at the rising edge of the first clock cycle, but
since both D and Q were low at that point, Q didn’t change.

Now consider Figure 4-4, which shows how a flip-flop
responds to another example scenario.

Figure 4-4: Another example of flip-flop behavior

Here we again see a flip-flop operating over several
cycles of the clock. Again, let’s assume the flip-flop is
always enabled. Between the clock’s first and second rising
edges, input D goes from low to high. On the second rising
edge, Q sees that D has gone high, so it toggles from low to
high as well. On the third rising edge, Q sees D has stayed
high, so it stays high, too. Between the third and fourth
rising edges, D goes low, and the output similarly goes low
on the fourth rising edge. On the last rising edge, D is still
low, so Q stays low as well.

The previous examples have all assumed the clock
enable input is high. Let’s now show what happens when
the flip-flop’s clock enable isn’t always high. Figure 4-5
shows the exact same Clk and D waveforms as Figure 4-4,

but instead of the clock enable remaining high the whole
time, it’s only high at the third rising edge.

Figure 4-5: Flip-flop behavior with the clock enable signal

With the clock enable (En) now in play, a completely
different output Q is generated. Q no longer “sees” that D
has gone high on clock cycle two, since the clock enable is
low at that point. Instead, Q only changes its output from
low to high on clock cycle three, when the clock enable is
high. On clock cycle four, D has gone low, but Q doesn’t
follow D. Instead, it stays high. This is because the clock
enable has gone low at that point, locking the output in
place. The flip-flop will no longer register any changes on D
to Q.

These examples demonstrate flip-flop behavior, showing
how a flip-flop’s activity is coordinated by a clock.
Additionally, we’ve seen how turning off the clock enable
pin allows flip-flops to retain state, even when the input D
is changing. This gives flip-flops the ability to store data for
a long time.

A Chain of Flip-Flops

Flip-flops are commonly chained together, with the output
from one flip-flop going directly into the data input of
another flip-flop. For example, Figure 4-6 shows a chain of
four flip-flops. For simplicity, let’s assume these are always
enabled.

Figure 4-6: A chain of four flip-flops

The four flip-flops, labeled test1 through test4, are
chained such that the output of test1 goes to the input of
test2, the output of test2 goes to the input of test3, and so
on. All four flip-flops are driven by the same clock. The
clock synchronizes their operation: with each rising edge of
the clock, all four flip-flops will check the value on their
input and register that value to their output.

Suppose the test1 flip-flop registers a change at its
input. Figure 4-7 illustrates how that change will propagate
through the flip-flop chain, all the way to the output of
test4.

Figure 4-7: A change of input propagating through the flip-flop chain

The figure shows waveforms for the clock signal, the
input and output of the test1 flip-flop (test1_d and test1_q,
respectively), and the output of each subsequent flip-flop.
On the first clock cycle rising edge (labeled 1), test1_d is

low, so test1_q stays low as well. It’s not until the second
rising clock edge that the first flip-flop “sees” that the input
has changed to high and registers that to its output. The
test1 flip-flop’s output is also the input to the test2 flip-flop,
but notice that the output of test2 doesn’t immediately
change to high when the output of test1 does. Instead,
test2_q changes one clock cycle later, on the third rising
clock edge. Then, on the fourth rising edge, we see test3_q
go high, and finally on the fifth rising edge test4_q goes
high and stays high.

By adding three flip-flops behind test1, we’ve delayed
the output by three clock cycles as the signal propagates
through the chain. Each flip-flop in the chain adds a single
clock cycle of delay. This technique of delaying signals by
adding a chain of flip-flops is a useful design practice when
working with FPGAs. Among other things, designers may
chain flip-flops to create circuits that can delay or
remember data for some amount of time, or to convert
serial data to parallel data (or vice versa).

OTHER KINDS OF FLIP-FLOPS

In this chapter we’re focusing on the D flip-flop. If you’ve taken a digital

electronics course in college, there’s a good chance your professor spent

time talking about other types of flip-flops as well, including the T flip-flop

and the JK flip-flop. In practice, however, you’re unlikely to need to know

anything about these other types of flip-flops to use an FPGA, as most

FPGAs are made with D flip-flops. For this reason, I won’t burden you with

information about how the other kinds of flip-flops work, although it’s

important to acknowledge that they exist.

Project #3: Blinking an LED

Now that you know how flip-flops work, we’ll make use of a
couple of them in a project where the FPGA must
remember information about its own state. Specifically,
we’re going to toggle the state of an LED each time a

switch is released. If the LED was off before the switch is
released, it should turn on, and if the LED was on, it should
turn off.

This project uses two flip-flops. The first is for
remembering the state of the LED: whether it’s on or off.
Without this memory, the FPGA would have no way of
knowing whether to toggle the LED each time the switch is
released; it won’t know if the LED is on and needs to be
turned off, or off and needs to be turned on.

The second flip-flop allows the FPGA to detect when the
switch is released. Specifically, we’re looking for the falling
edge of the switch’s electrical signal: its transition from
high to low. A good way to look for a falling edge in an
FPGA is to register the signal in question by passing it
through a flip-flop. When the input value of the flip-flop
(that is, the unregistered value) is equal to 0 but the
previous output value (the registered value) is equal to 1,
then we know that a falling edge has occurred. The falling
edge of the switch is not to be confused with the rising
edge of the clock; we’re still using the rising edge of the
clock to drive all of our flip-flops. Figure 4-8 shows the
pattern to look for.

Figure 4-8: Falling edge detection using flip-flop

Here, i_Clk is the clock signal; i_Switch_1 represents the
electrical signal from the switch, which passes into a flip-
flop; and r_Switch_1 is the flip-flop’s output. At the circled
rising clock edge, we can see that i_Switch_1 is low, but
r_Switch_1 is high. This pattern is how we can detect the

falling edge of a signal. One thing to note is that while
r_Switch_1 does go low on the rising clock edge, when the
logic evaluates the state of r_Switch_1 at that same rising
clock edge, it will still “see” that r_Switch_1 is high. Only
after some small delay will the output of r_Switch_1 go low,
following the state of i_Switch_1.

This project will also require some logic between the
two flip-flops, which will be implemented in the form of a
LUT. This will be your first glimpse of how flip-flops and
LUTs work together in an FPGA to accomplish tasks. Figure
4-9 shows an overall block diagram for this project.

Figure 4-9: The Project #3 block diagram

The output of one of the switches on your development
board (SW1) goes into the FPGA, where the falling edge
detection logic is implemented. The output of this logic
drives one of the board’s LEDs (D1). Now we’ll look at how
to implement this design.

Writing the Code

We can write our LED-toggling code using Verilog or
VHDL:

Verilog

module LED_Toggle_Project(

 input i_Clk,

 input i_Switch_1,

 output o_LED_1);

❶ reg r_LED_1 = 1'b0;

 reg r_Switch_1 = 1'b0;

❷ always @(posedge i_Clk)

 begin

 ❸ r_Switch_1 <= i_Switch_1;

 ❹ if (i_Switch_1 == 1'b0 && r_Switch_1 == 1'b1)

 begin

 ❺ r_LED_1 <= ~r_LED_1;

 end

 end

 assign o_LED_1 = r_LED_1;

endmodule

VHDL

library ieee;

use ieee.std_logic_1164.all;

entity LED_Toggle_Project is

 port (

 i_Clk : in std_logic;

 i_Switch_1 : in std_logic;

 o_LED_1 : out std_logic

);

end entity LED_Toggle_Project;

architecture RTL of LED_Toggle_Project is

❶ signal r_LED_1 : std_logic := '0';

 signal r_Switch_1 : std_logic := '0';

begin

❷ process (i_Clk) is

 begin

 if rising_edge(i_Clk) then

 ❸ r_Switch_1 <= i_Switch_1;

 ❹ if i_Switch_1 = '0' and r_Switch_1 = '1' then

 ❺ r_LED_1 <= not r_LED_1;

 end if;

 end if;

 end process;

 o_LED_1 <= r_LED_1;

end architecture RTL;

We begin by defining two inputs (the clock and the
switch) and a single output (the LED). Then we create two
signals ❶ : r_LED_1 and r_Switch_1. We do this using the reg
keyword (short for register) in Verilog, or the signal
keyword in VHDL. Ultimately these signals will be
implemented as flip-flops, or registers, so we prefix their
names with the letter r. It’s good practice to label any
signals that you know will become registers r_signal_name,
as it helps keep your code organized and easy to search.

Next, we initiate what’s known as an always block in
Verilog or a process block in VHDL ❷. This type of code
block is triggered by changes in one or more signals, as
specified by the code block’s sensitivity list, which is given
in parentheses when the block is declared. In this case, the
block is sensitive to the clock signal, i_Clk. Specifically, this
block will be triggered any time the clock changes from a 0
to a 1; that is, at each rising clock edge. Remember, when
you use a clock to trigger logic within your FPGA, you’ll
almost always be using the clock’s rising edges. In Verilog,
we indicate this with the keyword posedge (short for positive

edge, another term for rising edge) within the sensitivity
list itself: always @(posedge i_Clk). In VHDL, however, we
only put the signal name in the sensitivity list, and specify
to watch for rising edges two lines later, with if
rising_edge(i_Clk) then.

Within the always or process block, we create the first
flip-flop of this project by taking the input signal i_Switch_1
and registering it into r_Switch_1 ❸. This line of code will
generate a flip-flop with i_Switch_1 on the D input, r_Switch_1
on the Q output, and i_Clk going into the clock input. The
output of this flip-flop will generate a one-clock-cycle delay
of any changes to the input. This effectively gives us access
to the previous state of the switch, which we need to know
in order to detect the falling edge of the switch’s signal.

We next check to see if the switch has been released ❹.
To do this, we compare the current state of the switch with
its previous state, using the flip-flop we just created ❸. If
the current state (i_Switch_1) is 0 and the previous state
(r_Switch_1) is 1, then we’ve detected a falling edge,
meaning the switch has been released. The and check will
be accomplished with a LUT.

At this point, perhaps you’ve noticed something
surprising. First we assigned i_Switch_1 to r_Switch_1 ❸, then
we checked if i_Switch_1 is 0 and r_Switch_1 is 1 ❹. You
might think that since we just assigned i_Switch_1 to
r_Switch_1, they’d always be equal, and the if statement
would never be true. Right? Wrong! Assignments in an
always or process block that use <= don’t occur immediately.
Instead, they take place on each rising edge of the clock
and therefore are all executed at the same time. If at a
rising clock edge i_Switch_1 is 0 and r_Switch_1 is 1, the if
statement will evaluate as true, even as r_Switch_1 is
simultaneously switching from a 1 to a 0 to match
i_Switch_1.

Now we’re thinking in parallel instead of serially! We’ve
generated assignments that occur all at once, instead of
one at a time. This is completely different from traditional
programming languages like C and Python, where
assignments occur one after the other. To further drive this
point home, you could move the assignment of r_Switch_1 to
the last line of the always or process block, and everything
would still work the same. Formally, we call the <=
assignment a non-blocking assignment, meaning it doesn’t
prevent (“block”) other assignments from taking place at
the same time. In Chapter 10, we’ll revisit this concept and
compare non-blocking assignments with blocking
assignments.

Once we’re inside the if statement, we toggle the state
of the LED ❺. Doing so generates the second flip-flop used

in this project. We take the current value of r_LED_1, invert
it, and store the result back into the flip-flop. That might
sound impossible, but it’s perfectly valid. The output of the
flip-flop will pass through a LUT, acting here as a NOT
gate, and then be fed back into the flip-flop’s input. This
way, if the LED was on it’ll turn off, and vice versa.

Adding Constraints

Once the code is ready, it’s time to run the tools to build
the FPGA image and program your board. First, since this
project uses a clock, you need to add a constraint telling
the FPGA tool about the clock’s period. The clock period
tells the timing tool how much time is available to route
wires between flip-flops. As clock speed increases, it gets
harder for the FPGA to meet timing, or achieve all the
desired tasks within each clock cycle. For slower clocks,
with frequencies on the order of tens of megahertz, you
shouldn’t have any problems meeting timing. In general,
it’s only when you deal with clocks that are faster than 100
MHz that you may start to run into timing issues.

The clock period will vary from one development board
to another, and can be found in your board’s
documentation. To tell Lattice iCEcube2 about the clock
period, create a new text file with a .sdc file extension
containing something like the following:

create_clock -period 40.00 -name {i_Clk} [get_ports {i_Cl

k}]

This creates a clock with a 40 ns period (25 MHz
frequency) and assigns that constraint to the signal called
i_Clk in your design. This constraint will work for the Go
Board, as an example, but if your board has a different
clock period, replace 40.00 with the appropriate value.

Right-click Constraint Files under Synthesis Tool and
select the .sdc file to add it to your project in iCEcube2.
Remember from Chapter 2 that we previously had a single
.pcf constraint file telling the tools which signals to map to
which pins. Now we have an additional constraint file just
for the clock. Both are critical for getting your FPGA to
work correctly.

We also need to update the .pcf file to include the pin
corresponding to the new clock signal. On the Go Board,
for example, the clock is connected to pin 15 of the FPGA,
so you would need to add the following pin constraint:

set_io i_Clk 15

Check the schematic for your development board to see
which pin has the clock as an input, and replace the 15 as
appropriate.

Building and Programming the FPGA

You’re now ready to run the build. When you do this, the
tools will generate some reports. The synthesis report
should look something like this:

--snip--

Resource Usage Report for LED_Toggle_Project

Mapping to part: ice40hx1kvq100

Cell usage:

SB_DFF 2 uses

SB_LUT4 1 use

I/O ports: 3

I/O primitives: 3

SB_GB_IO 1 use

SB_IO 2 uses

I/O Register bits: 0

❶ Register bits not including I/Os: 2 (0%)

Total load per clock:

 ❷ LED_Toggle_Project|i_Clk: 1

Mapping Summary:

❸ Total LUTs: 1 (0%)

This report tells us that we’re using two register bits ❶,
meaning our design includes two flip-flops. This is exactly
what we expected. The report also shows that we’re using
one LUT ❸. This single LUT will be able to perform both
the AND and NOT operations required in the code. Notice,
too, that the tools identified the signal i_Clk as a clock ❷.

Now let’s look at the place and route reports, which you
can view in iCEcube2 by going to P&R Flow�Output

Files�Reports. There are two reports here. The first is a
pin report, which tells you which signals were mapped to
which pins. You can use this to confirm that your signals
were mapped correctly. The second is the timing report. It
has a section labeled “Clock Frequency Summary” that
should look something like this:

--snip--

 1::Clock Frequency Summary

==

Number of clocks: 1

Clock: i_Clk | Frequency: 654.05 MHz | Target: 25.00 MHz |

--snip--

This section tells you if the constraint file was accepted
correctly. Here we see that the tools have found our clock,
i_Clk. The Target property indicates the tools have
recognized a 25 MHz constraint placed on the clock (your
number will vary, depending on your development board),
while the Frequency property tells us the maximum
frequency at which the FPGA could theoretically run our
code successfully. In this case, we could run this FPGA at
654.05 MHz and it would still be guaranteed to work
correctly. That’s quite fast! As long as the Frequency

property is higher than the Target property, you shouldn’t
have any issues running your code. A problem would show
up here in the form of a timing error, which happens when
the target clock speed is greater than the frequency that
the tools can achieve. In Chapter 7, we’ll take a deeper look
at what causes timing errors and how to fix them.

Now that you’ve successfully built the FPGA design, you
can program your board and test the project. Try pushing
the switch several times. You should see the LED toggle on
or off each time the switch is released. Congratulations,
you’ve got your first flip-flop working!

However, you may notice something strange going on.
The LED may not appear to change its state with each
release. You might think that the FPGA isn’t registering the
releases of the switch, but in fact the LED is toggling two
or more times with each release, so quickly that your eyes
don’t see it. The cause is related to the physical workings of
the switch itself. To solve this issue, the switch needs to be
debounced. You’ll learn what this means and how to do it in
the next chapter.

Combinational Logic vs. Sequential Logic

There are two kinds of logic that can take place inside an
FPGA: combinational logic and sequential logic.
Combinational logic is logic for which the outputs are
determined by the present inputs, with no memory of the
previous state. This kind of logic is achieved with LUTs,
which you’ll recall generate their output based only on
their current inputs. Sequential logic, on the other hand, is
logic for which the outputs are determined both by present
inputs and previous outputs. Sequential logic is achieved
with flip-flops, since flip-flops don’t immediately register
changes on their inputs to their outputs, but rather wait
until the rising edge of the clock to act on the new input
data.

NOTE

You may also see combinational logic and sequential logic

referred to as combinatorial logic and synchronous logic,

respectively.

It might not be obvious that a flip-flop’s output depends
on its previous output, so let’s explore an example to make
this more concrete. Suppose the flip-flop is enabled, its
input is low, its clock is low, and the output is low. Then
suddenly the input goes high, then back low again quickly.
What will the output do? Nothing! It stays low, since there
was no clock edge to trigger a change. Now, what happens
if that same flip-flop has the same initial conditions, except
the output is high? In this case, of course, the output will
stay high. But if we only looked at the inputs (D, En, and
Clk), we would be unable to predict the output state. You
need to know what the output of the flip-flop was (its
previous state) to determine the flip-flop’s current state.
That’s why a flip-flop is sequential.

Knowing if your code is going to instantiate LUTs
(combinational logic) or flip-flops (sequential logic) is
critical to being a good FPGA designer, but sometimes it
can be hard to tell the difference. In particular, an always
block (in Verilog) or process block (in VHDL) can define a
block of either combinational logic or sequential logic.
We’ll consider examples of each to see how they differ.

First, here’s an example of a combinational
implementation in Verilog and VHDL:

Verilog

always @ (input_1 or input_2)

 begin

 and_gate <= input_1 & input_2;

 end

VHDL

process (input_1, input_2)

begin

 and_gate <= input_1 and input_2;

end process;

Here we’ve created an always or process block with a
sensitivity list (the signals in the parentheses) that includes
two signals: input_1 and input_2. The code block performs an
AND operation on the two signals.

This block of Verilog or VHDL code will only generate
LUTs; it won’t generate any flip-flops. For our purposes,
flip-flops require a clock input, and there is no clock. Since
no flip-flops are generated, this is combinational logic.

Now consider a slight modification to the examples just
shown:

Verilog

always @ (posedge i_Clk)

 begin

 and_gate <= input_1 & input_2;

 end

VHDL

process (i_Clk)

begin

 if rising_edge(i_Clk) then

 and_gate <= input_1 and input_2;

 end if;

end process;

This code looks very similar to the previous examples,
except now the always or process block’s sensitivity list has

changed to be sensitive to the signal i_Clk. Since the block
is sensitive to a clock, it’s now considered sequential logic.
This block will actually still require a LUT to perform the
AND operation, but in addition to that the output will utilize
a flip-flop, since the clock is gating the output from
updating all the time.

While all the examples in this section are valid code, I’m
going to make a suggestion, especially for FPGA beginners:
when writing your code, only create sequential always
blocks (in Verilog) or process blocks (in VHDL). The way to
do this is to ensure that the block’s sensitivity list only has
a clock in it. (A clock and a reset is OK too, as we’ll discuss
later in the chapter.) Combinational always blocks and
process blocks can get you into trouble: you can generate a
latch by accident. We’ll explore latches in the next section,
but basically, they’re bad. Additionally, I find code is more
readable if you know that every time you come across an
always block or process block, it will always be generating
sequential logic.

As for combinational-only logic, write it outside of an
always block or process block. In Verilog, the keyword assign
is useful. In VHDL, you can simply use the <= assignment to
create combinational logic.

The Dangers of Latches

A latch is a digital component that can store state without
the use of a clock. In this way, latches perform a similar
function as flip-flops (namely, storing state), but the
method they use is different since there’s no clock involved.
Latches are dangerous and can be inadvertently generated
when working with combinational code. In my career, I’ve
never once generated a latch on purpose, only by accident.
It’s highly unlikely that you’d ever actually want to
generate a latch either, so it’s important to understand how
to avoid them.

You always want your FPGA designs to be predictable.
Latches are dangerous because they violate this principle.
FPGA tools have a very difficult time understanding the
timing relationship of a latch and how other components
connected to it will perform. If you do manage to create a
latch with your code, the FPGA tools will scream at you
with warnings about the fact that you’ve done a horrible
thing. Please don’t ignore these warnings.

So how can this happen? A latch is created when you
write a combinational process block or conditional
assignment (in VHDL) or a combinational always block (in
Verilog) with an incomplete assignment, meaning the
output isn’t assigned under all possible input conditions.
This is bad and should be avoided. Table 4-1 shows an
example of a truth table that would generate a latch.

Table 4-1: A Truth Table That Creates a Latch

Input A Input B Output Q

0 0 0

0 1 1

1 0 1

1 1 Undefined

This truth table has two inputs and one output. The
output is 0 when both inputs are 0, and it’s 1 when input A
is 0 and input B is 1, or when input A is 1 and input B is 0.
But what happens when both inputs are 1? We haven’t
explicitly stated what will occur. In this case, the FPGA
tools assume that the output should retain its previous
state, much like a flip-flop is capable of doing, but without
the use of a clock. For example, if the output is 0 and both
inputs go high, the output will stay 0. If the output is 1 and
both inputs go high, the output will stay 1. This is the
behavior that a latch creates: the ability to store state
without a clock.

Let’s take a look at how this truth table could be
created in Verilog and VHDL. Don’t write code like this!

Verilog

❶ always @ (i_A or i_B)

begin

 if (i_A == 1'b0 && i_B == 1'b0)

 o_Q <= 1'b0;

 else if (i_A == 1'b0 && i_B == 1'b1)

 o_Q <= 1'b1;

 else if (i_A == 1'b1 && i_B == 1'b0)

 o_Q <= 1'b1;

 ❷ // Missing one last ELSE statement!

end

VHDL

❶ process (i_A, i_B)

begin

 if i_A = '0' and i_B = '0' then

 o_Q <= '0';

 elsif i_A = '0' and i_B = '1' then

 o_Q <= '1';

 elsif i_A = '1' and i_B = '0' then

 o_Q <= '1';

❷ -- Missing one last ELSE statement!

 end if;

end process;

Here, our always or process block is combinational
because there’s no clock in the sensitivity list ❶ or the
block itself, just two inputs, i_A and i_B. We mimic the
incomplete truth table assignment of the output o_Q using
conditional checks. Notice that we don’t explicitly check
the condition where i_A and i_B are both 1. Big mistake!

If you were to try to synthesize this faulty code, the
FPGA tools would generate a latch and warn you about it in
the synthesis report. The warning would look something
like this:

@W: CL118 :"C:\Test.v":8:4:8:5|Latch generated from always b

lock for signal

o_Q; possible missing assignment in an if or case statement.

The tools are pretty good. They tell you that there’s a
latch, they tell you which signal it is (o_Q), and they tell you
why it might be occurring.

To avoid generating a latch, we could add an else
statement ❷, which will cover all remaining possibilities. As
long as the output is defined for all possible inputs, we’ll be
safe. An even better solution, however, would be not to use
a combinational always or process block at all. I discourage
the use of combinational always or process blocks precisely
because it’s easy to make this mistake of omitting an else
statement. Instead, we can use a sequential always or
process block. Here’s what that looks like:

Verilog

❶ always @ (posedge i_Clk)

begin

 if (i_A == 1'b0 && i_B == 1'b0)

 o_Q <= 1'b0;

 else if (i_A == 1'b0 && i_B == 1'b1)

 o_Q <= 1'b1;

 else if (i_A == 1'b1 && i_B == 1'b0)

 o_Q <= 1'b1;

end

VHDL

❶ process (i_Clk)

begin

 if rising_edge(i_Clk) then

 if i_A = '0' and i_B = '0' then

 o_Q <= '0';

 elsif i_A = '0' and i_B = '1' then

 o_Q <= '1';

 elsif i_A = '1' and i_B = '0' then

 o_Q <= '1';

 end if;

 end if;

end process;

We now have a sequential always or process block,
because we’re using a clock in the sensitivity list ❶ and
within the block itself. As a result, o_Q will create a flip-flop
rather than a latch. Flip-flops don’t have the same
unpredictable timing issues that latches do. Remember that
the flip-flop can utilize its en input to retain a value. The
flip-flop’s en input will be disabled when i_A and i_B are
both high. This will retain the flip-flop’s output with
whatever state it had previously, performing the same
behavior as the latch, but in a safe, predictable way.

One side effect of switching to a sequential always or
process block is that it now takes a single clock cycle for the
output to be updated. If it’s critical that this logic be
combinational—with the output updating as soon as one of
the inputs changes, with no clock delay—then you need to
ensure that the output is specified for all possible input
conditions.

There’s one other way to generate latches in VHDL.
VHDL has the keyword when, which can be used in a
conditional assignment. Verilog has no equivalent syntax,
so this code snippet is for VHDL only:

o_Q <= '0' when (i_A = '0' and i_B = '0') else

 '1' when (i_A = '0' and i_B = '1') else

 '1' when (i_A = '1' and i_B = '0');

This code exists outside of a process block, and again we
haven’t explicitly stated what o_Q should be assigned to
when i_A and i_B are both 1, so the FPGA tools will infer a
latch here. The latch will enable the output to keep its
previous state, but that’s likely not what we intended.
Instead, we should be specific with our code and ensure
that we have an else condition that sets o_Q for all possible
inputs.

Resetting a Flip-Flop

Flip-flops have an additional input that we haven’t
discussed yet, called set/reset, or often just reset. This pin
resets the flip-flop back to an initial state, which could be 0
or 1. Resetting flip-flops is useful when the FPGA first
powers up and initializes. For example, you might want to
reset your flip-flops that control a state machine to the
initial state (we’ll discuss state machines in Chapter 8). You
might also want to reset a counter to some initial value, or
reset a filter back to zero. Resetting flip-flops is one method
to ensure your flip-flops are in a specific state prior to
operation.

There are two types of resets: synchronous and
asynchronous. Synchronous resets occur at the same time
as the clock edge, whereas asynchronous resets can occur
at any time. You might trigger an asynchronous reset with
a button press external to the FPGA, for example, since the
button press can come at any point in time. Let’s look at
how to code a reset, starting with a synchronous one:

Verilog

❶ always @ (posedge i_Clk)

begin

❷ if (i_Reset)

 o_Q <= 1'b1;

❸ else

--snip--

VHDL

❶ process (i_Clk)

begin

 if rising_edge(i_Clk) then

 ❷ if i_Reset = '1' then

 o_Q <= '1';

 ❸ else

--snip--

Here we have an always or process block with a normal
sensitivity list; it’s only sensitive to changes of the clock ❶.
Inside the block, we first check the state of i_Reset ❷. If it’s
high, then we reset the signal o_Q to 1. This is our
synchronous reset, since it’s happening on the edge of the
clock. If i_Reset is low, we proceed with the else branch of
the block ❸, where we’d write whatever code we want to
be executed under normal operating (non-reset) conditions.

Notice that in this example we’re checking if the reset
is high. Sometimes resets can be active low, however,
which is usually indicated by _L or _n at the end of the
signal name. If this were an active low reset, we would
check for the signal being 0 rather than 1.

Now let’s take a look at an asynchronous reset:

Verilog

❶ always @ (posedge i_Clk or i_Reset)

begin

❷ if (i_Reset)

 o_Q <= 1'b1;

❸ else

--snip--

VHDL

❶ process (i_Clk, i_Reset)

begin

❷ if (i_Reset = '1') then

 o_Q <= '1';

❸ elsif rising_edge(i_Clk) then

--snip--

Notice that we’ve added i_Reset into the always or process
block’s sensitivity list ❶. Now, rather than checking the
clock state first, we check the reset state first ❷. If it’s
high, then we perform whatever reset conditions we want,
in this case setting o_Q to 1. Otherwise, we proceed
normally ❸.

The choice between synchronous and asynchronous
resets should be documented in the user guide for your
specific FPGA—some FPGAs are optimized to handle one or
the other. Additionally, resets can create strange bugs if
they’re not treated properly. Therefore, I strongly
recommend consulting the documentation to make sure
you’re resetting flip-flops correctly for your device.

Look-Up Tables and Flip-Flops on a Real FPGA

Now you understand that LUTs and flip-flops exist on
FPGAs, but they may still seem a bit abstract. To get a
more concrete picture, let’s look at how LUTs and flip-flops
are actually wired together in a real FPGA. The image in

Figure 4-10 is taken from the datasheet for the Lattice
iCE40 LP/HX family of FPGAs, the type of FPGA compatible
with iCEcube2.

Datasheets are used throughout the electronics industry
to explain the details of how a component works. Each
FPGA will have at least a few unique datasheets with
different pieces of information, and more complicated
FPGAs can have dozens of them.

Figure 4-10: LUTs and flip-flops in a real FPGA

Every FPGA, whether from Lattice, AMD, Intel, or
whoever else, will have an image very similar to Figure 4-
10 in its specific family datasheet. This particular image
shows the basic building block of Lattice iCE40 FPGAs,
which Lattice calls the Programmable Logic Block (PLB).

Each FPGA company has its own unique name for these
basic building blocks; for example, AMD calls them
Configurable Logic Blocks (CLBs), while Intel uses Adaptive

Logic Modules (ALMs). We’ll look at the details of how the
PLB from Lattice works as an example.

Looking at the left side of the image, we see there are
eight logic cells in each PLB. The right side shows a
zoomed-in version of a single logic cell. Inside it, notice that
there’s a rectangle labeled LUT4. This is a four-input look-
up table! There’s also a dark gray box labeled DFF. This is
a D flip-flop! The LUT and the flip-flop truly are the two
most critical components inside an FPGA.

This diagram is telling us that at the most fundamental
level there’s one LUT and one flip-flop inside each logic
cell, and there are eight logic cells in a PLB. The PLB is
copy-pasted hundreds or thousands of times inside the
FPGA to provide enough LUTs and flip-flops to do all the
required work.

On the left side of the DFF component (the flip-flop),
notice the same three inputs we originally saw in Figure 4-
1: data (D), clock enable (EN), and clock (>). The fourth
input at the bottom of the component is the set/reset (SR)
input we discussed in the previous section.

As you’ve seen, the clock enable input allows the flip-
flop to keep its output state for multiple clock cycles.
Without the En input, the output would just follow the input
with one clock cycle of delay. Adding the En input lets the
flip-flop store a state for a longer duration.

The last thing to notice in the diagram is the carry logic
block, shown above and to the left of the LUT4. This block
is mostly used to speed up arithmetic functions, such as
addition, subtraction, and comparison.

While reviewing this diagram gave us an interesting
look inside an FPGA and highlighted the central role of the
LUT and the flip-flop, it isn’t critical to memorize every

detail of the PLB’s architecture. You don’t need to
remember all the connections and how each is wired to its
neighbor. In the real world, you write your Verilog or
VHDL, and the FPGA tools take care of mapping that code
onto the FPGA’s resources. This is particularly useful if you
want to switch from one type of FPGA to another (say, from
a Lattice to an AMD). The beauty of Verilog and VHDL is
that the code is generally portable; the same code works on
different FPGAs, provided they have enough LUTs and flip-
flops to do what you want.

Summary

In this chapter you learned about the flip-flop, which, along
with the LUT, is one of the two most important components
in an FPGA. You saw how flip-flops allow FPGAs to keep
state, or remember past values, by only registering data
from the input to the output on the positive edges of a clock
signal. You learned how logic driven by flip-flops and clock
signals is sequential, in contrast to the combinational logic
of LUTs, and you got your first glimpse of how flip-flops and
LUTs work together through a project toggling an LED. You
also learned how to avoid generating latches and how to
reset a flip-flop to a default state.

In future chapters, as you build more complex blocks of
code, you’ll become more familiar with how flip-flops and
LUTs interact and see how you can use just these two kinds
of components to create large, sophisticated FPGA designs.
You’ll also see the role flip-flops play in keeping track of
counters and state machines.

5

TESTING YOUR CODE WITH

SIMULATION

There are two ways to find the
bugs that will inevitably arise

in an FPGA design. The first is to program
the FPGA, run it, and see what happens.
This is called finding bugs on hardware.
The other way is to use a computer to
inject test cases into your FPGA code to
see how the code responds before you
actually program the FPGA. This is called
finding bugs in simulation.

For very simple projects, such as the ones we’ve
explored so far in this book, jumping straight to
programming the FPGA without any kind of simulation may
be a reasonable approach (and it’s the one we’ve taken up
to this point). However, as your FPGA designs grow more
complicated, finding bugs on hardware becomes incredibly
difficult. In nearly all cases, it’s significantly easier to find
bugs in simulation. After thoroughly simulating and

debugging a design, there’s nothing more satisfying than
finally programming your FPGA and having everything
work perfectly the first time.

In this chapter, you’ll learn how simulation works and
see why it’s an essential step in the FPGA design process.
We’ll explore a free simulator tool and I’ll introduce the
testbench to show how you can write test code to stress
your design. You’ll try out these concepts by adding a
debounce circuit to the LED-toggling project from the
previous chapter (Project #3) and simulating the design.
Finally, we’ll take a look at verification, which is a more
formal and rigorous process for testing out FPGA and ASIC
designs.

Why Simulation Matters

Simulation is important because your FPGA is essentially a
black box, as shown in Figure 5-1. When you program the
FPGA, you’re able to change the inputs and see how the
outputs respond, but you’re unable to see the details of
what’s going on inside the box itself. You can’t follow the
individual variables and data signals as they flow inside
your FPGA.

Figure 5-1: What’s in the box?

If something goes wrong inside that black box (and it
will), and the output isn’t what you expect, figuring out the
problem is very difficult. The solution is to use a computer
to simulate the inner workings of the black box in a way
you can follow. Simulation effectively opens up the black
box of your FPGA so you can see what’s going on inside.

Let me give you an example of how useful this can be.
In a past job, I had a coworker who was trying to fix a
problem with his FPGA design. For some reason the data
was getting mixed up inside the FPGA. He spent weeks
using oscilloscopes and logic analyzers to send data off the
FPGA so he could try to find where the issue was coming
from. At one point I asked him if he had simulated the
design at all. He had not: he didn’t have any experience
with simulation and didn’t feel he could take the time out to
learn. I checked his code out of revision control and put
together a simulation for it, and within a few hours had
found the problem.

Simulating your design allows you to stress it to see
how it reacts. In this case, I was able to re-create the exact
failure in simulation and fix the issue very quickly.
Ironically, in the time my coworker had spent attempting to
debug the problem on hardware, he could easily have
learned how to do the simulation himself. It’s an even more
attractive option when you consider that once you know
how simulation works, you can use that knowledge again
and again.

FPGA Simulation Tools

There are several popular FPGA simulation tools available.
FPGA build tools often have a simulation tool bundled with
them, in one large downloadable package; FPGA companies
know that their designers want to run simulations, and they
want to make it easy to do that. These tools are usually free
and convenient, but they can be many gigabytes in size and
their complexity can be overwhelming for beginners.

An alternative solution to the large FPGA tools is to use
a standalone simulator. The benefit to this is that if you
switch from Intel (Altera) to AMD (Xilinx), for example, you
don’t need to learn a whole new tool; your simulator can
stay the same. There are two popular standalone simulation

tools that I generally recommend: ModelSim and EDA
Playground. ModelSim is probably the most popular
commercial simulator. It can be downloaded and installed
on Windows and Linux. A full license is expensive, costing
around $2,000, but a free version with limited features is
available.

EDA Playground, by contrast, is a freely available web-
based simulator. I recommend using it when you’re first
learning about FPGA design for a few reasons. First, it’s
free. Second, since it’s web-based, there’s no download
required. Finally, EDA Playground allows you to share your
code with others via a web link. For the purposes of this
book, we’ll focus on this tool.

To get started with EDA Playground, first navigate to
https://edaplayground.com. To run simulations and save
your progress, you’ll need to create an account and log in.
Once you do so, you should see a screen like the one in
Figure 5-2.

Figure 5-2: The EDA Playground main screen

Notice that there are two main code windows. The
window on the right, titled design.sv, is where the FPGA

https://edaplayground.com/

design code you want to test goes. This code is typically
called the unit under test (UUT) or device under test

(DUT). The window on the left, called testbench.sv, is
where you write testbenches, code that will exercise your
FPGA design during simulation. We’ll discuss how
testbenches work in the next section.

By default, EDA Playground is configured for
SystemVerilog/Verilog designs, which is why the two
window labels have .sv (SystemVerilog) file extensions. If
you wish to reconfigure EDA Playground for VHDL, select
VHDL in the drop-down menu under Testbench + Design
on the left side of the window.

SYSTEMVERILOG

SystemVerilog is a superset of Verilog, meaning it has all the features of

Verilog and more. Anything you write with Verilog will also work with

SystemVerilog. SystemVerilog is often used in simulation, even of VHDL

designs. There are a few reasons for this. For one, SystemVerilog offers

many high-level language features, such as classes and interfaces, that

make creating your testbench code easier and make that code more

reusable across projects. In addition, it provides comprehensive support for

assertions, which is a significant advantage when creating simulations. In

VHDL and vanilla Verilog, assertions are much more limited.

Before you can run code in EDA Playground, you’ll need
to select a simulator tool. This is the actual product that
will run your code. You can play around with different tools
listed in the drop-down menu under Tools & Simulators to
see if you prefer one over another. In general, I find that
they behave similarly, though some are exclusively for
Verilog or VHDL. I’ve had good luck using Mentor Questa
or Aldec Riviera.

Another neat feature of EDA Playground is the
Examples section of the toolbar. Here, you can explore
sample testbenches that have been made freely available.
You can see how they work and modify them for your own

experiments, and perhaps gain some insights into clever
ways to write your own code.

The Testbench

The purpose of a testbench is to exercise your UUT in a
simulation environment so you can analyze it and see if it’s
behaving as expected. The testbench code instantiates the
UUT. As you can see in Figure 5-3, the testbench provides
all the required inputs to the UUT and monitors all the
outputs.

Figure 5-3: A testbench exercises a UUT so you can analyze it.

If your UUT has a clock as an input, for example, the
testbench will need to generate that clock and feed it in to
the UUT. Similarly, if there’s a data interface into your
UUT, the testbench will likely need to generate some
sample data to supply to that interface. The testbench
monitors all the outputs from the UUT, allowing it to see
how the UUT responds to the input data. During the
simulation, you’ll also be able to dive into the UUT itself to
see how all of its internal signals are behaving in response
to the testbench’s inputs. You can monitor every element of
your design—every register, clock, wire, memory, and so on
—and make sure they’re all behaving as intended.

Writing a Testbench

Let’s take a look at a simple example by writing a testbench
for the AND gate project from Chapter 3 (Project #2).
First, to review, here’s the original project code that we
want to test:

Verilog

module And_Gate_Project

 (input i_Switch_1,

 input i_Switch_2,

 output o_LED_1);

assign o_LED_1 = i_Switch_1 & i_Switch_2;

endmodule

VHDL

library ieee;

use ieee.std_logic_1164.all;

entity And_Gate_Project is

 port (

 i_Switch_1 : in std_logic;

 i_Switch_2 : in std_logic;

 o_LED_1 : out std_logic);

end entity And_Gate_Project;

architecture RTL of And_Gate_Project is

begin

 o_LED_1 <= i_Switch_1 and i_Switch_2;

end RTL;

Enter the module or entity’s code into the design.sv or
design.vhd window on the right side of EDA Playground. To
test the code completely, we want to exercise it to make
sure that the output behaves as intended with all possible
input combinations. In this case, the total range of input
combinations is pretty small: since there are two inputs,
there are just four possible combinations to test in order to
fully exercise the UUT. We’ll create a testbench in Verilog
and VHDL to instantiate the UUT and test it by passing in
each of the four input combinations. Enter the following
code into the testbench.sv or testbench.vhd window in EDA
Playground:

Verilog

❶ module And_Gate_TB();

 reg r_In1, r_In2;

 wire w_Out;

❷ And_Gate_Project UUT

 (.i_Switch_1(r_In1),

 .i_Switch_2(r_In2),

 .o_LED_1(w_Out));

❸ initial

 begin

 ❹ $dumpfile("dump.vcd"); $dumpvars;

 r_In1 <= 1'b0;

 r_In2 <= 1'b0;

 #10;

 r_In1 <= 1'b0;

 r_In2 <= 1'b1;

 #10;

 r_In1 <= 1'b1;

 r_In2 <= 1'b0;

 #10;

 r_In1 <= 1'b1;

 r_In2 <= 1'b1;

 #10;

 $finish();

 end

endmodule

VHDL

library IEEE;

use IEEE.std_logic_1164.all;

use std.env.finish;

❶ entity And_Gate_TB is

end entity And_Gate_TB;

architecture behave of And_Gate_TB is

 signal r_In1, r_In2, w_Out : std_logic;

begin

❷ UUT : entity work.And_Gate_Project

 port map (

 i_Switch_1 => r_In1,

 i_Switch_2 => r_In2,

 o_LED_1 => w_Out);

❸ process is

 begin

 r_In1 <= '0';

 r_In2 <= '0';

 wait for 10 ns;

 r_In1 <= '0';

 r_In2 <= '1';

 wait for 10 ns;

 r_In1 <= '1';

 r_In2 <= '0';

 wait for 10 ns;

 r_In1 <= '1';

 r_In2 <= '1';

 wait for 10 ns;

 wait for 10 ns;

 finish;

 end process;

end behave;

First, notice that this is the first time we’ve seen a
Verilog module or VHDL entity that has no inputs or
outputs declared ❶. This is because this testbench doesn’t
connect to any external signals; as you saw earlier, in
Figure 5-3, the testbench itself provides the inputs.

Inside the module/entity, we instantiate the UUT ❷. We
connect the inputs of the UUT to r_In1 and r_In2, signals
that we declare in the testbench. These signals will be the
stimuli provided to see how the UUT responds. We’ll be
monitoring the output, w_Out, to see how it reacts to
changing inputs. I like to use the w_ prefix on signal names
to represent wires, or interconnections within the FPGA.

Remember, we want to make sure the AND gate is working
as expected.

We start driving the stimuli (inputs) within an initial
block in Verilog or a process block in VHDL ❸. This block
will start at the beginning of the simulation and will
execute from top to bottom in sequence. We send each of
the four possible input combinations to the UUT, one after
the other. Using delay statements, we add a 10 ns pause
between each input combination to allow time for the
simulation to update the w_Out signal after each change. In
Verilog we use the #10 delay feature, and in VHDL we use
wait for 10 ns;. As you’ll see later in this chapter, these
time-based delays—indeed, any reference to the passage of
time—are non-synthesizable, meaning they would not work
on an actual FPGA; however, they work perfectly well in
simulation.

In the Verilog version, note that EDA Playground
requires the $dumpfile directive ❹. This allows the simulator
to generate waveforms, which we’ll cover in the next
section. This line isn’t required in VHDL.

Running a Testbench and Viewing Waveforms

Running a testbench generates waveforms, or visual
representations of the signals in your test environment,
showing you how they change over time. Waveforms are a
powerful tool for investigating failures in an FPGA design
during simulation; the more you work with FPGAs, the
more time you’ll spend staring at waveforms. EDA
Playground makes examining waveforms easy with its built-
in waveform viewer, EPWave.

Let’s run our AND gate testbench and view the
resulting waveform in EPWave. First, check the Open

EPWave After Run checkbox in the Tools & Simulators
section of the toolbar on the left side of the EDA
Playground window. If you’re using VHDL, you will need to

specify which entity is the top of your design. To do that,
enter And_Gate_TB in the Top Entity dialog. Then choose a
simulator tool from the drop-down menu and hit Run.
Figure 5-4 shows the resulting waveform.

Figure 5-4: The AND gate testbench waveform output

Here we see all the signals that exist in the design, and
we can note the time in nanoseconds when each signal
changes from high to low or low to high. The top three
signals (r_In1, r_In2, w_Out) are the testbench signals. The
bottom three (i_Switch_1, i_Switch_2, o_LED_1) are in the UUT.
Since we wired the testbench and UUT signals together
when we instantiated the UUT, the corresponding
testbench/UUT signals look the same. For example, r_In1
has the same waveform as i_Switch_1. Note that if the UUT
had other internal signals that weren’t brought out of the
module, you would be able to see waveforms for those as
well, and they wouldn’t have a corresponding testbench
signal.

Looking at the waveform, we can see that the UUT is
working as expected. The AND gate output (o_LED_1 and
w_Out) is high only when both inputs are also high. When
only one input is high, or when both inputs are low, the
output is low. As you examine the waveform, take a look
back at the testbench code and notice how the changes in
the waveform correspond to the statements in the initial or
process block. In the code, for example, both inputs start out
low, and then r_In2 goes high after a 10 ns pause. Looking

at the 10 ns mark in the waveform, you can see that this is
where r_In2 and i_Switch_2 change from low to high.

Although this was a simple example, it illustrates the
power of the testbench to simulate your FPGA design and
let you see everything that is happening. You can monitor
all the interactions within the design, and if a signal isn’t
behaving as expected, you can investigate why that is,
modify your code, and run the testbench again to generate
a new waveform. Often when debugging issues, I’ll rerun
simulations dozens of times until my design is behaving as
desired.

In this case, since we were testing a single basic
module, we were able to evaluate everything using a single
testbench file. For more complicated simulations, however,
testbenches can contain many different files that all work
together to simulate, monitor, and check your design to
make sure it’s behaving as intended.

You’ll see how testbenches work in more detail in our
next project, where we’ll write a testbench and simulate
the FPGA design prior to programming the hardware. This
will help you gain confidence that your code is working,
and it will allow you to identify and fix any bugs early in the
process. The project also illustrates how the concept of
time works on an FPGA, so even if you don’t have an FPGA
to program, I recommend reading through this section.

Project #4: Debouncing a Switch

In Chapter 4, we programmed an FPGA to toggle an LED at
the push of a button. However, there was a problem:
pushing the button didn’t consistently toggle the state of
the LED. This is because any physical switch, including a
push-button or toggle switch, is subject to bouncing, or
rapid signal fluctuations that occur when the switch is
toggled or flipped. Bouncing happens when the metal
contacts inside the switch come together and move apart

quickly before they have time to settle into the stable state.
Figure 5-5 illustrates how this affects the switch’s output
signal.

Figure 5-5: Bouncing in a mechanical switch

If you didn’t know about bouncing, you would probably
expect the switch to behave like the top half of Figure 5-5.
The button is pressed, and the output immediately goes
from low to high. However, in the real world bouncing
creates glitches in the output signal, which show up as
rapid low-to-high-to-low transitions of the output signal,
before it finally stays high. Again, this is due to the
mechanical switch contacts quickly coming together and
moving apart before settling into a stable output state.

The code in our LED toggling project was looking for a
single falling edge to indicate the press and release of the
button, but due to the bouncing, the FPGA was seeing
many falling edges per press/release. If it saw an odd
number of falling edges during the bouncing of the switch,
then the LED toggled successfully. If it saw an even
number of falling edges, however, the LED didn’t appear to
change state, since each pair of falling edges effectively
canceled each other out.

The number of bounces on a switch is somewhat
random, so pushing the switch enough times got the LED to
toggle successfully. Still, it would be better if the LED
toggled as expected each time the switch is pressed and
released. To make this happen, we need to add a debounce

filter to the switch. That is, we need to program the FPGA
to ignore the bounces. Figure 5-6 illustrates how this will
work.

Figure 5-6: The Project #4 block diagram

We’ll add a debounce filter to the code from the
previous project to ensure that a single press of the button
only toggles the LED once. The signal from the switch will
pass through the debounce filter before going on to the
LED-toggling logic we wrote in the last chapter.

We create a debounce filter by making sure that the
input from the switch is stable for some amount of time
before allowing the output driving the LED to change. We
therefore need to have some concept of how much time has
passed in our FPGA. However, introducing the notion of
time into an FPGA design raises some interesting
challenges.

Measuring Time on an FPGA

Time doesn’t exist inherently in an FPGA. The FPGA
doesn’t automatically know if it’s Saturday at 11:00 AM, or
how to wait for 100 ms, for example. To be sure, there are
parts of Verilog and VHDL code that refer to time. For
example, we already saw how to use #10 in Verilog or wait

for 10 ns; in VHDL to add 10 ns delays to our AND gate
testbench. To give another example, in Verilog you can use
$time to get the current time, while in VHDL the reserved
word now gets a timestamp of the current time. However,
while features like these will work perfectly well in
simulation, they will 100 percent not work on your FPGA.
They aren’t synthesizable.

We’ve already talked about synthesis a few times. It’s
the part of the build process where the FPGA tool turns
your Verilog or VHDL code into flip-flops, LUTs, and other
components. Unfortunately, synthesis tools can’t synthesize
anything relating to time. It’s just not possible. As a result,
language constructs like $time and now are simply ignored or
will create errors during synthesis. In Chapter 7, we’ll look
more closely at what features of VHDL and Verilog aren’t
able to be synthesized in an FPGA. For now, take it for
granted that we can’t use some of these built-in features
relating to time.

If time doesn’t exist in an FPGA, how can you keep
track of how much time has passed for the purposes of
debouncing a switch or one of the many other time-related
tasks you may wish your FPGA to perform? The answer is
to count clock cycles. If you know how many clock cycles
have occurred, and you know the period of the clock, you’ll
know how much time has elapsed. Let’s walk through an
example.

Say you have a clock that oscillates at 25 MHz, and that
the clock’s period—the duration of a single cycle—is 40 ns.
Given these specifications, how many clock cycles would it
take for 400 ns to elapse? Answer: 10. And for 4,000 ns to
elapse? Answer: 100. Simply divide the amount of time you
want to wait by the period of the clock to get the number of
clock cycles you need to count before that amount of time
has elapsed. This technique is going to be critical in our
debounce project.

Writing the Code

Let’s look at how to implement the debounce filter. We’ll
start with the top-level module, which instantiates and links
together two lower-level modules, one for debouncing the
switch and the other for toggling the LED:

Verilog

module Debounce_Project_Top

 (input i_Clk,

 input i_Switch_1,

 output o_LED_1);

 wire w_Debounced_Switch;

❶ Debounce_Filter ❷ #(.DEBOUNCE_LIMIT(250000)) Debounce_Ins

t

 (.i_Clk(i_Clk),

 .i_Bouncy(i_Switch_1),

 .o_Debounced(w_Debounced_Switch));

❸ LED_Toggle_Project LED_Toggle_Inst

 (.i_Clk(i_Clk),

 .i_Switch_1(w_Debounced_Switch),

 .o_LED_1(o_LED_1));

endmodule

VHDL

library ieee;

use ieee.std_logic_1164.all;

entity Debounce_Project_Top is

 port (

 i_Clk : in std_logic;

 i_Switch_1 : in std_logic;

 o_LED_1 : out std_logic

);

end entity Debounce_Project_Top;

architecture RTL of Debounce_Project_Top is

 signal w_Debounced_Switch : std_logic;

begin

❶ Debounce_Inst : entity work.Debounce_Filter

 generic map(

 ❷ DEBOUNCE_LIMIT => 250000)

 port map (

 i_Clk => i_Clk,

 i_Bouncy => i_Switch_1,

 o_Debounced => w_Debounced_Switch);

❸ LED_Toggle_Inst : entity work.LED_Toggle_Project

 port map (

 i_Clk => i_Clk,

 i_Switch_1 => w_Debounced_Switch,

 o_LED_1 => o_LED_1);

end architecture RTL;

The code matches the block diagram in Figure 5-6. At
the highest level we have Debounce_Project_Top, which
instantiates two other modules. The first is the new
debounce filter ❶, which we’ll examine next. The second is
the LED_Toggle_Project module that we created in the
previous chapter ❸. It’s worth taking a minute to follow the
signals here. We can see the input signal i_Switch_1 going
into the debounce filter. Out of that comes
w_Debounced_Switch, which is the debounced version of this
input. This is passed into the LED_Toggle _Project module.
The output of that module is o_LED_1, which will be
connected to the LED pin on your development board. Note
that indicating the direction of your signals via their names,
as we do here with the i_ and o_ prefixes, becomes very
helpful as your designs get larger and incorporate more
signals.

It’s important to highlight the value of creating reusable
modules when writing FPGA code. Rather than writing all
the project’s code from scratch, here we’re able to reuse
the LED_Toggle_Project module from the previous chapter and
improve its functionality by interfacing it with another

module. Another way to make modules reusable is to
incorporate Verilog parameters or VHDL generics. These
are variables within a module that you can override from
higher-level code. We do this when we instantiate the
Debounce_Filter module. Specifically, we override the
module’s parameter/generic called DEBOUNCE_LIMIT with the
value 250000 ❷. As you’ll see later, this value sets the
number of clock cycles to wait while debouncing the
switch. Coding it as a parameter/generic makes it easy to
modify the value. In general, parameters (in Verilog) and
generics (in VHDL) are a very useful way to keep code
portable. They let you change the behavior of a module
without having to actually modify the module’s file.

Let’s now examine the code of the debounce filter
module:

Verilog

module Debounce_Filter #(parameter DEBOUNCE_LIMIT = 20) (

 input i_Clk,

 input i_Bouncy,

 output o_Debounced);

❶ reg [$clog2(DEBOUNCE_LIMIT)-1:0] r_Count = 0;

 reg r_State = 1'b0;

 always @(posedge i_Clk)

 begin

 ❷ if (i_Bouncy !== r_State && r_Count < DEBOUNCE_LIMIT-1)

 begin

 r_Count <= r_Count + 1;

 end

 ❸ else if (r_Count == DEBOUNCE_LIMIT-1)

 begin

 r_State <= i_Bouncy;

 r_Count <= 0;

 end

 else

 begin

 ❹ r_Count <= 0;

 end

 end

❺ assign o_Debounced = r_State;

endmodule

VHDL

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity Debounce_Filter is

 generic (DEBOUNCE_LIMIT : integer := 20);

 port (

 i_Clk : in std_logic;

 i_Bouncy : in std_logic;

 o_Debounced : out std_logic

);

end entity Debounce_Filter;

architecture RTL of Debounce_Filter is

❶ signal r_Count : integer range 0 to DEBOUNCE_LIMIT := 0;

 signal r_State : std_logic := '0';

begin

 process (i_Clk) is

 begin

 if rising_edge(i_Clk) then

 ❷ if (i_Bouncy /= r_State and r_Count < DEBOUNCE_LIMIT-

1) then

 r_Count <= r_Count + 1;

 ❸ elsif r_Count = DEBOUNCE_LIMIT-1 then

 r_State <= i_Bouncy;

 r_Count <= 0;

 else

 ❹ r_Count <= 0;

 end if;

 end if;

 end process;

❺ o_Debounced <= r_State;

end architecture RTL;

The overall purpose of this module is to remove any
bounces or glitches in the input (i_Bouncy) and create a
stable output (o_Debounced). To do this, we check if the input
and output are different. If they are, we know the input is
changing, but we don’t want to immediately update the
output, since the switch might still be bouncing. Instead,
we want to make sure that the input is stable for a long
enough period of time before updating the output. Because
the FPGA has no inherent concept of time, we implement
the delay by counting clock cycles.

Let’s say we want the input to be stable for 10 ms
before we update the output. We need to count up to some
number of clock cycles that represents 10 ms (or 10 million
nanoseconds) of time passed. The Go Board, for example,
has a clock period of 40 ns, so in this case we divide 10
million by 40 to get a delay of 250,000 clock cycles. This is
the value we used for the DEBOUNCE_LIMIT parameter/generic
in the top-level module Debounce_Project_Top. If your
development board has a different clock period, you’ll need
to change DEBOUNCE_LIMIT accordingly.

The code used to create our clock cycle counter ❶
differs between the Verilog and VHDL versions. In Verilog,
we use a common trick: the $clog2() built-in function (short
for ceiling log base 2) determines the log2 of the number of
clock cycles we want to count, rounded up. This tells us the
number of binary digits needed to implement the counter.
Thanks to the $clog2() function, we can dynamically size the
r_Count register based on the input parameter, so if the
input parameter changes (because your clock has a
different period, or because you want to extend the wait
time), the code will see this and synthesize r_Count to be as
wide as it needs to be. This is better than hardcoding

r_Count to some arbitrary limit, which could break when the
code is reused.

