

MicroPython Projects

A do-it-yourself guide for embedded developers to build a
range of applications using Python

Jacob Beningo

BIRMINGHAM - MUMBAI

MicroPython Projects
Copyright © 2020 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author(s), nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged
to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Richa Tripathi
Acquisition Editor: Alok Dhuri
Content Development Editor: Digvijay Bagul
Senior Editor: Rohit Singh
Technical Editor: Gaurav Gala
Copy Editor: Safis Editing
Project Coordinator: Francy Puthiry
Proofreader: Safis Editing
Indexer: Manju Arasan
Production Designer: Alishon Mendonsa

First published: April 2020

Production reference: 1160420

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78995-803-4

www.packt.com

http://www.packt.com

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well
as industry leading tools to help you plan your personal development and advance your
career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Fully searchable for easy access to vital information

Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://subscribe.packtpub.com/
http://www.packt.com
http://www.packt.com

Contributors

About the author
Jacob Beningo is an independent consultant who specializes in microcontroller-based
embedded systems. He has advised, coached, and developed systems across multiple
industries, including the automotive, defense, industrial, medical, and space sectors. Jacob
enjoys working with companies to help them develop and improve their processes and skill
sets. He publishes a monthly newsletter, Embedded Bytes, and blogs for publications about
embedded system design techniques and challenges. Jacob holds bachelor's degrees in
electrical engineering, physics, and mathematics from Central Michigan University and a
master's degree in space systems engineering from the University of Michigan.

A lot of effort goes into writing a book and it is often the culmination of months, if not
years, of hard work and this book is no exception. The project nature of this book brought
about its own challenges and it would not have been possible without the dedication and
hard work of colleagues, reviewers, and editors. My colleague, Lorenzo Rizzello, was
fantastic in helping me pull together the theory and operations for the object detection
chapter. I want to thank all of you!

About the reviewer
Bhaumik Vaidya is an experienced computer vision engineer and mentor. He has worked
extensively on OpenCV in solving computer vision problems. He got a gold medal in his
master's degree and is now doing a PhD in the acceleration of computer vision algorithms
built using OpenCV and deep learning libraries on GPUs. He has a background in teaching
and has guided many projects in computer vision and very-large-scale integration (VLSI).
He has previously worked in the VLSI domain as an ASIC verification engineer, and so has
very sound knowledge of hardware architectures as well. Bhaumik, along with his PhD
mentor, has also received an NVIDIA Jetson TX1 embedded development platform as a
research grant from NVIDIA.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Preface
Embedded systems developers have traditionally mostly used C when programming, or if
they are daring and cutting edge, they've pushed the envelope by using C++. Over the last
decade, a lot has changed in the way that we design and build embedded systems and in
the way that software is developed in general. Python has become a dominant language in
many computer and server applications, with many young and new developers learning
Python first over any other language. This makes Python a unique and interesting choice to
develop embedded systems.

MicroPython Projects explores how developers can leverage Python to develop applications
that use a slimmed-down version Python known as MicroPython. MicroPython came into
existence back in 2013 and has been steadily evolving and growing an active and
innovative community around it. MicroPython allows developers to work at a higher level
of abstraction, focusing on the application early while leaving low-level processor details
behind an interface, which makes it easy for even non-software developers to quickly write
applications that control and interface with the hardware.

This book will walk you through the background of developing applications using
MicroPython and will help developers to get familiar with some design patterns and
formulate ideas for their own projects.

Who this book is for
This book is for embedded systems developers or anyone who is interested in building
embedded systems using MicroPython.

I expect that the reader has a basic understanding of electronics and Python while some
experimentation with MicroPython will be helpful.

I've tried throughout the book to reinforce the software development process, which I often
find lacking in developers who are designing their own product or working on open source
software. No matter what your current skill level, readers will get an understanding of
where and when to use MicroPython, along with techniques and patterns they can directly
apply to their own projects and some ideas on how to expand the projects that are in this
book.

What this book covers
Chapter 1, Down the Rabbit Hole with MicroPython, takes you through embedded software
development and where MicroPython fits in. In this chapter, we look at how to decide what
language to use, along with some general best practices.

Chapter 2, Managing Real-Time Tasks, helps you explore the different techniques that
developers can use to schedule tasks in their MicroPython-based system.

Chapter 3, Writing a MicroPython Driver for an I/O Expander, explains how to write your
own driver for an external device.

Chapter 4, Developing an Application Test Harness, takes you through different methods that
can be used to test our MicroPython-based application and presents several different
options for developers interested in such activities.

Chapter 5, Customizing the MicroPython Kernel Start Up Code, helps you to get behind the
scenes with MicroPython by examining and making changes to the MicroPython kernel. In
this chapter, we focus on the startup code that developers looking to produce a production
system might need to modify.

Chapter 6, A Custom Debugging Tool to Visualize Sensor Data, helps you explore how you can
transport sensor and debugging information from our device to a computer that then
visualizes what is happening on our system. This can be critical to monitoring key
variables, debug statements, or just creating a sensor dashboard.

Chapter 7, Device Control Using Gestures, helps you learn how we can interface a gesture
sensor with a development board and write an application that will detect gestures.

Chapter 8, Automation and Control Using Android, helps you learn how we can use an ESP32
microcontroller to create a sensor node that can transmit sensor data and receive
commands from an Android template. This project is easily extensible for Internet-of-
Things (IoT) applications and device control.

Chapter 9, Building an Object Detection Application Using Machine Learning, demonstrates the
use of an OpenMV camera module powered by MicroPython to build an application that
can detect objects in an image.

Chapter 10, The Future of MicroPython, explores the future of MicroPython and where we
might expect to see it go in the coming years.

Appendix A, Downloading and Running MicroPython Code, explains the process of getting
code onto the board and running it.

To get the most out of this book
This book assumes that the reader has a basic understanding of Python and that they have
at least built a few embedded systems projects previously. The material is written so that a
beginner will not have any problems and a more experienced embedded software
developer will be able to quickly learn how to write MicroPython-based applications. I also
assume that you are able to read flowcharts and basic wiring diagrams. The reader should
also understand how to use a Git repository and install software on their computer.

Software/hardware covered in the book OS requirements
PyCharm Windows, Linux, macOS
PuTTY Windows, Linux, macOS
Linux Virtual Machine Windows, Linux, macOS
Python 3.x Windows, Linux, macOS
Anaconda Terminal Windows, Linux, macOS
Simple TCP Socket Tester Windows, Linux, macOS
OpenMV IDE Windows, Linux, macOS
Pyboard -
RobotDyn I2C 8-bit PCA8574 I/O expander -
Adafruit RGB Pushbutton PN: 3423 or equivalent -
STM32L4 IoT Discovery Node -
Robotdyn I2C 8-bit PCA8574 I/O expander -
USB to UART Converter -
Adafruit ADPS9960 breakout board -
MicroPython supported development board -
ESP32 WROVER-B -
OpenMV Camera Module -

The projects are not necessarily designed to be done in order. With that in mind, I would
recommend that developers read the first two chapters in order before jumping to the
project that is most interesting to them. These chapters give the background on
MicroPython and how to schedule tasks. After that, it's up to the developer to decide on the
order. As strange as this may sound, I would also encourage readers to make sure they read
the last chapter as well, which introduces the pyboard-D, which may be the development
board they decide to go with for most of their experimentation.

If you are using the digital version of this book, we advise you to type the code yourself
or access the code via the GitHub repository (link available in the next section). Doing so
will help you avoid any potential errors related to the copying and pasting of code.

Download the example code files
You can download the example code files for this book from your account at
www.packt.com. If you purchased this book elsewhere, you can visit
www.packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt.com.1.
Select the Support tab.2.
Click on Code Downloads.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/ ​/ ​github. ​com/
PacktPublishing/​MicroPython- ​Projects. In case there's an update to the code, it will be
updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https:/​/​github. ​com/ ​PacktPublishing/ ​. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: https:/ ​/​static. ​packt- ​cdn. ​com/​downloads/
9781789958034_​ColorImages. ​pdf.

http://www.packt.com
https://www.packtpub.com/support
http://www.packt.com
https://github.com/PacktPublishing/MicroPython-Projects
https://github.com/PacktPublishing/MicroPython-Projects
https://github.com/PacktPublishing/MicroPython-Projects
https://github.com/PacktPublishing/MicroPython-Projects
https://github.com/PacktPublishing/MicroPython-Projects
https://github.com/PacktPublishing/MicroPython-Projects
https://github.com/PacktPublishing/MicroPython-Projects
https://github.com/PacktPublishing/MicroPython-Projects
https://github.com/PacktPublishing/MicroPython-Projects
https://github.com/PacktPublishing/MicroPython-Projects
https://github.com/PacktPublishing/MicroPython-Projects
https://github.com/PacktPublishing/MicroPython-Projects
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://static.packt-cdn.com/downloads/9781789958034_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789958034_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789958034_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789958034_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789958034_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789958034_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789958034_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789958034_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789958034_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789958034_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789958034_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789958034_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789958034_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789958034_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789958034_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789958034_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789958034_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789958034_ColorImages.pdf

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "Create new modules for each module that will be tested with _tests.py
appended to the filename."

A block of code is set as follows:

def system_init():
 print("Initializing system ...")
 print("Starting application ...")

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

 try:
 PushButton = RGB_Button.DeviceIO.Read()
 except Exception as e:
 sys.print_exception(e)
 print("Exiting application ...")
 sys.exit(0)

Any command-line input or output is written as follows:

pip install pySerial

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"See the MicroPython documentation | Quick reference for the pyboard | MicroPython
tutorial for the pyboard | 3. Getting a MicroPython REPL prompt for details."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

https://www.packtpub.com/support/errata
http://authors.packtpub.com/
http://www.packt.com/

Table of Contents
Preface 7

Chapter 1: Down the Rabbit Hole with MicroPython 1
The embedded software language menagerie 2
The case for MicroPython 4

Use cases for MicroPython 5
Use case #1 – DIY projects 6
Use case #2 – rapid prototyping 6
Use case #3 – low-volume production products 7

Evaluating whether MicroPython is right for you 9
Selecting the right development platform 10

Surveying the available architectures 11
Identifying boards of interest 12
Selecting a development board using a KT matrix 15

MicroPython development processes and strategies 17
Useful development resources 19
Summary 20
Questions 21
Further reading 21

Chapter 2: Managing Real-Time Tasks 22
Technical requirements 22
The need for real-time scheduling 23

Real-time system types 23
MicroPython scheduling techniques 24

Round-robin scheduling 25
Building a task manager using round-robin scheduling 27

Periodic scheduling using timers 28
Building a task manager using periodic scheduling 30

MicroPython thread mechanism 32
Advantages of using threads in MicroPython 33
Considerations when using threads in MicroPython 34
Building a task manager using threads 34

Event-driven scheduling 36
Cooperative scheduling 36

Cooperative multitasking using asyncio 37
Introducing asyncio 38

A cooperative multitasking blinky LED example 40
Going further with asyncio 42

Summary 42

Table of Contents

[ii]

Questions 43
Further reading 43

Chapter 3: Writing a MicroPython Driver for an I/O Expander 44
Technical requirements 44
The RGB pushbutton I/O expander project requirements 45

Hardware requirements 45
Software requirements 46

The hardware and software architecture design 47
The hardware architecture 47
Detailed hardware design 48
Selecting a pushbutton 49
The I/O expander schematic 49
The software architecture 51

Project construction 54
Building the hardware 54
I/O expander driver construction 55
RGB driver construction 57
RGB pushbutton driver construction 58

Testing and validation 59
Developing the test cases 59
Writing the application 63

Summary 69
Questions 70
Further reading 70

Chapter 4: Developing an Application Test Harness 71
Technical requirements 72
A brief introduction to test harnesses 72
Test harness requirements 74

Hardware requirements 74
Software requirements 75

Test harness design 76
The test harness hardware architecture 77
The test harness software architecture 78

Constructing the test harness 82
Writing the test harness scaffolding 82
Tests for the PCA8574 84

Running the test harness 87
Summary 89
Questions 89
Further reading 89

Chapter 5: Customizing the MicroPython Kernel Start Up Code 90
Technical requirements 91

Table of Contents

[iii]

An overview of the MicroPython kernel 91
Downloading the MicroPython kernel 91
MicroPython kernel organization 92
Becoming familiar with the STM32L475SE_IOT01A port 93

mpconfigboard.h 97
mpconfigboard.mk 97
pins.csv 98
stm3214xx_hal_conf.h 99

Navigating the startup code 99
Modifying the default GPIO initialization 105

Adding MicroPython modules to the kernel 110
The compilation process 111

Deploying the custom kernel to a board 113
The compiled output files 113
Programming the board 114
Testing the updated kernel 116

Summary 119
Questions 119
Further reading 120

Chapter 6: A Custom Debugging Tool to Visualize Sensor Data 121
Technical requirements 122
Debugging and visualizing embedded systems 122
Visualizer requirements 123

Hardware requirements 123
Software requirements 124

Visualizer design 124
The visualizer hardware architecture 125
The visualizer software architecture 126

Constructing the visualizer 127
Installing the project libraries 128
Setting up a serial data stream in MicroPython 129
Opening a COM port using command-line arguments 133
Creating a user interface with Matplotlib 135
Plotting the incoming data stream 137

Running the visualizer 141
Going further with visualizer enhancements 143

Summary 144
Questions 145
Further reading 145

Chapter 7: Device Control Using Gestures 146
Technical requirements 147
Introducing gesture controllers 147
Gesture controller requirements 148

Table of Contents

[iv]

Hardware requirements 148
Software requirements 149

Hardware and software design 150
The gesture hardware architecture 150
The detailed hardware design 151
The software architecture 152

Constructing the gesture controller 155
The APDS-9960 theory of operation 155
Analyzing gesture data 158
The APDS-9960 gesture driver 162
The APDS-9960 gesture class constructor 163
The APDS-9960 gesture class detect method 166
The gesture controller applications 169

Testing the gesture controller 172
Summary 174
Questions 174
Further reading 174

Chapter 8: Automation and Control Using Android 175
Technical requirements 176
The sensor node project requirements 176

Hardware requirements 176
Software requirements 177

Hardware and software design 178
The hardware architecture 178
The software architecture 179

Building a sensor node 181
Installing MicroPython on the ESP32 181
Setting up the ESP32 flash utilities 182
Programming the ESP32 with MicroPython 182
Testing MicroPython with LEDs 184
Setting up WebREPL 185
Simplifying application development with Anaconda 188
Installing uasyncio 189
Writing the sensor node application 190

Imports and supporting objects 191
LEDs and local control 191
socket_connect() 192
socket_receive() 192
The IotDevice class 193
Command parsing 194
The system status task 196
socket_send() 196
The main application 197

Testing the sensor node 198
The Android socket server 198

Table of Contents

[v]

Commanding the sensor node 201
Testing the commands 202

Summary 203
Questions 203
Further reading 203

Chapter 9: Building an Object Detection Application Using Machine
Learning 204

Technical requirements 205
Introducing machine learning 205

The need for intelligent systems 207
Machine learning from the cloud to the edge 209

Object detection requirements 211
Hardware requirements 211
Software requirements 212

Object detection design and theory 213
The CIFAR-10 and CIFAR-100 datasets 214
Machine learning modeling languages 215
TFLu 216
CMSIS-NN 218
The hardware 218

Implementing and testing object detection on the OpenMV camera 219
Getting familiar with OpenMV IDE 219
Implementing a pretrained CIFAR-10 network 221
Person detection with a TensorFlow model 224

Summary 229
Questions 229
Further reading 230
References 230

Chapter 10: The Future of MicroPython 231
The advancing MicroPython 231
The pyboard D-series 232

The pyboard D-series hardware 233
The pyboard D-series software 238

Controlling the boot sequence 238
Recovering from system faults 239

MicroPython in the real world 241
Example DIY/maker projects 242
Example professional projects 242

The future of MicroPython 244
Going further 245
References 245

Appendix A: Downloading and Running MicroPython Code 246

Table of Contents

[vi]

Assessments 247

Other Books You May Enjoy 257

Index 260

1
Down the Rabbit Hole with

MicroPython
The C programming language has dominated the embedded systems industry for half a
century! C has been extraordinarily successful, but it is no longer meeting the needs of
embedded software developers. In this chapter, we will begin to explore the programming
language landscape for embedded systems and how Python, particularly MicroPython, is
quickly becoming a good fit for a wide range of applications.

The following topics will be covered in this chapter:

The embedded software language menagerie
The case for MicroPython
Use cases for MicroPython
Evaluating whether MicroPython is right for you
Selecting the right development platform
MicroPython development processes and strategies
Useful resources

Down the Rabbit Hole with MicroPython Chapter 1

[2]

The embedded software language
menagerie
In the history of the embedded software industries, for the most part, developers writing
software for microcontroller-based systems have had very few software languages to
choose from. At the dawn of the computer age, developers were stuck using low-level
assembly language that forced them to learn the instruction set for each microcontroller
device that they used. While highly effective and efficient, reading, maintaining, or even
understanding assembly language was quite difficult and cumbersome.

Between 1969 and 1973, Dennis Ritchie developed the C programming language while
working at Bell Labs and forever changed the way that software was developed. The C
programming language caught on, and while general-purpose computing systems have
moved on to other object-oriented languages, C has been the dominant language to use
with microcontrollers for several different reasons. They include the following:

It is a high-level programming language that doesn't require developers to
understand target-specific assembly language.
The ability to access low-level registers and hardware features.
The capability to create high-level software abstractions.
Cross-platform compilation (write the software once and deploy it to multiple
targets).
Software that is reusable and portable.

The C language is so popular and successful that it has dominated the embedded software
industry as the language of choice for almost half a century. The popularity of C has
remained despite major software design paradigm shifts, such as object-oriented design,
and new languages being available, such as C++. C fills an important niche that allows
developers to efficiently develop software that interacts at the bit and byte levels in the
hardware.

While C has been extremely popular among developers, over the past several years, its
popularity has been waning for several different reasons. Some of these reasons are listed
as follows:

 First, the C language has several sticky spots in its specification that can result in
developers either getting confused about what the code is doing or that results in
different behavior when compiled for a different target. This has caused
additional standards such as MISRA-C to be developed, which create a
safe subset of C features that developers can use in their software.

Down the Rabbit Hole with MicroPython Chapter 1

[3]

Second, the C language is no longer taught to university students in many parts
of the world. In fact, even C++ is no longer taught at university! Students who
want to learn a programming language are often presented with Java or Python
as the language of choice, which means that any would-be embedded developers
have to learn C on the job. When learning C on the job, the chances are that the
developer will not be aware of the gotchas and issues with the C language,
resulting in buggy, low-quality code that requires additional time and money to
make production-ready.
Next, C is a relatively low-level and verbose programming language. It is quite
easy to cause incredibly hard-to-find bugs from memory leaks, buffer overflows,
or accidentally accessing an array out-of-bounds. Most modern languages
provide explicit protection against these issues with features such as memory
management and managed pointers (if pointers exist at all!).
Finally, most development teams use an object-oriented approach to software
development when they develop their software architectures. While good
software architecture is language agnostic, it can be much more difficult to write
object-oriented code in a language such as C. It's often overlooked that C does
provide perfect encapsulation and a mechanism for inheritance, but multiple
inheritance and polymorphism are far more complicated and error-prone to pull
off.

Because of these reasons, over the last few years, there has been a slow push to begin
moving away from using C as the language of choice for embedded applications.

In fact, there has been a small explosion in the number of languages that can be used to
develop embedded software. These range from the traditional compiled languages, such as
Assembly or C, to C++ or Java, or to even more recent scripting languages such as Python
or Squirrel. There are even visual programming languages that allow developers to
generate high-level concepts and then generate low-level code such as MATLAB.

Every other year, ASPENCORE performs an embedded industry survey that polls a few
thousand developers in the embedded systems industry. In the last survey, in 2019, it was
found that only 56% of these projects were developed using the C programming language,
while 22% of projects were developed using C++. The remaining 22% was a mix of several
other languages, including Python. The complete breakdown can be seen in the following
diagram. The menagerie of languages demonstrates how developers are desperately
grasping at new languages and techniques that can be used to write their software in a
more effective and modern manner. What's interesting is that if you compare these results
to the 2017 results, the response for Python has doubled from 3% to 6%. Bear in mind,
though, that the responses for C and C++ have stayed exactly the same, so while Python has
grown more popular, it is not stealing any market share from C or C++.

Down the Rabbit Hole with MicroPython Chapter 1

[4]

The breakdown of programming languages used for embedded systems in 2019 is shown in
the following image:

The preceding pie chart is from a survey done by https:/ ​/​www. ​embedded. ​com/ ​. Note that
this is for all embedded systems and includes application processors, not just
microcontrollers (ASPENCORE Embedded Systems Survey, 2019, www.embedded.com).

The case for MicroPython
As developers have started to look for alternative programming languages, the opportunity
for Python to become a popular embedded language has dramatically risen. Python has
several characteristics that make it an interesting choice for an embedded language. These
include, but certainly aren't limited to, the following:

It is taught at many universities around the world.
It is easy to learn (I've seen elementary students write Python code).
It is object-oriented.
It is an interpreted scripting language that removes compilation.
It is supported by a robust community, including many add-on libraries that
minimize reinventing the wheel.

https://www.embedded.com/
https://www.embedded.com/
https://www.embedded.com/
https://www.embedded.com/
https://www.embedded.com/
https://www.embedded.com/
https://www.embedded.com/
https://www.embedded.com/
https://www.embedded.com/
https://www.embedded.com/
http://www.embedded.com

Down the Rabbit Hole with MicroPython Chapter 1

[5]

It includes error handling (something that C didn't get the memo on).
It is easily extensible.

Python has actually become the go-to language for developers working on popular
application processors such as the Raspberry Pi board.

Python itself, though, has several challenges a developer must consider before using it on a
microcontroller:

First, microcontrollers are resource-constrained devices and, typically, don't have
a lot of memory or processing power. This means that the Python interpreter
would have to be rewritten so that it could easily fit on a microcontroller with a
few hundred kilobytes of flash storage and be able to function in sub-200 MHz
environments.
Second, microcontrollers are used in real-time systems. This means that there
needs to be a mechanism to handle interrupts, which doesn't directly exist in
Python.
Third, the Python interpreter would need to be ported to each microcontroller
architecture and target in order to operate efficiently.

These three considerations could be quite challenging if a developer decided to undertake
them alone. Thankfully, this effort has already been undertaken by the MicroPython
community, as described by the project itself:

"MicroPython is a lean and efficient implementation of the Python 3 programming language
that includes a small subset of the Python standard library and is optimized to run on
microcontrollers and in constrained environments."

 – https://micropython.org/

MicroPython aims to bring the best of the Python world to embedded systems and loosen
our reliance on developing software in C (even though, under the hood, MicroPython is
written in C!).

Use cases for MicroPython
It's important to bear in mind that, just like any programming language, there are specific
situations where MicroPython is best suited, and other situations where using MicroPython
would be a disaster. In general, I have found that there are three different use cases where
MicroPython really shines.

Down the Rabbit Hole with MicroPython Chapter 1

[6]

They include the following:

Do-it-yourself (DIY) projects
Rapid prototyping
Low-volume production products

Let's examine each of these use cases in detail.

Use case #1 – DIY projects
MicroPython is extremely well suited for developers who are looking to create a hobbyist
or one-off project. As we discussed earlier, Python is a simple scripting language that is
very easy to learn. This makes MicroPython extremely accessible to developers who are
looking to experiment and create a DIY project such as a MIDI player, robot, drone, or
home automation system. The possibilities for its use are really only limited by the
imagination of the developer.

There are also, at least, a dozen different low-cost development boards that support
MicroPython natively. Being low cost makes it extremely easy to just order a board and,
when it arrives, fire it up and start programming with MicroPython. In Chapter 5,
Customizing the MicroPython Kernel Start Up Code, we will show you how to customize the
MicroPython kernel and deploy it on your own custom development board.

Finally, if you were to select your favorite search engine, you would find that not only are
there a lot of examples on how to use MicroPython in different applications but there are
also a lot of examples on how to use Python in general. These resources help to build up a
great ecosystem around which a sole developer could create their own projects in the
comfort of their own home. Throughout this book, we will also examine the most popular
and useful resources, which you can also refer to at leisure.

Use case #2 – rapid prototyping
The use of MicroPython is not limited to DIY engineers. MicroPython fits the bill quite
nicely for engineering teams that are looking to develop a rapid prototype or proof of
concept. The MicroPython kernel abstracts out the low-level microcontroller hardware,
which allows developers to start developing application code or even test code from the
first day of a development cycle. This makes it particularly well suited for prototyping.

Down the Rabbit Hole with MicroPython Chapter 1

[7]

In a prototyping environment, developers could assemble hardware components for their
system and develop scripts to show that the end system that they want to create is actually
viable. From the issues that they encounter when prototyping in MicroPython, they should
then be able to extrapolate the potential issues they will encounter during development.
This will then help them to get a handle on issues such as the following:

Development costs
Time to market
Major engineering hurdles
Resources that are required

With these types of activities worked out, the development of production code can go much
smoother, and the schedule and project costs will be far more accurate.

In addition to proving that a product concept is viable, developers can also use
MicroPython to interface with new sensors and devices that need to be understood for
development. For example, if I need to write a C driver for an I2C I/O expander chip, I will
often create or buy a development board for the chip and connect it to one of my
MicroPython boards. I can then write simple Python scripts to interact with the chip, which
allows me to do the following:

Explore the chip registers.
Exercise the device's peripherals.
Monitor I2C bus communication to understand what good communication looks
like.

Utilizing MicroPython in this manner provides us with an in-depth understanding of the
device that we are interfacing with. The result is a better-written driver that is created faster
because we can utilize a working example to compare our production driver with. Having
that working example dramatically decreases the time spent on debugging.

Use case #3 – low-volume production products
MicroPython is still a relatively new programming language for microcontrollers compared
to C or C++, which means that it does still carry some risk with it for use in production
systems. For example, using MicroPython in mass production could result in issues such as
the following:

A longer programming production cycle
More costly microcontrollers (to handle the larger MicroPython kernel)
Difficulty in securing the application firmware properly

Down the Rabbit Hole with MicroPython Chapter 1

[8]

Having to manage firmware updates
Ensuring robust operation and recovery from failure modes

It's not impossible to use MicroPython for high-volume products, but these issues
and several others can make such deployments more difficult, at least at the time of writing
this book. However, for products that are going to be low volume – that is, maybe a few
dozen a year or several hundred to a thousand units – MicroPython could be a really good
fit.

MicroPython does allow a team to develop software much faster than if they were writing
in C/C++ at a much lower layer of the software stack. Developers can make use of error-
handling capabilities, which can help to decrease the time that is spent on debugging a
system. Python is so easy to learn that hardware engineers can write basic Python scripts to
monitor their hardware and speed up the development process. In general, MicroPython
has the potential to help small businesses and low-volume manufacturers decrease costs
and time to market.

There have been several real-world examples where MicroPython has been used in
production systems. For example, with one of my clients that works in the space industry,
developing small satellites for Earth-imaging applications, we used MicroPython to control
the spacecraft's Electronic Power Supplies (EPS). MicroPython fit well because of the
following factors:

These systems were very low volume.
The business was a start-up and didn't have a large budget for software
engineers.
The development time was short for the project.
They had a small software team that was focused on other software priorities
within the satellite system and mission.
They could tolerate a greater level of product risk to offset costs and schedules.

Using MicroPython to develop the EPS software turned out to be more manageable for
their team since most of the team understood and could write Python code even though
they did not know C. The end results were extraordinarily successful.

Using MicroPython in space systems and other commercial products goes beyond just one
company that I have personally encountered. The European Space Industry has been
evaluating using MicroPython in their own satellite systems. I have also encountered
several other start-ups and entrepreneurs using MicroPython to develop their consumer
electronics products. This only helps to show that not only can MicroPython be used in
such cases, but there is growing interest in using MicroPython in production systems.

Down the Rabbit Hole with MicroPython Chapter 1

[9]

Evaluating whether MicroPython is right for
you
So far, we have discussed several use cases for MicroPython and when using it could be a
big problem. Even if a project we are working on falls within the sanctioned use cases,
MicroPython may still not be the best fit. Just like with any project, we need to objectively
evaluate whether MicroPython is the right language to use. Let's examine how we can
evaluate whether MicroPython is right for us.

There are several steps that can be followed to evaluate whether a programming language
meets the needs of a development team or developer:

Identify the key language features needed1.
Evaluate the team's programming skills2.
Ascertain the business results the language might achieve3.

Let's discuss each of these in more detail.

First, it's important to identify the language features that are needed and will be utilized by
the development team. For example, it would not be uncommon for a development team to
want a language that is the following:

Object-oriented
Has built-in error handling
Has free and available third-party libraries
Has a strong ecosystem
Prevalent examples of its use can be found on the internet

If a team required just these bullet points, MicroPython would already be a front runner as
the preferred language choice along with C++.

Second, a team's programming skills really need to be evaluated to determine whether the
language that is being used fits with the team. There are several skills that need to be
reviewed, such as the following:

The team's general understanding of programming principles and processes
Language-specific skill level: beginner, intermediate, or expert

Down the Rabbit Hole with MicroPython Chapter 1

[10]

When a team is full of electrical engineers with no formal programming experience, using a
language such as Python can be the right choice. We have already discussed that Python is
easy to learn, but electrical engineers can use Python scripts to monitor their hardware and
get the system working even if the code isn't intended for production. That code can then
later be tossed to a software team that makes the software production-ready based on the
working, functional examples.

Finally, the business ramifications for the language need to be examined. These could
include items such as the following:

Risk tolerance for security vulnerabilities
Cost savings from needing fewer embedded developers
Impact on time to market
Overall system quality and customer reactions

Once all these factors have been reviewed, only then can a developer decide whether
MicroPython is acceptable for them to use in their development cycle.

Selecting the right development platform
There are quite a few options available to developers who are interested in working with
MicroPython. To date, MicroPython has been ported to approximately a dozen different
microcontroller architectures. Each architecture then supports a range of development
boards, putting the options for developers at nearly 50 different development boards. With
so many different options, it can be a bit challenging to decide which one makes the most
sense for your project.

While there are many different ways to go about selecting a development platform, we are
going to walk through a simple process that includes this:

Surveying the available architectures1.
Identifying boards of interests within those architectures2.
Creating a Kepner-Tregoe (KT) matrix to objectively evaluate the best board for3.
the application

This simple process will ensure that you select a development platform that works best for
what you want to do with MicroPython.

Down the Rabbit Hole with MicroPython Chapter 1

[11]

Surveying the available architectures
The easiest way to survey the available microcontroller architectures is to visit the
MicroPython Git repository. The repository is located at https:/ ​/​github. ​com/
micropython/​micropython/ ​tree/ ​master/ ​.

From the repository's root, navigate to the ports folder. The ports folder contains a list of
all the available microcontroller architectures that run MicroPython and can be viewed as
follows:

It's not a bad idea at this point to browse around the repository and see which
microcontroller architectures are supported. At the end of the day, you'll want to choose an
architecture that is well supported but also one that you are familiar with, in case you need
to dive into the MicroPython kernel. For most developers interested in writing code at the
Python level, diving into the MicroPython kernel is something they will probably rarely, if
ever, do.

https://github.com/micropython/micropython/tree/master/ports
https://github.com/micropython/micropython/tree/master/ports
https://github.com/micropython/micropython/tree/master/ports
https://github.com/micropython/micropython/tree/master/ports
https://github.com/micropython/micropython/tree/master/ports
https://github.com/micropython/micropython/tree/master/ports
https://github.com/micropython/micropython/tree/master/ports
https://github.com/micropython/micropython/tree/master/ports
https://github.com/micropython/micropython/tree/master/ports
https://github.com/micropython/micropython/tree/master/ports
https://github.com/micropython/micropython/tree/master/ports
https://github.com/micropython/micropython/tree/master/ports
https://github.com/micropython/micropython/tree/master/ports
https://github.com/micropython/micropython/tree/master/ports
https://github.com/micropython/micropython/tree/master/ports

Down the Rabbit Hole with MicroPython Chapter 1

[12]

Identifying boards of interest
From the ports list, the architecture that is supported the most is the STM32 family. There
are several reasons as to why STM32 is supported so well:

STMicroelectronics provides a low-level driver framework that makes it easy to
support multiple STM32 devices all using the same APIs.
All the official MicroPython development boards, starting with the PYB1.0, were
based on the STM32, which built up knowledge around these processors through
early adopters.
There is more support for MicroPython within the STM community than within
other microcontroller architecture communities.

Developers will, therefore, find that there are quite a few options to choose from within the
STM32 ports, in boards folder, as shown in the following two figures. Different STM32
development boards that are supported by MicroPython, including the Nucleo boards from
STMicroelectronics, are shown in the following image:

Down the Rabbit Hole with MicroPython Chapter 1

[13]

Here are different STM32 development boards that are supported by MicroPython,
including the discovery boards from STMicroelectronics and the flagship PY board (PYB)
from the creators of MicroPython:

Take a few minutes to browse the MicroPython Git repository and look at the different
architectures and the boards that are available in each architecture. Open up a web browser
and use your favorite distributor, such as Adafruit, Arrow, Digikey, Mouser, or SparkFun,
to see which boards are available and what some of their key features are. In fact, it can be
useful to create a simple table with the parameters so that you can later go back and select
the right board for your project. For example, you may want to track parameters like the
following:

Board name
Processor used
Flash
RAM
Processor speed (remember, higher clocks = more energy consumed)
On-board features that are worth noting

Down the Rabbit Hole with MicroPython Chapter 1

[14]

I've put together my own table for several boards that I've found to be interesting and that
could be used for the projects in this book, as listed in the following table. While you review
this table, note the vast differences in available features and memory! MicroPython can be
run on very resource-constrained devices with as little as 128 KB of flash (maybe less!).
Following is a short list of interesting development boards that already support
MicroPython:

Board Processor Flash
(KB)

RAM
(KB) On-board features

PYB V4 STM32F405RG 1024 192 Accelerometer, SD card, LEDs,
and user and reset switches

Adafruit HUZZAH
ESP8266 ESP8266 1024 80 Wi-Fi

BBC micro:bit MKL26Z128VFM4 128 16
Accelerometer, Bluetooth LE,
Magnetometer, and user
switch

IoT Discovery Board STM32L4 1024 128

Accelerometer, barometer,
Bluetooth, Gyroscope RF,
microphone, Magnetometer,
and humidity and
temperature sensors

NUCLEO_F429ZI STM32F429ZI 2048 256 LED and user switch
NUCLEO_F746ZG STM32F746ZG 512 320 LED and user switch

You have probably noticed that quite a few boards on my list are STM32 devices. The
reason for this is that I am very familiar with the STM32 family and use it (and many other
architectures) in my professional development efforts. While I work with a lot of different
microcontroller vendors, the STM32 is the flagship for MicroPython, so it will have the
most supported features and makes a really good choice.

Note that we are looking at boards that already exist in order to get
started with developing projects for this book. It may very well be that
you plan to create your own custom board. In this case, the exact board
you want to create will not exist, but you will want to find a board that
already supports your processor or has features that you want to include
on your custom board.

In a later chapter, I will walk you through how to create your own custom board!

Down the Rabbit Hole with MicroPython Chapter 1

[15]

Selecting a development board using a KT matrix
A KT matrix is one of my favorite decision-making tools. For nearly any engineering
decision where I believe there could be team contention, or where I want to make an
objective decision in which my personal biases are removed, I create a KT matrix.

A KT matrix is a decision-making technique that uses a decision matrix to force a ranking
among possible alternative solutions (https:/ ​/​www. ​projectmanagement. ​com/ ​wikis/
233054/​Forced-​Ranking- ​- ​A-​K- ​A- ​-​- ​Kepner- ​Tregoe- ​-​Decision- ​Matrix- ​). Developers can
identify criteria that are used to make the decision and provide a weight on how important
each criterion is. Each member of a team (even a one-man team) can then objectively rank
how well an option meets that criteria. Once each criterion is ranked, the weights are
calculated and a numeric value results. The option with the highest value is the objective
choice that best fits the criteria.

Now, I know this sounds interesting, so let's apply this technique to help us choose a
development board. When selecting a development board, there are going to be several
different criteria that need to be considered. For example, we might want to consider the
following:

Development board cost (sadly, this is usually the first and only criteria most
developers and teams consider, which is completely flawed)
Board features
Processor clock speed and memory
Community support around the board
Available board examples
Existing libraries and features for devices that might be interfaced
Easily expandable

As you can imagine, we can have as many, or as few, criteria as we so choose.

Once we identify which ones we do want to consider, we can put them in the first column
of a spreadsheet. In the second column, we would list the weight of how important that
criteria is. I personally like to use a ranking from 1 – 5, where 5 is can't live without and 1 is
basically not important (like how an engineer feels about doing something). The remaining
columns are then used to list the development board but also the responses from each
person in the team.