With VHDL, we’re able to achieve the same dynamic
sizing in a simpler way, using the range keyword. This not
only will size the variable correctly, but has an added
benefit of creating a warning in your simulation if the value
of r_Count ever goes beyond the integer range limit. The fact
that the simulator can provide these types of warnings
when running your testbench is another great reason for
using simulations.

We implement the debounce filter using a series of if
statements that are evaluated at each clock cycle. First we
handle the case where the input is different from the
output (meaning the input is changing) but r_Count is less
than DEBOUNCE_LIMIT-1 ❷. This means we haven’t yet waited
the desired amount of time for the switch to stop bouncing,
so we increment our clock cycle counter by 1. In this if
statement, we’re effectively waiting for some amount of
time to pass to ensure the input is stable, before updating
the output value.

Next we handle the case where the counter has reached
its limit, so we know that we’ve waited the full 10 ms (or
whatever length of time DEBOUNCE _LIMIT corresponds to) ❸.
At this point, we can register the current value of the input
(i_Bouncy) to r_State, whose value is in turn assigned to the
output (o_Debounced) ❺. We also reset the counter to 0 to
prepare for the next event. Finally, the else statement ❹
covers situations where the input and output have the same
state. In this case, we reset the counter, since we have
nothing to debounce here and we want our debounce filter
to always be ready for the next event.

Creating the Testbench and Simulation

Now we’ll create a testbench to exercise our project and
make sure it works as expected. Recall that the testbench

is what will instantiate our unit under test and simulate its
inputs, while monitoring its outputs. In this case, we want
the testbench to simulate the unstable input from a
bouncing switch so we can confirm that the debounce filter
is delaying the output until the switch has settled into a
stable state. Here’s the code:

Verilog

module Debounce_Filter_TB ();

 reg r_Clk = 1'b0, r_Bouncy = 1'b0;

❶ always #2 r_Clk <= !r_Clk;

❷ Debounce_Filter #(.DEBOUNCE_LIMIT(4)) UUT

 (.i_Clk(r_Clk),

 .i_Bouncy(r_Bouncy),

 .o_Debounced(w_Debounced));

❸ initial begin

 $dumpfile("dump.vcd"); $dumpvars;

 repeat(3) @(posedge r_Clk);

 ❹ r_Bouncy <= 1'b1; // toggle state of input pin

 @(posedge r_Clk);

 ❺ r_Bouncy <= 1'b0; // simulate a glitch/bounce of switch

 @(posedge r_Clk);

 ❻ r_Bouncy <= 1'b1; // bounce goes away

 repeat(6) @(posedge r_Clk);

 $display("Test Complete");

 $finish();

 end

endmodule

VHDL

library ieee;

use ieee.std_logic_1164.all;

use std.env.finish;

entity Debounce_Filter_TB is

end entity Debounce_Filter_TB;

architecture test of Debounce_Filter_TB is

 signal r_Clk, r_Bouncy, w_Debounced : std_logic := '0';

begin

❶ r_Clk <= not r_Clk after 2 ns;

❷ UUT : entity work.Debounce_Filter

 generic map (DEBOUNCE_LIMIT => 4)

 port map (

 i_Clk => r_Clk,

 i_Bouncy => r_Bouncy,

 o_Debounced => w_Debounced);

❸ process is

 begin

 wait for 10 ns;

 ❹ r_Bouncy <= '1'; -- toggle state of input pin

 wait until rising_edge(r_Clk);

 ❺ r_Bouncy <= '0'; -- simulate a glitch/bounce of switch

 wait until rising_edge(r_Clk);

 ❻ r_Bouncy <= '1'; -- bounce goes away

 wait for 24 ns;

 finish; -- need VHDL-2008

 end process;

end test;

Unlike our AND gate testbench, this testbench must
provide a clock signal to the UUT, along with the other
inputs. We create the clock signal with a simple trick ❶: we
repeatedly invert a signal after a fixed amount of time to
generate a 50 percent duty cycle signal that will toggle for
the duration of the testbench execution. The signal inverts
every 2 ns, for a clock period of 4 ns per cycle. This is much
faster than the actual clock period on a typical FPGA
development board, but for the purposes of this simulation,
that’s okay.

When we instantiate the UUT ❷, we override
DEBOUNCE_LIMIT with the value 4. This means our debounce
filter will only look for four clock cycles of stability before it
deems the output debounced. In a real FPGA, this would be

a very short amount of time (less than 1 microsecond),
probably not long enough to actually fix the problem.
However, keep in mind the purpose of this testbench: we
want to make sure that our FPGA logic works as intended.
That logic is functionally the same whether we’re waiting 4
clock cycles or 250,000 clock cycles. Using the much
smaller number will make for a quicker simulation and an
easier-to-evaluate waveform, while still giving us realistic
feedback about whether or not the design works.
Shortening counters is a handy trick to remember for large
designs: a simulation of such a design could take many
minutes to run, but using smaller limits for counters will
make the simulation run faster, allowing you to debug your
code more quickly. Once your design is fully debugged and
verified, you can update the simulation with your actual
expected counter lengths to validate your actual design.
This means you’ll only have to endure the longer simulation
time once, after any issues with the code have already been
resolved using the shortened simulation.

Next, we start to provide stimulus to the UUT ❸. With
synchronous designs, we want to ensure that our input
signals to the UUT are synchronous to the clock. We
therefore set up the code to change the stimulus on the
rising edge of the testbench clock. Otherwise, we might be
introducing strange timing effects that would not exist in a
real FPGA design. (Remember that all of the flip-flops in
your UUT will be using the rising edge of the clock, so your
testbench stimulus should also be reacting to the rising
edge of the clock.)

When the test starts, the input is low. After a short time,
the input goes high for a single clock cycle ❹, then low
again ❺, to simulate a bouncing-induced glitch. We want to
make sure that the debounced output of this module
doesn’t react to this glitch. Later in the test, we drive the
input back high again and leave it there ❻. This time we

want the output to match the input, but only after the
debounce filter has counted out four clock cycles.

After running this testbench code in EDA Playground
(or whichever simulator you prefer), you should get a
waveform that looks something like that shown in Figure 5-
7.

Figure 5-7: The debounce simulation waveform

The waveform shows that the output o_Debounced stays
low when i_Bouncy goes high for only one clock cycle. Then,
toward the end of the simulation, we see the output go high
to match the input, but only after the input has been high
for four clock cycles. The debounce filter works!

While the testbench we wrote is better than no test at
all, it could certainly be improved. For example, we don’t
check what happens when the input goes low again, to
make sure the output responds correctly. Additionally, we
might want to check that a higher DEBOUNCE_LIMIT value than
4 doesn’t cause any issues. Setting up multiple tests to
stress the bulk of your design, and in particular any corner
cases, is good test design practice.

Building and Programming the FPGA

Having simulated the design, we now have some
confidence that if we were to go ahead and program the
FPGA, it would likely work as intended. Let’s try it out!
Create a new project inside iCEcube2, and add the
following modules to the project: Debounce_Filter,
Debounce_Project_Top, and LED_Toggle_Project. Make sure that
you’ve also included the clock constraints file, as well as
the physical constraints file.

When everything’s ready, build the project. Then
double-check for errors, and check your utilization reports.
The synthesis report after building the FPGA will look
something like this:

--snip--

Register bits not including I/Os: 21 (1%)

Total load per clock:

 i_Clk: 1

Mapping Summary:

Total LUTs: 31 (2%)

--snip--

From this report, we can see that we’re using more
LUTs and flip-flops than we did for Project #3. This makes
sense; the debounce filter accounts for these extra
resources. Still, the FPGA has plenty of resources to spare.

Go ahead and program your FPGA, then try pushing the
button to turn the LED on and off. You should notice that
the LED is now toggling consistently with each press of the
button. We’ve successfully filtered out the bounces from
the switch.

As you’ve seen in this project, simulations are
invaluable for building confidence in a design and
debugging issues in your Verilog and VHDL. However, even
in this relatively simple example, you may have noticed a
drawback: examining waveforms to determine if a design is
working can be tedious, especially if you have to keep
changing the design and rerunning the simulation. It would
be much more convenient if the testbench could simply tell
you whether the simulation has worked, without you having
to study the waveform. As we’ll explore next, it’s possible to
write testbenches that offer exactly this capability.

Self-Checking Testbenches

A self-checking testbench is a testbench that you program
to verify your UUT is working as intended, without having
to manually inspect the output. The self-checking testbench
will run a series of steps and let you know if any have
failed, at which point you can inspect the failure and fix it.
This saves you from having to visually examine the
waveforms generated during simulation to determine
whether your design has worked as expected. It takes a bit
more effort to set up your testbench to be self-checking,
but it’s almost always worth the time spent.

When setting up a self-checking testbench, your goal is
to inject many different test cases into your UUT, then
monitor the outputs and check, or assert, that they are
what you expect. Assertions are statements about what
value a signal will have at a particular moment in the
simulation, and they’re probably the most critical part of a
self-checking testbench. Often, a self-checking testbench
will have hundreds of assertions, with each one imparting a
little more confidence that the design is correct.

Self-checking testbenches are particularly useful if
you’re adding a new feature to some old code. It might be
something that you haven’t looked at in years, and
suddenly you need to try to remember (or learn, if someone
else wrote it) how it works. From experience, I can tell you
that starting with a testbench that has many checks is a
huge benefit. You’ll be able to open the simulation, see all
of the assertions in the self-checking testbench, and make
sure everything in the old code still works. Then you can
add your new code and add new tests for it. Once all the
old and new tests are passing, you can have high
confidence that your new code is performing as expected—
and equally importantly, that you haven’t broken any old

code.
To illustrate how self-checking testbenches work, let’s

return to the simple testbench we wrote for our AND gate

project earlier in the chapter. The following Verilog and
VHDL code takes the original testbench we wrote and adds
some assertion checks within it. These assertions will
automatically run to verify that the actual output is in the
expected state. The new code is shown in bold:

Verilog

--snip--

 initial

 begin

 $dumpfile("dump.vcd"); $dumpvars;

 r_In1 <= 1'b0;

 r_In2 <= 1'b0;

 #10;

 ❶ assert (w_Out == 1'b0);

 r_In1 <= 1'b0;

 r_In2 <= 1'b1;

 #10;

 assert (w_Out == 1'b0);

--snip--

VHDL

--snip--

process is

 begin

 r_In1 <= '0';

 r_In2 <= '0';

 wait for 10 ns;

 ❶ assert (w_Out = '0') severity failure;

 r_In1 <= '0';

 r_In2 <= '1';

 wait for 10 ns;

 assert (w_Out = '0') severity failure;

--snip--

In this excerpt from the testbench, we’ve added two
checks. We use the assert keyword ❶ to first confirm that
the output is low when both inputs are low, then that it’s
low when one input is low and the other is high. The assert
keyword only exists in SystemVerilog, not regular Verilog.
This is an example of how SystemVerilog has improved
features for testbenches. VHDL, meanwhile, has assert built
into it, and the severity can be note, warning, or failure,
depending on the level of assertion that you want to check
for. Each has a different escalation, so you can filter them
out in your report. In this case, we’ve chosen failure, since
we definitely wouldn’t want an AND gate output high when
the inputs are low.

If this assertion evaluates to true, then the simulation
moves on. However, if something goes wrong and the
assertion fails, you’ll see output printed to the screen. In
Verilog, you’d see something like this:

ASSERT: Error: ASRT_0301 testbench.sv(20): Immediate asser

t

condition (w_Out==1'b1) FAILED at time: 10ns, scope: And_Gat

e_TB

In VHDL, here is what the failure message would look
like:

** Failure: Assertion violation.

Time: 10 ns Iteration: 0 Process: /and_gate_tb/line__2

2

File: testbench.vhd

This is very helpful! Not only do we know that the
testbench failed, but we know that it failed exactly 10 ns
into the simulation, which allows us to immediately locate
the failure in the waveform viewer. We also know the exact
line of code that caused the failure: line 20 in Verilog or

line 22 in VHDL. These pieces of information make it easier
to investigate the problem, understand the cause, and fix it.
I recommend adding assertions into your tests wherever
possible.

The self-checking testbench is an area where
SystemVerilog really shines. Many of the added features
beyond what regular Verilog offers are geared toward
writing better testbenches. For example, SystemVerilog
provides the ability for you to verify sequences of events.
This can be handy for analyzing interactions between
different signals, to make sure they happen correctly (that
is, first one thing happens, then on the next clock cycle,
another thing happens). SystemVerilog also provides
classes, allowing you to use object-oriented programming
techniques to streamline your testbench code. Other
SystemVerilog features allow you to randomly inject data
into your designs, making your tests much more
comprehensive and robust. The details of these features
are beyond the scope of this book, but as you start writing
more testbenches—particularly self-checking testbenches—
I encourage you to learn more about SystemVerilog.

Initial Signal Conditions

By default, if a signal isn’t assigned an initial condition,
then it will show up in an unknown state when you start a
simulation. This is often represented by a red signal and an
X in the waveform viewer. The simulator is telling you that
it doesn’t know how to treat the signal when the testbench
is first running. Should it be a 0 or a 1? The simulator
doesn’t know.

There are two methods for assigning a default state to
your signals, so that they start in a known state. One
method is to use resets. As we discussed back in Chapter 4,
a reset assigns an initial default value to a flip-flop. Driving
the reset input at the start of a simulation will set the

signals to known states to begin the test. This will work for
all signals that are assigned a reset condition.

The other way we can set signals to an initial state is to
use the initialization feature in both Verilog and VHDL.
This is particularly useful for simulation purposes. It’s as
simple as assigning a signal to a value after it’s created. In
Verilog, for example, reg r_State = 1'b0; initializes the
r_State signal to 0. In VHDL, signal r_State : std_logic :=
'0'; does the same. You can use any state that the signal
can validly be set to as an initialization value.

Initial signal assignments are only synthesizable for
some FPGAs, since not all FPGAs can load an initial state
into their flip-flops when they boot up after being
programmed. Because this feature isn’t available for all
FPGAs, I generally don’t recommend relying on it. A better,
more portable solution is to use resets to set signals to
some default value. Resets are widely supported across all
FPGA manufacturers, so your code will be more portable if
you need to change FPGAs.

On-FPGA Debugging

Early in this chapter, I told you that once you’re on
hardware, you’re looking at a black box. You can see inputs
and outputs, but you can’t see what’s going on internally.
This isn’t entirely true. There is a way to do some limited
on-FPGA debugging. However, this method has significant
drawbacks and should only be used sparingly, if at all.

On-FPGA debugging is achieved by adding a logic

analyzer, a tool that shows the state (high or low) of many
digital signals at once, inside your FPGA. This allows you to
monitor the FPGA’s internal signals in real time. By looking
at these signals, you can debug issues and see where data
isn’t behaving as expected.

Each of the major FPGA companies has a unique
product within its suite of tools that creates a logic

analyzer inside the FPGA. AMD has a feature called
Integrated Logic Analyzer (ILA), Intel has Signal Tap, and
Lattice has Reveal. They all work basically the same way:
they take part of your FPGA’s resources and turn those
resources into a logic analyzer. You run your FPGA code,
the logic analyzer “sniffs” the data, and the results are
presented on your computer screen so you can debug your
design.

There are several problems with this process, however.
The first issue is that it’s extremely time-consuming. If you
want to add a logic analyzer to your FPGA, you need to
rebuild and reprogram the entire design. You also need to
decide ahead of time what signals you’re interested in
monitoring with the logic analyzer, as you likely won’t have
enough resources on your FPGA to look at everything. If
you want to change what you’re looking at while the FPGA
is running, too bad! You’ll have to rebuild the entire FPGA
from scratch and start the process all over again. A
simulation, on the other hand, can easily see the state of all

the signals on your FPGA; you don’t have to pick and
choose.

An additional problem with on-FPGA debugging is that
adding a logic analyzer is basically throwaway effort. Once
you find and fix your one problem, you don’t need the
debug tool anymore. In fact, since it uses your FPGA’s
resources (which are a limited commodity), you may not
want to keep it in your design. You can save and rerun a
simulation, but a logic analyzer is a one-and-done
debugging effort.

The final and perhaps worst problem is that when you
add a logic analyzer to your FPGA, you’re changing the
FPGA’s design, which can have unintended consequences.
Issues that are subject to small timing variations might be
fixed by the very act of adding the logic analyzer, or new
issues might be created. If you’re trying to use the logic

analyzer to debug a race condition inside your FPGA, for
example, the design changes that result from adding in the
logic analyzer might actually make the race condition go
away. Scientists refer to this as the observer effect, where
a phenomenon is changed by the act of investigating it.

This isn’t to say that these on-FPGA debuggers are
entirely useless. They’re helpful when you’re trying to
investigate a situation that’s difficult to simulate. For
example, say some external interface to your FPGA is
causing problems, but those problems are only occurring
on your hardware while the simulation is working fine. At
that point you might want to fire up a logic analyzer and try
to see why your simulation is different from real life. Once
you figure it out, you should strive to make your simulation
as realistic as possible, adding to it the failure mode that
you identified with the real-world test.

These tools have saved me a couple of times in my
career, but in general I try to avoid them if possible.

Verification

Verification is the process of ensuring that an FPGA or
ASIC design is working as intended. It’s an exhaustive
process that goes well beyond writing a few testbenches
and running a simulation—so much so that there are people
called verification engineers who perform verification full
time. The complete details of how verification works are
beyond the scope of this book. In fact, there are entire
books dedicated to the subject. This section simply
introduces the topic so you’re aware of the key role
verification can play in real-world FPGA and ASIC design.

Consider a device like a DVD player. What happens if a
DVD is playing, then the user pauses playback, ejects the
DVD, and presses the fast-forward button? Does the code
handle that sequence of events correctly? Or does the
unexpected fast-forward command lock up the processor in

a strange state? The verification engineer must test all of
these corner cases to ensure the design won’t make a
mistake in handling some strange situation.

Back in Chapter 1, I mentioned that making an ASIC is
an incredibly expensive and time-consuming process. Once
the ASIC is fabricated at the foundry, you have to cut a big
check. If there are critical bugs in the design and the ASIC
doesn’t work as intended, then you’ve just lost all that
money, and you’ll need to rerun the ASIC fabrication
process again. It’s the job of a verification engineer to
ensure the design is correct up front, since finding and
fixing bugs later is incredibly expensive.

Squashing bugs is great, but that’s only half the benefit.
Another major goal of verification is to ensure the design is
performing as intended. If you’re handed a specification of
how an ASIC is supposed to perform, there might be
ambiguities or missing information. Usually, one or more
designers will design to the specification, and one or more
separate verification engineers will simultaneously verify
that the design is meeting the specification. If any
discrepancies arise, the two teams can get together and
update the specification so that everyone is clear on the
intent.

Most verification engineers take advantage of the extra
features built into SystemVerilog to thoroughly test a
design. Self-checking testbenches are absolutely a must.
It’s helpful to exercise the design randomly as well, so
there are blocks of code that can inject random test cases
into the design and ensure it’s working as intended.

Verifying code like this is no small feat. Often it’s more
expensive and time-consuming to verify a design is working
correctly than to create the design itself! For this reason,
unlike with ASICs, not many FPGA designs go through a
dedicated verification process. In most cases, it’s just too
expensive. Remember that FPGA stands for field

programmable gate array, so if a few bugs are allowed to
slip through, the device can always be updated in the field,
or in the hands of a customer.

Usually, only FPGA designs that demand very high
reliability or simply cannot be updated in the field go
through verification. For example, some FPGAs are one-

time programmable (OTP), meaning they can only be
programmed once; afterward, the functionality is locked in
and cannot be changed. Some applications in outer space
utilize these OTP FPGAs, since they’re more resistant to
radiation. Additionally, OTP FPGAs are considered less
susceptible to reverse engineering, so they’re preferable
for high-security applications. OTP FPGA designs often
require verification; however, this isn’t the norm for typical
FPGA designs.

For our purposes, testbenches are sufficient to find
bugs in the FPGA design, but for ASICs or FPGAs that
require it, verification is critically important.

Summary

In this chapter, you’ve learned about simulating your FPGA
code and seen how running simulations is time well spent.
In contrast to debugging on hardware, simulation lets you
visualize all the signals in your design, observe how they
interact, and create stimuli to stress your code and see how
it responds. You practiced writing testbenches, or code that
instantiates your UUT, injects it with sample input, and
monitors the output. You saw how looking at the waveforms
generated during simulation is a great way to see if your
design is working, but better still is adding tests that make
your testbench self-checking. Less debugging on hardware,
more beautiful simulations: that’s what makes a happy
FPGA designer.

6

COMMON FPGA MODULES

Working with an FPGA can feel
like building with LEGO: you

have a limited variety of small bricks at
your disposal, but by stacking them
elegantly, you can create amazingly
complex designs. At the lowest level,
you’re working with LUTs and flip-flops.
At a slightly higher level, there are
several basic building blocks that appear
over and over again in FPGA designs,
including multiplexers and
demultiplexers, shift registers, and first
in, first out (FIFO) and other types of
memory.

Each of these elements is very common. In fact, it’s
likely that one or more of them will be used in every single
FPGA project you’ll ever work on. In this chapter, I’ll show
you how these basic building blocks work and how to

implement them with Verilog and VHDL. For each of these
common elements, you’ll create a self-contained module
that you can reuse anytime you need that element in an
FPGA design. This will reinforce your FPGA programming
knowledge and give you a solid foundation for your own
projects.

Multiplexers and Demultiplexers

Multiplexers and demultiplexers are circuit components
that allow you to select between two or more things. In the
case of a multiplexer (sometimes spelled multiplexor, and
often shortened to mux), you have multiple input signals,
and you select which of them is sent to a single output. A
demultiplexer (demux for short) is the opposite: you have a
single input signal, and you select which of multiple
outputs it should go to.

Multiplexers and demultiplexers have many
applications. For example, a mux could be used to select
which speed to run a fan at: the low-med-high switch might
be acting as a mux to control which setting is sent to the
fan controller. A demux could work with a switch to select
which of four LEDs to illuminate: only one LED will be
illuminated at a time, but you’ll be able to specify which
one is illuminated.

Muxes and demuxes are classified based on how many
inputs and outputs they have. For example, a 4-1
(pronounced four-to-one) mux has four inputs and one
output. Conversely, a 1-4 (pronounced one-to-four) demux
has one input and four outputs. You can design muxes to
have any number of inputs, depending on the requirements
of your circuit: you can have a 2-1 mux, a 3-1 mux, an 8-1
mux, a 13-1 mux, or whatever you want. Likewise, you can
design a demux with however many outputs you need.

Implementing a Multiplexer

Let’s consider how to create a multiplexer on an FPGA.
Specifically, we’ll look at creating a 4-1 mux, but you can
apply the same logic to a mux with any number of inputs.
Figure 6-1 shows a block diagram of a 4-1 mux.

Figure 6-1: A 4-1 multiplexer (mux)

Our multiplexer has four inputs on the left: i_Data0,
i_Data1, i_Data2, and i_Data3. On the right is the single
output, called o_Data. At the bottom are two additional
inputs, labeled i_Sel1 and i_Sel0. Sel is short for select.
These selector inputs choose which of the four data inputs
is passed to the output. The truth table in Table 6-1 shows
how i_Sel1 and i_Sel0 work together to determine the mux’s
output.

Table 6-1: Truth Table for a 4-1 Mux

i_Sel1 i_Sel0 o_Data

0 0 i_Data0

0 1 i_Data1

1 0 i_Data2

1 1 i_Data3

Looking at Table 6-1, we can see that i_Data0 is
connected to the output when i_Sel1 and i_Sel0 are both 0.
The output gets i_Data1 when i_Sel1 is 0 and i_Sel0 is 1, it
gets i_Data2 when i_Sel1 is 1 and i_Sel0 is 0, and it gets
i_Data3 when both selectors are 1.

NOTE

Because muxes serve to select which inputs go to which

outputs, they’re often called selectors. In fact, select is a

reserved word in VHDL that can be used to generate

muxes.

Implementing this truth table in Verilog or VHDL is
simply a matter of evaluating i_Sel1 and i_Sel0 and
assigning the appropriate data input to the output. The
following listing shows how it’s done (I’ve omitted the
signal definitions to focus on the actual mux code, but more
context can be found in the book’s GitHub repository, at
https://github.com/nandland/getting-started-with-fpgas):

Verilog

assign o_Data = !i_Sel1 & !i_Sel0 ? i_Data0 :

 !i_Sel1 & i_Sel0 ? i_Data1 :

 i_Sel1 & !i_Sel0 ? i_Data2 : i_Data3;

VHDL

o_Data <= i_Data0 when i_Sel1 = '0' and i_Sel0 = '0' else

 i_Data1 when i_Sel1 = '0' and i_Sel0 = '1' else

 i_Data2 when i_Sel1 = '1' and i_Sel0 = '0' else

 i_Data3;

The Verilog version uses the conditional (or ternary)
operator, represented by a question mark (?). This is
shorthand for writing conditional expressions without using
if…else statements. The operator works by first evaluating
the condition before the question mark (for example,
!i_Sel1 & !i_Sel0). If the condition is true, the expression
selects the condition before the colon. If the condition is
false, it selects the condition after the colon. Here, we’ve

https://github.com/nandland/getting-started-with-fpgas

chained several ? operators together to handle each
possible combination of the two selector inputs.

In the VHDL version, we accomplish the same thing by
chaining several when/else statements. Since the VHDL
version uses more spelled-out keywords, it’s a bit more
readable, but the Verilog is more concise. In both the
Verilog and VHDL versions, the chain of logical checks gets
evaluated until one evaluates as true. If none of them are
true, then we use the last assignment in the chain.

Implementing a Demultiplexer

For a 1-4 demux, the block diagram looks like a mirrored
version of a 4-1 mux, as you can see in Figure 6-2.

Figure 6-2: A 1-4 demultiplexer (demux)

This demux takes a single data input on the left (i_Data)
and selects which output to connect it to. The demux is
doing a 1-4 selection, so two input selectors are required to
select between the four possible outputs. The truth table in
Table 6-2 shows all the possible combinations.

Table 6-2: Truth Table for a 1-4 Demux

i_Sel1 i_Sel0 o_Data3 o_Data2 o_Data1 o_Data0

0 0 0 0 0 i_Data

0 1 0 0 i_Data 0

1 0 0 i_Data 0 0

1 1 i_Data 0 0 0

Looking at the table, we can see that i_Data is connected
to one of the four outputs at a time, as determined by the
i_Sel1 and i_Sel0 selector inputs. When i_Sel1 and i_Sel0 are
both 0, o_Data0 gets i_Data; otherwise it gets 0. When i_Sel1
is 0 and i_Sel0 is 1, o_Data1 gets i_Data; otherwise it gets 0.
When i_Sel1 is 1 and i_Sel0 is 0, o_Data2 gets i_Data;
otherwise it gets 0. Finally, when i_Sel1 is 1 and i_Sel0 is 1,
o_Data3 gets i_Data; otherwise it gets 0. Let’s see how we
can implement this truth table in Verilog and VHDL:

Verilog

module Demux_1_To_4

 (input i_Data,

 input i_Sel1,

 input i_Sel0,

 output o_Data0,

 output o_Data1,

 output o_Data2,

 output o_Data3);

❶ assign o_Data0 = !i_Sel1 & !i_Sel0 ? i_Data : 1'b0;

assign o_Data1 = !i_Sel1 & i_Sel0 ? i_Data : 1'b0;

assign o_Data2 = i_Sel1 & !i_Sel0 ? i_Data : 1'b0;

assign o_Data3 = i_Sel1 & i_Sel0 ? i_Data : 1'b0;

endmodule

VHDL

library ieee;

use ieee.std_logic_1164.all;

entity Demux_1_To_4 is

 port (

 i_Data : in std_logic;

 i_Sel0 : in std_logic;

 i_Sel1 : in std_logic;

 o_Data0 : out std_logic;

 o_Data1 : out std_logic;

 o_Data2 : out std_logic;

 o_Data3 : out std_logic);

end entity Demux_1_To_4;

architecture RTL of Demux_1_To_4 is

begin

❶ o_Data0 <= i_Data when i_Sel1 = '0' and i_Sel0 = '0' else

 '0';

 o_Data1 <= i_Data when i_Sel1 = '0' and i_Sel0 = '1' else

 '0';

 o_Data2 <= i_Data when i_Sel1 = '1' and i_Sel0 = '0' else

 '0';

 o_Data3 <= i_Data when i_Sel1 = '1' and i_Sel0 = '1' else

 '0';

end architecture RTL;

Notice how each output in this code is set
independently. The input i_Data can only be assigned to a
single output at a time. For example, we assign it to the
first output, o_Data0, when both selector inputs are 0 ❶.
When an output isn’t wired to the input data, then it’s just
set to 0 to disable it.

In practice, since a mux or demux can be created with
just a few lines of code, it’s unlikely that you’d ever create
a module to instantiate a single multiplexer or
demultiplexer. Generally, you’ll be better off just putting
the code that builds the mux or demux directly into the
module where it’s needed. However, multiplexers and
demultiplexers are incredibly common circuit design
elements, so it’s important to understand how to implement
them. Next, we’ll look at another common component: the
shift register.

The Shift Register

A shift register is a series of flip-flops where the output of
one flip-flop is connected to the input of the next. We
looked at a shift register back in Chapter 4 when we talked

about a chain of flip-flops, but to keep things simple I didn’t
introduce the term at the time. To review, Figure 6-3 shows
a chain of four flip-flops, which we can now call a 4-bit shift

register. As discussed in Chapter 4, each additional flip-flop
in the chain adds a single clock cycle of delay to the output.

Figure 6-3: A shift register

Shift registers have many uses. For example, they can
delay data for some fixed number of clock cycles, convert
data from serial to parallel or from parallel to serial, or
create a linear feedback shift register. We’ll look at
examples of each of these applications in this section.

Delaying Data

Creating delay in an FPGA is the most common application
of a shift register. The delay is often used to align data in
time. For example, when you send input data through a
math operation, it might take a few clock cycles to produce
a result. If you need to align the output result with the
original input data, then the original input data needs to be
delayed by the number of clock cycles that the math
operation will take to perform.

As we’ve seen, a shift register is simply a chain of flip-
flops, and the number of flip-flops in the chain dictates how
many clock cycles it will take for the data on the input to
propagate to the output. With that in mind, this code will

create a shift register that generates a four-clock-cycle
delay on some input data:

Verilog

❶ reg [3:0] r_Shift;

always @ (posedge i_Clk)

 begin

 ❷ r_Shift[0] <= i_Data_To_Delay;

 ❸ r_Shift[3:1] <= r_Shift[2:0];

 end

VHDL

❶ signal r_Shift : std_logic_vector(3 downto 0);

process (i_Clk)

begin

 if rising_edge(i_Clk) then

 ❷ r_Shift(0) <= i_Data_To_Delay;

 ❸ r_Shift(3 downto 1) <= r_Shift(2 downto 0);

 end if;

end process;

Here we create a shift register called r_Shift, which will
be four flip-flops in length ❶. Remember, the r_ in the name
is a clue that the signal will consist of flip-flops and be
assigned within a clocked always block (in Verilog) or process
block (in VHDL). We load up the first flip-flop in the chain
(position 0) with i_Data_To_Delay, the input signal ❷. Then we
use a trick to create the remaining three flip-flop
assignments in a single line of code, rather than three: we
take the values on flip-flops 0 through 2 and assign them to
flip-flops 1 through 3 ❸. This way, the data that was on the
first flip-flop in the chain is shifted to the second flip-flop,
the data on the second flip-flop is shifted to the third, and

so on. If you wanted, you could break this step down into
its individual operations, like so:

r_Shift[3] <= r_Shift[2];

r_Shift[2] <= r_Shift[1];

r_Shift[1] <= r_Shift[0];

This example shows the Verilog version. For VHDL,
replace the square brackets with parentheses.

Writing out each assignment individually demonstrates
more explicitly how the data moves through the shift
register one bit at a time, but both methods will work the
same way. Now we can use bit position 3 of r_Shift for our
purposes, as this is the flip-flop that represents a four-
clock-cycle delay of the input data i_Data_To_Delay. If we
needed a three-clock-cycle delay instead, we could use the
data at bit position 2, or we could add more flip-flops to the
chain to create a longer delay.

Converting Between Serial and Parallel Data

Converting from serial data to parallel data and vice versa
is another common use of a shift register. You might need
to do this when communicating with off-chip interfaces that
transmit and receive data serially. One specific example is
interfacing with a universal asynchronous receiver-

transmitter (UART). This is a device that transmits bytes of
data by breaking them into individual bits, which are then
reconstituted into bytes on the receiving end. When the
data is sent, it is converted from parallel to serial: the eight
parallel bits of data in a byte are sent serially, one after the
other. When the data is received, it’s converted back from
serial (individual bits) to parallel (a complete byte).

UARTs are widely used to send and receive data
between devices because they’re simple and effective, and
they’re a perfect application for a shift register. An eight-

bit shift register can send a byte of data by reading it out,
one flip-flop at a time, or it can receive a byte of data by
shifting the bits through the chain of flip-flops, one bit after
the other. For example, say we want to send and receive
ASCII-encoded characters, each of which can be
represented within a single byte of data. First, let’s look at
the receiving end of the UART. Each line in Table 6-3
represents the receipt of a single bit of data. The column on
the right shows how the complete byte is built up by
shifting the bits through a shift register.

Table 6-3: Receiving a Byte of Data Through a UART

Bit index Received bit Byte contents

0 1 1

1 1 11

2 0 011

3 1 1011

4 0 01011

5 0 001011

6 1 1001011

7 0 01001011

ASCII=0x4B='K'

UARTs normally receive data starting with the least
significant (rightmost) bit. The first bit received is shifted
through the shift register from the most significant
(leftmost) position to the least significant position as more
bits come in. Let’s walk through how this works.

On the first line of the table, we’ve received the first bit,
which has a value of 1. We place it into the most significant
bit position, the first flip-flop in the shift register. When we
receive the second bit, which is also a 1, we shift the
existing bit to the right, and put the new received bit in the
most significant bit position. The third bit we receive is a 0.
Once again, we place it into the most significant position,

and the rest of the bits are shifted right. Once we’ve
received all eight bits, the shift register is full, with the last
bit placed into the most significant bit position and the first
bit placed in the least significant position. At this point, the
byte is complete. In our example, we’ve received 01001011,
which is equivalent to 0x4B (meaning 4B in hexadecimal), the
ASCII encoding for the letter K. By receiving the data one
bit at a time and shifting the received bits to the right with
a shift register, we converted serial data to parallel data.

Now let’s look at the transmit side of a UART. Table 6-4
shows how to transmit the byte 00110111, or 0x37, which is
the digit 7 in ASCII.

Table 6-4: Transmitting a Byte of Data Through a UART

Bit index Byte contents Transmitted bit

ASCII=0x37='7'

0 00110111 1

1 0011011 1

2 001101 1

3 00110 0

4 0011 1

5 001 1

6 00 0

7 0 0

In this case, we start with the entire byte of data loaded
in an 8-bit shift register. Again, a UART transmits from
least significant bit to most significant bit, so here we send
out the rightmost bit and shift the entire byte to the right
with each step. By using a shift register to send out one bit
at a time and shift the remaining bits to the right, we’re
converting parallel data to serial data.

Creating a Linear Feedback Shift Register

The last common application of the shift register is to
create a linear feedback shift register (LFSR). This is a shift
register where certain flip-flops in the chain are tapped
into and used as input for either an XOR or an XNOR gate
(we’ll be using XNOR). The output of this gate is then fed
back into the beginning of the shift register, hence the
word feedback in the name. Linear comes from the fact
that this arrangement produces an input bit that’s a linear
function of the LFSR’s previous state. Figure 6-4 shows an
example of a 3-bit LFSR, but keep in mind that LFSRs can
have any number of bits.

Figure 6-4: A 3-bit LFSR

This LFSR features three chained flip-flops,
representing bits 0 through 2 of a shift register. The
outputs of the bit 1 flip-flop and the bit 2 flip-flop are
passed through an XNOR gate, and the output of the gate is
sent to the input of the first bit in the shift register. The
value of the LFSR at any given clock cycle is the value of
the three flip-flop outputs.

NOTE

The flip-flops in Figure 6-4 are drawn backward compared

to how we’ve usually seen them, with input D on the right

and output Q on the left. I drew them this way so the least

significant bit (bit 0) would appear on the right, to match

how we write numbers, but there’s nothing special here;

these are the same flip-flops that we all know and love, just

mirrored.

When an LFSR is running, the pattern generated by the
individual flip-flops is pseudorandom, meaning it’s close to
but not completely random. It’s only pseudorandom
because from any state of the LFSR pattern, you can
predict the next state. Table 6-5 shows what happens when
the 3-bit LFSR is initialized to zero, then the clock starts
toggling.

Table 6-5: Pseudorandom Output of 3-Bit LFSR

Clock cycle LFSR data (binary) LFSR data (decimal)

0 000 0

1 001 1

2 011 3

3 110 6

4 101 5

5 010 2

6 100 4

7 000 0

8 001 1

9 011 3

10 110 6

… … …

The LFSR goes from 000 to 001 on the first clock cycle.
This makes sense, because the XNOR of bit 2 (0) and bit 1
(0) is 1, which gets written into bit 0. On the next clock
cycle, the LFSR goes from 001 to 011. Once again we’ve
taken the XNOR of bit 2 (0) and bit 1 (0), giving us a new
bit 0 value of 1. Meanwhile, the old bit 0 value (1) has
shifted to bit 1. Following the rest of the values in the table,
they seem relatively random—pseudorandom, even!

Notice that the table repeats itself on the seventh clock
cycle, so there are seven unique values that the 3-bit LFSR
can have: 000, 001, 010, 011, 100, 101, and 110. It can never
have a value of 111. If you’re wondering why, consider what
would happen if this value arose. At the next clock cycle,
the new bit 0 would be the XNOR of 1 and 1, which is 1,
while the other bits would shift over, giving us 111 again.
The LFSR would be stuck on 111 forever, so it would
effectively stop running! As a rule, for an LFSR that’s N bit
positions long, the maximum number of clock cycles that
the LFSR takes to run through all combinations is 2N − 1.
For 3 bits, it’s 23 − 1 = 7; for 4 bits, it’s 24 − 1 = 15; and so
on.

Because of their pseudorandomness, LFSRs have many
applications. They can function as low-utilization counters,
test pattern generators, data scramblers, or be used in
cryptography. The LFSR is lightweight, so these kinds of
mathematical operations are carried out with few
resources, which is desirable so you can save your precious
FPGA flip-flops and LUTs for other tasks.

Let’s look at how the LFSR in Figure 6-4 could be
implemented in Verilog and VHDL:

Verilog

❶ reg [2:0] r_LFSR;

wire w_XNOR;

always @(posedge i_Clk)

begin

❷ r_LFSR <= {r_LFSR[1:0], w_XNOR};

end

❸ assign w_XNOR = r_LFSR[2] ^~ r_LFSR[1];

VHDL

❶ signal r_LFSR : std_logic_vector(2 downto 0)

signal w_XNOR : std_logic;

begin

 process (i_Clk) is

 begin

 if rising_edge(i_Clk) then

 ❷ r_LFSR <= r_LFSR(1 downto 0) & w_XNOR;

 end if;

 end process;

❸ w_XNOR <= r_LFSR(2) xnor r_LFSR(1);

First we declare a 3-bit-wide LFSR ❶. We perform the
shift and incorporate the result of the XNOR operation
through concatenation ❷. In Verilog we concatenate values
by placing them in curly brackets, {}, separated by
commas, while in VHDL we use a single ampersand (&).
Together, the shifting and concatenation build up a single
3-bit-wide value, with w_XNOR in the least significant bit
position. Finally, we assign the w_XNOR gate, based on the
values of bits 2 and 1 in the register ❸. This is a continuous
assignment, occurring outside the always or process block,
and it will be implemented by a LUT in the FPGA.

NOTE

This example has shown a very simple 3-bit-wide LFSR, but

an LFSR would normally have initialization and reset logic,

which would help avoid and recover from any disallowed

state. More thorough code, including reset logic and the

ability to size the LFSR to any number of bits, is available

in the book’s GitHub repository.

LFSRs are a simple and efficient way to perform several
useful tasks. They also highlight one of the strengths of an
FPGA, namely being able to quickly perform math
operations with few resources. Consider that you could

have hundreds of LFSRs running in parallel on a single
FPGA without issue, and you can start to see how FPGAs
excel at fast math operations running in parallel.

Project #5: Selectively Blinking an LED

Now that we’ve introduced some building blocks, let’s start
putting them together. The requirement for this project is
to blink each of four LEDs on your development board on
and off, but only one LED should be blinking at a time.
You’ll select which LED to blink using two switches. Table
6-6 shows how the LED selection is performed.

Table 6-6: LED Selection

i_Switch_2 i_Switch_1 LED to blink Signal name

0 0 D1 o_LED_1

0 1 D2 o_LED_2

1 0 D3 o_LED_3

1 1 D4 o_LED_4

Looking at the table, we can see that when the two
input switches are both 0 (not pressed), the D1 LED will
blink. By pushing just switch 1 down (setting it to 1), we
select the D2 LED to blink. When we push down just switch
2, D3 should blink, and finally, when we push down both
buttons, D4 should blink. This sounds like a job for a
demultiplexer! We’ll have a single signal that toggles on
and off, and we’ll want to route it to one of four LEDs. But
how can we generate the toggling signal?

The clock on a development board is quite fast. On the
Go Board (discussed in Appendix A), for example, it’s 25
MHz. If we fed that directly to an LED, then the LED would
blink at 25 MHz. To the human eye, it would look like the
LED was just on, since that’s too fast for us to perceive. We
need to generate a signal that toggles on its own, but at
some much slower frequency than the clock: say, 2 to 4 Hz.

That’s fast enough that you’ll be able to tell the LED is
blinking quickly, but not too fast for the human eye to see.
Remember, however, that FPGAs have no built-in concept
of time, so we can’t blink an LED by writing code like this:

r_LED <= 1;

wait for 0.20 seconds

r_LED <= 0;

wait for 0.20 seconds

As discussed in Chapter 5, an FPGA can determine how
much time has passed by counting clock cycles. To wait for
0.20 seconds to pass, we would need to count one-fifth of
the number of clock cycles that occur in a second. In the
case of the Go Board, since there are 25,000,000 clock
cycles per second (a 25 MHz clock), we would need to
count to 25,000,000 / 5 = 5,000,000. Once the count hits
this limit, we could reset it to zero and toggle the state of
the LED.

But there’s another way! Recall that one of the possible
uses for an LFSR is to create a low-resource counter. Start
an LFSR with a certain pattern, such as all zeros, and it will
take 2N − 1 clock cycles for that pattern to recur, where N
is the number of flip-flops that make up the LFSR. Create
an LFSR with a high enough number of flip-flops in the
shift register, and the rate at which it cycles through all its
values will be slow enough to toggle the LED at a satisfying
frequency. For example, a 22-bit LFSR will repeat its
pattern every 222 − 1 = 4,194,303 clock cycles. With the Go
Board’s 25 MHz clock, that comes out to a little less than
0.20 seconds.

NOTE

If your board has a different clock frequency, you’ll need to

experiment with the number of bits in the LFSR. For the

100 MHz clock on the Alchitry Cu, for example (see

Appendix A), try 24 bits: 224 − 1 = 16,777,215 cycles, or

about 0.17 seconds.

Each time the LFSR returns to all zeros, it will toggle a
signal, and we’ll use that signal to blink whichever LED is
currently selected. All of this can be done using fewer
FPGA resources than a traditional counter. Figure 6-5
shows a block diagram of how it will work.

Figure 6-5: The Project #5 block diagram

This project will instantiate two modules: the LFSR and
the 1-4 demux. Between the two modules, we’ll have a flip-
flop and a NOT gate (which will become a LUT). The input
to the LFSR is the clock, and the output is a signal that
goes high for one clock cycle when the LFSR has reached
its limit and started at the beginning of its pattern again.
We call this a done pulse. A pulse is a 1 (high) on a signal
that lasts for one clock cycle, and this particular pulse
signals when the LFSR is done with each cycle through its
pattern loop.

We can’t use the LFSR output directly to blink the
LEDs, but we can use it to create a toggling signal. We do
this by feeding the LFSR output signal into the enable input
of a flip-flop. The flip-flop’s output will be the inversion

(using a NOT gate) of its input. This way, each time the
LFSR cycles through its pattern, the done pulse will enable
the flip-flop for one clock cycle and trigger a change on the
flip-flop’s output, either from a 0 to a 1 or from a 1 to a 0.
The net result is a signal with a 50 percent duty cycle and a
frequency of about 3 Hz, perfect for toggling an LED at a
rate the human eye can see. This toggling signal is the
input to the demux module. The 1-4 demux selects which
LED to pass the toggling signal to by reading the values on
the two switches (SW1 and SW2). Only one LED will be
blinking at a time, while the LEDs not selected by the
switches will be off.

Writing the Code

Let’s look at the Verilog and VHDL for this project, starting
with the top-level code:

Verilog

module Demux_LFSR_Project_Top

 (input i_Clk,

 input i_Switch_1,

 input i_Switch_2,

 output o_LED_1,

 output o_LED_2,

 output o_LED_3,

 output o_LED_4);

 reg r_LFSR_Toggle = 1'b0;

 wire w_LFSR_Done;

❶ LFSR_22 LFSR_Inst

 (.i_Clk(i_Clk),

 ❷ .o_LFSR_Data(), // unconnected

 ❸ .o_LFSR_Done(w_LFSR_Done));

 always @(posedge i_Clk)

 begin

 ❹ if (w_LFSR_Done)

 r_LFSR_Toggle <= !r_LFSR_Toggle;

 end

❺ Demux_1_To_4 Demux_Inst

 (.i_Data(r_LFSR_Toggle),

 .i_Sel0(i_Switch_1),

 .i_Sel1(i_Switch_2),

 .o_Data0(o_LED_1),

 .o_Data1(o_LED_2),

 .o_Data2(o_LED_3),

 .o_Data3(o_LED_4));

endmodule

VHDL

library ieee;

use ieee.std_logic_1164.all;

entity Demux_LFSR_Project_Top is

 port (

 i_Clk : in std_logic;

 i_Switch_1 : in std_logic;

 i_Switch_2 : in std_logic;

 o_LED_1 : out std_logic;

 o_LED_2 : out std_logic;

 o_LED_3 : out std_logic;

 o_LED_4 : out std_logic);

end entity Demux_LFSR_Project_Top;

architecture RTL of Demux_LFSR_Project_Top is

 signal r_LFSR_Toggle : std_logic := '0';

 signal w_LFSR_Done : std_logic;

begin

❶ LFSR_22 : entity work.LFSR_22

 port map (

 i_Clk => i_Clk,

 ❷ o_LFSR_Data => open, -- unconnected

 ❸ o_LFSR_Done => w_LFSR_Done);

 process (i_Clk) is

 begin

 if rising_edge(i_Clk) then

 ❹ if w_LFSR_Done = '1' then

 r_LFSR_Toggle <= not r_LFSR_Toggle;

 end if;

 end if;

 end process;

❺ Demux_Inst : entity work.Demux_1_To_4

 port map (

 i_Data => r_LFSR_Toggle,

 i_Sel0 => i_Switch_1,

 i_Sel1 => i_Switch_2,

 o_Data0 => o_LED_1,

 o_Data1 => o_LED_2,

 o_Data2 => o_LED_3,

 o_Data3 => o_LED_4);

end architecture RTL;

Our project has three top-level inputs—the clock and
two switches—as well as four outputs for the four LEDs.
After declaring these, we instantiate the LFSR module ❶.
We’ll look closely at the module next, but for now, notice its
o_LFSR_Done output ❸, which we wire to w_LFSR_Done. This
output will pulse with each repetition of the LFSR loop.

We don’t actually need the LFSR to output the current
value on its register for this project, but this may be
important in other contexts, so the LFSR module has an
o_LFSR_Data output for this purpose. One handy trick when
instantiating a module with unused outputs is to keep those
outputs unconnected, which we do here with o_LFSR_Data ❷.
In Verilog, we simply leave the parentheses after the output
name empty, while in VHDL we use the open keyword. When
this design is synthesized, the synthesis tool will prune any
outputs that are unused, removing logic that doesn’t go
anywhere. This way, you can reuse modules without having
to worry about devoting precious FPGA resources to
unused features. The synthesis tools are smart enough to
optimize your design and remove signals where they aren’t
needed.

In our top-level logic, we check if w_LFSR_Done is high,
meaning the LFSR has output its done pulse ❹. If so, we
invert the r_LFSR_Toggle signal. This is the signal that gets
sent to the 1-4 demux, which we instantiate next ❺. The
selection is performed by the two input switches, and the
outputs of the demux are directly connected to the four
output LEDs.

We’ve already seen the code for the 1-4 demux module,
in “Implementing a Demultiplexer” on page 94. Let’s look
at the LFSR module now:

Verilog

module LFSR_22 (

 input i_Clk,

 output [21:0] o_LFSR_Data,

 output o_LFSR_Done);

❶ reg [21:0] r_LFSR;

wire w_XNOR;

always @(posedge i_Clk)

begin

❷ r_LFSR <= {r_LFSR[20:0], w_XNOR};

end

❸ assign w_XNOR = r_LFSR[21] ^~ r_LFSR[20];

❹ assign o_LFSR_Done = (r_LFSR == 22'd0);

❺ assign o_LFSR_Data = r_LFSR;

endmodule

VHDL

library IEEE;

use IEEE.std_logic_1164.all;

entity LFSR_22 is

 port (

 i_Clk : in std_logic;

 o_LFSR_Data : out std_logic_vector(21 downto 0);

 o_LFSR_Done : out std_logic);

end entity LFSR_22;

architecture RTL of LFSR_22 is

❶ signal r_LFSR : std_logic_vector(21 downto 0);

signal w_XNOR : std_logic;

begin

 process (i_Clk) begin

 if rising_edge (i_Clk) then

 ❷ r_LFSR <= r_LFSR(20 downto 0) & w_XNOR;

 end if;

 end process;

❸ w_XNOR <= r_LFSR(21) xnor r_LFSR(20);

❹ o_LFSR_Done <= '1' when (r_LFSR = "0000000000000000000000")

 else '0';

❺ o_LFSR_Data <= r_LFSR;

end RTL;

This module is similar to the 3-bit LFSR that we looked
at earlier in the chapter, but the LFSR register has been
scaled up to be 22 bits wide ❶. (Modify the code if you
need a different bit width based on your board’s clock
speed.) The module also has extra logic to generate the
done pulse, as well as to output the LFSR data, which may
be useful in other contexts.

We shift the LFSR register and concatenate the result
with a new value for the rightmost bit ❷, just as we did in
the 3-bit LFSR module. Then we XNOR the leftmost two
bits in the register to get the new rightmost bit value ❸. We
generate the done pulse on the o_LFSR_Done output when all
of the flip-flops that make up the LFSR have zeros on their
outputs ❹. Since this will be the case for exactly one clock
cycle, this pulse will be one clock cycle wide. Otherwise,
o_LFSR_Done will be low. Finally, we assign the contents of
the LFSR register to the o_LFSR_Data output ❺. This way the
module provides access to the LFSR data itself, but
remember that in this case the o_LFSR_Data output won’t be

synthesized since we don’t need the data for this particular
application.

At this point, you can build and program the FPGA.
When the project starts running, you should see one of the
LEDs blinking, but you can select a different LED to blink
by pushing either or both of the two switches.

Trying Another Way

This project has shown how simple building blocks like
LFSRs and demuxes can be combined to build larger
projects, and it has illustrated an interesting application for
an LFSR. In the real world, however, you probably wouldn’t
use an LFSR to act as a counter like this, since it doesn’t
provide much flexibility. Let’s say we want to change the
count limit. With the LFSR implementation, we only have a
few possible options to choose from, based on the number
of bits in the LFSR. For blinking an LED, that was totally
acceptable, as we didn’t care exactly how fast the LED was
blinking—anywhere between 2 and 4 Hz would be fine. But
if we needed to count to a very specific value—say,
4,000,000 instead of 4,194,303—we’d be hard pressed to
do this with the LFSR. The next lowest option would be to
use a 21-bit LFSR instead of a 22-bit LFSR, which would
only allow us to count to 221 − 1 = 2,097,151. For any value
between 2,097,151 and 4,194,303, we’re out of luck.

To provide more flexibility, I created another version of
this project that uses a traditional counter. Figure 6-6
shows the block diagram of this alternate code.

Figure 6-6: The revised Project #5 block diagram

Here, we’ve replaced the LFSR module with a module
that simply counts up to some value and then toggles its
output. This approach also allows us to eliminate the flip-
flop and NOT gate between the project’s two modules. Let’s
look at the code for the new Count_And_Toggle module:

Verilog

module Count_And_Toggle #(COUNT_LIMIT = 10)

 (input i_Clk,

 input i_Enable,

 output reg o_Toggle);

❶ reg [$clog2(COUNT_LIMIT-1):0] r_Counter;

 always @(posedge i_Clk)

 begin

 if (i_Enable == 1'b1)

 begin

 ❷ if (r_Counter == COUNT_LIMIT - 1)

 begin

 ❸ o_Toggle <= !o_Toggle;

 ❹ r_Counter <= 0;

 end

 else

 ❺ r_Counter <= r_Counter + 1;

 end

 else

 o_Toggle <= 1'b0;

 end

endmodule

VHDL

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity Count_And_Toggle is

 generic (COUNT_LIMIT : natural);

 port (

 i_Clk : in std_logic;

 i_Enable : in std_logic;

 o_Toggle : out std_logic);

end Count_And_Toggle;

architecture RTL of Count_And_Toggle is

❶ signal r_Counter : natural range 0 to COUNT_LIMIT - 1;

begin

 process (i_Clk) is

 begin

 if rising_edge(i_Clk) then

 if i_Enable = '1' then

 ❷ if r_Counter = COUNT_LIMIT - 1 then

 ❸ o_Toggle <= not o_Toggle;

 ❹ r_Counter <= 0;

 else

 ❺ r_Counter <= r_Counter + 1;

 end if;

 else

 o_Toggle <= '0';

 end if;

 end if;

 end process;

end RTL;

This code is much simpler to read and understand than
the LFSR code. We declare a register that will act as a
counter, using the COUNT_LIMIT parameter/generic to define

its size ❶. If the module is enabled, we check if the counter
has reached its limit ❷. If so, we invert the output signal ❸
and reset the counter ❹. If the counter isn’t at its limit,
then it simply increments by 1 ❺. With this code, we can
set the counter to any arbitrary value and it will count to
exactly that value.

NOTE

In the VHDL code, we have an output signal o_Toggle on

the right side of an assignment ❸, meaning we’re accessing

the output’s value. This is valid in VHDL-2008 and later but

will throw an error on older versions of VHDL. I

recommend using VHDL-2008 in your designs, because of

improvements like this.