If I were to build such a matrix for three development boards and a team of two members,
the resulting matrix would look something like the upcoming table. In this example, the
team is evaluating how well the boards compare when considering different aspects of cost,
the ecosystem, board features, and the engineer.

https://www.projectmanagement.com/wikis/233054/Forced-Ranking--A-K-A---Kepner-Tregoe--Decision-Matrix-
https://www.projectmanagement.com/wikis/233054/Forced-Ranking--A-K-A---Kepner-Tregoe--Decision-Matrix-
https://www.projectmanagement.com/wikis/233054/Forced-Ranking--A-K-A---Kepner-Tregoe--Decision-Matrix-
https://www.projectmanagement.com/wikis/233054/Forced-Ranking--A-K-A---Kepner-Tregoe--Decision-Matrix-
https://www.projectmanagement.com/wikis/233054/Forced-Ranking--A-K-A---Kepner-Tregoe--Decision-Matrix-
https://www.projectmanagement.com/wikis/233054/Forced-Ranking--A-K-A---Kepner-Tregoe--Decision-Matrix-
https://www.projectmanagement.com/wikis/233054/Forced-Ranking--A-K-A---Kepner-Tregoe--Decision-Matrix-
https://www.projectmanagement.com/wikis/233054/Forced-Ranking--A-K-A---Kepner-Tregoe--Decision-Matrix-
https://www.projectmanagement.com/wikis/233054/Forced-Ranking--A-K-A---Kepner-Tregoe--Decision-Matrix-
https://www.projectmanagement.com/wikis/233054/Forced-Ranking--A-K-A---Kepner-Tregoe--Decision-Matrix-
https://www.projectmanagement.com/wikis/233054/Forced-Ranking--A-K-A---Kepner-Tregoe--Decision-Matrix-
https://www.projectmanagement.com/wikis/233054/Forced-Ranking--A-K-A---Kepner-Tregoe--Decision-Matrix-
https://www.projectmanagement.com/wikis/233054/Forced-Ranking--A-K-A---Kepner-Tregoe--Decision-Matrix-
https://www.projectmanagement.com/wikis/233054/Forced-Ranking--A-K-A---Kepner-Tregoe--Decision-Matrix-
https://www.projectmanagement.com/wikis/233054/Forced-Ranking--A-K-A---Kepner-Tregoe--Decision-Matrix-
https://www.projectmanagement.com/wikis/233054/Forced-Ranking--A-K-A---Kepner-Tregoe--Decision-Matrix-
https://www.projectmanagement.com/wikis/233054/Forced-Ranking--A-K-A---Kepner-Tregoe--Decision-Matrix-
https://www.projectmanagement.com/wikis/233054/Forced-Ranking--A-K-A---Kepner-Tregoe--Decision-Matrix-
https://www.projectmanagement.com/wikis/233054/Forced-Ranking--A-K-A---Kepner-Tregoe--Decision-Matrix-
https://www.projectmanagement.com/wikis/233054/Forced-Ranking--A-K-A---Kepner-Tregoe--Decision-Matrix-
https://www.projectmanagement.com/wikis/233054/Forced-Ranking--A-K-A---Kepner-Tregoe--Decision-Matrix-
https://www.projectmanagement.com/wikis/233054/Forced-Ranking--A-K-A---Kepner-Tregoe--Decision-Matrix-
https://www.projectmanagement.com/wikis/233054/Forced-Ranking--A-K-A---Kepner-Tregoe--Decision-Matrix-
https://www.projectmanagement.com/wikis/233054/Forced-Ranking--A-K-A---Kepner-Tregoe--Decision-Matrix-
https://www.projectmanagement.com/wikis/233054/Forced-Ranking--A-K-A---Kepner-Tregoe--Decision-Matrix-
https://www.projectmanagement.com/wikis/233054/Forced-Ranking--A-K-A---Kepner-Tregoe--Decision-Matrix-
https://www.projectmanagement.com/wikis/233054/Forced-Ranking--A-K-A---Kepner-Tregoe--Decision-Matrix-
https://www.projectmanagement.com/wikis/233054/Forced-Ranking--A-K-A---Kepner-Tregoe--Decision-Matrix-
https://www.projectmanagement.com/wikis/233054/Forced-Ranking--A-K-A---Kepner-Tregoe--Decision-Matrix-
https://www.projectmanagement.com/wikis/233054/Forced-Ranking--A-K-A---Kepner-Tregoe--Decision-Matrix-
https://www.projectmanagement.com/wikis/233054/Forced-Ranking--A-K-A---Kepner-Tregoe--Decision-Matrix-
https://www.projectmanagement.com/wikis/233054/Forced-Ranking--A-K-A---Kepner-Tregoe--Decision-Matrix-
https://www.projectmanagement.com/wikis/233054/Forced-Ranking--A-K-A---Kepner-Tregoe--Decision-Matrix-
https://www.projectmanagement.com/wikis/233054/Forced-Ranking--A-K-A---Kepner-Tregoe--Decision-Matrix-
https://www.projectmanagement.com/wikis/233054/Forced-Ranking--A-K-A---Kepner-Tregoe--Decision-Matrix-
https://www.projectmanagement.com/wikis/233054/Forced-Ranking--A-K-A---Kepner-Tregoe--Decision-Matrix-
https://www.projectmanagement.com/wikis/233054/Forced-Ranking--A-K-A---Kepner-Tregoe--Decision-Matrix-
https://www.projectmanagement.com/wikis/233054/Forced-Ranking--A-K-A---Kepner-Tregoe--Decision-Matrix-
https://www.projectmanagement.com/wikis/233054/Forced-Ranking--A-K-A---Kepner-Tregoe--Decision-Matrix-

Down the Rabbit Hole with MicroPython Chapter 1

[16]

Each aspect is broken up into small subtopics. For example, board features that are being
evaluated can include the following:

Accelerometer
Magnetometer
Temperature sensor
Humidity sensor
Wi-Fi
Bluetooth
Arduino headers for shields

These may not all be important to be on board and could be external. The importance is
adjusted using the weight. The KT matrix designed to evaluate which development board
best fits a fictional application is shown as follows:

After each member of the team has had a chance to review the criteria and rate it, we can
see that, in this fictional example, the IoT Discovery board wins out over the other boards.
That's not because the IoT Discovery board is better, rather it was only better based on my
requirements for my fictional application.

Down the Rabbit Hole with MicroPython Chapter 1

[17]

MicroPython development processes and
strategies
Developing embedded software using MicroPython can be quite a bit different than
developing software using C/C++; however, at the same time, there are many tried and true
development techniques and processes that still carry through. For example, when
developing a MicroPython application, the software development life cycle doesn't change
just because a different programming language is being used.

The Software Development Life Cycle, which is sometimes referred to as SDLC, defines
best practices that developers should follow when developing software. These processes
are usually grouped into five main categories:

Requirements1.
Design2.
Implementation3.
Testing4.
Maintenance5.

There are two really good resources that you can review, which provide a great overview of
how software should be developed. It can be found and downloaded for free by performing
a simple web search. The first is the IEEE Software Engineering Body of Knowledge
(SWEBOK). The SWEBOK is a free download from IEEE, which covers the best practices
that engineers should be following when they develop software along with processes and
strategies.

Second, Renesas offers a Synergy Software Quality Handbook that they developed when
they were creating their Renesas Synergy™ Platform. Their quality guide describes the
processes that they used to develop and validate their software. This document has several
gems that both professional and novice software developers will find extremely interesting
and worth implementing in their own software development processes.

As you go through this book and either follow along with the projects or leverage the
materials for your own projects, there are several processes and strategies that you should
be following. These include the following:

Using revision control
Clearly documenting the software
Leveraging the Read-Eval-Print Loop (REPL) serial interface
Understanding the firmware update process

Down the Rabbit Hole with MicroPython Chapter 1

[18]

Throughout this book, we will be demonstrating and discussing these topics further but
let's take a moment to briefly discuss them now.

Before starting any project, it is highly recommended that you create a revision control
repository for the project. This can be done using popular online repositories such as
GitHub or Bitbucket. The reason we want to use a revision control system is that, as the
software is developed, we want to be able to save snapshots of the code base that are in
working order. If we break something in the code, accidentally delete it, or discover a bug,
we can use the revision control system to revert our code back to a good known base or
compare our code with a previous version to hunt down a bug.

There will potentially be two different types of projects that you will want to create a
repository for: kernel code and application code. Managing kernel code can be tricky
because we must pull from the MicroPython mainline and any changes we make will either
need to be pushed back and approved to enter the kernel, or we will need to manage
updates from the mainline back into our own version. As you might imagine, this can be
messy; however, we will discuss best practices to manage this when we create our own
MicroPython board.

As we work through our application code, we also want to make sure that we clearly
document the software. Python is an easy language to read, but it's also easy to write code
that is completely perplexing and difficult to understand. Make sure that as you develop
your software you include code comments to help you understand what the code is doing.
While you are writing the software, it will make sense, but come back a week, month, or
year later and that code could easily make no sense to you.

Personally, I prefer to document all my Python code using comments that are compatible
with Doxygen. Doxygen is a tool that can generate software documentation by parsing
source files that are commented in very specific ways. Doxygen is beyond the scope of this
book, but I would recommend that you check out the Doxygen website and review my
Doxygen articles and free templates, which can be downloaded from www.beningo.com.
You might also want to review my book, Reusable Firmware Development, Chapter 5,
Documenting Firmware with Doxygen, for a full explanation on how to use Doxygen for
embedded software development.

As you should already know, the REPL is an interactive MicroPython prompt that allows a
developer to access and interact with their development board running MicroPython. A
REPL example that shows the MicroPython prompt can be seen in the following screenshot.
The REPL allows developers to work from the MicroPython prompt and test out APIs and
functions or execute their application script so that the board can run autonomously. The
REPL can also be used to transfer files and perform advanced functions. Throughout this
book, we will be using the REPL in detail to test out our modules and perform ad hoc
programming.

http://www.beningo.com

Down the Rabbit Hole with MicroPython Chapter 1

[19]

Mastering the REPL is beyond the scope of this book. If you are currently not familiar with
it, I highly recommend that you review the MicroPython tutorials and documentation to
fully understand everything that can be done through the REPL. The REPL provides
developers with an interactive Python Terminal to interact with the kernel modules and
scripts:

Finally, firmware updates for MicroPython applications are extremely simple. Python
application code is stored in plain text format internally on flash or externally on an SD
card or eMMC device. Updating the application simply requires that a developer copy their
latest code to their development board. The general process that I use to update firmware is
as follows:

Stop any executing threads and applications.1.
Copy the new files to the development board.2.
Perform a soft reset using Ctrl + D.3.

At that point, the new firmware is installed, and the development board memory and
peripheral have been set back to their default states. Commands can then be entered
through the prompt or the application could be configured to start automatically. There are
some ports that have USB, while others only have a serial interface. A few ports provide
developers with over-the-air (Wi-Fi) update capabilities. We can even compile our
application into the kernel code, which is often referred to as frozen. We can even convert
our application modules into bytecode (mpy files) and place those on our filesystem. We
will discuss all of these details throughout the book.

Useful development resources
There are several resources that you will want to make sure that you have on hand to
develop your MicroPython-based projects. In many instances, these are the same tools that
you would want to have whether you are a hobbyist or a professional developer. At a
minimum, I would recommend that you purchase or download the following:

Male to female 6" jumpers (https:/ ​/​www. ​sparkfun. ​com/ ​products/ ​9140)
Male to male 6" jumpers (https:/ ​/​www. ​sparkfun. ​com/​products/ ​8431)

https://www.sparkfun.com/products/9140
https://www.sparkfun.com/products/9140
https://www.sparkfun.com/products/9140
https://www.sparkfun.com/products/9140
https://www.sparkfun.com/products/9140
https://www.sparkfun.com/products/9140
https://www.sparkfun.com/products/9140
https://www.sparkfun.com/products/9140
https://www.sparkfun.com/products/9140
https://www.sparkfun.com/products/9140
https://www.sparkfun.com/products/9140
https://www.sparkfun.com/products/9140
https://www.sparkfun.com/products/9140
https://www.sparkfun.com/products/8431
https://www.sparkfun.com/products/8431
https://www.sparkfun.com/products/8431
https://www.sparkfun.com/products/8431
https://www.sparkfun.com/products/8431
https://www.sparkfun.com/products/8431
https://www.sparkfun.com/products/8431
https://www.sparkfun.com/products/8431
https://www.sparkfun.com/products/8431
https://www.sparkfun.com/products/8431
https://www.sparkfun.com/products/8431
https://www.sparkfun.com/products/8431
https://www.sparkfun.com/products/8431

Down the Rabbit Hole with MicroPython Chapter 1

[20]

Female to female 6" jumpers (https:/ ​/​www. ​sparkfun. ​com/​products/ ​8430)
A terminal application such as Tera Term, or PuTTY
A high-speed micro SD card (if your development board supports one)

I would highly recommend that you also pick-up a logic analyzer such as an 8-channel
Saleae Logic. I've also found that using an SPI/I2C bus tool such as a Total Phase Aardvark
can be a major time-saver to test and understand different sensors and ICs that will be
integrated with the microcontroller. Developers who are interested in MicroPython kernel
development will also want to pick-up a good debugger such as a SEGGER J-Link or a Keil
U-Link.

As far as development boards go, each project will describe the specific board that was
used to create the project. These may vary from one project to the next, but the source code
is fully available and can be modified to work with any available development board with a
little extra effort. I enjoy working with and experimenting with different boards, so there
will be several that we will use throughout the book. Part of this, undoubtedly, stems from
my work as a consultant, where I am often evaluating and analyzing what's currently
available in the industry and determining where the industry is going.

Summary
Python has taken the software world by storm due to its elegant simplicity, ease to learn,
but also its ability to easily scale and adapt to changing industry conditions. Python has
found its way into the resource-constrained environment of microcontroller applications
through MicroPython. In the rest of this book, we will explore how we can learn and
leverage MicroPython for DIY and product development projects through several hands-on
projects.

The projects in this book vary in terms of the skill level required to complete and
understand them. Whether you are new to programming or a skilled professional, I will
walk you through the design process that's required to complete projects successfully. In
order to make sure that no reader is left behind, I will periodically point out useful
resources to get up to speed on topics that might otherwise be outside the scope of this
book but that will be helpful in completing the projects.

In the next chapter, we will examine several techniques developers can use for real-time
scheduling and design our own cooperative scheduler.

https://www.sparkfun.com/products/8430
https://www.sparkfun.com/products/8430
https://www.sparkfun.com/products/8430
https://www.sparkfun.com/products/8430
https://www.sparkfun.com/products/8430
https://www.sparkfun.com/products/8430
https://www.sparkfun.com/products/8430
https://www.sparkfun.com/products/8430
https://www.sparkfun.com/products/8430
https://www.sparkfun.com/products/8430
https://www.sparkfun.com/products/8430
https://www.sparkfun.com/products/8430
https://www.sparkfun.com/products/8430

Down the Rabbit Hole with MicroPython Chapter 1

[21]

Questions
What Python features make it a competing choice for use in embedded1.
systems?
What three use cases does MicroPython match well with?2.
What business ramifications should be evaluated for using3.
MicroPython?
What microcontroller architecture is supported the most by4.
MicroPython?
What decision-making tool can be used to remove human bias?5.
What five categories make up the SDLC?6.
What key combination in the REPL will produce a soft reset?7.
What workbench resources do you need to develop a MicroPython8.
project? Are you currently missing any?

Further reading
ASPENCORE Embedded Systems Survey, 2017, www.embedded.com1.
Know how to use a KT Matrix at https:/ ​/​www. ​projectmanagement. ​com/​wikis/2.
233054/​Forced- ​Ranking- ​- ​A-​K- ​A-​-​-​Kepner- ​Tregoe- ​-​Decision- ​Matrix- ​

Reusable Firmware Development by Jacob Beningo3.
MicroPython Tutorials, located at https:/ ​/​docs. ​micropython. ​org/ ​en/ ​latest/4.
pyboard/ ​tutorial/ ​index. ​html

https://www.embedded.com/
https://www.projectmanagement.com/wikis/233054/Forced-Ranking--A-K-A---Kepner-Tregoe--Decision-Matrix-
https://www.projectmanagement.com/wikis/233054/Forced-Ranking--A-K-A---Kepner-Tregoe--Decision-Matrix-
https://www.projectmanagement.com/wikis/233054/Forced-Ranking--A-K-A---Kepner-Tregoe--Decision-Matrix-
https://www.projectmanagement.com/wikis/233054/Forced-Ranking--A-K-A---Kepner-Tregoe--Decision-Matrix-
https://www.projectmanagement.com/wikis/233054/Forced-Ranking--A-K-A---Kepner-Tregoe--Decision-Matrix-
https://www.projectmanagement.com/wikis/233054/Forced-Ranking--A-K-A---Kepner-Tregoe--Decision-Matrix-
https://www.projectmanagement.com/wikis/233054/Forced-Ranking--A-K-A---Kepner-Tregoe--Decision-Matrix-
https://www.projectmanagement.com/wikis/233054/Forced-Ranking--A-K-A---Kepner-Tregoe--Decision-Matrix-
https://www.projectmanagement.com/wikis/233054/Forced-Ranking--A-K-A---Kepner-Tregoe--Decision-Matrix-
https://www.projectmanagement.com/wikis/233054/Forced-Ranking--A-K-A---Kepner-Tregoe--Decision-Matrix-
https://www.projectmanagement.com/wikis/233054/Forced-Ranking--A-K-A---Kepner-Tregoe--Decision-Matrix-
https://www.projectmanagement.com/wikis/233054/Forced-Ranking--A-K-A---Kepner-Tregoe--Decision-Matrix-
https://www.projectmanagement.com/wikis/233054/Forced-Ranking--A-K-A---Kepner-Tregoe--Decision-Matrix-
https://www.projectmanagement.com/wikis/233054/Forced-Ranking--A-K-A---Kepner-Tregoe--Decision-Matrix-
https://www.projectmanagement.com/wikis/233054/Forced-Ranking--A-K-A---Kepner-Tregoe--Decision-Matrix-
https://www.projectmanagement.com/wikis/233054/Forced-Ranking--A-K-A---Kepner-Tregoe--Decision-Matrix-
https://www.projectmanagement.com/wikis/233054/Forced-Ranking--A-K-A---Kepner-Tregoe--Decision-Matrix-
https://www.projectmanagement.com/wikis/233054/Forced-Ranking--A-K-A---Kepner-Tregoe--Decision-Matrix-
https://www.projectmanagement.com/wikis/233054/Forced-Ranking--A-K-A---Kepner-Tregoe--Decision-Matrix-
https://www.projectmanagement.com/wikis/233054/Forced-Ranking--A-K-A---Kepner-Tregoe--Decision-Matrix-
https://www.projectmanagement.com/wikis/233054/Forced-Ranking--A-K-A---Kepner-Tregoe--Decision-Matrix-
https://www.projectmanagement.com/wikis/233054/Forced-Ranking--A-K-A---Kepner-Tregoe--Decision-Matrix-
https://www.projectmanagement.com/wikis/233054/Forced-Ranking--A-K-A---Kepner-Tregoe--Decision-Matrix-
https://www.projectmanagement.com/wikis/233054/Forced-Ranking--A-K-A---Kepner-Tregoe--Decision-Matrix-
https://www.projectmanagement.com/wikis/233054/Forced-Ranking--A-K-A---Kepner-Tregoe--Decision-Matrix-
https://www.projectmanagement.com/wikis/233054/Forced-Ranking--A-K-A---Kepner-Tregoe--Decision-Matrix-
https://www.projectmanagement.com/wikis/233054/Forced-Ranking--A-K-A---Kepner-Tregoe--Decision-Matrix-
https://www.projectmanagement.com/wikis/233054/Forced-Ranking--A-K-A---Kepner-Tregoe--Decision-Matrix-
https://www.projectmanagement.com/wikis/233054/Forced-Ranking--A-K-A---Kepner-Tregoe--Decision-Matrix-
https://www.projectmanagement.com/wikis/233054/Forced-Ranking--A-K-A---Kepner-Tregoe--Decision-Matrix-
https://www.projectmanagement.com/wikis/233054/Forced-Ranking--A-K-A---Kepner-Tregoe--Decision-Matrix-
https://www.projectmanagement.com/wikis/233054/Forced-Ranking--A-K-A---Kepner-Tregoe--Decision-Matrix-
https://www.projectmanagement.com/wikis/233054/Forced-Ranking--A-K-A---Kepner-Tregoe--Decision-Matrix-
https://www.projectmanagement.com/wikis/233054/Forced-Ranking--A-K-A---Kepner-Tregoe--Decision-Matrix-
https://www.projectmanagement.com/wikis/233054/Forced-Ranking--A-K-A---Kepner-Tregoe--Decision-Matrix-
https://www.projectmanagement.com/wikis/233054/Forced-Ranking--A-K-A---Kepner-Tregoe--Decision-Matrix-
https://www.projectmanagement.com/wikis/233054/Forced-Ranking--A-K-A---Kepner-Tregoe--Decision-Matrix-
https://www.projectmanagement.com/wikis/233054/Forced-Ranking--A-K-A---Kepner-Tregoe--Decision-Matrix-
https://www.projectmanagement.com/wikis/233054/Forced-Ranking--A-K-A---Kepner-Tregoe--Decision-Matrix-
https://docs.micropython.org/en/latest/pyboard/tutorial/index.html
https://docs.micropython.org/en/latest/pyboard/tutorial/index.html
https://docs.micropython.org/en/latest/pyboard/tutorial/index.html
https://docs.micropython.org/en/latest/pyboard/tutorial/index.html
https://docs.micropython.org/en/latest/pyboard/tutorial/index.html
https://docs.micropython.org/en/latest/pyboard/tutorial/index.html
https://docs.micropython.org/en/latest/pyboard/tutorial/index.html
https://docs.micropython.org/en/latest/pyboard/tutorial/index.html
https://docs.micropython.org/en/latest/pyboard/tutorial/index.html
https://docs.micropython.org/en/latest/pyboard/tutorial/index.html
https://docs.micropython.org/en/latest/pyboard/tutorial/index.html
https://docs.micropython.org/en/latest/pyboard/tutorial/index.html
https://docs.micropython.org/en/latest/pyboard/tutorial/index.html
https://docs.micropython.org/en/latest/pyboard/tutorial/index.html
https://docs.micropython.org/en/latest/pyboard/tutorial/index.html
https://docs.micropython.org/en/latest/pyboard/tutorial/index.html
https://docs.micropython.org/en/latest/pyboard/tutorial/index.html
https://docs.micropython.org/en/latest/pyboard/tutorial/index.html
https://docs.micropython.org/en/latest/pyboard/tutorial/index.html
https://docs.micropython.org/en/latest/pyboard/tutorial/index.html

2
Managing Real-Time Tasks

Embedded systems need a way to schedule activities and respond to events in an efficient
and deterministic manner. MicroPython offers developers several methods to achieve task
scheduling.

In this chapter, we will review the methods that are most commonly used by developers
and how to use uasyncio to schedule our own real-time tasks.

The following topics will be covered in this chapter:

The need for real-time scheduling
MicroPython scheduling techniques
Writing a scheduling loop with uasyncio

Technical requirements
The example code for this chapter can be found in this book's GitHub repository: https:/ ​/
github.​com/​PacktPublishing/ ​MicroPython- ​Projects/ ​tree/ ​master/ ​Chapter02

In order to run the examples, you will require the following hardware and software:

Pyboard Revision 1.0 or 1.1
Pyboard Series-D
Terminal application (such as PuTTy, RealTerm, or a Terminal)
A text editor (such as VS Code or PyCharm)

https://github.com/PacktPublishing/MicroPython-Projects/tree/master/Chapter02
https://github.com/PacktPublishing/MicroPython-Projects/tree/master/Chapter02
https://github.com/PacktPublishing/MicroPython-Projects/tree/master/Chapter02
https://github.com/PacktPublishing/MicroPython-Projects/tree/master/Chapter02
https://github.com/PacktPublishing/MicroPython-Projects/tree/master/Chapter02
https://github.com/PacktPublishing/MicroPython-Projects/tree/master/Chapter02
https://github.com/PacktPublishing/MicroPython-Projects/tree/master/Chapter02
https://github.com/PacktPublishing/MicroPython-Projects/tree/master/Chapter02
https://github.com/PacktPublishing/MicroPython-Projects/tree/master/Chapter02
https://github.com/PacktPublishing/MicroPython-Projects/tree/master/Chapter02
https://github.com/PacktPublishing/MicroPython-Projects/tree/master/Chapter02
https://github.com/PacktPublishing/MicroPython-Projects/tree/master/Chapter02
https://github.com/PacktPublishing/MicroPython-Projects/tree/master/Chapter02
https://github.com/PacktPublishing/MicroPython-Projects/tree/master/Chapter02
https://github.com/PacktPublishing/MicroPython-Projects/tree/master/Chapter02
https://github.com/PacktPublishing/MicroPython-Projects/tree/master/Chapter02
https://github.com/PacktPublishing/MicroPython-Projects/tree/master/Chapter02
https://github.com/PacktPublishing/MicroPython-Projects/tree/master/Chapter02

Managing Real-Time Tasks Chapter 2

[23]

The need for real-time scheduling
A real-time embedded system is a system with a dedicated purpose. The real-time system
may operate standalone or it may be a component or subsystem of a larger device. Real-
time systems are often event-driven and must produce the same output and timing when
given the same initial conditions. A real-time system might be built using a microcontroller
system that uses a bare-metal scheduler or a real-time operating system (RTOS) to
schedule all of its system tasks. Alternatively, it could be built using a System on Chip
(SoC) or Field Programming Gate Array (FPGA).

Every embedded system is not necessarily a real-time system. An application processor
such as Raspberry Pi using Raspbian or Linux would not be a real-time system because, for
a given set of inputs, while the system may give the same output, the time taken can vary
wildly due to the multitasking nature of the system. General-purpose operating systems
often interrupt tasks to handle OS-related functions, which results in the computing time
being variable and non-deterministic.

There are several characteristics that can be used to identify a real-time embedded system:

They're event-driven as they do not poll inputs.
They're deterministic because when given the same initial conditions, they
produce the same outputs in the same time frame.
They're resource-constrained in some manner; for example, clock speed,
memory, or energy consumption.
They use a dedicated microcontroller-based processor.
They may use an RTOS to manage system tasks.

Real-time system types
Real-time systems can be subdivided into two categories: soft real-time and hard real-time
systems. Both types require that the system executes in a deterministic and predictable
manner. However, they differ in what happens if a deadline is missed. A soft real-time
system that misses a deadline is considered to be annoying to its users. It's undesirable for
the deadline to be missed and may decrease the usefulness of the system after the deadline,
but it's not critical. A hard real-time system, on the other hand, will dramatically decrease
its usefulness after a deadline and results in a fatal system fault.

Managing Real-Time Tasks Chapter 2

[24]

An example of a soft real-time system is a Human Machine Interface (HMI) with a touch
controller that is controlling a home furnace. There may be a deadline where the system
needs to respond to user input within 1 second of the screen being touched. If a user goes
and touches the screen but the system doesn't respond for 3 or 4 seconds, the result is not
world ending, but it may make the user complain about how slow the system is.

A hard real-time system could be an electronic braking system that needs to respond to a
user pressing the brake pedal within 30 milliseconds. If a user were to press the brake and it
took 2 seconds for the brakes to respond, the outcome could be critical. The system's failure
to respond could result in injury to the user and dramatically decreases the usefulness of
the embedded system.

It is possible to have an embedded system that has a mix of hard and soft requirements.
The software in an embedded system is often subdivided into separate tasks based on
function and timing requirements. We might find that the user interface on a system is
considered to have soft real-time requirements, while the actuator control task must have
hard real-time requirements. The type of system that is being built will often factor in the
type of scheduler that is used in the solution.

Now, let's explore the different scheduling architectures that can be used with MicroPython
to achieve real-time performance.

MicroPython scheduling techniques
When it comes to real-time scheduling using MicroPython, there are five common
techniques that developers can employ. These techniques are as follows:

Round-robin scheduling
Periodic scheduling using timers
Event-driven scheduling
Cooperative scheduling
MicroPython threads

We'll discuss them in detail in the subsequent sections. In the rest of this chapter, we will
build example projects to explore several of these scheduling paradigms. We will also give
special treatment to the uasyncio library at the end of this chapter, which is a powerful
library for scheduling in MicroPython.

Managing Real-Time Tasks Chapter 2

[25]

Round-robin scheduling
Round-robin scheduling is nothing more than an infinite loop that is created with a while
loop. Inside the loop, developers add their task code and each task is executed sequentially,
one after the other. While round-robin is the easiest and simplest scheduling paradigm to
implement, there are several problems that developers will encounter when using it. First,
getting the application tasks to run at the right rates can be difficult. Any code that is added
or removed from the application will result in changes to the loop timing. The reason for
this is that there is now more or less code to execute per loop. Second, each task has to be
designed to recognize that there are other tasks, which means that they cannot block or
wait for an event. They must check and then move on so that the other code has the
opportunity to use the processor.

Round-robin scheduling can also be used with interrupts to handle any real-time events
that might be occurring in the system. The loop handles all the soft real-time tasks, and then
the hard real-time tasks are allocated to interrupt handlers. This helps to provide a balance
that ensures each type is executed within a reasonable period of time. Round-robin is a
good technique for beginners who are just trying to get a simple application up and
running.

As we discussed earlier, adding or removing code affects the loop time, which can affect
how the system performs. Round-robin schedulers can handle soft real-time tasks. Any
events or hard real-time requirements need to be handled using interrupts. I often refer to
this as round-robin scheduling with interrupts. A flowchart showing round-robin
scheduling with interrupts can be seen in the following diagram:

Managing Real-Time Tasks Chapter 2

[26]

The main round-robin loop is often referred to as the background loop. This loop
constantly executes in the background when there are no interrupts executing. The
interrupts themselves are referred to as the foreground and handle any hard real-time
events that need to be handled by the system. These functions trump background tasks and
run immediately. It's also important to note that MicroPython handles clearing the
interrupt flags for developers, so while they are shown in the preceding diagram, this detail
is abstracted and handled by the MicroPython kernel.

In C, an application that uses round-robin scheduling might look something like the
following:

int main (void)
{
 // Initialize the Microcontroller Unit (MCU) peripherals
 System_Init();
 while(1)
 {
 Task1();
 Task2();
 Task3();
 }
 // The application should never exit. Return 1 if
 // we do reach this point!

 return 1;
}

In this example, the code enters into the main function, initializes the microcontroller, and
then enters into an infinite while loop that calls each task in order. This is a design pattern
that every embedded software developer will have seen early in their career and should be
quite familiar with.

Implementing round-robin in MicroPython is very similar:

First, it's important to recall that the application entry for MicroPython is located1.
within main.py. To access any peripherals, the pyb library needs to be imported
into the application (or the machine library for code that can be ported across
MicroPython ports).
Second, any initialization and task functions need to be defined above the main2.
loop. This ensures that they are defined before they are called by the Python
interpreter.
Finally, an infinite loop is created using a while True statement. Each defined3.
task is entered into this loop. The loop's timing can be controlled and tuned
using pyb.delay().

Managing Real-Time Tasks Chapter 2

[27]

Building a task manager using round-robin scheduling
Let's look at an example application that generates an LED railroad lights pattern. From a
hardware perspective, this requires the use of two LEDs on the pyboard, such as the blue
and yellow LEDs (on the pyboard series-D, you might use the green and blue LEDs). I
prefer to use these because when we save new code to the pyboard, the red LED is used to
show that the filesystem is being written to, and we don't want to interfere with that
indicator. If we want one LED to be on while the other is off and then toggle them back and
forth, we will need to initialize the blue LED to be on and the yellow to be off. We can then
create two separate tasks, one to control the yellow LED and the other to control the blue
LED. The Python code for this is as follows:

import pyb # For uPython MCU features
import time

 # define LED color constants
 LED_RED = 1
 LED_GREEN = 2
 LED_BLUE = 3
 LED_YELLOW = 4

 def task1():
 pyb.LED(LED_BLUE).toggle()

 def task2():
 pyb.LED(LED_GREEN).toggle()

However, the application is not complete until we initialize the LEDs and schedule the
tasks to run. The following code shows the LED railroad application's initialization and
task execution being written using round-robin scheduling. The main loop is delayed by
150 milliseconds, as well as each loop using the sleep_ms method from the time module.
Importing time actually imports the utime module, but importing time can make porting
code a little bit easier:

Setup the MCU and application code to starting conditions
The blue LED will start on, the yellow LED will be off
 pyb.LED(LED_BLUE).on()
 pyb.LED(LED_GREEN).off()

 # Main application loop
 while True:
 # Run the first task
 task1()

 # Run the second task
 task2()

Managing Real-Time Tasks Chapter 2

[28]

 # Delay 150 ms
 pyb.delay(150)

These two code blocks, when combined, provide us with our first MicroPython application.
Running the application on the pyboard can be done by copying the main.py script onto
the development board. This can be done either directly, through a Python IDE such as
PyCharm, or manually using the following steps:

Connect the pyboard to your computer with a USB cable.1.
Open your Terminal application and connect to the pyboard (refer to the2.
MicroPython documentation | Quick reference for the pyboard | MicroPython
tutorial for the pyboard | 3. Getting a MicroPython REPL prompt, for details).
In the serial Terminal, press Ctrl + C to interrupt any currently running scripts.3.
Copy the script to the pyboard USB drive. While the copy is in progress, the red4.
LED will be lit up.
Once the red light has gone off, the pyboard flash system will be updated.5.
In the Terminal, press Ctrl + D to perform a soft reset.6.

For additional methods regarding how to deploy the application and
develop within the PyCharm environment, refer to the
Appendix, Downloading and Running MicroPython Code.

Now, you should see the blue and green LEDs toggling back and forth.

Periodic scheduling using timers
There may be applications where every task that needs to be executed is periodic, such as a
push button that needs to be sampled every 10 milliseconds; a display that needs to be
updated 60 times per second; or a sensor that is sampled at 10 Hz or interrupts when a
value has gone out of range. In purely periodic systems, developers can architect their
software to use periodic timers to execute tasks. Each timer can be set up to represent a
single task that is executed at the desired rate. When the timer interrupt fires, the task
executes.

When using periodic timers for task scheduling, it's important to keep in mind that the task
code will be executed from an interrupt handler. Developers should follow best practices
for using interrupts, such as the following:

Keep ISRs short and fast.
Perform measurements to understand interrupt timing and latency.

Managing Real-Time Tasks Chapter 2

[29]

Use interrupt priority settings to emulate pre-emption.
Make sure that task variables are declared as volatile.
Avoid calling multiple functions from an ISR.
Disable interrupts as little as possible.
Use micropython.schedule() to schedule a function to execute as soon as the
MicroPython scheduler is able to.

When using periodic timers to schedule tasks, some of these best practices can be bent
slightly. However, if the developer carefully monitors their task timing, bending the rules
shouldn't be an issue. If it is, then any hard real-time activity can be handled by the
interrupt task and then a round-robin loop can be notified to finish processing the task at a
later time.

Timers guarantee that the task will be executed at a regular interval, no matter what is
being executed, assuming that a higher-priority interrupt is not executing. The key thing to
remember is that these tasks are executed within an interrupt, so the tasks need to be kept
short and fast! Developers who use this method should handle any high-priority activity in
the task and then offload the rest of the task to the background. For example, a task that
handles an incoming byte over a Universal Asynchronous Receiver/Transmitter
(UART) device can process the incoming byte by storing it in a circular buffer and then
allowing a background task to later process the circular buffer. This keeps the interrupt task
short and sweet while allowing the lower-priority processing to be done in the background.

Interrupts within MicroPython are also special in that they are garbage collector (gc)
locked. What this means to a developer is that you cannot allocate memory in an ISR. All
memory, classes, and so on need to be allocated before being used by the ISR. This has an
interesting side effect in that if something goes wrong while executing an ISR, the
developer has no way of knowing what went wrong! To get traceback information in
situations where memory can't be allocated, such as in ISRs, developers can use the
MicroPython emergency exception buffer. This is done by adding the following line of code
to either the top of main.py or boot.py:

micropython.alloc_emergency_exception_buf(100)

This line of code is used to allocate 100 bytes to store the traceback information for ISRs
and any other tracebacks that occur in areas where memory cannot be allocated. If an
exception occurs, the Python traceback information is saved to this buffer and then printed
to the REPL. This allows a developer to then figure out what they did wrong and correct it.
The value of 100 is recommended as the buffer size by the MicroPython documentation.

Managing Real-Time Tasks Chapter 2

[30]

When considering using timers for tasks, it's also important to recognize that each time an
interrupt fires on an Arm Cortex®-M processor, there is a 12–15 clock cycle overhead to
switch from the main code to the interrupt and then again to switch back. The reason for
this overhead is that the processor needs to save and restore context information for the
application when switching into and out of the interrupts. The nice thing is that these
transitions, while they consume clock cycles, are deterministic!

Building a task manager using periodic scheduling
Setting up a timer to behave as a periodic task is exactly the same as setting up a timer in
MicroPython for any other purpose. We can create an application very similar to our
round-robin scheduler using timers by initializing a timer for each task in the application.
The first timer will control the blue LED, while the second will control the green LED. Each
timer will use a callback function to the task code that will be executed when the timer
expires.

We can use the exact same format for our code that we used previously. We will initialize
the blue LED as on, and the green LED as off. This allows us to let the timers free-run and
generate the railroad pattern that we saw earlier. It's important to note that if we let the
timer free-run, even if we stop the application in the REPL, the timers will continue to
execute! The reason for this is that the timers are hardware peripherals that will run until
the peripheral is disabled, even if we exit our application and return to the REPL. I mention
this because any print statements you add to your callback functions will continue to
populate the REPL, even after you halt the program, which can make it difficult to work or
determine the state of the application.

When using timers to set up tasks, there is no need for an infinite while loop like we saw
with the round-robin applications. The timers will just free-run. If the infinite loop is not
added to main.py, background processing will fall back to the system REPL and sit there
instead. I personally still like to include the while loop and some status information so that
I know whether the MicroPython interpreter is executing code. In this example, we will put
a sleep delay in the main loop and then calculate how long the application has been
running.

The Python code for our tasks is identical to the round-robin example, except for the
addition of the emergency exception buffer, as shown here:

import micropython # For emergency exception buffer
import pyb # For uPython MCU
import time

micropython.alloc_emergency_exception_buf(100)

Managing Real-Time Tasks Chapter 2

[31]

LED_RED = 1
LED_GREEN = 2
LED_BLUE = 3
LED_YELLOW = 4

def task1(timer):
 pyb.LED(LED_BLUE).toggle()

 return

def task2(timer):
 pyb.LED(LED_GREEN).toggle()

 return

Instead of calling the task code directly, we set up two timers – time 1, and timer 2 – with a
frequency of 5 Hz (period of 200 milliseconds) and set up the callback function to call the
tasks. The code to accomplish this is as follows:

pyb.LED(LED_BLUE).on()
pyb.LED(LED_GREEN).off()

Create task timer for Blue LED
TimerBlueLed = pyb.Timer(1)
TimerBlueLed.init(freq=5)
TimerBlueLed.callback(task1)
print("Task 1 - Blue LED Toggle initialized ...")

Create task timer for Green LED
TimerGreenLed = pyb.Timer(2)
TimerGreenLed.init(freq=5)
TimerGreenLed.callback(task2)
print("Task 2 - Green LED Toggle initialized ...")

The only code that's necessary for this example is the code for the main loop, which will do
nothing more than print out how long our application has been running. To accomplish
this, we need to sample the application start time using the time module's ticks_ms
method and store it in TimeStart. We can then use time.ticks_diff to calculate the
elapsed time between the current tick and the application start tick. The final piece of code
is as follows:

TimeStart = time.ticks_ms()

while True:
 time.sleep_ms(5000)
 SecondsLive = time.ticks_diff(time.ticks_ms(), TimeStart) / 1000
 print("Executing for ", SecondsLive, " seconds")

Managing Real-Time Tasks Chapter 2

[32]

Once the code is on the pyboard and executing, the REPL should display the information
shown in the following screenshot. It shows timer-based task scheduling, which prints the
current execution time in the REPL and toggles between the blue and green LEDs at 5
Hz. At this point, you know how to use timers to schedule periodic tasks:

At this point, we are ready to examine some additional scheduling paradigms that are not
completely mainstream within MicroPython, such as thread support.

MicroPython thread mechanism
The last scheduling paradigm that developers can use to schedule tasks is the MicroPython
thread mechanism. In a microcontroller-based system, a thread is essentially a synonym for
a task. There are some minor differences, but they are beyond the scope of this book.
Developers can create threads that will contain task code. Each task could then use several
different mechanisms to execute their task code, such as the following:

Waiting on a queue
Waiting on time using a delay
Periodically monitoring for a polled event

The thread mechanism has been implemented directly from Python 3.x and provides
developers with an easy method for creating separate tasks in their application. It is
important to recognize that the Python thread mechanism is NOT deterministic. This
means that it will not be useful for developing software that has a hard real-time
requirement. The MicroPython thread mechanism is also currently experimental! Threads
are not supported in all MicroPython ports and for the ones that are, a developer usually
needs to enable threads and recompile the kernel in order to have access to the capability
on offer.

Managing Real-Time Tasks Chapter 2

[33]

For additional information on threads and their behavior, please refer to
the Further reading section at the end of this chapter.

Starting with MicroPython version 1.8.2, there is support for an experimental threads
module that developers can use to create separate threads. Using the threads module is not
recommended for developers who are just getting started with MicroPython for several
reasons. First, by default, threading is not enabled in the MicroPython kernel. Developers
need to enable threading and then recompile and deploy the kernel. Second, since the
threading module is experimental, it has not been ported to every MicroPython port yet.

If threads aren't officially supported and not recommended, why are we even talking about
them? Well, if we want to understand the different scheduling mechanisms available to us
with MicroPython, we need to include the mechanisms that are even experimental. So, let's
dive in and talk about threading with MicroPython (even though you may not be able to
run a threading application until you have learned how to recompile the kernel, which you
will do in Chapter 5, Customizing the MicroPython Kernel Start Up Code).

When a developer creates a thread, they are creating a semi-independent program. If you
think back to what a typical program looks like, it starts with an initialization section and
then enters into an infinite loop. Every thread has this structure! There is a section to
initialize the thread and its variables, followed by an independent loop. The loop itself can
be periodic by using time.sleep_ms() or it can block an event, such as an interrupt.

Advantages of using threads in MicroPython
From an organizational standpoint, threads can be a good choice for many MicroPython
applications, although similar behavior can be achieved using the asyncio library (which
we will talk about shortly). There are several advantages that threads provide, such as the
following:

They allow a developer to easily break up their program into smaller constituents
that can be assigned to individual developers.
They help us improve the code so that it's scalable and reusable.
They provide us with a small opportunity to decrease bugs in an application by
breaking the application up into smaller, less complex pieces. However, as we
mentioned previously, more bugs can be created by developers who are
unfamiliar with how to use threads properly.

Managing Real-Time Tasks Chapter 2

[34]

Considerations when using threads in MicroPython
For a Python programmer, before using threads in a MicroPython application, it makes a
lot of sense to consider the potential consequences before immediately jumping to threads.
There are a few important considerations that a developer needs to contemplate:

Threads are not deterministic. When a Python thread is ready to execute, there is
no mechanism in place for one thread to be executed before another.
There is no real mechanism for controlling time slicing. Time slicing is when the
CPU is shared between multiple threads that are currently ready to execute.
To pass data around the application, developers may need to add additional
complexities to their design, such as the use of queues.
Developers who are not familiar with designing and implementing multi-
threaded applications will find that inter-thread communication and syncing is
full of pitfalls and traps. More time will be spent debugging and new developers
will find that the other methods we've discussed are more appropriate for their
applications.
Support for threading is currently experimental in MicroPython (see https:/ ​/
docs.​micropython. ​org/ ​en/ ​latest/ ​library/ ​_​thread. ​html).
Threads are not supported on all MicroPython ports, so the applications may be
less portable than expected.
Threads will use more resources than the other techniques we've discussed in
this chapter.

Building a task manager using threads
Despite a few drawbacks to using threads, they can be a very powerful tool for developers
who understand how to use them in the context of a real-time embedded system. Let's take
a look at how we can implement our railroad blinky LED application using threads. The
first step to developing the application is to create our threads, just like how we created our
tasks in the previous examples. In this case, though, there are several key modifications that
are worth noting.

First, we need to import the threading module (_thread). Second, we need to define a
thread as a regular function declaration. The difference here is that we treat each function
like a separate application where we insert a while True statement. If the thread were to
exit the infinite loop, the thread would cease operating and not use any more CPU time.

https://docs.micropython.org/en/latest/library/_thread.html
https://docs.micropython.org/en/latest/library/_thread.html
https://docs.micropython.org/en/latest/library/_thread.html
https://docs.micropython.org/en/latest/library/_thread.html
https://docs.micropython.org/en/latest/library/_thread.html
https://docs.micropython.org/en/latest/library/_thread.html
https://docs.micropython.org/en/latest/library/_thread.html
https://docs.micropython.org/en/latest/library/_thread.html
https://docs.micropython.org/en/latest/library/_thread.html
https://docs.micropython.org/en/latest/library/_thread.html
https://docs.micropython.org/en/latest/library/_thread.html
https://docs.micropython.org/en/latest/library/_thread.html
https://docs.micropython.org/en/latest/library/_thread.html
https://docs.micropython.org/en/latest/library/_thread.html
https://docs.micropython.org/en/latest/library/_thread.html
https://docs.micropython.org/en/latest/library/_thread.html
https://docs.micropython.org/en/latest/library/_thread.html
https://docs.micropython.org/en/latest/library/_thread.html
https://docs.micropython.org/en/latest/library/_thread.html
https://docs.micropython.org/en/latest/library/_thread.html

Managing Real-Time Tasks Chapter 2

[35]

In this example, we're controlling the LED toggling time by using the time.sleep_ms
function and setting our thread loop time to 150 milliseconds, just like we did in the
previous examples. Our code now looks as follows:

import micropython # For emergency exception buffer
import pyb # For uPython MCU features
import time # For time features
import _thread # For thread support

micropython.alloc_emergency_exception_buf(100)

LED_RED = 1
LED_GREEN = 2
LED_BLUE = 3
LED_YELLOW = 4

def task1():
 while True:
 pyb.LED(LED_BLUE).toggle()
 time.sleep_ms(150)

def task2():
 while True:
 pyb.LED(LED_GREEN).toggle()
 time.sleep_ms(250)

We can initialize the system the exact same way that we did before by initializing the blue
LED to on and the green LED to off. The difference in our thread application is that we
want to write some code that will spawn off our two threads. This can be done with the
following code:

pyb.LED(LED_BLUE).on()
pyb.LED(LED_GREEN).off()

_thread.start_new_thread(task1, ())
_thread.start_new_thread(task2, ())

As you can see, we're using the _thread.start_new_thread method here. This method
requires two parameters. The first is the function that should be called when the thread is
ready to run. In this case, these are our Led_BlueToggle and Led_YellowToggle
functions. The second parameter is a tuple that needs to be passed to our threads. In this
case, we have no parameters to pass, so we just pass an empty tuple.

Managing Real-Time Tasks Chapter 2

[36]

Before running this code, it's useful to note that the rest of the script is the same as the code
in our timer example. We create an infinite loop for the script and then report how long the
application has been running for. As a reminder, the code for this is as follows:

TimeStart = time.ticks_ms()

while True:
 time.sleep_ms(5000)
 SecondsLive = time.ticks_diff(time.ticks_ms(), TimeStart) / 1000
 print("Executing for ", SecondsLive, " seconds")

An interesting question to ask yourself as you run the threaded code is, How long will it take
before these LEDs are no longer blinking in an alternating pattern? Since the threads are not
deterministic, over time, there is the potential for these threads to get out of sync and for
the application to no longer behave the way that we expect it to. If you are going to run the
code, let it run for a while, over several hours, a day, or even a week, and observe the
application's behavior.

Event-driven scheduling
Event-driven scheduling can be an extremely convenient technique for developers whose
systems are driven by events that are happening on the system. For example, the system
may need to respond to a user button press, an incoming data packet, or a limit switch
being reached by an actuator.

In event-driven systems, there may be no need to have a periodic background timer;
instead, the system can just respond to the event using interrupts. Event-driven scheduling
may have our common infinite while loop, but that loop will do nothing or put the system
into a low-power state until an event occurs. Developers who are using event-driven
systems can follow the interrupt best practices that we discussed earlier and should also
read the MicroPython documentation on ISR rules, which can be found at https:/ ​/​docs.
micropython.​org/ ​en/ ​latest/ ​reference/ ​isr_​rules. ​html. It's important to note that when
you do use interrupts, MicroPython automatically clears the interrupt flag for the developer
so that using interrupts is simplified.

Cooperative scheduling
Cooperative scheduling is a technique that developers can leverage to achieve task
periodicity without using a timer for every task. Cooperative schedulers are one of the most
widely used schedulers throughout embedded system history. A quick look at any of the
embedded.com embedded systems surveys will easily show that.

https://docs.micropython.org/en/latest/reference/isr_rules.html
https://docs.micropython.org/en/latest/reference/isr_rules.html
https://docs.micropython.org/en/latest/reference/isr_rules.html
https://docs.micropython.org/en/latest/reference/isr_rules.html
https://docs.micropython.org/en/latest/reference/isr_rules.html
https://docs.micropython.org/en/latest/reference/isr_rules.html
https://docs.micropython.org/en/latest/reference/isr_rules.html
https://docs.micropython.org/en/latest/reference/isr_rules.html
https://docs.micropython.org/en/latest/reference/isr_rules.html
https://docs.micropython.org/en/latest/reference/isr_rules.html
https://docs.micropython.org/en/latest/reference/isr_rules.html
https://docs.micropython.org/en/latest/reference/isr_rules.html
https://docs.micropython.org/en/latest/reference/isr_rules.html
https://docs.micropython.org/en/latest/reference/isr_rules.html
https://docs.micropython.org/en/latest/reference/isr_rules.html
https://docs.micropython.org/en/latest/reference/isr_rules.html
https://docs.micropython.org/en/latest/reference/isr_rules.html
https://docs.micropython.org/en/latest/reference/isr_rules.html
https://docs.micropython.org/en/latest/reference/isr_rules.html
https://docs.micropython.org/en/latest/reference/isr_rules.html

Managing Real-Time Tasks Chapter 2

[37]

A cooperative scheduler often uses a single timer to create a system tick that the scheduler
then uses to determine whether the task code should be executed. The cooperative
scheduler provides a perfect balance for developers who need periodicity, simplicity,
flexibility, and scalability. They are also a stepping stone toward an RTOS.

So far, we have examined the methods that developers can use in MicroPython to schedule
activities. In the next section, we will discuss how we can use the asyncio library to
cooperatively schedule tasks. This method is perhaps the most commonly used method by
MicroPython developers due to its flexibility and precise timing beyond the methods that
we have already examined.

Cooperative multitasking using asyncio
So far, we have examined how we can schedule tasks in a MicroPython-based system using
round-robin, timers, and threads. While threads may be the most powerful scheduling
option available, they aren't deterministic schedulers and don't fit the bill for most
MicroPython applications. There is another scheduling algorithm that developers can
leverage to schedule tasks within their systems: cooperative scheduling.

A cooperative scheduler, also known as cooperative multitasking, is basically a round-robin
scheduling loop that includes several mechanisms to allow a task to yield the CPU to other
tasks that may need to use it. The developer can fine-tune the way that their application
behaves, and their tasks execute without adding the complexity that is required for a pre-
emptive scheduler, like those included in an RTOS. Developers who decide that a
cooperative scheduler fits their application best will need to make sure that each task they
create can complete before any other task needs to execute, hence the name cooperative. The
tasks cooperate to ensure that all the tasks are able to execute their code within their
requirements but are not held to their timing by any mechanism.

Developers can develop their own cooperative schedulers, but MicroPython currently
provides the asyncio library, which can be used to create cooperatively scheduled tasks
and to handle asynchronous events in an efficient manner. In the rest of this chapter, we
will examine asyncio and how we can use it for task scheduling within our embedded
applications.

Managing Real-Time Tasks Chapter 2

[38]

Introducing asyncio
The asyncio module was added to Python starting in version 3.4 and has been steadily
evolving ever since. The purpose of asyncio is to handle asynchronous events that occur
in Python applications, such as access to input/output devices, a network, or even a
database. Rather than allowing a function to block the application, asyncio added the
functionality for us to use coroutines that can yield the CPU while they wait for responses
from asynchronous devices.

MicroPython has supported asyncio in the kernel since version 1.11 through the
uasyncio library. Prior versions still supported asyncio, but the libraries had to be added
manually. This could be done through several means, such as the following:

Copying the usyncio library to your application folder
Using micropip.py to download the usyncio library
Using upip if there is a network connection

If you are unsure whether your MicroPython port supports asyncio, all you need to do is
type the following into the REPL:

import usyncio

If you receive an import error, then you know that you need to install the library before
continuing. Peter Hinch has put together an excellent guide regarding asyncio with
instructions for installing the library that you can find at https:/ ​/​github. ​com/ ​peterhinch/
micropython-​async/ ​blob/ ​master/ ​TUTORIAL. ​md#0- ​introduction.

It's important to note that the support for asyncio in MicroPython is for the features that
were introduced in Python 3.4. Very few features from the Python 3.5 or above asyncio
library have been ported to MicroPython, so if you happen to do more in-depth research
into asyncio, please keep this in mind to avoid hours of debugging.

The main purpose of asyncio is to provide developers with a technique for handling
asynchronous operations in an efficient manner that doesn't block the CPU. This is done
through the use of coroutines, which are sometimes referred to as coros. A coroutine is a
specialized version of a Python generator function that can suspend its execution before
reaching a return and indirectly passes control to another coroutine. Coroutines are a
technique that provides concurrency to a Python application. Concurrency basically means
that we can have multiple functions that appear to be executing at the same time but are
actually running one at a time in a cooperative manner. This is not parallel processing but
cooperative multitasking, which can dramatically improve the scalability and performance
of a Python application compared to other synchronous methods.

https://github.com/peterhinch/micropython-async/blob/master/TUTORIAL.md#0-introduction
https://github.com/peterhinch/micropython-async/blob/master/TUTORIAL.md#0-introduction
https://github.com/peterhinch/micropython-async/blob/master/TUTORIAL.md#0-introduction
https://github.com/peterhinch/micropython-async/blob/master/TUTORIAL.md#0-introduction
https://github.com/peterhinch/micropython-async/blob/master/TUTORIAL.md#0-introduction
https://github.com/peterhinch/micropython-async/blob/master/TUTORIAL.md#0-introduction
https://github.com/peterhinch/micropython-async/blob/master/TUTORIAL.md#0-introduction
https://github.com/peterhinch/micropython-async/blob/master/TUTORIAL.md#0-introduction
https://github.com/peterhinch/micropython-async/blob/master/TUTORIAL.md#0-introduction
https://github.com/peterhinch/micropython-async/blob/master/TUTORIAL.md#0-introduction
https://github.com/peterhinch/micropython-async/blob/master/TUTORIAL.md#0-introduction
https://github.com/peterhinch/micropython-async/blob/master/TUTORIAL.md#0-introduction
https://github.com/peterhinch/micropython-async/blob/master/TUTORIAL.md#0-introduction
https://github.com/peterhinch/micropython-async/blob/master/TUTORIAL.md#0-introduction
https://github.com/peterhinch/micropython-async/blob/master/TUTORIAL.md#0-introduction
https://github.com/peterhinch/micropython-async/blob/master/TUTORIAL.md#0-introduction
https://github.com/peterhinch/micropython-async/blob/master/TUTORIAL.md#0-introduction
https://github.com/peterhinch/micropython-async/blob/master/TUTORIAL.md#0-introduction
https://github.com/peterhinch/micropython-async/blob/master/TUTORIAL.md#0-introduction
https://github.com/peterhinch/micropython-async/blob/master/TUTORIAL.md#0-introduction
https://github.com/peterhinch/micropython-async/blob/master/TUTORIAL.md#0-introduction
https://github.com/peterhinch/micropython-async/blob/master/TUTORIAL.md#0-introduction

Managing Real-Time Tasks Chapter 2

[39]

The general idea behind asyncio is that a developer creates several coroutines that will
operate asynchronously with each other. Each coroutine is then called using a task from an
event loop that schedules the tasks. This makes the coroutines and tasks nearly
synonymous. The event loop will execute a task until it yields execution back to the event
loop or to another coroutine. The coroutine may block waiting for an I/O operation or it
may simply sleep if the coroutine wants to execute at a periodic interval. It's important to
note, however, that if a coroutine is meant to be periodic, there may be jitter in the period,
depending on the timing for the other tasks and when the event loop can schedule it to run
again.

The general behavior for how coroutines work can be seen in the following diagram, which
represents an overview of using coroutines with the asyncio library. This diagram is a
modified version of the one presented by Matt Trentini at Pycon AU in 2019 during his talk
on asyncio in MicroPython:

As shown in the preceding diagram, the Event Loop schedules a task to be executed that
has 100% of the CPU until it reaches a yield point. A yield point is a point in the coroutine
where a blocking operation (asynchronous operation) will occur and the coroutine is then
willing to give up the CPU until the operation is completed. At this point, the event loop
will then schedule other coroutines to run. When the asynchronous event occurs, a callback
is used to notify the Event Loop that the event has occurred. The Event Loop will then
mark the original coroutine as ready to run and will schedule it to resume when other
coroutines have yielded the CPU. At that point, the coroutine can resume operation, but as
we mentioned earlier, there could be some time that elapses between the receipt of the
callback and the coroutine resuming execution, and this is by no means deterministic.

Now, let's examine how we can use asyncio to rewrite our blinky LED application using
cooperative multitasking.

Managing Real-Time Tasks Chapter 2

[40]

A cooperative multitasking blinky LED example
The first step in creating a railroad blinky LED example is to import the asyncio library. In
MicroPython, there is not an asyncio library exactly, but a uasyncio library. To improve
portability, many developers will import uasyncio as if it were the asyncio library by
importing it at the top of their application, as follows:

import uasyncio as asyncio

Next, we can define our LEDs, just like we did in all our other examples, using the
following code:

LED_RED = 1
LED_GREEN = 2
LED_BLUE = 3
LED_YELLOW = 4

If you look back at our example of writing a thread-based application, you'll recall that our
task1 code looked as follows:

def task1():
 while True:
 pyb.LED(LED_BLUE).toggle()
 time.sleep_ms(150)

 def task2():
 while True:
 pyb.LED(LED_GREEN).toggle()
 time.sleep_ms(150)

This is important to review because creating a coroutine will follow a similar structure! In
fact, to tell the Python interpreter that our tasks are asynchronous coroutines, we need to
add the async keyword before each of our task definitions, as shown in the following code:

async def task1():
 while True:
 pyb.LED(LED_BLUE).toggle()
 time.sleep_ms(150)
async def task2():
 while True:
 pyb.LED(LED_GREEN).toggle()
 time.sleep_ms(150)

Managing Real-Time Tasks Chapter 2

[41]

The functions are now coroutines, but they are missing something very important: a yield
point! If you examine each of our tasks, you can tell that we really want our coroutine to
yield once we have toggled our LED and are going to wait 150 milliseconds. The problem
with these functions as they are currently written is that they are making a blocking call to
time.sleep_ms. We want to update this with a call to asyncio.sleep_ms and we want
to let the interpreter know that we want to relinquish the CPU at this point. In order to do
that, we are going to use the await keyword.

The await keyword, when reached by the coroutine, tells the event loop that it has reached
a point in its execution where it will be waiting for an event to occur and it is willing to give
up the CPU to another task. At this point, control is handed back to the event loop and the
event loop can decide what task should be executed next. Using this syntax, our task code
for the railroad blinky LED applications would be updated to the following:

async def task1():
 while True:
 pyb.LED(LED_BLUE).toggle()
 await asyncio.sleep_ms(150)
async def task2():
 while True:
 pyb.LED(LED_GREEN).toggle()
 await asyncio.sleep_ms(150)

For the most part, the general structure of our coroutine/task functions remains the same.
The difference is that we define the function as async and then use await where we expect
the asynchronous function call to be made.

At this point, we just initialize the LEDs using the following code:

pyb.LED(LED_BLUE).on()
pyb.LED(LED_GREEN).off()

Then, we create our event loop.

Creating the event loop for this application requires just four lines of code. The first line
will assign the asyncio event loop to a loop variable. The next two lines create tasks that
assign our coroutines to the event loop. Finally, we tell the event loop to run forever and
our coroutines to execute. These four lines of code look as follows:

loop = asyncio.get_event_loop()
loop.create_task(task1())
loop.create_task(task2())
loop.run_forever()

Managing Real-Time Tasks Chapter 2

[42]

As you can see, we can create any number of tasks and pass the desired coroutine to the
create_task method in order to get them into the event loop. At this point, you could run
this example and see that you have an efficiently running railroad blinky LED program that
uses cooperative multitasking.

Going further with asyncio
Unfortunately, there just isn't enough time to discuss all the cool capabilities that are
offered by asyncio in MicroPython applications. However, as we progress through this
book, we will use asyncio and its additional capabilities as we develop our various
projects. For those of you who want to dig deeper right now, I would highly recommend
checking out Peter Hinch's asyncio tutorial, which also covers how you can coordinate
tasks, use queues, and more, with asyncio. You can find the tutorial and some example
code at https:/​/ ​github. ​com/ ​peterhinch/ ​micropython- ​async/ ​blob/ ​master/ ​TUTORIAL.
md#0-​introduction.

Summary
In this chapter, we explored several different types of real-time scheduling techniques that
can be used with a MicroPython project. We found that there are many different techniques
that a MicroPython developer can leverage to schedule activities in their application. We
found that each of these techniques has its place and varies based on the level of complexity
a developer wants to include in their scheduler. For example, MicroPython threads can be
used, but they are not fully supported in every MicroPython port and should be considered
an in-development feature.

After looking at several techniques, we saw that the asyncio library may be the best choice
for developers looking to get started with MicroPython. Python developers are already
familiar with it and asyncio provides developers with cooperative scheduling capabilities
that can provide them with the ability to handle asynchronous events in an efficient, non-
blocking manner. This allows developers to get more out of their applications while
wasting fewer cycles.

In the next chapter, we will explore how we can write drivers for a simple application that
uses a push button to control the state of its RGB LEDs.

https://github.com/peterhinch/micropython-async/blob/master/TUTORIAL.md#0-introduction
https://github.com/peterhinch/micropython-async/blob/master/TUTORIAL.md#0-introduction
https://github.com/peterhinch/micropython-async/blob/master/TUTORIAL.md#0-introduction
https://github.com/peterhinch/micropython-async/blob/master/TUTORIAL.md#0-introduction
https://github.com/peterhinch/micropython-async/blob/master/TUTORIAL.md#0-introduction
https://github.com/peterhinch/micropython-async/blob/master/TUTORIAL.md#0-introduction
https://github.com/peterhinch/micropython-async/blob/master/TUTORIAL.md#0-introduction
https://github.com/peterhinch/micropython-async/blob/master/TUTORIAL.md#0-introduction
https://github.com/peterhinch/micropython-async/blob/master/TUTORIAL.md#0-introduction
https://github.com/peterhinch/micropython-async/blob/master/TUTORIAL.md#0-introduction
https://github.com/peterhinch/micropython-async/blob/master/TUTORIAL.md#0-introduction
https://github.com/peterhinch/micropython-async/blob/master/TUTORIAL.md#0-introduction
https://github.com/peterhinch/micropython-async/blob/master/TUTORIAL.md#0-introduction
https://github.com/peterhinch/micropython-async/blob/master/TUTORIAL.md#0-introduction
https://github.com/peterhinch/micropython-async/blob/master/TUTORIAL.md#0-introduction
https://github.com/peterhinch/micropython-async/blob/master/TUTORIAL.md#0-introduction
https://github.com/peterhinch/micropython-async/blob/master/TUTORIAL.md#0-introduction
https://github.com/peterhinch/micropython-async/blob/master/TUTORIAL.md#0-introduction
https://github.com/peterhinch/micropython-async/blob/master/TUTORIAL.md#0-introduction
https://github.com/peterhinch/micropython-async/blob/master/TUTORIAL.md#0-introduction
https://github.com/peterhinch/micropython-async/blob/master/TUTORIAL.md#0-introduction
https://github.com/peterhinch/micropython-async/blob/master/TUTORIAL.md#0-introduction

Managing Real-Time Tasks Chapter 2

[43]

Questions
What characteristics define a real-time embedded system?1.
What four scheduling algorithms are commonly used with MicroPython?2.
What best practices should a developer follow when using callbacks in3.
MicroPython?
What process should be followed to load new code onto a MicroPython board?4.
Why would a developer place5.
micropython.alloc_emergency_exception_buf(100) in their application?
What reasons might deter a developer from using the _thread library?6.
What keywords indicate that a function is being defined as a coroutine?7.

Further reading
Here is a list of references you can refer to:

https:/​/ ​www. ​smallsurething. ​com/​private- ​methods- ​and-​attributes- ​in-
python/​

https:/​/ ​hackernoon. ​com/ ​concurrent- ​programming- ​in- ​python- ​is- ​not- ​what-
you-​think- ​it- ​is- ​b6439c3f3e6a

https:/​/ ​realpython. ​com/ ​async- ​io- ​python/ ​

https:/​/ ​realpython. ​com/ ​async- ​io- ​python/ ​

https://www.smallsurething.com/private-methods-and-attributes-in-python/
https://www.smallsurething.com/private-methods-and-attributes-in-python/
https://www.smallsurething.com/private-methods-and-attributes-in-python/
https://www.smallsurething.com/private-methods-and-attributes-in-python/
https://www.smallsurething.com/private-methods-and-attributes-in-python/
https://www.smallsurething.com/private-methods-and-attributes-in-python/
https://www.smallsurething.com/private-methods-and-attributes-in-python/
https://www.smallsurething.com/private-methods-and-attributes-in-python/
https://www.smallsurething.com/private-methods-and-attributes-in-python/
https://www.smallsurething.com/private-methods-and-attributes-in-python/
https://www.smallsurething.com/private-methods-and-attributes-in-python/
https://www.smallsurething.com/private-methods-and-attributes-in-python/
https://www.smallsurething.com/private-methods-and-attributes-in-python/
https://www.smallsurething.com/private-methods-and-attributes-in-python/
https://www.smallsurething.com/private-methods-and-attributes-in-python/
https://www.smallsurething.com/private-methods-and-attributes-in-python/
https://www.smallsurething.com/private-methods-and-attributes-in-python/
https://www.smallsurething.com/private-methods-and-attributes-in-python/
https://www.smallsurething.com/private-methods-and-attributes-in-python/
https://www.smallsurething.com/private-methods-and-attributes-in-python/
https://www.smallsurething.com/private-methods-and-attributes-in-python/
https://hackernoon.com/concurrent-programming-in-python-is-not-what-you-think-it-is-b6439c3f3e6a
https://hackernoon.com/concurrent-programming-in-python-is-not-what-you-think-it-is-b6439c3f3e6a
https://hackernoon.com/concurrent-programming-in-python-is-not-what-you-think-it-is-b6439c3f3e6a
https://hackernoon.com/concurrent-programming-in-python-is-not-what-you-think-it-is-b6439c3f3e6a
https://hackernoon.com/concurrent-programming-in-python-is-not-what-you-think-it-is-b6439c3f3e6a
https://hackernoon.com/concurrent-programming-in-python-is-not-what-you-think-it-is-b6439c3f3e6a
https://hackernoon.com/concurrent-programming-in-python-is-not-what-you-think-it-is-b6439c3f3e6a
https://hackernoon.com/concurrent-programming-in-python-is-not-what-you-think-it-is-b6439c3f3e6a
https://hackernoon.com/concurrent-programming-in-python-is-not-what-you-think-it-is-b6439c3f3e6a
https://hackernoon.com/concurrent-programming-in-python-is-not-what-you-think-it-is-b6439c3f3e6a
https://hackernoon.com/concurrent-programming-in-python-is-not-what-you-think-it-is-b6439c3f3e6a
https://hackernoon.com/concurrent-programming-in-python-is-not-what-you-think-it-is-b6439c3f3e6a
https://hackernoon.com/concurrent-programming-in-python-is-not-what-you-think-it-is-b6439c3f3e6a
https://hackernoon.com/concurrent-programming-in-python-is-not-what-you-think-it-is-b6439c3f3e6a
https://hackernoon.com/concurrent-programming-in-python-is-not-what-you-think-it-is-b6439c3f3e6a
https://hackernoon.com/concurrent-programming-in-python-is-not-what-you-think-it-is-b6439c3f3e6a
https://hackernoon.com/concurrent-programming-in-python-is-not-what-you-think-it-is-b6439c3f3e6a
https://hackernoon.com/concurrent-programming-in-python-is-not-what-you-think-it-is-b6439c3f3e6a
https://hackernoon.com/concurrent-programming-in-python-is-not-what-you-think-it-is-b6439c3f3e6a
https://hackernoon.com/concurrent-programming-in-python-is-not-what-you-think-it-is-b6439c3f3e6a
https://hackernoon.com/concurrent-programming-in-python-is-not-what-you-think-it-is-b6439c3f3e6a
https://hackernoon.com/concurrent-programming-in-python-is-not-what-you-think-it-is-b6439c3f3e6a
https://hackernoon.com/concurrent-programming-in-python-is-not-what-you-think-it-is-b6439c3f3e6a
https://hackernoon.com/concurrent-programming-in-python-is-not-what-you-think-it-is-b6439c3f3e6a
https://hackernoon.com/concurrent-programming-in-python-is-not-what-you-think-it-is-b6439c3f3e6a
https://hackernoon.com/concurrent-programming-in-python-is-not-what-you-think-it-is-b6439c3f3e6a
https://hackernoon.com/concurrent-programming-in-python-is-not-what-you-think-it-is-b6439c3f3e6a
https://hackernoon.com/concurrent-programming-in-python-is-not-what-you-think-it-is-b6439c3f3e6a
https://hackernoon.com/concurrent-programming-in-python-is-not-what-you-think-it-is-b6439c3f3e6a
https://hackernoon.com/concurrent-programming-in-python-is-not-what-you-think-it-is-b6439c3f3e6a
https://realpython.com/async-io-python/
https://realpython.com/async-io-python/
https://realpython.com/async-io-python/
https://realpython.com/async-io-python/
https://realpython.com/async-io-python/
https://realpython.com/async-io-python/
https://realpython.com/async-io-python/
https://realpython.com/async-io-python/
https://realpython.com/async-io-python/
https://realpython.com/async-io-python/
https://realpython.com/async-io-python/
https://realpython.com/async-io-python/
https://realpython.com/async-io-python/
https://realpython.com/async-io-python/
https://realpython.com/async-io-python/
https://realpython.com/async-io-python/
https://realpython.com/async-io-python/
https://realpython.com/async-io-python/
https://realpython.com/async-io-python/
https://realpython.com/async-io-python/
https://realpython.com/async-io-python/
https://realpython.com/async-io-python/
https://realpython.com/async-io-python/
https://realpython.com/async-io-python/
https://realpython.com/async-io-python/
https://realpython.com/async-io-python/
https://realpython.com/async-io-python/
https://realpython.com/async-io-python/

3
Writing a MicroPython Driver for

an I/O Expander
The ability to design and implement a driver is an important skill in embedded software
development. Whether the driver is for an internal peripheral or for external sensors and
input/output (I/O) capabilities, developers need to design and construct drivers that are
flexible and scalable.

In this chapter, we will explore how to properly design drivers by implementing a project
that uses an external I/O chip to interface with an RGB LED pushbutton. We will design a
MicroPython driver to perform I/O using the external chip and to drive the RGB LEDs
using the pyboard's Pulse Width Modulation (PWM) channels.

The following topics will be covered in this chapter:

The RGB pushbutton I/O expander project requirements
The hardware and software architecture design
Creating the class outline
Project construction
Testing and verification

Technical requirements
The example code used in this chapter can be found at the following GitHub
location: https:/​/​github. ​com/ ​PacktPublishing/ ​MicroPython- ​Projects/ ​tree/ ​master/
Chapter03

https://github.com/PacktPublishing/MicroPython-Projects/tree/master/Chapter03
https://github.com/PacktPublishing/MicroPython-Projects/tree/master/Chapter03
https://github.com/PacktPublishing/MicroPython-Projects/tree/master/Chapter03
https://github.com/PacktPublishing/MicroPython-Projects/tree/master/Chapter03
https://github.com/PacktPublishing/MicroPython-Projects/tree/master/Chapter03
https://github.com/PacktPublishing/MicroPython-Projects/tree/master/Chapter03
https://github.com/PacktPublishing/MicroPython-Projects/tree/master/Chapter03
https://github.com/PacktPublishing/MicroPython-Projects/tree/master/Chapter03
https://github.com/PacktPublishing/MicroPython-Projects/tree/master/Chapter03
https://github.com/PacktPublishing/MicroPython-Projects/tree/master/Chapter03
https://github.com/PacktPublishing/MicroPython-Projects/tree/master/Chapter03
https://github.com/PacktPublishing/MicroPython-Projects/tree/master/Chapter03
https://github.com/PacktPublishing/MicroPython-Projects/tree/master/Chapter03
https://github.com/PacktPublishing/MicroPython-Projects/tree/master/Chapter03
https://github.com/PacktPublishing/MicroPython-Projects/tree/master/Chapter03
https://github.com/PacktPublishing/MicroPython-Projects/tree/master/Chapter03
https://github.com/PacktPublishing/MicroPython-Projects/tree/master/Chapter03
https://github.com/PacktPublishing/MicroPython-Projects/tree/master/Chapter03

Writing a MicroPython Driver for an I/O Expander Chapter 3

[45]

To be able to run the examples and build your own scheduler, you will need to have the
following hardware and software:

Pyboard revision 1.0 or 1.1
A RobotDyn I2C 8-bit PCA8574 I/O expander module, or equivalent
An Adafruit RGB pushbutton PN: 3423, or equivalent
A breadboard
6" jumpers
A Terminal application (PuTTy, RealTerm, Terminal, or one of many others)
A text editor, such as PyCharm

The RGB pushbutton I/O expander project
requirements
The primary goal for this project is to gain experience with developing a driver for external
chips using MicroPython. In order to gain this experience, we will select hardware that
allows us to expand the I/O capabilities of the pyboard and connect an RGB pushbutton to
the expanded I/O. Before we jump into selecting components or writing any code, we first
need to define the requirements for this project. We have two different sets of requirements
that need to be considered: hardware and software. Let's look at each set of requirements
individually.

Hardware requirements
The hardware requirements for this project are relatively loose. As we saw in the last
chapter, we can list out our requirements and, within the requirements, define any
constraints that we want. In general, we want our requirements to be general enough that
engineers can make engineering decisions on what they use. We don't want to tie their
hands completely by saying, for example, that they must use a specific pushbutton or
microcontroller (even though we may do this for our own purposes in this book). They
should be able to review the requirements and then perform a trade study on which
technologies and hardware help them to best meet their requirements.

Writing a MicroPython Driver for an I/O Expander Chapter 3

[46]

For our pushbutton project, we can define a few simple requirements:

The hardware needs to be based on a microcontroller that supports MicroPython.
A pushbutton needs to be used to accept user input.
The pushbutton needs to be capable of displaying a multitude of colors through
RGB LEDs.
The hardware needs to support the pushbutton through an external I/O expander
chip in order to reserve I/O on the MicroPython board for future expansion.

As you can see from these four requirements, you can select nearly any MicroPython-
capable microcontroller, your own I/O expansion chips, and even your own RGB
pushbutton! The hardware requirements for this project are quite relaxed, which is not
always the case in every project.

Software requirements
The software requirements for this project are also straightforward:

The RGB LED will display, on startup, the color red in a pattern that starts with a
0% duty cycle and increases by 2.5% every 25 milliseconds. When the duty cycle
reaches 100%, the intensity will decrease by 2.5% every 25 milliseconds and then
the cycle will repeat.
Pressing the pushbutton will change the color based on the number of times it
has been pressed:

The first press: Green
The second press: Blue
The third press: White
The fourth press: Red
The fifth press: Repeat pattern

The software needs to be written so that it contains two scalable and reusable
drivers:

An I/O expander driver
An RGB pushbutton driver

Again, these requirements demonstrate the features that need to be implemented and we
leave the implementation details up to the developer's best judgment.

Writing a MicroPython Driver for an I/O Expander Chapter 3

[47]

The hardware and software architecture
design
At this stage in the project, we've discovered the requirements for the project. We are now
going to develop the hardware and software architecture. The best way to picture an
architecture is through a map that is general enough to provide directions to where we
need to head but does not provide enough details to restrict how we get there. The
architecture should be flexible so that we can deal with any changing requirements on the
fly.

For our purposes, we will use this section to first explore the high-level architecture and
then develop the detailed design that we can use to construct the project in the next section.

The hardware architecture
When it comes to the hardware architecture, the best way to understand the main pieces
and how they connect and interact with each other is to create a hardware block diagram.
The block diagram can be generated using several different methods. The first, and my
preferred method, is to use the schematic capture tool. These tools often have high-level
organizational elements that allow a schematic page to be represented as a block.

Interconnects can be created between the blocks, which then shows how the blocks interact
with each other and also provides an easy way to navigate the schematic project. Altium is
a tool that has such features but, unfortunately, it's a professional development tool and
probably outside the price point for most individuals and readers of this book. Some
alternatives that you might consider include Eagle or Altium CircuitMaker.