Now let’s look at the changes to the top-level code that
are needed to use this new Count_And_Toggle module instead
of the LFSR:

Verilog

--snip--

 output o_LED_3,

 output o_LED_4);

 // Equivalent to 2^22 - 1, which is what the LFSR counted

 up to

 localparam COUNT_LIMIT = 4194303;

 wire w_Counter_Toggle;

❶ Count_And_Toggle #(.COUNT_LIMIT(COUNT_LIMIT)) Toggle_Count

er

 (.i_Clk(i_Clk),

 .i_Enable(1'b1),

 .o_Toggle(w_Counter_Toggle));

 Demux_1_To_4 Demux_Inst

❷ (.i_Data(w_Counter_Toggle),

 .i_Sel0(i_Switch_1),

 .i_Sel1(i_Switch_2),

 .o_Data0(o_LED_1),

 .o_Data1(o_LED_2),

 .o_Data2(o_LED_3),

 .o_Data3(o_LED_4));

endmodule

VHDL

--snip--

architecture RTL of Demux_LFSR_Project_Top is

 -- Equivalent to 2^22 - 1, which is what the LFSR counted

 up to

 constant COUNT_LIMIT : integer := 4194303;

 signal w_Counter_Toggle : std_logic;

begin

❶ Toggle_Counter : entity work.Count_And_Toggle

 generic map (

 COUNT_LIMIT => COUNT_LIMIT)

 port map (

 i_Clk => i_Clk,

 i_Enable => '1',

 o_Toggle => w_Counter_Toggle);

 Demux_Inst : entity work.Demux_1_To_4

 port map (

 ❷ i_Data => w_Counter_Toggle,

 i_Sel0 => i_Switch_1,

 i_Sel1 => i_Switch_2,

 o_Data0 => o_LED_1,

 o_Data1 => o_LED_2,

 o_Data2 => o_LED_3,

 o_Data3 => o_LED_4);

end architecture RTL;

I’ve snipped the parts that are the same. The LFSR has
been removed and replaced with the Count_And_Toggle
module ❶. Since that module generates a toggling signal,
we no longer need the flip-flop between the two modules.

Instead, we can feed w_Counter_Toggle, the output of the
Count_And_Toggle module, directly into the demux ❷.

Comparing the Two Approaches

As you’ve seen, using a traditional counter is simpler and
more flexible than using an LFSR. However, earlier I
asserted that implementing an LFSR requires fewer
resources than a traditional counter. Let’s compare the
resource utilization reports for the two approaches to this
project to see how significant the resource savings are.
First, here’s the report for the LFSR version:

--snip--

Register bits not including I/Os: 23 (1%)

Mapping Summary:

Total LUTs: 13 (1%)

And here’s the report for the counter version:

--snip--

Register bits not including I/Os: 24 (1%)

Mapping Summary:

Total LUTs: 36 (2%)

The LFSR approach has used 1 fewer flip-flop and 23
fewer LUTs than the counter, so the LFSR does indeed
require fewer resources. However, it helps to put that into
perspective. Modern FPGAs have thousands of LUTs. You
really shouldn’t have to count every single one. By going
with the LFSR, we might save 1 percent (or less) of the
total resources of our FPGA, but we lose readability and
flexibility in the design. In general, I prefer to implement
solutions that make sense and are simple, and in this case
the LFSR isn’t the simplest solution.

In addition to showing you how to blink an LED and
create a sophisticated project by combining various basic

building blocks, this project has illustrated that there’s
often a trade-off between simplicity and resources. You’ll
find that there are typically several ways to solve problems
within an FPGA, and you’ll have to determine which
solution works best for you. It could be that the most
resource-efficient solution isn’t the simplest, but on the
other hand, the simplest solution may not require
significantly more resources. In many cases, you might
iterate on a design with different approaches, testing each
one out. This is always a good exercise; you’ll become a
stronger FPGA engineer when you explore multiple ways to
write your code.

Random Access Memory

Random-access memory (RAM) allows you to store data
within your FPGA and read it back later. This is an
incredibly common requirement in an FPGA design. For
example, you might want to store data received from a
camera, a computer, or a microcontroller and retrieve it
later for processing, or you may need to create a storage
space for data before saving it to a microSD card. These
are just a few examples of use cases for a RAM. The
random-access part of the name means that you can access
the data in any order. On one clock cycle, for example, you
could read out the first location of memory, and then on the
very next clock cycle you could read out the last location of
memory.

A RAM is typically designed to be either single-port or
dual-port. In a single-port RAM, there’s just one interface
into the memory, so in a single clock cycle you can either
read from or write to the memory, but not both. A dual-port
RAM allows you to read from and write to the memory in
the same clock cycle. The latter is more versatile and used
more often, so we’ll focus on how to implement that on an
FPGA. Figure 6-7 shows at a high level what we’ll be

creating. Note that this is just one possible implementation;
the exact signal names can vary.

Figure 6-7: A dual-port RAM block diagram

In the middle of the figure, the memory itself is
represented by the large rectangle. The size of the memory
is defined by its width and depth. The depth determines the
number of memory locations available, while the width
determines how many bits can be stored at each location.
For example, if the memory is 8 bits wide, then each
location can store a byte of data. Multiplying the width by
the depth tells you the total number of bits of memory
available. For example, if we have an 8-bit-wide memory
that’s 16 locations deep, then there’s a total of 8 × 16 =
128 bits of memory.

The memory has two ports, one for writing (on the left)
and one for reading (on the right). Each port has its own
clock signal, i_Wr_Clk and i_Rd_Clk. For our purposes, we’ll
tie both of these to the same clock, but note that it’s
possible for each port to operate according to its own
independent clock. We’ll discuss working with more than
one clock, or crossing clock domains, in Chapter 7. For
now, just know that this module is built with that feature in
mind.

Each port has an address signal, i_Wr_Addr and i_Rd_Addr,
which communicates the index into the memory where the
writing or reading operation should take place. If you’ve
programmed in C, this is like the index into an array. The

indices typically range from 0 to (depth – 1), giving us a
total of depth locations in the physical memory.

For writing the data, we need to set the write address
correctly, put the data that we want to write on i_Wr_Data,
and pulse the i_Wr_DV for a single clock cycle. DV here stands
for data valid, which I commonly use to indicate that the
data signal should be “looked at” by the module. If we want
to keep writing to the memory, we can change the address
and the data, and keep pulsing the data valid signal.

For reading the data, we drive i_Rd_En high, while
setting the read address to the address we want to read
from. The module that is performing the read can simply
monitor the output o_Rd_DV to see when it goes high; this
indicates that there is valid data on o_Rd_Data, which is the
data that is read from the memory.

A RAM Implementation

Now that you understand at a high level how a RAM works,
let’s examine the code implementing the memory:

Verilog

module RAM_2Port ❶ #(parameter WIDTH = 16, DEPTH = 256)

 (

 // Write signals

 input i_Wr_Clk,

 input [$clog2(DEPTH)-1:0] i_Wr_Addr,

 input i_Wr_DV,

 input [WIDTH-1:0] i_Wr_Data,

 // Read signals

 input i_Rd_Clk,

 input [$clog2(DEPTH)-1:0] i_Rd_Addr,

 input i_Rd_En,

 output reg o_Rd_DV,

 output reg [WIDTH-1:0] o_Rd_Data

);

❷ reg [WIDTH-1:0] r_Mem[DEPTH-1:0];

 always @ (posedge i_Wr_Clk)

 begin

 ❸ if (i_Wr_DV)

 begin

 ❹ r_Mem[i_Wr_Addr] <= i_Wr_Data;

 end

 end

 always @ (posedge i_Rd_Clk)

 begin

 ❺ o_Rd_Data <= r_Mem[i_Rd_Addr];

 ❻ o_Rd_DV <= i_Rd_En;

 end

endmodule

VHDL

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity RAM_2Port is

❶ generic (

 WIDTH : integer := 16;

 DEPTH : integer := 256

);

 port (

 -- Write signals

 i_Wr_Clk : in std_logic;

 i_Wr_Addr : in std_logic_vector; -- sized at higher lev

el

 i_Wr_DV : in std_logic;

 i_Wr_Data : in std_logic_vector(WIDTH-1 downto 0);

 -- Read signals

 i_Rd_Clk : in std_logic;

 i_Rd_Addr : in std_logic_vector; -- sized at higher lev

el

 i_Rd_En : in std_logic;

 o_Rd_DV : out std_logic;

 o_Rd_Data : out std_logic_vector(WIDTH-1 downto 0)

);

end RAM_2Port;

architecture RTL of RAM_2Port is

 type t_Mem is array (0 to DEPTH-1) of std_logic_vector(WI

DTH-1 downto 0);

❷ signal r_Mem : t_Mem;

begin

 process (i_Wr_Clk)

 begin

 if rising_edge(i_Wr_Clk) then

 ❸ if i_Wr_DV = '1' then

 ❹ r_Mem(to_integer(unsigned(i_Wr_Addr))) <= i_Wr_Da

ta;

 end if;

 end if;

 end process;

 process (i_Rd_Clk)

 begin

 if rising_edge(i_Rd_Clk) then

 ❺ o_Rd_Data <= r_Mem(to_integer(unsigned(i_Rd_Addr)));

 ❻ o_Rd_DV <= i_Rd_En;

 end if;

 end process;

end RTL;

We’ve implemented the memory as a module called
RAM_2Port. Notice that the module has two parameters (in
Verilog) or generics (in VHDL): WIDTH and DEPTH ❶. This
gives us the flexibility to create a RAM of any size we want,
without having to modify the module code. If we need a
memory that’s 4 bits wide and 16 locations deep, this code
can do that; if we need it to be 16 bits wide by 1,024 deep,
this code can do that too. We only need to choose different
WIDTH and DEPTH values when we instantiate the module.

Looking at the signal declarations to the module, we
can see all the signals shown in Figure 6-7 that make up
the write and read interfaces. The signals i_Wr_Addr and

i_Rd_Addr will provide the indices of the write and read
locations, respectively. These address signals are given a
bit width large enough to represent any index to a memory
containing DEPTH elements. For example, if you need to
address into 128 memory locations (DEPTH = 128), then you’re
going to need 7 bits to accomplish that (27 = 128), so the
address signals will be 7 bits wide. In Verilog, this sizing of
the address works with the $clog2() trick described in
Chapter 5. In VHDL we can leave the length of the vector
undefined and set it in the higher-level module when this
memory is instantiated. The instantiation itself must be of a
fixed width, which will then specify the address signal
width in this module. The last place we are using the
parameters/generics to size our signals is for i_Wr_Data and
o_Rd_Data. These carry the actual data being written or read,
respectively, and are sized based on WIDTH to accommodate
the full width of each location in memory.

We instantiate the memory itself as r_Mem ❷. It will be
WIDTH wide and DEPTH long, for a total storage of WIDTH × DEPTH
bits of memory. This instantiates a two-dimensional (2D)
array in the code. In Verilog, we create it by setting a
register of specific width, as we’ve done in the past, but
with extra brackets on the end that specify the number of
memory locations based on the DEPTH. In VHDL, we need to
create a custom data type called t_Mem that defines the 2D
array; then we can create the memory signal r_Mem, of type
t_Mem.

Next, we give the write and read operations their own
always or process blocks, triggered by the i_Wr_Clk and
i_Rd_Clk clock signals, respectively. (Again, unless you need
to cross clock domains, you can simply tie these signals to
the same clock in the higher-level code that instantiates
this module.) For write operations, we first check to see
that the i_Wr_DV signal is high ❸. If it is, we take the data
that’s on i_Wr_Data and store it into memory at the location

specified by i_Wr_Addr ❹. This looks a lot like updating a
value in an array, because that’s basically what we’re
doing.

For read operations, the o_Rd_Data output is updated
with the value of the memory at the address given by
i_Rd_Addr ❺. At the same time, the value on i_Rd_En is passed
to o_Rd_DV ❻. The higher-level module will set i_Rd_En to high
when it’s actually trying to read data, and passing this
signal to o_Rd_DV generates a data valid pulse telling the
higher-level module that the data is safe to read. Notice,
however, that i_Rd_En doesn’t really control when data will
be read within this module. In fact, the code to update
o_Rd_Data ❺ will run on every single clock cycle, updating it
with whatever is stored at the i_Rd_Addr memory location,
whether we’re explicitly trying to read data out of the
memory or not. That’s fine! It does no harm to read the
memory on every clock cycle like this, even if we end up
ignoring the data that’s being read out.

To see the dual-port memory operating in a simulation,
download the code from the repository and run the
testbench for this module.

RAM on an FPGA

We’ve written the code for a dual-port RAM, but what
FPGA component makes up the memory itself? The answer
is, it depends. If the memory is small enough—for example,
4 locations wide by 8 deep—the storage elements will be
individual flip-flops. However, if the memory gets large
enough, the synthesis tools will instead decide to use a
block RAM (BRAM). We’ll discuss the block RAM in detail
in Chapter 9. For now, just know that it’s a large memory
storage component that exists on the FPGA for this very
purpose.

You wouldn’t want to use flip-flops for large memories
because you’re limited with how many flip-flops are

available for memory storage. You want to save those
precious flip-flops to do the main work in your FPGA, not
just store a single bit of data in a large memory. The
synthesis tools are smart; they know it’s best to push a
large memory instantiation to one or more block RAMs.

FIFO: First In, First Out

The first in, first out (FIFO) is another common FPGA
building block for storing and retrieving data. The concept
of a FIFO is quite simple: data comes in one entry at a time
and gets read out in order from oldest to newest. Figure 6-
8 shows a high-level representation of a FIFO.

Figure 6-8: A high-level block diagram of a FIFO

As you can see, a FIFO has a write interface pushing
data in on the left side and a read interface pulling data out
on the right side. Compared to the dual-port RAM diagram
in Figure 6-7, notice that I’ve flipped the width and depth
here. This helps to visualize the key FIFO behavior: the first
data that gets put in is the first data that gets pulled out. In
this sense, data moves through a FIFO like cars through a
tunnel. The first car into the tunnel is also the first car out.
Other programming languages often have some sort of
queue structure, which behaves the same way. With a FIFO
in an FPGA, however, you’re building a real queue out of
real components!

FIFOs are used extensively in FPGA designs. Any time
you need to buffer some data between a producer and a
consumer, a FIFO acts as that buffer. For example, to write

data to an off-chip memory storage element like a low-
power double data rate (LPDDR) memory, you’d use many
FIFOs to queue up the data, and then quickly burst it out of
the FPGA into the LPDDR. Similarly, if you interface with a
camera, you might store rows of pixel data into FIFOs for
image manipulation like blurring or brightness
enhancement. Finally, whenever you need to send data
across clock domains, FIFOs are up to the task: one clock
coordinates loading data into the FIFO, while the other
clock coordinates reading it out.

A FIFO is full when there are no more memory locations
available for new write data. A FIFO is empty when it has
nothing in it. This leads to two critical rules that you must
follow to ensure your FIFO behaves as expected:
1.  Never write to a full FIFO.
2.  Never read from an empty FIFO.

Writing to a full FIFO is bad because it can cause data
loss: you’ll end up overwriting data that was stored earlier.
Reading from an empty FIFO is also bad, as you don’t know
what data you’re going to get out of it. Breaking one of
these two rules is one of the most common FPGA bugs that
I’ve encountered in my career. It’s also one of the harder
bugs to find, because writing to a full FIFO or reading from
an empty FIFO can cause strange behavior, like
unexpected data and data loss. Often this corrupted data
looks like a problem with the data, rather than a problem
with the FIFO, so what’s causing the bug is difficult to
diagnose. Keep these rules in mind as we discuss the
details of how a FIFO works.

Input and Output Signals

A FIFO is basically a version of a dual-port RAM with some
extra signals added to create the FIFO behavior. Before we
look at the code for the FIFO, let’s consider what all those

signals are. Figure 6-9 shows a more detailed block
diagram of a FIFO.

Figure 6-9: A detailed FIFO block diagram

Like the dual-port RAM, the FIFO has ports for writing
and reading. Each port has its own dedicated clock. FIFOs
are commonly used to cross clock domains, so i_Wr_Clk is
different from i_Rd_Clk. However, the FIFO that we’ll
explore has a single clock for both the write and read ports,
for simplicity and portability across FPGAs.

Next, on the write side, the i_Wr_DV (data valid) input
signals when there’s data to be written on i_Wr_Data and
pushes that data into the FIFO. On the read side, the
i_Rd_En and i_Rd_DV signals similarly communicate when we
wish to read data, and the o_Rd_Data output retrieves the
data itself. All of this is just like what we saw on the RAM.
Unlike on the RAM, however, we no longer need to worry
about keeping track of which address to write to or read
from. The FIFO knows to simply cycle through the memory
addresses in sequence, one after the other, when reading
or writing. As such, there’s no need for i_Wr_Addr and
i_Rd_Addr input signals we had on the RAM. Instead, the
remaining input and output signals help to track how much
of the FIFO is used, while ensuring that we don’t write to a
full FIFO or read from an empty FIFO.

On the write side, the o_Full output goes high when all
the locations within the FIFO have been written to. When
the user sees o_Full go high, they must stop writing to the
FIFO until some space frees up and o_Full goes low again.
As you know by now, writing to a full FIFO is very bad and
should be avoided.

The i_AF_Level and o_AF_Flag signals, also on the write
side, aren’t always included in FIFO modules, but they can
be very helpful. AF is short for almost full, and these signals
allow the user to set a watermark in the FIFO before it fills
up completely. If the number of elements (sometimes called
words) in the FIFO is greater than or equal to the value set
by i_AF_Level, then o_AF_Flag will be high. Otherwise,
o_AF_Flag will be low. This feature is particularly useful in
situations where data is written to the FIFO in batches. For
example, say the write interface must write a minimum of
four elements at a time in a burst, meaning once the
interface starts writing it can’t stop, even if the o_Full flag
goes high mid-burst. To prevent data loss, we would want
to set i_AF_Level to depth − 4 and then check that o_AF_Flag
is low before writing each burst of four elements. This
ensures that there will be space in the FIFO for all four
elements, before the write operation begins.

The read side has a similar set of FIFO-specific signals.
o_Empty will be high when the FIFO has no data in it. To
ensure that we never read from an empty FIFO, we should
check the o_Empty flag before attempting to read data out to
know if there’s data available for reading.

The i_AE_Level and o_AE_Flag signals behave similarly to
i_AF_Level and o_AF_Flag, guaranteeing that a burst of reads
is possible without the FIFO becoming empty mid-burst (AE
is short for almost empty). For example, say your FIFO is
1,024 bits deep and 1 byte wide, and you have an LPDDR
interface that requires data to be written in 256-byte
bursts. Again, since a burst can’t be interrupted, you can’t

simply stop reading if the FIFO becomes empty partway
through the read. To guarantee that at least 256 bytes will
be available to be pulled from the FIFO before sending a
burst of data to the LPDDR, set i_AE_Level to 256, and check
that o_AE_Flag is low before reading data.

NOTE

If you don’t need almost full or almost empty behaviors for

your application, you can just ignore the i_AF_Level,

o_AF_Flag, i_AE_Level, and o_AE_Flag signals in your

design.

Figure 6-10 shows some examples summarizing what
we’ve learned about FIFO signals.

Figure 6-10: FIFO flag examples

The figure illustrates a FIFO with a depth of 12 words
(the width isn’t important). For this example, let’s assume
we’ve set i_AE_Level to 4 and i_AF_Level to 8. In the first row,
we can see that if the FIFO has nothing in it, the count is
zero and the o_Empty and o_AE_Flag signals are both set to 1.
Remember that o_AE_Flag is set when the count is less than
or equal to i_AE_Level. Next, we see that there are four
words written, the FIFO is no longer empty, but o_AE_Flag is
still set. It’s not until the fifth word is written that o_AE_Flag
goes low. All flags are low from words five through seven,
but when there are eight words in the FIFO, o_AF_Flag goes

high (since i_AF_Level was set to 8). When the FIFO is full,
we see that both o_AF_Flag and o_Full are high.

A FIFO Implementation

We’ll now consider the Verilog and VHDL for implementing
the FIFO illustrated in Figure 6-9. This code adds features
around the RAM_2Port module discussed in “A RAM
Implementation” on page 113 that convert the RAM into a
FIFO. The complete code is available in the book’s GitHub
repository, along with the testbenches that exercise it. I’m
not showing the module signals or the instantiation of the
memory (the dual-port RAM from the previous section)
here, so we can focus on the functional code that makes the
FIFO a FIFO:

Verilog

--snip--

 always @(posedge i_Clk or negedge i_Rst_L)

 begin

 ❶ if (~i_Rst_L)

 begin

 r_Wr_Addr <= 0;

 r_Rd_Addr <= 0;

 r_Count <= 0;

 end

 else

 begin

 ❷ if (i_Wr_DV)

 begin

 if (r_Wr_Addr == DEPTH-1)

 r_Wr_Addr <= 0;

 else

 r_Wr_Addr <= r_Wr_Addr + 1;

 end

 ❸ if (i_Rd_En)

 begin

 if (r_Rd_Addr == DEPTH-1)

 r_Rd_Addr <= 0;

 else

 r_Rd_Addr <= r_Rd_Addr + 1;

 end

 ❹ if (i_Rd_En & ~i_Wr_DV)

 begin

 if (r_Count != 0)

 begin

 r_Count <= r_Count - 1;

 end

 end

 ❺ else if (i_Wr_DV & ~i_Rd_En)

 begin

 if (r_Count != DEPTH)

 begin

 r_Count <= r_Count + 1;

 end

 end

 if (i_Rd_En)

 begin

 o_Rd_Data <= w_Rd_Data;

 end

 end // else: !if(~i_Rst_L)

 end // always @ (posedge i_Clk or negedge i_Rst_L)

❻ assign o_Full = (r_Count == DEPTH) ||

 (r_Count == DEPTH-1 && i_Wr_DV && !i_Rd_E

n);

 assign o_Empty = (r_Count == 0);

 assign o_AF_Flag = (r_Count > DEPTH - i_AF_Level);

 assign o_AE_Flag = (r_Count < i_AE_Level);

--snip--

VHDL

--snip--

 process (i_Clk, i_Rst_L) is

 begin

 ❶ if not i_Rst_L then

 r_Wr_Addr <= 0;

 r_Rd_Addr <= 0;

 r_Count <= 0;

 elsif rising_edge(i_Clk) then

 ❷ if i_Wr_DV then

 if r_Wr_Addr = DEPTH-1 then

 r_Wr_Addr <= 0;

 else

 r_Wr_Addr <= r_Wr_Addr + 1;

 end if;

 end if;

 ❸ if i_Rd_En then

 if r_Rd_Addr = DEPTH-1 then

 r_Rd_Addr <= 0;

 else

 r_Rd_Addr <= r_Rd_Addr + 1;

 end if;

 end if;

 ❹ if i_Rd_En = '1' and i_Wr_DV = '0' then

 if (r_Count /= 0) then

 r_Count <= r_Count - 1;

 end if;

 ❺ elsif i_Wr_DV = '1' and i_Rd_En = '0' then

 if r_Count /= DEPTH then

 r_Count <= r_Count + 1;

 end if;

 end if;

 if i_Rd_En = '1' then

 o_Rd_Data <= w_Rd_Data;

 end if;

 end if;

 end process;

❻ o_Full <= '1' when ((r_Count = DEPTH) or

 (r_Count = DEPTH-1 and i_Wr_DV = '1' a

nd i_Rd_En = '0'))

 else '0';

 o_Empty <= '1' when (r_Count = 0) else '0';

 o_AF_Flag <= '1' when (r_Count > DEPTH - i_AF_Level) else

 '0';

 o_AE_Flag <= '1' when (r_Count < i_AE_Level) else '0';

--snip--

The bulk of this code is the main always block (in
Verilog) or process block (in VHDL), which handles memory
addressing, counting the number of elements in the FIFO,
and read and write operations. Notice that this block has a
reset signal, i_Rst_L, in the sensitivity list, in addition to a
clock signal. If the reset signal goes low, then we’re in a
reset state and we reset the signals that control the read
address, the write address, and the FIFO count ❶. The _L at
the end of the reset signal name is a clue that it’s active-
low.

NOTE

As I mentioned earlier, FIFOs are useful for crossing clock

domains, but this particular implementation of a FIFO

cannot do this. It only has one clock, the i_Clk signal.

Crossing clock domains is an advanced feature that we

aren’t prepared to implement at this stage in the book.

Next, we create the logic for the write address ❷ and
read address ❸. For these, we simply increment the
address each time we do a write or a read. When we reach
the last address in the FIFO, which is DEPTH-1, we start over
again at 0. Thanks to this system, elements are written to
memory sequentially and they’re read from memory in the
same order they were written, ensuring adherence to the
first-in, first-out scheme.

To keep track of the number of elements in the FIFO,
first we check for the condition where we’re doing a read

but not a write ❹. In this case, the total number of
elements in the FIFO goes down by 1. Next we check if
we’re doing a write but not a read ❺, in which case the
total number of elements in the FIFO increases by 1. It’s
also possible that we could be writing and reading at the
same time, but notice that the code doesn’t explicitly
handle this case. That’s intentional; in this situation, the
count will remain the same. We could make this explicit by
writing r_Count <= r_Count;, but this isn’t necessary. By
default, the count variable retains its value.

We also perform several signal assignments outside of
the always or process block ❻. Recall that this will generate
combinational (as opposed to sequential) logic. First we
assign the o_Full flag, which will be high when r_Count is
equal to DEPTH, or when r_Count is equal to DEPTH-1 and

there’s a write and there’s not a read. This second case lets
the full flag “anticipate” the write and tell the higher-level
module to stop writing, since the FIFO is about to be full.

Next we have the o_Empty assignment, which is a bit
simpler. When the count is zero, the FIFO is empty;
otherwise, it’s not empty. After that we assign the almost
full (o_AF_Flag) and almost empty (o_AE_Flag) flags. For
these, we need to compare the count of the FIFO to the
thresholds determined by i_AF_Level and i_AE_Level,
respectively. This is the first time we’ve seen the < and >
comparison operators being used in Verilog and VHDL.
These are perfectly valid to include in combinational signal
assignments.

By monitoring these status flags from a higher-level
module, you’ll be able to precisely control when data can
move into and out of the FIFO.

Summary

In this chapter, you learned about several common building
blocks in FPGA designs, including multiplexers and

demultiplexers, shift registers, RAM, and FIFOs. You saw
how these components work and learned how to implement
them with Verilog and VHDL. With these foundational
pieces of code, you can start to see how very large FPGA
designs can be composed of many smaller modules
structured together.

7

SYNTHESIS, PLACE AND ROUTE, AND

CROSSING CLOCK DOMAINS

In Chapter 2, I provided an
overview of the FPGA build

process to get you comfortable running
the tools needed to work on this book’s
projects. We’ll now take a closer look at
the build process, to give you a deeper
understanding of what exactly is going on
when you click the Build FPGA button.
Once you have a firm knowledge of what
your FPGA tools are doing, you’ll be able
to avoid many common mistakes and
write highly reliable code.

As you learned back in Chapter 2, after you’ve written
your Verilog or VHDL code the FPGA design goes through
three stages: synthesis, place and route, and programming.
If any of these processes fails, the FPGA build won’t be
successful. In this chapter, we’ll focus on the first two
stages. We’ll talk in detail about synthesis, and break down

the differences between synthesizable and non-
synthesizable code. After that, we’ll revisit the place and
route process and explore one common issue that arises
during this stage: timing errors. You’ll learn what causes
these errors and how to fix them. Finally, we’ll look in
detail at a situation where you’re particularly likely to
encounter timing issues: when signals cross between parts
of your FPGA design running at different clock frequencies.
You’ll learn how to safely cross clock domains in your
FPGA.

Synthesis

Synthesis is the process of breaking down your Verilog or
VHDL code and converting it to simple components (LUTs,
flip-flops, block RAMs, and so on) that exist on your specific
FPGA. In this sense, an FPGA synthesis tool is similar to a
compiler, which takes code in a language like C and breaks
it down into very simple instructions that your CPU can
understand.

For the process to work correctly, the synthesis tool
needs to know exactly what type of FPGA you’re using so it
knows what resources are available. Then, since these
resources are finite, it becomes the synthesis tool’s job to
figure out how to use them as efficiently as possible. This is
called logic optimization (or logic minimization), and it’s a
major part of the synthesis process. As I mentioned in
Chapter 3, there’s no reason for you to ever perform logic
optimization manually; you can simply leave it to the
synthesis tool. That’s not to say, however, that writing code
that uses your available resources intelligently isn’t
important. Having a good understanding of what your code
will synthesize into is critical to becoming a strong FPGA
designer.

A key output of the synthesis process is your utilization

report, which tells you how many LUTs, flip-flops, block

RAMs, and other resources you’re using in your design.
We’ve examined excerpts from utilization reports in past
chapters; I recommend always reading through this report
to make sure that your expectations match reality with
regard to the resources being used.

Notes, Warnings, and Errors

The synthesis process often generates a very large number
of notes and warnings, even when it runs successfully.
When unsuccessful, the process generates errors as well.
The notes are mostly informational, telling you how the tool
is interpreting your code. Warnings are worth looking at to
make sure that you’re not making mistakes. However, in
large designs there might be hundreds of warnings, so they
can become overwhelming. Some tools allow you to hide
warnings once you’re comfortable with them. This is a
useful feature that allows you to focus on the real
problems.

One particular warning worth noting is the inferred

latch warning. As you learned back in Chapter 4, latches
are bad. They’re often created accidentally, and the tools
can have trouble analyzing them in the context of timing in
your FPGA design. If you create a latch, you’ll be notified of
it during the synthesis process. You’ll get a warning like
this:

[Synth 8-327] inferring latch for variable 'o_test' [test_pr

ogram.vhd:19]

Don’t ignore this warning. Unless you’re sure that you
really want that latch in your design, you should try to
remove it. I’ve been doing FPGA design for many years and
I’ve never needed to use a latch, so you should have a very
good reason if you’re planning to keep it.

If something goes wrong during synthesis, you’ll get an
error rather than a warning. The two most common errors
you’ll encounter are syntax errors and utilization errors;
we’ll look at those next.

Syntax Errors

When you start the synthesis process, the first thing the
tool will do is check your Verilog or VHDL code for syntax
errors. These are by far the most common errors you’ll
encounter. There are literally hundreds of kinds of syntax
errors that might be lurking in your code; perhaps you
forgot to define a signal, mistyped a keyword, or left out a
semicolon, for example. In the last case, you might see an
error message like this one in Verilog:

** Error: (vlog-13069) design.v(5): near "endmodule": syntax

error,

unexpected endmodule, expecting ';' or ','.

or this one in VHDL:

** Error: design.vhd(5): near "end": (vcom-1576) expecting

 ';'.

The synthesis tool will tell you on which line of which
file it encountered the error. In the preceding error
messages, for example, design.v(5) in Verilog or
design.vhd(5) in VHDL is telling you to check line 5 of the
file called design. You can use this information to edit your
code to pass the syntax check.

Occasionally, you’ll get an overwhelming number of
syntax errors. The best thing you can do in this case is find
the first error and fix that one. Often, a cascade of errors
can stem from the first one. This is a good rule for
engineering in general: fix the first problem first. Once
you’ve resolved that first syntax error, rerun the synthesis

process. If you’re still getting errors, again find the first
one, fix it, and rerun synthesis. This process is iterative,
and it often takes a few cycles for all the syntax errors to be
resolved and the synthesis process to complete
successfully.

Utilization Errors

Once your code passes the syntax check, the next most
common error you’ll encounter during synthesis is a
utilization error, where your design requires more
components than the FPGA has available. For example, if
your FPGA has 1,000 flip-flops but your code is requesting
2,000, you’ll get a utilization error. The design simply won’t
fit on your FPGA, so you’ll need to think of ways to shrink
your code to instantiate fewer flip-flops. A good rule of
thumb is to aim to utilize no more than 80 percent of the
available LUTs or flip-flops. This will make it easier for the
place and route process to get your design to meet timing
(more on this later in the chapter), as well as giving you
more flexibility to modify your design or add new features
in the future.

If you can’t get your code to fit in your chosen FPGA,
you have a few options:
1.  Switch to a larger FPGA.
2.  Identify the most resource-intensive modules and

rewrite them.
3.  Remove functionality.

Switching to a larger FPGA might be a big deal, but it
isn’t always. Many FPGA vendors offer higher-resource
FPGAs in the same physical package as lower-resource
parts. The higher-resource ones often cost a bit more, so
you’ll pay a few extra dollars for those additional resources,
but the new FPGA won’t take up any extra space on your
circuit board. When you’re selecting an FPGA for a project,
it’s a good idea to pick an FPGA family and package where

you have the option to move up in resources, just in case
you end up needing more resources than you expect.

If you can’t switch to a different FPGA, the next step is
to analyze your code to see if it uses more resources than
necessary. This isn’t a matter of low-level logic
minimization to shave off a LUT here and a flip-flop there—
the tools do that for you. Rather, there are ways in which
you might inadvertently write code that uses dramatically
more resources than you expect. As an example, I once
traced a high utilization error to one single line of code that
was dividing two numbers. As you’ll learn in Chapter 10,
division is often a very resource-intensive operation in an
FPGA. I was able to change the division operation into a
memory operation by creating a table of possible inputs
and mapping each input to an output. This used a block
RAM, but it freed up the LUTs and flip-flops used for the
division and allowed the FPGA to pass the synthesis
process. Rewriting code with a focus on lower resource
utilization is a skill you’ll sharpen as you gain more FPGA
experience. You can dig into the utilization reports of each
module to figure out which are using the most resources,
and then examine those individually.

Another approach for reducing resource utilization is to
have different inputs share the same FPGA resource.
FPGAs often perform the same operation on multiple input
channels. Instead of having dedicated FPGA resources for
each channel, you can use a single implementation, with
each channel taking a turn sharing the hardware. For
example, say you have 100 channels that all need a cosine
operation performed on them once a second. You could
have channel 1 perform the cosine operation in the first 10
ms, then allow channel 2 to perform that same cosine
operation in the next 10 ms, then channel 3, and so on. This
way, the hardware used to perform the cosine operation
can be shared between all the channels and only needs to

be instantiated once, rather than being instantiated 100
times, once for each channel.

This keeps the overall resource utilization much lower,
but it only works if you have the time available to share a
resource. If your timelines are too tight this approach
might not work. Additionally, it does add some complexity,
because now you need to build a component that will
negotiate the sharing. We refer to the process of sharing a
resource as arbitration, and the component that performs
sharing this is often referred to as an arbiter. Arbiters can
be built to share off-FPGA resources as well. For example,
we might have several modules that write data to a
MicroSD card. An arbiter could be designed to allow those
modules to share the single MicroSD card and prevent two
modules from trying to write data at the same time, which
would cause data loss or corruption.

If you’ve written very efficient code and you still can’t
make it fit on your FPGA, the only option left is to remove
functionality. Maybe there’s a microcontroller on the same
board that can do some of the things that the FPGA was
supposed to do. Or maybe you just need to tell your team
that it won’t work. FPGAs simply have a limit to the amount
of stuff they can fit.

Non-synthesizable Code

Many keywords in the Verilog and VHDL languages can’t
be translated into FPGA components by a synthesis tool;
they aren’t synthesizable. If you include any of these
keywords in your project code, the synthesis tool will
simply ignore them. It might generate a warning or a note,
but not an error. The tool will move forward with the
synthesis process, omitting the non-synthesizable parts
from the final design—and potentially leading to problems
if you were counting on the functionality of the non-
synthesizable code.

It might seem strange that non-synthesizable keywords
exist in Verilog and VHDL, but they’re useful for simulation
and testbenches. As we discussed in Chapter 5, testing
your code is critical, and the languages provide keywords
to assist you with this. In fact, you can include non-
synthesizable elements in your project code for simulation
purposes and leave them in when you run the code through
synthesis, since the tool will just ignore them. To be safe,
you can explicitly tell the tool not to bother trying to
synthesize these parts of your code by preceding them with
synthesis translate_off and succeeding them with synthesis
translate_on. This technique works for both Verilog and
VHDL. For example, if you’re designing a FIFO, you might
want to assert that you’re never writing to a full FIFO or
reading from an empty FIFO when running simulations of
the code. The synthesis translate_off and synthesis
translate_on directives let you bake those assertions into the
actual design code, without having to worry about
maintaining separate code for simulation and synthesis.

Some of the most common areas where non-
synthesizable code arises include keeping track of time,
printing text, working with files, and looping. We’ll
consider those now.

Keeping Track of Time

As you know, there’s no inherent way to measure the
passage of time in an FPGA. Instead, we rely on counting
clock cycles. Still, there are parts of both VHDL and Verilog
that refer to time: for example, $time in Verilog or now in
VHDL will provide a current timestamp, while a statement
like #100 in Verilog or wait for 100 ns; in VHDL will create a
short delay. These features can be useful for running
simulations—for example, to trigger input signals at precise
time intervals—but they aren’t synthesizable.

Printing

One common way to get feedback during the testing
process is to send text to the terminal. In C and Python, for
example, you have functions like printf() and print() that
will send text to a console to allow you to see what’s going
on. Similar functions exist in Verilog and VHDL. In Verilog,
you can use $display() to send text to the terminal. In
VHDL, it’s a bit more complicated, and there are a few
options. For example, you can use assert followed by report
and severity note to send text to the screen, as shown here:

assert false report "Hello World" severity note;

These text outputs only work in simulation. They can’t
be synthesized, as the concept of a console or terminal
doesn’t exist on a physical FPGA.

Working with Files

In most cases, you can’t synthesize Verilog or VHDL code
that involves reading from or writing to a file. The FPGA
has no concept of “files” or any operating system; you have
to build all that stuff yourself if you really need it. Consider
something like storing data from a temperature sensor. You
might want to read data from the sensor every second and
write those values to a file. This is possible to do in
simulation with functions like $fopen() and $fwrite() in
Verilog or file_open() and write() in VHDL, but in synthesis,
forget about it.

One exception here is that some FPGAs allow you to use
a text file to preload (initialize) a block RAM. The specifics
of how different vendors accomplish this vary, so refer to
the memory usage guide for your FPGA if this is something
you ever need to do.

Looping

Loop statements can be synthesized, but they probably
won’t work the way you expect. You might be familiar with

for loops from a software language like C or Python: they
allow you to write concise code that repeats an operation a
specific number of times one after another. In simulation,
Verilog or VHDL for loops work this way. In synthesizable
FPGA code, however, for loops work differently; they’re
used to condense replicated logic, providing a shorthand
for writing several similar statements that are meant to be
executed at the same time, rather than one after another.
To demonstrate, consider this example code for a 4-bit shift
register:

Verilog

always @(posedge i_Clk)

 begin

 r_Shift[1] <= r_Shift[0];

 r_Shift[2] <= r_Shift[1];

 r_Shift[3] <= r_Shift[2];

 end

VHDL

process (i_Clk)

begin

 if rising_edge(i_Clk) then

 r_Shift(1) <= r_Shift(0);

 r_Shift(2) <= r_Shift(1);

 r_Shift(3) <= r_Shift(2);

 end if;

end process;

Each clock cycle, this code shifts data through the
r_Shift register. The value from bit 0 is shifted to bit 1, the
value from bit 1 is shifted to bit 2, and so on. The
assignment statements that accomplish this follow a
completely predictable pattern: the value of r_Shift[i] is

assigned to r_Shift[i+1]. Synthesizable Verilog and VHDL
for loops provide a more compact way of writing
predictable code like this. Using a for loop, we can rewrite
the shift register code as follows:

Verilog

always @(posedge i_Clk)

 begin

 ❶ for(i=0; i<3; i=i+1)

 ❷ r_Shift[i+1] <= r_Shift[i];

 end

VHDL

process (i_Clk)

begin

 if rising_edge(i_Clk) then

 ❶ for i in 0 to 2 loop

 ❷ r_Shift(i+1) <= r_Shift(i);

 end loop;

 end if;

end process;

Here, we declare a for loop with incrementing variable i
❶. With each iteration, the statement assigning the value
from bit i to bit i + 1 ❷ is executed. For example, on the
first iteration of the loop i is 0, so the line that gets
executed is r_Shift[0 + 1] <= r_Shift[0]. The second time
through i is 1, so we get r_Shift[1 + 1] <= r_Shift[1]. On the
third and final iteration, we get r_Shift[2 + 1] <= r_Shift[2].

The important thing to realize here is that this all

happens in one clock cycle. In effect, all iterations of the
loop execute simultaneously, just as the three separate
assignment statements in the version without the for loop
will execute simultaneously. The two versions do exactly

the same thing (and will synthesize to the exact same FPGA
resources), except the for loop version is written in a more
compact way.

A common mistake that beginners make is putting a for
loop inside a clocked always or process block and expecting
each iteration of the loop to take one clock cycle. Take the
following snippet of C code, for example:

for (i=0; i<10; i++)

 data[i] = data[i] + 1;

Here we have an array, data, and we’re incrementing
every value inside the array by 1 using a for loop. (We’re
assuming here that data has 10 items.) If you try to do the
same thing using a Verilog or VHDL for loop, expecting
that it will take 10 clock cycles to run, you’ll be very
confused, since the loop will actually be executed in a
single clock cycle. If you do want to run a sequence like
this over a number of clock cycles, you can update the
values inside an if statement that checks for an index value
to exceed a certain threshold, like this:

Verilog

always @(posedge i_Clk)

 begin

 ❶ if (r_Index < 10)

 begin

 ❷ r_Data[r_Index] <= r_Data[r_Index] + 1;

 ❸ r_Index <= r_Index + 1;

 end

 end

VHDL

process (i_Clk)

begin

 if rising_edge(i_Clk) then

 ❶ if r_Index < 10 then

 ❷ r_Data(r_Index) <= r_Data(r_Index) + 1;

 ❸ r_Index <= r_Index + 1;

 end if;

 end if;

end process;

Here, we use an if statement to replicate the check that
stops the for loop ❶. In this case, we want the operation to
run 10 times, or until r_Index is no longer less than 10.
(We’re assuming that the index value starts at 0, although
this isn’t shown in the code.) Next, we increment a value in
r_Data, using r_Index to access the correct item in the array
❷. Finally, we increment r_Index ❸, which will then be used
on the next clock cycle to update the next value in the
array. In total, this will take 10 clock cycles to execute. In
general, when trying to write code that iterates like a
conventional for loop, usually all you need to do is add a
counter signal (like r_Index) and monitor it with an if
statement, as you’ve seen here.

Until you’re very confident in how FPGA for loops work,
I recommend avoiding them in any synthesizable code.

Place and Route

Place and route is the process of taking your synthesized
design and mapping it to physical locations on your specific
FPGA. The place and route tool decides exactly which
LUTs, flip-flops, and block RAMs (and other components we
haven’t talked about yet) in your FPGA will be used, and
wires them all together. At the end of the process, you get
a file that can be loaded onto the FPGA. As you’ve seen,

actually programming the FPGA using this file is usually a
separate step.

Place and route, as the name implies, is in fact two
processes: the placement of the synthesized design into
your FPGA, and then the routing of that design using
physical wires to connect everything together. The routing
process is often the most time-consuming step in the build
process, especially for large designs. On a single computer,
it can take several hours to route a complicated FPGA. This
is one of the main reasons why simulations are critical. You
may only get a few chances a day to test your design on an
actual FPGA because the build process takes so long, so it’s
best to iron out as many problems as you can through
simulation before starting this process.

Constraints

To run the place and route process, you need to constrain
at least two aspects of your design: the pins and the
clock(s). There are other elements that can be constrained
as well—input/output delays, specific routing, and more—
but these two are the most fundamental.

The pin constraints tell the place and route tool which
signals in the Verilog or VHDL code are mapped to which
physical pins on the FPGA. When you’re working with your
circuit board, you’ll need to look at the PCB schematic to
know which FPGA pins connect to switches, which pins
connect to LEDs, and so on. This is an example of a
situation in which having some knowledge of how to read
schematics is helpful for an FPGA designer.

The clock constraints tell the tool about the clock
frequency used to drive your FPGA (or frequencies, if you
have multiple clock domains, as we’ll discuss later in the
chapter). Clock constraints are fundamental to the routing
process, in particular, since there are physical limitations
on how far a signal can travel and how much can be done

to it within a single clock period. When the place and route
process finishes, it will generate a timing report that takes
the clock constraints into account. If everything is sure to
work under the specified clock constraints, the design is
said to meet timing, and the report will show this. If,
however, the tool determines that the clock constraints
may be too tight for what you’ve designed, the tool will
display timing errors in your timing report. As you’ll see
next, timing errors are really bad!

Timing Errors

Timing errors occur when your design and clock
constraints are asking for the FPGA components and wires
to work at a faster pace than the place and route tool can
guarantee they can handle. This means your FPGA might
not work as desired. I say might because it’s possible that it
will work perfectly, despite the timing errors—there’s no
way to know for sure ahead of time. This is in part because
an FPGA’s performance is affected by its operating
conditions; it can vary, for example, based on changes in
voltage and temperature. It might sound odd that your
FPGA will perform slightly differently at cold temperatures
versus hot temperatures, but that’s the reality.

It’s the job of the place and route tool to stress your
design and analyze how it will perform in all possible
operating conditions, including worst-case scenarios. If the
design can run at your specified clock frequency across all
those conditions, the tool can guarantee that the FPGA will
meet timing; otherwise, it will report timing errors. The
tools won’t stop you from programming your FPGA with a
design that contains timing errors. Maybe they should, but
they don’t. Again, this is because it’s uncertain whether or
how the timing errors will manifest. The tools don’t know if
you’ll be running your design on your desk at room
temperature, or on a satellite in the vacuum of space. In

either case, the design might work, or it might fail, or it
might appear to work perfectly for five minutes before
manifesting a small error. Timing errors can produce
strange behavior.

I once was brought onto an FPGA design for a camera
product that was riddled with timing errors that the
previous designer hadn’t bothered to fix. Instead, they had
built the design, looked at the report and seen that it
contained dozens of timing errors, and programmed the
FPGA anyway. They then tested it at their desk to see if it
worked. They ran it for a few minutes and didn’t run into
any problems, so they decided it was fine and integrated it
into the product. Then the product started to fail in odd
ways. Pixels would blink, or the scene would flicker, but
only occasionally, so the user might ignore it. Even
stranger, only some products would have issues, and the
severity of the problem varied from unit to unit.

Once someone realized how bad the issue was, a
serious effort was made to fix the timing errors and
produce an FPGA design that would work 100 percent of
the time. The FPGA tools had been trying to tell the original
designer that there might be a problem. Not a functional

problem—the code was theoretically OK as written—but
there was a chance that it wouldn’t work correctly with the
given clock constraints under all operating conditions. The
moral of this story is that when an FPGA acts in weird
ways, it’s very possible that you haven’t looked closely at
your timing report (or, as was the case with my prior
coworker, ignored it completely!).

At their root, timing errors arise because FPGAs are
subject to physical limitations. Up to this point, we’ve been
working in an ideal world. We’ve imaged that all signals
can travel instantly from their source to their destination,
and that all flip-flops can change their output instantly

when they see a rising clock edge. We’ve been assuming
that if the code is correct, then everything will just work.

Welcome to reality! In the real world, nothing is truly
instantaneous, and components behave in unpredictable
ways if they’re asked to work too quickly. Three physical
limitations that contribute to FPGA timing errors are setup
time, hold time, and propagation delay. Let’s take a quick
look at these, and then we’ll explore how to fix timing
errors.

Setup and Hold Time

Setup time is the amount of time for which the input to a
flip-flop is required to be stable before a clock edge in
order for the flip-flop to accurately register the input data
to its output on that clock edge. Hold time is the amount of
time for which the input must be stable after a clock edge
in order for the flip-flop to reliably hold its current output
value until the next clock edge. This is illustrated in Figure
7-1.

Figure 7-1: Setup (tsu) and hold (th) time

We expect the flip-flop to register some data at the
rising clock edge shown in the middle of the figure. The
time immediately before the rising edge is the setup time,
labeled tsu. The time immediately after the rising edge is
the hold time, labeled th. If the data input to the flip-flop
changes outside the setup and hold window, then
everything works fine. However, bad things can happen if

your data input changes during the setup and hold window.
Specifically, the flip-flop can become metastable, entering a
state where its output is unstable: it could be a 1, it could
be a 0, or it could even be somewhere in between. Figure 7-
2 shows an example of a metastable event.

Figure 7-2: A metastable condition

Here we see a clock signal and the input and output
signals of a flip-flop. The shaded area of the input signal
labeled tsu represents the flip-flop’s setup time, immediately
before the rising clock edge. As you can see, the data input
to the flip-flop transitions from low to high during the setup
window. This causes the output to be metastable for some
amount of time, after which it settles out to either a 0 or a
1.

To understand metastability, people often use the
analogy of a ball balanced on top of a hill, as shown in
Figure 7-3. The ball could roll down the hill either to the
left or to the right, and there’s no predicting which way it’ll
go. A random gust of wind could blow it one way or the
other. If it rolls down to the left, that’s state 0, and if it rolls
to the right, that’s state 1. When the output of a flip-flop is
in a metastable state, it’s a ball teetering on a hill, trying to
find a more stable state to rest into.

Figure 7-3: A metastable state

In addition to not knowing which way the ball will roll,
there’s also no way to tell how long it will take for the ball
to roll down the hill. It might fall quickly, or it might take a
while. This is known as the metastable resolution time, or
the time it takes for a metastable situation to become
stable.

There’s no way to know ahead of time which state the
output will settle on. Sometimes it might be a 0, while other
times when this situation occurs it might be a 1. Assuming
the data input doesn’t change again, the output will
definitely be a 1 at the next rising clock edge, when the
flip-flop again registers its input to its output. In the
meantime, however, for the duration of this one clock cycle,
there’s no telling what the output will be, and this is not
desired behavior for an FPGA.

If your design has timing errors, your FPGA tools are
telling you that one or more flip-flops could have their
setup and hold windows violated, which could put them in a
metastable state. Metastability is probabilistic, however, so
there’s no guarantee that it will actually occur. There’s a
chance that your design will be completely fine despite the
reported timing errors, but there’s also a chance that the
FPGA will exhibit strange and unpredictable behavior. In
FPGA design we like things to be predictable, so even the
remote possibility of metastability occurring is a problem.

Metastable conditions can occur when either the setup
or the hold time is violated, but setup and hold time are
physical properties of your FPGA and are beyond your

control. You can’t modify your design in a way that will
change the setup or hold time. In order to resolve a timing
error, you must focus your efforts on the other main
physical limitation of FPGAs: propagation delay.

Propagation Delay

Propagation delay is the amount of time it takes for a signal
to travel from a source to a destination. As mentioned
previously, in the real world this is not instantaneous: it
takes some time, albeit a very small amount, for voltage
changes to propagate down a wire. A decent rule of thumb
is that signals can travel along a wire at a rate of 1 foot per
nanosecond. That may not sound like much of a delay, but
consider that there are thousands of tiny wires running
everywhere inside your FPGA. When you add up the
physical length of the wires the total can be amazingly
long, considering how small the chips are. This can lead to
a significant propagation delay as signals travel from one
flip-flop to another.

Additionally, every piece of logic that a signal goes
through—for example, a LUT representing an AND gate—
adds some extra time to the propagation delay, since these
logic operations aren’t perfectly instantaneous either. This
concept is illustrated in Figure 7-4.

Figure 7-4: Propagation delay between two flip-flops

Here we have two flip-flops, with data traveling from
the output of one flip-flop to the input of the other. The

logic and routing in between might consist of wires and/or
LUTs. This is where the propagation delay happens, and
the more stuff there is in that cloud—for example, longer
wires or more LUTs—the longer it will take for the output
of flip-flop 1 to reach the input of flip-flop 2. If the
propagation delay is too long, the design won’t be able to
meet timing at the requested clock constraint.

The issue here is that both flip-flops are driven by the
same clock. If flip-flop 1 sees a change on its input and
registers that change to its output at one rising clock edge,
we’d expect flip-flop 2 to see that change and register it at
the next rising clock edge. The signal only has a single
clock period to propagate from flip-flop 1 to flip-flop 2. If
the signal can safely arrive within that time, the design will
work. But if the logic and routing in between the flip-flops
create too long of a propagation delay, we’ll get a timing
error. There might be many thousands of flip-flops in the
FPGA design, and it’s the responsibility of the place and
route tool to analyze every single path and show us the
worst offenders from a timing perspective.

In fact, the signal has less than the length of a single
clock period to propagate from flip-flop 1 to flip-flop 2,
since we also need to take the setup time into account. The
propagation delay may be less than the clock period, but as
we’ve just seen, if the signal arrives at flip-flop 2 within its
setup window, the output of flip-flop 2 will be uncertain.
This leads to the following formula for calculating the clock
period needed for a design to function properly:

tclk(min) = tsu + tp

Here, tclk(min) is the minimum clock period required for
the design to work without timing errors, tsu is the setup
time, and tp is the worst propagation delay the design will
experience between two flip-flops. As an example, say all of
the flip-flops on the FPGA have a fixed setup time of 2 ns
and our design will create a propagation delay of up to 10

ns (in the worst case) between two particular flip-flops. Our
formula tells us that our clock needs to have a period of at
least 2 + 10 = 12 ns, which works out to a frequency of
83.3 MHz. We could easily run the design with a slower
clock than that if we wanted, in which case the period
would be even longer, but if we wanted to run the FPGA
faster, say at 100 MHz, then the clock period would be too
short and we would get timing errors.

How to Fix Timing Errors

As you’ve just seen, the clock period, setup time, and
propagation delay are the main factors contributing to
timing errors. Since the setup time is fixed, there are two
basic ways to solve timing errors:

Slow down the clock frequency.
Reduce the propagation delay by breaking up the logic
into stages.
Slowing down your clock frequency might seem like the

most obvious choice. If you’re able to run your FPGA
slower, your timing will improve. However, it’s unlikely that
you’ll be able to change your clock frequency freely; it’s
usually set in stone for some particular reason, such as if
you’re interfacing to a peripheral that needs to run at a
specific frequency. Chances are you won’t be able to slow
the clock down just to relax timing.

Breaking up your logic into stages, also known as
pipelining, is the more robust (and often the only) option. If
you do less “stuff” between any two flip-flops, the
propagation delay will decrease, and it will be easier for
your design to meet timing. Figure 7-5 illustrates how this
works.

Figure 7-5: Reducing the propagation delay through pipelining

In the top half of the figure, we have a large amount of
logic between two flip-flops—so much that the design has
too long of a propagation delay and fails timing. The
solution, shown in the bottom half of the figure, is to break
up the logic into two stages, with another flip-flop added in
between. This way, half of the logic can be done between
flip-flops 1 and 2, and the other half between flip-flops 2
and 3. The propagation delay for each of these stages
should be short enough that the stages can be
accomplished in a single clock cycle, and overall the tools
will have two clock cycles to do what we were originally
trying to do in one clock cycle.

When you break up a single stage in your design into
multiple stages like this, you’re creating a pipeline of
operations, with a flip-flop between each stage to
synchronize the operations with the clock. A well-pipelined
design will have a much better chance at meeting timing at
high clock frequencies. To demonstrate, let’s consider an
example of some code that has poor timing, and then look
at how to pipeline the logic to avoid timing errors. First,
here’s the problematic code:

Verilog

module timing_error

 (input i_Clk,

 input [7:0] i_Data,

 output reg [15:0] o_Data);

 reg [7:0] r0_Data = 0;

 always @(posedge i_Clk)

 begin

 r0_Data <= i_Data;

 ❶ o_Data <= ((r0_Data / 3) + 1) * 5;

 end

endmodule

VHDL

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity timing_error is

 port (

 i_Clk : in std_logic;

 i_Data : in unsigned(7 downto 0);

 o_Data : out unsigned(15 downto 0));

end entity timing_error;

architecture RTL of timing_error is

 signal r0_Data : unsigned(7 downto 0);

begin

 process (i_Clk) is

 begin

 if rising_edge(i_Clk) then

 r0_Data <= i_Data;

 ❶ o_Data <= ((r0_Data / 3) + 1) * 5;

 end if;

 end process;

end RTL;

I can’t imagine why anyone would write code like this,
but it will do for demonstration purposes. The problem
arises when we perform some mathematical operations—

division, addition, and multiplication—on the value of
r0_Data ❶. All three of these operations are performed on
the same line, inside a synchronous always or process block,
which means they must occur within one clock cycle. To do
all that math, the output of the 8-bit-wide register r0_Data
will pass through a bunch of LUTs, then into the inputs of
the flip-flops for o_Data, all within one clock cycle. This puts
us firmly in the upper half of Figure 7-5: the mathematical
operations require a lot of logic and will create a
considerable propagation delay.

Let’s see what happens when we run this code through
place and route with a 100 MHz clock constraint. Here’s
the resulting timing report:

--snip--

4.1::Critical Path Report for i_Clk

Clock: i_Clk

❶ Frequency: 89.17 MHz | Target: 100.00 MHz

++

❷ Path Begin : r0_Data_fast_5_LC_1_9_5/lcout

❸ Path End : o_DataZ0Z_7_LC_5_12_5/in3

Capture Clock : o_DataZ0Z_7_LC_5_12_5/clk

Setup Constraint : 10000p

❹ Path slack : -1215p

--snip--

We can see that we tried to drive the clock to 100 MHz,
but the place and route tool can only guarantee timing up
to 89.17 MHz ❶. When the target frequency is higher than
the maximum achievable frequency, we’ll have timing
errors. The timing report then tells us about the worst-
offending paths in the design, albeit a little cryptically.
First, the report identifies the beginning ❷ and end ❸ of
each problematic path. Notice that r0_Data is in the signal
name of Path Begin and o_Data is in the signal name of Path

End, but there’s a bunch of extra stuff there too. The tools
add this additional information to identify the exact
locations of the components in question within the FPGA.
The downside is that the information isn’t very human-
readable, but since the core signal names have persisted,
we can see that the path from r0_Data to o_Data is the failing
path. Further, the report tells us exactly how much the
path is failing by ❹. The path slack is the amount of wiggle
room the path has available to meet timing, and the fact
that it’s negative is telling us we’re too slow; we need an
additional 1,215 picoseconds (ps), or 1.215 ns, to remove
this timing error. That makes sense, since the difference in
clock period between 89.17 MHz and 100 MHz is 1,215 ps.

Now that we’ve identified the failing path, we can
pipeline the path’s logic by breaking up the math
operations with some flip-flops. Here’s what that might look
like:

Verilog

module timing_error

 (input i_Clk,

 input [7:0] i_Data,

 output reg [15:0] o_Data);

 reg [7:0] r0_Data, r1_Data, r2_Data = 0;

 always @(posedge i_Clk)

 begin

 r0_Data <= i_Data;

 ❶ r1_Data <= r0_Data / 3;

 ❷ r2_Data <= r1_Data + 1;

 ❸ o_Data <= r2_Data * 5;

 end

endmodule

VHDL

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity timing_error is

 port (

 i_Clk : in std_logic;

 i_Data : in unsigned(7 downto 0);

 o_Data : out unsigned(15 downto 0));

end entity timing_error;

architecture RTL of timing_error is

 signal r0_Data, r1_Data, r2_Data : unsigned(7 downto 0);

begin

 process (i_Clk) is

 begin

 if rising_edge(i_Clk) then

 r0_Data <= i_Data;

 ❶ r1_Data <= r0_Data / 3;

 ❷ r2_Data <= r1_Data + 1;

 ❸ o_Data <= r2_Data * 5;

 end if;

 end process;

end RTL;

We’ve taken what used to be a single line of code and
broken it up into three lines. First, we perform just the
division operation and write the result to an intermediary
signal, r1_Data ❶. Then we perform the addition operation
on r1_Data and assign the result to r2_Data ❷, and finally we
perform the multiplication operation on r2_Data and assign
the result to our original output, o_Data ❸. We’ve introduced
new signals to distribute the large math operation that was
occurring in a single clock cycle across multiple clock
cycles. This should reduce the propagation delay. Indeed, if
we run the new, pipelined design through place and route,
we’ll get the following timing report:

--snip--

4.1::Critical Path Report for i_Clk

Clock: i_Clk

Frequency: 110.87 MHz | Target: 100.00 MHz

--snip--

Now we’re meeting timing: the place and route tool can
guarantee performance up to a clock frequency of 110.87
MHz, when the target frequency was 100 MHz. As you’ve
seen, fixing the timing errors involved a bit of trade-off. We
had to add flip-flops into our design to break up the logic
into stages, so our design now uses more FPGA resources
than before. Additionally, the math operation that was
meant to take a single clock cycle now takes three clock
cycles. However, keep in mind that our module can still
take in new input values at a rate of 100 MHz and spit out
calculated output values at a rate of 100 MHz, as we
intended with the original design; it’s only the first result to
come out of the pipeline that will take two additional clock
cycles, due to the added flip-flops.

Unexpected Timing Errors

You can fix most timing errors by pipelining your design to
cut down on propagation delay and avoid metastable
conditions. However, place and route tools can’t anticipate
every timing error. These tools aren’t perfect; they can only
analyze your design based on the information they have.
Even if you don’t see any errors in your timing report, there
are two situations where metastable conditions may still
occur that the place and route tool can’t reliably predict:

When sampling a signal asynchronous to the FPGA
clock
When crossing clock domains

Sampling a signal asynchronous to the FPGA clock is
very common when you have an external signal that serves
as input to your FPGA. The input signal will go directly to
the input of a flip-flop in your design, but it will be
asynchronous, meaning it isn’t coordinated by your main
FPGA clock. For example, think about someone pushing a
button. That button press could come at any time, so if it
happens to occur during the setup time of the flip-flop the
button is wired to, then that flip-flop will be in a metastable
state. The place and route tool doesn’t know anything
about this potential issue, so it won’t flag it as a timing
error. But you, dear FPGA designer, can anticipate and fix
the problem. The solution is to double-flop the input data by
passing it through an extra flip-flop, as shown in Figure 7-6.

Figure 7-6: Double-flopping to fix metastability

In this figure, a signal that’s asynchronous to the clock
is being sampled by the first flip-flop. Since we can’t
guarantee the timing of this input relative to the clock, it
might violate setup or hold times and create a metastable
condition at the output of the first flip-flop. As discussed
previously, though, the occurrence of a metastable
condition is probabilistic. It’s also quite rare. Even if the
first flip-flop enters a metastable state, it’s highly unlikely
that the second flip-flop will enter one too. In fact, adding a
second flip-flop in series with the first one reduces the
likelihood of a metastable condition at the output to
effectively zero. (Adding a third flip-flop in series would
decrease the likelihood even more, but FPGA experts have
concluded that two flip-flops in series is enough.) We can

now use the stable signal internal to our design and be
confident that we won’t see strange behavior.

The other situation where you still may encounter a
metastable state is when you cross clock domains in your
FPGA. This is a big topic that warrants its own section.

Crossing Clock Domains

As I’ve mentioned, it’s possible to have multiple clock
domains inside a single FPGA, with different clocks driving
different parts of the design. You might need a camera
interface running at 25.725 MHz and an HDMI interface
running at 148.5 MHz, for example. If you wanted to send
the data from the camera out to the HDMI for visualization
on a monitor, that data would have to cross clock domains,
moving from the part of the design controlled by a 25.725
MHz clock to the part of the design controlled by a 148.5
MHz clock. However, there’s no way to guarantee the
alignment between these clock domains; they can drift
apart and back together. Even if the clocks have a
seemingly predictable relationship, like a 50 MHz clock and
a 100 MHz clock, you can’t be sure that the clocks started
at the same time.

NOTE

The exception is if you’re using an FPGA component called

a phase-locked loop (PLL), which can generate unique

clock frequencies and establish relationships between

them. The PLL is discussed in detail in Chapter 9.

The bottom line is that when you have clock domains
that are asynchronous to each other, signals crossing
between domains might produce metastable states within
some flip-flops. In this section, we’ll look at how to cross
clock domains safely, from slower to faster and vice versa,

and avoid metastability. We’ll also discuss how to use a
FIFO to send large amounts of data across clock domains.

Crossing from Slower to Faster

The simplest situation to handle is going from a slower
clock domain to a faster clock domain. To avoid problems,
all you need to do is double-flop the data when it enters the
faster domain, as shown in Figure 7-7. This is the same
approach we took to fix the external asynchronous signal,
since it’s fundamentally the same issue: the signal from the
slower clock domain is asynchronous to the faster clock
domain that it’s entering.

Figure 7-7: Crossing from a slower to a faster clock domain

In Figure 7-7, we have three flip-flops in series. The
first is driven by a slower clock, while the others are driven
by a faster clock. The slower clock is your source clock

domain, and the faster clock is your destination clock

domain. Since the clocks are asynchronous to each other,
we can’t guarantee that data coming from the slower clock
domain won’t violate the setup or hold times of the middle
flip-flop (the first one in the faster clock domain) and
trigger a metastable state. However, we know that the
output of the second of these flip-flops will be stable,
allowing the data to be used in the faster clock domain.
Let’s look at how this design could be implemented in code:

Verilog

always @(posedge i_Fast_Clk)

 begin

 ❶ r1_Data <= i_Slow_Data;

 ❷ r2_Data <= r1_Data;

 end

VHDL

process (i_Fast_Clk) is

begin

 if rising_edge(i_Fast_Clk) then

 ❶ r1_Data <= i_Slow_Data;

 ❷ r2_Data <= r1_Data;

 end if;

end process;

The code consists of an always or process block running
off the positive edges of the faster clock. First, the signal
i_Slow_Data (coming from the slower domain) enters flip-flop
r1_Data ❶. The output of this flip-flop could be metastable if
a change in i_Slow_Data violates its setup or hold time, but
we resolve this metastable condition by double-flopping the
data, passing it through a second flip-flop, r2_Data ❷. At this
point, we have stable data that we can use in the faster
clock domain without having to worry about metastable
conditions.

One word of caution about writing code for an FPGA
that uses two clock domains: be very careful to keep the
code for the two domains separate. Keep all of your slower
signals in one always or process block, clearly separated from
the faster signals in a different always or process block (the
exception is signals crossing between domains). In fact, I
find it helpful to put code that runs in different clock
domains in completely different files, just to be sure I’m not
mixing and matching signals.

Crossing from Faster to Slower

Going from a faster clock domain to a slower one is more
complicated than the other way around, since the data
inside the faster clock domain could easily change before
the slower clock domain even sees it. For example,
consider a pulse that occurs for one clock cycle in a 100
MHz clock domain, that you’re trying to detect in a 25 MHz
clock domain. There’s a good chance that you’ll never see
this pulse, as illustrated in Figure 7-8.

Figure 7-8: A failed crossing from a faster to a slower clock domain

This figure shows two cycles of the 25 MHz clock. After
the clock’s first rising edge but before its second rising
edge, the 100 MHz pulse comes and goes, so fast that the
25 MHz clock never “sees” and registers it. This is because
the pulse doesn’t occur during the rising edge of the 25
MHz clock. Therefore, the pulse will go completely
unnoticed in the 25 MHz clock domain. The solution to this
problem is to stretch out any signals from the faster clock
domain that are meant to enter the slower clock domain,
until they’re long enough to guarantee that they’ll be
noticed. Figure 7-9 shows how this works.

Figure 7-9: A successful crossing from a faster to a slower clock domain

Looking at the new waveform of the 100 MHz pulse, we
can see that it’s been stretched from a single cycle of the
100 MHz clock to multiple clock cycles, ensuring that a
rising edge in the 25 MHz clock domain will see the pulse.
As a general rule, pulses passing from a faster clock
domain to a slower clock domain should be stretched to last
at least two clock cycles in the slower domain. This way,
even if the pulse violates the setup and hold time of the
first clock cycle in the slower domain and triggers a
metastable state, it will be stable at the second clock cycle.
In our example, we should stretch out the 100 MHz pulse to
at least eight 100 MHz clock cycles, the equivalent of two
25 MHz clock cycles. You can stretch the signals even
longer if you like.

Using a FIFO

In the previous examples we looked at how to transmit a
simple pulse across clock domains. But what if you want to
send a lot of data between two clock domains, such as
when sending camera data to an HDMI interface? In this
case, the most common method is to use a FIFO. You write
data to the FIFO according to one clock and read it out
according to the other. Of course, the key requirement here
is that the FIFO must support two different clock
frequencies, whereas the FIFO we looked at in Chapter 6
only supported one clock.

To cross clock domains with a FIFO, you’ll likely need to
use a primitive, a dedicated FPGA component designed by
the manufacturer specifically for your exact FPGA. For
example, Intel will have prewritten FIFO primitives that
run in different clock domains, but the Verilog or VHDL
code to create them will differ from that of AMD’s FIFO
primitives. (We’ll explore more examples of primitives in
Chapter 9.)

When using FIFOs, always remember not to violate the
two cardinal rules: don’t read from an empty FIFO, and
don’t write to a full FIFO. Many FIFO primitives provide a
count of the number of words (elements) in the FIFO as an
output, but I don’t recommend relying on it. Instead, I
suggest making heavy use of the AF and AE (almost full
and almost empty) flags, introduced in “Input and Output
Signals” on page 117. It’s best to read from and write to
the FIFO in bursts of a fixed size, especially when crossing
clock domains, and to use that burst size to determine your
AF and AE threshold levels. Set your AE level equal to your
fixed burst size, and set your AF level equal to the FIFO
depth minus your burst size. With this setup, you can
guarantee that you’ll never break the two key rules. The AF
flag can throttle the write clock interface by ensuring that
if the FIFO doesn’t have enough room for another burst,
writes will be disabled. Likewise, the AE flag can throttle
the read clock interface by ensuring that if the FIFO
doesn’t have a complete burst in it, the read side will not
try to pull data out of the FIFO.

Let’s explore an example. Consider a case where we
have some module writing data to a FIFO at 33 MHz. On
the read side, we’re dumping the data as quickly as
possible to external memory. Let’s say the read clock
frequency is 110 MHz. In this situation, because the read
clock is much faster than the write clock, the read side will
be idle much of the time, even if the writes are happening

at every clock cycle. To avoid reading from an empty FIFO,
you can set the AE flag to some number that indicates to
your read code that there’s a burst of data ready to be
read. If you set it to 50 words, for example, once the FIFO
has 50 words inside it the AE flag will change from a 1 to a
0, which will trigger some logic on the read side to drain
exactly 50 words from the FIFO.

This is often how crossing clock domains gets
implemented. If you’re using your AE/AF flags, you’re
doing it correctly. Try not to rely on the flags that tell you
when the FIFO is completely full or empty, and definitely
don’t use the counter that some FIFOs support.

Addressing Timing Errors

When running a design with multiple clock domains
through the place and route process, you’ll need to include
the frequencies of each clock in your clock constraints. The
place and route tool will analyze data sent and received
between these clock interfaces and report on any timing
errors it observes. As you’ve seen, this is the tool telling
you that you’re likely to encounter situations where setup
and hold times will be violated, which could trigger
metastable conditions.

Let’s assume you’ve handled the clock domain crossings
well, using the double-flopping, data stretching, and FIFO
methods discussed in the previous sections. You’re aware
of the possibility of the metastable states, and you’ve
prepared for them. The tool doesn’t know about the steps
you’ve taken, though. It’s unable to see that you’re a smart
FPGA designer and that you’ve got it all under control. To
suppress the errors in your timing report, you’ll need to
create some unique timing constraints that relax the tools
and tell them that you’re a competent designer and that
you understand that your design may be metastable.
Exactly how to create these timing constraints is beyond

the scope of this book, as each FPGA vendor has its own
unique style.

You should always aim to have no timing errors in your
design. However, as an FPGA designer, you’ll inevitably
experience situations where you cross clock domains. You
need to clearly understand the common pitfalls that can
occur in these situations. If the crossing is simple enough,
you can just double-flop the data or perform data
stretching. For many situations, you’ll likely need to use a
FIFO that supports two clocks, one for reading and one for
writing. When structuring your code that handles crossing
clock domains, be very careful not to mix and match signals
from both clock domains.

Summary

In this chapter we’ve explored the FPGA build process in
detail, looking closely at what happens to your FPGA code
when it is synthesized and run through place and route.
You’ve learned about different categories of non-
synthesizable code, and in particular seen how for loops
synthesize differently than you may expect. While
examining the place and route process, you learned about
some of the physical limitations of FPGAs and saw how they
can lead to timing errors. Finally, you learned some
strategies for fixing timing errors, including errors that can
arise when crossing clock domains. With this knowledge,
you’ll be able to write your Verilog or VHDL code more
confidently, and you’ll be able to address common issues
that arise during the build process.

8

THE STATE MACHINE

A state machine is a model for
controlling a sequence of

actions. In a state machine, a task is
broken down into a series of stages, or
states. The system flows through these
states along prescribed routes,
transitioning from one state to another
based on inputs or other triggers. State
machines are widely used to organize the
operations in an FPGA, so understanding
how they work is crucial to developing
sophisticated FPGA designs.

Some common examples of state machines control
behaviors in elevators, traffic lights, and vending machines.
Each of these devices can only be in one unique state at
any given time and can perform different actions as a result
of inputs. In the case of an elevator, for example, the
elevator car remains on its current floor until someone
pushes a button to request a ride. The floor that the

elevator is on is its state, and pushing a button is the input
that triggers a change in that state. In the case of a traffic
light, the possible states are red, yellow, and green, and the
light changes based on some kind of input—perhaps a timer
or a motion sensor. Certain transitions are possible, such as
going from red to green or from yellow to red, while other
transitions, such as yellow to green, are not.

Within an FPGA, you might have several state machines
performing different independent tasks, all running
simultaneously. You might have one state machine that
initializes an LPDDR memory, another that receives data
from an external sensor, and a third for communicating
with an external microcontroller, for example. And since an
FPGA is a parallel device, these state machines will all be
running in parallel, with each state machine coordinating
its own complicated series of actions.

In this chapter, you’ll learn the basic concepts behind
state machines and see how to design them with Verilog
and VHDL. You’ll learn strategies for keeping your state
machines clear and concise, which reduces the likelihood of
bugs in your designs. Finally, you’ll gain hands-on
experience with state machines by designing a Simon-style
memory game for your development board.

States, Transitions, and Events

State machines revolve around three interrelated concepts:
states, transitions, and events. A state describes the status
of a system when it’s waiting to execute a transition. Going
back to the elevator example, if a button is never pressed,
the elevator will simply remain in its current state; that is,
waiting on its current floor. A state machine can only ever
be in one state at a time (an elevator can’t be on two floors
at once), and there are only so many possible states that it
can be in (we haven’t yet figured out how to build a
building with an infinite number of floors). For this reason,

state machines are also called finite state machines

(FSMs).
A transition is the action of moving from one state to

another. For an elevator, that would include opening and
closing the doors, running a motor to raise or lower the car,
and so on. Transitions are usually caused by events, which
can include inputs like a button press or a timer expiring.
Transitions between states can also occur without an
external event, which would be an internal transition. The
same event might trigger a different transition, depending
on the current state of the state machine. For example,
pushing the 5 button will make an elevator go down if it’s
on the tenth floor, or go up if it’s on the first floor. The
elevator’s next state is influenced by both its current state
and the input event.

Designing a state machine entails determining all the
possible states, planning out the transitions between the
states, and identifying the events that can trigger those
transitions. The easiest way to do this is to draw a diagram.
To demonstrate, let’s explore an example of a simple state
machine, one that controls a coin-operated turnstile like
you might use to enter a subway station. Figure 8-1 shows
a diagram of this state machine.

Figure 8-1: A state machine for a turnstile

In a state machine diagram, states are traditionally
represented as labeled circles, transitions are represented
as arrows between circles, and events are represented as
text alongside the transitions they trigger. Our turnstile

state machine has two possible states: Locked and
Unlocked. The black dot beneath the Locked state indicates
that Locked is the initial state of the machine. This is where
the state machine will go when power is first applied, or if
the user hits a reset button.

Let’s consider what happens once we’re in the Locked
state. There are two possible events that can trigger a
transition: pushing on the turnstile, or depositing a coin. A
Push event causes a transition from Locked back to Locked,
represented by the arrow on the left of the diagram. In this
case, the state machine stays in the Locked state. It’s not
until a user deposits a coin (the Coin event) that we
transition to the Unlocked state. At this point, if the user
pushes the turnstile, it will let them through, then
transition back to the Locked state for the next user.
Finally, notice that if a user deposits a coin into a system
that’s already Unlocked, it transitions back into the
Unlocked state.

It may seem trivial to define the behavior of a subway
turnstile this way, but it’s good practice for getting to know
how state machines are organized and represented. For
systems that have a large sequence of states, events, and
transitions, explicitly documenting the state machine is
critical for generating the desired behavior. Even
something as simple as a calculator can require a
surprisingly complex state machine.

Implementing a State Machine

Let’s look at how to implement our basic subway turnstile
state machine in an FPGA using Verilog or VHDL. We’ll
consider two common approaches: the first uses two always
or process blocks, while the second uses just one. It’s
important to understand both of these approaches to
implementing a state machine, since they’re both widely

used. However, as you’ll see, there are reasons to prefer
the latter approach.

Using Two always or process Blocks

Using two always or process blocks is a more traditional way
of implementing a state machine. Historically, FPGA
synthesis tools weren’t very good. They could make
mistakes when trying to synthesize state machines. The
two-block approach was devised to get around these
limitations. One always or process block controls the
synchronous logic, using a register to keep track of the
current state. The other always or process block controls the
combinational logic; it looks for transition-triggering events
and determines what the next state should be. Figure 8-2
illustrates this arrangement.

Figure 8-2: A block diagram of a state machine with two always or process

blocks

Notice that the next state logic in this diagram doesn’t
have a clock as an input. It determines the next state
immediately, based on the current state and any inputs
(events). Only the current state register has a clock input,
which it uses to register the output of the next state logic.
In this way, it stores the current state of the machine.

Here’s how to implement the turnstile state machine
using this two-block approach:

Verilog

module Turnstile_Example

 (input i_Reset,

 input i_Clk,

 input i_Coin,

 input i_Push,

 output o_Locked);

❶ localparam LOCKED = 1'b0;

 localparam UNLOCKED = 1'b1;

 reg r_Curr_State, r_Next_State;

 // Current state register

❷ always @(posedge i_Clk or posedge i_Reset)

 begin

 if (i_Reset)

 ❸ r_Curr_State <= LOCKED;

 else

 ❹ r_Curr_State <= r_Next_State;

 end

 // Next state determination

❺ always @(r_Curr_State or i_Coin or i_Push)

 begin

 r_Next_State <= r_Curr_State;

 ❻ case (r_Curr_State)

 LOCKED:

 if (i_Coin)

 ❼ r_Next_State <= UNLOCKED;

 UNLOCKED:

 if (i_Push)

 r_Next_State <= LOCKED;

 ❽

 endcase

 end

❾ assign o_Locked = (r_Curr_State == LOCKED);

endmodule

VHDL

library ieee;

use ieee.std_logic_1164.all;

entity Turnstile_Example is

 port (

 i_Reset : in std_logic;

 i_Clk : in std_logic;

 i_Coin : in std_logic;

 i_Push : in std_logic;

 o_Locked : out std_logic);

end entity Turnstile_Example;

architecture RTL of Turnstile_Example is

❶ type t_State is (LOCKED, UNLOCKED);

 signal r_Curr_State, r_Next_State : t_State;

begin

 -- Current state register

❷ process (i_Clk, i_Reset) is

 begin

 if i_Reset = '1' then

 ❸ r_Curr_State <= LOCKED;

 elsif rising_edge(i_Clk) then

 ❹ r_Curr_State <= r_Next_State;

 end if;

 end process;

 -- Next state determination

❺ process (r_Curr_State, i_Coin, i_Push)

 begin

 r_Next_State <= r_Curr_State;

 ❻ case r_Curr_State is

 when LOCKED =>

 if i_Coin = '1' then

 ❼ r_Next_State <= UNLOCKED;

 end if;

 when UNLOCKED =>

 if i_Push = '1' then

 r_Next_State <= LOCKED;

 end if;

 ❽

 end case;

 end process;

❾ o_Locked <= '1' when r_Curr_State = LOCKED else '0';

end RTL;

We create the states using enumeration ❶, meaning
each state name has an assigned number. In Verilog, you
need to create the list of states manually. I like to use
localparam to define each state, assigning them numbers in
an incrementing order. In VHDL, you instead create a user-
defined type for your state machine (t_State). Then you list
the states in order, and VHDL automatically assigns them
numbers. If you’re familiar with C programming, the VHDL
method is similar to how enumerations work in C.

NOTE

SystemVerilog supports automatic enumeration, but it

doesn’t exist in regular Verilog, so we just number the

states manually in the Verilog code.

The first always or process block ❷, the current state
register, is driven by a clock. It keeps track of the current
state by assigning r_Next_State to r_Curr_State on every
rising clock edge ❹. Notice that this block also has the
i_Reset signal in its sensitivity list, and that this signal is
checked in the block. It’s important to include a way to get
the state machine to its initial condition, and we use i_Reset
for that. The block’s if…else statement (Verilog) or if…elsif
statement (VHDL) checks whether i_Reset is high before

checking to see if we have a rising edge of the clock. This
means we’re using an asynchronous reset; the reset can
occur at any time, not necessarily on the rising edge of the
clock. When i_Reset is high, we set the current state to
LOCKED ❸. This is in keeping with the initial state indication
in Figure 8-1.

The second always or process block ❺ is the
combinational one. It contains the logic for determining
how to set r_Next_State. Notice that the sensitivity list ❺ and
the block itself don’t include a clock, so this block won’t
generate any flip-flops, just LUTs. We set r_Next_State using
a case statement tied to the current state ❻, and by looking
at our inputs. For example, if the state is currently LOCKED
and the i_Coin input is high, then the next state will be
UNLOCKED ❼. Compare the case statement and conditional
logic with the state machine diagram in Figure 8-1, and
you’ll see that we’ve addressed all the transitions and
events shown in the diagram that result in an actual change
of state. We don’t need to write code for transitions that
don’t cause the signal to change. For example, if the
current state is LOCKED and i_Push is high, we’ll just stay in
the LOCKED state. We could add a check for i_Push in the
LOCKED case and write r_Next_State <= LOCKED to make this
explicit, but that’s unnecessary. Adding this line can make
the designer’s intent clearer, but it also clutters up the
code with additional assignments. It’s up to you which style
you prefer.

We could also add a default case (in Verilog) or a when
others case (in VHDL) above the endcase or end case
statement ❽, to cover any conditions not explicitly called
out in the state machine. Again, this is not required, but it
can be a good idea; if you forget or omit a case, the default
case will catch it. In this instance, I chose not to include a
default. In fact, my code editor displays a suggestion for
the VHDL when I try to include it:

Case statement contains all choices explicitly. You can safe

ly remove the

redundant 'others'(13).

The code ends by assigning the module’s single output,
o_Locked ❾. It will be high when we’re in the LOCKED state, or
low otherwise. If this code were really controlling a
physical turnstile, we’d use changes in this output to
trigger the actions that occur during state transitions, such
as enabling or disabling the mechanism that locks the
turnstile.

Using One always or process Block

The other approach to implementing a state machine
combines all the logic into a single always or process block.
As synthesis tools have improved over the years, they’ve
gotten much better at understanding when you want to
create a state machine, and where this one-block approach
may once have been hard to synthesize, it’s now perfectly
viable (and arguably more straightforward to code). Here’s
the same turnstile state machine implemented with a single
always or process block:

Verilog

module Turnstile_Example

 (input i_Reset,

 input i_Clk,

 input i_Coin,

 input i_Push,

 output o_Locked);

 localparam LOCKED = 1'b0;

 localparam UNLOCKED = 1'b1;

 reg r_Curr_State;

 // Single always block approach

❶ always @(posedge i_Clk or posedge i_Reset)

 begin

 if (i_Reset)

 r_Curr_State <= LOCKED;

 else

 begin

 ❷ case (r_Curr_State)

 LOCKED:

 if (i_Coin)

 r_Curr_State <= UNLOCKED;

 UNLOCKED:

 if (i_Push)

 r_Curr_State <= LOCKED;

 endcase

 end

 end

 assign o_Locked = (r_Curr_State == LOCKED);

endmodule

VHDL

library ieee;

use ieee.std_logic_1164.all;

entity Turnstile_Example is

 port (

 i_Reset : in std_logic;

 i_Clk : in std_logic;

 i_Coin : in std_logic;

 i_Push : in std_logic;

 o_Locked : out std_logic);

end entity Turnstile_Example;

architecture RTL of Turnstile_Example is

 type t_State is (LOCKED, UNLOCKED);

 signal r_Curr_State : t_State;

begin

 -- Single always block approach

❶ process (i_Clk, i_Reset) is

 begin

 if (i_Reset) then

 r_Curr_State <= LOCKED;

 elsif rising_edge(i_Clk) then

 ❷ case r_Curr_State is

 when LOCKED =>

 if i_Coin = '1' then

 r_Curr_State <= UNLOCKED;

 end if;

 when UNLOCKED =>

 if i_Push = '1' then

 r_Curr_State <= LOCKED;

 end if;

 end case;

 end if;

end process;

 o_Locked <= '1' when r_Curr_State = LOCKED else '0';

end RTL;

Everything works the same in the two approaches; the
differences are purely stylistic, not functional. In this
version of the state machine, we have a single always or
process block ❶ that’s sensitive to the clock and the reset
signal. Rather than having both r_Curr_State and r_Next_State
to worry about, we now only have r_Curr_State. None of the
actual logic has changed, however. All we’ve done is move
the work that was being done in the combinational always or
process block into the sequential one, so the case statement
will be evaluated at every rising clock edge ❷.

I’m not a big fan of the first approach we looked at, with
the two always or process blocks. There are a few reasons for
this. First, separating the LUT-based logic and the flip-flop-
based logic into two separate blocks can be confusing,
especially for beginners. Compared to the single-block
solution, the design is more complicated and less intuitive,
and it’s easier to make mistakes. Second, as I said back in
Chapter 4, I prefer not to use combinational-only always or
process blocks if I can avoid them. They can generate
latches if you’re not careful, which can result in unwanted
behavior. I recommend keeping your state machine logic
within a single always or process block. The code is easier to
read and understand, and the tools are good enough now to
build the state machine correctly.

Testing the Design

Let’s generate a testbench for this state machine to ensure
that we’re getting the output we desire:

Verilog

module Turnstile_Example_TB();

❶ reg r_Reset = 1'b1, r_Clk = 1'b0, r_Coin = 1'b0, r_Push =

 1'b0;

 wire w_Locked;

 Turnstile_Example UUT

 (.i_Reset(r_Reset),

 .i_Clk(r_Clk),

 .i_Coin(r_Coin),

 .i_Push(r_Push),

 .o_Locked(w_Locked));

 always #1 r_Clk <= !r_Clk;

 initial begin

 $dumpfile("dump.vcd");

 $dumpvars;

 #10;

 ❷ r_Reset <= 1'b0;

 #10;

 ❸ assert (w_Locked == 1'b1);

 ❹ r_Coin <= 1'b1;

 #10;

 assert (w_Locked == 1'b0);

 r_Push <= 1'b1;

 #10;

 assert (w_Locked == 1'b1);

 r_Coin <= 1'b0;

 #10;

 assert (w_Locked == 1'b1);

 r_Push <= 1'b0;

 #10;

 assert (w_Locked == 1'b1);

 $finish();

 end

endmodule

VHDL

library ieee;

use ieee.std_logic_1164.all;

use std.env.finish;

entity Turnstile_Example_TB is

end entity Turnstile_Example_TB;

architecture test of Turnstile_Example_TB is

❶ signal r_Reset : std_logic := '1';

 signal r_Clk, r_Coin, r_Push : std_logic := '0';

 signal w_Locked : std_logic;

begin

 UUT : entity work.Turnstile_Example

 port map (

 i_Reset => r_Reset,

 i_Clk => r_Clk,

 i_Coin => r_Coin,

 i_Push => r_Push,

 o_Locked => w_Locked);

 r_Clk <= not r_Clk after 1 ns;

 process is

 begin

 wait for 10 ns;

 ❷ r_Reset <= '0';

 wait for 10 ns;

 ❸ assert w_Locked = '1' severity failure;

 ❹ r_Coin <= '1';

 wait for 10 ns;

 assert w_Locked = '0' severity failure;

 r_Push <= '1';

 wait for 10 ns;

 assert w_Locked = '1' severity failure;

 r_Coin <= '0';

 wait for 10 ns;

 assert w_Locked = '1' severity failure;

 r_Push <= '0';

 wait for 10 ns;

 assert w_Locked = '1' severity failure;

 finish; -- need VHDL-2008

 end process;

end test;

This testbench drives the inputs in all possible
combinations and monitors the single output (w_Locked) to
see how it behaves. For example, r_Reset is initialized to
high at the outset ❶, which should put us in the LOCKED
state. Then, after 10 ns, we drive r_Reset low ❷. This should
have no effect on the state, so we use the assert keyword in
both VHDL and Verilog to verify that we’re in the LOCKED
state (indicated by a w_Locked value of 1) ❸. We then
continue manipulating the other inputs and asserting the
expected output (for instance, driving r_Coin high ❹ should
put us in an UNLOCKED state). Our use of assert statements to
automatically alert us to any failures makes this a self-
checking testbench.

NOTE

For Verilog users, remember that assert only exists in

SystemVerilog. Be sure to tell the simulator that your

testbench is a SystemVerilog file, rather than regular

Verilog.

State Machine Best Practices

Before moving on, I want to share some recommendations
for developing successful state machines. These are
guidelines that I find helpful when I write my own FPGA
state machines, and they’re all modeled in the turnstile
example we reviewed in the previous section:
Include one state machine per file.

It’s certainly possible to write many state machines
within a single file, but I strongly suggest that you limit
the scope of any given Verilog or VHDL file to a single
state machine. When you put two or more state
machines in the same file, it can be hard to keep them
from getting logically intertwined. It might require
more typing to break things into multiple files, but it
will save you time in the debugging stage.

Use the single-block approach.

As I’ve stated, I find that it’s easier to write cleaner and
less error-prone state machines if you only have one
always or process block to worry about, rather than two.
The one-block approach also avoids the need for
combinational always or process blocks, which can
generate latches if you’re not careful.

Give your states meaningful names.

It’s much easier to read a case statement that has actual
words associated with each of the cases, provided
you’ve named your states thoughtfully. For example,
use descriptive names like IDLE, START_COUNT, LOCKED,
UNLOCKED, and so on, rather than generic names like S0,
S1, S2, and S3. Meaningful state names will help other
people reading the code understand what’s going on.
Additionally, you’ll thank yourself for descriptive state
naming when you come back to your code after not
looking at it for months. Enumeration allows you to do
this. Enumeration is a common programming technique
that allows you to use words in place of integers in your
code. This is done either through localparam in Verilog or
a user-defined type in VHDL.

Draw your state machine flow before coding.

Diving headfirst into coding a state machine is a recipe
for disaster. Begin by drawing a diagram of the state
machine that you want to implement, like the one you

saw in Figure 8-1. This will help you ensure that you’ve
thought through the entire flow, from the initial
transition through all the possible permutations. If you
realize that you’ve missed something once you start
working on the code, that’s fine; just be sure to go back
and update your diagram to keep it in sync with the
code you’re writing. Your future self will thank you if
you have this documentation.
It is by no means mandatory to follow these

suggestions, but doing so will help you avoid some common
pitfalls and create state machines within your FPGAs that
are bug-free, easy to understand, and easy to maintain. The
more complex your state machines become, the more
helpful these best practices will be.

Project #6: Creating a Memory Game

We’ll now put what you’ve learned about state machines
into action by creating a memory game that runs on your
development board. The player will have to remember and
reproduce a pattern that grows longer as the game
progresses, similar to a game like Simon. If the player can
remember the entire pattern, they win.

The pattern is displayed using four LEDs. It starts
simply, with just one LED lighting up. Then it’s the player’s
turn to re-create the pattern by pressing the switch that
matches the LED. If they push the wrong switch, the game
is over. If they push the correct switch, the game continues,
with the pattern expanding to a sequence of two LED
blinks. The pattern keeps expanding until it’s seven blinks
long (although you’ll be able to adjust the code to make it
longer if you want). If the player re-creates the last pattern
correctly, they may choose to play another round with a
new pattern.

This project takes advantage of a peripheral that we
haven’t used before: a seven-segment display. This device

uses an arrangement of seven LEDs to display the digits 0
through 9 (and a selection of letters), like something you’d
see on a digital clock. It will serve as a scoreboard, keeping
track of the player’s progress through the pattern. We’ll
also use it to display an F (for failure) if the player makes a
mistake, or an A when the game is won.

NOTE

If your development board doesn’t have four LEDs and

switches, you can adapt the project’s code to work with the

resources available. If it doesn’t have a seven-segment

display, try connecting one to your board, for example

using a Pmod connector.

Planning the State Machine

To create the game, we’ll need to control the FPGA’s flow
through various states of operation, such as displaying the
pattern and waiting for the player’s response. Sounds like a
perfect opportunity to use a state machine! In keeping with
our best practices, we’ll use a diagram to plan out the state
machine before we write any code. Figure 8-3 shows a
diagram for a state machine that satisfies the description of
the game.

Figure 8-3: The memory game state machine diagram

Starting from the top-left corner, we have a reset/initial
condition, which will jump into the Start state from any
other state. I didn’t draw arrows from every state back to
Start, to avoid cluttering the diagram; just remember that
you can always jump back to Start from any state when the
reset condition occurs. We remain in the Start state until
the reset is cleared, at which point we transition into the
Pattern Off state. We wait here with all LEDs off for a set
amount of time, and then we transition into the Pattern
Show state, where we illuminate a single LED from the
pattern, again for a set amount of time. If it’s the last LED
in the pattern (the pattern is done), we then transition to
the Wait Player state to await the player’s response. If the
LED pattern is not done, we transition back to Pattern Off.
We keep cycling between Pattern Show and Pattern Off,
lighting up the LEDs in the pattern one at a time, until the

pattern is done. The transitions back to Pattern Off add a
pause between each blink, which avoids ambiguity in cases
where the pattern includes the same LED twice in a row.
This is the part of the game where the LED pattern is being
shown to the player, for them to try to re-create later on.

NOTE

The diamond in the diagram between the Pattern Show and

Wait Player states represents a guard condition, a Boolean

expression that determines the state machine flow. In this

case, the guard condition is checking whether the pattern

is done.

Once we’re in the Wait Player state, the FPGA monitors
the input from the buttons until one of two things happens.
If the player pushes an incorrect button in the sequence,
then we transition to the Loser state and show an F on the
seven-segment display. If the player successfully re-creates
the entire pattern, then we transition to the Incr Score
(Increment Score) state. Here we check if the game is
done, in which case the player has won and we transition to
the Winner state, where we show an A on the seven-
segment display. If the game isn’t done, then we go back to
Pattern Off to get ready to display the pattern again, this
time with one additional LED blink added to the sequence.

There are nearly endless possibilities for designing
state machines, so by no means is the arrangement shown
in Figure 8-3 the only option. For example, we could have
combined Pattern Off and Pattern Show into a single state
that handles turning the LEDs both on and off. Our design,
however, strikes a balance between the number of states
and the complexity of each individual state. As a general
rule, if one state is responsible for several actions, it might
be an indication that the state should be broken into two or
more states.

Organizing the Design

Next, we’ll take a look at the overall organization of the
project. Figure 8-4 shows a block diagram of the design.

Figure 8-4: The Project #6 block diagram

Let’s trace the flow of data through the block diagram.
First, we have four switches (buttons) that are used to
control the entire game. Remember that these are
mechanical switches, so they’re subject to bouncing. To get
reliable button responses, these inputs must be debounced,
which is the first thing that we do to each switch’s signal as
it enters the FPGA. We’ll use the debounce filter module we
implemented in Chapter 5 for this. The FPGA also has a
clock input, which we’ll use to drive all the flip-flops in this
design.

Next, we have the memory game module itself, which is
where the state machine lives. We’ll explore this code in
detail shortly. Notice that this module instantiates two
submodules: Count_And_Toggle and the LFSR module, both of
which you saw in Chapter 6. Remember that LFSRs are
pseudorandom pattern generators, so we’ll use one here to
create a random pattern for the game. We’ll use the

Count_And_Toggle module to keep track of how long to display
each LED in the pattern sequence; the toggling of this
module will trigger transitions between states.

Finally, we have the Binary_To_7Segment module, which
takes a binary input representing the player’s score and
drives the seven-segment display to light up that score.
We’ll look at how this works next.

Using the Seven-Segment Display

A seven-segment display consists of an arrangement of
seven LEDs that can be lit in various combinations to
produce different patterns. Figure 8-5 shows the seven
segments of the display, labeled A through G. We’ll use one
of these displays to keep track of the score in this project,
incrementing it each time the player successfully repeats
the pattern.

Figure 8-5: A seven-segment display

Conventionally, seven-segment displays are used to
show the decimal numbers 0 through 9, but we can extend
our display’s range further by showing the hexadecimal
numbers A through F (for 10 through 15) as well. We can’t
simply tell the display to light up a particular number,
however, since each segment in the display is controlled
separately. Instead, our Binary _To_7Segment module takes in
the number to be shown and translates it into the

appropriate signals for driving the display. Let’s take a look
at the code:

Verilog

module Binary_To_7Segment

 (input i_Clk,

❶ input [3:0] i_Binary_Num,

 output o_Segment_A,

 output o_Segment_B,

 output o_Segment_C,

 output o_Segment_D,

 output o_Segment_E,

 output o_Segment_F,

 output o_Segment_G);

 reg [6:0] r_Hex_Encoding;

 always @(posedge i_Clk)

 begin

 ❷ case (i_Binary_Num)

 4'b0000 : r_Hex_Encoding <= 7'b1111110; // 0x7E

 4'b0001 : r_Hex_Encoding <= 7'b0110000; // 0x30

 4'b0010 : r_Hex_Encoding <= 7'b1101101; // 0x6D

 4'b0011 : r_Hex_Encoding <= 7'b1111001; // 0x79

 4'b0100 : r_Hex_Encoding <= 7'b0110011; // 0x33

 4'b0101 : r_Hex_Encoding <= 7'b1011011; // 0x5B

 4'b0110 : r_Hex_Encoding <= 7'b1011111; // 0x5F

 ❸ 4'b0111 : r_Hex_Encoding <= 7'b1110000; // 0x70

 4'b1000 : r_Hex_Encoding <= 7'b1111111; // 0x7F

 4'b1001 : r_Hex_Encoding <= 7'b1111011; // 0x7B

 4'b1010 : r_Hex_Encoding <= 7'b1110111; // 0x77

 4'b1011 : r_Hex_Encoding <= 7'b0011111; // 0x1F

 4'b1100 : r_Hex_Encoding <= 7'b1001110; // 0x4E

 4'b1101 : r_Hex_Encoding <= 7'b0111101; // 0x3D

 4'b1110 : r_Hex_Encoding <= 7'b1001111; // 0x4F

 4'b1111 : r_Hex_Encoding <= 7'b1000111; // 0x47

 default : r_Hex_Encoding <= 7'b0000000; // 0x00

 endcase

 end

❹ assign o_Segment_A = r_Hex_Encoding[6];

 assign o_Segment_B = r_Hex_Encoding[5];

 assign o_Segment_C = r_Hex_Encoding[4];

 assign o_Segment_D = r_Hex_Encoding[3];

 assign o_Segment_E = r_Hex_Encoding[2];

 assign o_Segment_F = r_Hex_Encoding[1];

 assign o_Segment_G = r_Hex_Encoding[0];

endmodule

VHDL

library ieee;

use ieee.std_logic_1164.all;

entity Binary_To_7Segment is

 port (

 i_Clk : in std_logic;

 ❶ i_Binary_Num : in std_logic_vector(3 downto 0);

 o_Segment_A : out std_logic;

 o_Segment_B : out std_logic;

 o_Segment_C : out std_logic;

 o_Segment_D : out std_logic;

 o_Segment_E : out std_logic;

 o_Segment_F : out std_logic;

 o_Segment_G : out std_logic

);

end entity Binary_To_7Segment;

architecture RTL of Binary_To_7Segment is

 signal r_Hex_Encoding : std_logic_vector(6 downto 0);

begin

 process (i_Clk) is

 begin

 if rising_edge(i_Clk) then

 ❷ case i_Binary_Num is

 when "0000" =>

 r_Hex_Encoding <= "1111110"; -- 0x7E

 when "0001" =>

 r_Hex_Encoding <= "0110000"; -- 0x30

 when "0010" =>

 r_Hex_Encoding <= "1101101"; -- 0x6D

 when "0011" =>

 r_Hex_Encoding <= "1111001"; -- 0x79

 when "0100" =>

 r_Hex_Encoding <= "0110011"; -- 0x33

 when "0101" =>

 r_Hex_Encoding <= "1011011"; -- 0x5B

 when "0110" =>

 r_Hex_Encoding <= "1011111"; -- 0x5F

 ❸ when "0111" =>

 r_Hex_Encoding <= "1110000"; -- 0x70

 when "1000" =>

 r_Hex_Encoding <= "1111111"; -- 0x7F

 when "1001" =>

 r_Hex_Encoding <= "1111011"; -- 0x7B

 when "1010" =>

 r_Hex_Encoding <= "1110111"; -- 0x77

 when "1011" =>

 r_Hex_Encoding <= "0011111"; -- 0x1F

 when "1100" =>

 r_Hex_Encoding <= "1001110"; -- 0x4E

 when "1101" =>

 r_Hex_Encoding <= "0111101"; -- 0x3D

 when "1110" =>

 r_Hex_Encoding <= "1001111"; -- 0x4F

 when "1111" =>

 r_Hex_Encoding <= "1000111"; -- 0x47

 when others =>

 r_Hex_Encoding <= "0000000"; -- 0x00

 end case;

 end if;

 end process;

❹ o_Segment_A <= r_Hex_Encoding(6);

 o_Segment_B <= r_Hex_Encoding(5);

 o_Segment_C <= r_Hex_Encoding(4);

 o_Segment_D <= r_Hex_Encoding(3);

 o_Segment_E <= r_Hex_Encoding(2);

 o_Segment_F <= r_Hex_Encoding(1);

 o_Segment_G <= r_Hex_Encoding(0);

end architecture RTL;

This module takes a 4-bit binary input ❶ and uses seven
outputs to light up the appropriate segments in the display,
given the input. The case statement ❷ captures all possible
inputs, from 0000 to 1111 (0 through 15), and translates each
number into the correct output pattern using the 7-bit
r_Hex_Encoding register. Each bit in the register maps to one
of the segments in the display: bit 6 maps to segment A, bit
5 maps to segment B, and so on. To see how this works,
let’s consider a specific input—say, 0111, which is the digit 7
—as an example. Figure 8-6 illustrates how to illuminate a
seven-segment display to show this digit.

Figure 8-6: Illuminating a 7 on a seven- segment display

As you can see in the figure, we need to illuminate
segments A, B, and C, while keeping the other segments
turned off, to show the digit 7. In the code at ❸, we
therefore set r_Hex_Encoding to 0x70, or 1110000 in binary,
putting 1s on the three bits corresponding to segments A,
B, and C. Then, outside the case statement, we extract each
individual bit from the register and pass it to the
appropriate output using a continuous assignment ❹. This
approach of encoding the pattern into the r_Hex_Encoding

register saves a lot of typing; we don’t have to assign all
seven outputs in every single branch of the case statement.

Coding the Top-Level Module

Next, let’s jump into the top module of the project to see
how everything is wired up at the highest level. If you refer
back to the block diagram in Figure 8-4, you’ll see this
module represented by the square with the dotted line:

Verilog

module State_Machine_Project_Top

 (input i_Clk,

 // Input switches for entering pattern

 input i_Switch_1,

 input i_Switch_2,

 input i_Switch_3,

 input i_Switch_4,

 // Output LEDs for displaying pattern

 output o_LED_1,

 output o_LED_2,

 output o_LED_3,

 output o_LED_4,

 // Scoreboard, 7-segment display

 output o_Segment2_A,

 output o_Segment2_B,

 output o_Segment2_C,

 output o_Segment2_D,

 output o_Segment2_E,

 output o_Segment2_F,

 output o_Segment2_G);

❶ localparam GAME_LIMIT = 7; // Increase to make

 game harder

 localparam CLKS_PER_SEC = 25000000; // 25 MHz clock

 localparam DEBOUNCE_LIMIT = 250000; // 10 ms debounce fil

ter

 wire w_Switch_1, w_Switch_2, w_Switch_3, w_Switch_4;

 wire w_Segment2_A, w_Segment2_B, w_Segment2_C, w_Segment2_

D;

 wire w_Segment2_E, w_Segment2_F, w_Segment2_G;

 wire [3:0] w_Score;

 // Debounce all switch inputs to remove mechanical glitche

s

❷ Debounce_Filter #(.DEBOUNCE_LIMIT(DEBOUNCE_LIMIT)) Debounc

e_SW1

 (.i_Clk(i_Clk),

 .i_Bouncy(i_Switch_1),

 .o_Debounced(w_Switch_1));

 Debounce_Filter #(.DEBOUNCE_LIMIT(DEBOUNCE_LIMIT)) Debounc

e_SW2

 (.i_Clk(i_Clk),

 .i_Bouncy(i_Switch_2),

 .o_Debounced(w_Switch_2));

 Debounce_Filter #(.DEBOUNCE_LIMIT(DEBOUNCE_LIMIT)) Debounc

e_SW3

 (.i_Clk(i_Clk),

 .i_Bouncy(i_Switch_3),

 .o_Debounced(w_Switch_3));

 Debounce_Filter #(.DEBOUNCE_LIMIT(DEBOUNCE_LIMIT)) Debounc

e_SW4

 (.i_Clk(i_Clk),

 .i_Bouncy(i_Switch_4),

 .o_Debounced(w_Switch_4));

❸ State_Machine_Game #(.CLKS_PER_SEC(CLKS_PER_SEC),

 .GAME_LIMIT(GAME_LIMIT)) Game_Inst

 (.i_Clk(i_Clk),

 .i_Switch_1(w_Switch_1),

 .i_Switch_2(w_Switch_2),

 .i_Switch_3(w_Switch_3),

 .i_Switch_4(w_Switch_4),

 .o_Score(w_Score),

 .o_LED_1(o_LED_1),

 .o_LED_2(o_LED_2),

 .o_LED_3(o_LED_3),

 .o_LED_4(o_LED_4));

❹ Binary_To_7Segment Scoreboard

 (.i_Clk(i_Clk),

 .i_Binary_Num(w_Score),

 .o_Segment_A(w_Segment2_A),

 .o_Segment_B(w_Segment2_B),

 .o_Segment_C(w_Segment2_C),

 .o_Segment_D(w_Segment2_D),

 .o_Segment_E(w_Segment2_E),

 .o_Segment_F(w_Segment2_F),

 .o_Segment_G(w_Segment2_G));

❺ assign o_Segment2_A = !w_Segment2_A;

 assign o_Segment2_B = !w_Segment2_B;

 assign o_Segment2_C = !w_Segment2_C;

 assign o_Segment2_D = !w_Segment2_D;

 assign o_Segment2_E = !w_Segment2_E;

 assign o_Segment2_F = !w_Segment2_F;

 assign o_Segment2_G = !w_Segment2_G;

endmodule

VHDL

library IEEE;

use IEEE.std_logic_1164.all;

entity State_Machine_Project_Top is

 port (

 i_Clk : in std_logic;

 -- Input switches for entering pattern

 i_Switch_1 : in std_logic;

 i_Switch_2 : in std_logic;

 i_Switch_3 : in std_logic;

 i_Switch_4 : in std_logic;

 -- Output LEDs for displaying pattern

 o_LED_1 : out std_logic;

 o_LED_2 : out std_logic;

 o_LED_3 : out std_logic;

 o_LED_4 : out std_logic;

 -- Scoreboard, 7-segment display

 o_Segment2_A : out std_logic;

 o_Segment2_B : out std_logic;

 o_Segment2_C : out std_logic;

 o_Segment2_D : out std_logic;

 o_Segment2_E : out std_logic;

 o_Segment2_F : out std_logic;

 o_Segment2_G : out std_logic);

end entity State_Machine_Project_Top;

architecture RTL of State_Machine_Project_Top is

❶ constant GAME_LIMIT : integer := 7; -- Increas

e to make game harder

 constant CLKS_PER_SEC : integer := 25000000; -- 25 MHz

 clock

 constant DEBOUNCE_LIMIT : integer := 250000; -- 10 ms d

ebounce filter

 signal w_Switch_1, w_Switch_2, w_Switch_3, w_Switch_4 : s

td_logic;

 signal w_Score : std_logic_vector(3 downto 0);

 signal w_Segment2_A, w_Segment2_B, w_Segment2_C, w_Segmen

t2_D : std_logic;

 signal w_Segment2_E, w_Segment2_F, w_Segment2_G : std_log

ic;

begin

❷ Debounce_SW1 : entity work.Debounce_Filter

 generic map (

 DEBOUNCE_LIMIT => DEBOUNCE_LIMIT)

 port map (

 i_Clk => i_Clk,

 i_Bouncy => i_Switch_1,

 o_Debounced => w_Switch_1);

 Debounce_SW2 : entity work.Debounce_Filter

 generic map (

 DEBOUNCE_LIMIT => DEBOUNCE_LIMIT)

 port map (

 i_Clk => i_Clk,

 i_Bouncy => i_Switch_2,

 o_Debounced => w_Switch_2);

 Debounce_SW3 : entity work.Debounce_Filter

 generic map (

 DEBOUNCE_LIMIT => DEBOUNCE_LIMIT)

 port map (

 i_Clk => i_Clk,

 i_Bouncy => i_Switch_3,

 o_Debounced => w_Switch_3);

 Debounce_SW4 : entity work.Debounce_Filter

 generic map (

 DEBOUNCE_LIMIT => DEBOUNCE_LIMIT)

 port map (

 i_Clk => i_Clk,

 i_Bouncy => i_Switch_4,

 o_Debounced => w_Switch_4);

❸ Game_Inst : entity work.State_Machine_Game

 generic map (

 CLKS_PER_SEC => CLKS_PER_SEC,

 GAME_LIMIT => GAME_LIMIT)

 port map (

 i_Clk => i_Clk,

 i_Switch_1 => w_Switch_1,

 i_Switch_2 => w_Switch_2,

 i_Switch_3 => w_Switch_3,

 i_Switch_4 => w_Switch_4,

 o_Score => w_Score,

 o_LED_1 => o_LED_1,

 o_LED_2 => o_LED_2,

 o_LED_3 => o_LED_3,

 o_LED_4 => o_LED_4);

❹ Scoreboard : entity work.Binary_To_7Segment

 port map (

 i_Clk => i_Clk,

 i_Binary_Num => w_Score,

 o_Segment_A => w_Segment2_A,

 o_Segment_B => w_Segment2_B,

 o_Segment_C => w_Segment2_C,

 o_Segment_D => w_Segment2_D,

 o_Segment_E => w_Segment2_E,

 o_Segment_F => w_Segment2_F,

 o_Segment_G => w_Segment2_G);

❺ o_Segment2_A <= not w_Segment2_A;

 o_Segment2_B <= not w_Segment2_B;

 o_Segment2_C <= not w_Segment2_C;

 o_Segment2_D <= not w_Segment2_D;

 o_Segment2_E <= not w_Segment2_E;

 o_Segment2_F <= not w_Segment2_F;

 o_Segment2_G <= not w_Segment2_G;

end RTL;

My goal for writing the top module of a design,
especially as the design becomes more complicated, is to
minimize the amount of functional code within it. Ideally,
code that performs functionality should be pushed into
lower levels, so the highest level is just wires and module
instantiation. This helps keep the code clean and ensures
that each module is focused on performing what’s needed
of it, without spreading the functionality across multiple
layers.