Another method that can be used is to create the block diagram in a program such as
Microsoft PowerPoint. While this method is not as functional as creating the architecture in
a schematic capture program, it does produce a pretty picture that is easier to look at,
analyze, distribute, and use in presentations and books. We are going to use this method in
this book.

The architecture for our RGB pushbutton and I/O expander project is quite simple and
contains only four elements:

The pushbutton
RGB LEDs
An I/O expander
A MicroPython board

Writing a MicroPython Driver for an I/O Expander Chapter 3

[48]

When developing the architecture, we want to place these components in our diagram and
then identify what the inputs and outputs for each block look like. The result should be an
architectural diagram similar to the one shown here:

Notice that, in our diagram, we aren't listing out specific parts yet. Also, we are
constraining which interfaces are being used and showing the flow of data through the
system using arrows.

Detailed hardware design
Now that we understand the high-level hardware architecture, we can start to dive into the
details. The first step is to perform a trade study and select the different components we are
going to use in our design. Since this project is just about an RGB pushbutton and an I/O
expander, we can start by specifying that we are going to use the MicroPython hardware
we have around the lab and the pyboard.

Next, we need to examine the I/O expanders that we can use with our pushbutton. If we
look back at our requirements, there really isn't too much there to constrain us, so we will
use the best practices. We will select an I/O expander that uses an I2C bus in order to limit
the number of pins used and to provide flexibility to expand the design later. We also want
to find an I2C device that is easy to use. If you do a search for I/O expanders on your
favorite supplier website, such as Digi-Key, Mouser, SparkFun, or Adafruit, you might
come across the PCA8574. The PCA8574 is an 8-bit I/O expander that, by default, sets the
eight I/O lines to inputs. It has no internal registers, which will dramatically simplify the
software implementation. We could use a standard development board for the PCA8574 or
buy an adapter board, but I found that the RobotDyn PCA8574AD I2C 8-bit I/O expander
module had a great footprint and cost for the expansion I/O module.

Writing a MicroPython Driver for an I/O Expander Chapter 3

[49]

Finally, we need to select our RGB pushbutton. Again, we don't have any major
requirements for the pushbutton. It doesn't have to work with automotive voltages or
withstand outside environments. You can select whatever pushbutton meets your own
interests. There are two pushbuttons that I have evaluated and found to be interesting. Let's
examine them in a little more detail.

Selecting a pushbutton
The first is the Schurter Inc. 3-101-399 RGB pushbutton switch, which is a single-pull,
single-throw capacitive switch. This switch comes with all the leads already attached, so
they simply need to be connected to the pyboard. Since the switch does use capacitance,
there is no physical movement on the switch. This makes it interesting in an instance where
a button is pressed repeatedly and there would usually be concern about wearing out the
switch. On the other hand, if it is going to be used in environments where a gloved hand
would be used, the capacitive technology would not work.

The second switch is the Adafruit Rugged Metal pushbutton (product ID 3423). This switch
supports a maximum voltage of 6 volts. The switch also does not come with the leads
preinstalled, so there is a little bit of soldering that needs to be done in order to get the
switch hooked up to the development board. The switch is also a mechanical switch but is
designed for industrial use and, since it does not need extra electronics for capacitance
sensing, it is nearly half the cost of the Schurter button.

While both switches look like they would work perfectly for our application, it's important
to really dig into the component datasheets. I discovered that the Schurter button provides
a constant current source to its RGB LEDs. This means that if we try to PWM the LEDs, the
onboard electronics will actually average out the signal and provide a steady brightness
level for the LEDs. This means that we will not be able to meet our requirement for
dimming the LEDs. Therefore, the Schurter pushbutton, while interesting, does not meet
our requirements.

The I/O expander schematic
At this point, we have all the information that we need to develop a detailed schematic
diagram for our project, as follows:

Writing a MicroPython Driver for an I/O Expander Chapter 3

[50]

This design is fairly straightforward. First, the pyboard is supplied 5 volts through the USB
or VIN pin. The 5-volt power rail is used to power the LEDs and the RobotDyn PCA8574.
The pyboard onboard regulator also converts this rail into a 3.3-volt power rail that is used
as the pushbutton power supply.

Next, the negative side of the LEDs, the cathode, is connected to the X1, X2, and X3 pins.
These pins are associated with an internal timer that allows us to generate a PWM signal on
them. When these pins provide a 100% duty cycle, the LEDs will turn off. Providing a 0%
duty cycle will turn them on. While this seems backward, it's the result of the hardware
components. To switch this around in the hardware, a transistor can be placed between the
LED and the pyboard pin, which inverts the signal. This would also allow more current to
flow through the LEDs, which would make them brighter, but would also potentially
require a current limiting resistor in series with the diode. In order to minimize the
hardware, we will resolve this later in the software.

Finally, we have the RobotDyn PCA8574. The PCA8574 is connected to the pyboard
through X9 and X10 with the I2C slave address set to its default value of 0x38 (56 decimal).
If there were other I2C devices onboard, we could adjust the address as needed. When the
pushbutton is released and not pressed, it provides 3.3 volts to the PCA8574 input channel
0, which is read as a high state. We used a 220-ohm resistor, which could be scaled to 1 or
10K to minimize the leakage current, to pull the voltage to ground and show that it is in a
pressed state.

Writing a MicroPython Driver for an I/O Expander Chapter 3

[51]

The software architecture
In order to develop any piece of software, a developer usually requires the use of at least
three different diagrams. The full list of diagrams can be found in the UML standard, which
is referenced at the end of this chapter in the Further reading section. To create our
pushbutton application, we require three diagrams:

An application flowchart
A state diagram
A class diagram (for our API and driver design)

Let's start by examining the flowchart, which can be seen here:

The best way to proceed with any design is to keep things simple. For our RGB pushbutton
application, all we need to do is read the switch and update the PWM state periodically.
The switch characteristics are fine to debounce at 25 milliseconds and updating the PWM
duty cycle at this rate is below the human perception threshold, so it will have a smooth
appearance as it changes. For these reasons, we are just going to use a simple round-robin
scheduler to accomplish our task.

As seen in the preceding diagram, we can start by initializing the application and then
move into the main program loop. This loop reads the button and then processes its state. If
the button has just been released, it will increment the system state, which is shown in a
state diagram that we will discuss shortly. After processing the button, a new PWM value is
generated and sent to the LEDs.

Writing a MicroPython Driver for an I/O Expander Chapter 3

[52]

Now, at this point, you are probably starting to realize that this flow chart is demonstrating
the high-level behavior of the application. As the designer, we can decide how deep into
the details we want to get. We can say that this is good enough and move on to other
diagrams that we find useful or we could literally dive into every path and branch we want
the software to take. For this project, we will keep the diagrams at a high level and allow
our implementation to fill in the details.

A moment ago, we mentioned that we need more than one diagram to fully understand the
software that we are designing. The second diagram that is useful for developers is
the state diagram. This allows us to view the application as a series of states that occur and
the events that can transition from one state to the next. The following diagram shows the
different states that the system will generate on the RGB LEDs based on the number of
times that the button has been pressed:

As seen in the state diagram, the application will start with the red LED on. Pressing and
releasing the button once will result in the red LED turning off and the blue LED turning
on. Each press of the button will change the color state up until the states repeat with red. A
variable is used to track how many times the button has been pressed, which then changes
the color that is displayed.

Writing a MicroPython Driver for an I/O Expander Chapter 3

[53]

The final diagram that will be useful for us to create in order to understand the software
and its organization is the class diagram. We discussed in the previous chapter how we can
use the class diagram to not only design our object-oriented structure but also to define our
APIs. The design of our RGB pushbutton application can be seen here:

The way we are going to design our interface and drivers is by providing a single class, the
RGB_Pushbutton class, which is a composition of RGB_Generator and
a RobotDynPCA8574 class. RobotDynPCA8574 will handle the I2C communication with the
I/O expander and RGB_Generator will handle the PWM generation for the LEDs. When
composed together, there are only two functions that we need to concern ourselves with.

Firstly, RGB_Set takes three duty cycle values between 0 and 100 that represent the red,
green, and blue LEDs. During instantiation, the class object requires the pinlist be provided
for which pins the LEDs are connected to, the timer that will be used to generate the PWM
along with its frequency, and the PWM channels that will be used. This provides
everything required to generate the PWM for each LED.

Secondly, the read method will be used to read the state of all eight channels on the I/O
expander. This provides a quick and easy way to get the overall status of the channels by
the most efficient means necessary.

Armed with our hardware and software architecture designs, we are now ready to start
building the project and implementing our software.

Writing a MicroPython Driver for an I/O Expander Chapter 3

[54]

Project construction
Now that the design for the hardware and the software has been thought through, we are
ready to start building. There are different ways that we can go about building the project.

First, we could assemble one piece of hardware at a time and develop the software for that
piece and, once it's working, add additional pieces. This is a great approach and one that I
often use on more complex projects because it allows us to focus on just a single feature.
Each feature can be developed and tested, with integration coming later.

Second, we can fully assemble the hardware and then develop the software. This approach
is often used for smaller projects that may not have a bunch of moving pieces. For this
project, we will use the second approach since we only have the external I/O expander and
the pushbutton.

Building the hardware
For this project, we are going to prototype out the hardware using a breadboard. This will
allow us to easily reconfigure and adjust the hardware on the fly without having to take out
a soldering iron to make adjustments. No matter how simple or complex a project is, I've
always found that breadboarding the circuits first is a great way to improve the odds that
the first spin of a printed circuit board (PCB) will work as expected.

In order to assemble this project, I recommend gathering all of the components listed in the
Technical requirements section of this chapter. It would also be a good idea to keep the
flowchart (of different states that the system will generate on the RGB LEDs based on the
number of times that the button has been pressed) readily available. As seen previously in
The I/O expander schematic section, the schematic diagram tells us where our connections
need to be made. With a breadboard and jumpers, it's important to realize that the
prototype is going to be messy! When I am professionally developing hardware, I custom-
cut every jumper and run the wire right against the breadboard so that the connections can
be easily traced and so that the breadboard has a professional polish to it.

Writing a MicroPython Driver for an I/O Expander Chapter 3

[55]

As you can see in the following photograph, the fully assembled prototype using pre-
manufactured jumpers adds some chaos to the look, but it's still functional and gets the job
done:

At this point, you can go ahead and wire up your own setup. Be careful to make sure that
you don't accidentally connect anything that is 5V to anything that is a 3.3V input! If you
do, it could potentially damage the microcontroller pin. Once you have assembled the
board, we are ready to start implementing the software. We will start by developing a
driver for the I/O expander.

I/O expander driver construction
For PCA8574, we are going to create a separate file, named PCA8574.py, that includes all
the driver capabilities and functions for the I/O expander. We are going to use the PCA8574
class specification from the design of our RGB pushbutton application to guide our driver
construction.

The first step is to create our class definition and constructor. The class will be named
PCA8574_IO so that we have a little description as to what that chip actually is. The class
initialization requires two pieces of information: an object that represents the initialized I2C
bus and the slave address of PCA8574. This class can be instantiated multiple times for
different addresses if we have more than one device connected to our application. The class
definition and initialization is as follows:

class Pca8574_Io:

 def __init__(self, i2c_object, slave_address):
 assert slave_address < 256, "Slave Address >= 256!"

Writing a MicroPython Driver for an I/O Expander Chapter 3

[56]

 self.Address = slave_address
 self.I2C = i2c_object

Notice that I am also using assert to check that the SlaveAddress parameter is within
the design address ranges of 0-255. Assertions are good to include during your software
development phase. An assertion is basically a sanity check that, at a specific point in a
program, checks that the conditions are as you expect them to be. If they are not, then there
is a bug in the application. Assertions are normally turned off prior to the final validation
testing for production.

Once the class is defined, we need to implement our two methods: read and write. These
methods allow our application to interact directly with the PCA8574 I/O expander chip. In
the implementation, we will wrap our attempts to write and read from the I2C bus in a
try/except block. The try/except block is the equivalent of the C++ try/catch
statement. Basically, we are telling the code that we are going to try something and we
want to watch for any errors that occur and, if they do occur, that we want to respond
accordingly. In our code, we are going to use generic except cases that catch any error and
just print a message that an error occurred. In general, Python coding standards don't like
us to have all-encompassing except cases, but we are going to do it for now because
handling errors will be left to you to investigate on your own.

The implementation of the read method is as follows:

def read(self):
 try:
 return ord(self.I2C.recv(1, self.Address))
 except:
 print("Unable to retrieve I/O status")
 return 0xFF

There are several interesting points that you may notice about this code. First, we are using
the MicroPython I2C library recv method to receive data from the I2C bus. The 1 numeral
is telling the driver that we want to receive one byte of data from the bus at
the self.Address address. The ord function is used to convert the byte that is received
into an ordinal number.

The implementation of the write function is as follows:

def write(self, state):
 assert state < 256, "State >= 256"
 try:
 self.I2C.send(state, self.Address)
 except:
 print("Unable to set I/O state")

Writing a MicroPython Driver for an I/O Expander Chapter 3

[57]

Again, we are using an assertion here to test that the parameters passed from the higher-
level application are meeting our requirements for this function: that the state is to be less
than 256.

Now that we have implemented our I/O expander driver, let's construct the driver for
driving the LEDs.

RGB driver construction
One of the goals of this project is to drive the RGB LEDs that are located on our pushbutton.
In order to do so, we really want to have a class that can drive three different LEDs on
different PWMs in a flexible manner. In order to do this, we are going to construct an
RGB_Generator class that meets our API requirements from the design of our RGB
pushbutton application.

RGB_Generator is interesting in that it requires a fair number of parameters in order to get
the PWM set up:

First, we are going to pass this class constructor, PinList, which contains the1.
three pins that will be used to drive the LEDs.
Second, we are going to pass the Timer modules, which will be used to generate2.
the timing for the PWM signals.
Third, we pass in the frequencies that we want the PWM to be generated at.3.
Finally, we have a list of channels that correspond to the timer channel.4.

These steps sound complicated but, as you can see in the following snippet, the code is
actually pretty simple:

class RGBGenerator():
 def __init__(self, pinlist, timer, frequency, channels):
 self.TimerR = pyb.Timer(timer[0], freq=frequency[0])
 self.TimerG = pyb.Timer(timer[1], freq=frequency[1])
 self.TimerB = pyb.Timer(timer[2], freq=frequency[2])
 self.R_Ch = self.TimerR.channel(channels[0],
 pyb.Timer.PWM, pin=pinlist[0])
 self.G_Ch = self.TimerG.channel(channels[1],
 pyb.Timer.PWM, pin=pinlist[1])
 self.B_Ch = self.TimerB.channel(channels[2],
 pyb.Timer.PWM, pin=pinlist[2])

 def Write(self, red, green, blue):
 self.R_Ch.pulse_width_percent(red)

Writing a MicroPython Driver for an I/O Expander Chapter 3

[58]

 self.G_Ch.pulse_width_percent(green)
 self.B_Ch.pulse_width_percent(blue)

The constructor for the class starts by setting up the timers that will be used for each of the
LEDs. Once the timer is set up, the channel for that timer is configured to be a PWM and
the pin that the signal will be generated on is provided to the Timer API. It's important to
note that the easiest way to use this class is to select the pins and timers that are all grouped
together.

Once an RGB_Generator object has been created, we can use the Write function to set the
PWM for each LED. In the design, I've decided to pass each PWM in as a separate
parameter, but we could just as easily pass in a list of duty cycles as well. It's really up to
the implementer to decide how they want to do this. I chose this approach because when
I'm reading code, I can glance at the function call and see each duty cycle without having to
track down a list and then it. I thought, from a code-readability viewpoint, it would be
easier.

RGB pushbutton driver construction
The RGB pushbutton driver is going to be nothing more than a class that is a composition
of RGB_Generator and the PCA8574_IO class that we have already created. This means
that we are not going to add any additional methods to the class. Instead, we are going to
use the constructor to initialize an RGB_Generator object and a PCA8574_IO object. The
application code will then pass in the required parameters to initialize these objects. The
implementation of this class can be seen in the following code:

from PCA8574 import PCA8574_IO
from LED_RGB import RGB_Generator

class PushButtonRGB:

 # Initializer / Instance Attributes
 def __init__(self, pin ist, timer, frequency, channels,
 i2cobject, slaveaddress):
 self.RGB = RGB_Generator(pinlist, timer, frequency, channels)
 self.DeviceIO = PCA8574_IO(i2cobject, slaveaddress)

As you can see from the preceding code, the constructor instantiates the class objects and
then allows the application to interact with both classes through the PushButton object.

Now that we have created our driver objects, we are ready to test the drivers and write our
application code.

Writing a MicroPython Driver for an I/O Expander Chapter 3

[59]

Testing and validation
At this stage in the project, we have created the basic drivers that will control all the low-
level hardware devices in our project. We have drivers that allow us to generate PWM
signals to drive RGB LEDs and a driver to access the I/O expander chip to write and read its
status. At this point, we would normally develop a test harness that could fully test the
drivers. This would allow us to discover issues we might have with functionality or
boundary conditions. Since developing a test harness is an entire project in itself, we will
save the test harness discussion for the next chapter. For now, we will jump ahead and
create a test application that meets our project requirements and develop a few simple test
cases to make sure that the high-level system meets those requirements.

Developing the test cases
Before we develop our application, we should develop test cases that link our project
requirements to behaviors we expect to see at the system level once the application is
completed. This can be done at any stage in the development process and will typically be
done along with the requirements definition. However, engineering processes can vary
dramatically from one team to the next based on the preferred development methods. In
many cases, teams will use a sophisticated electronic method for tracing their requirements
to test cases at the system level but, for our purposes, we are going to use a simple test case
format that can be developed in Microsoft Word.

In any test case, there is important information that we want to make sure we capture. This
includes the following:

The test case number
The test case objective (why are we doing the test?)
The conditions that need to occur before the test is performed
The input that needs to be applied to the system during testing (push a button)
The expected results (what should we see happen?)
Who did the testing?
When was the test performed?
The software version number that the test is to be performed on

Armed with this information, we can not only perform the test but also, later on, go back
and understand the conditions that were used to test the system. If a test case fails, we can
easily go back and create the failed condition to remove any defects as well.

Writing a MicroPython Driver for an I/O Expander Chapter 3

[60]

The template that I use for simple projects is one that I first started to use when I was an
entry-level engineer. I really don't remember anymore if this format came from a book, a
website, or if I put it together after reading the IEEE Swebok for the first time. Either way,
I've found that reading through the requirements and using the following template can be
very helpful:

Let's review the software requirements and create a few test cases to test the system
behavior. Keep in mind that these are system-level tests and are not designed to be driver-
functional or unit tests. We will look at how that can be done in the next chapter. (Keep in
mind that you'll notice it looks like these test cases have already been performed. They
have, in fact, and I am showing the result with the test case development.)

Writing a MicroPython Driver for an I/O Expander Chapter 3

[61]

The first software requirement that we have says that the LED that is lit at startup should
vary in intensity from a 0 to 100% duty cycle. We can create a first test case for this
requirement as in the following screenshot:

Next, we want to create a test case for verifying that when we press the button, the LED
color state changes as expected. This requirement actually produces two different test cases.
First, we need a test case to verify that the system starts up with the red LED lit. Second, we
need a test case that shows that when we press the button the correct color states are
displayed. These test cases can be seen in the following two screenshots:

Writing a MicroPython Driver for an I/O Expander Chapter 3

[62]

Writing a MicroPython Driver for an I/O Expander Chapter 3

[63]

We could certainly develop dozens of test cases to ensure that our application is perfect no
matter what a user does or how they use our driver functions. Sometimes, however, you
need to evaluate when the software tests and quality are good enough. Otherwise, you can
engineer yourself out of business or, if it's a DIY project, you may never finish it. (Keep in
mind that I focus on highly reliable and robust real-time systems, so defining good
enough can be quite challenging.)

Writing the application
Now that we have the system test cases, our low-level drivers, and the hardware ready, it's
time to develop the application. We are going to develop the application in five steps:

Identify the imports we need.1.
Define the constants.2.
Define the application variables.3.
Initialize the application.4.
Create the main loop.5.

Let's look at these steps in more detail:

First, we want to look at the imports that our application is going to need. By1.
default, we always include the micropython and pyb libraries. Next, we need to
review the classes that we are going to use. We need the PushButton_RGB class,
which also has dependencies on Pin, Timer, and I2C. The complete list of
imports can be seen in the following snippet:

import micropython # For emergency exception
 # buffer
import pyb # For uPython MCU features
from pyb import Pin # For pin names
from pyb import Timer # For PWM generation
from pyb import I2C # For I2C functions
from button_rgb import PushButton_RGB # For PushButton control
import sys # For exit function

Next, we want to create useful named constants that will be needed in the2.
application so that we don't end up with magic numbers scattered throughout
the application. A magic number is a numerical value that has special meaning
but whose value you don't know without a useful comment describing why that
value was chosen. It's best practice not to use magic numbers but to instead
create a named variable or constant that describes what that value means.

Writing a MicroPython Driver for an I/O Expander Chapter 3

[64]

For our application, we need to define constants for the LED PWM, which is the3.
rate at which the PWM changes on each cycle and the direction the duty cycle is
going (up or down). Now, I say constants here, but in Python, there is no way to
create a true constant. You just define a variable, assign it a value, and then you
don't change it. The constants that we need in our application related to driving
the LEDs are as follows:

Defines the PWM value for LED FULL On
LED_FULL_ON = 0

Defines the PWM value for LED Full Off
LED_FULL_OFF = 100

Defines the Duty Cycle increment rate
DUTY_CYCLE_CHANGE_RATE = 2.5

Defines if the LED is brightening
PWM_COUNT_DOWN = True

Defines if the LED is dimming
PWM_COUNT_UP = False

In addition to constants for driving the LEDs, we also need constants for4.
managing the pushbutton and the PCA8574. These constants will include the I2C
address, the maximum state for the button press counter, and the value that is
read for a button that is pressed and not pressed. These constant definitions can
be found by reading the datasheet and are implemented as follows:

Defines PCA7485 don't pressed state
BUTTON_NOT_PRESSED = 0xFF

Defines PCA7485 button pressed state
BUTTON_PRESSED = 0xFE

Defines the maximum state supported by the pushbutton application
MAX_SYSTEM_STATE = 4

Defines the address the I/O expander is on
PCA8574_ADDRESS = 0x38

Writing a MicroPython Driver for an I/O Expander Chapter 3

[65]

With the constants defined, the next step is to create the variables that will be5.
used to control the application. We need to create variables that will track the
PWM duty cycle and define the pins and timer channels used to generate the
PWM. These variables can be found in the following code:

List object that contains the duty cycle for RGB
Valid values are 0 - 100. Due to the hardware, the
duty cycle is reversed! 0% provides a ground which is
full on to the LED's. 100% is full voltage and LED is off.
DutyCycle = 100

Defines the pins used to drive the RGB duty cycle
PinList = [Pin('X1'), Pin('X2'), Pin('X3')]

Defines the timers used to generate the PWM
TimerList = [2,2,2]

Defines the timer frequency in Hz for the RGB
FrequencyList = [1000, 1000, 1000]

Specifies the timer channels used to drive the RGB LEDs
TimerChList = [1, 2, 3]

The preceding code may seem a little strange to a Python developer. It isn't very
common for a Python developer to create lists of parameters and then pass them
into functions to initialize objects. While this is done very rarely, I'm doing it this
way for electrical engineers and traditional developers so that this code will, for
now, look familiar to them. As we progress through this book, we will develop to
using more Pythonic-appropriate styles.

We also need to define the variables to track the system state, the direction the6.
duty cycle should be moving, and the last state of the button. These variables are
defined in the following code:

Holds the button state based on how many times its been
pressed
System_State = 0

If 0, the duty cycle is counting down.
If 1, the duty cycle is counting up.
PwmDirection = 0

Holds the button state from the last time it was read.
This is used to determine if the button has been released.
ButtonLastState = False

Writing a MicroPython Driver for an I/O Expander Chapter 3

[66]

Once the variables are defined, the next step is to initialize the application. There7.
are several things we need to do in this step. First, we need to initialize the I2C
bus and then scan the bus for slave devices. I like to store the slaves available in a
list and then make sure that devices are present before proceeding. If there are no
devices present, then an error should be supplied to the user and the application
can be exited. This can be seen here:

try:
 i2c = I2C(I2C_BUS1, I2C.MASTER, baudrate=100000)
 I2C_List = i2c.scan()

 if I2C_List:
 print("I2C Slaves Present =", I2C_List)
 else:
 print("There are no I2C devices present!
 Exiting application.")
 sys.exit(0)
except Exception as e:
 sys.print_exception(e)

Next, we can define the object that will be used to interact with the pushbutton.8.
In this case, we are going to instantiate the PushButton_RGB class with an
RGB_Button object, as shown here:

try:
 RGB_Button = PushButton_RGB(PinList, TimerList,
 FrequencyList, TimerChList, i2c, PCA8574_ADDRESS)
except Exception as e:
 sys.print_exception(e)

When we instantiate the object, we need to provide all the parameters necessary
to initialize the class, such as the following:

PinList

TimerList

FrequencyList

TimerChList

The i2c object
The slave address

Writing a MicroPython Driver for an I/O Expander Chapter 3

[67]

The last piece of the initialization is to write the RGB states to a known initial9.
condition. In this case, we are turning on the red LED and turning off the green
and blue LEDs. Just as before, we want to be able to catch any errors so we will
wrap this in a try/except clause. We have already checked to make sure there is
a slave device so there is no longer a reason to check whether there are slave
devices present. The code is as follows:

try:
 # Make sure that the I2C device is present before proceeding.
 RGB_Button.RGB.Write(LED_FULL_OFF, LED_FULL_OFF, LED_FULL_OFF)
except Exception as e:
 sys.print_exception(e)

Finally, we can create the main application loop. The main application loop needs to
implement a code that does the following:

Reads the pushbutton
Processes the press
Calculates the PWM
Writes the LEDs

Let's now implement the code to do the preceding actions:

We will start by reading the pushbutton. To read the pushbutton, we need to1.
utilize the read function from the PCA8574 class. This is done through the
DeviceIO object, which is part of the RGB_Button object. We can do this as in
the following snippet:

Make sure we have an I2C device to talk to, if so, try to read
from it
try:
 PushButton = RGB_Button.DeviceIO.Read()
except Exception as e:
 sys.print_exception(e)
 print("Exiting application ...")
 sys.exit(0)

Writing a MicroPython Driver for an I/O Expander Chapter 3

[68]

After the button has been read, we need to determine whether the button has2.
been pressed or not. If the last button read was pressed and the button now reads
not pressed, we know that the button has been released. If it has been released, we
want to increment the system state and then clear out the PWM duty cycle so that
the cycle starts from the beginning. We also want to make sure that if the system
state has reached a value equal to or greater than 5, we reset the value back to 0.
The code to perform all of this button processing can be seen in the following
snippet:

Check the Pushbutton to see if it has been pressed and released.
When released, move to the next system state.
if PushButton == BUTTON_NOT_PRESSED:
 if ButtonLastState == True:
 ButtonLastState = False
 DutyCycle = LED_FULL_OFF
 System_State += 1

 if System_State >= MAX_SYSTEM_STATE:
 System_State = 0
elif PushButton == BUTTON_PRESSED:
 ButtonLastState = True

After the button has been processed and the system state has been determined,3.
we need to calculate the next PWM duty cycle value. This is just a matter of
incrementing or decrementing the state based on the value of PwmDirection
and constraining its value between 0 and 100:

The example application will toggle the LED from full on to
full off and then back again.
if PwmDirection == PWM_COUNT_DOWN:
 DutyCycle -= DUTY_CYCLE_CHANGE_RATE

 if DutyCycle <= LED_FULL_ON:
 PwmDirection = PWM_COUNT_UP
else:
 DutyCycle += DUTY_CYCLE_CHANGE_RATE

 if DutyCycle >= LED_FULL_OFF:
 PwmDirection = PWM_COUNT_DOWN

Finally, we need to update the LEDs with the calculated duty cycle based on the4.
state that the system is in. This involves nothing more than reading the system
state and then calling the Write method with the appropriate duty cycle values:

This is a simple "State Machine" that will run different
colors and patterns based on how many times the button

Writing a MicroPython Driver for an I/O Expander Chapter 3

[69]

has been pressed
try:
 if System_State == 0:
 RGB_Button.RGB.Write(DutyCycle, LED_FULL_OFF, LED_FULL_OFF)
 elif System_State == 1:
 RGB_Button.RGB.Write(LED_FULL_OFF, DutyCycle, LED_FULL_OFF)
 elif System_State == 2:
 RGB_Button.RGB.Write(LED_FULL_OFF, LED_FULL_OFF, DutyCycle)
 elif System_State == 3:
 RGB_Button.RGB.Write(DutyCycle, DutyCycle, DutyCycle)
except Exception as e:
 sys.print_exception(e)

That's it! At this point, you can run the application and you should see a properly behaving
pushbutton application! When the application starts, you should see behavior in the
Terminal similar to that in the following screenshot:

You can download this from the GitHub repository mentioned at the beginning of the
chapter, in the Technical requirements section.

Summary
In this chapter, we defined a simple test project that allowed us to expand the I/O
capabilities of the pyboard while gaining experience in developing drivers. We integrated
these drivers together to control an RGB LED pushbutton, whose color status was
controlled by pressing the button. Throughout this chapter, we also discussed the software
development life cycle and have been trying to adhere to its principles and major stages to
ensure that we create a robust project.

In the next chapter, we are going to explore how we can create a test harness to fully test
and integrate drivers. We will be leveraging the drivers that we just created in this chapter
to develop and test our harness.

Writing a MicroPython Driver for an I/O Expander Chapter 3

[70]

Questions
What is a high-level system diagram called?1.
What is a detailed hardware diagram called?2.
What three diagrams did we use in this chapter to define our software3.
architecture?
What is it called when two classes are connected together without the use of an4.
inheritance mechanism?
What information should be included in test cases?5.
How can a developer create a constant in Python?6.
What line of code should a developer write to find out which addresses have7.
slaves present on the I2C bus?
What can be used to catch an exception and print it out?8.
What statement can be written to force an application to exit?9.
What type of setup can be used to fully test and validate the drivers created in an10.
application?

Further reading
www.UML.org1.
https:/​/ ​www. ​computer. ​org/ ​education/ ​bodies- ​of-​knowledge/ ​software-2.
engineering

https://www.uml.org/
https://www.computer.org/education/bodies-of-knowledge/software-engineering
https://www.computer.org/education/bodies-of-knowledge/software-engineering
https://www.computer.org/education/bodies-of-knowledge/software-engineering
https://www.computer.org/education/bodies-of-knowledge/software-engineering
https://www.computer.org/education/bodies-of-knowledge/software-engineering
https://www.computer.org/education/bodies-of-knowledge/software-engineering
https://www.computer.org/education/bodies-of-knowledge/software-engineering
https://www.computer.org/education/bodies-of-knowledge/software-engineering
https://www.computer.org/education/bodies-of-knowledge/software-engineering
https://www.computer.org/education/bodies-of-knowledge/software-engineering
https://www.computer.org/education/bodies-of-knowledge/software-engineering
https://www.computer.org/education/bodies-of-knowledge/software-engineering
https://www.computer.org/education/bodies-of-knowledge/software-engineering
https://www.computer.org/education/bodies-of-knowledge/software-engineering
https://www.computer.org/education/bodies-of-knowledge/software-engineering
https://www.computer.org/education/bodies-of-knowledge/software-engineering
https://www.computer.org/education/bodies-of-knowledge/software-engineering
https://www.computer.org/education/bodies-of-knowledge/software-engineering
https://www.computer.org/education/bodies-of-knowledge/software-engineering
https://www.computer.org/education/bodies-of-knowledge/software-engineering

4
Developing an Application Test

Harness
In the previous chapter, we developed several modules that will be used in an application
project to perform I/O functionality and interact with a user. The question, though, is how
can we be certain that those modules we created actually work? We created several tests,
but if we make any changes to them, we have to rerun those tests manually. By doing this,
we'll find that it is easy to overlook a potential bug. Manual testing is not just time-
consuming but also error-prone.

In this chapter, we are going to develop an application test harness that we can use to test
our MicroPython modules and ensure they have the fewest number of bugs.

The following topics will be covered in this chapter:

What a test harness is and why we would want to use one
Requirements for developing a test harness
Test harness design
Test harness construction
Running the test harness

Developing an Application Test Harness Chapter 4

[72]

Technical requirements
The example code for this chapter can be found in this book's GitHub repository: https:/ ​/
github.​com/​PacktPublishing/ ​MicroPython- ​Projects/ ​tree/ ​master/ ​Chapter04.

To run the examples and your own test harness, you will need the following hardware and
software:

Pyboard Revision 1.0 or 1.1
RobotDyn I2C 8-bit PCA8574 I/O expander module or equivalent
Adafruit RGB Pushbutton PN: 3423 or equivalent
A terminal application (PuTTy, RealTerm, or Terminal)
A text editor such as Sublime Text

A brief introduction to test harnesses
A test harness is a collection of software and data that is used to automatically test
application modules under various conditions in order to determine whether they meet the
design requirements. A test harness will often consist of three main components, as follows:

A test execution engine: This is a piece of software that interfaces with the
application modules under test and provides them with various inputs. After
doing this, it monitors their outputs to ensure that the expected result is
achieved. The test execution engine is usually written in the same language as the
application modules that are under test.
A repository of tests: These are additional software modules that are written that
contain the desired conditions under which the modules will be tested. The tests
also contain the expected output for those tests so that it can be determined
whether the test has actually passed or whether it has failed. If the test fails, the
module has not met its design requirements and it is a sign that there is a bug in
that module that needs to be resolved.
A test reporting mechanism: This mechanism provides developers with a way to
visually monitor whether their application modules have passed or failed the
test. The reporting capabilities will vary greatly, based on the test harness that is
used. At a minimum, we want the test harness to report any tests that have
failed. In a more verbose harness, we would want a report to be generated that
states whether the test passed or failed and if it failed, under what conditions it
failed, what the inputs were, and what outputs were generated.

https://github.com/PacktPublishing/MicroPython-Projects/tree/master/Chapter04
https://github.com/PacktPublishing/MicroPython-Projects/tree/master/Chapter04
https://github.com/PacktPublishing/MicroPython-Projects/tree/master/Chapter04
https://github.com/PacktPublishing/MicroPython-Projects/tree/master/Chapter04
https://github.com/PacktPublishing/MicroPython-Projects/tree/master/Chapter04
https://github.com/PacktPublishing/MicroPython-Projects/tree/master/Chapter04
https://github.com/PacktPublishing/MicroPython-Projects/tree/master/Chapter04
https://github.com/PacktPublishing/MicroPython-Projects/tree/master/Chapter04
https://github.com/PacktPublishing/MicroPython-Projects/tree/master/Chapter04
https://github.com/PacktPublishing/MicroPython-Projects/tree/master/Chapter04
https://github.com/PacktPublishing/MicroPython-Projects/tree/master/Chapter04
https://github.com/PacktPublishing/MicroPython-Projects/tree/master/Chapter04
https://github.com/PacktPublishing/MicroPython-Projects/tree/master/Chapter04
https://github.com/PacktPublishing/MicroPython-Projects/tree/master/Chapter04
https://github.com/PacktPublishing/MicroPython-Projects/tree/master/Chapter04
https://github.com/PacktPublishing/MicroPython-Projects/tree/master/Chapter04
https://github.com/PacktPublishing/MicroPython-Projects/tree/master/Chapter04
https://github.com/PacktPublishing/MicroPython-Projects/tree/master/Chapter04

Developing an Application Test Harness Chapter 4

[73]

A test harness can be a very powerful tool for developers and brings several advantages to
the testing process, such as the following:

Automated testing that then allows developers to focus on other activities
Allows them to perform regression testing, which can verify that recent changes
haven't broken other pieces of code
Increased code quality

A test harness can be used in several different ways. First, it can be used to perform unit
testing. Unit tests are used to test a specific function within an application. When creating
unit tests, I like to test the function for preconditions, postconditions, parameter values, and
parameter boundary conditions. Unit tests can help verify that each function works. Next,
we have module testing. This testing goes beyond unit tests in that it tests that the
functions can all work together at the module level. Module testing can be thought of as the
beginning of integration testing. Finally, we have system integration testing, which can be
used to verify that the entire system is working as expected.

As you might have realized, creating and using a test harness for an embedded system can
be challenging. At some point, there will be a software layer that has to interact with
microcontroller hardware, external integrated circuits, sensors, and other devices. In these
situations, developers either have to create a software representation for that hardware
device, which is often referred to as a mock, or develop tests that include the hardware.
When hardware is included in the testing process, these are often referred to as hardware-
in-the-loop (HIL) tests. These tests require that the microcontroller, sensors, and other
devices are all set up and that the test harness interacts with the embedded system. This
type of testing can be complicated since it may require setting up logic analyzers, bus
sniffers, and other devices that then need to be automated in order to get a test result.

If a test harness sounds like it can be a lot of work, you aren't wrong. Just like any other
piece of software, test harnesses can have bugs, and your test results are only as good as the
tests that you write! If you write poor tests, then you won't necessarily improve the quality
of your software. In fact, you may find that you have giant holes in your tests that only give
you a false sense of accomplishment.

The primary goal of this chapter is to create a project that allows us to gain experience with
developing and using test harnesses for MicroPython-based applications. We will develop
a test harness that will test the modules we developed in the previous chapter and also look
at how we can verify that the low-level hardware behaves the way that we expect it to. We
will also discuss a simple process that you can follow to develop your test cases that should
minimize gaps in your testing.

Developing an Application Test Harness Chapter 4

[74]

Test harness requirements
There are several areas where we need to make careful considerations for our test harness.
First, we need to consider the hardware requirements. When we develop our test harness,
we may need to design and implement a hardware interface that will allow us to not just
interact with the system but also verify various communication and control aspects of the
software. This requires us to clearly define any additional hardware that will be required.

Second, we need to define what our software requirements will be. These include areas
such as how the test harness will be executed, what's needed when it comes to reporting,
and the language that will be used to execute our tests. In this section, we will explore these
requirements and put together the requirements for the test harness that we will build to
test our MicroPython code. Keep in mind that we are going to outline some of the high-
level requirements. We aren't building a safety-critical device that requires fully specified
requirements, so we will just lay out enough requirements to help guide us through the
process.

Hardware requirements
Just as we discussed in the previous chapters, we want to think through the hardware
requirements that are necessary to support our test harness. We want requirements that
will be general enough so that we don't tie our hands in the design process but also enough
so that we have breadcrumbs that lead us in the right direction. For our test harness, which
will test our pushbutton project modules from Chapter 3, Writing a MicroPython Driver for
an I/O Expander, before we develop our hardware requirements, we need to review the
hardware that we designed, which can be seen here:

Developing an Application Test Harness Chapter 4

[75]

From reviewing our hardware diagram, we can see that there are several hardware
requirements that we want to define, as follows:

The test harness shall be capable of recording the output signals on X1, X2, and
X3 for manual review and verification.
The test harness shall monitor I2C communication on X9 and X10.
The test harness shall replace the CH0 pushbutton's input with an I/O line that
can be controlled by the test harness.

As you can see from these requirements, we are specifying a few high-level needs for our
test harness so that it can interface with our device. We could go much further by removing
the RobotDyn I/O expander and using something like an Aardvark to directly interface on
the I2C bus and then simulate the RobotDyn chip. This would allow us to then simulate
various fault conditions and see how our system responds to those faults. These could
include faults such as the following:

A non-responsive slave device
An invalid response
I2C bus errors

We can make our test harness as sophisticated or as simple as we want based on our
application needs. For us, just making sure that we can communicate with a device and
read the input values correctly is about as much as we need for this project.

Software requirements
The software requirements for our test harness need to take into account any external tools
that we need to interface with, along with how the test harness will behave. The
following are a few thoughts on what our test harness should include:

The test harness shall be configurable so that it can run a subset of tests or the
entire test suite based on the test harness configuration settings.
The test harness shall be modular to allow test harness features to be reused
across multiple projects.
The test harness shall record how long it takes to perform each test, along with
the total test time.

Developing an Application Test Harness Chapter 4

[76]

The test harness shall generate a report that will be saved to the filesystem once
the tests are complete. This report will specify the following:

Software version under test
Test harness version
Hardware version
Number of tests to execute
Test start time
Test-specific information, such as the following:

Name of test executed
Input parameters
Expected output
Actual output
Time to run the test
Test stop time

Number of tests that pass
Number of tests that fail

When developing your own test harness, it's a good idea to think through all the features
that you may want the harness to have, but start simple. For example, we've listed quite a
few reporting features here, but on our first iteration, just being able to run a test and
determine whether it passed or failed might be good enough. Over time, we can build up
the test harness so that it's much more sophisticated. Remember, the more complex we
make our harness, the greater the chances that we will introduce bugs to the harness that
require more time and maintenance. This could become an entire project all on its own.

Test harness design
At this stage in the project, we've discovered what the basic requirements for our test
harness are going to be. Now, we are ready to dive deeper into the hardware and software
architecture that is necessary to support the test harness. Just like in previous chapters, at
this stage, we are going to start with an architecture that will then feed into a more detailed
design that is then used in the construction phase. Remember, the architecture should be
flexible so that we can deal with any changing requirements on the fly.

Developing an Application Test Harness Chapter 4

[77]

The test harness hardware architecture
The hardware architecture for our project requires just a few minor adjustments in order to
support our test harness. These updates will provide hardware support so that we can
monitor three features:

The I2C bus
Triggering the pushbutton
Reading the PWM channel

We are interested in monitoring these signals for several reasons. First, we want to make
sure that we can record the I2C communication that is occurring between the MicroPython
board and the RobotDyn I/O expander. This will be used to verify I2C communication.
Second, the pushbutton is a mechanical switch that can only be triggered by someone
attending the test. We want to automate as much testing as possible! In order to do so, we
will add the ability to trigger the pushbutton input using an I/O line. Finally, when the tests
are running, we want to be able to verify that the correct PWM channel is running and that
the frequency is set correctly. In order to do this, we want to monitor each PWM channel
independently.

To accomplish these three monitoring tasks, we need to add two pieces of hardware, as
follows:

An I2C Bus Monitor
A data acquisition system

The way these pieces of equipment will be added to our hardware architecture can be seen
in the following diagram:

Developing an Application Test Harness Chapter 4

[78]

Here, we're adding the hardware components with dashed lines between them. This is to
show that these are optional components that are only added to the design for testing and
are then removed from the system. Both systems are then interfaced to a test PC that will
drive these components and interact with the system.

This is a good time to pause for a moment and consider some of the ramifications for
adding monitoring equipment to our hardware. Adding test tools to the hardware can have
unintended consequences that make you believe that your system is working as expected
but when the test tools are removed, the system suddenly stops working! There have been
several times in the past where I've worked on a client project where we had logic
analyzers, bus analyzers, and data acquisition systems in the mix and everything worked as
expected but as soon as these tools were removed, the system crashed and burned.

When you add extra pieces of equipment to your hardware, especially monitoring
equipment, you change the electrical characteristics of your hardware. For example, a tool
that monitors the I2C bus will often act as a pull-up for the I2C lines. If there are not
properly sized pull-ups on the I2C lines, the monitoring tool can help the I2C bus work as
expected. As soon as the I2C bus tool is removed, the improperly sized pull-ups suddenly
can't handle it and the I2C bus no longer works.

It's important to recognize that while a test harness will help us automate tests, do
regression testing, and many other fabulous activities that can help us speed up
development and improve quality, we need to realize that we still need to perform tests on
our system in a standalone mode. This will ensure that our test equipment hasn't
inadvertently affected the device under test.

The test harness software architecture
There are quite a few options available to us regarding how we can architect the software
side of a test harness. At the end of the day, it really comes down to how much complexity
we want in our test harness. In our example, I've complexified the test harness by adding
external devices that need to monitor the I2C bus, drive an I/O line, and then monitor the
PWM signals. Let's examine several different ways that this can be done. The method that
we will implement in this project is going to be the lowest cost and least complex method
available.

Developing an Application Test Harness Chapter 4

[79]

The first test harness software architecture that is available to us is to use a personal
computer as the main driver for the test harness and the data collection process. In this
architecture, the test groups that we want to execute are stored on the MicroPython board
but are executed over a communication link that is driven by a test computer.

In this architecture, our test computer runs a Python script that can either communicate
with the REPL or uses a serial link with a custom communication protocol. The reason that
the PC script drives the test is so that it can control the test equipment that is monitoring
the I2C bus, controlling the pushbutton, and watching the PWM lines. An example of what
this software architecture would look like can be seen in the following diagram:

This architecture is fairly complex and would be more beneficial to a professional
developer than someone who is developing a DIY project or rapid prototyping. There are
several benefits to using this architecture, as follows:

Easily scalable.
Can support multiple external test equipment devices.
Easy access to test data.
Developers can leverage existing Python libraries to simplify and speed up
development.
Portable for use in other projects.

Developing an Application Test Harness Chapter 4

[80]

The second test harness software architecture that is available to us is to build the entire test
harness on the MicroPython board and use a second MicroPython board connected to the
first to monitor I2C and perform the other monitoring and control activities. This harness
removes the need for a personal computer to be involved and it can dramatically decrease
the test equipment's cost by building the functionality into a pyboard.

While we are removing costs and complexity, there is still additional work that needs to be
done. For example, we would need to develop the capability to monitor I2C while
minimizing its impact on the hardware bus and then need to develop a communication
protocol that can be used between the two MicroPython boards. This would allow the test
harness to let the second board know that it should now trigger a pushbutton, monitor
PWM, and so on. These aren't necessarily complex tasks since we needed to add that
functionality to the first architecture as well. We are just simplifying the concept and
removing more expensive pieces of equipment from the effort.

An overview of this architecture can be seen in the following diagram:

The final architecture that we are going to look at only works if the application that we
developed has memory and CPU cycles to spare. In this architecture, we are eliminating all
the extra hardware and using spare I/O on the main MicroPython board to control and
monitor the testing process. In this architecture, we are putting the entire test harness on
the MicroPython board and then calling our test cases and monitoring functions from the
same device. This architecture is as follows:

Developing an Application Test Harness Chapter 4

[81]

There are some obvious disadvantages to putting the entire test harness on our device,
some of which are as follows:

The test harness can have an impact on testing, depending on the end
application.
The test harness may use too much memory or CPU cycles.
The complexity of managing multiple functions on a single device.

While these disadvantages do need to be managed, the advantages could dramatically
outweigh them. Some of these advantages are as follows:

Decreased hardware costs
Decreased overall test harness complexity
All the code is in a single place

These are just a few examples of how we could architect our test harness software. There
are so many other options that we could use and variations of these three types. For
example, we could remove the serial communication link and have a MicroPython board
that sends all the test data to the cloud over a Wi-Fi link or sends it via Bluetooth. The
options are quite limitless.

Now, we are going to look at how we can implement a test harness directly on the
MicroPython board. This is the least complex solution but also foundational in that it's a
building block to more complex and scalable architectures. Let's get started.

Developing an Application Test Harness Chapter 4

[82]

Constructing the test harness
The bulk of the test harness that we will be constructing is going to be software. The
modules that we are going to build the test harness for are the modules that we created in
Chapter 3, Writing a MicroPython Driver for an I/O Expander. We could build a harness that
not only includes low-level module testing but also the high-level system behavior;
however, I want to convey how we can create a test harness. I will leave the high-level
application testing to you as an exercise. The modules that we will be testing are as follows:

PCA8574.py

LED_RGB.py

Button_rgb.py

Let's get started!

Writing the test harness scaffolding
Before we dive in and start developing tests, we should spend a few minutes thinking
about how we are going to organize our test harness. I like to create modules that represent
the tests for the device under test. For example, if I have a module named PCA8574.py, I
will create a separate module named PCA8574_tests.py. As I construct my software
module, I will also add tests to make sure that I'm not overlooking anything. There are
formalized processes such as Test-Driven Development (TDD) that can be followed, but
I'm not as strict in my own implementations.

Each of the *_tests.py modules will be invoked through another high-level test module
called test_harness.py. test_harness.py is called from the main.py module.
test_harness.py can be customized during each run for the tests that we want to be
executed. The reason we're creating these separate modules is to build modularity and
portability into the test harness. There are certainly other ways to construct our harness, but
if you want to run tests on the target with a MicroPython implementation, I've found this
method to be the most useful. If we're reusing a module, this also makes it easier to bring
the test harness component with us to the new application.

Developing an Application Test Harness Chapter 4

[83]

For each test function, there are several operations that we want to make sure that we think
through and implement. These operations are as follows:

Test setup: Test setup prepares the system for the series of tests that we are about
to run. Test setup is really creating the preconditions that are necessary for the
tests to execute. For example, if we are going to run a series of tests that use the
I2C bus, we might configure an I2C object during the test setup operation,
provided that the setup is not part of our tests.
Test execution: Test execution is where our test cases are executed on the
processor. This might be where we check the boundary conditions on input
parameters or simply verify that we get the expected output from the code under
test.
Test cleanup: Once the test cases have been executed, we need to clean up the
execution environment and return it to a clean slate. If we don't undo what we
just did, then other tests may be starting with unexpected conditions on the
processor that could either cause tests to fail, or worse, pass when they should
have failed! The cleanup phase might involve deallocating memory and objects
and setting I/O lines back to their initial states. In a simple implementation, we
could just assume that the test setup phase will configure the system as
necessary, but it's always a good idea to be as explicit as possible when
developing software.
Test reporting: Finally, the reporting phase is where we release the results from
the tests that have just been executed. The output results can be provided in
many different ways. For example, a developer could dump the results in a
terminal, or they could write the results to a file. No matter the format, it's
important that the output is done in such a way that the data can be easily
processed. For example, I will often output the test results in a comma-delimited
format such as the following:
 Mode Under Test, Test Description, Pass or Fail

Using this format makes it easier to pull the results into a Python script or Excel
spreadsheet for processing.

In a sophisticated test harness, we may create separate functions that perform these
operations, but it is certainly possible – and sometimes easier – to implement these
operations within a single function.

Developing an Application Test Harness Chapter 4

[84]

At this point, we should have enough information to put together the test harness
scaffolding and then start to develop our tests. The following steps can now be followed to
set up the scaffolding:

Create new modules for each module that will be tested with _tests.py1.
appended to the filename.
In each test module, create a new function with the module name and then2.
_tests appended to it. (We will leave these blank for the moment.)
Create a test_harness.py module with a function named Tests_Run.3.

Now we are ready to add tests to our harness.

Tests for the PCA8574
The PCA8574 is the lowest level component in the application that we developed in
Chapter 3, Writing a MicroPython Driver for an I/O Expander. It makes sense that we should
develop the test cases for this module first. As I mentioned earlier, preferably, we would do
this while we were developing the module, but in this case, we are adding it after the fact.
We want to make sure that we test the module effectively for our application. In this case,
there are four tests that we want to perform:

I2C object creation and initialization
I2C object creation handling for out-of-range addresses
Lowest Significant Bit (LSB) high read
Lowest Significant Bit (LSB) low read

We could design a series of tests that would check every single I/O line and make sure that
it reads properly, but the PCA8574 is a simple device and returns a single 8-bit value for the
I/O states. If we are able to successfully read the LSB, then we should not have any issues
reading the other bits. (In a commercial product, I would verify all the I/O. For this
example, we are streamlining to the minimal necessary tests.)

Developing an Application Test Harness Chapter 4

[85]

To run these tests, we want to implement the four operations that we discussed in the
previous section:

First, we implement the test setup. In PCA8574_tests.py, we begin by1.
populating the PCA8574_Tests function with code that can set up the I2C
peripheral. In the following code, you'll notice the code we are using to set up the
test is the same code that we used to set up the I2C in the application code:

try:
 # Initialize I2C 1
 i2c = I2C(I2C_BUS1, I2C.MASTER, baudrate=100000)
 # returns list of slave addresses
 I2C_List = i2c.scan()

 if I2C_List:
 print("I2C Slaves Present =", I2C_List)
 else:
 print("There are no I2C devices present! Exiting application.")
 sys.exit(0)
except Exception as e: print(e)

In many cases, you'll find that there will be code that can be reused between the
test harness and the application code.

Once we have this setup code in place, it's time to implement the tests that will be2.
executed. We start by testing that we can initialize an I2C object in the range 0 –
255. This object will be created using the I2C address that is detected on the I2C
bus during the test setup operation. We wrap our test case in a try/except
statement. Any error that is generated when trying to initialize the object will tell
us that our test case has failed. The code for this is as follows:

Test that we can initialize the object
 try:
 PCA8574_Object = PCA8574_IO(i2c, I2C_List[0])
 print("PCA8574, Object Creation, Passed")
 except:
 print("PCA8574, Object Creation, Failed")

Developing an Application Test Harness Chapter 4

[86]

Notice that as part of the test case, we include the fourth operation, which is to
report whether the test passes or fails. We could have just collected the results in
an array or dictionary but since we are trying to build test harness functionality
bit by bit, we're keeping things simple by just printing the results to the Terminal
as the test is executed.

The next test that we want to execute is an initialization of the PCA8574 with an3.
invalid address. We want to run this test in order to verify that our assert throws
an exception. For this test case, if we reach the exception, then it means that the
test has passed, and if we successfully initialize the object, then we have failed
the test. The code for this test case is as follows:

try:
 PCA8574_Object1 = PCA8574_IO(i2c, 256)
 print("PCA8574, I2C Address Out-of-Bounds, Failed")
except:
 print("PCA8574, I2C Address Out-of-Bounds, Passed")

Finally, we can create the test cases that check whether we can successfully read a4.
value from the PCA8574 I/O or not. This requires two test cases: one for
validating a high input on the LSB and one for validating a low input on the LSB.
Don't forget that we need to add code that will control one of the pyboard's I/O
lines that will then be connected to the LSB. During the tests, we can change the
state of this pin in order to simulate that the button has been pressed. The
alternative would be to notify the tester and have them manually press and hold
the button. Before we start toggling pins, we need to add some GPIO setup to the
test setup portion of our test. The following code shows the code that should be
added to the test setup in order to control an I/O that will simulate the I/O state
changing from a button press:

p_out = Pin('X4', Pin.OUT_PP)
p_out.high()

Don't forget that you will also need to import Pin from the pyb library if you
have not already done so.

At this point, we are able to write our test code in order to verify that we can5.
successfully read the PCA8574 input states. The code for this is as follows:

Set the switch to not pressed
 p_out.high()
 Result = PCA8574_Object.Read()
 if Result is 0xFF:
 print("PCA8574, LSB I/O - High, Passed")
 else:

Developing an Application Test Harness Chapter 4

[87]

 print("PCA8574, LSB I/O - High, Failed,", Result)

 # Set the switch to pressed
 p_out.low()
 Result = PCA8574_Object.Read()
 if Result is 0xFE:
 print("PCA8574, LSB I/O - Low, Passed")
 else:
 print("PCA8574, LSB I/O - Low, Failed,", Result)

For this example, the only cleanup operation that we are going to apply is to make a call to
p_out.High() once the testing is complete. This will return the I/O line to the high state.
For our purposes, we will leave the I2C bus initialized at this time and any additional tests
that may be running can either use its settings or it can set up its own configuration.

Now, we are ready to run the test harness for the first time and see what results we get
from our tests. Before doing so, make sure that you import the PCA8574_test.py module
into your test_harness.py script and then import this script into your main.py module.
This will give you a fully working test harness that allows you to add additional tests by
making changes to the test_harness.py script.

Running the test harness
Running the test harness on the target will not be any different than running any other
MicroPython script. Copy main.py, test_harness, and the test scripts to the pyboard.
From the terminal, you can use Ctrl + C to terminate any application that is already
running. Then, use Ctrl + D to cause a soft reset to occur on the pyboard. At this point, you
should see an output from the test harness similar to the following:

Developing an Application Test Harness Chapter 4

[88]

From the preceding output, we can see that the script has been started and that testing has
begun. We can see our test setup operation followed by the execution and reporting
operations. We can also see that the first three tests pass successfully but that our final test,
the LSB I/O – Low test, fails. From the test report, it looks like the I/O stayed at the high
state rather than toggling low.

There are several potential causes for this test failure, some of which are as follows:

The module under test has a bug,
The test case is faulty,
There is a hardware problem.

As it turns out, I did not connect X4 to the PCA8574 board. After making the connection
and then rerunning the test harness, you should receive an output similar to the following:

At this point, all the tests are passing! This should mean that there are no problems with
our test harness or the module under test, correct? The truth is, all we have done is written
some tests that we expect to pass. We never really tested that these test cases can fail! TDD
teaches us that before any test case is made to pass, we should write it and verify that it
fails first. This helps us to verify that the test case can actually fail. As you move forward
and start to develop test cases for the remaining modules that are part of Chapter 3,
Writing a MicroPython Driver for an I/O Expander, verify that your tests fail first before you
make sure that they return the right result.

Developing an Application Test Harness Chapter 4

[89]

Summary
In this chapter, we explored the different methods that we can use to create a test harness
for MicroPython modules and application code. While there are many methods available,
ranging from very simple to highly sophisticated, we implemented a simple test harness
that you can easily leverage and use as the foundation to build even more useful harnesses.
The harness that we built used the device under test to simulate system inputs, which
allowed us to keep the test harness' costs low and required no additional external
hardware.

In the next chapter, we are going to dive deep into the MicroPython kernel and learn how
we can customize the startup code and the kernel for our own application needs. As part of
this project, we are going to compile our own kernel and deploy it to a development board
that doesn't come with MicroPython installed on it by default.

Questions
What are the three main components that are part of nearly every test harness?1.
What are the advantages of using a test harness?2.
What are a few examples of faults that we would want a test harness to test for?3.
What are some of the architectures that a test harness can follow?4.
What are the four operations that we need our module tests to perform?5.

Further reading
Test-Driven Development with Python, Harry Percival
Test-Driven Development for Embedded C, James W. Grenning

5
Customizing the MicroPython

Kernel Start Up Code
Developing embedded software using MicroPython is relatively straightforward but there
may come a time when there is a need to build a custom-printed circuit board, adjust the
default pin settings in the kernel, handle failure modes, or simply build a software library
in the MicroPython kernel. In order to do this, a developer will need to be familiar with the
MicroPython kernel by examining it and the steps necessary to customize it, which we will
do in this chapter.

The following topics will be covered in this chapter:

An overview of the MicroPython kernel
Navigating the startup code
Modifying the default GPIO initialization
Adding MicroPython modules to the kernel
Testing the results

Customizing the MicroPython Kernel Start Up Code Chapter 5

[91]

Technical requirements
The example code used in this chapter can be found at https:/ ​/​github. ​com/
PacktPublishing/​MicroPython- ​Projects/ ​tree/ ​master/ ​Chapter05.

In order to run the examples and build your own custom MicroPython kernel, you will
need the following hardware and software:

A Linux machine or virtual machine
An STM32L4 IoT Discovery node
A RobotDyn I2C 8-bit PCA8574 I/O expander module, or equivalent
An Adafruit RGB pushbutton PN: 3423, or equivalent
A breadboard
6" jumpers
A generic two-position switch
A 30-gauge wire-wrapping wire
A Terminal application (PuTTY, RealTerm, Terminal, or one of many others)
A text editor, such as Sublime Text

An overview of the MicroPython kernel
The MicroPython kernel is a collection of software libraries, code, and a Python interpreter
that comes pre-built on a MicroPython board, such as the pyboard. Someone who is new to
MicroPython may not even realize that their Python interpreter is made up of C modules.
These modules are compiled and then programmed onto their board, which then reveals
the filesystem and REPL that we have become so familiar with. In this chapter, we are
going to look more closely at the kernel and explore how we can make our own
modifications that will enhance our applications.

Downloading the MicroPython kernel
Before you can get a feel for what it contains, you need to download the kernel so that you
can navigate through its directory structure. The kernel is easy to download. I recommend
downloading it on a Linux machine or within a Linux virtual machine. The build process
for MicroPython is easier in this environment, which we will be going through later on in
this chapter.

https://github.com/PacktPublishing/MicroPython-Projects/tree/master/Chapter05
https://github.com/PacktPublishing/MicroPython-Projects/tree/master/Chapter05
https://github.com/PacktPublishing/MicroPython-Projects/tree/master/Chapter05
https://github.com/PacktPublishing/MicroPython-Projects/tree/master/Chapter05
https://github.com/PacktPublishing/MicroPython-Projects/tree/master/Chapter05
https://github.com/PacktPublishing/MicroPython-Projects/tree/master/Chapter05
https://github.com/PacktPublishing/MicroPython-Projects/tree/master/Chapter05
https://github.com/PacktPublishing/MicroPython-Projects/tree/master/Chapter05
https://github.com/PacktPublishing/MicroPython-Projects/tree/master/Chapter05
https://github.com/PacktPublishing/MicroPython-Projects/tree/master/Chapter05
https://github.com/PacktPublishing/MicroPython-Projects/tree/master/Chapter05
https://github.com/PacktPublishing/MicroPython-Projects/tree/master/Chapter05
https://github.com/PacktPublishing/MicroPython-Projects/tree/master/Chapter05
https://github.com/PacktPublishing/MicroPython-Projects/tree/master/Chapter05
https://github.com/PacktPublishing/MicroPython-Projects/tree/master/Chapter05
https://github.com/PacktPublishing/MicroPython-Projects/tree/master/Chapter05
https://github.com/PacktPublishing/MicroPython-Projects/tree/master/Chapter05
https://github.com/PacktPublishing/MicroPython-Projects/tree/master/Chapter05

Customizing the MicroPython Kernel Start Up Code Chapter 5

[92]

Make sure that you have Git installed on your machine by typing the following into your
Terminal:

sudo apt-get install git

If Git is already installed, you should see a screen similar to this:

If Git is not installed, it will go through the installation process to install it on your
development machine. Once Git is installed, you can use the following command in the
terminal to clone MicroPython:

sudo clone https://github.com/micropython/micropython.git

Once the command is issued, MicroPython will be cloned into a directory
called micropython, as follows:

Congratulations! You now have the MicroPython kernel on your development machine and
it's time to jump in and start getting familiar with it.

MicroPython kernel organization
If you navigate to the micropython directory where you cloned the MicroPython kernel,
you'll find that the kernel is organized as in the following screenshot:

Customizing the MicroPython Kernel Start Up Code Chapter 5

[93]

Upon examination, you'll notice that there are several top-level directories. The information
contained in each of these directories can be found in the following table:

Folder Description
docs Contains documentation for different major ports.

drivers
Contains external device drivers for items, such as displays, memory devices,
radios, and SD cards.

examples Contains example Python scripts.

extmod
Contains additional (non-core) modules that are implemented in C, such as
crypto and filesystems.

mpy-cross The MicroPython cross-compiler, which generates bytecode from scripts.
ports Contains all the different architecture ports supported by MicroPython.

py
The Python implementation, which includes the Python core, compiler,
libraries, and runtime.

tests Contains the test framework for MicroPython.
tools Contains scripts that can be useful for developing the MicroPython kernel.

I recommend that you briefly take some time to explore these directories and get a better
feel for what is in these folders. We will spend most of our time in the ports/STM32
directory but there could be tools or modules elsewhere that it would be useful to know
about, depending on what you are looking to modify in the kernel.

Becoming familiar with the
STM32L475SE_IOT01A port
If you navigate deeper into the ports folder, you'll find that there are now more than a
dozen different ports for MicroPython. In my opinion, the stm32 port is the best supported
port, but some of the wireless chips are also good contenders, such as the esp8266. You can
see that all the architectures that are currently supported in MicroPython are contained
within the port's directory, as in the following screenshot:

Customizing the MicroPython Kernel Start Up Code Chapter 5

[94]

If you open up the stm32 folder, you'll find a few different items of interest. First, it
contains all the drivers and C code modules that are required to drive an STM32
microcontroller. These files are actually generated from the STM32 HAL, which is provided
by STMicroelectronics, and are periodically updated as STMicroelectronics makes updates
and changes to their HAL. For the most part, you won't need to modify any of these driver
files; they just play a supporting role in the microcontroller's peripherals and capabilities.

Next, you'll notice that there are several folders in the stm32 directory. Most of these again
contain the supporting code modules for features such as booting the microcontroller and
other advanced features, such as USBs. The folder that is really the most interesting to us is
the boards folder.

The boards folder contains several different types of files and folders, including the
following:

Supported board folders, which are all the different boards supported by
MicroPython
STM32 derivative linker files, which define the memory maps for the different
processors
STM32 derivative pin maps, which describe what each pin does on the processor

You can see all the different STM32 boards—and third-party boards that use an STM32
microcontroller—that have currently been ported to MicroPython in the following
screenshot:

As seen in the preceding screenshot, the STM32/boards folder contains all the STM32
MicroPython ports that currently exist.

Customizing the MicroPython Kernel Start Up Code Chapter 5

[95]

As you can see, there are more than two dozen different boards supported, including the
pyboard, which can be seen in the PYBV3, PYBV4, PYBV10, and PYBV11 folders. Since we
have already looked at it, we are going to investigate the STM32L475E_IOT01A
development board in more detail in this chapter.

The STM32L475E_IOT01A board is particularly interesting because it includes an onboard
Wi-Fi and Bluetooth module in addition to several sensors. The board also has Arduino
headers on it for shield expansion and a MOD connector. You can see an overview of the
development board in the following photograph:

(Image source: STMicroelectronics)

The STM32L475E_IOT01A board supports Arduino headers and includes onboard Wi-Fi
and Bluetooth, which makes it a great prototyping environment for MicroPython projects.

Before we dive into this development board, it's useful to first look at some of the files in
the board's directory. In the board's directory, you'll notice several different csv and ld
files. The ld files are the linker scripts for the microcontroller. If you select one of the ld
files and open it, you'll find that it specifies which addresses are RAM and which are flash.
You'll also find that there are areas for defining the cache, heap, stack, and any other
custom memory regions. For the most part, you won't need to play around with these
linker scripts unless you are interested in tuning the size of the heap and the stack. I've
found that some of the linker files are a bit conservative or use default settings for a smaller
microcontroller and, by reviewing your targets datasheet, you may find that there is extra
RAM or features that you can utilize.

Customizing the MicroPython Kernel Start Up Code Chapter 5

[96]

For example, I was working with a client on an Electronic Power Supplies (EPS) and the
target that we selected had an extra bank of zero state RAM that was not being used. I
added it to the linker file and was able to utilize it for additional variable or stack space. I
also found that if you have a complex application, you may run out of heap space. Heap
space is tunable, and you can modify the linker file as needed. The following snippet is
from the linker that shows how you can modify _heap_end to get a little more stack space:

/* RAM extents for the garbage collector */
_ram_fs_cache_start = ORIGIN(FS_CACHE);
_ram_fs_cache_end = ORIGIN(FS_CACHE) = LENGTH(FS_CACHE);
_ram_start = ORIGIN(RAM);
_ram_end = ORIGIN(RAM) + LENGTH(RAM;
_hesap_start = _ebss; /* heap starts just after statistically allocated
memory */
_heap_end = 0×20014000; /* tunable */

The linker script allows a MicroPython kernel developer to adjust how much RAM is
allocated to the head, stack, and other features within the system.

Just remember, if you take up more heap space, you'll have less space
somewhere else (such as in the stack). If you open a file, such
as stm32l476af.csv, you can see the pin mappings for that derivative.
You'll notice that it provides not only a list but also the functionality
options for each pin. These files can be useful in showing the capabilities
of the derivative, but generally, you won't need to modify these unless
you are adding a new one to the MicroPython code base. You can
customize these pin names, which will then change how they are accessed
within the MicroPython runtime environment, but this is usually done in
a pin file that is located within a specific board directory.

Let's now move on to the board folder. Take a look at the STM32L475E_IOT01A board
folder. You'll notice that this directory contains just the following four files:

mpconfigboard.h

mpconfigboard.mk

pins.csv

stm32l4xx_hal_conf.h

These four files will control the default settings for the MicroPython board, that is, how the
development board will function. Let's examine each of these in more detail in the
following sections.

Customizing the MicroPython Kernel Start Up Code Chapter 5

[97]

mpconfigboard.h
The mpconfigboard.h header file contains the definitions for features, such as pin
mappings for peripherals, LEDs, and USB, as well as board definitions, such as the board
name and the microcontroller target. A very brief example of some of the information that
is contained in this file is shown in the following screenshot:

#define MICROPY_HW_BOARD_NAME "B-L475E-IOT01A"
#define MICROPY_HW_MCU_NAME "STM32L475"

#define MICROPY_HW_HAS_SWITCH (1)
#define MICROPY_HW_ENABLE_RNG (1)
#define MICROPY_HW_ENABLE_RTC (1)
#define MICROPY_HW_ENABLE_USB (1)

In the preceding code, we can see some example definitions from mpconfigboard.h,
which give the hardware board name and MCU type as well as defining several
MicroPython features, such as a user switch and USB. Let's now take a look at the next one:

#define MICROPY_HW_LED1 (pin_A5) // green
#define MICROPY_HW_LED2 (pin_B14) // green
#define MICROPY_HW_LED_ON(pin) (mp_hal_pin_high(pin))
#define MICROPY_HW_LED_OFF(pin) (mp_hal_pin_low(pin))

This code shows some more example definitions from mpconfigboard.h, which create the
pin mappings for the LEDs on the development board and define the function to be used to
turn an LED on or off.

mpconfigboard.mk
mpconfigboard.mk is the make file for the target board. It contains information including
the following:

The MCU series
The CMSIS target definition
An alternate function mapping file for the board
The linker file to be used
Memory definitions for flash
A debug probe configuration file

Customizing the MicroPython Kernel Start Up Code Chapter 5

[98]

For the most part, you will not need to modify or even look at this file unless you are
creating a custom port, which could happen depending on what it is your designing. You
can see an example of the make file in the following snippet:

MCU_SERIES = 14
CMSIS_MCU = STM32L475XX
The stm32l475 does not have a LDC controller which is
the only difference to the stm32l476 - so reuse some files.
AF_FILE = boards/stm32l476_af.csv
LD_FILES = boards/stm32l476xg.ld boards/common_ifs.ld
TEXT0_ADDR = 0x08000000
TEXT1_ADDR = 0x08004000
OPENOCD_CONFIG = boards/openocd_stm32l4.cfg

pins.csv
Next, we have the pins.csv file. This file contains the pins that exist on the target and the
names that they will have within the MicroPython environment so that they can be
accessed through a Python script. Every pin that exists on the processor will need to be in
this file with a name. I recommend that you open the file to see everything that is in it. The
files are usually quite large but the following screenshot shows an example of how the first
eight pins are defined for ports A0-A7. Again, we can customize the name if we want to:

The excerpt from pins.csv that we can see in the preceding screenshot defines what pins
exist on the target and what they will be named.

Customizing the MicroPython Kernel Start Up Code Chapter 5

[99]

stm3214xx_hal_conf.h
The stm32l4xx_hal_conf.h module defines which peripheral modules are defined and
enabled within the code base. For example, if the target device supports CAN, the
following definition would be created:

#define HAL_CAN_MODULE_ENABLED

If CAN was not supported by the device, then that definition would be commented out so
that it is not included in the code base. A snippet from the stm32l4xx_hal_conf.h
module is shown in the following code:

/* ######################### Module Selection ###################### */
/**
 * @brief This is the list of modules to be used in the HAL driver
 */
#define HAL_MODULE_ENABLEd
#define HAL_ADC_MODULE_ENABLED
#define HAL_CAN_MODULE_ENABLED
/* #define HAL_COMP_MODULE_ENABLED */
#define HAL_CORTEX_MODULE_ENABLED
/* #define HAL_CRC_MODULE_ENABLED */
/* #define HAL_CRYP_MODULE_ENABLED */
#define HAL_DAC_MODULE_ENABLED
/* #define HAL_DFSM_MODULE_ENABLED */
#define HAL_DMA_MODULE_ENABLED
/* #define HAL_FIREWALL_MODULE_ENABLED */
#define HAL_FLASH_MODULE_ENABLED

All four files that are contained with the target board folder define how that board is
configured and how it will behave once the code is compiled and pushed to the target.
Before we compile our project and deploy it, let's first look at the startup code and how we
can modify it with a custom startup configuration.

Navigating the startup code
The startup code for the STM32 port can be found in main.c, which is located in the
micropython/ports/stm32 directory. This folder also contains the code for various
peripheral modules. In order to make heads or tails of the startup code, I recommend that
you open main.c and locate the stm32_main function. stm32_main contains the
initialization sequence for MicroPython.

Customizing the MicroPython Kernel Start Up Code Chapter 5

[100]

In addition to stm32_main.c, the main.c module also contains several additional
functions that are used to support the system startup. The support code in main.c includes
additional initialization for items such as the following:

A flash error state code
A filesystem reset code, such as creating default main.py and boot.py files
Filesystem initialization
SD card initialization

The initialization sequence is not complicated, but it does contain quite a few steps. When I
encounter a code base like this, one of the first things I do is open up the software package I
use for software architecture development and draw out the sequence. Drawing out the
initialization in a flowchart helps me to visualize what the code is doing. I can then
reference this diagram when I need to. Since the startup sequence is long, we will look at a
series of diagrams that show generally how MicroPython starts up. As you walk through
the sequence and examine the code, you'll notice that I have left out some details that I
don't believe to be important to our discussions in this book:

The initialization starts by setting up the processor cache and prefetch buffers.1.
The higher-end STM32 devices include cache and several other features designed
to improve execution efficiency. Once the cache is set up, the initialization
follows a sequence very similar to what an embedded software engineer would
expect in any system. First, a system tick is set up. MicroPython leverages the
STM32 HAL APIs that require a system tick to keep track of time.
Next, the GPIO clocks are initialized. Every peripheral has a clock that can be2.
turned on or off based on whether the peripheral is being used. By default, these
clocks are turned off in order to maximize energy efficiency. It just means that
before we initialize a peripheral, we must turn each one on. After the GPIO
clocks are initialized, there is an option to call a function named
MICRO_BOARD_EARLY_INIT.

MICRO_BOARD_EARLY_INIT is an interesting optional function. It gives us, the
developer, the ability to execute custom code to initialize our board and the items
connected to it. We can configure whether this function is executed or not by
defining MICRO_BOARD_EARLY_INIT in our mpconfigboard.h file and then
defining the function in our own custom module.

Customizing the MicroPython Kernel Start Up Code Chapter 5

[101]

We will discuss this function in much more detail in the next section when we
create our own custom initializations for our development board. The following
diagram shows the initialization sequence up to this point:

At this point in the initialization sequence, we enter a sequence where there are3.
several optional initializations. For example, if a developer wants to, they can
enable a startup RAM test that validates RAM to ensure memory integrity. They
can also initialize thread support and the LWIP networking stack. If there is a
user switch on the board, the switch is also initialized. The reason the switch is
initialized so early on is because holding the switch can force the system to
restore default settings or enter other modes. More information about this can be
found in the MicroPython documentation online (refer to the Further reading
section). The exact sequence is shown in the following diagram:

Customizing the MicroPython Kernel Start Up Code Chapter 5

[102]

This sequence is configurable and optional for the initialization process, which is
based on the MicroPython kernel configuration files that the developer can
customize.

Once the optional features have been initialized, the kernel will then set up4.
commonly used peripherals. These include UART, SPI, I2C, SD Card, and
general memory management. This is shown in the following diagram:

Customizing the MicroPython Kernel Start Up Code Chapter 5

[103]

Once the peripherals are set up, the next sequence initializes MicroPython. This5.
is done by first setting the LED status, configuring the garbage collection, and
then setting up advanced peripherals, such as CAN and USB. The following
diagram shows the first steps in initializing the MicroPython kernel:

Finally, at this point, MicroPython is configured and our microcontroller is set up. The only
thing left to do is to mount the filesystem that will be used by the application and initialize
any external devices that might be connected. These could be accelerometers, network
controllers, servo motors, or anything else. Once these are set up, the current directory in
the filesystem will be checked for the boot.py script and it will be executed. boot.py
normally just points to main.py after configuring some basic USB settings for the device.
These settings are beyond the scope of our current discussion, but more information about
them can be found in the MicroPython documentation.

Customizing the MicroPython Kernel Start Up Code Chapter 5

[104]

If boot.py finds that there is no main.py, or perhaps it's just a short or blank script, then
the REPL will be loaded and we can interact with the system through the REPL. This final
sequence, that is, the last steps in the initialization sequence that results in running an
onboard script or entering the REPL, is shown in the following diagram:

If you dig a little bit deeper into the startup code, you'll also notice that there are additional
steps that are followed if a developer soft-resets the system through the REPL using Ctrl +
D. For now, we are not going to worry about this additional code but it's something I do
recommend you take a look at and understand.