For this project, we first instantiate four debounce filter
modules, one for each push button ❷. Then we instantiate
the State_Machine_Game module, which contains the logic for
the state machine and the game itself ❸. The inputs to this
module, w_Switch_1 through w_Switch_4, are the outputs of the
debounce filters, so this module can trust that the input
signals are stable. Notice that the module has two
parameters (Verilog) or generics (VHDL), CLKS_PER_SEC and
GAME_LIMIT, both of which were set earlier ❶. The former
specifies the number of clock cycles per second (needed for
keeping track of time), and is there in case the design is
run at a different clock frequency. The latter controls the
maximum length of the pattern.

Next we instantiate the Binary_To_7Segment module ❹,
which takes the w_Score output from the game as an input so
the score will be displayed to the player. Notice, however,
that we invert all the outputs from the display module
before outputting them at the top level ❺. A low on the
output may be needed, rather than a high, to light up each
segment, depending on the way the seven-segment display
is connected on your development board’s PCB. If your
display isn’t behaving as expected, try removing the !s

from the Verilog or nots from the VHDL to avoid inverting
the outputs.

Our top-level module doesn’t instantiate the LFSR or
Count_And_Toggle modules directly: those are instantiated
within the State_Machine_Game module. You’re starting to see
here how a hierarchy can be established inside an FPGA,
and how a complex design can be built up from relatively
simple modules.

Coding the State Machine

Now let’s get to the meat of the project: the state machine
itself. We’ll examine the State_Machine_Game module in
sections, but remember that you can view the complete
code listing in the book’s GitHub repository (https://github

.com/nandland/getting-started-with-fpgas). The module
starts, as usual, by declaring the inputs, outputs, and
internal signals:

Verilog

module State_Machine_Game # (parameter CLKS_PER_SEC = 250000

00,

 parameter GAME_LIMIT = 6)

 (input i_Clk,

 input i_Switch_1,

 input i_Switch_2,

 input i_Switch_3,

 input i_Switch_4,

 output reg [3:0] o_Score,

 output o_LED_1,

 output o_LED_2,

 output o_LED_3,

 output o_LED_4

);

❶ localparam START = 3'd0;

 localparam PATTERN_OFF = 3'd1;

 localparam PATTERN_SHOW = 3'd2;

https://github.com/nandland/getting-started-with-fpgas

 localparam WAIT_PLAYER = 3'd3;

 localparam INCR_SCORE = 3'd4;

 localparam LOSER = 3'd5;

 localparam WINNER = 3'd6;

❷ reg [2:0] r_SM_Main;

 reg r_Toggle, r_Switch_1, r_Switch_2, r_Switch_3;

 reg r_Switch_4, r_Button_DV;

❸ reg [1:0] r_Pattern[0:10]; // 2D array: 2 bits wide x 11 d

eep

 wire [21:0] w_LFSR_Data;

 reg [$clog2(GAME_LIMIT)-1:0] r_Index; // Display index

 reg [1:0] r_Button_ID;

 wire w_Count_En, w_Toggle;

--snip--

VHDL

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.numeric_std.all;

entity State_Machine_Game is

 generic (

 CLKS_PER_SEC : integer := 25000000;

 GAME_LIMIT : integer := 6);

 port(

 i_Clk : in std_logic;

 i_Switch_1 : in std_logic;

 i_Switch_2 : in std_logic;

 i_Switch_3 : in std_logic;

 i_Switch_4 : in std_logic;

 o_Score : out std_logic_vector(3 downto 0);

 o_LED_1 : out std_logic;

 o_LED_2 : out std_logic;

 o_LED_3 : out std_logic;

 o_LED_4 : out std_logic);

end entity State_Machine_Game;

architecture RTL of State_Machine_Game is

❶ type t_SM_Main is (START, PATTERN_OFF, PATTERN_SHOW,

 WAIT_PLAYER, INCR_SCORE, LOSER, WINNE

R);

❷ signal r_SM_Main : t_SM_Main;

 signal w_Count_En, w_Toggle, r_Toggle, r_Switch_1 : std_lo

gic;

 signal r_Switch_2, r_Switch_3, r_Switch_4, r_Button_DV : s

td_logic;

 type t_Pattern is array (0 to 10) of std_logic_vector(1 do

wnto 0);

❸ signal r_Pattern : t_Pattern; -- 2D Array: 2-bit wide x 11

deep

 signal w_LFSR_Data : std_logic_vector(21 downto 0);

 signal r_Index : integer range 0 to GAME_LIMIT;

 signal w_Index_SLV : std_logic_vector(7 downto 0);

 signal r_Button_ID : std_logic_vector(1 downto 0);

 signal r_Score : unsigned(3 downto 0);

--snip--

We use the enumeration approach described earlier in
the chapter to name each state ❶. The r_SM_Main signal ❷
will keep track of the current state. It needs to have enough
bits to convey all the possible states. In this case, we have
seven total states, which can fit inside a 3-bit-wide register.
In Verilog, we explicitly declare the signal as having 3 bits.
In VHDL, however, we just create the state machine signal
to be of the custom t_SM_Main data type (the enumeration
that we created ❶), and it will be sized automatically.

Another important signal we’re creating is r_Pattern,
which stores the pattern for the game ❸. This is the second
time that we’ve created a two-dimensional signal within our
FPGA (the first time was back in Chapter 6, when we were
creating RAM). Specifically, r_Pattern is 2 bits wide by 11
items deep, for a total storage of 22 bits. Each pair of bits
in this signal corresponds to one of the four LEDs (00
indicates LED1, 01 indicates LED2, and so on), giving us a
sequence of LEDs to light up (and a sequence of switches

to press). Table 8-1 shows an example of what the data in
this 2D register might look like.

Table 8-1: Pattern Storage Example

Index Binary LED/switch

0 01 2

1 11 4

2 11 4

3 00 1

4 10 3

5 00 1

6 01 2

7 01 2

8 11 4

9 00 1

10 10 3

In this example, the value at index 0 is 01, which
correlates to the second LED/switch, the value at index 1 is
11, which correlates to the fourth LED/switch, and so on.
We’ll be able to use the index to increment through the
register, getting 2 bits for each index. The binary pattern
itself comes from the LFSR, and will be random each time.
The LFSR is 22 bits wide, so each bit of the LFSR output is
mapped to a bit in this 2D register. This means that the
maximum length of the memory pattern that we can create
is 11 LED blinks long. After playing this game several
times, however, I can tell you that it gets quite challenging
to remember patterns that go that high. As I noted earlier,
the actual limit for the game is set by the
parameter/generic GAME_LIMIT, which can be overridden
from the top module. If you want to set the game to the
maximum difficulty, try changing GAME_LIMIT to 11.

The module continues by handling reset conditions:

Verilog

--snip--

 always @(posedge i_Clk)

 begin

 // Reset game from any state

 ❶ if (i_Switch_1 & i_Switch_2)

 r_SM_Main <= START;

 else

 begin

 // Main state machine switch statement

 ❷ case (r_SM_Main)

--snip--

VHDL

--snip--

begin

 process (i_Clk) is

 begin

 if rising_edge(i_Clk) then

 -- Reset game from any state

 ❶ if i_Switch_1 = '1' and i_Switch_2 = '1' then

 r_SM_Main <= START;

 else

 -- Main state machine switch statement

 ❷ case r_SM_Main is

--snip--

The player must push switch 1 and switch 2 at the same
time to trigger the START state. We check for this with an if
statement ❶. Notice that this check occurs outside the
state machine’s main case statement, which we initiate in
the else branch ❷. This means that on every clock cycle
we’ll check if both switches are pressed, and enter the START
state if they are or run the state machine for the game if
they aren’t. It would have been easier if we had a fifth

button that was dedicated to resetting the state machine,
but alas, I did not, so I had to be a bit creative here.

Now let’s look at the first few states in the case
statement:

Verilog

--snip--

 // Main state machine switch statement

 case (r_SM_Main)

 // Stay in START state until user releases button

s

 ❶ START:

 begin

 // Wait for reset condition to go away

 ❷ if (!i_Switch_1 & !i_Switch_2 & r_Button_DV)

 begin

 o_Score <= 0;

 r_Index <= 0;

 r_SM_Main <= PATTERN_OFF;

 end

 end

 ❸ PATTERN_OFF:

 begin

 if (!w_Toggle & r_Toggle) // Falling edge found

 r_SM_Main <= PATTERN_SHOW;

 end

 // Show the next LED in the pattern

 ❹ PATTERN_SHOW:

 begin

 if (!w_Toggle & r_Toggle) // Falling edge found

 ❺ if (o_Score == r_Index)

 begin

 ❻ r_Index <= 0;

 r_SM_Main <= WAIT_PLAYER;

 end

 else

 begin

 ❼ r_Index <= r_Index + 1;

 r_SM_Main <= PATTERN_OFF;

 end

 end

--snip--

VHDL

--snip--

 -- Main state machine switch statement

 case r_SM_Main is

 -- Stay in START state until user releases buttons

 ❶ when START =>

 -- Wait for reset condition to go away

 ❷ if (i_Switch_1 = '0' and i_Switch_2 = '0' and

 r_Button_DV = '1') then

 r_Score <= to_unsigned(0, r_Score'length);

 r_Index <= 0;

 r_SM_Main <= PATTERN_OFF;

 end if;

 ❸ when PATTERN_OFF =>

 if w_Toggle = '0' and r_Toggle = '1' then -- Fal

ling edge found

 r_SM_Main <= PATTERN_SHOW;

 end if;

 -- Show the next LED in the pattern

 ❹ when PATTERN_SHOW =>

 if w_Toggle = '0' and r_Toggle = '1' then -- Fall

ing edge found

 ❺ if r_Score = r_Index then

 ❻ r_Index <= 0;

 r_SM_Main <= WAIT_PLAYER;

 else

 ❼ r_Index <= r_Index + 1;

 r_SM_Main <= PATTERN_OFF;

 end if;

 end if;

--snip--

First we handle the START state ❶, where we wait for the
reset condition to be removed. This happens when switches
1 and 2 are released ❷. Notice that we’re looking not only
for a low on the two switches, but also for a high on
r_Button_DV. We use this signal throughout the module to
detect falling edges—that is, releases—on the four
switches. You’ll see how this works later in the code. When
the reset is cleared, we set the score and the pattern index
to 0, then go into the PATTERN_OFF state.

The PATTERN_OFF state ❸ simply waits for a timer, driven
by the Count_And _Toggle module, to expire. When this
happens we transition to the PATTERN _SHOW state ❹, during
which we’ll be illuminating one of the LEDs (you’ll see the
code for illuminating the LEDs later). The transition out of
PATTERN_SHOW is also triggered by the timer in the
Count_And_Toggle module. When the timer expires we need to
decide if we’re done displaying the pattern, which we do by
checking whether the player’s score (o_Score) equals the
current index into the pattern (r_Index) ❺. If it doesn’t, we
aren’t done, so we increment r_Index to get ready to light up
the next LED in the pattern ❼ and we go back to the
PATTERN_OFF state. If we are done, we reset r_Index to 0 ❻ and
transition to the WAIT_PLAYER state. Let’s look at that now:

Verilog

--snip--

 WAIT_PLAYER:

 begin

 ❶ if (r_Button_DV)

 ❷ if (r_Pattern[r_Index] == r_Button_ID && r_Inde

x == o_Score)

 begin

 r_Index <= 0;

 r_SM_Main <= INCR_SCORE;

 end

 ❹ else if (r_Pattern[r_Index] != r_Button_ID)

 r_SM_Main <= LOSER;

 ❺ else

 r_Index <= r_Index + 1;

 end

--snip--

VHDL

--snip--

 when WAIT_PLAYER =>

 ❶ if r_Button_DV = '1' then

 ❷ if (r_Pattern(r_Index) = r_Button_ID and

 ❸ unsigned(w_Index_SLV) = r_Score) then

 r_Index <= 0;

 r_SM_Main <= INCR_SCORE;

 ❹ elsif r_Pattern(r_Index) /= r_Button_ID then

 r_SM_Main <= LOSER;

 ❺ else

 r_Index <= r_Index + 1;

 end if;

 end if;

--snip--

In the WAIT_PLAYER state, we wait for r_Button_DV to go
high, indicating the player has pressed and released a
switch ❶. Then we check if the player has correctly pressed
the next switch in the pattern. As you’ll see later, each time
any switch is released, r_Button_ID is set to indicate which
switch it was (00 for switch 1, 01 for switch 2, and so on), so
we compare r_Button_ID with a value in r_Pattern, using
r_Index as an index into the 2D array. There are three
possibilities. If the switch is correct and we’re at the end of
the pattern ❷, we reset r_Index and transition to the
INCR_SCORE state. If the switch is incorrect, we transition to

the LOSER state ❹. Otherwise, the switch is correct but we
aren’t done with the pattern, so we increment r_Index and
wait for the next press ❺. Notice in this last case that we
don’t explicitly assign the state, so r_SM_Main will just retain
its previous assignment (WAIT_PLAYER). We could add a line at
the end of the else statement that says r_SM_Main <=
WAIT_PLAYER; but it’s not necessary. If r_SM_Main isn’t
assigned, then we know that path doesn’t cause a state
change.

One difference between the Verilog and the VHDL is
that in the latter we need to be very explicit about the types
we’re comparing. In the VHDL only, we need to cast
w_Index_SLV to unsigned type ❸ so that we can compare it to
r_Score, which is also of type unsigned. Verilog is much more
forgiving, so we don’t need this extra conversion. We’ll
discuss numerical data types in detail in Chapter 10.

Now let’s look at the remaining states in the case
statement:

Verilog

--snip--

 // Used to increment score counter

 ❶ INCR_SCORE:

 begin

 o_Score <= o_Score + 1;

 if (o_Score == GAME_LIMIT-1)

 r_SM_Main <= WINNER;

 else

 r_SM_Main <= PATTERN_OFF;

 end

 // Display 0xA on 7-segment display, wait for new g

ame

 ❷ WINNER:

 begin

 o_Score <= 4'hA; // Winner!

 end

 // Display 0xF on 7-segment display, wait for new g

ame

 ❸ LOSER:

 begin

 o_Score <= 4'hF; // Loser!

 end

 ❹ default:

 r_SM_Main <= START;

 endcase

 end

 end

--snip--

VHDL

--snip--

 -- Used to increment score counter

 ❶ when INCR_SCORE =>

 r_Score <= r_Score + 1;

 if r_Score = GAME_LIMIT then

 r_SM_Main <= WINNER;

 else

 r_SM_Main <= PATTERN_OFF;

 end if;

 -- Display 0xA on 7-segment display, wait for new

 game

 ❷ when WINNER =>

 r_Score <= X"A"; -- Winner!

 -- Display 0xF on 7-segment display, wait for new

 game

 ❸ when LOSER =>

 r_Score <= X"F"; -- Loser!

 ❹ when others =>

 r_SM_Main <= START;

 end case;

 end if;

 end if;

 end process;

--snip--

In INCR_SCORE ❶, we increment the score variable and
compare it with GAME_LIMIT to check if the game is over. If
so, we go to the WINNER state, and if not, we go back to
PATTERN_OFF to continue the memory sequence. Notice that
we’ll only be in this state for a single clock cycle. You could
perhaps make the argument that INCR_SCORE isn’t a
necessary state, and that this logic should happen in
WAIT_PLAYER instead. I chose to treat INCR_SCORE as a separate
state to avoid making WAIT_PLAYER too complicated.

For the WINNER ❷ and LOSER ❸ states, we simply set the
score value to show an A or F on the seven-segment display
and remain in the current state. The state machine can only
leave these states in the event of a reset condition, in which
switches 1 and 2 are both pressed at the same time.

We also include a default clause at the end of the case
statement ❹, which specifies what behavior to take in the
event that r_SM_Main isn’t one of the previously defined
states. This shouldn’t ever happen, but it’s good practice to
create a default case where we go back to START. The end
statements at the end of this listing close out the case
statement, if…else statement, and always or process block
that the state machine was wrapped in.

We’ve now finished coding the state machine itself. The
rest of the code in the module handles logic for helping
with the tasks that occur during the various states. First we
have the code for randomly generating the pattern:

Verilog

--snip--

 // Register in the LFSR to r_Pattern when game starts

 // Each 2 bits of LFSR is one value for r_Pattern 2D array

 always @(posedge i_Clk)

 begin

 ❶ if (r_SM_Main == START)

 begin

 r_Pattern[0] <= w_LFSR_Data[1:0];

 r_Pattern[1] <= w_LFSR_Data[3:2];

 r_Pattern[2] <= w_LFSR_Data[5:4];

 r_Pattern[3] <= w_LFSR_Data[7:6];

 r_Pattern[4] <= w_LFSR_Data[9:8];

 r_Pattern[5] <= w_LFSR_Data[11:10];

 r_Pattern[6] <= w_LFSR_Data[13:12];

 r_Pattern[7] <= w_LFSR_Data[15:14];

 r_Pattern[8] <= w_LFSR_Data[17:16];

 r_Pattern[9] <= w_LFSR_Data[19:18];

 r_Pattern[10] <= w_LFSR_Data[21:20];

 end

 end

--snip--

VHDL

--snip--

 -- Register in the LFSR to r_Pattern when game starts

 -- Each 2 bits of LFSR is one value for r_Pattern 2D array

 process (i_Clk) is

 begin

 if rising_edge(i_Clk) then

 ❶ if r_SM_Main = START then

 r_Pattern(0) <= w_LFSR_Data(1 downto 0);

 r_Pattern(1) <= w_LFSR_Data(3 downto 2);

 r_Pattern(2) <= w_LFSR_Data(5 downto 4);

 r_Pattern(3) <= w_LFSR_Data(7 downto 6);

 r_Pattern(4) <= w_LFSR_Data(9 downto 8);

 r_Pattern(5) <= w_LFSR_Data(11 downto 10);

 r_Pattern(6) <= w_LFSR_Data(13 downto 12);

 r_Pattern(7) <= w_LFSR_Data(15 downto 14);

 r_Pattern(8) <= w_LFSR_Data(17 downto 16);

 r_Pattern(9) <= w_LFSR_Data(19 downto 18);

 r_Pattern(10) <= w_LFSR_Data(21 downto 20);

 end if;

 end if;

 end process;

❷ w_Index_SLV <= std_logic_vector(to_unsigned(r_Index, w_In

dex_SLV'length));

--snip--

We need to generate a different pattern each time the
game is played, while also making sure the pattern gets
“locked in” once the game is underway. To do this, we first
check if we’re in the START state ❶. If so, the game isn’t
currently in progress, so we use the LFSR to create a new
pattern. Recall that the output of our LFSR is a
pseudorandom string of bits, which changes on every clock
cycle. We take 2-bit sections from the LFSR output and
place them into the 11 slots in r_Pattern. This will keep
happening every clock cycle until the player releases
switches 1 and 2, triggering the transition out of START. At
that point, the current values of r_Pattern will be locked in
for the duration of the game.

In VHDL, we also need to create an intermediary signal,
w_Index_SLV ❷, which is just the std_logic_vector
representation of r_Index. Again, since VHDL is strongly
typed, you’ll often see intermediary signals used for
generating the “correct” signal types. I could have put this
line anywhere since it’s a combinational assignment; as
long as it’s outside of a process block, its precise location in
the file makes no functional difference.

Next comes the code for illuminating the four LEDs:

Verilog

--snip--

 assign o_LED_1 = (r_SM_Main == PATTERN_SHOW &&

 r_Pattern[r_Index] == 2'b00) ? 1'b1 : i_

Switch_1;

 assign o_LED_2 = (r_SM_Main == PATTERN_SHOW &&

 r_Pattern[r_Index] == 2'b01) ? 1'b1 : i_

Switch_2;

 assign o_LED_3 = (r_SM_Main == PATTERN_SHOW &&

 r_Pattern[r_Index] == 2'b10) ? 1'b1 : i_

Switch_3;

 assign o_LED_4 = (r_SM_Main == PATTERN_SHOW &&

 r_Pattern[r_Index] == 2'b11) ? 1'b1 : i_

Switch_4;

--snip--

VHDL

--snip--

 o_LED_1 <= '1' when (r_SM_Main = PATTERN_SHOW and

 r_Pattern(r_Index) = "00") else i_Swi

tch_1;

 o_LED_2 <= '1' when (r_SM_Main = PATTERN_SHOW and

 r_Pattern(r_Index) = "01") else i_Swi

tch_2;

 o_LED_3 <= '1' when (r_SM_Main = PATTERN_SHOW and

 r_Pattern(r_Index) = "10") else i_Swi

tch_3;

 o_LED_4 <= '1' when (r_SM_Main = PATTERN_SHOW and

 r_Pattern(r_Index) = "11") else i_Swi

tch_4;

--snip--

Here we have four continuous assignment statements,
one for each LED. In each one, we use the ternary operator
(?) in Verilog or when/else in VHDL to illuminate the LED in
one of two cases. First, we’ll drive the LED high if we’re in
the PATTERN_SHOW state and the value at the current index of
r_Pattern matches the current LED. This will only ever be
true for one LED at a time, so only one LED can be
illuminated during each PATTERN_SHOW. Second, if we aren’t in
the PATTERN_SHOW state, the LED will be driven based on the

input from its associated switch. This way the LED will light
up when the player presses the corresponding switch,
giving them visual feedback about the pattern they’re
entering.

The next part of the code uses falling edge detection to
identify timeouts and button presses:

Verilog

--snip--

 // Create registers to enable falling edge detection

 always @(posedge i_Clk)

 begin

 ❶ r_Toggle <= w_Toggle;

 ❷ r_Switch_1 <= i_Switch_1;

 r_Switch_2 <= i_Switch_2;

 r_Switch_3 <= i_Switch_3;

 r_Switch_4 <= i_Switch_4;

 ❸ if (r_Switch_1 & !i_Switch_1)

 begin

 r_Button_DV <= 1'b1;

 r_Button_ID <= 0;

 end

 else if (r_Switch_2 & !i_Switch_2)

 begin

 r_Button_DV <= 1'b1;

 r_Button_ID <= 1;

 end

 else if (r_Switch_3 & !i_Switch_3)

 begin

 r_Button_DV <= 1'b1;

 r_Button_ID <= 2;

 end

 else if (r_Switch_4 & !i_Switch_4)

 begin

 r_Button_DV <= 1'b1;

 r_Button_ID <= 3;

 end

 ❹ else

 begin

 r_Button_DV <= 1'b0;

 r_Button_ID <= 0;

 end

 end

--snip--

VHDL

--snip--

 -- Create registers to enable falling edge detection

 process (i_Clk) is

 begin

 if rising_edge(i_Clk) then

 ❶ r_Toggle <= w_Toggle;

 ❷ r_Switch_1 <= i_Switch_1;

 r_Switch_2 <= i_Switch_2;

 r_Switch_3 <= i_Switch_3;

 r_Switch_4 <= i_Switch_4;

 ❸ if r_Switch_1 = '1' and i_Switch_1 = '0' then

 r_Button_DV <= '1';

 r_Button_ID <= "00";

 elsif r_Switch_2 = '1' and i_Switch_2 = '0' then

 r_Button_DV <= '1';

 r_Button_ID <= "01";

 elsif r_Switch_3 = '1' and i_Switch_3 = '0' then

 r_Button_DV <= '1';

 r_Button_ID <= "10";

 elsif r_Switch_4 = '1' and i_Switch_4 = '0' then

 r_Button_DV <= '1';

 r_Button_ID <= "11";

 ❹ else

 r_Button_DV <= '0';

 r_Button_ID <= "00";

 end if;

 end if;

 end process;

--snip--

Notice we are still using the rising edge of the clock;
we’re just looking for falling edges for our timeouts and
button presses. Recall that this falling edge is used to
progress through the state machine. We perform falling
edge detection on the output of the Count_And_Toggle module,
where the output represents the timer expiring. We do this
by first registering its output, w_Toggle, and assigning it to
r_Toggle ❶. (The actual instantiation of the Count_And_Toggle
module will be handled momentarily.) This creates a one-
clock-cycle-delayed version of w_Toggle on r_Toggle. Then, as
shown previously, we look for the condition where the
current value (w_Toggle) is low, but the previous value
(r_Toggle) is high. We used this earlier to trigger transitions
out of PATTERN_OFF and PATTERN_SHOW.

For our switches, when a switch is pressed, it has the
value 1; when a switch is not pressed, it has the value 0.
We are looking for the situation in which the switch goes
from a 1 to a 0, which is the falling edge of the switch,
representing the switch being released. We register each
switch ❷ in order to detect the falling edge from the switch
being released. This is followed by the actual edge
detection logic ❸. For each switch, when we see a falling
edge, we drive r_Button_DV high. As you’ve seen elsewhere in
the code, this signal serves as a flag to indicate that some
switch, any switch, has been released. We also set
r_Button_ID to the switch’s 2-bit binary code, so we’ll know
which switch it was. The else statement ❹ clears r_Button_DV
and r_Button_ID to get ready for the next falling edge.

NOTE

I’ve chosen to make the state machine react to button

releases rather than button presses. You could try inverting

the test cases ❸ to see the difference. I think you’ll find it a

bit unnatural if the game responds the moment a button is

pressed instead of the moment it’s released.

The final section of the code instantiates the
Count_And_Toggle and LFSR_22 modules. Remember, you’ve
seen the code for these modules before, in Chapter 6:

Verilog

--snip--

 // w_Count_En is high when state machine is in

 // PATTERN_SHOW state or PATTERN_OFF state, else low

❶ assign w_Count_En = (r_SM_Main == PATTERN_SHOW ||

 r_SM_Main == PATTERN_OFF);

❷ Count_And_Toggle #(.COUNT_LIMIT(CLKS_PER_SEC/4)) Count_In

st

 (.i_Clk(i_Clk),

 .i_Enable(w_Count_En),

 .o_Toggle(w_Toggle));

 // Generates 22-bit-wide random data

❸ LFSR_22 LFSR_Inst

 (.i_Clk(i_Clk),

 .o_LFSR_Data(w_LFSR_Data),

 ❹ .o_LFSR_Done()); // leave unconnected

endmodule

VHDL

--snip--

 -- w_Count_En is high when state machine is in

 -- PATTERN_SHOW state or PATTERN_OFF state, else low

❶ w_Count_En <= '1' when (r_SM_Main = PATTERN_SHOW or

 r_SM_Main = PATTERN_OFF) else

 '0';

❷ Count_Inst : entity work.Count_And_Toggle

 generic map (

 COUNT_LIMIT => CLKS_PER_SEC/4)

 port map (

 i_Clk => i_Clk,

 i_Enable => w_Count_En,

 o_Toggle => w_Toggle);

 -- Generates 22-bit-wide random data

❸ LFSR_Inst : entity work.LFSR_22

 port map (

 i_Clk => i_Clk,

 o_LFSR_Data => w_LFSR_Data,

 ❹ o_LFSR_Done => open); -- leave unconnected

❺ o_Score <= std_logic_vector(r_Score);

end RTL;

First we instantiate the Count_And_Toggle module ❷. As
you saw in Chapter 6, it measures out a set amount of time
by incrementing a register on each clock cycle until it
reaches the COUNT_LIMIT parameter/generic. Here we’ve set
COUNT_LIMIT to CLKS_PER_SEC/4 to make each PATTERN_OFF and
PATTERN_SHOW state last a quarter of a second, but feel free to
change this to make the game run faster or slower. Keep in
mind that CLKS_PER_SEC/4 is a constant (in this case,
25,000,000 / 4 = 6,250,000) that the synthesis tools will
calculate in advance, so the division operation (which
would require a lot of resources) won’t have to be
performed inside the FPGA itself. The continuous
assignment of w_Count_En ❶ only enables the counter during
the PATTERN_OFF and PATTERN_SHOW states, since we don’t want
it running during other phases of the game.

Next, we instantiate the LFSR_22 module ❸. Recall from
Chapter 6 that this module has two outputs: o_LFSR_Data for
the data itself, and o_LFSR_Done to signal each repetition of
the LFSR’s cycle. For this project we don’t need o_LFSR_Done,
so we leave the unused output unconnected in Verilog, or
use the open keyword in VHDL ❹. When we write general-
purpose modules like this, we won’t always need every

single output in every single application. When we don’t
use an output, the synthesis tools are intelligent enough to
remove the associated logic, so there’s no hit to our
resource utilization when we have unused code.

Finally, in VHDL we need to perform one more action:
converting r_Score, which is an unsigned type, to a
std_logic_vector so we can assign that value to o_Score ❺.
Because VHDL is strongly typed, you’ll frequently see type
conversions like this when looking at VHDL code.

Testing the Memory Game

The code and state machine diagram that we’ve been
looking at here represent the final version of this game, but
it went through some improvements and fixes as I
developed it. A lot of the changes were a result of me
actually playing the game and experimenting to see what I
liked and didn’t like. For example, when I was first
designing the state machine, I went straight from START to
PATTERN_SHOW without passing through PATTERN_OFF. This made
the first LED come on immediately, which was confusing; it
was hard to tell whether the game had started or not. So, I
switched the order to add a delay at the outset.

Most of the changes that I made followed this same
pattern: program the board, play the game, see behavior I
don’t like, change the code, play the game. Another
example is that the LED on-time was too long initially, so I
decreased it to make the gameplay snappier. These sorts of
issues are more about feel; running a simulation wouldn’t
have identified them.

Simulations and testbenches are valuable for
understanding where and why bugs are occurring and how
to fix them. Most of my “problems” weren’t bugs, but
behaviors that I wanted to change based on my experience
playing the game. I did create a testbench that allowed me
to simulate button presses, however, to see how the

State_Machine_Game module responded. That code is available
in the book’s GitHub repository, if you’d like to look at it.
It’s a simple testbench, not one that performs any self-
checking, but it did help me find a few bugs when I was
initially writing this state machine.

Adding the Pin Constraints

Since we’ve added a new interface at the highest level (the
seven-segment display), we need to add those signals to
our physical constraints file. If we forget this step, the
place and route tool will likely automatically choose pins
for us, which will almost certainly be incorrect. You’ll have
to refer to the schematic for your development board to
trace the signal paths from the seven-segment display back
to your FPGA for each signal. Here are the constraints
needed for the Go Board, for example:

set_io o_Segment2_A 100

set_io o_Segment2_B 99

set_io o_Segment2_C 97

set_io o_Segment2_D 95

set_io o_Segment2_E 94

set_io o_Segment2_F 8

set_io o_Segment2_G 96

See Chapter 2 for a reminder on how to add physical
constraints to your iCEcube2 project.

Building and Programming the FPGA

At this point, we’re ready to build the code for the FPGA.
Let’s take a look at the synthesis results of both the Verilog
and the VHDL. Your report should look similar to the
following:

Verilog

--snip--

Register bits not including I/Os: 164 (12%)

--snip--

Total LUTs: 239 (18%)

VHDL

--snip--

Register bits not including I/Os: 163 (12%)

--snip--

Total LUTs: 225 (17%)

The results are pretty close between the Verilog and
VHDL versions; we’re using about 12 percent of the
available flip-flops and 18 percent of the available LUTs for
this project. We have an entire memory game consisting of
a few hundred lines of code, and we’ve used less than 20
percent of the FPGA’s main resources. Not bad!

Program your development board and play the game.
See if you can beat it, and if you can, try increasing the
difficulty by changing GAME_LIMIT up to its maximum
difficulty of 11. I found it quite challenging!

Summary

In this chapter you’ve learned about state machines, which
are critical building blocks in many programming
disciplines, including FPGAs. State machines are used to
precisely control the flow through a sequence of
operations. The operations are organized into a network of
states, with events that trigger transitions between those
states. After reviewing a simple example, you designed and
implemented a sophisticated state machine to control a
memory game for your development board. The project
combined many elements that we’ve discussed throughout
the book, including debounce logic to clean up the inputs

from the switches, an LFSR for pseudorandom number
generation, and a counter to keep track of time. You also
learned to use a seven-segment display to create the
game’s scoreboard.

9

USEFUL FPGA PRIMITIVES

So far, you’ve learned about
the two most fundamental

FPGA components: the LUT and the flip-
flop. These general-purpose components
are the main workhorses in your FPGA,
but there are also other dedicated
components that are commonly used in
FPGA designs for more specialized tasks.
These components are usually called
primitives, but they’re also sometimes
referred to as hard IP or cores.

Working with primitives helps you get the most out of
your FPGA. In fact, a lot of modern FPGA development
revolves around linking together these pre-existing
primitives, with custom code added as needed for
application-specific logic. In this chapter, we’ll explore
three important primitives: the block RAM (BRAM), the
digital signal processor (DSP) block, and the phase-locked
loop (PLL). You’ll learn what role each one plays within an

FPGA and see how to create them through your Verilog or
VHDL code, or with assistance from your build tools.

The primitives we’ll discuss are especially important on
higher-end FPGAs, more advanced than the iCE40 FPGAs
we’ve focused on so far. With these feature-rich FPGAs, the
companion GUI software has become a critical piece of the
build process. These GUIs are more complicated than the
iCEcube2 tool we’ve been working with, and a large part of
the complexity stems from the creation and wiring up of
these primitives. Once you have an understanding of how
the primitives work, however, you’ll be better equipped to
start working with these more advanced tools and to take
full advantage of the common built-in features of
professional-grade FPGAs.

How to Create Primitives

There are a few different ways to create an FPGA primitive.
Up to this point, we’ve been writing Verilog or VHDL and
letting the synthesis tools decide for us how to translate
that code into primitives. We trust the tools to understand
when we want to create a flip-flop or a LUT. This is called
inference, since we’re letting the tools infer (or make an
educated guess about) what we want based on our code.

In general, the tools are able to understand our
intentions quite well. However, there are some primitives
that the synthesis tools won’t be able to infer. To create
those, you need to use another method: you can either
explicitly instantiate the primitive in your code or use the
GUI built into most synthesis tools to automate the creation
process.

Instantiation

Instantiation is the creation of a primitive from a code
template written by the FPGA manufacturer. When you
instantiate a primitive component, it looks like you’re

instantiating a Verilog or VHDL module—but in this case,
the module you’re instantiating isn’t one you’ve created.
Rather, it’s built into the tools for your specific FPGA. The
actual module code behind these primitives is often
unavailable to view; it’s part of the secret sauce that the
FPGA vendors like to keep to themselves.

Let’s look at an example of how to instantiate a block
RAM (we’ll talk more about these primitives later in the
chapter):

Verilog

RAMB18E1 #(

 // Address Collision Mode: "PERFORMANCE" or "DELAYED_WRIT

E"

 .RDADDR_COLLISION_HWCONFIG("DELAYED_WRITE"),

 // Collision check: Values ("ALL", "WARNING_ONLY", "GENERA

TE_X_ONLY" or "NONE")

 .SIM_COLLISION_CHECK("ALL"),

 // DOA_REG, DOB_REG: Optional output register (0 or 1)

 .DOA_REG(0),

 .DOB_REG(0),

 // INITP_00 to INITP_07: Initial contents of parity memory

array

.INITP_00(256'h000

0000000000000000000),

--snip--

.INIT_3F(256'h00

000000000000000000),

 // INIT_A, INIT_B: Initial values on output ports

 .INIT_A(18'h00000),

 .INIT_B(18'h00000),

 // Initialization File: RAM initialization file

 .INIT_FILE("NONE"),

 // RAM Mode: "SDP" or "TDP"

 .RAM_MODE("TDP"),

 // READ_WIDTH_A/B, WRITE_WIDTH_A/B: Read/write width per p

ort

 .READ_WIDTH_A(0), // 0-72

 .READ_WIDTH_B(0), // 0-18

 .WRITE_WIDTH_A(0), // 0-18

 .WRITE_WIDTH_B(0), // 0-72

 // RSTREG_PRIORITY_A, RSTREG_PRIORITY_B: Reset or enable p

riority ("RSTREG" or "REGCE")

 .RSTREG_PRIORITY_A("RSTREG"),

 .RSTREG_PRIORITY_B("RSTREG"),

 // SRVAL_A, SRVAL_B: Set/reset value for output

 .SRVAL_A(18'h00000),

 .SRVAL_B(18'h00000),

 // Simulation Device: Must be set to "7SERIES" for simulat

ion behavior

 .SIM_DEVICE("7SERIES"),

 // WriteMode: Value on output upon a write ("WRITE_FIRST",

"READ_FIRST", or "NO_CHANGE")

 .WRITE_MODE_A("WRITE_FIRST"),

 .WRITE_MODE_B("WRITE_FIRST")

)

RAMB18E1_inst (

 // Port A Data: 16-bit (each) output: Port A data

 .DOADO(DOADO), ❶ // 16-bit output: A port dat

a/LSB data

 .DOPADOP(DOPADOP), // 2-bit output: A port pari

ty/LSB parity

 // Port B Data: 16-bit (each) output: Port B data

 .DOBDO(DOBDO), // 16-bit output: B port dat

a/MSB data

 .DOPBDOP(DOPBDOP), // 2-bit output: B port pari

ty/MSB parity

 // Port A Address/Control Signals: 14-bit (each) input: Po

rt A address and control signals

 // (read port when RAM_MODE="SDP")

 .ADDRARDADDR(ADDRARDADDR), // 14-bit input: A port addr

ess/Read address

 .CLKARDCLK(CLKARDCLK), // 1-bit input: A port cloc

k/Read clock

--snip--

VHDL

RAMB18E1_inst : RAMB18E1

generic map (

 -- Address Collision Mode: "PERFORMANCE" or "DELAYED_WRIT

E"

 RDADDR_COLLISION_HWCONFIG => "DELAYED_WRITE",

 -- Collision check: Values ("ALL", "WARNING_ONLY", "GENERA

TE_X_ONLY" or "NONE")

 SIM_COLLISION_CHECK => "ALL",

 -- DOA_REG, DOB_REG: Optional output register (0 or 1)

 DOA_REG => 0,

 DOB_REG => 0,

 -- INITP_00 to INITP_07: Initial contents of parity memory

array

 INITP_00 => X"00

00000000000000000000",

--snip--

 INIT_3F => X"000

0000000000000000000",

 -- INIT_A, INIT_B: Initial values on output ports

 INIT_A => X"00000",

 INIT_B => X"00000",

 -- Initialization File: RAM initialization file

 INIT_FILE => "NONE",

 -- RAM Mode: "SDP" or "TDP"

 RAM_MODE => "TDP",

 -- READ_WIDTH_A/B, WRITE_WIDTH_A/B: Read/write width per p

ort

 READ_WIDTH_A => 0, -- 0-72

 READ_WIDTH_B => 0, -- 0-18

 WRITE_WIDTH_A => 0, -- 0-18

 WRITE_WIDTH_B => 0, -- 0-72

 -- RSTREG_PRIORITY_A, RSTREG_PRIORITY_B: Reset or enable p

riority ("RSTREG" or "REGCE")

 RSTREG_PRIORITY_A => "RSTREG",

 RSTREG_PRIORITY_B => "RSTREG",

 -- SRVAL_A, SRVAL_B: Set/reset value for output

 SRVAL_A => X"00000",

 SRVAL_B => X"00000",

 -- Simulation Device: Must be set to "7SERIES" for simulat

ion behavior

 SIM_DEVICE => "7SERIES",

 -- WriteMode: Value on output upon a write ("WRITE_FIRST",

"READ_FIRST", or "NO_CHANGE")

 WRITE_MODE_A => "WRITE_FIRST",

 WRITE_MODE_B => "WRITE_FIRST"

)

port map (

 -- Port A Data: 16-bit (each) output: Port A data

 DOADO => DOADO, ❶ -- 16-bit output: A port da

ta/LSB data

 DOPADOP => DOPADOP, -- 2-bit output: A port par

ity/LSB parity

 -- Port B Data: 16-bit (each) output: Port B data

 DOBDO => DOBDO, -- 16-bit output: B port da

ta/MSB data

 DOPBDOP => DOPBDOP, -- 2-bit output: B port par

ity/MSB parity

 -- Port A Address/Control Signals: 14-bit (each) input: Po

rt A address and control signals

 -- (read port when RAM_MODE="SDP")

 ADDRARDADDR => ADDRARDADDR, -- 14-bit input: A port add

ress/Read address

 CLKARDCLK => CLKARDCLK, -- 1-bit input: A port cloc

k/Read clock

--snip--

This code is an example of instantiation of a RAMB18E1
component (a type of block RAM) from an AMD FPGA. The
code makes the block RAM available for use by wiring its
internal signals to signals external to the block RAM: for
example, it wires the block RAM’s internal DOADO signal, a
16-bit output, to an external signal of the same name ❶.
I’ve omitted many more lines of code that make similar
connections. It’s not important that you understand the
details of this code; it’s just to demonstrate what

instantiation looks like. Clearly a block RAM is a
complicated component, with many bells and whistles
available to you. Instantiation specifies every single input
and output of the primitive and allows you to set them
exactly as you want. However, it also requires that you
have a deep knowledge of the primitive being instantiated.
If you connect it improperly, it won’t work as intended.

If you wanted to, it would be possible to instantiate,
rather than infer, even a simple component like a flip-flop.
Here’s what AMD’s Verilog template looks like for
instantiating a single flip-flop (which AMD calls an FDSE):

Verilog

FDSE #(

 .INIT(1'b0) // Initial value of register (1'b0 or 1'b1)

) FDSE_inst (

 .Q(Q), // 1-bit data output

 .C(C), // 1-bit clock input

 .CE(CE), // 1-bit clock enable input

 .S(S), // 1-bit synchronous set input

 .D(D) // 1-bit data input

);

VHDL

FDSE_inst : FDSE

generic map (

 INIT => '0') -- Initial value of register ('0' or '1')

port map (

 Q => Q, -- Data output

 C => C, -- Clock input

 CE => CE, -- Clock enable input

 S => S, -- Synchronous set input

 D => D -- Data input

);

Notice that this primitive has the normal connections
we’d expect from a flip-flop, including the data output (Q),
the clock input (C), the clock enable (CE), and the data input
(D). After instantiating this flip-flop, you could then make
use of these connections in your code. If you had to
instantiate every single flip-flop in your entire FPGA,
however, it would take quite a lot of code!

NOTE

I found the templates for the RAM18E1 block RAM and the

FDSE flip-flop in AMD’s online Libraries Guide, which

contains the templates for all primitives throughout AMD

FPGAs. Every FPGA manufacturer has a similar resource

where you’ll find the instantiation templates for its

primitives.

The benefit of instantiating a primitive is that it gives
you exactly what you want. You don’t need to trust the
synthesis tools to guess at what you’re trying to do.
However, there are clearly some downsides. As you’ve just
seen, instantiation takes more code than inference. It also
requires you to wire up every connection correctly, or the
design won’t function as intended. This means you need to
understand the primitive at a deep level. Finally, each
primitive needs to be instantiated using a dedicated
template specific to your FPGA vendor, or sometimes
specific to just a subset of devices within a family of FPGAs.
For example, the RAMB18E1 block RAM component we
instantiated earlier only exists on AMD FPGAs; Intel and
Lattice FPGAs have their own block RAMs. Therefore,
instantiation makes your code less portable than writing
more generic Verilog or VHDL where the tools can just
infer the primitive based on which FPGA you’re targeting.
Next, we’ll look at the alternative: using the GUI.

The GUI Approach

Every FPGA vendor has its own GUI or IDE for FPGA
development, and that GUI will have a section allowing you
to view the library of available primitives for your FPGA.
You can select a primitive that you want to add to your
project, and the tool will walk you through the process.
Additionally, the GUI explains how the primitive works and
what each setting controls. Figure 9-1 shows an example of
creating a block RAM using the Lattice Diamond GUI. As
mentioned in Chapter 2, this is Lattice’s IDE for working
with higher-end FPGAs with features like the primitives
discussed in this chapter. (The iCEcube2 IDE doesn’t have
a GUI for creating primitives, since it’s designed to work
primarily with simpler FPGAs.)

Figure 9-1: Instantiating a block RAM with a GUI

The block diagram on the left side of the window
visually demonstrates the block RAM’s inputs and outputs.
In the configuration section on the right, it’s clear which
selections for the primitive are mutually exclusive. These
are represented with radio buttons, like Initialize to All 0’s
or Initialize to All 1’s. We can also tell which options can be
enabled or disabled. These are represented by checkboxes,
like Enable Output Register or Enable Output ClockEn. In
addition, there’s a convenient Help button in the bottom-
right corner that can guide you through some of these
decisions if you’re unsure what to pick.

Once you’ve configured a primitive with a GUI, you’ll
get an instantiation template that you can drop into your
Verilog or VHDL code, much like the one we looked at in

the previous section. The template will be customized to
the exact settings that you picked in the GUI so you can
wire up your primitive without having to make any guesses
about how to configure it.

Compared to direct instantiation, the GUI method is
more approachable for beginners. You’re much less likely
to make a mistake using the GUI, since you have the menus
to guide you, but you can still control exactly what you get,
just like with instantiation. There is an important downside
to this approach, however. If you need to change a setting
in your primitive, then you need to open the GUI and run
through the whole process again. This might not sound like
a big deal, but if your design features many primitives
created using a GUI, making adjustments can become quite
tedious and time-consuming.

The Block RAM

A block RAM (BRAM) is a dedicated memory storage
component built into your FPGA. Next to LUTs and flip-
flops, block RAMs are the third most common FPGA
primitive. We touched briefly on block RAMs in Chapter 6,
when we discussed common memory modules like RAMs
and FIFOs. As I mentioned in that chapter, when you need
a memory over a certain size, it will be created using a
block RAM instead of flip-flops.

Creating memory for storing data is an incredibly
common task in FPGAs. You might use a block RAM for
storing read-only data, like calibration values, or you might
regularly write data to a block RAM from an off-chip device
like an analog-to-digital converter (ADC) and then read
from it later. Block RAMs are also commonly used to buffer
data between a producer and a consumer, including when
sending data between clock domains. In this case, the block
RAM can be configured as a FIFO, with features specially
designed to handle the metastability issues that arise when

crossing between domains (we discussed how you can
transmit data across cross clock domains back in Chapter
7).

The number of block RAMs available, and the specific
features of each block RAM, will vary from FPGA to FPGA
and vendor to vendor. You should always consult your
FPGA’s datasheet and memory guide for details particular
to your model. As an example, Figure 9-2 shows a
datasheet highlighting the block RAMs on Intel’s Cyclone V
line of FPGAs.

Figure 9-2: Block RAMs on the Cyclone V product line

Intel refers to block RAMs as memory blocks. The first
of the highlighted lines in the datasheet is telling us how
many of these memory blocks are available on each of three
FPGA models: 176 on the 5CEA2 FPGA, 308 on the 5CEA4,
and 446 on the 5CEA5 part. The next line on the datasheet
shows the total number of kilobits (Kb) of block RAM
storage available. Each memory block holds 10Kb (hence
the M10K in the name), so there are 1,760Kb of BRAM
storage on the 5CEA2 FPGA, 3,080Kb on the 5CEA4, and
4,460Kb on the 5CEA5.

You might be surprised by how little storage that really
is. Even the largest amount, 4,460Kb, is less than a

megabyte! Consider the fact that you can get a 32-gigabyte
MicroSD card, which has thousands of times more storage
space, for around $10, and you’ll start to appreciate that
FPGAs aren’t designed for storing data in any significant
quantity. Rather, block RAMs are there to buffer data on
the FPGA for temporary usage. If you need to store large
amounts of data, you’ll have to use an external chip to do
that. MicroSD cards, DDR memory, SRAM, and flash
memory are common examples of chips that an FPGA might
interface to in order to expand its memory storage and
retrieval capabilities.

You should also notice in Figure 9-2 that block RAMs
are the fourth item in the Cyclone V datasheet’s list of
FPGA resources, after LEs, ALMs, and registers. Those are
the terms that Intel uses to describe LUTs and flip-flops
(LE stands for logic element and ALM for Adaptive Logic
Module). While you may not always need many block RAMs
for your application, this prime position in the datasheet
highlights that block RAMs are often one of the most
significant primitive components to take into consideration
when choosing an FPGA.

Features and Limitations

There are some common features and some limitations that
are helpful to keep in mind when working with block RAMs.
First, block RAMs usually come in only one size on an
FPGA; 16Kb per block RAM is common. This one-size-fits-
all approach means that if you only need to use 4Kb out of
the 16Kb, you’ll still use up an entire block RAM primitive.
There’s no way to divide a single block RAM component
into multiple memories, and in that way, block RAMs can
be limiting.

In other ways, however, block RAMs can be quite
flexible. You can store data in whatever width you like: for
example, with a 16Kb block RAM you can store data that’s

1 bit wide and 16,384 bits (214) deep, or 8 bits wide and
2,048 deep, or 32 bits wide and 512 deep, among other
possibilities. It’s also possible to create memories that are
larger than a single block RAM. For example, if you needed
to store 16 kilobytes (KB) of data, that would use up eight
individual block RAMs (16Kb × 8 = 16KB). The tools are
smart enough to cascade the block RAMs and make them
look like one large memory, rather than eight individual
components that you need to index into individually.

Other common features include error detection and
correction, where the block RAM has some extra bits
reserved to detect and correct any errors that might occur
within the memory itself (that is, when a 1 changes to a 0,
or vice versa). If that happens in your memory, a value
could be completely corrupted and produce very strange
behavior when the FPGA tries to analyze it.

Error detection and correction are two separate but
related processes: the FPGA can detect some number of bit
errors and notify you about their presence, and, separately,
it can automatically correct some number of bit errors. The
number of bit errors that can be corrected is usually less
than the number of bit errors that can be detected. The
important thing here is that error detection and correction
within a block RAM are performed automatically, without
you having to do anything.

Many block RAMs can also be initialized to default
values. This can be a useful feature if you need to store a
large number of initial values or if you want to create read-
only memory (ROM). Pushing those values to a block RAM
rather than taking up flip-flops for data storage can be a
valuable way to save resources. We touched on this idea
back in Chapter 7, when we were looking at parts of
Verilog and VHDL that are synthesizable and not
synthesizable. Even though reading from a file is normally
not synthesizable—remember that there’s no filesystem on

an FPGA unless you create it yourself—we can read data
from files as part of the synthesis process to preload a
block RAM with default values. Again, I recommend
consulting the memory guide for your particular FPGA to
find out which features it supports.

Creation

When using a block RAM in your design, I generally
recommend inferring it. As you saw in Chapter 6, when we
create a two-dimensional memory element, the tools will
easily recognize it. Whether or not this memory gets
pushed to a block RAM depends on its size. Again, the
synthesis tool is smart about this: it knows how many bits
of memory you’re creating, and if it’s above some
threshold, then it will be pushed to a block RAM.
Otherwise, the tool will just use flip-flops. For example, if
you’re creating a memory that holds 16 bytes, it will likely
be pushed to flip-flops. You only need 16 × 8 = 128 bits of
memory, so it doesn’t make much sense to use an entire
16Kb block RAM for this small quantity of data.

At which point the tools will start pushing memory to
block RAMs instead of using flip-flops is highly dependent
on the situation. To find out what your tool decided for a
particular design, consult your utilization report after
synthesis. Here’s an example:

--snip--

Number of registers: 1204 out of 84255 (1%)

--snip--

Number of LUT4s: 1925 out of 83640 (2%)

--snip--

❶ Number of block RAMs: 3 out of 208 (1%)

The utilization report lists the number of block RAMs
required ❶, just as it lists the number of flip-flops
(registers) and LUTs (LUT4s, or four-input LUTs in this

case). If you see that no block RAMs are being used, then
your memory was inferred as flip-flops instead. As a
reminder, I always recommend double-checking your
utilization report to make sure the tools are inferring what
you expect.

If you’re wary of trying to infer large memory elements,
or you’re confused about which features you may or may
not want to take advantage of in your block RAM, then
creating it with a GUI is your best option. The GUI will
guide you through the process, so for beginners it’s very
helpful. Using the GUI is also the best way to ensure that
you’re using a FIFO correctly when crossing clock domains,
as it can help you handle the complexities involved.

The Digital Signal Processing Block

Digital signal processing (DSP) is a catch-all term for
performing math-based operations on signals within a
digital system. Often these math operations need to happen
very fast and in parallel, which makes FPGAs an excellent
tool for the job. Since DSP is such a common FPGA
application, another kind of FPGA primitive, the DSP block,
exists for this purpose. DSP blocks (also known as DSP

tiles) specialize in performing mathematical operations, in
particular multiply–accumulate (MAC), which is an
operation where a multiplication is followed by an addition.
Before we look more closely at these primitives, however,
it’s worth taking a step back to discuss the difference
between analog and digital signals.

Analog vs. Digital Signals

An analog signal is a continuous signal representing some
physical measurement. A common example is the audio
signal stored on a vinyl record (a big black shiny thing that
has music on it, sometimes seen in old movies or new
hipster bars). The record is etched with a continuous

groove that mirrors the continuous waveform of the audio.
Then a record player reads that waveform with a needle
and amplifies the resulting signal to play back the sound.
The information is always analog; no conversion is needed.

Digital signals, on the other hand, aren’t continuous.
Rather, they consist of discrete measurements at individual
points in time, with gaps in between. A common example is
the audio signal stored on a CD, where the sound is
represented as a series of 1s and 0s. If you have enough
discrete measurements, you can fill in the gaps to create a
reasonably accurate approximation of an analog signal
from those digital values. A CD player reads those digital
values and rebuilds an analog waveform from them. The
result is always an approximation of the original analog
signal, however, which is why some audiophiles prefer the
true analog signal of a record to digital media like CDs and
MP3s.

Within your common FPGA fabric, like LUTs and flip-
flops, data is represented digitally. So what do you do if you
have some analog signal that you need to bring into your
FPGA? This is the purpose of an ADC: it converts an analog
signal into a digital one by sampling it, or recording its
value, at discrete points in time. Figure 9-3 shows how this
works.

Figure 9-3: Digital sampling of an analog signal

The undulating line moving from left to right in the
figure represents a continuous analog signal, and the dark
points along that line represent the individual samples
taken of that signal to convert it into a digital form. Notice
that the samples are taken at regular time intervals. The
frequency at which the analog signal is sampled is called
the sampling frequency or sampling rate. The higher the
sampling rate, the more accurately we can represent an
analog signal, because it’s easier to connect the discrete
dots into something that looks like the original waveform.
However, a higher sampling rate also means that we have
more data that we have to process: each dot represents
some number of bits of digital data, so the more dots you
have, the more bits you’re working with.

Common DSP Tasks

FPGAs commonly take an analog signal as input, digitize it,
and then do some math to process that digital data. As an
example, let’s say we have an audio signal that we’ve
sampled within our FPGA. Let’s furthermore assume that

the recorded data was too quiet, so when it’s played back
it’s hard to hear. How can we manipulate the digital signal
such that the output volume is louder? One simple thing we
can do is multiply every digital value by some constant, say
1.6. This is called applying gain to a signal. How would we
accomplish this within an FPGA? It’s quite simple:

gain_adjusted <= input_signal * 1.6;

We take the input_signal, multiply every discrete digital
value in that signal by 1.6, and store the result in the
gain_adjusted output. Here is where the DSP primitive
comes into play. When we write code like this, the
synthesis tools will see that we’re performing a
multiplication operation and infer a DSP block for us
automatically.

Applying gain to an input signal doesn’t require parallel
processing. There’s only one multiplication operation per
data sample, and the data samples can be processed one
after the other. Often, however, you’ll need to perform
many mathematical operations in parallel by running
several DSP blocks simultaneously. A common example is
creating a filter, a system that performs mathematical
operations on a signal to reduce or enhance certain
features of the input signal. A low-pass filter (LPF), for
instance, keeps the frequency components of a signal that
are below some cutoff while reducing the frequencies that
are above that cutoff, which can be useful for removing
high-frequency noise from an input signal. Lowering the
treble slider on your audio system is a real-world example
of applying a low-pass filter, since it will reduce high
frequencies within the audio. The details of implementing a
digital LPF are beyond the scope of this book, but since it
requires many multiplication and addition operations all

occurring at the same time, FPGAs are well suited for the
task.