In the next section, we will examine how we can customize the kernels' startup code by
creating our own MICRO_BOARD_EARLY_INIT function that configures our onboard GPIO
to settings that match our application.

Customizing the MicroPython Kernel Start Up Code Chapter 5

[105]

Modifying the default GPIO initialization
There are times when a developer may want to customize the startup state of the GPIO
pins. For example, there may be a secondary power regulatory on the board that will power
up circuitry that needs to be placed in its initial state (whether that's on or off). There could
be a device connected to a pin that will drive it and we want to make sure that it is
configured as an input. Whatever the case may be, we can customize the kernel with
custom initialization code that will set our pin states early in the boot-up process.

The steps for customizing our startup code are pretty simple and are listed as follows:

Update the mpconfigboard.h board module with the1.
MICROPY_BOARD_EARLY_INIT definition and the function name that will be
called.
Create a module to contain the code.2.
Define the function that will be executed.3.
Add the custom startup code.4.

Let's look at each step in detail:

First, we need to open mpconfigboard.h and create a macro that defines the1.
function we want to execute early in the boot process. This is done by navigating
to our board file directory (B_L475E_IOT01A) and then adding the following line
of code:

void MyCustom_board_early_init(void);
#define MICROPY_BOARD_EARLY_INIT MyCustom_board_early_init

Remember that the MicroPython kernel is written in C so we are going to be
writing C code for this customization. The preceding line of code is defining the
MICROPY_BOARD_EARLY_INIT macro, which will replace all its occurrences with
a call to MyCustom_board_early_init. The substitution will occur in main.c in
the stm32_main function that we looked at earlier in this chapter. We also need
to make sure that we provide the declaration for our function. Public declarations
are placed within a header file, so we can just create the declaration before our
macro.

Customizing the MicroPython Kernel Start Up Code Chapter 5

[106]

Next, we need to create the MyCustom_board_early_init function. The best2.
place to create this function is in its own custom module that we add to the
B_L475E_IOT01A board folder. By using this folder, we can keep all the
customized code in one location and prevent accidentally changing any core
MicroPython kernel code. My personal preference is to create a module named
board_init.c.
Next, we want to add in the minimum amount of code we will need to get the3.
kernel to compile successfully. This can be done by adding the following
include files:

#include STM32_HAL_H
#include <stdio.h>
#include <stdint.h>

We can then add our definition for MyCustom_board_early_init using the4.
following lines of C code:

void MyCustom_board_early_init(void)
{
 // Place your custom init code here!
}

Finally, we get to add our custom code! For B_L475E_IOT01A, we are most likely5.
going to want to adjust the default settings on the Arduino header's digital pins.
There are 16 pins that we could configure, D0-D15, in addition to the six analog
pins that we could convert to digital pins if we desired. Let's look at what it
would take to initialize a pin for input, output, and analog.

Before we do anything, we need to make sure that we enable the correct clocks to the GPIO
port so that we can use the pin. In order to do this, we are going to have to examine the
B_L475E_IOT01A schematic, which can be found at the STMicroelectronics website. What
you will find is that the digital pins are scattered across several GPIO ports, which requires
us to create our own reference table to easily use the pins. The table that maps the Arduino
header designation to the microcontroller pin is as follows:

Arduino header designation Microcontroller port designation Arduino header function
D0 PA1 GPIO/UART4 RX

D1 PA0 GPIO/UART4_TX

D2 PD14 GPIO/INT0_EXTI14

D3 PB0 GPIO/PWM/INT1_EXTI0

D4 PA3 GPIO

D5 PB4 GPIO/PWM

Customizing the MicroPython Kernel Start Up Code Chapter 5

[107]

D6 PB1 GPIO/PWM

D7 PA4 GPIO

D8 PB2 GPIO

D9 PA15 GPIO/PWM

D10 PA10 GPIO/SPI1_SS/PWM

D11 PA7 GPIO/SPI1_MOSI/PWM

D12 PA6 GPIO/SPI1_MISO

D13 PA5 GPIO/SPI1_SCK/LED1

D14 PB9 GPIO/I2C1_SDA

D15 PB8 GPIO/I2C1_SCL

As you can see from the preceding table, there are three GPIO ports that are used on the
development board:

GPIO A
GPIO B
GPIO D

Before we add any custom code, we need to make sure that we enable the clocks for these
ports. The C code that developers need to add to their MyCustom_board_early_init
function is as follows:

 __GPIOA_CLK_ENABLE();
 __GPIOB_CLK_ENABLE();
 __GPIOD_CLK_ENABLE();

The MicroPython kernel uses the STM32 HAL, which already defines low-level access
functions, so we don't need to write low-level code ourselves. We can easily leverage the
STM32 HAL to initialize our system and then we can wait for the MicroPython kernel to
boot and do any of the heavy lifting in our Python scripts. Before we access these functions,
let's create a few helper variables and initialize them so that we can easily configure our
pins:

First, we'll create an initialization structure for the GPIO outputs, which1.
configures the typical parameters for a GPIO pin, as in the following snippet:

 GPIO_InitTypeDef GPIO_InitOutput;
 GPIO_InitOutput.Speed = GPIO_SPEED_HIGH;
 GPIO_InitOutput.Mode = GPIO_MODE_OUTPUT_PP;
 GPIO_InitOutput.Pull = GPIO_PULLUP;

Customizing the MicroPython Kernel Start Up Code Chapter 5

[108]

Next, we will create a similar structure for the input pins, as in the following2.
snippet:

 GPIO_InitTypeDef GPIO_InitInput;
 GPIO_InitInput.Speed = GPIO_SPEED_HIGH;
 GPIO_InitInput.Mode = GPIO_MODE_INPUT;
 GPIO_InitInput.Pull = GPIO_NOPULL;

Finally, we will create a configuration variable for analog, as follows:3.

 GPIO_InitTypeDef GPIO_InitAnalog;
 GPIO_InitAnalog.Speed = GPIO_SPEED_HIGH;
 GPIO_InitAnalog.Mode = GPIO_MODE_ANALOG;
 GPIO_InitAnalog.Pull = GPIO_NOPULL;

As you can see from this pattern, we could easily set up configuration structures for I2C,
SPI, PWM, and other peripherals if we wanted to. If that is something you are interested in,
you can try it out, but it is beyond the scope of our discussion.

Each pin is configured separately based on the desired function. In order to save space, we
will just configure a couple of pins as an example and then you can customize your own
initialization as you see fit. Let's start by initializing our ports, as follows:

D0 – High
D1 – Low
D2 – High
D3 – Low

By default, the board initializes the pins as High, so we should be able to easily see this
pattern on a logic analyzer's output.

The code to set up the pin is now pretty simple:

First, we will write the output state to the pin before setting it as an output. This1.
is a common practice to prevent any temporary transient behavior on the output
pin during configuration. Once we set the pin, we then configure it as an output.
The STM32 HAL code to set up the D0 and D1 Arduino headers is shown in the
following code. It is necessary to set and configure the D0 and D1 pins as outputs:

 // Set Arduino-D0 High (PA1) then configure the pin
 HAL_GPIO_WritePin(GPIOA, GPIO_PIN_1, GPIO_PIN_SET);
 GPIO_InitOutput.Pin = GPIO_PIN_1;
 HAL_GPIO_Init(GPIOA, &GPIO_InitOutput);

Customizing the MicroPython Kernel Start Up Code Chapter 5

[109]

 // Set Arduino-D1 High (PA0) then configure the pin
 HAL_GPIO_WritePin(GPIOA, GPIO_PIN_0, GPIO_PIN_RESET);
 GPIO_InitOutput.Pin = GPIO_PIN_0;
 HAL_GPIO_Init(GPIOA, &GPIO_InitOutput);

The STM32 HAL code necessary to set up and configure the D2 and D3 pins as
outputs is as follows:

 // Set Arduino-D2 High (PD14) then configure the pin
 HAL_GPIO_WritePin(GPIOD, GPIO_PIN_14, GPIO_PIN_SET);
 GPIO_InitOutput.Pin = GPIO_PIN_14;
 HAL_GPIO_Init(GPIOD, &GPIO_InitOutput);

 // Set Arduino-D3 High (PB0) then configure the pin
 HAL_GPIO_WritePin(GPIOB, GPIO_PIN_0, GPIO_PIN_RESET);
 GPIO_InitOutput.Pin = GPIO_PIN_0;
 HAL_GPIO_Init(GPIOB, &GPIO_InitOutput);

We can now select another digital pin to configure as an input. Let's choose2.
D7 since this is a pin that is dedicated as GPIO only. We can configure the pin as
a digital input, as in the following code:

 GPIO_InitInput.Pin = GPIO_PIN_4;
 HAL_GPIO_Init(GPIOA, &GPIO_InitInput);

Finally, we can set up a pin as analog as well, such as A0. The STM32 HAL code3.
necessary to configure the A0 pin as an analog input is as follows:

 GPIO_InitAnalog.Pin = GPIO_PIN_0;
 HAL_GPIO_Init(GPIOC, &GPIO_InitAnalog);

Keep in mind that we don't necessarily have to customize the kernel code. We can
configure these pins from within a Python script once the MicroPython kernel has loaded.
As I mentioned before, there are times when configuring the pins as fast as possible is
critical and that is why we would want to customize the kernel this way.

Customizing the MicroPython Kernel Start Up Code Chapter 5

[110]

There are also times when we may want to decrease the amount of code that exists on the
MicroPython filesystem and want to increase execution efficiency. We can do these things
by compiling modules into bytecode and then either including them in the MicroPython
filesystem or directly building them into the kernel. Let's now examine how we can add
Python modules to the MicroPython kernel.

Adding MicroPython modules to the kernel
MicroPython has a feature that allows a developer to compile their own libraries and then
include them within the MicroPython kernel. These modules are often called
frozen modules because they are compiled into bytecode. There are several advantages to
compiling a module into a frozen module, including the following:

The Python module cannot be modified without flashing the kernel.
The module is compiled into bytecode, which keeps the source code away from
prying eyes.
Updating the application scripts is faster because there are fewer modules to
update.
If something goes wrong with the filesystem and it gets set back to default, the
compiled modules will still be present and can be called as part of the default
script to get the system back into a safe state.
You can put the compiled module into zero wait RAM if it has speed-critical
functionality, which will ensure it executes as efficiently as possible.
The compiled module can now also be stored and executed from flash, which
will free up RAM for the Python compiler and scripts that are stored on the
filesystem.

Let's look at how we can use the MPY cross compiler to compile the PCA8574.py,
button_RGB, and LED_RGB modules that we created in Chapter 3, Writing a MicroPython
Driver for an I/O Expander.

Customizing the MicroPython Kernel Start Up Code Chapter 5

[111]

The compilation process
When you first downloaded the MicroPython code, you may have noticed that in the main
directory there is a mpy-cross folder. This folder contains the MicroPython cross compiler.
Before running the cross compiler on our own code, we need to first rebuild it. The process
to do this is straightforward:

First, navigate to the micropython main directory. Executing ls in the Terminal1.
should reveal a directory structure similar to that shown in the following
screenshot:

Next, you'll want to enter the following command into the Terminal and press2.
the Enter key:

make -C mpy-cross

The mpy-cross tool should now be compiled and we are almost ready to cross-3.
compile our first module. Before we do that, we want to make sure that all of our
frozen modules are stored within a single folder related to the board that we are
working on. In this case, we want to navigate to the
ports/stm32/boards/B_L475E_IOT01A folder and create a scripts folder.
This folder will hold all of our frozen modules. Since the directory structure is
deep, I recommend also creating a scripts folder in mpy-cross. We will use
this folder to compile our module and then move it to the scripts folder in our
board folder. I have found that this is the least error-prone way to do it, but you
can use whichever method you are most comfortable with.
Finally, copy the PCA8574.py, button_RGB, and LED_RGB modules into the4.
scripts folder within mpy-cross. We are now ready to cross-compile our
modules.

Customizing the MicroPython Kernel Start Up Code Chapter 5

[112]

In the Terminal, enter the mpy-cross directory and then execute the following Terminal
commands:

 ./mpy-cross scripts/button_rgb.py
 ./mpy-cross scripts/LED_RGB.py
 ./mpy-cross scripts/PCA8574.py

If you examine the scripts directory, you will find that each of the files now also has a file
with the same name, but with the extension .mpy. An example of this is shown in the
following screenshot:

After cross-compiling the Python modules, a developer will find a matching .mpy file in
their scripts directory, which is the bytecode for their module.

The .mpy files are the compiled bytecode modules and they can now be copied to the
MicroPython filesystem. If they are referenced in the application, the precompiled bytecode
will execute. Keep in mind that if you are going to compile a lot of modules, the mpy-cross
compiler can only handle one file at a time. It may be more useful to develop a script that
will pull the filenames of the Python scripts in the directory and then invoke mpy-cross.
This will save a lot of Terminal work.

It's important to note that we only want to use mpy-cross if we plan to manually deploy
the generated .mpy files to our device's filesystem. If we want them to be deployed into the
kernel, we can include them in our kernel build and the make file will automatically
compile our Python scripts. We just need to make sure that we point the kernel to where
our scripts are.

We have now successfully made our desired changes to the kernel. Let's look at how we
can deploy the new kernel with our frozen modules to the development board.

Customizing the MicroPython Kernel Start Up Code Chapter 5

[113]

Deploying the custom kernel to a board
There are two steps that we need to follow in order to deploy our custom kernel to our
development board. First, we need to compile our new kernel. Second, we need to take the
output files and program them into the flash memory on our development board. Let's start
by looking at how we can compile our kernel.

The compiled output files
Compiling the kernel requires us to execute just a couple of commands that will run the
make file on our MicroPython port. Before attempting to invoke the make file, let's first
return to the ports/stm32/ folder in the Terminal. I recommend that you clean any
previously compiled versions of the kernel by executing the following command:

make clean BOARD=B_L475E_IOT01A

Once this has been done, we would normally just execute the following statement in order
to compile our kernel:

 make BOARD=B_L475E_IOT01A

In this case, using this command will not include the modules that we want to include in
the kernel. We must tell the compiler to include these modules in the kernel and tell it
where they are located. We can do that by executing the following:

make BOARD= B_L475E_IOT01A FROZEN_MPY_DIR=boards/ B_L475E_IOT01A /scripts

The compilation may take several minutes, depending on the machine that you are
compiling the kernel on. Once it is complete, you should see a final output, as in the
following screenshot:

Take a moment to look back through the output messages and see whether you can find
our .mpy modules. This is a good way to verify that they were included in the kernel build.
You can see in the following screenshot that the entries will start with MPY and then include
the path and the filename of our modules.

Customizing the MicroPython Kernel Start Up Code Chapter 5

[114]

You'll notice in the screenshot that if you want to include Python modules in the kernel,
you do not need to precompile them with mpy-cross. Instead, you can let the MicroPython
make file cross-compile them for you, which can save a lot of manual work:

We are now ready to deploy our custom kernel to our development board.

Programming the board
If you look back, you'll notice that two different types of files are generated by the build
process. First, we have a .dfu file. The .dfu file is a Device Firmware Update (DFU) file
format, which is supported by the USB standard. We can use Linux-based dfu-util or the
STMicroelectronics DfuSe tool to program these files into flash. Alternatively, there is a hex
file output as well. We can use the STMicroelectronics ST utility to program the board as
well.

My personal preference is to use dfu-util. I've found this to be the simplest approach
because it does not require the use of an external flash programmer. The DFU update
mechanism is built into the STM32 microcontrollers by pulling the boot pin high while the
microcontroller starts up. This then loads the STM32 bootloader, which can communicate
with dfu-util to perform the firmware update.

If you look at the schematic for B_L475E_IOT01A, you will notice that the development
board has a solder bridge (SB) that can be used to select boot from flash or bootloader
mode. The solder bridges that we are interested in are SB9 and SB13, shown in the
following circuit diagram:

(image source: STMicroelectronics)

Customizing the MicroPython Kernel Start Up Code Chapter 5

[115]

The B_L475E_IOT01A schematic shows that the BOOT0 pin can be controlled using solder
bridges that are built into the development board.

The problem with the way these solder bridges work is that if you want to boot from flash,
you need to solder a bridge across SB13. If you want the DFU to run, you need to unsolder
SB13 and solder SB9. Obviously, this is not convenient during development or production.
The best solution for allowing us to easily switch between modes is to add a switch that
will allow us to choose which mode we want the processor to boot into. A generic circuit
diagram that can be used to add a switch to our board is shown in the following diagram:

The preceding diagram shows a simple switch circuit that can be used to control whether
the development board boots to flash or in bootloader mode.

The process to add a switch to the development board requires five steps. These are as
follows:

Desolder SB13.1.
Solder a 10K 0603 resistor onto SB13.2.
Solder leads onto the switch using a 30-gauge wire-wrapping wire.3.
Solder the first lead to the VDD_MCU lead of SB9.4.
Solder the second lead to the BOOT0 side of SB9.5.

We now have a switch that can control which mode the microcontroller boots into.

Customizing the MicroPython Kernel Start Up Code Chapter 5

[116]

The board is now ready to be programmed. When I first programmed B_L475E_IOT01A, it
appeared that the DFU utility did not perform a complete chip erase on the board. Since
B_L475E_IOT01A comes with some pre-installed applications, it's useful to download the
st-link utility and perform a chip erase of the development board. This will provide a
clean environment to load the new MicroPython kernel into. I don't want to go into detail
about how to use the st-link utility, but the steps you'll need to follow are as follows:

Download the st-link utility.1.
Install the utility.2.
Run it.3.
Plug in B_L475E_IOT01A using the st-link USB connector.4.
Select Program | Chip Erase.5.

You will now have a completely erased microcontroller.

Now, from your Linux Terminal, install dfu-util using the following command:

sudo apt-get install dfu-util

Flip the switch that you installed on B_L475E_IOT01A and then press the reset button on
the development board so that it enumerates as an STM32 bootloader. This is the DFU-
capable mode. Use the following command to program the device:

dfu-util -a 0 0483:df11 -D build-B_L475E_IOT01A/firmware.dfu

Congratulations! The custom MicroPython kernel is now on the board and ready to test.

Testing the updated kernel
Once you have programmed B_L475E_IOT01A, flip the switch back to normal boot and
then press the reset button on the development board. You should see the familiar pyb
drive mount on the filesystem and have access to the MicroPython REPL. In order to test
that our libraries are included and everything is working as expected, we are going to do
two things. First, we are going to wire in the RobotDyn I/O expander and the RGB
pushbutton so that we can run our application from Chapter 3, Writing a MicroPython
Driver for an I/O Expander, on our new kernel and board. Second, we are going to use a logic
analyzer to look at the initialized pins to make sure that they are behaving the way we set
them to.

Customizing the MicroPython Kernel Start Up Code Chapter 5

[117]

The schematic diagram to connect the RobotDyn I/O expander and the RGB pushbutton is
going to change slightly from the one we had in Chapter 3, Writing a MicroPython Driver for
an I/O Expander. The reason for this is that we have a different board with different pin
assignments. The changes are quite minor and are easily made using the schematic
diagram, as follows:

You will notice that for the PWM channels, I've listed the Arduino connector name and also
the physical microcontroller pin port. The reason I have done this is that while we will be
tempted, in our software, to use the Arduino pin designation, the kernel is using the
microcontroller pin. So, in our updated code, we wouldn't use D3 to access the D3 pin, but
instead PB0. If you want to change this, you can go back into the kernel and in the
B_L475E_IOT01A boards folder, change the pin designations in the pins file and then
recompile and deploy the kernel.

In Chapter 1, Down the Rabbit Hole with MicroPython, I mentioned how easy it can be to port
a Python application between different hardware platforms. We are about to see a perfect
example of this. We first developed an application in Chapter 3, Writing a MicroPython
Driver for an I/O Expander, for the pyboard that controlled the RGB LEDs and the I/O
expander. With the new development board, we can copy our original main.py script to
the filesystem of the new board. Note that we don't need to include the supporting libraries
because they are built into the kernel.

Customizing the MicroPython Kernel Start Up Code Chapter 5

[118]

We now have three changes to the code that we need to make:

We need to update which pins are used for the PWM.1.
We need to update which timers are used to generate the PWM.2.
We need to update which timer channels are used to generate the PWM.3.

As you can see, this requires us to make the following changes:

Line 57: PinList = [Pin('PB0'), Pin('PB4'), Pin('PB1')]
Line 60: TimerList = [3,3,3]
Line 66: TimerChList = [3,4,1]

That's it! We just moved our entire application to a new MicroPython development board
and the only changes we had to make were in those three lines of code! We can now
connect a logic analyzer to the D0-D3, D14, D15, and D9 Arduino pins and run our
application the same way we have in previous chapters. When we do that and acquire a
trace, we will find that the results are as follows:

Customizing the MicroPython Kernel Start Up Code Chapter 5

[119]

Deploying the custom kernel that adjusts the default I/O states can be seen in this
screenshot. The pattern generated was HIGH, LOW, HIGH, LOW, I2C SCL, I2C, SDA, and
then a PWM signal.

As you can see, our custom initialized GPIO is set as expected. We can see the I2C messages
being sent to the RobotDyn board and we can see that our red LED is on and that there is a
PWM signal driving the LED behavior, just as before.

Summary
As we saw in this chapter, developers are able to go into the MicroPython kernel and
customize it for their applications. These customizations can be as simple as adjusting the
names of the pins on the development board or adjusting the startup states of the GPIO
pins, or as complex as communicating with an external device. We also saw that we can
save space and increase the execution efficiency of our applications by converting modules
into frozen modules, which are then built into the MicroPython kernel. If we need to
update those modules, we can also cross-compile them using mpy-cross and deploy a
precompiled bytecode version of the module onto our filesystem.

Now that we have a solid foundation on how to develop MicroPython applications and
how we can customize the kernel, in the next chapter, we will examine how we can create
our own custom debugging tools, which will allow us to visualize data in our system.

Questions
In which folder in the kernel can you find all the MicroPython supported1.
architectures?
Which microcontroller architecture has the most supported development boards?2.
Which three types of files can be found in a development board folder?3.
What are a few features that make STM32L475E_IOT01A interesting for4.
MicroPython?
Which board kernel file can be modified to change the pin designation that is5.
used to control a pin in a MicroPython script?

Customizing the MicroPython Kernel Start Up Code Chapter 5

[120]

What function must be defined in order to customize the startup code6.
initialization?
What steps should be followed to customize the startup code?7.
Which compiler tool is used to generate .mpy files and convert Python scripts to8.
frozen modules?
What are the advantages of using a frozen module?9.
What command is used to compile the kernel with frozen modules?10.

Further reading
MicroPython on microcontrollers: http:/ ​/​docs. ​micropython. ​org/ ​en/ ​v1.​9. ​3/1.
unix/​reference/ ​constrained. ​html

General documentation for MicroPython: https:/ ​/​docs. ​micropython. ​org/ ​en/2.
latest/​

http://docs.micropython.org/en/v1.9.3/unix/reference/constrained.html
http://docs.micropython.org/en/v1.9.3/unix/reference/constrained.html
http://docs.micropython.org/en/v1.9.3/unix/reference/constrained.html
http://docs.micropython.org/en/v1.9.3/unix/reference/constrained.html
http://docs.micropython.org/en/v1.9.3/unix/reference/constrained.html
http://docs.micropython.org/en/v1.9.3/unix/reference/constrained.html
http://docs.micropython.org/en/v1.9.3/unix/reference/constrained.html
http://docs.micropython.org/en/v1.9.3/unix/reference/constrained.html
http://docs.micropython.org/en/v1.9.3/unix/reference/constrained.html
http://docs.micropython.org/en/v1.9.3/unix/reference/constrained.html
http://docs.micropython.org/en/v1.9.3/unix/reference/constrained.html
http://docs.micropython.org/en/v1.9.3/unix/reference/constrained.html
http://docs.micropython.org/en/v1.9.3/unix/reference/constrained.html
http://docs.micropython.org/en/v1.9.3/unix/reference/constrained.html
http://docs.micropython.org/en/v1.9.3/unix/reference/constrained.html
http://docs.micropython.org/en/v1.9.3/unix/reference/constrained.html
http://docs.micropython.org/en/v1.9.3/unix/reference/constrained.html
http://docs.micropython.org/en/v1.9.3/unix/reference/constrained.html
http://docs.micropython.org/en/v1.9.3/unix/reference/constrained.html
http://docs.micropython.org/en/v1.9.3/unix/reference/constrained.html
http://docs.micropython.org/en/v1.9.3/unix/reference/constrained.html
http://docs.micropython.org/en/v1.9.3/unix/reference/constrained.html
http://docs.micropython.org/en/v1.9.3/unix/reference/constrained.html
http://docs.micropython.org/en/v1.9.3/unix/reference/constrained.html
https://docs.micropython.org/en/latest/
https://docs.micropython.org/en/latest/
https://docs.micropython.org/en/latest/
https://docs.micropython.org/en/latest/
https://docs.micropython.org/en/latest/
https://docs.micropython.org/en/latest/
https://docs.micropython.org/en/latest/
https://docs.micropython.org/en/latest/
https://docs.micropython.org/en/latest/
https://docs.micropython.org/en/latest/
https://docs.micropython.org/en/latest/
https://docs.micropython.org/en/latest/
https://docs.micropython.org/en/latest/

6
A Custom Debugging Tool to

Visualize Sensor Data
The greatest challenge that every embedded software developer faces is troubleshooting
their embedded system. When I speak at conferences such as Embedded World, the Embedded
Systems Conference, and Arm TechCon, or when I've polled registrants and attendees to my
courses and newsletter (Embedded Bytes), on average, developers spend 40% of their time
debugging their software. If the average project length is 12 months, that's as much as a
year being spent on failure work!

The ability to debug and visualize what an embedded system is doing can help to decrease
the amount of time we spend debugging by providing developers with critical system
information and a way to easily see what the software is doing. In this chapter, we will
build a tool in Python that allows us to visualize what our MicroPython-based embedded
system is doing. We will create a test system that generates a stream of sensor data that is
then received on a host machine to visualize the system behavior.

The following topics will be covered in this chapter:

Debugging and visualization embedded systems
Visualizer requirements
Visualizer design
Visualizer construction
Running the visualizer

A Custom Debugging Tool to Visualize Sensor Data Chapter 6

[122]

Technical requirements
The example code for this chapter can be found at the following GitHub location: https:/ ​/
github.​com/​PacktPublishing/ ​MicroPython- ​Projects/ ​tree/ ​master/ ​Chapter06.

In order to run the examples, you will want to have the following hardware and software
available:

A MicroPython supported development board
A UART to USB converter
A host machine running Python 3.x
A terminal application (such as PuTTy, RealTerm, Terminal, and many others)
A text editor such as Sublime Text

Debugging and visualizing embedded
systems
A picture is worth a thousand lines of code. As developers, we live in a world of 1s and 0s,
registers, peripherals, and scripts that are all interacting with each other and the world
around them. Understanding what our software is doing, or the sensors that are connected
to it, can dramatically help us develop the system faster but also help us see what the
system is doing and better understand how our software is executing.

If you do a search on Google for serial communication plotting, you'll find over a million
pages that cover tools such as Mbed's Serial Port Plotter, MegunoLink, ArduinoPlot, and so
on. Some of these tools are free, while some require a license that costs less than $50.
However, you will find that despite so many options, there really isn't one tool that gives
you the flexibility and scalability that is required if you are going to be developing an
embedded system.

While we could just select the best fitting plotting software and call it good, there are so
many more advantages to us creating our own visualization tool, such as the following:

The ability to customize the user interface
Send as much data as we want to as many plots as we want
Filter the data that we do receive
Save data if we so choose to a file for later analysis
Create buttons to send commands and control the system

https://github.com/PacktPublishing/MicroPython-Projects/tree/master/Chapter06
https://github.com/PacktPublishing/MicroPython-Projects/tree/master/Chapter06
https://github.com/PacktPublishing/MicroPython-Projects/tree/master/Chapter06
https://github.com/PacktPublishing/MicroPython-Projects/tree/master/Chapter06
https://github.com/PacktPublishing/MicroPython-Projects/tree/master/Chapter06
https://github.com/PacktPublishing/MicroPython-Projects/tree/master/Chapter06
https://github.com/PacktPublishing/MicroPython-Projects/tree/master/Chapter06
https://github.com/PacktPublishing/MicroPython-Projects/tree/master/Chapter06
https://github.com/PacktPublishing/MicroPython-Projects/tree/master/Chapter06
https://github.com/PacktPublishing/MicroPython-Projects/tree/master/Chapter06
https://github.com/PacktPublishing/MicroPython-Projects/tree/master/Chapter06
https://github.com/PacktPublishing/MicroPython-Projects/tree/master/Chapter06
https://github.com/PacktPublishing/MicroPython-Projects/tree/master/Chapter06
https://github.com/PacktPublishing/MicroPython-Projects/tree/master/Chapter06
https://github.com/PacktPublishing/MicroPython-Projects/tree/master/Chapter06
https://github.com/PacktPublishing/MicroPython-Projects/tree/master/Chapter06
https://github.com/PacktPublishing/MicroPython-Projects/tree/master/Chapter06
https://github.com/PacktPublishing/MicroPython-Projects/tree/master/Chapter06

A Custom Debugging Tool to Visualize Sensor Data Chapter 6

[123]

These are just a few thoughts on the advantages, not to mention that we can easily adapt
the tool for our own purposes. For example, we might decide that we don't just want to see
sensor data but have tasks send a message when they start and stop executing. This would
allow us to create our own custom trace software that we could use to debug the software
that we write.

Now, let's define what the requirements are for our custom debugging tool that will allow
us to visualize sensor data.

Visualizer requirements
The main purpose of this project is to develop the base code that can be used to receive data
coming from a MicroPython board over a serial port and parse that data so that we can
then graph it in real time. There are two main areas that we need to consider the
requirements for: hardware and software.

Hardware requirements
The visualizer that we are going to be designing is going to be strictly a software
development project. There are no hardware requirements for the project. However, there
are a few general recommendations.

First, you can use any MicroPython board that you are interested in. While you can select
any board, the example project will be written assuming that you are going to use the
STM32L475 IoT Discovery board, so you may need to make a few minor modifications to
the script to make sure you use the right hardware ports for your board.

Second, this project will send sensor data to the visualizer through the standard UART
interface. We are going to assume that the sensors we are monitoring are transmitting
humidity and temperature data, so the sample rates are going to be slow. This will allow us
to set the baud rate at 115200, which is pretty fast for handling sensors that will be
monitored at rates exceeding 10 Hz. Additional sensors could be added to the system at
faster baud rates as well. A developer would just have to make sure that they are able to
successfully transmit all the data to the host. Since 115200 is a relatively slow baud rate
with modern hardware, a developer may also want to consider increasing the baud rate to
1,000,000 bits per second.

A Custom Debugging Tool to Visualize Sensor Data Chapter 6

[124]

Third, keep in mind that there is more than one way to send serial data to the visualizer. If
a developer wanted to, they could modify boot.py so that the MicroPython board shows
up as a virtual communication port (VCP). This can be done by uncommenting the
following line in boot.py:

 pyb.usb_mode('VCP+MSC') # act as a serial and a storage device

The only advantage to using the VCP is that you would not need a UART to USB converter
to provide the visualizer with serial data to plot.

Finally, since we want our visualizer to be able to handle generic sensor data, we can either
select a sensor module that collects humidity and temperature data, parse it, and send that
to the visualizer, or we can create test data that does not require any external sensor to be
connected to the device.

Software requirements
The software requirements for this project are as follows:

The visualizer will be written in Python 3.x.
The visualizer will receive sensor data on the host machine through a selectable
communication port.
The sensor data will be displayed in real time as new sensor data becomes
available.
The visualizer will be scalable and reusable so that it can be used in future
development projects (which occur throughout the rest of this book).

These requirements demonstrate the features that need to be implemented and leave the
implementation details up to the developer to use their best judgment.

Visualizer design
At this stage in the project, we've discovered what the requirements for the project are. We
are now going to develop a hardware and software architecture. The best way to picture an
architecture is through a map that is general enough to provide directions on where we
need to head but does not provide enough details regarding how to restrict how we get
there. The architecture should be flexible so that we can deal with any changing
requirements on the fly.

A Custom Debugging Tool to Visualize Sensor Data Chapter 6

[125]

For our purposes, we will use this section to explore the high-level architecture and then
develop the detailed design that we can construct the project in the next section

The visualizer hardware architecture
As we mentioned earlier, there are two ways that we can design the hardware interface for
the visualizer. First, we can use a live sensor such as a temperature and humidity sensor
such as an AM2302, DHT11, or DHT22. These sensors typically just have VCC, ground, and
data out. There is a complete tutorial on these sensors that can be found on the
Adafruit website at https:/ ​/​learn. ​adafruit. ​com/​dht/ ​connecting- ​to- ​a-​dhtxx- ​sensor.

In a configuration where we set up the STM32L475 IoT Discovery board, we can connect
the live sensor to the development board and the visualizer using the setup shown in the
following diagram:

As we can see, this is an example setup of how the MicroPython board and a sensor can be
connected to the host computer running the visualizer.

https://learn.adafruit.com/dht/connecting-to-a-dhtxx-sensor
https://learn.adafruit.com/dht/connecting-to-a-dhtxx-sensor
https://learn.adafruit.com/dht/connecting-to-a-dhtxx-sensor
https://learn.adafruit.com/dht/connecting-to-a-dhtxx-sensor
https://learn.adafruit.com/dht/connecting-to-a-dhtxx-sensor
https://learn.adafruit.com/dht/connecting-to-a-dhtxx-sensor
https://learn.adafruit.com/dht/connecting-to-a-dhtxx-sensor
https://learn.adafruit.com/dht/connecting-to-a-dhtxx-sensor
https://learn.adafruit.com/dht/connecting-to-a-dhtxx-sensor
https://learn.adafruit.com/dht/connecting-to-a-dhtxx-sensor
https://learn.adafruit.com/dht/connecting-to-a-dhtxx-sensor
https://learn.adafruit.com/dht/connecting-to-a-dhtxx-sensor
https://learn.adafruit.com/dht/connecting-to-a-dhtxx-sensor
https://learn.adafruit.com/dht/connecting-to-a-dhtxx-sensor
https://learn.adafruit.com/dht/connecting-to-a-dhtxx-sensor
https://learn.adafruit.com/dht/connecting-to-a-dhtxx-sensor
https://learn.adafruit.com/dht/connecting-to-a-dhtxx-sensor
https://learn.adafruit.com/dht/connecting-to-a-dhtxx-sensor
https://learn.adafruit.com/dht/connecting-to-a-dhtxx-sensor
https://learn.adafruit.com/dht/connecting-to-a-dhtxx-sensor
https://learn.adafruit.com/dht/connecting-to-a-dhtxx-sensor

A Custom Debugging Tool to Visualize Sensor Data Chapter 6

[126]

One of the major disadvantages of using this setup initially is that we have several
unknowns in the system. We have integrated a sensor that we need to validate and make
sure our code works for, and then we must develop the code to communicate with the
visualizer. The sensor we select may also not vary much, so it may be hard for us to
effectively prove out the visualizer.

This brings us to the second option, which is to not use a live sensor at this point and,
instead, generate known values to send to the visualizer that will allow us to validate that
our visualizer works so that we can add our sensors to the system. There are several
advantages to doing this, such as the following:

Less code to write initially
No need to troubleshoot sensor code
A simpler hardware setup

For this project, we are going to use a simplified hardware configuration that can be used to
develop the visualizer, as shown in the following diagram:

The visualizer software architecture
Looking back at the software requirements for this project, we can identify that there are
several key functions that the visualizer will need to perform. These functions include the
following:

Opening and closing the desired communication port
Setting up and displaying data on a chart
Receiving and parsing data coming from the communication port
Plotting the data on the chart

A Custom Debugging Tool to Visualize Sensor Data Chapter 6

[127]

We can represent all these features in a very simple software flowchart. The flowchart can
be seen in the following diagram:

As you can see from the flowchart, when we run the script, we will specify which
communication port to expect the data to be coming in on. We will then configure what
library is being used to display a chart and get that set up and ready to run. At that point,
we just need to wait for data to be received.

When data is received, we pull that data out of the receive buffer and then parse it to
determine which of our charts the data should be plotted on. Finally, the data is plotted and
we wait for more data to be received. If there is no data plot, then we can simply sleep the
application or if we want to be sophisticated, we could set up notifications stating that data
is present. At this point, we are now ready to start constructing the visualizer.

Constructing the visualizer
The visualizer is going to leverage existing libraries in order to minimize the effort that is
required to receive and plot data. There are two libraries that are particularly interesting for
this project: pySerial and Matplotlib.

A Custom Debugging Tool to Visualize Sensor Data Chapter 6

[128]

pySerial is a Python module that encapsulates all the features and functions that are needed
to interact with a serial port. pySerial can run on multiple operating systems, such as
Windows, Mac OS X, and Linux, to name a few. It includes a module called serial that
provides useful features for interacting with the serial port, such as the following:

Open
Close
Send
Receive

Matplotlib is a Python library that provides the functionality for 2D data plotting, which
can be used interactively or can be used for publication-quality figures. The number and
types of charts that can be created are quite extensive. For our purposes, we will just use a
good old scatter plot.

Installing the project libraries
Before we start writing the code, let's make sure that we have our host machine up to date
on all its software libraries:

First, make sure that you are using the latest version of Python 3. For me, that is1.
Python 3.7, but Python 3.x should work without any issues.
Next, make sure that your pip installation is up to date by opening a Terminal or2.
command console and typing the following:

python -m pip install –upgrade pip

Follow the prompts to update pip to the latest version. It may take a few minutes3.
to upgrade, depending on your internet connection and how old your pip is.
Once the pip update is complete, we will need to install pySerial and Matplotlib.4.
To install pySerial, use the updated pip by typing the following command into
the Terminal:

pip install pySerial

Again, follow the prompts until the installation is complete. Then, run the5.
following in the Terminal to install Matplotlib:

pip install Matplotlib

A Custom Debugging Tool to Visualize Sensor Data Chapter 6

[129]

The host computer is now ready for us to start writing the visualizer, but first, we need to
write a MicroPython application that will send sensor data to the host for plotting over a
serial port.

Setting up a serial data stream in MicroPython
As we saw in the hardware architecture for this project, we are going to be using a serial
port on the MicroPython device to send a stream of known data to the visualizer to plot.
Once we've tested and debugged both sets of code, we can update our MicroPython device
to send real sensor data. For now, we just need to send known values that we can use for
testing:

Before we do anything, we need to make sure that we import the Universal1.
Asynchronous Receiver/Transmitter (UART) module from pyb and set the
emergency exception buffer size. Just like we did in previous projects, this can be
done using the following code:

import micropython # For emergency exception
buffer
from pyb import UART
Buffer for interrupt error messages
micropython.alloc_emergency_exception_buf(100)

Next, we need to determine which UART we selected to communicate with the2.
serial to UART converter. This can be done by reviewing the hardware
architecture and board schematics. For the STM32F475 IoT board, the D0 and D1
pins, which are the UART transmit and receive pins, correspond to UART4. To
initialize these pins as a UART functionality and to set the baud rate to 115200,
the following lines of Python code can be written:

Create a uart object, uart4, and setup the serial parameters
uart4 = UART(4, 115200)
uart4.init(115200, bits=8, parity=None, stop=1)

Next, we want to create a few variables that will be used to track the sample time3.
and the data that will be sent to the visualizer. In this case, we want to keep track
of the following variables:

Time

Temperature

Humidity

A Custom Debugging Tool to Visualize Sensor Data Chapter 6

[130]

These variables can be declared as floating-point variables, as follows:

Create variables to store time, temperature and humidity
Time = 0.0
Temperature = -20.0
Humidity = 34.5

The main loop for the code has a few steps that it needs to perform, which4.
include the following:

Update the time1.
Update the temperature2.
Update the humidity3.
Create the sensor string data to send4.
Send the latest sensor data5.

The test loop should run at a frequency of 1 Hz, which means that the main
program loop will look as follows:

while True:
 # Update Time
 # Update Sensors
 # Create string data
 # Send sensor data
 pyb.delay(1000)

The code necessary to update the time is nothing more than incrementing the5.
time variable by one. However, the temperature and humidity data are going to
be a little more complicated. After all, we don't want to just send any old thing.
For the temperature data, we'll start incrementing the temperature throughout
each loop by 1 degree until it reaches +20, where it will then turn around and
return to -20. The code to pull this off is as follows:

Update Temperature
if TempDir == 1:
 Temperature = Temperature + 1
 if Temperature >= 20:
 TempDir = 0
else:
 Temperature = Temperature - 1
 if Temperature <= -20:
 TempDir = 1

A Custom Debugging Tool to Visualize Sensor Data Chapter 6

[131]

For the humidity, we do something very similar, except that our variable names6.
and the boundary conditions for the humidity will be 25 on the low end and 35
on the high end. The code necessary to generate this behavior is as follows:

 #Update Humidity
 if HumidDir == 1:
 Humidity = Humidity + 0.5
 if Humidity >= 35:
 HumidDir = 0
 else:
 Humidity = Humidity - 0.5
 if Humidity <= 25:
 HumidDir = 1

There are many different formats that we could use to send the sensor data to the7.
visualizer application. The simplest is to send the data with the following format:

Chart for the chart, time stamp, sensor data

If we wanted to be super robust, we could also wrap this data in a packet format8.
with sync characters, opcode, data packet size, and a checksum. For the most
part, this would be overkill for a simple data visualizer that is used for
debugging. We can prepare the data and send it as a string by converting the
floating-point values into strings and concatenating them together, as follows:

 # Create string data
 TemperatureDataString = '1,' + str(Time) + ',' + str(Temperature)
+'\n'
 HumidityDataString = '2,' + str(Time) + ',' + str(Humidity) +'\n'

The strings are then easy to transmit through the uart4 serial object by writing9.
the following:

 # Send sensor data
 print(TemperatureDataString)
 uart4.write(TemperatureDataString)
 print(HumidityDataString)
 uart4.write(HumidityDataString)

A Custom Debugging Tool to Visualize Sensor Data Chapter 6

[132]

Notice that right before we transmit each packet, we print what we are sending to the
Terminal. This makes it so much easier to see what the application is doing and will
provide useful information in case things don't go as expected. At this point, if you were to
run the Python code and connect to the terminal, you would see a sequence of strings being
printed, which looks similar to what's being shown in the following screenshot:

Here, we are seeing the Terminal output for the MicroPython code, which is simulating
sensor data and transmitting it to the visualizer application.

We are now ready to collect this sensor data from the host serial port (COM port) and plot
it in real time.

A Custom Debugging Tool to Visualize Sensor Data Chapter 6

[133]

Opening a COM port using command-line
arguments
On the host machine, create a new Python script using your favorite text editor. I
recommend naming the script VisualizerTool.py. You could also name it something
like RTPlotter.py or anything else that you think provides a good description for the
module. Now, follow these steps:

Our first step to building the visualizer is to integrate the pySerial library and1.
provide command-line options so that we can select which port the data will be
coming in on. In order to do this, we need to import the pySerial and args
modules into the script using the following code:

import serial
import argparse

We also want to be able to cleanly exit the script if a developer does not provide a2.
communication port to connect to. To do this, we want to include the sys
module using the following code:

import sys

Next, we can create a serial object named ser that will be used to interact with3.
the serial port. During the object instantiation, we do not want to set up any of
the parameters or open a port quite yet. We want to create the object and then
once the user passes in the communication port, we can initialize and open the
port. The code to create the serial port object is as follows:

ser = serial.Serial()

The easiest way to get the communication port from the command line is to use4.
the parser argument module. We can create parser in a function named main
that will then be called when the script is executed. The first step in this process
is to create a function called main that instantiates an argument parsing object, as
shown in the following code:

def main()
 parser = argparse.ArgumentParser()

A Custom Debugging Tool to Visualize Sensor Data Chapter 6

[134]

Next, we want to add a new argument to the object. The argument that we are5.
interested in is a port argument. This will be a string that holds the port to
connect to. The port will be entered using text such as COM5, ttyUSB0, and so
on. We can add a new argument using the add_argument method, which allows
us to create the argument name and provide a description, as shown here:

parser.add_argument("--port", help="The communication port to
connect
 to the target")

When the script runs, we can parse the arguments that are passed into the script6.
by creating a new variable named args and using the parse_args method, as
shown here:

 args = parser.parse_args()

There may be times where we want to add multiple arguments that are passed7.
into the script, so it's a good idea to test the args variable for the arguments that
we are interested in using. For example, we can test args.port to see if a port
has been passed in and if so, we can proceed to set up the communication port,
as shown in the following code:

if args.port:
 ser.port = args.port
 ser.baudrate = 115200
 ser.parity = serial.PARITY_NONE
 ser.stopbits = serial.STOPBITS_ONE
 ser.bytesize = serial.EIGHTBITS
 try:
 ser.open()
 print(args.port + " Opened Successfully!")
 except Exception as e: print(e)
else:
 print("A communication port was not provided using --port")
 sys.exit()

As you can see from this setup code, we test the port and if it is present, we
configure the port and set the baud rate to 115200, along with the port settings.
We could pass these settings in on the command line or even create a
configuration file that we read into the script when it starts. For our purposes,
we'll assume the baud rate settings and just pass in the communication port to
keep things simple. Remember, it's always better to build out a robust and strong
foundation and then add features as time goes on.

A Custom Debugging Tool to Visualize Sensor Data Chapter 6

[135]

Since we are not validating whether the port being provided to the script is valid,
we wrap our ser.open() method in a try/except case that will either open the
port successfully or cause an error, which we will print to the Terminal. This will
help us, or a would-be user, figure out what we did wrong when we tried to
execute the script. Finally, if we did not pass a port argument into the script, we
provide a polite message stating that we need to use the –port argument in order
to use the script and then gracefully exit the application.

After the main function, we also want to use some scripting to test if a main8.
function exists within our script and if so, we want to make sure that the main
function is called. This can be done using the following code:

if __name__ == "__main__":
 main()

At this point, we should be able to run the script and open the port that we pass9.
into the script. The script will run silently if successful and then just return to the
Terminal. If you want to explicitly see that the port is opening successfully, you
could add a print statement after ser.open(), as follows:

print(args.port + “ Opened Succesfully!”)

Now that the communication port interface has been successfully tested, we are ready to
integrate Matplotlib and create a few scatter plots.

Creating a user interface with Matplotlib
Matplotlib has several different charts, styles, and options that we could use to graph our
data in real time, but the ones that we are going to use are the pyplot and the animation
features. pyplot allows us to create the standard xy dataset plot, while the animation
module allows us to periodically update the plot with new data that is coming into the
application. In order to use these modules, we need to add them to our application using
the following imports:

import matplotlib.pyplot as plt
import matplotlib.animation as animation

A Custom Debugging Tool to Visualize Sensor Data Chapter 6

[136]

Next, we want to write the code that will display each dataset, temperature, and humidity
on separate figures. In order to do this, we are going to use the following process:

Instantiate a new plot figure.1.
Add a subtitle to the figure.2.
Create a subplot that will contain the x,y data.3.
Label the x axis.4.
Label the y axis.5.
Create a figure manager.6.
 Set the figure location on the monitor.7.

For each of these steps, only a single line of Python code is required to accomplish the task.
The code required to create the temperature figure is as follows:

fig = plt.figure()
fig.suptitle("Temperature", fontsize =16)
ax1 = fig.add_subplot(1,1,1)
ax1.set_xlabel('Time (s)')
ax1.set_ylabel('Temperature (Degrees C)')
Figure1Manager = plt.get_current_fig_manager()
Figure1Manager.window.wm_geometry("+250+250")

As you can see, we instantiate the fig object using plt.figure() and then provide it with
its subtitle name by using the suptitle method. We then add a subplot to the figure using
add_subplot. The three ones that are passed into this function specify the number of rows
and columns that the graph will have, along with the index of where it will be displayed.
We want the largest graph possible in our window, so we select all the ones.

The most interesting piece of code might be that for the window manager geometry. We
can directly tell the figure where we want it to be rendered on the screen. In this case, I
selected that I wanted the figure to be drawn +250 pixels down and +250 pixels to the right.
This allows me to space out the drawn figures so that there is a nice look and feel to it once
the second figure is drawn.

The second figure for the humidity is created using the following code:

Setup Figure 2 for humidity plotting
fig2 = plt.figure()
fig2.suptitle("Humidity", fontsize =16)
ax2 = fig2.add_subplot(1,1,1)
ax2.set_xlabel('Time (s)')
ax2.set_ylabel('Relative Humidity (%)')
Figure2Manager = plt.get_current_fig_manager()
Figure2Manager.window.wm_geometry("+900+250")

A Custom Debugging Tool to Visualize Sensor Data Chapter 6

[137]

As you can see, it's done almost identically to the first figure, except we have created new
objects to manage the second figure, updated the axis names, and changed the window
manager geometry to +900+250. At this point, if you were to run the script and include a
call to the plt.show() method, you would see the following plots. As shown here, it's
confirmed that the code to generate the temperature and humidity figures is working:

As shown in the preceding screenshot, the drawn figures have our title, axis names, and a
toolbar at the bottom. This toolbar includes the ability to move the dataset around by
zooming in and out, configuring the subplot settings, and even saving the data.

Now that we have the graphs for our visualizer, let's look at how we can close the loop by
creating an animation that periodically processes the incoming serial data and then plots it
on the figures.

Plotting the incoming data stream
We now have all the pieces that we need in order to display our sensor data in real time; a
figure to plot the data on and a serial data stream to retrieve the data from. The only thing
missing now is the code necessary to connect these two pieces. We are going to use the
animations feature of Matplotlib in order to this.

A Custom Debugging Tool to Visualize Sensor Data Chapter 6

[138]

The animation feature essentially allows us to create a separate thread that will run on the
host for each figure that we want to update. We select the figure that will be updated, the
function that will be called, and the interval that we want the plot to be updated at. I've
found that on my host machine, updating any faster than a few times per second causes a
fair amount of lag if I want to resize or interact with the display. For that reason, I
recommend updating at 1 or 2 Hz. To make this value configurable, I would create a
variable within our script, as follows:

 INTERVAL_UPDATE_MS = 500

In order to update the figures and show them, we want to add the following three lines of
code in our main function, after the code that successfully opens the serial port:

ani = animation.FuncAnimation(fig, animate, interval=INTERVAL_UPDATE_MS)
ani2 = animation.FuncAnimation(fig2, animate, interval=INTERVAL_UPDATE_MS)
plt.show()

As you can see, this code creates two animations that will manage our two figures at the
update interval that we select. You'll also notice that the function is expecting a function
named animate. This function will tie together the incoming serial data and allow us to
update the plot. There are several things that we will want the animate function to
accomplish, such as the following:

Detect if there is new data present
Parse the incoming serial data
Store the data in the appropriate data buffer
Update the plots

Before we can create the animate function, we want to create two sets of lists that hold the
x and y data for the two figures. There are several different ways that we can do this in
Python, but we are going to use lists, as shown in the following code:

Stores the x,y data for the temperature figure (1)
Fig1DataX = []
Fig1DataY = []
Stores the x,y data for the humidity figure (2)
Fig2DataX = []
Fig2DataY = []

We are using lists in this way because it's easy to just append new data to them once the
serial stream has been received. Now that we have the lists that will store our data, let's
receive the data stream and plot it.

A Custom Debugging Tool to Visualize Sensor Data Chapter 6

[139]

Let's start by creating an outline of our animate function. We can do this by creating the
function and then writing the pseudocode using comments. For example, our animation
function at this point should look something like the following:

def animate(i):
 # Check to see if there is data waiting to be processed.
 # If data is present, process it, otherwise, refresh the figures
 # While there is data present, read in the data one character at a
time
 # If a newline character is reached, parse the string and store the
data
 # Refresh the plots

We can implement the animate function one layer at a time, starting with the outmost
layer:

The first thing that we need to do is create a variable that will store the received1.
characters. We can do this by creating an InputString variable at the top of the
animate function, as follows:

InputString = ""

Next, we want to check to see if any characters are present and if there are, for2.
now, we will just print out a message stating that we received a character and
then we will update the plots. The resulting code will look something like the
following:

if(ser.inWaiting() > 0):
 print("Received a character!")

ax1.clear()
ax1.plot(Fig1DataX, Fig1DataY)
ax1.set_xlabel('Time (s)')
ax1.set_ylabel('Temperature (Degrees C)')
ax2.clear()
ax2.plot(Fig2DataX, Fig2DataY)
ax2.set_xlabel('Time (s)')
ax2.set_ylabel('Relative Humidity (%)')

Notice that in this code, we are updating each figure on its own using the following
process:

Clear the current contents.1.
Plot the x,y data.2.
Set the axis labels again.3.

A Custom Debugging Tool to Visualize Sensor Data Chapter 6

[140]

When we clear the existing data from the plot, it also resets our axis labels, so we need to
redraw them. Currently, we are also using the clear command because we are refreshing
all the points on the plot. For a first place implementation, this was the easiest way to get
the chart up and running without losing any of the data. In the future, you may decide to
just add the new incoming data and keep a separate variable for all the incoming data.
We've placed no limits on how large the lists can grow, so at some point, it would make
sense to add code that will limit how large they get and clear them out once some
maximum number of samples has been received.

We can now move to the next layer in the animate function, which is to start reading in the
data. We can replace our print statement with a while loop that will execute until there
are no characters in the serial receive buffer. While there is data, we will simply read in a
single character into a variable named SerData. The code for this is as follows:

while(ser.inWaiting() > 0):
 SerData = ser.read(1)

At this point, we want to write some logic that will look at the character that has been
received and if it is a newline character, process the InputString variable and if it is not a
newline character, we will simply concatenate the new character to the existing
InputString. When we do this, we want to make sure that we use the right character
encoding by using the decode method with utf-8 specified. The code for this is as follows:

if "\n" in SerData.decode("utf-8"):
 # Parse the InputString
else:
 InputString = InputString + SerData.decode("utf-8")

This brings us to the core of the parsing in the final layer of the code. As you may recall, the
data packets that are coming from the MicroPython device are in the following format:

PlotNumber, X-Data, Y-Data

We used a comma delimited format so that we could use the split() Python function to
split the string when it encountered a comma. We can then check the first element in the
new data list to see if it is a 1 for a temperature plot or a 2 for a humidity plot. Once we
determine which it is, we convert the string data into a floating-point number and store it in
the appropriate data list. Our InputString is then reset and we should have a fully
functional visualizer. This final layer of code for parsing the string can be seen in the
following code:

SplitStrData = InputString.split(',')
print(SplitStrData)
if(int(SplitStrData[0]) == 1):

A Custom Debugging Tool to Visualize Sensor Data Chapter 6

[141]

 Fig1DataX.append(float(SplitStrData[1]))
 Fig1DataY.append(float(SplitStrData[2]))
elif(int(SplitStrData[0]) == 2):
 Fig2DataX.append(float(SplitStrData[1]))
 Fig2DataY.append(float(SplitStrData[2]))
InputString = ""
SplitStrData = None

We are now ready to test and run our visualizer tool.

Running the visualizer
Now, we are ready to test the visualizer, which will require several steps. These steps
include doing the following:

Starting the MicroPython application1.
Identifying the COM port the data is received on the host2.
Starting the visualizer on the host3.

First, set up and run the MicroPython script. When you connect to your MicroPython
Terminal, you should see that the Terminal is displaying information similar to what can be
seen in the following screenshot. As we can see, the transmission of sensor data packets
over UART is successful:

A Custom Debugging Tool to Visualize Sensor Data Chapter 6

[142]

Next, we can identify which communication port the USB to serial adapter is using. The
format for the serial port will vary, depending on the operating system that you are using,
along with how you found the COM port. I am using a Microsoft Windows machine, and
my USB to serial adapter is currently COM5.

This brings us to the final step, which is to execute our visualizer script. This can be done by
running the script with the –port option, as follows:

python RTPlotter.py –port COM5

If everything went according to plan, you should now see two figures on your monitor and
a few times each second, the figures should be updating with fresh sensor values. If you let
the system run for a few minutes, you should see that a pattern emerges in the data, similar
to the one shown in the following image. This shows that executing the visualizer with the
script-generated sensor data is successful:

Congratulations! At this point, you now have a working visualizer that you have been able
to verify receives sensor data from the MicroPython board successfully. I would
recommend that you play with the interface and come to understand how you can zoom in,
zoom out, and save the data.

We are now ready to discuss what next steps you might take with this project in order to
further hone your skills.

A Custom Debugging Tool to Visualize Sensor Data Chapter 6

[143]

Going further with visualizer enhancements
Now that we have a functional visualizer, there are so many enhancements that we can
make to improve the functionality and the usefulness of our new tool. While these
enhancements are beyond the scope of this book, I think it's still a good idea to discuss
them in order to give you ideas regarding where you can take this project from here. Let's
examine a few ideas regarding new features and code enhancements you can make to this
project.

The visualizer, while functional, is not the most scalable piece of code. As you may recall,
we hardcoded the two different charts that appear when we run the visualizer. While this is
useful for testing, it would be great to create a configuration file that would contain the
following information:

Chart name
X axis label
Y axis label
Refresh rate
Chart screen location

The configuration file could list each piece of information for all the charts that will be
included in the visualizer when it is executed. The visualizer would start up, read the file,
and then use a simple loop to instantiate all the charts. By doing this, the visualizer would
become much more scalable and would require that only the configuration file be modified
for any project. With the addition of a configuration file, the Terminal interface arguments
could also be modified so that a developer can pass along the name of the configuration file
that they want to use during that execution cycle.

The next enhancement that could be made to the visualizer is to improve the robustness of
the communications between the MicroPython board and the host computer. Right now,
the data stream is simple and does not include any checksums to validate the data. We've
written our code to assume that there will never be a problem, but if the noise gets injected
into the serial lines, there is no way to detect that the data has become corrupted. This can
be resolved by adding a simple and fast checksum algorithm such as Fletcher 16 to the data.

A Custom Debugging Tool to Visualize Sensor Data Chapter 6

[144]

Another idea that would be useful to implement in the visualizer is the ability to save the
received data to a file. There may be times where we will want to save the incoming data
and then open it in a spreadsheet to apply a filter or further analyze the data. While the
chart will let you save a PNG image, having the raw data that was received would also be
quite useful, and it doesn't take much to add this feature. Again, a developer could add a
Terminal argument that, when used, would save the incoming data to the file for later
processing.

The visualizer we created was designed to plot data from our device, but it could also be
modified to allow two-way communication. The serial interface could be updated to allow
a serial message to be sent to the MicroPython device, which could then turn on an LED,
run a motor, or any number of potential activities. This opens the door for us to integrate
the test harness example that we looked at earlier into the visualizer so that you have one
comprehensive piece of software that can display what is happening on the MicroPython
device but also direct how it will behave and function.

Summary
In this chapter, we explored how we can use the UART and on-board a MicroPython board
to transmit a stream of data that provides us developers with insights into how our system
is behaving. We created a stream of known data that represented temperature and
humidity data to verify that a host-based visualizer application was able to parse the data
stream and then plot the data in real time. With this communication loop closed, we now
have the ability to plot important information such as sensor values, but we can also
transmit trace data from our MicroPython application and then plot it to get a better
understanding of how our applications are behaving and use this information to
troubleshoot our applications.

In the next chapter, we are going to look at how we can integrate motion and gesture
detection sensors and interact with them using MicroPython to control a robot.

A Custom Debugging Tool to Visualize Sensor Data Chapter 6

[145]

Questions
What files are used to modify what USB classes are supported on startup by the1.
MicroPython board?
What are some reasons we would use generated data in our development rather2.
than a live sensor?
At what chart refresh rate does the user interface start to become sluggish?3.
What are some reasons for using the MicroPython UART for communication4.
over using the USB?
What Python function is used to convert a floating-point number into a string?5.
What module is used to create command-line arguments?6.
What are some new features that could be added to the visualizer to enhance its7.
capabilities?

Further reading
pySerial documentation (https:/ ​/​pythonhosted. ​org/​pyserial/ ​)1.
Matplotlib documentation (https:/ ​/​matplotlib. ​org/ ​)2.

https://pythonhosted.org/pyserial/
https://pythonhosted.org/pyserial/
https://pythonhosted.org/pyserial/
https://pythonhosted.org/pyserial/
https://pythonhosted.org/pyserial/
https://pythonhosted.org/pyserial/
https://pythonhosted.org/pyserial/
https://pythonhosted.org/pyserial/
https://pythonhosted.org/pyserial/
https://pythonhosted.org/pyserial/
https://matplotlib.org/
https://matplotlib.org/
https://matplotlib.org/
https://matplotlib.org/
https://matplotlib.org/
https://matplotlib.org/
https://matplotlib.org/
https://matplotlib.org/

7
Device Control Using Gestures

Knobs, buttons, levers, and touch screens have dominated the controls world by being the
primary way that a user interacts with an embedded device. These tactile interfaces aren't
the only way to interact with a device. In recent years, new sensors and technologies have
created opportunities to create tactile-less interfaces that rely on hand movements and
gestures. These gesture-based controls can be a far more intuitive and natural way to
interact with a device.

In this chapter, we will examine how to integrate a gesture controller into an embedded
device that allows us to control it using gestures.

The following topics will be covered in this chapter:

An introduction to gesture controllers
Gesture controller requirements
Gesture controller hardware and software design
Constructing a gesture controller
Testing gesture controller applications

Device Control Using Gestures Chapter 7

[147]

Technical requirements
The example code for this chapter can be found at https:/ ​/​github. ​com/​PacktPublishing/
MicroPython-​Projects/ ​tree/ ​master/ ​Chapter07.

In order to run the examples, you will need to have the following hardware and software:

A MicroPython supported development board
An Adafruit ADPS9960 breakout board
A prototyping breadboard
Wire jumpers
Four LEDs with appropriately sized resistors
A terminal application (PuTTy, RealTerm, Terminal, or one of many others)
A text editor, such as Sublime Text

Introducing gesture controllers
Gesture controllers provide developers with the ability to create unique interfaces to their
embedded product that allows the user to interact with their device in a hands-free way.

Gesture technology can vary quite dramatically in its capabilities and the technology that
drives it. For example, a low-end system can take advantage of an infrared light-emitting
diode (IR LED) and a photodiode with a cost of less than $10, whereas a higher-end
system, such as Leap or the discontinued Microsoft Kinect, might cost several hundred
dollars. High-end solutions often use several cameras, including an IR camera, to capture
motion and then break it down into a gesture.

For most readers, integrating Leap, or another gesture controller that is typically USB-
based, is going to be outside your price range and will also require quite a bit of
development time. These higher-end solutions provide software development kits (SDKs)
for Windows, macOS, and Linux, which means considerable work would need to be done
to port the SDK so that it can be used with MicroPython. In this project, we are going to use
a simple, low-cost integrated gesture controller that is based on an IR LED and a
photodiode. All the electronics are integrated into a single package and provided by Avago
as the APDS-9960 breakout board.

https://github.com/PacktPublishing/MicroPython-Projects/tree/master/Chapter07
https://github.com/PacktPublishing/MicroPython-Projects/tree/master/Chapter07
https://github.com/PacktPublishing/MicroPython-Projects/tree/master/Chapter07
https://github.com/PacktPublishing/MicroPython-Projects/tree/master/Chapter07
https://github.com/PacktPublishing/MicroPython-Projects/tree/master/Chapter07
https://github.com/PacktPublishing/MicroPython-Projects/tree/master/Chapter07
https://github.com/PacktPublishing/MicroPython-Projects/tree/master/Chapter07
https://github.com/PacktPublishing/MicroPython-Projects/tree/master/Chapter07
https://github.com/PacktPublishing/MicroPython-Projects/tree/master/Chapter07
https://github.com/PacktPublishing/MicroPython-Projects/tree/master/Chapter07
https://github.com/PacktPublishing/MicroPython-Projects/tree/master/Chapter07
https://github.com/PacktPublishing/MicroPython-Projects/tree/master/Chapter07
https://github.com/PacktPublishing/MicroPython-Projects/tree/master/Chapter07
https://github.com/PacktPublishing/MicroPython-Projects/tree/master/Chapter07
https://github.com/PacktPublishing/MicroPython-Projects/tree/master/Chapter07
https://github.com/PacktPublishing/MicroPython-Projects/tree/master/Chapter07
https://github.com/PacktPublishing/MicroPython-Projects/tree/master/Chapter07
https://github.com/PacktPublishing/MicroPython-Projects/tree/master/Chapter07

Device Control Using Gestures Chapter 7

[148]

The APDS-9960 is a digital proximity, ambient light, and RGB gesture sensor. For our
purposes, we are interested in the digital proximity and gesture sensor aspects. We want to
use the sensor to detect when someone waves their hand across the sensor so that we can
detect the following gestures:

Forward
Backward
Left
Right

These are the typical gestures that we might want to use to control a robot or other device,
or perhaps even a coffee maker or stove. We could also add additional gestures, such as up,
down, or something far more complex and customized. The APDS-9960, which is a gesture
controller, does not provide us with the gesture answer. Instead, it provides a series of
counts for its photodiodes that we, as the developer, then need to analyze and interpret to
determine what gesture was presented to the sensor. We will explore how the gesture
controller works once we get into the hardware design, but first, we should discuss what
our requirements are.

Gesture controller requirements
The main purpose of this project is to build a cost-effective gesture controller that we can
integrate into an embedded device and use to control the device. Our device should be able
to control relays, send a message out on Wi-Fi or Bluetooth, or carry out many other
possibilities. With this project, we want to set up the building blocks that will make our
detected gesture turn an LED on for five seconds and then turn it off. The LED that lights
up will correspond to the gesture that was detected, which will also be printed to the
terminal. Let's now look at our hardware and software requirements.

Hardware requirements
The hardware requirements for our gesture controller are much stricter than in our
previous projects. While in the past we kept the system requirements pretty loose, in this
project we are going to specify the exact hardware components that will be used in the
project. We normally want to keep the requirements loose to allow an engineer to select the
parts that they think best fit the application. However, in the real world, we don't always
have that luxury! Sometimes, there are monetary requirements that force a developer to use
a specific part, such as a customer preference, or even a relationship with a company that
makes using a specific part a necessary requirement.

Device Control Using Gestures Chapter 7

[149]

For the gesture controller, our hardware requirements are as follows:

The gesture controller will be based on the Avago APDS-9960 breakout board.
The system will have four LEDs, each one representing one of the four defined
gestures that will be detected by the system: forward, backward, left, and right.

From a hardware viewpoint, we don't have too many requirements, but they are quite
specific to the hardware that we will be using. The reason for this is that for our example, I
want to ensure you are using the same hardware as I am in case there are differences in the
results.

Software requirements
The general behavior for the gesture controller software can be summed up in just a few
simple requirements. In these requirements, we are just specifying the system-level
software requirements. As we design our controller, we'll see that there are a lot of best
practices we can implement that could be considered software requirements. The software
requirements we are interested in listing at this point include the following:

The gesture controller should be able to detect the following gestures:1.
Forward
Backward
Left
Right

When a gesture is detected, the gesture will be printed in the terminal. If a2.
gesture type cannot be determined, unknown will be printed in the terminal.
When a gesture is detected, an LED corresponding to the detected gesture will be3.
turned on for five seconds to signify the detection of a gesture.

If we were designing a battery-operated device, we might also add in requirements for
optimizing the gesture controller power profile. After all, the energy consumption of the
device will depend on how hard we drive the LEDs. We are going to leave those types of
exercises up to you to play with once the controller is working.

Device Control Using Gestures Chapter 7

[150]

Hardware and software design
The requirements for this project give us a very concrete direction concerning the hardware
and software, but at the same time, there is quite a bit of wiggle room as to how exactly we
implement our architecture. In this section, we are going to develop the hardware and
software architecture that we will use to build our gesture controller.

The gesture hardware architecture
There are just three major components that we need to be concerned about within the
hardware architecture:

The MicroPython development boards
The APDS-9960
The LEDs

Just as in the previous projects, we can power the MicroPython board through a USB
connector, at least during development. As we saw in the last lab, if you are using the
STM32 IoT Discovery node with the Arduino prototyping board, there are +5V and +3V
output headers. The development boards for the APDS-9960 from Adafruit and SparkFun
can take 3V, so they can be powered directly from the MicroPython board. In most cases, it
also makes sense to power the LEDs through +3V and then use a General Purpose
Input/Output (GPIO) pin to control the state or brightness through a pulse width
modulation (PWM) or just an on or off switch

There are two communication interfaces that we need to concern ourselves with. The first is
the communication interface between the MicroPython board and the APDS-9960. The
APDS-9660 uses inter-integrated circuit (I2C), so that will be the interface that is used. The
last interface is just the USB console interface, the REPL (short for Read-Eval-Print Loop),
that we will use to display the gesture that was detected.

Device Control Using Gestures Chapter 7

[151]

The following figure summarizes the hardware architecture for the gesture controller:

The detailed hardware design
As we look at the hardware architecture, we can see that there are several areas that we can
further define in our detailed hardware design. These include the following:

Selecting the APDS-9960 development board
Assigning I/O pins to interface to the APDS-9960 and the LEDs

There are several different development boards that are available for the APDS-9960. For
the most part, they are all relatively comparable. They offer an on-chip regulator so that the
development board can accept +5V and often also include a +3V out pin so that other
devices can also be powered off that regulator. The two development boards that I like the
most are from Adafruit and SparkFun. Either one can work for this project, but I chose the
board from Adafruit because it was around half the price of the other. The development
board also exposes an interrupt pin that notifies developers when there is gesture data
available to be processed. The software developer can either poll the chip or wait for the
interrupt pin to query the data, but for simplicity, we will just poll it.

The I/O pin assignments for this project can be assigned pretty generically, except for the
interrupt pin. The interrupt pin needs to be connected to D2, which is the interrupt pin that
is exposed on the Arduino shield connector. Other than that assignment, the pins can be
assigned sequentially to the LEDs, as in this diagram of the entire hardware design:

Device Control Using Gestures Chapter 7

[152]

Let's now look at the software architecture for this application.

The software architecture
The application code for our gesture controller is going to be simple. The application needs
to first instantiate a gesture object and tell it which I2C bus the APDS-9960 is located on.
Once the gesture controller object has been created, we simply make a call to the object's
gesture status method to determine whether a gesture is present or not. If one is present,
then we get the gesture that was detected, which then updates the LEDs based on the
detected gesture. When we receive a new gesture, we want that gesture to stay on the LEDs
for several seconds before it disappears.

Device Control Using Gestures Chapter 7

[153]

After we receive a new valid gesture, we will signal to the application that we want to latch
the LEDs. The actual mechanism used to control the latch will not be shown here because
we want the developer to decide for themselves what the most efficient means is when they
build the application. The flow diagram for the gesture controller application can be seen
here:

Now that we have a general feel for how we want the application to execute, let's take a
closer look at the class we would like to implement for the APDS-9960. The APDS-9960 has
quite a few capabilities associated with it, such as the following:

Ambient light and RGB color sensing
Proximity sensing
Gesture detection

Device Control Using Gestures Chapter 7

[154]

While we could create a class that implements all of these features and allows the user to
specify which capabilities they will be using, we want to keep our class simple. So, for
simplicity's sake, we will create a class that only focuses on getting the gesture piece to
function.

For our gesture class to operate, there are two main methods that we need to make sure
that we have implemented. First, we need the constructor for our class to initialize the
APDS-9960. Initialization should include configuring all the APDS-9960 registers as
required for the application. We can do this by creating a separate configuration module
that contains all the registered settings for our class. We can also just hardcode it into our
application as well. That would make it less scalable but it would get the system initialized
to a known and working state first.

Next, we need a method that will allow us to get the results from any gestures that have
been made. This function could simply be called GestureGet. The GestureGet method
would not only return the detected gesture but also pull the data from the chip, process it,
and then determine what data was received. Basically, it would do everything needed to
interact with the gesture controller in a single method. This method will allow the gesture-
controller user to easily access the high-level gesture function from the APDS-9960. Here is
an example class diagram for the APDS-9960's gesture capabilities:

At this point, we've described the high-level architecture interactions between the
application code and the APDS-9960 class. As I mentioned earlier, this looks nice and
simple. The real devil, though, is in the details, which we will explore in the next section.

Device Control Using Gestures Chapter 7

[155]

Constructing the gesture controller
We are going to look at building the gesture controller in several different chunks. First, we
are going to explore the theory behind how the APDS-9960 works. Once we understand
how it works, we will then develop the APDS-9960 driver that is shown in the class
diagram in the The software architecture section. Finally, we will write our high-level
application that uses the class. At that point, we will be ready to test the controller. Let's get
started!

The APDS-9960 theory of operation
The APDS-9960 has four directional photodiodes, which are used to detect the reflected
infrared light that is generated by integrated IR LEDs. The reflected light can be used to
sense motion, such as distance, direction, and even velocity. The APDS-9960 is broken up
into several different states that provide capabilities, such as proximity detection, a gesture
engine, and color detection. The features that are most relevant to a gesture controller are
the proximity and gesture states, which can be used to first sense a hand and then provide
relevant data to determine which gesture motion was given to the system.

The most important state included in the APDS-9960 is the gesture engine. The gesture
engine is quite flexible and can be triggered either manually or automatically. Automatic
triggering is performed by initializing the proximity engine and setting a trigger level that,
once exceeded, kicks off the gesture engine. Developers are able to fine-tune the gesture
controller by utilizing features such as the following:

Ambient light subtraction
Cross-talk cancellation
Amplifying gain and LED output
Energy management
Gesture conversion delay

Each application and environment may require minor modifications to these settings in
order to fine-tune the APDS-9960 to sense gestures. You can get a feel for the overall
hardware capabilities of the APDS-9960 by reviewing the following block diagram:

Device Control Using Gestures Chapter 7

[156]

Interfacing to the APDS-9960 only requires three signal lines. Two signals are used by the
I2C for bidirectional communication to set up the APDS-9960 registers and then to read the
result registers. The third signal, which is optional, is an interrupt signal that notifies the
connected microcontroller that there is gesture data ready to be analyzed. The data is stored
as four 8-bit signals that correspond to how much IR energy was reflected and detected by
the photodiodes. The data is stored in a first in first out (FIFO) queue, which can store at
most 32 readings.

The photodiodes are arranged so that the readings correspond to up, down, left, and right.
While you may believe that these correspond to the gesture, they are really just the
arrangement of the photodiodes in the APDS-9960. In order to tease a gesture result out of
the device, numerous readings need to be acquired and then analyzed based on the
readings in all four photodiodes over time.

When the APDS-9960 is first powered up, it enters a low-power sleep mode. It's up to the
developer to configure the registers and then power up the device. The I2C can wake the
device but it will return to sleep unless the Power ON (PON) bit is set to 1.

Device Control Using Gestures Chapter 7

[157]

At this point, the device enters an idle state but still doesn't run any of the analog engines
until its corresponding enable bit is set to 1. Once the APDS-9960 is initialized, it will
traverse a state machine based on the way that it is configured. The state diagram for the
APDS-9960 is as follows. During each cycle, the APDS-9960 will potentially run each
engine, provided that it is enabled:

The datasheet for the APDS-9960 contains several useful diagrams that provide the register
settings necessary to get the device up and running in different modes. In general, a
developer will want to review the flowchart from the Avago datasheet, which can be seen
in the following diagram. The flowchart demonstrates the flow of the code and settings that
need to be configured in order to allow each engine to execute:

Device Control Using Gestures Chapter 7

[158]

The Avago APDS-9960 operational flowchart shows how to initialize the device and what
settings are necessary to get it to transition into various operational engines.

Analyzing gesture data
Since the APDS-9960 only provides the raw data for a gesture, it's up to the developer to
create an algorithm that can determine what gesture movement was actually created. While
we like to create software architecture up front and design how everything will work
before writing any code, it's sometimes necessary to do some experiments first. These
experiments are designed to help us understand the components that we are working with
and to help us design an algorithm that can determine what gesture was made. These
experiments, however, should not be considered as producing the production code.
Developers are simply improving their understanding of the part and the resultant test
code should be refactored, cleaned up, or even completely rewritten once a developer
understands the component.