Another example of parallel math that might be
performed in an FPGA is processing video data to create a
blur effect. Blurring video involves replacing individual
pixel values with the average value of a group of
neighboring pixels. This requires performing math on the
many pixels in an image at the same time, and this must
happen quickly since the video data consists of many
images per second. An FPGA is very capable of performing
these parallel mathematical operations using DSP blocks.

Features

DSP blocks are versatile primitives, providing many
features that facilitate different math operations. You won’t
always need every feature for your application—most often,
you’ll just be performing a multiplication or addition
operation—but for more complicated scenarios, the DSP
block can be set up to solve a wide range of problems.
Figure 9-4 provides a detailed look at a DSP block in an
FPGA from AMD. Each manufacturer’s DSP primitive is a
bit different, but this example is representative of the
typical features available.

Figure 9-4: Block diagram of a DSP primitive

This diagram actually shows a simplified version of the
DSP block. It’s not critical to understand the complete
anatomy of the primitive, but it’s worth pointing out a few
things. First, notice that this DSP block can take up to four
inputs and has two outputs. This allows for more
applications than simply multiplying two numbers together:
for example, MAC, where the result of a multiplication is
fed back into the input at the next clock cycle for an
addition operation.

Toward the left-hand side of the block diagram, you can
see a pre-adder block. This can be enabled if an addition
operation is requested prior to another mathematical
operation. To the right of this, near the middle of the
diagram, is a circle with an X in it. This is the multiplier,
which is the heart of the DSP block. It performs
multiplication operations at very high speeds. To its right is
a circle labeled ALU, short for arithmetic logic unit, which
can perform more operations, like addition and subtraction.
Finally, there are built-in output registers that can be

enabled to sample the outputs and help meet timing at fast
data rates.

Like the number of block RAMs, the number of DSP
blocks available to you will vary from FPGA to FPGA. Some
higher-end FPGAs have thousands of DSP blocks inside
them; again, you should consult your FPGA’s datasheet for
details specific to your model. As an example, Figure 9-5
highlights the information on DSP blocks in the datasheet
for Intel’s Cyclone V product line.

Figure 9-5: DSP blocks on Cyclone V FPGAs

Notice that the DSP block information comes just below
the block RAM information, again pointing to the
importance of these primitives in FPGA development. The
5CEA2 FPGA has 25 DSP blocks, but that increases to 66
for the 5CEA4 and 150 for the 5CEA5. Each DSP block has
two multipliers, so on the second highlighted line we can
see that there are twice as many 18 × 18 multipliers
(where 18 is the width of the inputs) as there are DSP
blocks.

NOTE

If there aren’t any DSP blocks available on your FPGA, that

doesn’t mean you can’t perform these types of operations.

Multiplication and addition operations will just be

implemented with LUTs, rather than with dedicated DSP

blocks. We’ll discuss this further in Chapter 10.

Creation

As with block RAMs, I generally recommend using
inference to create DSP blocks. Most of the multiplication
operations you’ll need to do will require two inputs and one
output, as you saw earlier when we applied gain to a signal.
It’s simple enough to write the relevant code in Verilog or
VHDL and let the tools handle the rest. Remember to check
your synthesis report to ensure that you’re getting what
you expect, but I’ve had good luck with the synthesis tools
understanding my intent with addition and multiplication
and pushing those operations to DSPs where relevant. The
user guides for your particular FPGA will also provide you
with suggestions on how to write your Verilog or VHDL
code to help ensure the tools understand your intentions.

If you have more complicated needs for your DSP
blocks, or if you want to explore all of the features and
capabilities internal to them, then you should probably
create them using a GUI to ensure you get what you want.
Figure 9-6 shows an example of creating a multiplier within
the Lattice Diamond GUI.

Figure 9-6: Creating a DSP block with a GUI

One thing to highlight here is the Block Implementation
drop-down menu. You can change this from DSP to LUT to
use look-up tables rather than a DSP block to perform this
multiplication operation. As mentioned previously, LUTs
and DSPs are both capable of performing math operations,
including multiplication. With the DSP block, however,
you’ll save LUT resources, and you’ll be able to run the
math operation at much faster clock rates, since you’ll be
using a dedicated primitive highly optimized for math.

The Phase-Locked Loop

The phase-locked loop (PLL) is a primitive commonly used
as the main clock generator for your entire FPGA. Very
often, you’ll have an external clock chip that runs at some
frequency. On some FPGAs, you can simply use that input
clock to feed all of your synchronous logic directly, as

we’ve done in this book’s projects. In this case, your logic
frequency will be fixed at the frequency of whatever
external clock you picked. But what happens if you need to
change that frequency? Without a PLL, you would need to
physically remove the external clock chip and replace it
with a different component that generates the clock
frequency you want to switch to. With a PLL, however, you
can generate a different clock frequency inside your FPGA
by changing a few lines of code, without requiring a new
external component.

PLLs also make it easy to have multiple clock domains
in your FPGA design. Say you have some external memory
that runs at 100 MHz, but you want your main logic to run
at 25 MHz. You could purchase a second external clock and
feed that into your FPGA, but a better solution is to use a
PLL, since this primitive can generate multiple clock
frequencies simultaneously.

Not all FPGAs have a PLL, but many have at least one,
and some have several. The datasheet will tell you what’s
available. As an example, Figure 9-7 highlights the PLLs
available on Intel’s Cyclone V product line.

Figure 9-7: PLLs on the Cyclone V product line

The 5CEA2 and 5CEA4 FPGAs both have four PLLs,
while the 5CEA5 has six. Given that each PLL can generate
multiple clocks, that should be more than enough for all
your clocking needs.

How It Works

A PLL serves as the source of your clock distribution
throughout your FPGA by taking a single clock input, often
called the reference clock, and generating one or more
clock outputs from it. The input clock comes from a
dedicated external component, and the outputs can run at
completely different frequencies from the input clock and
from one another. The block diagram in Figure 9-8 shows
the most common signals on a PLL.

Figure 9-8: Common PLL signals

The PLL typically takes two inputs: a clock signal and a
reset. The reset input will stop the PLL from running when
it’s asserted.

On the output side, the PLL has some number of output
clocks in the range 1 to N, with the maximum number
depending on the FPGA. The output clocks can be of
different frequencies, depending on what you need for your
design. These frequencies are achieved by taking the input
reference clock and multiplying and/or dividing it to get the
desired value. For example, say you have a 10 MHz input
reference clock, and you want a 15 MHz output clock. The
PLL would multiply the reference clock by 3 (giving you 30

MHz), then divide it by 2 to get down to 15 MHz. The
multiplication and division terms must be integers, so it’s
important to realize that you can’t get any arbitrary
frequency out of the PLL. It isn’t possible to get a π MHz
clock output from a 10 MHz clock input, for example, since
π is an irrational number that can’t be expressed as the
ratio of two integers.

Besides varying the frequency of the output clock(s), a
PLL can also vary their phase. A signal’s phase is its
current position along the repeating waveform of the
signal, measured as an angle from 0 to 360 degrees. It’s
easiest to picture what this means by comparing two
signals that share a frequency but aren’t aligned in time.
Figure 9-9 demonstrates some common phase shifts of a
clock signal.

Figure 9-9: Common phase shifts

As this figure shows, shifting the phase of a clock signal
results in moving the location of its rising edges. Compare
the first rising edge of Clk (which has no phase shift) with
the first rising edge of Clk+90° (which is phase-shifted by 90
degrees). The rising edge of Clk+90° is delayed by one-
quarter of a clock period relative to Clk. Each increment of
90 degrees shifts the signal by another quarter period.
Continuing the example in the figure, we have Clk+180°,
which is delayed by 90 degrees from Clk+90° and 180
degrees from Clk. Notice that Clk+180° is actually the same
waveform that you would get if you took the Clk signal and

inverted it by swapping the highs and lows. Finally, Clk+270°
is delayed by three-quarters of a clock period relative to the
original Clk signal. If you went a full 360 degrees, you’d be
back to your original signal. This example has
demonstrated positive phase shifts, but phase can also be
negative, meaning the signal is shifted backward in time
compared to the other. Of course, you can shift the phase
by any arbitrary angle, not just in 90-degree steps.

NOTE

Creating clocks with phase shifts isn’t very common in

simple designs, but it can be useful in some applications.

For example, it might be important for interfacing to

external components, like some off-FPGA memory.

Returning to the block diagram in Figure 9-8, a PLL
also typically has a locked output signal, which tells any
module downstream that the PLL is operating and you can
“trust” the clocks. It’s a common design practice to use this
locked signal as a reset to other modules relying on the
PLL’s clocks. When the PLL isn’t locked, the modules
downstream of the PLL are held in a reset state until the
PLL is locked and ready, meaning the output clocks can be
used by other modules in your FPGA design. When the
PLL’s reset input is driven high its locked output will go
low, putting the downstream modules back into a reset
condition.

If you’re going to use a PLL in your design, it’s a good
idea to use only the PLL’s outputs for all your clocking
needs. Even if part of your design runs at the same clock
frequency as the external reference clock, you shouldn’t
use the external clock directly to drive that part of the
design. Instead, have the PLL output a clock signal at the
same frequency as the external reference. By only using
the PLL’s outputs, you can tightly control the relationships

between the output clocks. Additionally, you can
confidently use the locked output of the PLL for your reset
circuitry, knowing it reflects the state that all clocks in your
design are operational.

Creation

The PLL is one primitive that I recommend using a GUI to
create, since the synthesis tools won’t be able to infer a
PLL. Instantiation is also possible, but it’s prone to errors.
You need to choose PLL settings that are compatible with
one another for the PLL to work successfully, and during
instantiation it’s easy to pick settings that won’t work. If
you had a 10 MHz reference clock and you wanted to
generate one 15 MHz output and a separate 89 MHz
output, for example, that simply might not be possible, but
you might miss that fact during instantiation.

When you create a PLL using the GUI, you tell it your
input reference clock and desired output clock frequencies,
and the tool will tell you if it can find a solution that works.
Continuing the 10/15/89 MHz example, the GUI might tell
you that the closest value to 89 MHz that it can give you is
90 MHz (since 90 MHz is a multiple of both 10 MHz and 15
MHz, this is likely to work). Then it’s up to you to decide
whether 90 MHz will work for your design or if you really
need 89 MHz, in which case you might need to use a
separate PLL or change your reference clock. Figure 9-10
shows an example of the PLL GUI within Lattice Diamond.

Figure 9-10: Creating a PLL with a GUI

As you can see, the GUI helps guide us through the PLL
creation process. In this case, we have a 30 MHz reference
on CLKI, and we’re setting the desired output frequencies to
30 MHz on CLKOP, 60 MHz on CLKOS, 15 MHz on CLKOS2, and
89 MHz on CLKOS3. Notice that for each clock except CLKOS3,
the actual frequency on the far right matches the desired
frequency. For CLKOS3, when I first tried to create an 89
MHz clock with 0.0 percent tolerance, I got the error
message shown in Figure 9-11.

Figure 9-11: Actionable feedback from invalid PLL settings

Not until I changed the tolerance to 2.0 percent did the
error message go away; the tool had selected an actual
frequency of 90 MHz, which is within 2.0 percent of the
requested frequency. This type of guidance isn’t provided if
you try to instantiate your PLL directly.

Another helpful feature of the GUI is the PLL block
diagram, shown in the left half of Figure 9-10. This diagram
will be updated if you modify the inputs or outputs. For
example, if we disabled CLKOS3, that output would disappear
from the block diagram to reflect that we only want to
output three clock signals. This is useful to ensure you’re
creating what you expect. Notice that there’s also a
separate Phase tab near the top of the window, which
allows us to specify phase shifts on our output clocks.

After designing a PLL in the GUI, you can run your
design through the normal synthesis process. The
utilization report will confirm you’re getting a PLL, as it’s
one of the main primitives highlighted in the report. Here’s
an example:

--snip--

Number of PLLs: 1 out of 4 (25%)

This indicates one PLL is being used out of four
available on this particular FPGA.

Summary

The majority of your Verilog and VHDL code will be
dedicated to creating LUTs and flip-flops, which are the

two most fundamental FPGA components. However, as
you’ve seen in this chapter, FPGAs also contain other
primitive components, such as block RAMs, DSP blocks,
and PLLs, that add specialized functionality. Block RAMs
add dedicated memory, DSP blocks enable high-speed
parallel math operations, and PLLs allow you to generate
different internal clock frequencies. With a combination of
these FPGA building blocks, you’ll be able to solve a wide
range of problems efficiently.

10

NUMBERS AND MATH

Throughout this book, I’ve
been saying that FPGAs are

good at performing mathematical
computations quickly. I’ve also been
saying that FPGAs are good at doing tasks
in parallel, and that the combination of
these two assets—fast math done in
parallel—is one of their killer features. In
low-level Verilog or VHDL code, however,
working with numbers and math is full of
pitfalls.

In this chapter, we’ll explore exactly how FPGAs
manage mathematical calculations so you can avoid those
pitfalls. To understand the details of how operations like
addition, subtraction, multiplication, and division work, we
also need to understand how to represent numbers, both
positive and negative, with or without decimals, inside your
FPGA. It’s time for a journey in the wonderful world of
computer arithmetic.

Numerical Data Types

There are many ways to represent numbers in Verilog or
VHDL, as is true with all programming languages. For
example, if you want to store only whole numbers, you can
use an integer data type, but if you need to store fractional
numbers, you’ll need a data type that can represent
decimals. Choosing the right type for the data you’re trying
to represent is critical in any programming language. If you
assign data to the wrong type, you’ll either get compiler
errors or, worse, a design that behaves strangely. For
example, trying to assign a decimal number to an integer
data type could truncate the fractional component, causing
an unintended rounding operation.

Additionally, you don’t want to use more resources than
necessary. For example, you could create every signal with
a 64-bit-wide data type, but that’s clearly overkill if all you
need is a counter that goes from 0 to 7. FPGAs provide
even more granular control over data types than you get
with most other programming languages. For example, C
has the uint8_t, uint16_t, and uint32_t data types, which
create data widths of 8, 16, and 32 bits, respectively, but
there’s nothing in between. In Verilog and VHDL, by
contrast, you can create a signal that’s 9 bits wide, 15 bits
wide, 23 bits wide, or any other number. We’ll explore
recommendations for sizing signals later in this chapter.

Representing Signed vs. Unsigned Values

When you’re working with numbers, you need to know if
they’re positive or negative. Sometimes, such as if you’re
counting clock cycles to keep track of time, you’ll know the
values will all be positive. In this case, you can store the
numbers using an unsigned data type; the sign (positive or
negative) isn’t specified and is assumed to be positive.
Other times, you’ll need to work with negative numbers: for
example, when you’re reading temperature values, where

the sign of the numbers might vary. In these cases you’ll
need to use a signed data type, where the positive or
negative sign is specified.

By default, signals in Verilog and VHDL are unsigned.
For example, if we need a counter that counts from 0 to 7,
we can declare a signal like reg [2:0] counter; in Verilog or
signal counter : std_logic_vector(2 downto 0); in VHDL. We’ve
used code like this throughout the book. It will create a 3-
bit register, and since it’s unsigned by default, the values
on the register will all be interpreted as positive. If we want
counter to represent negative numbers as well as positive
ones, we’d have to explicitly declare it to be signed using
the signed keyword. In Verilog we would write reg signed
[2:0] counter;, and in VHDL we would use signal counter :
signed(2 downto 0);.

NOTE

To access the signed keyword in VHDL, you need to use the

numeric_std package, which you can do by adding the line

use ieee.numeric_std.all; at the top of your file. You may see

some code that uses the std_logic_arith package instead,

but this isn’t an official IEEE-supported library and I don’t

recommend using it. It’s easier to make mistakes with this

package than with numeric_std.

Using the signed keyword explicitly tells the tools that
this 3-bit-wide register can represent negative and positive
values. But which values can we actually represent with it?
Table 10-1 compares the values represented by a 3-bit
unsigned register and a 3-bit signed register. (We’ll discuss
how to determine the signed values in the next section.)

Table 10-1: 3-Bit Unsigned vs. Signed Decimal Values

Bits Unsigned decimal value Signed decimal value

000 0 0

Bits Unsigned decimal value Signed decimal value

001 1 1

010 2 2

011 3 3

100 4 –4

101 5 –3

110 6 –2

111 7 –1

Notice that when a register is declared as signed, we
lose some numbers on the positive end of the range (4, 5, 6,
and 7 in this case) but gain some numbers on the negative
end (–1, –2, –3, and –4). The range of numbers that can be
represented by an unsigned register is 0 to 2N − 1, where N
is the number of bits available. For this 3-bit register, we
can represent from 0 to 23 − 1 = 7 if the register is
unsigned. On the other hand, the range of numbers that
can be represented by a signed register is –2(N–1) to 2(N–1) −
1. In this case, that gives us –2(3–1) to 2(3–1) − 1, or = –4 to 3.
The data is still 3 bits of binary data, but what that binary

data represents is different.
Another feature to notice in Table 10-1 is that the

values that are negative all have a 1 in the most significant
bit position. In fact, the most significant bit in a signed
number is the sign bit, which indicates whether the number
being represented is positive or negative. For signed binary
numbers, a 0 in the sign bit tells you that the number is
positive, while a 1 in the sign bit tells you that the number
is negative.

Taking the Two’s Complement

How do you know what decimal value a negatively signed
binary number is supposed to represent? You take its two’s

complement, a mathematical operation where you invert

the number’s bits and then add 1. For example, take the
binary number 101. If this were an unsigned number, we’d
interpret it as 5 in decimal, but if it’s a signed number, the
1 in the sign bit tells us that the represented value should
be negative, so we have to take the two’s complement.
First, we invert 101, which gives us 010. Then we add 1,
giving us 011, which is 3 in decimal. Finally, we apply the
negative sign to get –3. Look back at Table 10-1 and you’ll
see that’s what we have in the row for 101.

NOTE

An alternative to the invert-and-add-one method is to start

at the right-most (least significant) bit, move left until you

get to the first 1, then invert all the remaining bits to the

left of that 1. For example, 100010 100 becomes 011101

100. The three bolded bits, up to and including the first 1

from the right, remain the same, while the others are

inverted. In decimal, 011101100 is 236; applying the

negative sign, we know that 100010100 represents –236.

This method avoids the need for addition and can be

simpler for long numbers.

We can also take a two’s complement to go in the other
direction, converting a negative decimal number into its
signed binary representation. For example, how would we
represent –1 in binary using 3 bits? First, strip away the
negative sign to get 1, which is 001 in binary. Then invert
the bits to get 110, and add 1 to get 111. Again, check Table
10-1 and you’ll see that this is the correct result.

Taking the two’s complement is a useful trick us
humans can use to better understand how to interpret
signed numbers, but this invert-and-add-one logic isn’t

something an FPGA actually does when working with
negative values. The data is binary 1s and 0s whether a
number is signed or unsigned. It’s just the representation

of those 1s and 0s that makes a difference. When you have
a 3-bit unsigned signal set to 101, that represents the
decimal value 5. When you have a 3-bit signed signal set to
101, that represents the decimal value –3. The FPGA doesn’t
have to invert and add bits anywhere to know that. It just
needs to know that the signal is of a signed data type. This
is an important point and will become clearer as we explore
mathematical operations in binary.

Sizing Signals Appropriately

When you write Verilog or VHDL code working with signed
and unsigned data types, you must ensure that you
properly size the signals you’re creating. If you try to store
too large of a number in too small of a signal, you’ll get
data loss. As we just discussed, for example, the value of a
3-bit unsigned counter maxes out at 7. If you try to
increment it again from 7, it won’t go to 8; it’ll actually go
back to 0. This is sometimes called wraparound, and if
you’re not expecting it, you’ll end up losing count. As you’ll
see later in the chapter, ensuring your signals are large
enough to handle your data is particularly important when
the signals are for holding the results of mathematical
operations.

To avoid data loss you might be tempted to make all
your signals larger than they need to be, but there’s a
downside to this, too: you’ll end up using more of your
FPGA’s precious resources than are needed. This may be
less of a problem than you think, though. If the synthesis
tools are smart enough, they might detect that your
possible range of values is smaller than the signal you’ve
created and remove the upper bits that are unused to
conserve resources. If the tools did this to our counter
register, for example, we’d see a warning saying something
like Pruning register counter in the synthesis report. Getting

a warning like this isn’t usually a problem, but it might
indicate code you could revisit and size differently.

As a rule of thumb, you should aim to size your signals
to the values you expect them to store, but know that
making them too large is a much better solution than
making them too small. Of course, you have to remember
that the maximum value you can represent with a given
number of bits varies depending on whether the values are
signed or unsigned. For comparison, Table 10-2
summarizes the ranges of possible unsigned and signed
values you can represent using between 2 and 8 bits.

Table 10-2: N-bit Sizing for Unsigned and Signed Data Types

Width Type Min integer Min binary Max integer Max binary

2 Unsigned 0 00 3 11

2 Signed –2 10 1 01

3 Unsigned 0 000 7 111

3 Signed –4 100 3 011

4 Unsigned 0 0000 15 1111

4 Signed –8 1000 7 0111

5 Unsigned 0 00000 31 11111

5 Signed –16 10000 15 01111

6 Unsigned 0 000000 63 111111

6 Signed –32 100000 31 011111

7 Unsigned 0 0000000 127 1111111

7 Signed –64 1000000 63 0111111

8 Unsigned 0 00000000 255 11111111

8 Signed –128 10000000 127 01111111

Starting at a width of 2 bits, we can represent the
numbers 0 to 3 unsigned, or –2 to 1 signed. At a width of 8
bits, we can represent 0 to 255 unsigned, or –128 to 127
signed.

One way to bypass the sizing dilemma is to size your
signals dynamically, instead of setting them to a fixed
width. We’ve seen some examples of this throughout the
book. For instance, if you need to index into something 32
words deep but that depth could change in the future, you
could write something like reg [$clog2(DEPTH)-1:0] index;
instead of reg [4:0] index; in Verilog, or signal index :
integer range 0 to DEPTH-1; instead of signal index :
std_logic_vector(4 downto 0); in VHDL. Here, DEPTH is a
parameter/generic that can be changed on the fly. Using it
will generate a signal of the exact bit width you need, wide
enough to index into all possible values from 0 to DEPTH-1,
with no extra headroom. In this case, you would set DEPTH to
32, but if your indexing requirement were to grow to some
larger value (say 1,024), the code won’t break; all you’ll
have to do is change DEPTH. By contrast, if you arbitrarily say
that index will be fixed to 8 bits wide (which has a maximum
value of 255, as you can see in Table 10-2), then your code
might break in the future if your requirements grow beyond
that range.

Converting Between Types in VHDL

VHDL has many numeric data types, including signed and
unsigned, where binary values are interpreted as positive or
negative decimal numbers; integer, where you can type
numbers directly into the code; and std_logic_vector, where
by default binary values aren’t interpreted as anything
other than binary values. Because VHDL is strongly typed,
you’ll often need to convert between these different data
types when you’re working with numbers. Before we do any
math, let’s look at some examples of how to implement
common VHDL type conversions using the numeric_std
package (not the unofficial std_logic_arith).

NOTE

Verilog users don’t need to worry about performing these

conversions, since Verilog is loosely typed. VHDL users

should consult this section as needed for reference.

From Unsigned or Signed to Integer

This example illustrates how to convert from the unsigned or
signed type to the integer type. For simplicity, we’re
assuming the signals are all 4 bits wide, but the conversion
will work for any bit width:

signal in1 : unsigned(3 downto 0);

signal in2 : signed(3 downto 0);

signal out1 : integer;

signal out2 : integer;

out1 <= to_integer(in1);

out2 <= to_integer(in2);

For these conversions, all we need to do is call the
to_integer() function from the numeric_std package. We
already know the width and the sign of the input, so the
output will be sized automatically. This works whether the
input is unsigned (as with in1) or signed (as with in2).

From Integer to Unsigned, Signed, or std_logic_vector

This example shows how to convert from the integer type to
one of the other types. Again, we’re assuming 4-bit signals:

signal in1 : integer;

signal out1 : unsigned(3 downto 0);

signal out2 : signed(3 downto 0);

signal out3 : std_logic_vector(3 downto 0);

signal out4 : std_logic_vector(3 downto 0);

❶ out1 <= to_unsigned(in1, out1'length);

❷ out2 <= to_signed(in1, out2'length);

-- Positive integers:

❸ out3 <= std_logic_vector(to_unsigned(in1, out3'length));

-- Negative integers:

❹ out4 <= std_logic_vector(to_signed(in1, out4'length));

Here we use the to_unsigned() ❶ and to_signed() ❷
functions from numeric_std to convert from the integer to the
unsigned or signed type. In addition to the value to be
converted, these functions require the width of the output
signal as an argument. Rather than entering the width
manually, we get it by applying 'length, a VHDL attribute,
to the output signal. This keeps the code flexible; if the
width changes, the conversion code doesn’t have to.

To get to std_logic_vector, we have to convert from
integer to unsigned if the integer is positive ❸, or to signed if
the integer is negative ❹. Then, once we have an unsigned
or signed value of the proper width, we cast it using
std_logic_vector().

From std_logic_vector to Unsigned, Signed, or Integer

Finally, here’s how to convert from the std_logic_vector type
to one of the other numeric types:

signal in1 : std_logic_vector(3 downto 0);

signal out1 : unsigned(3 downto 0);

signal out2 : signed(3 downto 0);

signal out3 : integer;

signal out4 : integer;

❶ out1 <= unsigned(in1);

❷ out2 <= signed(in1);

-- Demonstrates the unsigned case:

❸ out3 <= to_integer(unsigned(in1));

-- Demonstrates the signed case:

❹ out4 <= to_integer(signed(in1));

To get to unsigned ❶ or signed ❷, we use a simple cast.
However, VHDL needs to know if the std_logic_vector is
unsigned or signed before converting to the integer type.

We perform the appropriate cast using unsigned() ❸ or
signed() ❹, then call the to_integer() function to do the final
conversion.

Performing Mathematical Operations

Now we’ll consider how basic addition, subtraction,
multiplication, and division operations are performed
within an FPGA, and how to implement them in Verilog and
VHDL. I’ll suggest some rules that, if followed, will help you
avoid many of the commit pitfalls when working with binary
math. The best way to explore these concepts is through
examples. To that end, we’ll create a large testbench that
you can run in a simulator tool like EDA Playground. The
testbench will execute dozens of different math equations,
illustrating how binary math operations should be carried
out and how they can go awry.

In general, when working with numbers and
manipulating them with algebraic operations, testbenches
are a very powerful tool. Hidden math issues in your code
can manifest themselves in strange ways. Testbenches
allow you to stress your design by running through a large
range of possible inputs, to see how the code works. I find
it valuable to inject data into my testbenches that stress the
math operations over a wide range of values, including
minimum and maximum inputs. This helps ensure a design
is robust.

Before we do any math, let’s set up our testbench,
called Math_Examples, by declaring all the necessary inputs
and outputs, as well as some helper functions in the VHDL
version. This setup code provides the skeleton for the
examples that follow throughout the rest of the chapter.
The code for each example will go where the -- snip-- is
shown in the setup code:

Verilog

module Math_Examples();

 reg unsigned [3:0] i1_u4, i2_u4, o_u4;

 reg signed [3:0] i1_s4, i2_s4, o_s4;

 reg unsigned [4:0] o_u5, i2_u5;

 reg signed [4:0] o_s5, i1_s5, i2_s5;

 reg unsigned [5:0] o_u6;

 reg unsigned [7:0] o_u8, i_u8;

 reg signed [7:0] o_s8;

 initial begin

 --snip--

 $finish();

 end

endmodule

VHDL

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

use std.env.finish;

entity Math_Examples is

end entity Math_Examples;

architecture test of Math_Examples is

 -- Takes input unsigned, returns string for printing

❶ function str(val : in unsigned) return string is

 begin

 return to_string(to_integer(val));

 end function str;

 -- Takes input signed, returns string for printing

❷ function str(val : in signed) return string is

 begin

 return to_string(to_integer(val));

 end function str;

 -- Takes input real, returns string for printing

❸ function str(val : in real) return string is

 begin

 return to_string(val, "%2.3f");

 end function str;

begin

 process is

 variable i1_u4, i2_u4, o_u4 : unsigned(3 downto 0);

 variable i1_u5, i2_u5, o_u5 : unsigned(4 downto 0);

 variable i1_s4, i2_s4, o_s4 : signed(3 downto 0);

 variable i1_s5, i2_s5, o_s5 : signed(4 downto 0);

 variable i1_u6, i2_u6, o_u6 : unsigned(5 downto 0);

 variable i1_u8, i2_u8, o_u8 : unsigned(7 downto 0);

 variable i1_s8, i2_s8, o_s8 : signed(7 downto 0);

 variable real1, real2, real3 : real;

 begin

 --snip--

 wait for 1 ns;

 finish;

 end process;

end test;

The skeleton for this testbench sets up a single initial
(in Verilog) or process (in VHDL) block that runs once
through. We’ll fill in this block with examples later in the
chapter. Notice that we’ve declared a number of signals
using reg (in Verilog) and variable (in VHDL). This is the
first time we’ve seen the variable keyword in VHDL: we
need it so we can write blocking assignment statements in
the testbench. See “Blocking vs. Non-Blocking
Assignments” on page 214 for more information.

The examples in this chapter use a common naming
scheme to quickly identify the data types and widths of the
signals so you don’t have to keep looking back at the signal
definitions. The prefix i indicates an input to a math
equation, while o indicates an output, the result of the math
equation. In addition, we have the suffixes _uN and _sN,
where u represents unsigned, s represents signed, and N
represents the bit width of the signal. For example, o_s4 is a
4-bit-wide signed output. Establishing a scheme like this
that makes it easier to remember data types and widths can

be very helpful in your code, especially if there are many
values in a single file.

Notice in the VHDL that we declare a custom function,
str(), to help convert the outputs of our equations to
strings for printing. This will save us a lot of typing in the
examples later on. We actually define the function in three
different ways, depending on the data type involved—
because VHDL is strongly typed, we need to define all the
supported function inputs so that the compiler knows which
one to use. The first definition ❶ converts an unsigned value,
the second ❷ converts a signed value, and the third ❸
converts a real value. This is an example of function
overloading, a programming technique where a single
function can have multiple implementations. Overloading is
a somewhat advanced VHDL concept, but it’s very useful.
You can even overload normal VHDL operators like + and –
with any implementation that you need, though I don’t
recommend doing so.

Now that we have our testbench set up, we’re ready to
start exploring math operations.

BLOCKING VS. NON-BLOCKING ASSIGNMENTS

Up to this point, we have been assigning all signals within our always, initial,

and process blocks with <=, which is a non-blocking assignment. As we

discussed in Chapter 4, this means that these statements execute at the

same instant in time. Non-blocking assignments are what allow us to write

several statements one after the other that will all execute on the same

clock edge. These assignments are key to FPGA design; they are how we

can write operations that occur in parallel, instead of serially. Remember,

flip-flops that share the same clock are all updated on the same clock edge,

all at once.

There’s also such a thing as a blocking assignment, however, written

with = in Verilog or := for VHDL variables, where the next line of code won’t

execute until the current line is finished running. Blocking assignments are

probably familiar if you have experience with conventional programming

languages. We’re used to the idea that when we write two lines of code in a

language like C or Python, the second line won’t execute until the first line is

done. In FPGA design, however, non-blocking assignments are the norm.

They’re the preferred way to generate sequential logic (flip-flops). When in

doubt, stick to non-blocking assignments in your always, initial, and process

blocks.

An exception is if you’re writing a testbench, where blocking

assignments are useful when data needs to be updated at an exact point

during the simulation, especially for printing. To see why, consider this

Verilog testbench code:

int test = 0;

initial begin

 test <= 7;

 $display("value is %d\n", test);

We change the value of test from 0 to 7, then use $display to print it out.

But what value of test will be printed to the console? It’s actually going to be

0, not 7. The line test <= 7; uses a non-blocking assignment, so it happens at

the same time as the printing. Therefore, the value of test won’t have

updated yet when $display reads that value for printing. We can fix this issue

by using a blocking assignment instead:

int test = 0;

initial begin

 test = 7;

 $display("value is %d\n", test);

Thanks to the blocking assignment (test = 7;), the simulation will wait to

execute the $display line until the value of test has been updated. The value

will now print out as 7, which is probably what was intended.

Another way you can fix this issue is to add a small delay between the

non-blocking assignment and the next line, like this:

test <= 7;

#1;

$display("value is %d\n", test);

The short delay (#1) provides enough simulation time for the non-

blocking assignment to complete before printing, so the value will be

displayed as 7.

In the testbench examples throughout this chapter, we’ll be updating

and then printing out a lot of values. Rather than add a bunch of small

delays throughout the testbench, we’ll use blocking assignments to ensure

the values are updated before printing. Keep in mind that (as mentioned

previously) to use the blocking assignment in VHDL, we need to declare

values using the variable keyword rather than the signal keyword.

Addition

Adding binary data works the same way you were taught to
add numbers in elementary school: you add them one digit
at a time, working from right to left. For example, here’s
how to add the binary numbers 0010 and 1000:

 0010

+ 1000

 01010

To arrive at the result, you simply go digit by digit,
starting with the least significant bit, adding the digits in
that column together. If you get 1 + 1 = 10 in a column,
then you write 0 at the bottom of the column and carry the
1 to the next digit to the left.

Notice that the result of adding two 4-bit numbers
together is 5 bits wide. This is our first rule of FPGA math:

Rule #1 When adding, the result should be at least 1
bit bigger than the biggest input.

The extra bit is needed in the case where adding the most
significant bit requires a carry operation. Without the extra
bit, we’d be truncating the result, which could produce an
incorrect answer. In our first example, dropping the most
significant bit wouldn’t make a difference, but consider this
example where having that extra bit is critical:

 1001

+ 1011

 10100

Here, the most significant bit of the result is a 1. Had
we just assumed that the output width would be the same
as the input widths, then we would have dropped this bit
and gotten the wrong answer. Our result would have been
0100 instead of 10100.

Perhaps you’ve noticed that I haven’t explicitly said
what these binary numbers represent yet, and whether
they’re positive or negative. For example, is 1001 unsigned
and equal to 9, or is it signed and equal to the two’s
complement of 9, which is –7 (invert the bits to get 0110,
then add 1 to get 0111)? The reason I haven’t specified this
is because the representation of the binary data ultimately
doesn’t affect how the math is performed, as long as the
inputs and outputs are sized appropriately. Whether 1001
represents +9 or –7, the addition operation will be
performed the same way. Of course, we care if the result is
positive or negative, but the implementation of the addition
doesn’t change depending on whether the data types are
signed or unsigned. Let’s revisit our first example and
consider what happens when we assign it various signed
and unsigned combinations. Here’s the example again:

 0010

+ 1000

 01010

If both addition inputs are declared as unsigned types,
then we have 2 + 8 = 10. Pretty simple. If both addition
inputs are declared as signed, then the first input is still 2,
but the second input is –8. (Invert the bits to get 0111, add 1
to get 1000, and apply the negative sign to get –8.) So now
we have 2 + –8, which should equal –6, but the result, 01010,
is still 10. Something isn’t right here!

The problem is that we’re not performing sign extension
on the inputs. Sign extension is the operation of increasing

the number of bits of a binary number while preserving the
number’s sign and value. This operation is required when
the inputs are signed. Without it, we’ll get an incorrect
answer, as you’ve just seen. To perform sign extension on a
signed value, simply replicate the most significant bit. For
example, 1000 becomes 11000, and 0010 becomes 00010. Let’s
try that math again, this time first applying sign extension
to our inputs:

 00010

+ 11000

 11010

Our inputs are still 2 and –8. (For the latter, invert the
bits of 11000 to get 00111, add 1 to get 01000, and apply the
negative sign to get –8.) The answer, 11010, is the signed
equivalent of –6, which is exactly what we want. Sign
extension was the critical step to ensure we got the
expected answer.

Sign extension is useful for unsigned values, too. In
fact, since VHDL is strongly typed, the inputs and outputs
to an addition operation must all have exactly the same
width. You can’t, for example, add two 4-bit inputs to
produce a 5-bit output; everything must be 5 bits. That
means we should revisit Rule #1 and add a small
modification:

Rule #1 (modification #1) When adding, the result
should be at least 1 bit bigger than the biggest input,
before sign extension. Once sign extension is applied,
the input and output widths should match exactly.
For unsigned values, sign extension simply means

adding a 0 as the new most significant bit. For example,
unsigned 1000 becomes 01000. The good news for those of
you using Verilog is that the code performs sign extension

automatically when you’re adding numbers. If you’re using
VHDL, however, you’ll need to sign-extend your inputs
manually using the resize() function, as you’ll see in the
coming examples. Both approaches have their pros and
cons. Verilog is easier if you know what you’re doing, as
there’s less to worry about, but it also leaves more room for
mistakes (for example, trying to store data in too small a
signal). VHDL’s extra steps can be more confusing for
beginners, and it generates cryptic errors when the rules
aren’t followed. On the other hand, VHDL ensures that
you’ve matched widths and types every step along the way,
so there’s less room for error in the end.

Let’s summarize what we’ve learned with a few code
examples. Add this code to your testbench where you saw
the -- snip-- earlier:

Verilog

 // Unsigned + Unsigned = Unsigned (Rule #1 violation)

 i1_u4 = 4'b1001; // dec 9

 i2_u4 = 4'b1011; // dec 11

 o_u4 = i1_u4 + i2_u4;

 $display("Ex01: %2d + %2d = %3d", i1_u4, i2_u4, o_u4);

 // Signed + Signed = Signed (Rule #1 violation)

 i1_s4 = 4'b1001; // dec -7

 i2_s4 = 4'b1011; // dec -5

 o_s4 = i1_s4 + i2_s4;

 $display("Ex02: %2d + %2d = %3d", i1_s4, i2_s4, o_s4);

 // Unsigned + Unsigned = Unsigned (Rule #1 fix)

 i1_u4 = 4'b1001; // dec 9

 i2_u4 = 4'b1011; // dec 11

 o_u5 = i1_u4 + i2_u4;

 $display("Ex03: %2d + %2d = %3d", i1_u4, i2_u4, o_u5);

 // Signed + Signed = Signed (Rule #1 fix)

 i1_s4 = 4'b1001; // dec -7

 i2_s4 = 4'b1011; // dec -5

 o_s5 = i1_s4 + i2_s4;

 $display("Ex04: %2d + %2d = %3d", i1_s4, i2_s4, o_s5);

VHDL

 -- Unsigned + Unsigned = Unsigned (Rule #1 violation)

 i1_u4 := "1001"; -- dec 9

 i2_u4 := "1011"; -- dec 11

 o_u4 := i1_u4 + i2_u4;

 report "Ex01: " & str(i1_u4) & " + " & str(i2_u4) & " = "

& str(o_u4);

 -- Signed + Signed = Signed (Rule #1 violation)

 i1_s4 := "1001"; -- dec -7

 i2_s4 := "1011"; -- dec -5

 o_s4 := i1_s4 + i2_s4;

 report "Ex02: " & str(i1_s4) & " + " & str(i2_s4) & " = "

& str(o_s4);

 -- Unsigned + Unsigned = Unsigned (Rule #1 fix)

 i1_u4 := "1001"; -- dec 9

 i2_u4 := "1011"; -- dec 11

 ❶ i1_u5 := resize(i1_u4, i1_u5'length);

 i2_u5 := resize(i2_u4, i2_u5'length);

 o_u5 := i1_u5 + i2_u5;

 report "Ex03: " & str(i1_u5) & " + " & str(i2_u5) & " = "

& str(o_u5);

 -- Signed + Signed = Signed (Rule #1 Fix)

 i1_s4 := "1001"; -- dec -7

 i2_s4 := "1011"; -- dec -5

 i1_s5 := resize(i1_s4, i1_s5'length);

 i2_s5 := resize(i2_s4, i2_s5'length);

 o_s5 := i1_s5 + i2_s5;

 report "Ex04: " & str(i1_s5) & " + " & str(i2_s5) & " = "

& str(o_s5);

Here’s the output:

Verilog

Ex01: 9 + 11 = 4

Ex02: -7 + -5 = 4

Ex03: 9 + 11 = 20

Ex04: -7 + -5 = -12

VHDL

** Note: Ex01: 9 + 11 = 4

Time: 0 ns Iteration: 0 Instance: /math_examples

** Note: Ex02: -7 + -5 = 4

Time: 0 ns Iteration: 0 Instance: /math_examples

** Note: Ex03: 9 + 11 = 20

Time: 0 ns Iteration: 0 Instance: /math_examples

** Note: Ex04: -7 + -5 = -12

Time: 0 ns Iteration: 0 Instance: /math_examples

First, we have two situations (Ex01 and Ex02) where Rule
#1 isn’t followed. We’re using 4-bit inputs and storing the
result in a 4-bit output, and we’re not performing any sign
extension. In both of these examples, we get the wrong
answer. In Ex01, we add two unsigned numbers, 9 and 11,
but get 4 as a result. The problem here is that we’re
dropping the most significant bit, which would be worth 16.
(Indeed, 4 + 16 = 20, which is the answer we should be
getting.) In Ex02, we add two signed numbers representing
negative values, and again we get the wrong answer.

The fix is to store the result in a 5-bit output, which we
do in both Ex03 and Ex04. We’ve satisfied Rule #1, so the
math works correctly. Notice that in the Verilog version,
the sign extension happens automatically: we can simply
assign 4-bit inputs to a 5-bit output, for example by writing
o_u5 = i1_u4 + i2_u4;. In VHDL, however, we must explicitly
match input and output widths, while preserving the sign
and value of each input. To do this, we call the resize()
function ❶. We use the VHDL tick attribute 'length to
reference the length of the output signal, as we did when

we were performing type conversions. Again, this is more
flexible than hardcoding the desired width by writing
something like resize(i1_u4, 5).

Another tip for performing successful addition
operations is to never mix signed and unsigned values.
Your inputs and outputs should be of the same type;
otherwise you might get an incorrect answer. This brings
us to our second rule of FPGA math:

Rule #2 Match types among inputs and outputs.
With VHDL, it’s easy to follow Rule #2 because it will

throw an error if you try to do a math operation where one
input is signed and the other is unsigned. For example, say
you write this in your testbench to try to add a 4-bit
unsigned value (i1_u4) to a 4-bit signed value (i2_s4):

 o_u4 := i1_u4 + i2_s4;

You’ll end up with an error message indicating the tool
doesn’t know how to interpret the + operator given those
inputs:

** Error: testbench.vhd(49): (vcom-1581) No feasible entries

for infix

operator '+'.

Verilog is much more lenient. It will happily let you
perform that math operation, and it won’t tell you that it’s
actually treating your signed input as unsigned. This can
very possibly result in the wrong answer, so be careful to
always match your data types in Verilog.

Subtraction

Subtraction isn’t that different from addition. After all,
subtraction is just an addition operation where one of the
inputs is negative. In this sense, we’ve been doing

subtraction all along; 2 + –8 is the same as 2 – 8. Likewise,
you can think of something like 5 – 3 as 5 + –3 and
approach it like an addition operation.

There’s one thing to be careful with when subtracting
two numbers, though: while you could use subtraction with
unsigned inputs and outputs, I wouldn’t recommend it.
What happens if the result should be negative? For
example, 3 – 5 = –2, but if you try to store –2 into an
unsigned data type, you won’t get the correct result. This
brings us to our next rule:

Rule #3 When subtracting, use signed inputs and
outputs.
Even if you don’t think the result of a subtraction will

produce a negative number, you should use signed data
types to be safe.

Because subtraction is really just negative addition,
subtraction carries the same risk that you could truncate
the result if the output isn’t sized appropriately. Again, it’s
better to size up the output by 1 bit and to sign-extend your
inputs before performing the math operation. This gives us
a further modified Rule #1:

Rule #1 (modification #2) When adding or

subtracting, the result should be at least 1 bit bigger
than the biggest input, before sign extension. Once sign
extension is applied, the input and output widths should
match exactly.
With those two rules in place, let’s extend our

Math_Examples testbench to take a look at some subtraction
operations in Verilog and VHDL:

Verilog

 // Unsigned - Unsigned = Unsigned (bad)

 i1_u4 = 4'b1001; // dec 9

 i2_u4 = 4'b1011; // dec 11

 o_u5 = i1_u4 - i2_u4;

 $display("Ex05: %2d - %2d = %3d", i1_u4, i2_u4, o_u5);

 // Signed - Signed = Signed (fix)

 i1_u4 = 4'b1001; // dec 9

 i2_u4 = 4'b1011; // dec 11

 ❶ i1_s5 = i1_u4;

 i2_s5 = i2_u4;

 o_s5 = i1_s5 - i2_s5;

 $display("Ex06: %2d - %2d = %3d", i1_s5, i2_s5, o_s5);

VHDL

 -- Unsigned - Unsigned = Unsigned (bad)

 i1_u4 := "1001"; -- dec 9

 i2_u4 := "1011"; -- dec 11

 i1_u5 := resize(i1_u4, i1_u5'length);

 i2_u5 := resize(i2_u4, i2_u5'length);

 o_u5 := i1_u5 - i2_u5;

 report "Ex05: " & str(i1_u5) & " - " & str(i2_u5) & " =

 " & str(o_u5);

 -- Signed - Signed = Signed (fix)

 i1_u4 := "1001"; -- dec 9

 i2_u4 := "1011"; -- dec 11

 ❷ i1_s5 := signed(resize(i1_u4, i1_s5'length));

 i2_s5 := signed(resize(i2_u4, i2_s5'length));

 o_s5 := i1_s5 - i2_s5;

 report "Ex06: " & str(i1_s5) & " - " & str(i2_s5) & " =

 " & str(o_s5);

Here’s the output:

Verilog

Ex05: 9 - 11 = 30

Ex06: 9 - 11 = -2

VHDL

** Note: Ex05: 9 - 11 = 30

Time: 0 ns Iteration: 0 Instance: /math_examples

** Note: Ex06: 9 - 11 = -2

Time: 0 ns Iteration: 0 Instance: /math_examples

In Ex05, we’re trying to calculate 9 – 11 but we get a
result of 30, clearly the wrong answer. The problem here is
that we’re using unsigned types for subtraction, which is a
violation of Rule #3. We fix this in Ex06 by converting the
input values from unsigned to signed data types. We also
perform sign extension in the process, going from 4-bit
inputs to 5-bit inputs. In the Verilog code, we handle the
conversion by simply assigning the 4-bit unsigned signals
to 5-bit signed signals ❶. Verilog takes care of the details
automatically. VHDL makes us jump through a few more
hoops. We first resize the input, which will sign-extend it,
but the result of the resize operation is still an unsigned
type, so we then explicitly cast it to a signed data type
using signed() ❷. This is safe to do because we’ve already
resized the signal, so the most significant bit will be 0.
Therefore, the value after converting to a signed type won’t
be changed.

Multiplication

Multiplication also works similarly to addition; after all, a
multiplication operation is just a series of repeated addition
operations (4 × 3 = 4 + 4 + 4). The first thing to consider
when multiplying two inputs together is how to properly
size the output bit width. This brings us to our next rule:

Rule #4 When multiplying, the output bit width must
be at least the sum of the input bit widths (before sign
extension).
This rule holds true for both signed and unsigned

numbers. For example, say we’re trying to multiply the
unsigned inputs 111 and 11 (equivalent to 7 × 3). According

to Rule #4, the output should be 3 + 2 = 5 bits wide. You
can try out the multiplication yourself to confirm this, using
the same technique you learned in school for multiplying
multidigit numbers—multiply each digit individually and
add the results together:

 111

× 11

 111

+ 1110

 10101

The output, 10101 (equivalent to 21), is indeed 5 bits
wide, which is what we expected. But what happens to this
same multiplication if we treat our inputs and outputs as
signed, rather than unsigned? In this case, we would have
the equivalent of –1 × –1 in decimal, which should produce
a result of +1, but signed 10101 in binary is equal to –11 in
decimal. What’s wrong here?

The problem is that we didn’t sign-extend our inputs to
match the width of our output (5 bits) before multiplying. If
we do that, our inputs both become 11111, and the
multiplication looks like this:

 11111

 × 11111

 11111

 111110

 1111100

 11111000

+ 111110000

 000000001

Now we’re getting 00000001, or really 00001 once we
truncate the result to be 5 bits wide, which is +1 in
decimal. Sign extension gives us the result we expect.
Unlike with addition and subtraction, however, you don’t
actually need to perform this sign extension manually when
multiplying numbers using Verilog or VHDL. The tools will
handle this automatically; you simply need to size the
output signal correctly.

VHDL helps with this too: it won’t even let you compile
the code if you disobey Rule #4 and fail to size the output
of a multiplication correctly. With Verilog, you’ll need to be
more careful. It won’t warn you if the output is the wrong
size, and you could get an unexpected result. Let’s add
some examples of this to our Math_Examples testbench:

Verilog

 // Unsigned * Unsigned = Unsigned (Rule #4 violation)

 i1_u4 = 4'b1001; // dec 9

 i2_u4 = 4'b1011; // dec 11

 o_u4 = i1_u4 * i2_u4;

 $display("Ex07: %2d * %2d = %3d", i1_u4, i2_u4, o_u4);

 // Signed * Signed = Signed (Rule #4 violation)

 i1_s4 = 4'b1000; // dec -8

 i2_s4 = 4'b0111; // dec 7

 o_s4 = i1_s4 * i2_s4;

 $display("Ex08: %2d * %2d = %3d", i1_s4, i2_s4, o_s4);

VHDL

 -- Unsigned * Unsigned = Unsigned

 i1_u4 := "1001"; -- dec 9

 i2_u4 := "1011"; -- dec 11

 o_u4 := i1_u4 * i2_u4;

 report "Ex07: " & str(i1_u4) & " * " & str(i2_u4) & " = "

& str(o_u4);

 -- Signed * Signed = Signed

 i1_s4 := "1000"; -- dec -8

 i2_s4 := "0111"; -- dec 7

 o_s4 := i1_s4 * i2_s4;

 report "Ex08: " & str(i1_s4) & " * " & str(i2_s4) & " = "

& str(o_s4);

Here’s the output:

Verilog

Ex07: 9 * 11 = 3

Ex08: -8 * 7 = -8

VHDL

** Error (suppressible): testbench.vhd(89): (vcom-1272) Leng

th of expected

is 4; length of actual is 8.

Verilog allows us to perform the math operation despite
the fact that we’re disobeying Rule #4 by multiplying 4 bits
by 4 bits and storing the result in a 4-bit output. This
produces incorrect results for both unsigned (Ex07) and
signed (Ex08) input values. VHDL, on the other hand, won’t
even build this code; we get a nice descriptive error telling
us that the tool is trying to assign an 8-bit-wide result to a
4-bit-wide variable, which isn’t permitted. Let’s add a few
more examples to our testbench that fix these issues:

Verilog

 // Unsigned * Unsigned = Unsigned (Rule #4 fix)

 i1_u4 = 4'b1001; // dec 9

 i2_u4 = 4'b1011; // dec 11

 o_u8 = i1_u4 * i2_u4;

 $display("Ex09: %2d * %2d = %3d", i1_u4, i2_u4, o_u8);

 // Signed * Signed = Signed (Rule #4 fix)

 i1_s4 = 4'b1000; // dec -8

 i2_s4 = 4'b0111; // dec 7

 o_s8 = i1_s4 * i2_s4;

 $display("Ex10: %2d * %2d = %3d", i1_s4, i2_s4, o_s8);

VHDL

 -- Unsigned * Unsigned = Unsigned

 i1_u4 := "1001"; -- dec 9

 i2_u4 := "1011"; -- dec 11

 o_u8 := i1_u4 * i2_u4;

 report "Ex09: " & str(i1_u4) & " * " & str(i2_u4) & " = "

& str(o_u8);

 -- Signed * Signed = Signed

 i1_s4 := "1000"; -- dec -8

 i2_s4 := "0111"; -- dec 7

 o_s8 := i1_s4 * i2_s4;

 report "Ex10: " & str(i1_s4) & " * " & str(i2_s4) & " = "

& str(o_s8);

Here’s the output:

Verilog

Ex09: 9 * 11 = 99

Ex10: -8 * 7 = -56

VHDL

** Note: Ex09: 9 * 11 = 99

Time: 0 ns Iteration: 0 Instance: /math_examples

** Note: Ex10: -8 * 7 = -56

Time: 0 ns Iteration: 0 Instance: /math_examples

In Ex09, we correct the problem in Ex07 by storing the
output of multiplying two unsigned 4-bit values into an 8-bit

signal. Similarly, Ex10 corrects the issue from Ex08 with
signed values. Notice that we never have to sign-extend the
inputs, in either Verilog or VHDL. The tools handle this
automatically.

Multiplication by Powers of 2

There’s a trick that we can use when multiplying numbers
by a power of 2 (for example, 2, 4, 8, 16, 32, …). Rather
than instantiating a bunch of multiplication logic, we can
simply instantiate a shift register and perform a shift left
operation. Shifting left by N bits is equivalent to
multiplying by 2N. For example, 0011 (3 in binary) shifted
left 2 bits gives us 1100 (12 in binary). It’s the same as
calculating 3 × 4, or 3 × 22. This trick works for both
signed and unsigned numbers. Let’s try it out in our
testbench:

Verilog

 i_u8 = 3;

 o_u8 = i_u8 << 1;

 $display("Ex11: %d * 2 = %d", i_u8, o_u8);

 o_u8 = i_u8 << 2;

 $display("Ex12: %d * 4 = %d", i_u8, o_u8);

 o_u8 = i_u8 << 4;

 $display("Ex13: %d * 16 = %d", i_u8, o_u8);

VHDL

 i1_u8 := to_unsigned(3, i1_u8'length);

 o_u8 := shift_left(i1_u8, 1);

 report "Ex11: " & str(i1_u8) & " * 2 = " & str(o_u8);

 o_u8 := shift_left(i1_u8, 2);

 report "Ex12: " & str(i1_u8) & " * 4 = " & str(o_u8);

 o_u8 := shift_left(i1_u8, 4);

 report "Ex13: " & str(i1_u8) & " * 16 = " & str(o_u8);

Here’s the output:

Verilog

Ex11: 3 * 2 = 6

Ex12: 3 * 4 = 12

Ex13: 3 * 16 = 48

VHDL

** Note: Ex11: 3 * 2 = 6

Time: 0 ns Iteration: 0 Instance: /math_examples

** Note: Ex12: 3 * 4 = 12

Time: 0 ns Iteration: 0 Instance: /math_examples

** Note: Ex13: 3 * 16 = 48

Time: 0 ns Iteration: 0 Instance: /math_examples

We start with the decimal value 3 and shift left by 1, 2,
and 4 bits to multiply it by 2, 4, and 16, respectively. In
Verilog we perform the shift using the << operator, and in
VHDL we use the function shift_left(). Both take as an
argument the number of bit positions to shift.

Shifting left is a simple and quick trick to save FPGA
resources, but you don’t necessarily need to write it out
explicitly. It’s likely that if you hardcode a multiplication by
a power of 2, the synthesis tools will be smart enough to
figure out that a left shift would take fewer resources.

Division

Unfortunately, division isn’t nearly as simple an operation
as addition, subtraction, or multiplication. Division comes
with all sorts of messy complications, like remainders and
fractions. In general, it’s a good idea to avoid division
inside your FPGA if you can. It’s a resource-intensive
operation, especially if you need that operation to run at
high clock rates.

I once worked on a project that needed to add a division
operation to an FPGA in the field. The FPGA was a very old
part, and it simply couldn’t fit it within the available
resources. To accommodate the division operation we
ended up having to upgrade to a higher-resource FPGA of
the same family, which increased the cost of the hardware
by over $1 million. I always think of that one extra
operation as the million-dollar divide!

If you must divide numbers, there are a few ways to
make the operation less resource-intensive. These include
restricting yourself to dividing by powers of 2, using a
precalculated table of answers, or breaking up the
operation across multiple clock cycles.

Using Powers of 2

My best suggestion for reducing the overhead of dividing
numbers inside an FPGA is to make the divisor a power of
2. Similar to how multiplication by a power of 2 can be
efficiently performed with a shift left operation, division by
a power of 2 can be performed efficiently with a shift right
operation. Shifting right by N bits is equivalent to dividing
by 2N. Let’s look at a few examples of this:

Verilog

 i_u8 = 128;

 o_u8 = i_u8 >> 1;

 $display("Ex14: %d / 2 = %d", i_u8, o_u8);

 o_u8 = i_u8 >> 2;

 $display("Ex15: %d / 4 = %d", i_u8, o_u8);

 o_u8 = i_u8 >> 4;

 $display("Ex16: %d / 16 = %d", i_u8, o_u8);

VHDL

 i1_u8 := to_unsigned(128, i1_u8'length);

 o_u8 := shift_right(i1_u8, 1);

 report "Ex14: " & str(i1_u8) & " / 2 = " & str(o_u8);

 o_u8 := shift_right(i1_u8, 2);

 report "Ex15: " & str(i1_u8) & " / 4 = " & str(o_u8);

 o_u8 := shift_right(i1_u8, 4);

 report "Ex16: " & str(i1_u8) & " / 16 = " & str(o_u8);

Here’s the output:

Verilog

Ex14: 128 / 2 = 64

Ex15: 128 / 4 = 32

Ex16: 128 / 16 = 8

VHDL

** Note: Ex14: 128 / 2 = 64

Time: 0 ns Iteration: 0 Instance: /math_examples

** Note: Ex15: 128 / 4 = 32

Time: 0 ns Iteration: 0 Instance: /math_examples

** Note: Ex16: 128 / 16 = 8

Time: 0 ns Iteration: 0 Instance: /math_examples

Ex14 performs a shift right by 1, which in Verilog uses
the >> operator and in VHDL uses the shift_right() function.
This accomplishes a single divide by 2. To divide by 4, shift
right by 2 bit positions, as in Ex15. Likewise, a right shift by
4 divides by 16, as in Ex16.

What happens when we don’t have a number that’s
cleanly divisible by the power of 2 serving as the divisor? In
this case, shifting right effectively accomplishes a division
that’s rounded down to the nearest integer. The next few
examples illustrate how this works:

Verilog

 i_u8 = 15;

 o_u8 = i_u8 >> 1;

 $display("Ex17: %d / 2 = %d", i_u8, o_u8);

 o_u8 = i_u8 >> 2;

 $display("Ex18: %d / 4 = %d", i_u8, o_u8);

 o_u8 = i_u8 >> 3;

 $display("Ex19: %d / 8 = %d", i_u8, o_u8);

VHDL

 i1_u8 := to_unsigned(15, i1_u8'length);

 o_u8 := shift_right(i1_u8, 1);

 report "Ex17: " & str(i1_u8) & " / 2 = " & str(o_u8);

 o_u8 := shift_right(i1_u8, 2);

 report "Ex18: " & str(i1_u8) & " / 4 = " & str(o_u8);

 o_u8 := shift_right(i1_u8, 3);

 report "Ex19: " & str(i1_u8) & " / 8 = " & str(o_u8);

Here’s the output:

Verilog

Ex17: 15 / 2 = 7

Ex18: 15 / 4 = 3

Ex19: 15 / 8 = 1

VHDL

** Note: Ex17: 15 / 2 = 7

Time: 0 ns Iteration: 0 Instance: /math_examples

** Note: Ex18: 15 / 4 = 3

Time: 0 ns Iteration: 0 Instance: /math_examples

** Note: Ex19: 15 / 8 = 1

In Ex17, we try to perform 15 / 2. This should give us
7.5, but we have no way to represent the .5 part, so we end
up rounding down to 7 instead. Thinking of this as a shift
right, we went from 00001111 to 00000111. In Ex18, we try to
take 15 / 4, which should be 3.75, but we drop the decimal
places and just get 3. Finally, in Ex19 we get 15 / 8 = 1. This
rounding might cause a problem if you’re not expecting it,
so be aware that this can happen when performing shift
right operations.

Using a Precalculated Table

Another option for dividing two numbers is to precalculate
the result for all possible input combinations. For example,
if we’re trying to divide any number 1 through 7 by any
other number 1 through 7, we could create something like
Table 10-3 inside the FPGA.

Table 10-3: Precalculated Table for Full Range of Division Inputs

1 2 3 4 5 6 7

1 1.00 0.50 0.33 0.25 0.20 0.17 0.14

2 2.00 1.00 0.67 0.50 0.40 0.33 0.29

3 3.00 1.50 1.00 0.75 0.60 0.50 0.43

4 4.00 2.00 1.33 1.00 0.80 0.67 0.57

5 5.00 2.50 1.67 1.25 1.00 0.83 0.71

6 6.00 3.00 2.00 1.50 1.20 1.00 0.86

7 7.00 3.50 2.33 1.75 1.40 1.17 1.00

For this example, let’s assume that each row represents
a possible dividend, and each column represents a possible
divisor. The value at the intersection of a given dividend
and divisor is the corresponding quotient. As an example,
to find the value in decimal for the fraction 5/6, go to row
5, then over to column 6 to get the value 0.83. To
implement this in Verilog or VHDL, we could store this two-
dimensional table in a 2D array. (You saw how 2D arrays

work in the state machine project in Chapter 8.) The row
input values provide one index, the column input values
provide the second index, and the quotient is the value at
those two indices. We’re not actually performing any math
here; we’re just indexing into the correct result, which has
been precalculated and stored in memory.

NOTE

If you’re wondering how to represent decimal values like

0.50 and 0.33 inside an FPGA, good question! We’ll explore

this topic shortly.

As the range of possible inputs grows, of course, we’ll
need a larger and larger table to store the possible outputs.
Eventually, a single table could take up an entire block
RAM, which are often 16Kb in size. Using a precalculated
table in a block RAM guarantees that a single division
calculation will take a single clock cycle, since we only
need one clock cycle to read from the memory (as you
learned when we discussed RAM back in Chapter 6).
However, we can’t read from multiple locations in the
memory on the same clock cycle, so if we needed to do two
divisions simultaneously, on the exact same clock cycle, we
would need to instantiate a second copy of the
precalculated table in another block RAM.

Block RAMs are usually valuable resources, so taking
up a bunch of them for concurrent divisions doesn’t scale
very well. If the design will allow us to run the different
divisions in consecutive clock cycles, rather than
simultaneously, we could instead use a single table and
time-share it. Time sharing a single resource would require
arbitration of that resource, as we discussed in Chapter 7.
We would have to create some arbiter that would only
allow access to the block RAM table by one module at a
time.

The solutions discussed up to this point assume we have
just one clock cycle to get the result of a division operation.
However, if we can wait multiple clock cycles for the result
of a division operation, that allows us to use another option.

Using Multiple Clock Cycles

Another way to ease the burden of the synthesis tools when
it comes to division is to create an algorithm that performs
division in more than a single clock cycle, using simpler
math operations such as addition and subtraction. At its
heart, division is about calculating how many times one
number fits into another number. You can accomplish this,
for example, by adding the divisor to itself over and over
until you’ve passed the value of the dividend, while
counting the number of times you had to run that loop.
Then you subtract the dividend to get the remainder.

There are various other techniques for performing
division using simpler math operations. (Specific
implementations are beyond the scope of this book; search
the web for division algorithms on FPGAs if you want to
learn more.) But of course, these methods only work if
you’re able to wait multiple clock cycles for the result.
Using multiple clock cycles to produce a result is a bit
different in this context than the pipelining example we
discussed in Chapter 7, where we broke up a complex math
operation across multiple clock cycles to meet timing. In
that case, we were still able to get a result every clock
cycle, but the outputs were delayed a few clock cycles from
the inputs.

In this case, we don’t know how many clock cycles the
division algorithm will take to provide a result, so we can’t
rely on a result each clock cycle. Ultimately, it’s a question
of trading lower resource utilization for more clock cycles.
If you really need to get the result of a division operation
on every single clock cycle, you’ll have to use one of the
previously discussed division techniques.

How FPGAs Implement Math Operations

With all the operations we’ve discussed so far, we’ve only
looked at how the math works, without really considering
how the operations are implemented inside an FPGA. There
are various FPGA components that may be involved,
depending on the specific operation performed. If you take
an introductory digital electronics course, you might learn
about half adders and full adders, digital circuits that
combine various logic gates (like XOR and AND) to perform
addition operations. It’s a fascinating subject, but in the
end you might be frustrated to find that you don’t need to
know how these circuits work to be able to do math with
modern FPGA code. You’ll never need to instantiate a full
adder component by manually typing out all the necessary
logic operations if you’re just adding two numbers
together. Instead, you just use the + operator in Verilog or
VHDL, like you would in any other programming language,
and trust the synthesis tools to handle the implementation.

The tools will likely place addition and subtraction
operations into basic LUTs. For multiplication, the tools will
use flip-flops for the shift left approach, or LUTs or DSP
blocks (if available) for more complicated calculations. As
discussed in Chapter 9, DSP blocks are useful for
accelerating large multiply–accumulate operations without
utilizing a lot of LUT logic. Finally, division will require
registers for the shift right approach, block RAMs for the
precalculated table approach, or LUTs.

There’s more to math than just addition, subtraction,
multiplication, and division, however. Look at your
calculator and consider all the operations we haven’t
discussed: sine, cosine, square root, and more. It’s certainly
possible to run these operations on an FPGA, but it gets
complicated and is beyond the scope of this book. If you’re
interested in learning more, there are dedicated algorithms
that you can instantiate for these, such as a Coordinate

Rotation Digital Computer (CORDIC). Search GitHub for
FPGA CORDIC and you’ll find many examples.

In addition to actually implementing more complicated
math operations on your FPGA, if you have the option it
might be worth sending the inputs to a dedicated processor
to perform the calculations, and then returning the result
back to the FPGA logic. We’ll discuss floating- versus fixed-
point arithmetic in the next section, but processors are
much more capable of performing floating-point arithmetic
than FPGAs. This processor can be a dedicated component
external to the FPGA, or it can be internal to the FPGA
itself. If it’s internal, it’s referred to as either a hard-core
processor or a soft-core processor, depending on if it’s a
dedicated piece of silicon or not.

Many modern FPGAs have internal hard ARM cores.
This type of component with FPGA logic and a dedicated
processor is often referred to as a system on a chip (SoC).
You can send the operations from the FPGA LUT/flip-flop
logic into the ARM core for processing, and it will perform
whatever operation is required and return the result. This
solution is more about handling data than performing math,
since you’ll likely need to set up FIFOs for each of the
inputs and outputs. Working with a separate processor is
an advanced topic, but it can be very valuable in higher-end
applications.

Working with Decimals

So far we’ve been working with integers, but there are
many applications where you’ll need your FPGA to operate
on numbers with a decimal component. In this section,
we’ll examine how to do math using non-integers. To begin
with, we need to consider how fractional numbers are
actually represented using binary digits. There are two
possible systems to choose from: floating point and fixed
point.

The vast majority of mathematical operations within
electronic devices use floating-point arithmetic, since most
CPUs are designed to handle floating-point numbers. The
key to floating point is that the radix (the decimal
separator) “floats,” depending on how much precision is
needed. We won’t go into detail about how exactly this
works, but the bottom line is that with 32 bits you can
represent an enormous range of values, with varying
precision; you can represent very small numbers with high
precision, or very large numbers with less precision. Fixed-

point arithmetic, on the other hand, has a fixed radix,
meaning there are a fixed number of integer places and a
fixed number of decimal places.

FPGAs can perform floating-point operations, but they
often require more resources than fixed-point operations.
Most FPGA math is therefore done with fixed-point
arithmetic, so that will be our focus for the rest of the
chapter.

To illustrate how fixed-point representation works, let’s
take an example. Say we have 3 bits allotted for
representing a number inside our FPGA. We’ve been
assuming up to this point that each bit change will be
worth one integer value. For example, going from 001 to 010
means that we go from 1 to 2. But we’ve just arbitrarily
decided that each bit is worth one integer. We could just as
easily decide that a single bit is worth something else, for
example 0.5. In that case, 001 would be equivalent to 0.5,
010 would be 1.0, 011 would be 1.5, and so on. We now have
a fixed-point system where the rightmost bit represents the
decimal component of the number and the other two bits
represent the integer component. We can also interpret the
bits in other ways to give us different fixed-point
representations. Table 10-4 shows the most common
decimal interpretations of 3 unsigned bits.

Table 10-4: 3-Bit Unsigned Fixed-Point Possibilities

Bits U3.0 U2.1 U1.2 U0.3

000 0 0 0 0

001 1 0.5 0.25 0.125

010 2 1.0 0.50 0.250

011 3 1.5 0.75 0.375

100 4 2.0 1.00 0.500

101 5 2.5 1.25 0.625

110 6 3.0 1.50 0.750

111 7 3.5 1.75 0.875

The headings in Table 10-4 use a modified version of Q
notation, which is a way to specify the parameters of a
binary fixed-point number format. In Q notation, for
example, Q1.2 indicates that 1 bit is being used for the
integer portion of a number and 2 bits are being used for
the fractional portion. Standard Q notation assumes the
values are signed; however, in FPGAs it’s very common to
have unsigned and signed values. That’s why I prefer a
notation that specifies if the values are signed (S) or
unsigned (U) using the leading character. Thus, S3.1
indicates a signed value with 3 integer bits and 1 fractional
bit, and U4.8 indicates an unsigned value with 4 integer
bits and 8 fractional bits.

In Table 10-4, the U3.0 column is what we’re used to;
all 3 bits are allotted to the integer portion of the number,
so we only have whole numbers. Let’s consider the next
column, U2.1. It’s unsigned, with 2 bits for the integer
component and 1 bit for the decimal component. This
means the integer part can be in the range 00, 01, 10, 11, and
the decimal part can be in the range 0 or 1. To figure out
what possible values that represents, simply take the
original U3.0 value and divide it by 2. For example, 111 is 7
in U3.0, but in U2.1 it’s 3.5 (7 / 2 = 3.5). In general, when
there are N bits allotted to the fractional portion of the

number, you divide the integer representation by 2N to
determine the fixed-point value. Thus, 111 in U0.3 is 7 / 23 =
7 / 8 = 0.875.

In Table 10-4 we treated all the values as unsigned.
Table 10-5 shows the most common possibilities for
interpreting the same 3 bits when we use signed data
types.

Table 10-5: 3-Bit Signed Fixed-Point Possibilities

Bits S3.0 S2.1 S1.2 S0.3

000 0 0 0 0

001 1 0.5 0.25 0.125

010 2 1.0 0.50 0.250

011 3 1.5 0.75 0.375

100 –4 –2.0 –1.00 –0.500

101 –3 –1.5 –0.75 –0.375

110 –2 –1.0 –0.50 –0.250

111 –1 –0.5 –0.25 –0.125

The S3.0 column shows the same signed whole number
values we saw earlier in the chapter, in Table 10-1. We can
generate the remaining columns by dividing the values in
the S3.0 column by 2 for S2.1, by 4 for S1.2, and by 8 for
S0.3.

Here’s the critical thing about working with fixed-point
numbers: when you’re performing operations on binary
data, the behavior of the binary operation doesn’t change
based on its representation. Addition, subtraction,
multiplication, and division all work exactly the same way
as before, when we were treating the numbers as integers.
However, there are a few more rules that need to be
established to get the correct answer with fixed-point
values.

You’ll notice for the remainder of this chapter that I
make an effort to keep track of the decimals in the code

examples. I find it very helpful to add comments recording
the width of the math operations in my Verilog or VHDL
code. For example, when adding two 3-bit numbers
together to get a 4-bit result, I’ll include a comment like //
U2.1 + U2.1 = U3.1 so I know the decimal and integer widths.
This is particularly useful when there are several math
operations chained one after another, where the widths
along the way might be changing.

Adding and Subtracting with Fixed Point

When performing addition or subtraction with fixed-point
decimals, the actual process doesn’t change. The data is
still just binary. There’s another rule that we must apply
when we have decimals involved, however:

Rule #5 When adding or subtracting, the decimal
widths must match.
The number of places to the right of the decimal point

determines the value, or weight, of each bit, so if you try to
add or subtract two inputs with different decimal bit widths
—for example, a U3.1 input and a U4.0 input—you’ll get a
wrong answer. We can see that in the following code:

Verilog

 // U3.1 + U4.0 = U4.1 (Rule #5 violation)

 i1_u4 = 4'b0011;

 i2_u4 = 4'b0011;

 o_u5 = i1_u4 + i2_u4;

❶ $display("Ex20: %2.3f + %2.3f = %2.3f", i1_u4/2.0, i2_u4,

o_u5/2.0);

VHDL

 -- U3.1 + U4.0 = U4.1 (Rule #5 violation)

 i1_u4 := "0011";

 i2_u4 := "0011";

 i1_u5 := resize(i1_u4, i1_u5'length);

 i2_u5 := resize(i2_u4, i2_u5'length);

 o_u5 := i1_u5 + i2_u5;

❶ real1 := real(to_integer(i1_u5)) / 2.0;

 real2 := real(to_integer(i2_u5));

 real3 := real(to_integer(o_u5)) / 2.0;

 report "Ex20: " & str(real1) & " + " & str(real2) & " = "

& str(real3);

Here’s the output:

Verilog

Ex20: 1.500 + 3.000 = 3.000

VHDL

** Note: Ex20: 1.500 + 3.000 = 3.000

Time: 0 ns Iteration: 0 Instance: /math_examples

Ex20 shows the effect of not obeying Rule #5. Here
we’re attempting to add a U3.1 to a U4.0. This is going to
cause a problem because the weight of the bits being added
together isn’t matched. Indeed, the printout tells us that
1.5 + 3 = 3, so something has clearly gone wrong.

Notice that we’ve divided the input U3.1 and the output
U5.1 by 2.0 to print out these fixed-point values correctly
❶. For Verilog, we can simply do the division on the
unsigned input and use %f to format the result like a float.
In VHDL, the conversion is a bit more complicated. First we
need to switch to the real data type, which is used for
numbers with decimals, and then we can divide by 2.0 for
printing.

To fix this example, we need to adjust one of the inputs
so it has the same number of decimal bits as the other

input. We can either change the first input from U3.1 to
U4.0 to match the second input, or change the second input
from U4.0 to U4.1. In the following code, we try both
options:

Verilog

 // Convert U3.1 to U4.0

 // U4.0 + U4.0 = U5.0 (Rule #5 fix, using truncation)

 i1_u4 = 4'b0011;

 i2_u4 = 4'b0011;

❶ i1_u4 = i1_u4 >> 1; // Convert U3.1 to U4.0 by dropping d

ecimal

 o_u5 = i1_u4 + i2_u4;

 $display("Ex21: %2.3f + %2.3f = %2.3f", i1_u4, i2_u4, o_u

5);

 // Or Convert U4.0 to U4.1

 // U3.1 + U4.1 = U5.1 (Rule #5 fix, using expansion)

 i1_u4 = 4'b0011;

 i2_u4 = 4'b0011;

❷ i2_u5 = i2_u4 << 1;

 o_u6 = i1_u4 + i2_u5;

 $display("Ex22: %2.3f + %2.3f = %2.3f", i1_u4/2.0, i2_u5/

2.0, o_u6/2.0);

VHDL

 -- Convert U3.1 to U4.0

 -- U4.0 + U4.0 = U5.0 (Rule #5 fix, using truncation)

 i1_u4 := "0011";

 i2_u4 := "0011";

❶ i1_u4 := shift_right(i1_u4, 1); -- Convert U3.1 to U4.0

 i1_u5 := resize(i1_u4, i1_u5'length);

 i2_u5 := resize(i2_u4, i2_u5'length);

 o_u5 := i1_u5 + i2_u5;

 real1 := real(to_integer(i1_u5));

 real2 := real(to_integer(i2_u5));

 real3 := real(to_integer(o_u5));

 report "Ex21: " & str(real1) & " + " & str(real2) & " = "

& str(real3);

 -- Or Convert U4.0 to U4.1

 -- U3.1 + U4.1 = U5.1 (Rule #4 fix, using expansion)

 i1_u4 := "0011";

 i2_u4 := "0011";

 i1_u6 := resize(i1_u4, i1_u6'length); -- expand for addin

g

 i2_u6 := resize(i2_u4, i2_u6'length); -- expand for addin

g

❷ i2_u6 := shift_left(i2_u6, 1); -- Convert 4.0 to 4.1

 o_u6 := i1_u6 + i2_u6;

 real1 := real(to_integer(i1_u6)) / 2.0;

 real2 := real(to_integer(i2_u6)) / 2.0;

 real3 := real(to_integer(o_u6)) / 2.0;

 report "Ex22: " & str(real1) & " + " & str(real2) & " = "

& str(real3);

Here’s the output:

Verilog

Ex21: 1.000 + 3.000 = 4.000

Ex22: 1.500 + 3.000 = 4.500

VHDL

** Note: Ex21: 1.000 + 3.000 = 4.000

Time: 0 ns Iteration: 0 Instance: /math_examples

** Note: Ex22: 1.500 + 3.000 = 4.500

Time: 0 ns Iteration: 0 Instance: /math_examples

In Ex21, we convert the U3.1 to a U4.0, effectively
dropping the decimal point. We do this using a 1-bit shift to
the right ❶. But consider the effect of this: we’re
eliminating the least significant bit, and if that bit has a 1 in

it, then we’re dropping that data. Essentially, we’re
performing a rounding operation to the next lowest integer.
We can see that our first input was originally 1.5, but after
dropping the decimal point it’s 1.0. The math is correct, 1.0
+ 3.0 = 4.0, but we’ve truncated our input.

Ex22 shows a better solution that retains the precision of
all inputs. Rather than shifting the first input to the right,
we shift the second input to the left ❷. This pads the least
significant bit with a 0, converting our second input from
U4.0 to U4.1. Notice that this means the second input now
occupies a total of 5 bits. We need to be sure to resize it, or
we could end up losing the data in the most significant bit
during the shift left. Additionally, our output now has to be
6 bits so we don’t violate Rule #1.

Now that the decimal widths of the two inputs are
matched with no loss of precision, we’re able to
successfully calculate that 1.5 + 3.0 = 4.5. Expanding your
inputs to match is the best solution if you don’t want to
round any of the decimal values.

NOTE

Subtracting fixed-point numbers works with all the same

rules as addition, so we won’t consider an example here.

Follow the rules introduced in this chapter, and your

subtraction operations will work as expected.

Multiplying with Fixed Point

Multiplication with fixed-point numbers doesn’t require any
shifting to match the decimal widths. Instead, we can
simply multiply the two inputs together as they are,
provided we keep track of the input widths and size the
output appropriately. We already have a rule for
multiplication:

Rule #4 When multiplying, the output bit width must
be at least the sum of the input bit widths (before sign

extension).
Now we need to add another rule to account for fixed-point
numbers:

Rule #6 When multiplying fixed-point numbers, add the
integer component bit widths and the decimal
component bit widths of your inputs separately to get
the output format.
For example, if you’re trying to multiply a U3.5 by a

U1.7, the result is formatted as a U4.12. We determine this
by adding the integer components (3 + 1 = 4) and the
decimal components (5 + 7 = 12), and putting them
together to get the output width format. It works the same
way for signed values, so S3.0 × S2.4 = S5.4. Notice that
we’re still obeying Rule #4 as well, since the output width
will be the sum of the input widths. It’s just that the integer
and decimal components are treated separately.

Let’s take a look at some examples in Verilog and
VHDL:

Verilog

 // U2.2 * U3.1 = U5.3

 i1_u4 = 4'b0101;

 i2_u4 = 4'b1011;

 o_u8 = i1_u4 * i2_u4;

 $display("Ex23: %2.3f * %2.3f = %2.3f", i1_u4/4.0, i2_u4/

2.0, o_u8/8.0);

 // S2.2 * S4.0 = S6.2

 i1_s4 = 4'b0110;

 i2_s4 = 4'b1010;

 o_s8 = i1_s4 * i2_s4;

 $display("Ex24: %2.3f * %2.3f = %2.3f", i1_s4/4.0, i2_s4,

o_s8/4.0);

VHDL

 -- U2.2 * U3.1 = U5.3

 i1_u4 := "0101";

 i2_u4 := "1011";

 o_u8 := i1_u4 * i2_u4;

 real1 := real(to_integer(i1_u4)) / 4.0;

 real2 := real(to_integer(i2_u4)) / 2.0;

 real3 := real(to_integer(o_u8)) / 8.0;

 report "Ex23: " & str(real1) & " * " & str(real2) & " = "

& str(real3);

 -- S2.2 * S4.0 = S6.2

 i1_s4 := "0110";

 i2_s4 := "1010";

 o_s8 := i1_s4 * i2_s4;

 real1 := real(to_integer(i1_s4)) / 4.0;

 real2 := real(to_integer(i2_s4));

 real3 := real(to_integer(o_s8)) / 4.0;

 report "Ex24: " & str(real1) & " * " & str(real2) & " = "

& str(real3);

Here’s the output:

Verilog

Ex23: 1.250 * 5.500 = 6.875

Ex24: 1.500 * -6.000 = -9.000

VHDL

** Note: Ex23: 1.250 * 5.500 = 6.875

Time: 0 ns Iteration: 0 Instance: /math_examples

** Note: Ex24: 1.500 * -6.000 = -9.000

Time: 0 ns Iteration: 0 Instance: /math_examples

In Ex23, we’re multiplying a U2.2 by a U3.1 to get a
result that’s a U5.3. We can see in the printout that the
answer is correct: 1.25 × 5.5 = 6.875. As with the addition
examples, notice that we have to divide the values to print

them out correctly. We divide the U2.2 by 4, the U3.1 by 2,
and the U5.3 by 8. In Ex24, we use the same technique to
multiply signed values. We’re multiplying 1.5 by –6.0 to get
–9.0, which is represented with S2.2 × S4.0 = S6.2.

Summary

Since FPGAs are known for being able to perform many
calculations at fast clock rates and in parallel, many
common FPGA applications call for using addition,
subtraction, multiplication, and division. Inside your FPGA,
these operations may involve LUTs, shift registers, or DSP
blocks. More important than knowing exactly how the
operations are implemented, however, is understanding
how the inputs and outputs are stored and what those
binary digits represent when you’re writing your Verilog or
VHDL code. Are they signed or unsigned? Integers or fixed
point?

Over the course of this chapter, we’ve developed a set
of rules for successfully performing FPGA math operations
and interpreting the results. They are:

Rule #1 When adding or subtracting, the result should
be at least 1 bit bigger than the biggest input, before
sign extension. Once sign extension is applied, the input
and output widths should match exactly.
Rule #2 Match types among inputs and outputs.
Rule #3 When subtracting, use signed inputs and
outputs.
Rule #4 When multiplying, the output bit width must
be at least the sum of the input bit widths (before sign
extension).
Rule #5 When adding or subtracting, the decimal
widths must match.

Rule #6 When multiplying fixed-point numbers, add the
integer component bit widths and the decimal
component bit widths of your inputs separately to get
the output format.
These rules don’t capture every nuance of performing

math in FPGAs, but they cover the major details that you
need to get right. If you follow these six rules, it’s much
more likely that you’ll get the correct answer from your
calculations. Whenever you’re working with math, adding
tests will help to ensure things are working as you expect.

11

GETTING DATA IN AND OUT WITH I/O

AND SERDES

Throughout this book, we’ve
focused on the internals of

FPGAs, and that’s typical of the FPGA
design process. FPGA design largely
centers around writing Verilog or VHDL
code targeting internal components like
flip-flops, LUTs, block RAMs, and DSP
blocks. But what’s going on at the edge of
the device, where data enters and exits
the FPGA?

There’s a surprising amount of complexity involved in
getting data into and out of an FPGA. In my experience,
this is where most of the trickier FPGA design problems
occur. Understanding how the input/output (I/O) works will
help you tackle those problems. You’ll be able to spend less
time worrying about external interfaces, and more time
solving the internal task at hand.

Working with I/O is where the boundary between being
a “software person” and a “hardware person” lies. You
need to understand the details of the electrical signals that
you’re interfacing to in order to configure the FPGA pins
correctly. What voltage do they operate at? Are the signals
single-ended or differential? (And what does that even
mean?) How can you use double data rate or a
serializer/deserializer to send data at very high speeds?
This chapter answers these questions and more. Even if
you don’t have an electrical engineering background, you’ll
learn the fundamentals of interfacing FPGAs to the outside
world.

Working with GPIO Pins

Most pins on the FPGA are general purpose input/output

(GPIO) pins, meaning they can function as a digital input or
output. We’ve used these pins in the book’s projects to take
in signals from push buttons and output signals to light up
LEDs, but we haven’t worried about the details of how this
actually works. In this section, we’ll look at how GPIO pins
interface with an FPGA and how they can be made to input
data, output data, or both.

When I was first getting into FPGA design, I had no idea
of the nuances involved in pin configuration. There are
many knobs to turn and settings to play with. Having a
thorough understanding of your GPIO pins is important,
especially for high-speed designs, because maintaining
signal integrity and performance throughout your design
starts at the pins.

I/O Buffers

GPIO pins interface with an FPGA through buffers,
electronic circuit elements that isolate their input from
their output. These buffers are what allow you to configure
some pins as inputs and others as outputs. As you’ll see

soon, they even allow you to toggle a pin between input and
output while the FPGA is running. Figure 11-1 shows a
simplified block diagram of a GPIO pin interface on an Intel
FPGA, to illustrate how a buffer serves as an intermediary
between the pin and the internal FPGA logic.

Figure 11-1: A simplified GPIO block diagram

The box on the right-hand side of the image (with the X
inside it) represents the physical pin. Immediately to the
left of the pin is a block labeled Buffer, which represents
the I/O buffer. It contains two main components,
represented by triangles. The triangle pointing to the right
is the output buffer; it pushes data out to the pin. The
triangle pointing to the left is the input buffer; it sends data
from the pin into the FPGA.

On the far left of the diagram is a block labeled GPIO,
representing the internal FPGA logic that interacts directly
with the pin via the buffers. The main path to notice here is
OE, which stands for output enable. This turns the output
buffer on or off to control whether the pin will function as
an output or an input. When OE is high, the output buffer
will drive the pin with whatever data is present on the
output path. If data on the output path is low, the pin will
be low, and if data on the output path is high, the pin will
be high. When OE is low, the pin is configured as an input,
so the output buffer stops passing its input to its output. At
this point the buffer’s output becomes high impedance

(also called hi-Z or tri-state), meaning it will accept very
little current. A high-impedance output buffer no longer
affects anything happening on the pin. Instead, the pin’s
state is governed by whatever external signal is coming in.
The input buffer is free to read that signal and pass it along
to the input path for use inside the FPGA.

Table 11-1 shows a truth table for an output buffer,
summarizing this behavior.

Table 11-1: Truth Table for an Output Buffer

Input OE Output

0 0 Z

1 0 Z

0 1 0

1 1 1

Looking at this table, we can see that when OE is high,
the value on the buffer’s input is simply passed to its
output. However, when OE is low, the buffer’s output is
high impedance (conventionally represented by a Z),
regardless of the value on the input.

In the projects in this book, we’ve defined the input and
output signals at the top level of the design code. Inputs
are represented with the keyword input (Verilog) or in
(VHDL), while outputs are indicated by the keyword output
(Verilog) or out (VHDL). When building the FPGA, the
synthesis tools see which signals are defined for each
direction and set up the buffers accordingly. If the signal is
an input, OE will be set low. If the signal in an output, OE
will be set high. Then, during the place and route process,
the physical constraints file maps the signals to the specific
pins on the FPGA. This is how GPIO pins get configured as
dedicated input or output pins for your design.

Bidirectional Data for Half-Duplex Communication

While most pins in a design are typically fixed as either
input or output, a GPIO pin can be configured to be
bidirectional, meaning it can switch between functioning as
input and output within the same design. When the FPGA
needs to output data through the bidirectional pin, it drives
the OE signal high, then puts the data to transmit onto the
output path. When the FPGA needs to receive data as input
through the bidirectional pin, it drives OE low. This puts
the output buffer into tri-state (high impedance), enabling
the FPGA to listen to the data on the pin and pass it to the
input path. When a pin is configured to be bidirectional like
this, it’s acting as a transceiver, as opposed to just a
transmitter or just a receiver.

Bidirectional pins are useful for half-duplex

communication, where two devices exchange data using a
single, shared transmission line (one pin). Either device
can serve as a transmitter, but only one device can transmit
at a time, while the other receives. This is in contrast to
full-duplex communication, where both devices can
transmit and receive data at the same time. Full-duplex
communication requires two transmission lines (two pins),
one for sending data from device 1 to device 2 and the
other for sending data from device 2 to device 1, as
opposed to the single transmission line of half-duplex
communication.

A common example of half-duplex communication is a
two-way radio. The speaker is only able to transmit when
they hold down the button on the radio. When the speaker
is transmitting, the listener is unable to transmit, so the
speaker and listener must agree whose turn it is to talk.
This is why people always say “Over” in the movies when
they’re talking on walkie-talkies; it’s a signal that the
speaker is done talking and the listener is now free to
respond.

With a physical wire, if the two sides don’t take turns
sharing the communication channel, then there can be a
data collision. This collision can corrupt the data, so nobody
receives anything. To avoid this the devices must agree on
a protocol, a set of rules governing communication. The
protocol determines how a device can initiate a transaction,
establishes well-defined locations in time for other devices
on the line to talk back (the equivalent of saying “Over”),
and so on. Some protocols are even able to handle data
collisions by detecting when data is corrupted and
resending the corrupted data, though this requires
additional complexity.

Half-duplex communication is usually more complicated
than using dedicated transmit and receive channels, but it’s
still quite common. I2C (or I2C, pronounced “eye-squared-
see” or “eye-two-see” and short for inter- integrated

circuit), for example, is a widely used half-duplex protocol.
Countless unique integrated circuits—including ADCs,
DACs, accelerometers, gyroscopes, temperature sensors,
microcontrollers, and many others—use I2C to
communicate, since it’s relatively simple to implement and,
thanks to its half-duplex nature, requires a very low pin
count. Only two pins, clock and data, are used in I2C, which
is why you may also see it referred to as TWI (two-wire

interface).

A Bidirectional Pin Implementation

Let’s look at how to code a bidirectional pin using Verilog
or VHDL. As you examine this code, refer to Figure 11-2 to
see how the signals in the code match the block diagram
from Figure 11-1:

Verilog

❶ module bidirectional(inout io_Data,

 --snip--

❷ assign w_RX_Data = io_Data;

❸ assign io_Data = w_TX_En ? w_TX_Data : 1'bZ;

 --snip--

VHDL

entity bidirectional is

❶ port (io_Data : inout std_logic,

 --snip--

❷ w_RX_Data <= io_Data;

❸ io_Data <= w_TX_Data when w_TX_En = '1' else 'Z';

 --snip--

We declare the bidirectional pin (io_Data) with the
keyword inout in both Verilog and VHDL ❶. At this point we
can imagine that we’re at the pin, as indicated by the label
io_Data in Figure 11-2. We’ll need to map this signal to one
of the FPGA’s pins in our physical constraints file. For the
input functionality, we simply use an assignment to drive
w_RX_Data with the data from the pin ❷. On the output side,
we selectively enable the output buffer using the signal
w_TX_En ❸. We use the ternary operator in Verilog or a
conditional assignment in VHDL. The data driven onto
io_Data will either be w_TX_Data or high impedance (indicated
by 1'bZ in Verilog or 'Z' in VHDL), depending on the state
of the output enable signal (w_TX_En). This code pattern is
very common for bidirectional data. Synthesis tools are
smart enough to recognize it and infer an I/O buffer.

Figure 11-2: A labeled bidirectional interface

One thing you might notice is that any data driven out
on w_TX_Data will be received on w_RX_Data, since they’re
connected together through io_Data. You’ll need to address
this elsewhere in the code by telling your receiver to ignore
any data on io_Data when w_TX_En is high. Otherwise, your
FPGA will be hearing itself talk.

Electrical Characteristics

There are many different electrical characteristics that you
can specify for each individual GPIO pin. We’re going to
talk about three: operating voltage, drive strength, and
slew rate. We’ll also look at the electrical differences
between single-ended and differential data transmission.

As you read, keep in mind that these aren’t the only pin
settings you can control. For example, you also may be able
to set pins to be open drain, include a pull-up or pull-down
resistor or a termination resistor, and much more. The I/O
of your FPGA can be configured in many, many ways,
depending on which GPIO properties are built into the
device itself. If you need to implement anything other than
simple signal interfaces, it’s worth exploring the relevant
datasheets to ensure you’re working correctly with your
I/O buffers. All of the specific information about your
FPGA’s I/O can usually be found in the I/O user guide,
which is a great reference for details on what types of
electronics your FPGA is capable of interfacing to.

Operating Voltage

The operating voltage specifies what voltage the pin will be
driven to for a logic 1 output and sets the expected voltage
for a logic 1 input. Most commonly, FPGA pins use 0 V to
represent a 0 and 3.3 V to represent a 1. This standard is
called LVCMOS33 (LVCMOS is short for low-voltage

complementary metal oxide semiconductor). Another
standard you might come across is 0 V to represent a 0 and
5 V to represent a 1. This is called TTL, short for transistor–

transistor logic. TTL is less common in FPGAs these days,
since many don’t allow voltages as high as 5 V internally.
There’s also the LVCMOS25 standard, which uses 0 V to
represent a 0 and 2.5 V to represent a 1.

LVCMOS33, LVCMOS25, and TTL are all examples of
single-ended I/O standards, meaning the signals involved
are referenced to ground. As you’ll see soon, there are also
differential standards, where the signals aren’t referenced
to ground. There are many more single-ended standards
than the three I’ve mentioned. A typical FPGA supports
about a dozen single-ended I/O standards.

One important note about setting your operating
voltage is that all signals on a single bank need to be at the
same operating voltage. A bank is a group of pins that all
operate with a common reference voltage, usually called
VCCIO. You might have eight banks on your FPGA, and
each bank can use a unique operating voltage. For
example, you might configure bank 1 to use 1.8 V, bank 2
to use 3.3 V, and bank 3 to use 2.5 V. What’s critical is that
all the pins within a single bank are operating at the same
voltage. You can’t put an LVCMOS33 pin on the same bank
as an LVCMOS25 pin, because the former requires a
VCCIO of 3.3 V while the latter requires a VCCIO of 2.5 V.
When doing your schematic review, always check to make
sure that the signals on each bank share the same
reference voltage. If you try to mix voltages in the same

bank, the place and route tool will likely generate an error,
or at least a very strong warning.

Drive Strength

The drive strength of a pin determines how much current
(in milliamps, or mA) can be driven into or out of the pin.
For example, a pin set to an 8 mA drive strength will be
capable of sinking or sourcing up to 8 mA of current. The
drive strength can be changed on an individual pin basis
and should be high enough to match the needs of the
circuit you’re interfacing to. Most often, the drive strength
settings can be left at the default for all of the pins on your
FPGA. Unless you have some high current needs, it’s
unlikely you’ll need to modify the default settings.

Slew Rate

The slew rate sets the rate of change allowed for an output
signal. It’s usually specified in qualitative terms, such as
fast, medium, or slow. The slew rate setting affects how
quickly a pin can change from a 0 to a 1 or from a 1 to a 0.
Like drive strength, the slew rate can often be left at the
default setting for each of your pins. The exception is if
you’re interfacing to some component that requires very
fast data rates, in which case you might want to select the
fastest option. However, selecting a faster slew rate can
increase system noise, so it’s not recommended to slew
faster unless you really need it.

Differential Signaling

Differential signaling is a method of sending data where
you have two signals that aren’t referenced to ground, but
rather to each other. As I hinted earlier, this is in contrast
to single-ended signaling, where you have one data signal
referenced to ground. Figure 11-3 illustrates the difference.

Figure 11-3: Single-ended vs. differential interfaces

The top half of the figure shows a single-ended
configuration: we have device 1 transmitting data to device
2 on a single wire, and another wire for the ground path.
There’s no data on this ground wire, but it’s needed to
maintain a consistent ground reference between the
devices. Data is sent as a voltage on the data wire: 0 V for a
0 or some other value (such as 3.3 V) for a 1, depending on
the operating voltage. If we wanted to add another data
path, we could just add another single wire between the
two devices; the ground reference can work for multiple
data paths.

The bottom half of the image shows a differential
configuration. Here, we don’t have a ground reference
passed between the devices. Instead, we have a pair of data
lines. Notice the bubble at the start of the upper line, on
the output of device 1’s transmit buffer. This looks like the
bubble we saw when looking at NOT gates and NAND gates
back in Chapter 3, and it’s a common indication that we
have a differential pair. If the difference between the + and
– terminals on the receiver is a positive voltage above some
threshold, then the signal is decoded as a 1; if the
difference is a negative voltage below some threshold, then
the signal is decoded as a 0. The details depend on the
differential standard. For example, TIA/EIA-644, more
commonly called LVDS (low-voltage differential signaling),

specifies that there should be a difference of about +/– 350
millivolts (mV) between the two wires. This voltage is quite
a bit lower than most single-ended signals use, meaning the
system can operate at less power, which is one advantage
of differential communication over single-ended
communication. A typical FPGA supports about the same
number of differential standards as single-ended standards
(a dozen or so).

One disadvantage you might have picked up on is that
differential communication requires twice as many wires
for every data path. In the case of single-ended data
transfer, there’s just one wire for each data path we want
to create. If we want 10 data paths, we need 10 wires (and
usually at least 1 ground wire). To create the same 10 data
paths with differential signaling, we’d need 20 wires (but
no ground wires). This extra wiring costs money and will
require a larger connector. Still, differential signals have
some unique properties that may make this trade-off
worthwhile in certain applications.

One important advantage is that differential signals are
much more immune to noise, or electromagnetic

interference (EMI), than single-ended signals. EMI is a
phenomenon caused by changing electrical and magnetic
fields—for example, from a nearby microwave oven, cell
phone, or power line—that can cause disturbances in other
systems. You can think of a wire that carries data as a small
antenna that receives all sorts of unwanted electrical
signals, creating noise that shows up as a voltage blip on
the wire. A large enough voltage blip on a single-ended
signal could corrupt the data, causing a 0 to turn into a 1,
or a 1 into a 0. With a differential signal, however, the
voltage blip will affect both wires equally, meaning the
voltage difference between the wires will remain constant.
Since it’s the voltage difference, and not the exact value of

the voltage itself, that matters, the noise is effectively
canceled out.

An additional benefit of differential communication is
that the transmitter and the receiver can be referenced to
different ground voltages and still send and receive data
reliably. It might seem strange, but ground isn’t always
exactly 0 V. The ground in a system can be affected by
noise, just as data lines can be, so problems can arise when
you rely on ground as a source of truth throughout your
system. In particular, it’s difficult to maintain a common
ground reference for two devices that are far apart, which
is why differential signals are often used to send data over
long distances. For example, RS-485, a differential
electrical standard, can send data at 10 megabits per
second (Mb/s) over a distance of nearly 1 mile, which
would be impossible with a single-ended signal. Even at
closer distances, there are situations where one system
might not be referenced to ground at all. Instead, it might
be floating or isolated from a ground reference. To
communicate with an isolated system, you need a method
of communication that doesn’t rely on a shared ground
reference; differential communication is one such method.

Differential signals are also able to send data at faster
rates than single-ended signals. When a transmitter needs
to change from a 0 to a 1, it must drive the line all the way
from the voltage corresponding to a 0 to the voltage
corresponding to a 1, and that process takes some amount
of time (the slew rate). The bigger the difference between
the voltages, the more current must be driven onto the line,
and the longer the process will take. Since single-ended
protocols typically require wider voltage swings between a
0 and a 1, they’re inherently slower than differential
protocols. For example, the LVCMOS33 voltage swing of
3.3 V is much greater than the LVDS voltage swing of +/–
350 mV. For this reason, almost all high-speed applications

use differential signals. We’ll get into more detail about this
later in the chapter when we discuss SerDes, but interfaces
like USB, SATA, and Ethernet all use differential signals for
the highest possible data rates.

How to Modify Pin Settings

If you want to specify the operating voltage, drive strength,
or slew rate values for your pins, or control which pins are
for single-ended signals and which are for differential
signals, the place to do it is your physical constraints file.
Recall that this file lists how the pins on your FPGA connect
to the signals in your design. In addition to specifying the
pin mapping, you can also add these other parameters to
further define the I/O behavior. Here’s an excerpt from a
Lattice constraint file that includes some additional
parameters:

LOCATE COMP "o_Data" SITE "A13";

IOBUF PORT "o_Data" IO_TYPE=LVCMOS33 DRIVE=8 SLEWRATE=FAST;

The first line maps the signal o_Data to the pin A13. The
second line sets the operating voltage to LVCMOS33, the drive
strength to 8, and the slew rate to FAST. You should refer to
the constraints user guide for your particular FPGA to see
how to set these parameters; the syntax isn’t universal
across devices. You can also use the GUI in your IDE to set
these parameters without having to learn the exact syntax
required.

Faster Data Transmission with Double Data

Rate

Sending data quickly is where FPGAs can really shine, and
one way to speed up transmission is to use double data rate

(DDR). Up until this point, I’ve stated that the signals in
your FPGA should be synchronized to the rising edges of
the clock. With double data rate, however, signals change

on the rising and falling edges of the clock. This enables
you to send twice the amount of data with the same clock
frequency, as shown in Figure 11-4.

Figure 11-4: Single vs. double data rate

As you can see, with single data rate, where data is sent
on each rising clock edge, you’re able to move three bits of
data (D0 through D2) during three clock cycles. In
comparison, with double data rate, where data is sent on
both rising and falling edges, you can send six bits of data
(D0 through D5) during the same three clock cycles. This
technique is known for its use in LPDDR memory, short for
low-power double data rate, a type of RAM commonly
found in computers, smartphones, and other electronics.
Changing the data on both edges of the clock increases the
bandwidth of the memory.

You need to create double data rate output (ODDR)
buffers anywhere you want to use DDR for data transfer.
The details vary between FPGA manufacturers, but I
generally recommend creating these ODDR buffers directly
within your Verilog or VHDL, using instantiation, since they
aren’t terribly complicated to configure. As an example,
let’s take a look at an instantiation template for an ODDR
buffer from AMD’s Virtex-7 Library User Guide:

Verilog

ODDR #(

.DDR_CLK_EDGE("OPPOSITE_EDGE"),

.INIT(1'b0), // Initial value of Q: 1'b0 or 1'b1

.SRTYPE("SYNC") // Set/reset type: "SYNC" or "ASYNC"

) ODDR_inst (

❶ .Q(Q), // 1-bit DDR output

.C(C), // 1-bit clock input

.CE(CE), // 1-bit clock enable input

.D1(D1), // 1-bit data input (positive edge)

.D2(D2), // 1-bit data input (negative edge)

.R(R), // 1-bit reset

.S(S) // 1-bit set

);

VHDL

ODDR_inst : ODDR

generic map(

DDR_CLK_EDGE => "OPPOSITE_EDGE",

INIT => '0', -- Initial value for Q port ('1' or '0')

SRTYPE => "SYNC") -- Reset type ("ASYNC" or "SYNC")

port map (

❶ Q => Q, -- 1-bit DDR output

C => C, -- 1-bit clock input

CE => CE, -- 1-bit clock enable input

D1 => D1, -- 1-bit data input (positive edge)

D2 => D2, -- 1-bit data input (negative edge)

R => R, -- 1-bit reset input

S => S -- 1-bit set input

);

It’s not critical to understand every line here. The most
important connection is the output pin itself ❶ ; this is
where the ODDR block is connected to the pin. The two data
inputs, D1 and D2, will be used in an alternating pattern to
drive the data to the output pin. D1 is driven on rising (or
positive) edges and D2 on falling (or negative) edges.

Double data rate allows you to speed up data
transmission, but if you really want to get your data flying,

some FPGAs have a specialized type of interface called
SerDes that allows for even speedier input and output.
We’ll examine this exciting FPGA feature next.

SerDes

A SerDes, short for serializer/deserializer, is a primitive of
some (but not all) FPGAs responsible for inputting or
outputting data at very high speeds, into the gigabits per
second (Gb/s). At a high level, it works by taking a parallel
data stream and converting it into a serial data stream for
high-speed transmission. On the receiving end, the serial
data is converted back to parallel. This is how the FPGA
can exchange data with other devices at very fast data
rates. It may sound counterintuitive that sending data
serially, one bit at a time, is faster than sending data in
parallel, several bits at a time, but that’s the magic of
SerDes. We’ll discuss why this works soon.

SerDes primitives are sometimes called SerDes

transceivers, which reflects that they can send and receive
data. That said, SerDes transceivers are almost always full-
duplex, meaning they don’t have to switch back and forth
between being a transmitter and a receiver like we saw
previously with bidirectional communication. You usually
set up one data path as a transmitter out of your FPGA, and
another as a receiver into your FPGA.

SerDes transceivers help FPGAs excel at sending or
receiving very large amounts of data at a rate that wouldn’t
be possible with other devices. This is a killer feature that
makes FPGAs attractive for use cases such as receiving
data from a video camera. A high-resolution camera might
have a pixel space of 1,920×1,080, with 32 bits of data per
pixel, and new images captured at a rate of 60 Hz. If we
multiply those numbers, that translates to 3.9Gb of
uncompressed raw data per second—quite a lot!—and some
cameras can go even higher, up to 4K and 120 Hz. SerDes

transceivers allow an FPGA to receive an absolute firehose
of data and unpack it in such a way that the FPGA can
process it correctly. Another common use case is
networking, where you have Ethernet packets flying around
at hundreds of gigabits per second. You might have
multiple SerDes transceivers working together on a single
device to route packets correctly, again at very fast data
rates that wouldn’t be possible to achieve on a standard I/O
pin.

At its heart, SerDes revolves around converting
between parallel and serial data. To understand why this
conversion is necessary, we need to take a closer look at
the differences between serial and parallel data transfer.

Parallel vs. Serial Communication

Parallel communication means we’re using multiple
communication channels (usually wires) to send data, with
the data split up across the different channels. Serial

communication means we’re sending the data on a single
channel, one bit at a time. Figure 11-5 illustrates the
difference.

Figure 11-5: Parallel vs. serial interfaces

The top half of the figure shows an 8-bit-wide
synchronous parallel interface. Synchronous means that we
have a clock signal sent between the devices, and the data
is aligned with the clock. With this interface, we can send a
whole byte of data on a single clock cycle, with one bit on
each of the eight wires. In this case, we’re sending the
value 01100011, or 0x63. While we have eight parallel data
paths in this example, you could theoretically create a
parallel interface with any width—you could have a 2-bit-
wide interface, a 32-bit-wide interface, a 64-bit-wide
interface, or any other arbitrary size.

The bottom half of the figure shows the same data
transfer of the value 01100011, but it’s sent in a synchronous
serial stream. Once again, there’s a clock signal shared
between the devices, but now the data is sent across a
single wire, one bit per clock cycle. This way, it takes eight
clock cycles to send 0x63, rather than just one clock cycle in
the parallel case.

Since parallel communication allows you to send
multiple bits in a single clock cycle, it might seem logical
that transmitting data in parallel will always allow you to
send more data per unit time than sending the data
serially. In fact, parallel data transfer runs up against some
serious limitations as the bandwidth increases. The physics
can’t easily scale to support today’s high-speed data needs,
which is why parallel interfaces are far less common today
than they used to be.

If you’re old enough to remember the days of ribbon
printers, those would connect to your computer using an
LPT port, which is a type of parallel interface. Another
example was the old PCI bus that was a common way to
plug devices like modems and sound cards into your
desktop motherboard. Neither of these interfaces is used
very much anymore; they couldn’t keep up with our need
for faster data.

To illustrate why, let’s consider how your data transfer
speed (or bandwidth) is calculated on a parallel interface
like PCI. The first version of PCI operated at a clock rate of
33 MHz and was 32 bits wide, meaning there were 32
individual data wires that needed to be connected between
two devices. Multiplying the numbers out, we get
1,056Mb/s, or 132 megabytes per second (MB/s), of
bandwidth. This was sufficient for the computing needs of
the 1990s, but the demand for more data soon began to
increase. We wanted better graphics cards, for example,
and the bus to support that data transfer needed to grow
accordingly. PCI designers answered the demand by
doubling the clock rate to 66 MHz, which doubled the total
bandwidth from 132MB/s to 264MB/s. That bought a few
years, but it wasn’t enough, so PCI next doubled the width
of the connector from 32 bits to 64 bits, meaning now we
have 64 data wires. This provided around 528MB/s of
bandwidth, which again bought a few years, but still it
wasn’t enough.

By this time, PCI was reaching a point of diminishing
returns. There are only two ways to increase data
throughput with a parallel interface like PCI: make the bus
wider or increase the clock speed. At 64 bits wide, PCI
connectors were already a few inches long. To go any wider
—say, to 128 bits—the connectors would need to be
enormous. Routing all those connections in the circuit
board gets very challenging, too. It simply doesn’t make
sense to continue to widen the bus.

There are also big challenges with increasing the clock
speed. When you have a wide data bus and you’re sending
a clock signal alongside the data, as in the synchronous
parallel interface in Figure 11-5, you need to maintain a
tight relationship between the clock and the data. The clock
will be fed into the clock input of each flip-flop on the
receiving side: for a 128-bit-wide bus, for example, there
are 128 individual flip-flops that all need that same clock.

With so many parallel flip-flops, however, you start to run
into problems with clock skew, a phenomenon where the
same clock arrives at different times to each flip-flop due to
propagation delay.

As we discussed in Chapter 7, signals don’t travel
instantly; rather, there’s some delay, and the longer the
signals have to travel (that is, the longer the wire) the
longer the propagation delay becomes. With a 128-bit-wide
bus, the distance the clock signal travels to get to the bit-0
flip-flop can be quite different from the distance the clock
signal travels to get to the bit-127 flip-flop. As the clock
frequency increases, this difference can create enough
clock skew to trigger metastable conditions and corrupt the
data.

Clearly, parallel communication has issues. There are
fundamental limits to how fast you can go and how many
bits you can send at once. Ultimately, the problem comes
down to the need to send a separate clock signal alongside
the data. The solution is to send the clock and the data
together, serially, as part of a single combined signal.

Self-Clocking Signals

Combining the clock and the data into one signal gives you
something called a self-clocking signal. The process of
creating this signal is sometimes referred to as embedding

the clock in the data, and it’s the key technique that makes
high-speed serial data transfer via SerDes possible. If you
send the clock and the data together as one signal, then the
issue of clock skew is no longer a problem, since your clock
is received exactly when your data is received; they’re the
same signal! With clock skew out of the picture, you’re able
to increase the clock frequency (and therefore the data
frequency) tremendously.

There are many different systems, called encoding

schemes, for embedding the clock in the data. Common

ones include Manchester code, High-Level Data Link
Control (HDLC), and 8B/10B. We’ll focus on Manchester
code, since it’s a relatively simple encoding scheme, to
illustrate one way to create a self-clocking signal. Figure
11-6 shows how Manchester code works.

Figure 11-6: Embedding the clock in the data with Manchester code

To implement Manchester code, you take the XOR
(exclusive OR) of the clock and data signals, producing a
new signal that combines the two. In any given clock
period, the data signal will be a 1 or a 0, while the clock
signal is a 1 for the first half of the period and a 0 for the
second half of the period. The resulting Manchester code
signal thus changes halfway through the clock period as
well, in response to the transition in the clock signal.
Depending on the data value in that period, the Manchester
signal will either be low then high (when the data is a 1) or
high then low (when the data is a 0). Table 11-2 is a truth
table for the Manchester signal based on the different
data/clock combinations. You can use this table to
understand the Manchester signal pattern in Figure 11-6.

Table 11-2: Truth Table for Manchester Code

Data Clock Manchester encoding

0 0 0

0 1 1

1 0 1

1 1 0

This is simply a truth table for a two-input XOR logic
gate, where the inputs are the data and clock signals. As
we discussed in Chapter 3, XOR performs the operation
either/or, but not both, so the output is high when exactly
one input is high, but not when both or neither are high.
Looking at the waveforms in Figure 11-6, notice that
whenever the clock and data are both high, the encoded
value is low. The encoded value is also low when the clock
and data are both low, and it’s high when only one of the
two is high.

The Manchester encoded signal allows you to send the
clock and data signals together on a single wire. As
mentioned previously, this is the key enabler of high-speed
serial data transfer. You no longer need to worry about the
alignment of the clock to the data, because the clock is the

data and the data is the clock.
On the receiving side, you need to separate the clock

back out from the data, a process called clock data

recovery (CDR). This is achieved using an XOR gate and
some small, additional logic at the receiver. Then you can
use the recovered clock as your clock input to a flip-flop,
and feed the recovered data into the data input of that
same flip-flop. This way you have perfect synchronization
between the clock and the data. The issue of clock skew
that we saw with parallel data goes away, enabling you to
crank up the data rates far beyond what parallel data
transfer could ever achieve.

Manchester code is just one way to generate a self-
clocking signal, and it’s a simple encoding scheme. It isn’t
used for modern, more complicated SerDes applications,
but it does have some features that are critical. For one,
the Manchester encoded signal is guaranteed to transition
on each clock cycle. If you’re sending a continuous stream
of 0s in the data, for example, there will still be transitions
in the encoded signal. These transitions are essential for

performing CDR on the receiving side. Without guaranteed
transitions, the receiver wouldn’t be able to lock onto the
input stream. It wouldn’t know if the data was being sent at
3 gigabits per second (Gb/s), or 1.5Gb/s, or if it was
running at all.

Another important feature of Manchester code is that
it’s DC balanced, meaning there are an equal number of
highs and lows in the resulting data stream. This helps
maintain signal integrity and overcome non-ideal conditions
on the wire during high-speed data transfer. We normally
consider wires to be perfect conductors, but in reality they
aren’t; every wire has some capacitance, inductance, and
resistance. At slow data rates these don’t matter much, but
when we get into the Gb/s range, we need to consider
these effects. For example, since there’s some capacitance
in the wire, it makes sense that the wire can be charged up
like a capacitor. When a wire becomes slightly charged, for
example to a high state, then it requires more energy to
discharge it to a low state. Ideally, you don’t want to
charge up your wires at all: in other words, you want to
maintain a DC balance. Sending an equal number of high
and low transitions in SerDes is critical to maintaining good
signal integrity, and all clock and data encoding schemes
have this feature.

How SerDes Works

Now that we’ve covered the speed advantages of serial
communication over parallel communication and examined
how to combine the clock and data into one signal, we’re
ready to look at how SerDes actually works. Figure 11-7
shows a simplified block diagram of a SerDes interface.

Figure 11-7: A simplified SerDes block diagram

Looking at the image as a whole, we have a serializer
on the left that acts as a transmitter, and a deserializer on
the right that acts as a receiver. We have clock and data
signals going into the serializer on the left, and clock and
data signals coming out of the deserializer on the right.
That’s really all we’re trying to do with SerDes: send some
data and a clock signal from a transmitter to a receiver.
However, doing this at fast data rates requires a lot more
functionality than we’ve seen in simpler input and output
buffers.

First, notice that there’s a phase-locked loop on the
transmit side, in the lower-left corner of Figure 11-7.
Usually this is a dedicated PLL specific to the SerDes
transceiver that uses a reference clock (Clk In) to generate
the clock that will run the serializer. This clock dictates the
overall rate at which your SerDes will run. The data that
you actually want to send (Data In) comes into the SerDes
block in parallel. I’ve drawn four lines here, but there could
be any number of wires. The serializer takes the output of
the PLL and the parallel data, encodes it using an encoding
protocol, and generates a serial data stream at the desired
SerDes rate. For example, if you have a parallel interface
that takes 4 bits at a time at a 250 MHz clock rate, then the
serializer will generate a serialized version of this data that
can be transferred at 1Gb/s, four times that speed.

NOTE

Depending on the encoding scheme, the actual serial

stream will likely be running at above 1Gb/s. For example,

the 8B/10B scheme takes 8-bit data and encodes it into 10-

bit data. It does this for two purposes: to ensure transitions

in the clock so we can do clock data recovery at the

receiver, and to maintain a DC balance. Going from 8-bit

data to 10-bit data adds a 20 percent overhead, however, so

to send data at a rate of 1Gb/s we need to send the actual

serial stream at 1.2Gb/s.

The output stage is next. Notice that the output stage
contains a differential output buffer. For the reasons
discussed previously, such as the ability to send data at
high rates, at lower power, and with noise immunity,
SerDes transceivers use differential data. The output stage
also performs some extra signal conditioning to improve
the signal integrity. Once the signal is as conditioned as it
can be, it passes through the data channel.

Sending data at high speeds requires optimizations in
all parts of the data path, including the data channel itself.
For copper wires, the impedance of the material must be
controlled to ensure good signal integrity. The channel can
also be made from a different material than copper. For
example, fiber optics can be used, where light rather than
electricity is sent down thin glass or plastic wires. Fiber
optics provides excellent signal integrity and is immune to
EMI, but it’s a more expensive solution than traditional
copper wires.

On the receive side, the input stage performs its own
signal conditioning to extract the best-quality signal
possible. The data is then sent to both a CDR block and the
serial-to-parallel conversion and decoder block. The CDR
recovers the clock signal from the data stream, and then
the deserializer uses that extracted clock to sample the

data. It might seem a bit odd that you can recover the clock
and then use that clock to sample data from the same
signal, but that’s the magic of how SerDes works! Finally,
at the output side, the data is again converted to parallel.
Continuing with the previous example, you would recover
your 250 MHz data stream across the four parallel output
wires.

This example referred to a 1Gb/s data rate, but that
isn’t really that fast anymore. As data rates keep
increasing, we need to keep optimizing each part of this
whole process. Maintaining high signal integrity is critical
for SerDes applications. At fast data rates, small
resistances, capacitances, and inductances can affect the
signal integrity of the line. Passing data through a
connector (for example, a USB plug) causes small
imperfections in the data path that affect the signal
integrity too, so optimizing every aspect of the process
becomes critical.

SerDes is one of the killer features of modern FPGAs,
but there’s a lot of complexity involved. As you’ve just seen,
something as simple-sounding as high-speed data transfer
involves a number of steps, including serializing data,
transmitting it, receiving it, and then deserializing it again.
Even with that process, we’re fighting physics to get data
to travel at faster and faster rates.

Summary

To be a successful FPGA designer, it helps to have a strong
understanding of I/O. This is where the FPGA engineer
works at the intersection of electrical engineering and
software engineering. This chapter explained how FPGAs
use buffers to bring data in and send data out and explored
some of the more common settings that FPGA designers
need to be aware of when configuring I/O, including the
operating voltage, drive strength, and slew rate. You

learned about the difference between single-ended and
differential communication, and you saw how DDR uses
both rising and falling clock edges to send data more
quickly. We also explored SerDes, a powerful input/output
feature that allows FPGAs to excel at high-speed data
applications.

A

FPGA DEVELOPMENT BOARDS

This appendix lists a few
example FPGA development

boards that you can use to work on the
projects in this book. A dev board that
you can program is a valuable learning
tool. There’s nothing more satisfying than
blinking LEDs, pushing buttons, and
interfacing to external devices! You can
certainly learn a lot from this book
without completing the practical
examples. But to really unlock its value I
recommend purchasing a board, such as
one of the devices mentioned here, and
working through all of the projects using
physical hardware.

In Chapter 2 we discussed some criteria for selecting a
board, including the features required to complete the
book’s projects as written. In particular, I recommend

choosing a board with a Lattice iCE40 FPGA, a USB
connection, and peripherals such as LEDs, push buttons,
and a seven-segment display. The boards covered here
either meet these requirements off-the-shelf or allow you to
meet them by connecting a few extra peripherals. There
are other boards that will work, too; you can use any of
these or use these recommendations as a starting point for
your own research.

The Nandland Go Board

I created the Nandland Go Board (Figure A-1) as a part of a
successful Kickstarter campaign in 2016 to fill a gap in the
market: a lack of FPGA development boards that were fun,
affordable, and easy to use for beginners. I designed the
board with many peripherals, to allow for a wide range of
interesting projects. The Go Board has everything you need
to work on all of the projects in this book without any
modifications.

Figure A-1: The Nandland Go Board

The FPGA on the Go Board is an iCE40 HX1K, which is
small compared to modern AMD and Intel FPGAs but
powerful enough to create the game Pong on a VGA
monitor. The board has four LEDs, four push-button

switches, two seven-segment displays, a Pmod connector, a
VGA connector, and a USB connector for power,
programming, and communication. At about $65 at the
time of writing, it’s an affordable board that will allow you
to try many different projects in either Verilog or VHDL.
It’s available through https://nandland.com.

The Lattice iCEstick

Lattice designed the iCEstick FPGA development board to
be plugged directly into the USB port of a computer, like a
thumb drive. It has the same FPGA as the Go Board (an
iCE40 HX1K), but it’s a bit more limited in terms of built-in
peripherals. There are five LEDs available, a Pmod
connector, and an IrDA transceiver for sending and
receiving infrared data.

At the time of writing the iCEstick is priced at around
$50, and it can be purchased directly from Lattice’s
website (https://latticesemi.com) or through electronics
distributers such as Digi-Key (https://digikey.com). To use
this development board for the projects in this book, you’ll
need to make use of the Pmod connector to expand its
capabilities. At a minimum, I would recommend purchasing
a breakout board with additional button inputs; for
example, Digilent (https://digilent.com) sells a Pmod
module with four push-button switches.

The iCEstick doesn’t have enough Pmod connectors to
interface to a seven-segment display and a button module
at the same time for the state machine project in Chapter 8.
However, if you want to implement the seven-segment
display portion of the project, you can connect an individual
display using some of the 16 through-hole I/O connections
on the sides of the board.

The Alchitry Cu

https://nandland.com/
https://latticesemi.com/
https://digikey.com/
https://digilent.com/

The Alchitry Cu is similar to the iCEstick in that it’s a
relatively simple board with a single FPGA and connectors,
and not many on-board peripherals. The difference is that
the Alchitry Cu has many more connectors available, so you
can interface to more peripherals. Additionally, it uses a
larger FPGA, the iCE40 HX8K, which has more resources
available for larger, more complicated projects.

The Alchitry Cu can be paired with the Alchitry Io
Element Board to expand its capabilities: the Io mounts
directly on top of the Cu, similar to an Arduino shield, and
adds 4 seven-segment displays, 5 push buttons, 24 LEDs,
and 24 switches. This option is the most expensive of the
three discussed here; the Cu and Io together cost around
$85 as of this writing. You can purchase the boards at
https://sparkfun.com.

Switching Between Boards

As I mentioned in Chapter 2, the beauty of Verilog and
VHDL is that they’re FPGA-agnostic. The code that you
write for one development board will translate very well to
another board, often with no modifications needed,
provided you aren’t using device-specific hard IP features
like the ones discussed in Chapter 9. This makes it quite
natural to start your FPGA journey on a low-cost, easy-to-
use iCE40-based board like the ones described here, and
then level up to a fancier development board as you gain
experience. You’ll be able to take all the projects you
developed for your first board and port them to a new,
more advanced board with minimal revision.

https://sparkfun.com/

B

TIPS FOR A CAREER IN FPGA

ENGINEERING

Perhaps this book has whetted
your appetite for FPGA design

to the point where you’re considering
making a career out of it. Working with
FPGAs is a truly rewarding job: you get to
wake up each day and solve interesting
and relevant problems. Just as designing
FPGAs takes practice, applying for jobs is
a skill that you can refine. This appendix
discusses strategies for getting a great
job as an FPGA engineer.

I’ve been on both sides of the job search process, as
both an interviewee and an interviewer, so I’ve identified
some techniques that work to secure a fulfilling job, and I
also understand what employers are looking for. In this
appendix, I’ll share some tips first on how to improve your
resume so you can land an interview, then on how to
perform well during the interview to boost your chances of

getting the job. Finally, we’ll discuss how to negotiate for
your best possible offer.

The Resume

The purpose of a resume is to get you in the door for an
interview. That’s really it. Once you’re in the door, your
resume’s work is complete. In my career, I’ve reviewed
hundreds of resumes while trying to fill job positions, and
only a small fraction of them have led to an interview. Let’s
explore some techniques you can use to get your resume to
stand out.

Keep It Short

A good engineer knows how to quickly show what’s
important and what isn’t. Demonstrate that by getting
straight to the point in your resume. If you have less than
five years’ experience, there’s no reason why your resume
should be longer than a single page. Many job seekers
think that a longer resume will make them seem more
experienced, but padding your resume with fluff will only
do you a disservice. Recruiters know filler when they see it.
For example, a sentence like “Coordinated with teams from
around the world to share responsibilities and tasks” means
absolutely nothing. Cut out the fat, and get to the meat.

Instead of including empty platitudes, use your resume
to highlight tangible skills, successes, and achievements. If
you have no previous work experience, that’s fine, but
you’ll need to demonstrate your qualifications in other
ways. For example, describe specific skills you picked up
and technologies you learned about in undergraduate
classes. If you worked on a large project with a group, that
should likely get its own section on your resume.

Include Academic Information

Many companies require a four-year undergraduate degree
in engineering as a minimum qualification for a job, so your
resume should include information about your education.
However, one of the things that I like most about
engineering is that it’s very much a meritocracy. What
counts most isn’t which school you went to; it’s your
knowledge and competency. This means that you shouldn’t
worry if you didn’t go to the most prestigious private school
(and if you did, it may not give you the leg up that you
expect). When I’m looking at resumes, I usually don’t even
look at what school the applicant attended. I’m much more
interested in seeing evidence of what they’ve learned and
what they’ve accomplished with that knowledge.

People often wonder if they should include their GPA on
their resume. Personally, I would recommend including it if
it’s above a 3.0, and leaving it off if it’s below that. Some
companies have GPA requirements (they won’t even look at
your resume if your GPA isn’t listed, or if it’s below some
threshold), but this appears to have become less common
in recent years. Hiring managers understand that being a
successful engineer doesn’t always correlate with having
the best grades in your philosophy class.

If you don’t have an undergraduate degree in
engineering, your job hunt will be more challenging. Not all
companies have a degree requirement, though. Smaller
companies, in particular, are often less strict about their
minimum requirements. You may be able to compensate for
the lack of relevant educational experience by highlighting
your practical experience. Be sure to describe projects
you’ve worked on that illustrate your mastery of the field.

Tailor Your Resume to the Job Description

A job description details all the roles and responsibilities
that the company expects the new hire to take on. The
company is describing their ideal candidate, so you should

try to reflect those ideals as much as possible through your
resume. This means you should be prepared to tweak your
resume for each job you apply for. Highlight areas that
match the needs of the company, and consider removing
areas that are less of a match. Include relevant buzzwords
and specific technologies that you have experience with.
Acronyms, in particular, stand out and are eye-catching.

Think about your resume from the hiring manager’s
perspective. The job description is a list of elements that
they’re looking for. Don’t make it hard for them to find
those elements. The more keywords from the job
description that show up prominently in your resume, the
better. However, keep in mind that you should be able to
back up anything you put down on your resume with
detailed knowledge during an interview. There’s no better
way to bomb an interview than demonstrating that you’ve
made false claims of proficiency.

To illustrate how to tailor your resume, let’s assume
most of your experience has been in Verilog, but you also
understand VHDL. An FPGA job description will typically
state which language the company uses. If you come across
a job that requires VHDL, you should adjust your resume to
highlight your VHDL projects. It might even be worth
converting some of your Verilog code to VHDL to hone your
skills. As another example, the company might want
someone with image processing experience. In this case,
you should add a bullet to your resume identifying any
work you’ve done in this area. Conversely, if the job posting
is from a company building a wireless product, highlight
anything you’ve done with wireless communication instead.
Make sure you’re specific when highlighting your skills:
“FPGA experience with BLE over UART” is much better
than “Worked with wireless communications.”

Critiquing an Example Resume

Let’s look at an example resume for a recent college
graduate named Russell Merrick to see what can be
improved. Figure B-1 shows my actual resume when I was
applying for my first job after college.

Figure B-1: An example resume

It wasn’t horrible, but in hindsight there’s certainly a lot
of room for improvement. The biggest problem is that there
isn’t enough technical content or eye-catching buzzwords. I
learned a lot about engineering in college, but based on
this resume, you wouldn’t know it. I didn’t include any
details of specific projects that I worked on during my
undergrad education that would demonstrate my
experience; all I did was list the titles of the courses I took.
Additionally, I went into significant detail about non-
engineering work that wasn’t relevant to the job I was
applying for. Let’s fix it up.

First, we can remove “Background in Engineering
Management” from the Education section. At the time, I
thought that having completed some management classes
would be an asset, but I quickly realized that as an entry-
level employee, you’re at the bottom of the totem pole.
There’s nobody to manage, so your leadership skills aren’t
relevant. Someday in the future you may advance to the
point that you have people working under you, but that
certainly wasn’t going to be the case in the job I was going
for at the time. By the same token, I would remove
“Management, Marketing, Accounting, Finance” from the
Coursework section. It’s just not very relevant for an entry-
level FPGA engineer.

In the Related Work Experience section, I describe a
brief internship I had working in information technology
(IT). This was a valuable experience for me because it
taught me one important lesson: I didn’t want to work in
IT! Here, it would be helpful to use more buzzwords and
concrete detail. I worked with Linux computers and Cisco
routers, for example, but I didn’t write that anywhere on
my resume.

The other work experience item, about my time as an
RA, could be pared down. It’s too long and not especially

relevant to FPGA work. The Abilities section can likewise
be trimmed. It’s taken for granted that job applicants can
use Microsoft Word at this point, so don’t bother including
it. With these cuts, there will be more room to highlight
some technical projects I worked on as part of my degree.

Now let’s look at an improved version of the resume.
The version in Figure B-2 implements these suggested
changes.

Figure B-2: An example resume, improved

This revised version is a big improvement. I’ve added a
section detailing a few projects I worked on to illustrate
through concrete examples what I learned in college. In
describing these projects, I’ve named many specific
technologies that I worked with, like UART, PID, LDO, IR,
and so on. Acronyms like these help to grab the attention of
the hiring manager. I’ve also cut parts that were too
general, while getting more specific in other sections, such
as the description of my IT internship. With this new and
improved resume, past Russell could have gotten so many
more interviews!

The Interview

Your resume is all about getting your foot in the door, but
the interview is where you really need to shine in order to
beat the competition and secure the job. An interview is
really just an oral test, and as with all tests, it helps to be
prepared. You should practice implementing the tips in this
section until you’re comfortable with them. As awkward as
it might feel, find a friend or relative to try out these skills
with. It really makes a difference practicing out loud, with
another person, as opposed to in your head.

Show Your Enthusiasm

Beyond proving your technical qualifications, an interview
is an opportunity to demonstrate your enthusiasm for the
job at hand. To do this, it’s useful to research the company
beforehand. Make sure you understand the company’s
products, as well as the overall industry they’re part of.
This way you can impress the interviewers with your level
of engagement and your knowledge of the problems the
company faces. You might even have some ideas for
solutions to a few of these problems!

It also never hurts to contact people at the company
directly in advance of an interview. You might think this
would be annoying to the people hiring at the company, but
it can be hard for them to tell which resumes are submitted
by people who are responding to every single job posting
they come across, and which people are really excited
about the specific open position. I’ve had job applicants
reach out to me on LinkedIn or via email directly, and I’m
always impressed when a candidate takes this extra step. It
shows they’re really interested in the job and driven to
achieve their goals.

The most driven candidate I’ve ever come across
literally started a podcast about the space industry to get a
job working for my company. He wrote, edited, and
published a dozen episodes, just so he could get his foot in
the door. I’m not suggesting you need to create a podcast
to get a job at your dream company, but just know that
nobody has ever been turned away for excess enthusiasm.

Anticipate Questions

As you prepare for an interview, it helps to anticipate the
sorts of questions that will be asked. The first thing I
recommend doing is reviewing the job description. The
topics mentioned there are the ones that are most likely to
come up in the interview, as they’re the ones the hiring
manager is most interested in for that particular position.
You probably won’t have experience in every single area
mentioned in the job description, and that’s totally fine.
However, I recommend doing some research and learning a
bit about any topic you’re unfamiliar with, so you at least
have some background if that topic comes up in
conversation. Make sure you can also speak fluently about
anything that you highlight on your resume as a skill.

The job description is always a good place to start, but
if you’re looking for more ways to prepare, here’s a list of

some common questions that come up in interviews for
FPGA-related positions:

Describe the difference between a flip-flop and a latch.
Why might you choose an FPGA over a microcontroller?
What does a for loop do in synthesizable code?
What is the purpose of a PLL?
Describe the difference between inference and
instantiation.
What is metastability, and how would you prevent it?
What is a FIFO?
What is a block RAM?
Describe how a UART works, and where might one be
used.
What is the difference between synchronous and
asynchronous logic?
What is a shift register?
Describe some differences between Verilog and VHDL.
What should you be concerned about when crossing
clock domains?
Describe setup and hold time. What happens if they are
violated?
What is the purpose of a synthesis tool?
What happens during the place and route process?
What are SerDes transceivers and where are they used?
What is the purpose of a DSP block?
If I were interviewing someone for an intro-level FPGA

job, I would absolutely ask these types of questions. The
good news is that each of them has been answered in this
book. So study up and crush that job interview!

Pivot

When you don’t know the answer to a question, I suggest
you pivot by giving the interviewer some information that
you do know that’s relevant in some way. For example, let’s
say that you only have experience using SVN for version
control, and you’ve never used Git. If the interviewer asks,
“How would you create a branch in Git?” don’t just say, “I
don’t know, I’ve never used Git before.” That answer won’t
be sufficient. Instead, you could say something like, “Well, I
haven’t used Git for version control yet, but in SVN I use
branches to track independent lines of development—for
example, when I fix a bug or add a feature. In SVN, this can
be done with the command SVN COPY.”

This is a fantastic answer. Despite not having the
information the interviewer was looking for, you’ve
demonstrated that you understand the purpose of
branching and have experience with it. Interviewers get
that you won’t know all the answers, and that new tools
and skills can be learned on the job. Always take the
opportunity to explain what you know about a question
posed to you, even if you don’t know the complete answer.

The Job Offer and Negotiation

At this point, you’ve beaten the competition and the hiring
manager has decided to make you a job offer.
Congratulations, you’re a professional engineer now! It’s
time to celebrate. Then, once you’ve calmed down, I always
recommend that you ask for a better offer. You’re probably
thinking, “But Russell, that’s ungrateful. I should be happy
that I got any offer at all. What if they pull my offer because
I asked them to do better?”

Here’s a life lesson that you can take from this book: it
never hurts to ask. Checking into a hotel? Ask if they have
any room upgrades available. Buying something expensive
from a store? Ask if they have any coupons or discounts
that could be applied. Got your first job offer? Ask if they

can increase the salary, stock options, or sign-on bonus.
The company will never take back a job offer if you’re polite
and professional, but every single time I’ve asked a
company for a better offer, they’ve given it. HR will never
give you their best offer first. They expect that a little
negotiation will be a part of the process. They want to get
you to work for as little money as possible (without
insulting you, of course). They always leave money on the
table, but it’s up to you to get that money. So be polite, but
don’t be afraid to ask if there’s any way that they can
increase the offer.

Summary

My goal in writing this book is to spread the knowledge
that I’ve accumulated over my career as an engineer. I
hope the book will help you strengthen your FPGA skills
and become a world-class performer. Shoot me a message
when you’ve made it. You’ve got this!

GLOSSARY

application-specific integrated circuit (ASIC)   An
integrated circuit that’s customized for a particular use,
rather than a general use.
bidirectional   Describes an FPGA pin that can both send
and receive data, often in half-duplex communication.
blocking assignment   An assignment that prevents the
execution of the next statement until the current
assignment is executed. The blocking assignment operator
is = in Verilog and := in VHDL, but in VHDL you can only
create blocking assignments on variables, not signals.
block RAM   A common FPGA primitive used for larger
pools of memory storage and retrieval.
Boolean algebra   Equations where inputs and outputs are
represented with true/false, or high/low, or 1/0 only.
buffer   An electronic circuit element that isolates its input
from its output.
clock   A digital signal that steadily alternates between high
and low at a fixed frequency, coordinating and driving the
activity of an FPGA.
clock data recovery (CDR)   The process of extracting the
clock and data signals from a combined clock/data signal
sent through SerDes. The extracted clock signal can be
used to sample the data at the SerDes receiver.

clock enable (to a flip-flop)   Labeled En, an input that
allows the flip-flop output to be updated when active. When
the clock enable is inactive, the flip-flop will retain its
output state.
clock input (to a flip-flop)   Labeled >, the input that
takes in a clock signal, allowing a flip-flop to work.
combinational logic   Logic for which the outputs are
determined from the present inputs, with no memory of
past states (also called combinatorial logic). Combinational
logic generates LUTs within an FPGA.
constraints   Rules about your FPGA that you provide to
the synthesis and place and route tools, such as the pin
locations for signals and the clock frequencies used in your
design.
core voltage   The voltage at which an FPGA performs all
of its internal digital processing.
data input (to a flip-flop)   Labeled D, the input to a flip-
flop that will be propagated to the output, usually on the
rising edge of the clock.
data output (from a flip-flop)   Labeled Q, the output of
the flip-flop, usually updated on the rising edge of the
clock.
datasheet   A collection of information about an electronic
component. FPGAs often have several datasheets, and more
complicated FPGAs can have a few dozen.
DC balance   Sending an equal number of high and low
bits, in order to improve digital signal integrity in high-
speed communications.
debounce   A technique for removing bounces or glitches
to get a stable signal. Often used on mechanical switches,
which can introduce glitches when a switch is toggled.

demultiplexer (demux)   A design element that can select
a single input to one of several outputs.
device under test (DUT)   The block of code being tested
by a testbench. Also called the unit under test (UUT).
differential signaling   A method of transmitting electrical
signals with two wires by evaluating the difference between
them. A reference to ground isn’t required.
digital filter   A system that performs mathematical
operations on a digital signal to reduce or enhance certain
features of that signal.
double data rate (DDR)   Sending data on both the rising
and falling edges of each clock cycle. Allows for twice the
data throughput compared to single data rate (SDR).
drive strength   A setting that controls the level of source
or sink current (in mA) for a pin.
DSP block   A primitive used to accelerate math operations
for digital signal processing (DSP), in particular
multiplication and addition, in an FPGA. Also called a DSP

tile.
duty cycle   The percentage of time a signal is high versus
low. Clock signals usually have a 50 percent duty cycle.
edge   The point at which a signal, such as a clock,
transitions from one state to another. A transition from low
to high is called a rising or positive edge, and a transition
from high to low is called a falling or negative edge.
edge detection   The process of finding either a rising
edge or a falling edge and triggering some action based on
that edge.
electromagnetic interference (EMI)   A phenomenon
caused by changing electrical and magnetic fields (for

example, from a nearby microwave oven, cell phone, or
power line) that can cause disturbances in other systems.
event   An action that a state machine responds to, such as
a timer expiring, a button being pressed, or some input
trigger.
first in, first out (FIFO)   A common type of buffer, where
the first word written is the first word read out.
flip-flop   The critical component inside an FPGA
responsible for storing state. Uses a clock as an input and
passes the signal from its data input to its data output,
usually on the rising edge of the clock. Also called a
register.
FPGA   Short for field programmable gate array, a digital
circuit that can be programmed with Verilog or VHDL to
solve a wide array of digital logic problems.
FPGA development board   A printed circuit board (PCB)
with an FPGA on it that allows you to program the FPGA
and test your code.
frequency   The number of cycles (high/low alternations)
per second of a signal (such as a clock signal), measured in
hertz (Hz).
full-duplex   A communication mode between two systems
where data can be sent and received at the same time.
generics   Used in VHDL to make code more flexible and
reusable by overriding behaviors of low-level code at a
higher level. Equivalent to parameters in Verilog.
GPIO   A general purpose input/output pin, which serves to
interface an FPGA to other components on a circuit board.
guard condition   A Boolean expression that determines
the flow of operations in a state machine. Can be drawn in
a state machine diagram using a diamond.

GUI creation   The process of using the GUI in an FPGA
development tool to create your primitives. This is often the
best approach to creating primitives for beginners, as it’s
the least error prone.
half-duplex   A communication mode between two systems
where only one system can send data at a time. Also
referred to as bidirectional data transfer.
hard IP   A component within your FPGA dedicated to a
particular task, such as a block RAM, PLL, or DSP block.
Also called a primitive.
high impedance   The state of a buffer in which the output
accepts very little input current, which effectively shuts the
output off and disconnects it from the circuit.
hold time   The amount of time the input to a flip-flop
should be stable after a clock edge to avoid a metastable
condition.
inference   The process of creating a primitive using
Verilog or VHDL and trusting the synthesis tools to
understand your intent.
integrated circuit (IC)   Often referred to as a chip, a type
of electronic circuit in a single package.
linear feedback shift register (LFSR)   A special type of
shift register that produces pseudorandom patterns by
passing certain flip-flops through a logic gate and sending
the result back into the input.
logic analyzer   A tool used for debugging that analyzes
many digital signals at once.
logic gates   Devices that perform common Boolean
operations like AND, OR, and XOR. Each type of logic gate
has a distinctive symbol.

look-up table (LUT)   A dedicated component inside an
FPGA that performs all Boolean logic operations.
metastability   A condition in which the output of a flip-
flop is unstable and unpredictable for a period of time.
microcontroller   A small computer on an integrated
circuit, with a CPU and external peripherals that can be
programmed using a language like C.
multiplexer (mux)   A design element that can select
several inputs to a single output.
non-blocking assignment   An assignment in Verilog or
VHDL using <=, where these statements execute at the
same instant in time. Commonly used to create sequential
logic (flip-flops) on an FPGA.
operating voltage   The voltage at which a 1 or a 0
appears on a GPIO pin. Common values for a 1 are 3.3 V,
2.5 V, and 1.8 V.
parallel communication   A method of transmitting data
where multiple bits are sent simultaneously.
parameters   Used in Verilog to make code more flexible
and reusable by overriding behaviors of low-level code at a
higher level. Equivalent to generics in VHDL.
period   The time between rising edges of a clock cycle,
often measured in nanoseconds. A clock’s period is
calculated as 1 ÷ frequency.
phase   The characteristic of a signal that describes the
current position of its waveform, or its relationship in time
to another signal.
phase-locked loop (PLL)   A primitive commonly used as
the main clock generator for an FPGA. It can generate
multiple clock signals at different frequencies and manage
the relationships between them.

physical constraint file   A file that maps the signals in
your design to physical pins on the FPGA.
place and route   The design tool that takes your
synthesized design and maps it to physical locations on
your specific FPGA. Also performs timing analysis, which
reports if a design can run successfully at the requested
clock frequency.
primitive   A component within your FPGA dedicated to a
particular task, such as a block RAM, PLL, or DSP block.
Also called hard IP.
primitive instantiation   Directly creating a primitive
FPGA component by using its template. This method allows
you to get exactly the primitive you want, without relying
on the tools to make any assumptions for you.
propagation delay   The amount of time it takes for a
signal to travel from a source to a destination.
protocol   A system of rules defining how two or more
devices communicate.
random-access memory (RAM)    Memory that can be
accessed in any order, often from one port (single-port) or
two ports (dual-port).
register   Another word for a flip-flop.
routing   Wiring inside an FPGA that gives it its flexibility,
but at a higher dollar cost. Also called interconnect.
sampling   The process of converting an analog signal into
a digital signal by taking discrete measurements of it over
time.
self-checking testbench   A testbench that automatically
reports if a design is behaving as expected, without your
having to inspect the resulting waveform.

self-clocking signal   A signal that uses an encoding
scheme to combine a clock and data signal together, such
that separate clock and data paths can be merged into a
single interface. This technique is essential for SerDes.
sequential logic   Logic for which the outputs are
determined both from present inputs and previous outputs
(also called synchronous logic). Sequential logic generates
flip-flops in an FPGA.
SerDes (serializer/deserializer)   An FPGA primitive used
to send data at high rates between a transmitting and
receiving device. Parallel data is converted to serial data
and embedded with a clock signal before transmission. On
the receiving end, the clock and data signals are extracted,
and the serial data is converted back to parallel.
serial communication   A method of transmitting data
where bits are sent one at a time.
set/reset   An input that, when active, will reset the flip-
flop to a default value.
setup time   The amount of time the input to a flip-flop
should be stable before a clock edge to avoid a metastable
condition.
shift register   A chain of flip-flops where the output of one
flip-flop is connected to the input of the next.
sign bit   The most significant bit in a signed number that
indicates whether the number is negative (sign bit is 1) or
positive (sign bit is 0).
signed   Refers to a signal that can hold positive or
negative data.
sign extension   The operation of increasing the number of
bits of a binary number while preserving the number’s sign
and value.

simulation   The process of using a computer to inject test
cases into your FPGA code to see how the code responds.
single data rate (SDR)   Sending data on only one edge of
each clock cycle, most often the rising edge.
single-ended signaling   A method of transmitting
electrical signals where one wire carries the signal, which
is referenced to ground.
slew rate   The rate of change allowed for an output signal,
usually specified in qualitative terms, such as fast, medium,
or slow.
state   In a state machine, a status where the system is
waiting to execute a transition. A state can be changed
when an event triggers a transition, or if the state itself
creates a transition to another state.
state machine   Sometimes called a finite state machine

(FSM), a method of controlling the flow through a sequence
of operations inside an FPGA.
synthesis   The design tool that turns your VHDL or
Verilog code into low-level components within your FPGA,
such as LUTs, flip-flops, and block RAMs. Similar to a
compiler for a programming language like C.
system on a chip (SoC)   An integrated circuit that
combines many components of an electronic system into a
single package. For example, an FPGA that has a dedicated
CPU might be considered an SoC.
SystemVerilog   A programming language that is a
superset of Verilog, with added features that make it useful
for verification.
testbench   Test code that exercises your FPGA design
code in a simulation environment so you can analyze the
design to see if it’s behaving as expected.

timing errors   An output of the place and route process
that shows signals that might be subject to metastability
issues, which could cause your FPGA design to behave
unpredictably.
trade study   The act of selecting a technical solution in
engineering by examining multiple possibilities and
weighing each by its strengths and weaknesses.
transceiver   A device that can both transmit and receive
communications.
transition   The action of moving from one state to another
in a state machine.
truth table   A table representation of a Boolean equation,
listing all possible input combinations and the
corresponding outputs.
two’s complement   A mathematical operation that
converts between positive and negative binary numbers. To
take the two’s complement, you invert the bits and add 1.
unit under test (UUT)   The block of code being tested by
a testbench. Also called the device under test (DUT).
universal asynchronous receiver transmitter (UART)   
An interface where data is transmitted or received
asynchronously, meaning without the use of a clock.
Common for exchanging low data rate information, for
example between an FPGA and a computer.
unsigned   Refers to a signal that can hold only positive
data, not negative data.
utilization report   An output of the synthesis tool that
tells you what percentage of your FPGA resources you’ve
used up.
verification   The process of thoroughly testing an FPGA or
ASIC design to ensure it’s working as intended.

waveform   A feature of an FPGA simulation tool that
shows a visual representation of the signals in your test
environment over time.

INDEX

Symbols
& (AND, Verilog), 42
= or := (blocking assignment), 22, 214
(delay, Verilog), 76, 128
%f (formatter), 233
<, > (comparison), 122
{} (concatenation, Verilog), 101
& (concatenation, VHDL), 101
<= (non-blocking assignment), 54, 214
| (OR, Verilog), 42
<< (shift left, Verilog), 225
>> (shift right, Verilog), 226
? (ternary operator, Verilog), 93, 178
^ (XOR, Verilog), 42

A
Actel, 3, 5
addition, 215–219, 232
Alchitry Cu, 257
almost empty (AE), 118, 145
almost full (AF), 118, 145
Altera, 3, 16, 69
ALU (arithmetic logic unit), 197
always block, 53, 57

one vs. two, 149–157
AMD, 3, 16, 46, 64, 69, 87, 144, 188–189, 197, 246, 256
analog-to-digital converter (ADC), 5, 191, 195, 240
AND gate, 32, 40–42, 54, 58, 71
and keyword, 42
application-specific integrated circuits (ASICs), 7–8, 89
arbiter, 127, 228
architecture keyword, 22
Arduino, 5, 16, 257
arithmetic logic unit (ALU), 197
artificial intelligence (AI), 4

ASCII, 97–98
assertions, 84
assert keyword, 85–86, 128, 157
assign keyword, 22
assignment operators

blocking (=, :=), 22, 214
non-blocking (<=), 54, 214

Atmel. See Microchip Technology

B
bandwidth, 6, 249
bank (pins), 242
bidirectional pin, 240
binary, 33, 162
Binary_To_7Segment module, 161, 169
Bitcoin, 8
black box, 68
block RAM, 115–116, 186, 188, 191–194

creation, 193
error detection and correction, 193
features and limitations, 192
initializing, 128, 193
instantiation template, 186
precalculated table, 227
size, 192

Boolean algebra, 31–32, 36–40
on FPGA, 39
order of operations, 36
symbols, 36

bouncing of switch, 75
BRAM. See block RAM
buffers, 238–239, 246, 253
bugs, 67, 89, 117

C
career tips, 259–267
case statement, 152–153, 164, 172
clock data recovery (CDR), 251–253
clocks, 47

constraints, 131
counting cycles, 77, 80, 96, 102, 108, 182
creation via PLL, 199–204
crossing domains, 141–146
reference, 200
skew, 249–251

$clog2() function, 80, 114
coding style, 78. See also naming convention

combinational logic, 57–59, 122
concatenation, 101, 107
constraints, 54–55, 131, 145–146
Coordinate Rotation Digital Computer (CORDIC), 229
cores, 185
core voltage, 32
counter

LFSR, 102
signed, 206
traditional, 107
traditional vs. LFSR, 110
wraparound, 208

cyclic redundancy check (CRC), 35

D
datasheets, 63
data types, 206–209

converting, 210–211
data valid (DV) signal, 112
DC balance, 251–253
debounce filter, 76
debouncing of switch, 75–84, 161, 169
debugging, 87–88
decimals, 33, 230
delay, 50, 61, 73, 96. See also propagation delay
De Morgan’s law, 40
demultiplexer (demux), 92, 94–95, 106
depth, 112, 114
development board, 14, 255–259
device under test (DUT), 70
D flip-flop (DFF), 46, 64
Diamond Programmer, 14–15, 20

installation, 18
programming, 26–28

differential signaling, 243–245
Digilent, 16, 257
digital signal processing (DSP), 194. See also DSP block
$display() function, 128
division, 225–228
done pulse, 103, 105, 107
double-flopping, 141–142
double rate data (DDR), 245
drive strength, 242–243
DSP block, 194, 229

analog vs. digital signals, 194–196
arithmetic logic unit (ALU), 197
creation, 198–199

features, 197–198
multiplier, 197
pre-adder, 197

dual-port RAM, 111
$dumpfile() function, 73
duty cycle, 47

E
EDA Playground, 69–70, 72–74, 83, 211
edge detection, 51, 54, 179–180
electromagnetic interference (EMI), 244, 253
endmodule keyword, 22
entity keyword, 22
enumeration, 152, 171
EPWave, 74
Ethernet, 245, 247
events, state machine, 148–149

F
fab (ASIC foundry), 7, 89
falling edge, 47
fiber optics, 253
file_open() function, 128
files, working with, 128
filter, 196
finance, 4
finite state machine (FSM). See state machine
first in, first out (FIFO), 116–117, 144–145

AE (almost empty), 118, 145
AF (almost full), 118, 145
crossing clock domains, 144
implementation, 119–122
input and output, 117–119
interface, 117

fixed-point numbers, 230–236
flip-flops, 45–46

behavior of, 48–52, 57
clock enable (EN), 46, 48–49, 61
clock input (>), 46, 48–51
creation in Verilog or VHDL, 54
data input (D), 46, 48–51
data output (Q), 46, 48–51
double-flopping, 141–142
edge detection, 51, 54
instantiation template, 189
JK and T flip-flops, 51
physical component, 63

register, 48, 53
reset, 61–63, 87, 152

synchronous vs. asynchronous resets, 62
use in RAM, 115

floating-point numbers, 230
floating (isolated) electrical ground, 245
$fopen() function, 128
for loops, 128–131
FPGAs (field programmable gate arrays), 1–2

applications, 4, 89
vs. ASICs, 7–9
history, 2–3
languages, 9–11
vs. microcontrollers, 5–8
picking a family and package, 126

full adder, 229
full-duplex communication, 240, 247
$fwrite() function, 128

G
gain, applying to a signal, 196
general purpose input/output. See GPIO
generics, 78, 109, 114, 169
Go Board, 23, 47, 102, 256
GPIO, 238–239

differential signaling, 243–245
drive strength, 242–243
operating voltage, 242
output enable (OE), 239
single-ended, 242–243
slew rate, 243, 245

guard condition, 160
GUI approach, 190–191

H
half adder, 229
half-duplex communication, 240
hard IP, 3, 185
hard processors, 3
hardware debugging, 67
hardware description language (HDL), 9
hertz (Hz), 47
hexadecimal, 98
high impedance (aka hi-Z or tri-state), 239–240
high-speed data, 247, 251, 253
hold time (th), 133–135

I
I2C (inter-integrated circuit), 240
iCE40 (FPGA family), xxi–xxiii, 14–16, 63
iCEcube2, 14–15, 20, 55–56, 190

building, 25
creating a project, 22–24
installation, 16–18

iCEstick, 256–257
ieee library, 22
if statement, 81
inference, 186
infrared (IR) cameras, 4
initial block, 73, 213
input, 239. See also GPIO
instantiation, 186–189
integrated circuit (IC), 1
Intel, 3, 16, 64
intellectual property (IP), 3
interview tips, 265–267
input/output (I/O). See GPIO
isolated (floating) electrical ground, 245

K
Karnaugh maps, 40

L
latches, 59–61, 124, 155
Lattice Diamond, 16, 190, 198–199
Lattice Semiconductor, 3, 14, 257
least significant bit, 98
LEDs, 15

blinking, 51–56
blinking selectively, 101–111
lighting with logic gate, 40–42
memory game, 158–183
seven-segment display, 161
showing pattern, 178–179
wiring to switch, 19

linear feedback shift register (LFSR), 99–101
applications, 100, 107
code, 106
counter, 102
pseudorandom pattern generation, 171, 177

localparam keyword, 152
logic analyzer, 87–88
logic cell, 64

logic gates, 32–36, 38
logic minimization, 40, 124
look-up table (LUT), 38–40, 54

physical component, 63
shortcomings, 45

low-pass filter (LPF), 196
low-power double data rate (LPDDR), 116, 118, 148, 246
LVCMOS25, 242
LVCMOS33, 242, 245
LVDS (low-voltage differential signaling), 244

M
Manchester code, 250–252
math

precalculating results, 227
rules, 236

memory blocks, 192. See also RAM
metastability, 133–134, 141–142, 145, 191, 250
Microchip Technology, 3, 5
microcontroller, 2, 5–7

offloading math operations, 229
Microsemi. See Microchip Technology
Microsoft, 20
minimum clock period (tclk(min)), 136
ModelSim, 69
module keyword, 21
most significant bit, 98–99, 207, 215–217
multiplexer (mux), 92–94
multiplication, 221–225, 234
multiplier, 197
multiply–accumulate (MAC) operation, 194, 197

N
naming convention, 22, 62, 78, 96, 121, 158, 213, 232
NAND (not and) gate, 35–36
negotiating a job offer, 267
nonrecurring engineering (NRE) cost, 7
non-synthesizable code, 127
NOR (not or) gate, 36
NOT gate, 34, 103
now keyword, 76, 128
numbers, 206, 208–211

negative, 206
representing in FPGA, 208
signed vs. unsigned, 206–208

numeric_std package, 206

O
one-time programmable (OTP) FPGAs, 89
open keyword, 105, 182
operating voltage, 242
optimization, 124
OR gate, 33, 42
or keyword, 42
output enable (OE), 239
output keyword, 21–22, 239
overloading functions, 213–214

P
parallel communication, 248–250
parallel thinking, 2, 54
parameters, 78, 109, 114, 169
path slack, 139
.pcf file, 20, 24
PCI, 249
period (of clock), 47–48, 55, 80, 135
phase-locked loop (PLL), 142, 185, 199–204, 252

creation, 202
inputs, 200
locked signal, 202
operation, 200

phase of a signal, 201
physical constraints file, 20, 24
pipelining, 136–140
place and route, 20, 131

constraints, 24, 55, 131, 145, 183, 245
mapping, 24
pin report, 56
timing errors, 56, 131–141, 145
timing report, 56, 138

Pmod (peripheral module) connector, 16
positive edge, 54
pre-adder, 197
primitives, 144, 185–186, 190–191, 247
printed circuit board (PCB), 14
printing to console, 128
process block, 53, 57–58, 73, 213

one vs. two, 149–155
Programmable Array Logic (PAL), 39
projects

blinking an LED, 51–57
creating a memory game, 158–183
debouncing a switch, 75–84
lighting an LED with logic gates, 40–42

selectively blinking an LED, 101–111
wiring switches to LEDs, 19–28

propagation delay (tp), 135–136, 249
protocol, 240, 245
pulse, 103, 107

stretching, 144
push-button switch, 15, 101

debouncing, 75, 161, 169
edge detection, 180
selector, 102
wiring to LED, 19

Q
Q notation, 231
Quartus, 16, 18
Quine–McCluskey algorithm, 40

R
radar, 4
radiation, 4, 89
radix, 230
RAM (random-access memory), 111–116

depth, 112, 114
dual-port, 111
single-port, 111
width, 112, 114

range keyword, 80
real data type, 233
reg keyword, 53, 213
register, 48
replicated logic, 128
report keyword, 128
resetting a flip-flop. See flip-flops
resize() function, 217, 219
resource utilization. See synthesis
resume tips, 260–265
rising edge, 47–49, 54, 133, 152
routing, 5

S
sampling (analog to digital), 195
schematic, 25, 131
.sdc file, 55
selector inputs, 92–93
self-checking testbenches, 84–86
sensitivity list, 53–54, 58

sequential logic, 57–58, 61
SerDes (serializer/deserializer), 247–250, 252–253

8B/10B, 253
clock data recovery (CDR), 251, 253
DC balance, 251
encoding scheme, 250, 253
self-clocking signals, 250
speed, 247, 250
transceiver, 247

serial communication, 248–250
serial thinking, 2
set_io keyword, 24
set/reset pin, 61–63
setup time (tsu), 133–136
seven-segment display, 15, 159, 161–165
shift_left() function, 224–226
shift register, 50, 95–101, 129, 224–225

converting between serial and parallel, 97
creating delay, 96
divide by two, 225
multiply by two, 224

signals, 21–22
address, 114
analog vs. digital, 194–196
asynchronous, 141–146
clock, 47
data valid, 112, 117
declaring, 21
differential vs. single-ended, 243–245
dynamic sizing, 209
gain, applying, 196
initial condition, 86–87
input and output, 117–119
mapping to pin, 24–25
monitoring, 74–75
self-clocking, 250–252
synchronous vs. asynchronous, 248
toggling, 101–111

sign bit, 207
signed data type, 206–207, 210
signed() function, 211, 221
sign extension, 216–219
Simon (game), 158. See also testbench
simulation, 68–75

tools, 69–70
single-ended signaling, 243
single-port RAM, 111

slew rate, 243
state machine, 147–149, 152, 155, 157–160, 184

best practices, 157–158
diagram, 148–149, 158–159
events, 148–149
guard condition, 160
implementation, 149–155
initial state, 149, 152, 160
memory game project, 158–183
states, 148
transitions, 148
turnstile example, 148–152

std_logic_1164 package, 22
std_logic_arith package, 206
std_logic data type, 22
std_logic_vector data type, 206, 210
subtraction, 219–221, 232–234
switches. See push-button switch
synchronous logic, 57
syntax errors, 125
synthesis, 20, 124–127

constraints, 54–55
inference, 186
logic minimization, 40
notes, 124
pruning, 105, 208
report, 42, 55, 60, 84, 124, 183
syntax errors, 125
translate directives, 127
utilization, 42, 84, 110, 183, 194, 204

errors, 125–127
warnings, 124

synthesizable code, 77, 87, 127–130
system on a chip (SoC), 229
SystemVerilog, 70, 86, 89, 152

T

tclk(min) (minimum clock period), 136
telecommunications, 4
ternary operator, 93, 179, 241
testbench, 70–72

creating, 81–83
clock creation, 82

math operations, 211–228
running, 74–75
self-checking, 84–86
speeding up, 83

state machine, 155–158
writing, 71–73

th (hold time), 133
$time, 76, 128
time, measuring, 76–77
timing. See place and route
toggle a signal, 101–111
to_integer() function, 210–211
to_signed() function, 211
to_unsigned() function, 211
tp (propagation delay), 135–136, 249
transceiver, 240, 247
transition, 148
tri-state, 239
truncation, 233–234
truth tables, 32–39, 41

AND, 33
multiple gates, 37
NAND, 35
NOT, 34
OR, 34
three-input, 37
XOR, 35

tsu (setup time), 133–136
TTL (transistor–transistor logic), 242
Turing, Alan, 33
TWI (two-wire interface), 240
two-dimensional (2D) array, 115, 175
two’s complement, 207–208

U
unit under test (UUT), 70–75, 83
universal asynchronous receiver-transmitter (UART), 97–99
unsigned data type, 210
unsigned() function, 211
USB requirements, 15
utilization errors, 125–127. See also synthesis: utilization

V
variable keyword, 213
verification, 8, 88–89
Verilog

background, 9–11
enumeration support, 152
weak typing, 10

VHDL

2008 version, 109
attributes, 211, 219
background, 9–11
data type conversions, 210–211
strong typing, 10, 178, 182, 210, 213, 217
verbosity, 22

Visual Studio Code (VS Code), 20
Vivado, 16, 18
voltage, 46. See also GPIO

W
wait keyword, 73, 76, 128
waveforms, 74–75, 83–84
when keyword, 61
width, 112, 114
wraparound, 208
write() function, 128

X
Xilinx, 2–3, 16, 69
XNOR (exclusive not or) gate, 36, 99–100, 107
XOR (exclusive or) gate, 35–36, 39, 42, 99, 250–251
xor keyword, 42

Z
Z (high impedance), 239

	Title Page
	Copyright
	Dedication
	About the Author and Technical Reviewer
	Acknowledgments
	Introduction
	Who Is This Book For?
	What This Book Isn’t
	What’s in the Book?
	What You’ll Need
	Online Resources

	1. Meet the FPGA
	A Brief History of FPGAs
	Popular FPGA Applications
	Comparing Common Digital Logic Components
	FPGAs vs. Microcontrollers
	FPGAs vs. ASICs
	FPGAs vs. Microcontrollers vs. ASICs

	Verilog and VHDL
	Summary

	2. Setting Up Your Hardware and Tools
	Choosing an FPGA Development Board
	Requirements for the Book
	Setting Up Your Development Environment
	iCEcube2
	Diamond Programmer

	Project #1: Wiring Switches to LEDs
	Writing the Code
	Creating a New iCEcube2 Project
	Adding Pin Constraints
	Running the Build
	Connecting Your Development Board
	Programming the FPGA

	Summary

	3. Boolean Algebra and the Look-Up Table
	Logic Gates and Their Truth Tables
	AND Gates
	OR Gates
	NOT Gates
	XOR Gates
	NAND Gates
	Other Gates

	Combining Gates with Boolean Algebra
	The Look-Up Table
	Project #2: Lighting an LED with Logic Gates
	Writing the Code
	Building and Programming the FPGA

	Summary

	4. Storing State with the Flip-Flop
	How a Flip-Flop Works
	The Clock Signal
	A Flip-Flop in Action
	A Chain of Flip-Flops

	Project #3: Blinking an LED
	Writing the Code
	Adding Constraints
	Building and Programming the FPGA

	Combinational Logic vs. Sequential Logic
	The Dangers of Latches
	Resetting a Flip-Flop
	Look-Up Tables and Flip-Flops on a Real FPGA
	Summary

	5. Testing Your Code with Simulation
	Why Simulation Matters
	FPGA Simulation Tools
	The Testbench
	Writing a Testbench
	Running a Testbench and Viewing Waveforms

	Project #4: Debouncing a Switch
	Measuring Time on an FPGA
	Writing the Code
	Creating the Testbench and Simulation
	Building and Programming the FPGA

	Self-Checking Testbenches
	Initial Signal Conditions
	On-FPGA Debugging
	Verification
	Summary

	6. Common Fpga Modules
	Multiplexers and Demultiplexers
	Implementing a Multiplexer
	Implementing a Demultiplexer

	The Shift Register
	Delaying Data
	Converting Between Serial and Parallel Data
	Creating a Linear Feedback Shift Register

	Project #5: Selectively Blinking an LED
	Writing the Code
	Trying Another Way
	Comparing the Two Approaches

	Random Access Memory
	A RAM Implementation
	RAM on an FPGA

	FIFO: First In, First Out
	Input and Output Signals
	A FIFO Implementation

	Summary

	7. Synthesis, Place and Route, and Crossing Clock Domains
	Synthesis
	Notes, Warnings, and Errors
	Non-synthesizable Code

	Place and Route
	Constraints
	Timing Errors

	Crossing Clock Domains
	Crossing from Slower to Faster
	Crossing from Faster to Slower
	Using a FIFO
	Addressing Timing Errors

	Summary

	8. The State Machine
	States, Transitions, and Events
	Implementing a State Machine
	Using Two always or process Blocks
	Using One always or process Block
	Testing the Design

	State Machine Best Practices
	Project #6: Creating a Memory Game
	Planning the State Machine
	Organizing the Design
	Using the Seven-Segment Display
	Coding the Top-Level Module
	Coding the State Machine
	Testing the Memory Game
	Adding the Pin Constraints
	Building and Programming the FPGA

	Summary

	9. Useful FPGA Primitives
	How to Create Primitives
	Instantiation
	The GUI Approach

	The Block RAM
	Features and Limitations
	Creation

	The Digital Signal Processing Block
	Analog vs. Digital Signals
	Common DSP Tasks
	Features
	Creation

	The Phase-Locked Loop
	How It Works
	Creation

	Summary

	10. Numbers and Math
	Numerical Data Types
	Representing Signed vs. Unsigned Values
	Taking the Two’s Complement
	Sizing Signals Appropriately
	Converting Between Types in VHDL

	Performing Mathematical Operations
	Addition
	Subtraction
	Multiplication
	Multiplication by Powers of 2
	Division

	How FPGAs Implement Math Operations
	Working with Decimals
	Adding and Subtracting with Fixed Point
	Multiplying with Fixed Point

	Summary

	11. Getting Data in and Out with I/O and Serdes
	Working with GPIO Pins
	I/O Buffers
	Electrical Characteristics
	Faster Data Transmission with Double Data Rate

	SerDes
	Parallel vs. Serial Communication
	Self-Clocking Signals
	How SerDes Works

	Summary

	A. FPGA Development Boards
	The Nandland Go Board
	The Lattice iCEstick
	The Alchitry Cu
	Switching Between Boards

	B. Tips for a Career in FPGA Engineering
	The Resume
	The Interview
	The Job Offer and Negotiation
	Summary

	Glossary
	Index