Device Control Using Gestures Chapter 7

[159]

For our gesture controller, we are interested in detecting four different gestures: forward,
backward, left, and right. In order to design an algorithm that can accurately detect these
gestures, we need to acquire some data on the APDS-9960 that shows us how the
component behaves. In order to do this, we can acquire a few samples for the different
gestures. The following graphs show what each photodiode sees for the different gestures
that we are interested in. Take a few minutes to examine these plots. The APDS-9960 diode
output for a right-to-left gesture swipe is shown in the following diagram:

Note: The data here is clipped at the maximum but that won't affect our
algorithm.

The APDS-9960 diode output for a left-to-right gesture swipe is shown in the following
diagram:

Device Control Using Gestures Chapter 7

[160]

We can see the APDS-9960 diode output for a front-to-back gesture swipe in the following
diagram:

Device Control Using Gestures Chapter 7

[161]

The APDS-9960 diode output for a back-to-front gesture swipe is shown in the following
diagram:

If you examine the different plots closely, you'll notice a few important points:

The diode that is the opposite of the gesture direction will start with the greatest
number of counts.
The diode that is associated with the gesture will end with the highest number of
counts.
The diodes that are not in line with the gesture will have a small count
differential compared to the diodes in line with the gesture.

As the developer, we can choose how we want the gesture controller to work. For example,
we could design gestures that require a hand to be placed over the controller for some
period of time and then have a directional swipe conclude the gesture. We could limit the
time frame of the gesture to a few hundred milliseconds, which would enforce a complete
one-side-to-the-other gesture. It's really up to us, as the developer, how a gesture is
initialized and finalized. For our controller, we are going to assume that when a hand is
detected, it is already making a gesture movement. This will allow us to use a timer to limit
the window in which we can detect the gesture.

Device Control Using Gestures Chapter 7

[162]

The APDS-9960 gesture driver
The gesture driver that we are going to write for this project isn't so much a driver as it is a
dedicated application module. A driver should be a generic implementation of how to
interact with the APDS-9960. We are going to write a class that does the following:

Interacts only with the proximity and gesture engines
Executes dedicated initialization code
Contains all the application code to return the gesture that is sensed

The gesture application is therefore integrated into the driver functionality. If we really
wanted to create an APDS-9960 driver, we'd create a class that would interact with all the
analog engines in the APDS-9960, from a very generic viewpoint, and then create another
class that uses the data from the APDS-9960 to generate the gestures we are interested in. If
we were doing this for a production project, that would be the direction we would go in,
but for a DIY project, an integrated application module will work just fine.

Before we dive into the driver module, we should spend a few minutes discussing how the
driver should act. There are several important behavioral characteristics that we need to
discuss:

First, we don't want the gesture engine to run unless a hand has got to within a
certain distance of the sensor. In order to do this, we can enable the proximity
engine and set a proximity threshold that, once reached, will flip the internal
GMODE bit and cause the APDS-9960 to change states to the gesture engine.
Doing this will prevent us from accidentally transitioning into the gesture engine
and receiving information that is not associated with a gesture.
Next, it's possible that when we start the application, there is gesture data
already in the FIFO ready to be processed. We don't want this data to interfere
with any new gestures, so when we start our application, we want to make sure
that we empty out this buffer before we start looking for new gestures.
Finally, we want to make sure that the primary method returns the gesture that
was detected. This will help simplify our application code.

Device Control Using Gestures Chapter 7

[163]

Before we write the APDS_9960 class, there are several constants that should be created
within the APDS_9960 module. First, the APDS-9960 always has an I2C address of 0x39.
Next, there are several different register settings and bits that need to be set correctly in
order for the proximity and gesture engines to work correctly. Going into the details on
how all these settings work is beyond the scope of this chapter, but the settings that we are
going to be using are as follows:

Register Definitions
REGISTER_ENABLE = 0x80
REGISTER_CONTROL = 0x8F
REGISTER_PDATA = 0x9C
REGISTER_GPENTH = 0xA0
REGISTER_EXTH = 0xA1
REGISTER_GCONFIG1 = 0xA2
REGISTER_GCONFIG2 = 0xA3
REGISTER_GCONFIG4 = 0xAB
REGISTER_GFLVL = 0xAE
REGISTER_GSTATUS = 0xAF
REGISTER_GFIFO_U = 0xFC
REGISTER_GFIFO_D = 0xFD
REGISTER_GFIFO_L = 0xFE
REGISTER_GFIFO_R = 0xFF
Register Bit Definitions
REGISTER_ENABLE_BIT_PON = 0x01
REGISTER_ENABLE_BIT_PEN = 0x04
REGISTER_ENABLE_BIT_GEN = 0x40
REGISETER_BIT_PIEN = 0x20
REGISTER_BIT_LDRIVE = 0xC0
REGISTER_GCONFIG4_BIT_GMODE = 0x1
REGISTER_GSTATUS_BIT_GVALID = 0x1
REGISTER_GCONTROL_BITS_GFIFOTH = 0x0C

It is highly recommended that, at this time, you take the previous register settings and read
through the APDS-9960 datasheet so that you can understand how these settings affect the
way the chip behaves.

The APDS-9960 gesture class constructor
The first step in implementing our gesture class is to create the constructor:

We can start by defining the class, along with the methods we will need in the1.
class, as follows:

class APDS_9960():
 GESTURE_FORWARD = 0x0

Device Control Using Gestures Chapter 7

[164]

 GESTURE_BACKWARD = 0x1
 GESTURE_LEFT = 0x2
 GESTURE_RIGHT = 0x3
 def __init__(self,I2CObject, Verbose):
 print(“Object Initialized!”)
 def Detect(self):
 print(“Detecting Gesture …”)

As you can see from the preceding code snippet, we have defined a few variables
that will be used to define what gesture was detected, along with the creation of
our construction and the main method that will be used to detect a gesture.

Next, we want to use the I2C object that was passed into the constructor to2.
determine whether the APDS-9960 is present or not. We can do this by using the
following code:

self.i2c = I2CObject
self.DeviceList = self.i2c.scan()
for Device in range(len(self.DeviceList)):
 if self.DeviceList[Device] == APDS_9960_ADDRESS:
 self.APDS_9960_PRESENT = True
 else:
 print("APDS9960 not present!")
 return False

If the module is not detected, then we return False and the higher-level
application can decide how to handle the error.

The next step is to define the operating modes and set the IR gain, the proximity,3.
and the gesture threshold values. For benchtop testing, we set the gain to the
maximum amount. We then want the gesture to start recording data once the
threshold hits 40 counts in the leading photodetector and then exit when it drops
below 30 counts in the trailing photodetector. This can be done by using the
following code:

Enable the PON, PEN, GEN
self.mode = REGISTER_ENABLE_BIT_PEN + REGISTER_ENABLE_BIT_GEN
Set the analog engine mode
self.i2c.mem_write(self.mode, APDS_9960_ADDRESS,
REGISTER_ENABLE,timeout=1000)
Set the IR gain to maximum
self.i2c.mem_write(0x0C, APDS_9960_ADDRESS,
REGISTER_CONTROL,timeout=1000)
Set the proximity threshold that will enable GMODE
self.i2c.mem_write(PROXIMITY_THRESHOLD_COUNT, APDS_9960_ADDRESS,
 REGISTER_GPENTH, timeout=1000)

Device Control Using Gestures Chapter 7

[165]

Set the gesture exit threshold
self.i2c.mem_write(GESTURE_EXIT_THRESHOLD_COUNT, APDS_9960_ADDRESS,
 REGISTER_EXTH, timeout=1000)

With the mode configured, we also want to set the gain in the photodetectors to 44.
with a maximum engine wait time. Since there are other settings in this register,
we first want to read the current value and then modify it before writing to the
register. This operation can be seen in the following code:

Read the GCONFIG2 register and set the gain to 4. Also set
maximum wait time
self.registerData = self.i2c.mem_read(1, APDS_9960_ADDRESS,
REGISTER_GCONFIG2)
self.registerData = ord(self.registerData) | 0x40 | 0x0
self.i2c.mem_write(self.registerData, APDS_9960_ADDRESS,
REGISTER_GCONFIG2, timeout=1000)

When we power up our system, the APDS-9960 shouldn't have any data in the5.
FIFO, but we can't assume that we are running from a clean power cycle. It's
possible that the application crashed or perhaps some settings were changed on
the fly. There could be data sitting in the FIFO that won't be associated with any
new gesture or could be accidentally interpreted as a new gesture. We want to
clear that data out before finishing the initialization. We can do this by reading
the GestureCount register and then looping through and reading the FIFO data
until there is no more data in the register. We can do this by using the following
code:

self.GestureCount = ord(self.i2c.mem_read(1,APDS_9960_ADDRESS,
 REGISTER_GFLVL))
while self.GestureCount > 0:
 self.gestureData = self.i2c.mem_read(4, APDS_9960_ADDRESS,
 REGISTER_GFIFO_U)
 self.GestureCount = ord(self.i2c.mem_read(1,APDS_9960_ADDRESS,
 REGISTER_GFLVL))
 if self.__Verbose == True:
 print("GestureRemaining= ", self.GestureCount)

Notice that if we have enabled Verbose mode, we will see an output at the start
of the application that shows us that any data remaining in the buffer has been
cleared out.

Device Control Using Gestures Chapter 7

[166]

Finally, we are ready to enable the APDS-9960 and create a few final variables6.
that will be used by the Detect() method to detect gestures. We can do this by
using the following code:

Enable the PON, PEN, GEN
self.mode = REGISTER_ENABLE_BIT_PON + REGISTER_ENABLE_BIT_PEN +
REGISTER_ENABLE_BIT_GEN
Set the analog engine mode
self.i2c.mem_write(self.mode, APDS_9960_ADDRESS,
REGISTER_ENABLE,timeout=1000)
self.GestureData = []
self.GestureDataCount = 0
self.TimeSinceLastGestureData = utime.ticks_ms()
self.TimeNow = utime.ticks_ms()
self.GestureInProgress = False

def Verbose(self, State):
 self.__Verbose = False

Let's now look at how we can detect whether a gesture is present in the data.

The APDS-9960 gesture class detect method
Looking back at the APDS-9960 diode output for a right-to-left gesture swipe (which we
have seen previously in this chapter in the Analyzing gesture data section), it might make
you wonder how on Earth we are going to detect a gesture. If you look at the leading edge,
the opposite direction of the gesture's photodiode has a higher signal for a while but as the
gesture progresses, the signal flops and, by the end, the direction of the gesture has a higher
signal. If you look around on the internet, there are several different integration methods
that are used to detect the leading edge, the trailing edge, and many others. We just want
something simple.

For our controller, we are going to cheat but in a way that has proven to be very accurate.
We are going to collect all of the gesture data and then we are going to throw away the last
data point received and process the four previous data points. That's it! If a gesture
generated 120 data points, we are looking at 4 of the last 5 points! You might be wondering
how we know that we've reached the end of the gesture. In order to do this, we will read
the system tick from MicroPython and once 100 milliseconds have elapsed with no data, we
will process whatever is in the data buffer.

Device Control Using Gestures Chapter 7

[167]

The first step in detecting a gesture is to either wait for an interrupt that tells us there is
data present or to poll the APDS-9960. For this project, I decided that polling the device is
perfectly acceptable but, if we were designing a low-power or battery-operated device, we
would want to use the interrupt functionality (I'll leave that to you to try for fun!). We can
determine if there is data present in the FIFO by reading the GSTATUS register's GVALID bit.
If the bit is set, there is data present and we can read the data.

If there is data present, we will read how much data is there and then read all of that data
into a list named GestureData. We will limit the amount of data that can be stored in the
list to 255 items. The reason we want to limit how much data is there is to prevent an out-
of-memory error from occurring if someone holds their hand over the sensor without
making a gesture movement. With every new piece of data that we receive, we read the
system tick in milliseconds and save it in TimeSinceLastGestureData. This will be used
to signify when the gesture has timed out. The code segment can be written as follows:

Check to see if there is valid gesture data present
self.GesturePresent = ord((self.i2c.mem_read(1, APDS_9960_ADDRESS,
 REGISTER_GSTATUS))) & REGISTER_GSTATUS_BIT_GVALID
if self.GesturePresent == 0x1:
 self.GestureInProgress = True
 self.GestureCount = ord(self.i2c.mem_read(1,APDS_9960_ADDRESS,
 REGISTER_GFLVL))
 while self.GestureCount > 0:
 self.GestureData.append(self.i2c.mem_read(4,
 APDS_9960_ADDRESS, REGISTER_GFIFO_U))
 self.GestureDataCount+=1
 self.GestureCount = ord(self.i2c.mem_read
 (1,APDS_9960_ADDRESS, REGISTER_GFLVL))
 if(self.GestureDataCount > GESTURE_DATA_LIST_SIZE_MAX):
 self.GestureDataClear()
 if (self.GestureDataCount > 0) and (self.__Verbose == True):
 print("GestureData=", self.GestureData[self.
 GestureDataCount-1][0],self.GestureData
 [self.GestureDataCount-1][1],
 self.GestureData[self.GestureDataCount-1]
 [2],self.GestureData[self.GestureDataCount-1][3])
 self.TimeSinceLastGestureData = utime.ticks_ms()
else:
 if self.GestureInProgress == False:
 self.TimeSinceLastGestureData = utime.ticks_ms()

Device Control Using Gestures Chapter 7

[168]

At this point, all the developer needs to do is determine whether it is time to process the
received data. This is done by reading the current time on the microcontroller and then
subtracting TimeSinceLastGestureData. If the result is greater than 100 milliseconds, or
whatever is set in GESTURE_PROCESS_TIMEOUT, then we call GestureData_Process and
pass in the data list, along with how many elements are in the list. GestureData_Process
will tell us whether there is a gesture present and if so, we will return the gesture after
clearing out the received gesture data. The code for this is as follows:

self.TimeNow = utime.ticks_ms()
if((self.TimeNow - self.TimeSinceLastGestureData) >
GESTURE_PROCESS_TIMEOUT):
 self.GestureInProgress = False
 if self.__Verbose == True:
 print("Process Gesture Data!")
 self.Result = self.GestureData_Process(self.GestureData,
 self.GestureDataCount)
 self.GestureDataClear()
 return self.Result

The real magic in gesture detection occurs in GestureData_Process. The algorithm is
super simple:

First, we loop through the four data points that are present before the last data1.
point. During each iteration, we subtract the up photodiode from the down
photodiode and add the result to the value stored in Gesture_Vertical.
Next, we subtract the left photodiode from the right photodiode and add the2.
result to the value stored in Gesture_Horizontal. When the loop completes,
we will have the count differential between the horizontal and vertical axes for
our four data points. The code for this loop is as follows:

Gesture_Vertical = 0
Gesture_Horizontal = 0
for i in range ((GestureDataCount- 5), (GestureDataCount -1)):
 if self.__Verbose == True:
 print("GestureData=", GestureData[i][0],GestureData[i]
 [1],GestureData[i][2],GestureData[i][3])
 Gesture_Vertical += GestureData[i][0] - GestureData[i][1]
 Gesture_Horizontal += GestureData[i][2] - GestureData[i][3]

Device Control Using Gestures Chapter 7

[169]

Next, we take the absolute values of Gesture_Horizontal and3.
Gesture_Vertical. Whichever one has the larger value is the axis that the
gesture motion was in. For example, if Gesture_Horizontal was larger, then
we had either a left or a right gesture movement. Once we know which axis to
look at, we can look at whether the count value is positive or negative. For the
vertical axis, if the count value is negative, then the gesture was in a backward
direction. A positive value for the vertical axis would mean that the gesture was
forwards. For the horizontal axis, if the count total is negative, then the gesture
was to the right. If the horizontal axis count is positive, then the gesture was to
the left. The code to perform this check is as follows:

if(abs(Gesture_Vertical) > abs(Gesture_Horizontal)):
 if Gesture_Vertical < 0:
 Gesture = self.GESTURE_BACKWARD
 else:
 Gesture = self.GESTURE_FORWARD
else:
 if Gesture_Horizontal < 0:
 Gesture = self.GESTURE_RIGHT
 else:
 Gesture = self.GESTURE_LEFT

return Gesture

At this point, the user application will have a gesture that it can use for its application code.
Let's now look at how our application code can use the APDS-9960 class to detect a gesture
and then control our LEDs.

The gesture controller applications
The controller application has several different activities that it needs to perform, such as
the following:

Initialize the gesture class.1.
Initialize the LED pins.2.
Call the gesture class.3.
If a gesture is detected, notify the user through the terminal and by setting an4.
LED as high for 5 seconds.

Device Control Using Gestures Chapter 7

[170]

Let's look at these steps in detail:

The first step in the application is to initialize the I2C bus that will be used to1.
communicate with the APDS-9960. In this project, we are using I2C(1) and the
code to initialize it is as follows:

Create a uart object, uart4, and setup the serial parameters
i2c = I2C(1) # create on bus 1
i2c = I2C(1, I2C.MASTER) # create and init as a master
i2c.init(I2C.MASTER, baudrate=400000) # init as a master

Once the I2C bus is initialized, we want to initialize the LEDs that are connected2.
to D2 through D5. If you are using the STM32L475 IoT Discovery node, you may
recall from Chapter 5, Customizing the MicroPython Kernel Start Up Code, that we
need to use the microcontroller pin designation rather than the Arduino header
designations (unless you made the kernel modifications). If you are using a
different development board, you will need to review your configuration to
determine which pins to initialize. My LEDs are supplied with voltage common
collector (VCC) and the I/O line is used to pull them to ground when they will be
turned on. The initialization code for the LEDs is as follows:

Initialize the pins that will be used for LED control
LED_Forward = pyb.Pin('PD14', pyb.Pin.OUT_PP)
LED_Backward = pyb.Pin('PB0', pyb.Pin.OUT_PP)
LED_Left = pyb.Pin('PB4', pyb.Pin.OUT_PP)
LED_Right = pyb.Pin('PA3', pyb.Pin.OUT_PP)
Set the LED's initial state to off
LED_Forward.value(1)
LED_Backward.value(1)
LED_Left.value(1)
LED_Right.value(1)

It's interesting to note that developers can either use the value() method or the
high() method. We will use both in our application, just so that you get to
experience both methods.

With our LEDs and I2C bus initialized, we can now create our gesture object. We3.
can do this with the following code:

Initialize the gesture driver and disable debug messages
Gesture = APDS_9960(i2c, False)

We are passing in our initialized i2c object and the False value because we don't
want to see debugging information in the terminal. If you want to see the
debugging information, which includes gesture data, then change False to True.

Device Control Using Gestures Chapter 7

[171]

In order to detect when the application should turn off the LEDs, we need two4.
variables: GestureDetected and GestureDetectedTime. These are initialized
as in the following code:

 GestureDetectedTime = utime.ticks_ms()

The while loop in our application will first start out by calling the Detect() method from
the Gesture object. We can see this here:

Main application loop
while True:
Result = Gesture.Detect()

If a gesture is detected, Result will show what it was. We can use a simple if/elif block
to determine which gesture was detected. If there is a gesture, we will do the following:

Set GestureDetected to True.1.
Record the current microcontroller tick time.2.
Turn on the associated LED.3.
Print the gesture direction to the REPL.4.

The code to do this is as follows:

 if Result == APDS_9960.GESTURE_LEFT:
 GestureDetected = True
 GestureDetectedTime = utime.ticks_ms()
 LED_Left.low()
 print("Gesture Left!")
 elif Result == APDS_9960.GESTURE_RIGHT:
 GestureDetected = True
 GestureDetectedTime = utime.ticks_ms()
 LED_Right.low()
 print("Gesture Right!")
 elif Result == APDS_9960.GESTURE_FORWARD:
 GestureDetected = True
 GestureDetectedTime = utime.ticks_ms()
 LED_Forward.low()
 print("Gesture Forward!")
 elif Result == APDS_9960.GESTURE_BACKWARD:
 GestureDetected = True
 GestureDetectedTime = utime.ticks_ms()
 LED_Backward.low()
 print("Gesture Backward!")

Device Control Using Gestures Chapter 7

[172]

The preceding code could be refactored, but I will leave that as an exercise for you to try!

The last piece of the application is to turn off the LED after 5 seconds have passed. This is
just a filler example that later could control relays, a radio, or many other devices. The code
to clear out the LEDs is as follows:

 if GestureDetected is True:
 if (utime.ticks_ms() - GestureDetectedTime) > 5000:
 GestureDetected = False
 LED_Backward.high()
 LED_Forward.high()
 LED_Right.high()
 LED_Left.high()

At this point, we are now ready to test our gesture controller!

Testing the gesture controller
The code for this project can again be found at https:/ ​/​github. ​com/ ​PacktPublishing/
MicroPython-​Projects/ ​tree/ ​master/ ​ch7.

Download the code and then copy it to your development board. If you aren't using an
STM32L475 IoT Discovery node, you may need to modify the LED pins or the I2C bus you
are using, but otherwise, the application should run without any other issues.

Once the application and the APDS-9660 module are copied to your MicroPython board, in
the REPL, press Ctrl + D. This will perform a soft reboot and start the application. You can
now present the APDS-9660 with a gesture. If you swipe right, you should see Right! in
the REPL, along with one of your LEDs turning on. If you swipe left, you'll see Left! and
the LED associated with it will turn on. The LEDs should turn off within 5 seconds. If you
find this is too long, change the timeout value to something such as 2000 to get a 2-second
timeout.

https://github.com/PacktPublishing/MicroPython-Projects/tree/master/ch7
https://github.com/PacktPublishing/MicroPython-Projects/tree/master/ch7
https://github.com/PacktPublishing/MicroPython-Projects/tree/master/ch7
https://github.com/PacktPublishing/MicroPython-Projects/tree/master/ch7
https://github.com/PacktPublishing/MicroPython-Projects/tree/master/ch7
https://github.com/PacktPublishing/MicroPython-Projects/tree/master/ch7
https://github.com/PacktPublishing/MicroPython-Projects/tree/master/ch7
https://github.com/PacktPublishing/MicroPython-Projects/tree/master/ch7
https://github.com/PacktPublishing/MicroPython-Projects/tree/master/ch7
https://github.com/PacktPublishing/MicroPython-Projects/tree/master/ch7
https://github.com/PacktPublishing/MicroPython-Projects/tree/master/ch7
https://github.com/PacktPublishing/MicroPython-Projects/tree/master/ch7
https://github.com/PacktPublishing/MicroPython-Projects/tree/master/ch7
https://github.com/PacktPublishing/MicroPython-Projects/tree/master/ch7
https://github.com/PacktPublishing/MicroPython-Projects/tree/master/ch7
https://github.com/PacktPublishing/MicroPython-Projects/tree/master/ch7
https://github.com/PacktPublishing/MicroPython-Projects/tree/master/ch7
https://github.com/PacktPublishing/MicroPython-Projects/tree/master/ch7

Device Control Using Gestures Chapter 7

[173]

If you present the controller with right, left, forward, and then backward gestures, you
should see something very similar to the following screenshot. It is showing the gesture
control application output when presented with a right gesture, a left gesture, a forward
gesture, and a backward gesture:

If you want to see the gesture data, you can press Ctrl + C and then initialize the gesture
object with True. When you do this and then do a right swipe, you may see data similar to
that in the following screenshot:

Device Control Using Gestures Chapter 7

[174]

The preceding screenshot shows the debug output for a right-swipe gesture. The data order
for the photodiodes is up, down, left, and right.

Congratulations! You now have a gesture controller that you can use in your own projects!

Note: For anything that moves, you will want to improve the robustness
of the code and take into account a backup control in case the gesture
controller fails or provides erroneous data.

Summary
In this chapter, we explored how to build a gesture controller using the Avago APDS-9960.
We saw that the APDS-9960 is a very sophisticated device but, through a carefully crafted
software architecture, we were able to abstract this complexity into a few simple calls in our
application code. We also looked at how to parse incoming gesture data. You can easily
expand upon our gesture controller to add additional functionality, such as light sensing
and proximity detection.

In the next chapter, we will shift gears and look at how we can build an automation and
control device with MicroPython and an Android-capable tablet.

Questions
What are the technologies that are typically used in gesture control applications?1.
What four main gestures were covered in this chapter?2.
What three analog engines are provided in the APDS-9660?3.
What is the difference between a driver and an integrated application module? 4.
What method was used to determine the gesture direction?5.

Further reading
The Avago APDS-9960 datasheet: https:/ ​/​cdn. ​sparkfun. ​com/ ​assets/ ​learn_
tutorials/ ​3/ ​2/ ​1/ ​Avago- ​APDS- ​9960- ​datasheet. ​pdf

https://cdn.sparkfun.com/assets/learn_tutorials/3/2/1/Avago-APDS-9960-datasheet.pdf
https://cdn.sparkfun.com/assets/learn_tutorials/3/2/1/Avago-APDS-9960-datasheet.pdf
https://cdn.sparkfun.com/assets/learn_tutorials/3/2/1/Avago-APDS-9960-datasheet.pdf
https://cdn.sparkfun.com/assets/learn_tutorials/3/2/1/Avago-APDS-9960-datasheet.pdf
https://cdn.sparkfun.com/assets/learn_tutorials/3/2/1/Avago-APDS-9960-datasheet.pdf
https://cdn.sparkfun.com/assets/learn_tutorials/3/2/1/Avago-APDS-9960-datasheet.pdf
https://cdn.sparkfun.com/assets/learn_tutorials/3/2/1/Avago-APDS-9960-datasheet.pdf
https://cdn.sparkfun.com/assets/learn_tutorials/3/2/1/Avago-APDS-9960-datasheet.pdf
https://cdn.sparkfun.com/assets/learn_tutorials/3/2/1/Avago-APDS-9960-datasheet.pdf
https://cdn.sparkfun.com/assets/learn_tutorials/3/2/1/Avago-APDS-9960-datasheet.pdf
https://cdn.sparkfun.com/assets/learn_tutorials/3/2/1/Avago-APDS-9960-datasheet.pdf
https://cdn.sparkfun.com/assets/learn_tutorials/3/2/1/Avago-APDS-9960-datasheet.pdf
https://cdn.sparkfun.com/assets/learn_tutorials/3/2/1/Avago-APDS-9960-datasheet.pdf
https://cdn.sparkfun.com/assets/learn_tutorials/3/2/1/Avago-APDS-9960-datasheet.pdf
https://cdn.sparkfun.com/assets/learn_tutorials/3/2/1/Avago-APDS-9960-datasheet.pdf
https://cdn.sparkfun.com/assets/learn_tutorials/3/2/1/Avago-APDS-9960-datasheet.pdf
https://cdn.sparkfun.com/assets/learn_tutorials/3/2/1/Avago-APDS-9960-datasheet.pdf
https://cdn.sparkfun.com/assets/learn_tutorials/3/2/1/Avago-APDS-9960-datasheet.pdf
https://cdn.sparkfun.com/assets/learn_tutorials/3/2/1/Avago-APDS-9960-datasheet.pdf
https://cdn.sparkfun.com/assets/learn_tutorials/3/2/1/Avago-APDS-9960-datasheet.pdf
https://cdn.sparkfun.com/assets/learn_tutorials/3/2/1/Avago-APDS-9960-datasheet.pdf
https://cdn.sparkfun.com/assets/learn_tutorials/3/2/1/Avago-APDS-9960-datasheet.pdf
https://cdn.sparkfun.com/assets/learn_tutorials/3/2/1/Avago-APDS-9960-datasheet.pdf
https://cdn.sparkfun.com/assets/learn_tutorials/3/2/1/Avago-APDS-9960-datasheet.pdf
https://cdn.sparkfun.com/assets/learn_tutorials/3/2/1/Avago-APDS-9960-datasheet.pdf
https://cdn.sparkfun.com/assets/learn_tutorials/3/2/1/Avago-APDS-9960-datasheet.pdf
https://cdn.sparkfun.com/assets/learn_tutorials/3/2/1/Avago-APDS-9960-datasheet.pdf
https://cdn.sparkfun.com/assets/learn_tutorials/3/2/1/Avago-APDS-9960-datasheet.pdf
https://cdn.sparkfun.com/assets/learn_tutorials/3/2/1/Avago-APDS-9960-datasheet.pdf
https://cdn.sparkfun.com/assets/learn_tutorials/3/2/1/Avago-APDS-9960-datasheet.pdf

8
Automation and Control Using

Android
Automation and control are two of the driving forces behind the Internet of Things (IoT).
The ability to control a network of devices locally or remotely and gather their sensor data
can provide the ability to analyze and control your environment in a way that has never
before been possible. In this chapter, we will build an automation and control sensor node
using an ESP32 running MicroPython. We will also create a generic sensor node that can be
controlled and queried locally from an Android application.

The following topics will be covered in this chapter:

An introduction to automation and control
The MicroPython controller
Setting up an Android application
Android application implementation
Testing and debugging

Automation and Control Using Android Chapter 8

[176]

Technical requirements
The example code for this chapter can be found at https:/ ​/​github. ​com/​PacktPublishing/
MicroPython-​Projects.

In order to run the examples, you will need the following hardware and software:

An ESP32 development board running MicroPython (ESP32 WROVER-B)
A prototyping breadboard
Wire jumpers
A terminal application (such as PuTTy, RealTerm, Terminal, or one of the many
others)
A text editor, such as PyCharm

The sensor node project requirements
The main purpose of this project is to build a cost-effective sensor node that can be used for
local automation control. The sensor node will acquire sensor data, such as temperature
and humidity readings, and provide a connectivity interface to a mobile device that can not
only be used to read that data but also, perhaps more importantly, allow the end user to
then control and manage the device. In order to make the project as scalable as possible for
you, we will use generic sensors and controls through simple, low-cost LEDs. You can
replace the LEDs with any control mechanism that you desire, such as relays, motors, or
switches with additional hardware adjustments. By the end of this project, you'll have an
Android-controlled, connected sensor node that can be easily scaled for nearly any
application.

Let's now look at our hardware requirements.

Hardware requirements
For this project, we are going to get outside our normal MicroPython comfort zone by
working with the ESP32 module. The ESP32 module is a low-cost Wi-Fi/Bluetooth
combination module that is very cost effective. The onboard module, the ESP32-WROVER-
B, typically sells for less than $5! What's even better is that it is capable of running
MicroPython, so we can easily develop connected applications without having to break our
personal budgets.

https://github.com/PacktPublishing/MicroPython-Projects
https://github.com/PacktPublishing/MicroPython-Projects
https://github.com/PacktPublishing/MicroPython-Projects
https://github.com/PacktPublishing/MicroPython-Projects
https://github.com/PacktPublishing/MicroPython-Projects
https://github.com/PacktPublishing/MicroPython-Projects
https://github.com/PacktPublishing/MicroPython-Projects
https://github.com/PacktPublishing/MicroPython-Projects
https://github.com/PacktPublishing/MicroPython-Projects
https://github.com/PacktPublishing/MicroPython-Projects
https://github.com/PacktPublishing/MicroPython-Projects
https://github.com/PacktPublishing/MicroPython-Projects

Automation and Control Using Android Chapter 8

[177]

For the sensor node, we can define several simple requirements that will allow us to test
out our automation and control capabilities, which we can then scale in hardware later for
more complex applications. Our hardware requirements for this project will be as follows:

The sensor node will use ESP32-DevKitC to provide Wi-Fi and general
processing capabilities.
The system will have two LEDs that will represent the output control
mechanisms for the connected sensor node. (These outputs could later be
connected to relay boards, transistors, or other output mechanisms, such as
motors, with additional protection circuitry added.)

These simple requirements will allow us to rapidly prototype a connected sensor node that
we can use for automation and control. Let's now look at our software requirements.

Software requirements
There are several key requirements for software that will be necessary in order to
successfully build a scalable sensor node system. These requirements include the following:

The ESP32-DevKitC hardware should run MicroPython. (This will require
flashing the development board with the latest MicroPython firmware for
ESP32.)
The system should enable the WebREPL client with a security password to
wirelessly update the onboard firmware.
The system should act as a Wi-Fi access point to allow mobile devices to connect
directly to the sensor node.
An Android mobile device application will be used to send and receive socket
communication messages with the sensor node.
The socket communication messages should include messages to do the
following:

Control two outputs on the ESP32 that can simulate control and
automation
Receive sensor data from the sensor node

Automation and Control Using Android Chapter 8

[178]

You can do so much with a connected sensor node, but we are limited by the size of this
book and time. A few additional ideas for you to consider include the following:

The ESP32 will act in station mode and connect to the local Wi-Fi network.
The Bluetooth radio will be used for local communication and configuration.
Sensor data will be posted to an online server at an address to be determined.

I'll leave the additional requirements up to you to consider. In this chapter, we will just
focus on the basics to allow you to get familiar with the ESP32 and understand how we can
get basic socket communication up and running. Let's now design our hardware and
software systems.

Hardware and software design
In this section, we are going to explore how we can rapidly prototype our sensor node to
explore how we can perform automation and control using an Android device. Before we
dive in and start building our project, it's always a good idea to spend just a few minutes
thinking through the hardware and software architecture.

The hardware architecture
For this project, there are essentially three major components that we need in order to
execute our idea:

An ESP32-DevKitC board
Several LEDs
A few pushbuttons

Once the idea has been proven, we can replace the LEDs with circuits to directly control
objects and the switches with contact monitors. We can also add various sensors to the I2C
and SPI buses, depending on what our end automation and control application happens to
be. In the lab, we are going to start with a simple hardware setup, which can be seen in the
following diagram:

Automation and Control Using Android Chapter 8

[179]

Since this project is so simple to start with, there are high-level and detailed designs that are
identical to this case. We can now dive into our software architecture, which will be a bit
more complicated.

The software architecture
The sensor node software is going to be broken up into two main tasks: a system status task
and a socket receive task. The system status task will periodically sample sensors and then
package that data into a message that will be transmitted to a socket server. That socket
server will be running on an Android device.

Automation and Control Using Android Chapter 8

[180]

The following flowchart describes general behavior for the system status task:

The receive task is responsible for acquiring string data from the socket server and then
processing that data. The general flow for this task can be seen in the following diagram:

Now that we understand what these two tasks need to do, let's start to build the system.

Automation and Control Using Android Chapter 8

[181]

Building a sensor node
We are now ready to start building our Android-controlled sensor node using the ESP32. In
this section, we are going to build the sensor node. This will require us to do the following:

Install MicroPython on the ESP32.1.
Set up the sensor node as a Wi-Fi access point.2.
Install uasyncio.3.
Set up an Anaconda environment.4.
Write your application code.5.

There's a fair amount of work to do, so let's get started!

Installing MicroPython on the ESP32
The first step to getting our project underway is to install MicroPython on the ESP32
development. We saw in Chapter 5, Customizing the MicroPython Kernel Start Up Code, how
we can get into the MicroPython kernel, customize it, and then rebuild the kernel. To install
MicroPython on the ESP32, we don't have to go through all those steps. Instead, we can use
a shortcut by downloading the latest stable build from the MicroPython website, at https:/
/​micropython.​org/ ​download#esp32.

You will notice that there are several different versions available:

A generic version with support for BLE, LAN, and PPP
A generic-SPIRAM version with support for BLE, LAN, and PPP
A generic version with support for BLE but not LAN or PPP
A generic-SPIRAM version with support for BLE but not LAN or PPP

The version that you select will be completely dependent on the development board end
application that you want to develop. For example, if the development board that you
selected supports an external 4 MB PSRAM, which is included in the module, then you can
select one of the SPIRAM images in order to gain access to this additional RAM. Assuming
this is the case and the application only needs support for Bluetooth, then a developer
would select the Generic-SPIRAM with support for BLE but not LAN or PPP image. In
this project, we are going to use the Generic-SPIRAM with support for BLE, LAN, and
PPP image, so please feel free to download the latest image this time.

https://micropython.org/download#esp32
https://micropython.org/download#esp32
https://micropython.org/download#esp32
https://micropython.org/download#esp32
https://micropython.org/download#esp32
https://micropython.org/download#esp32
https://micropython.org/download#esp32
https://micropython.org/download#esp32

Automation and Control Using Android Chapter 8

[182]

Setting up the ESP32 flash utilities
In order to download the ESP32 MicroPython image to the ESP32 development board, we
need to download the Espressif ESP32 flash utility tool. This tool can be downloaded from
GitHub at https://github.com/espressif/esptool.

Alternatively, you can download and install esptool from your computer terminal
with pip, using the following command:

pip install esptool

This tool is what we will use to program MicroPython into our development board.

Programming the ESP32 with MicroPython
Once you have downloaded your ESP32 image and installed esptool, it is time to flash the
development board with the MicroPython kernel. With a brand new development board,
we must first erase the existing firmware. Once the firmware is erased, we can then
program a new image onto the device and, after a reset, we should see the familiar
MicroPython REPL appear in the terminal. Let's get started:

Plug the ESP32 development board into the computer.1.
Open a terminal or Command Prompt.2.
Navigate to your Python installation.3.
Type the following command to erase your ESP32 firmware. Note that you will4.
need to identify which serial port the board has enumerated on:

esptool.py –chip esp32 –port COM3 erase_flash

If this is successful, you should find that the terminal shows an output similar to
the one in the following screenshot:

https://github.com/espressif/esptool

Automation and Control Using Android Chapter 8

[183]

Make sure that your new ESP32 image's path is readily available. You may want5.
to copy the image and place it in your Python folder temporarily.
Enter the following command to program MicroPython onto the ESP32:6.

esptool.py --chip esp32 --port COM3 --baud 460800 write_flash -z
0x1000 esp32spiram-idf3-20191220-v1.12.bin

Note that you will need to update the image name to the latest version that you
downloaded and update the port that your development board is connected to.
The update operation may take a few minutes and will look something like the
following during the entire process:

Once the firmware has been programmed, press the reset button on your 7.
development board to ensure that you get a clean bootup.
Open a terminal and set the baud rate to 115200.8.
Press Ctrl + D. You should now see the ESP32 perform a soft reboot and load the9.
MicroPython REPL as follows:

Congratulations! You now have MicroPython running on the ESP32!

Automation and Control Using Android Chapter 8

[184]

Testing MicroPython with LEDs
MicroPython is now installed on our ESP32 module, but before we start to set up Wi-Fi and
build a more complex application, it's always a good idea to start with something simple
and then build up the complexity. In the software world, we often print Hello World as a
sanity check, but in the hardware world, blinking an LED is a great test.

For a quick test, connect an LED with a 220-ohm series resistor to pin 2 of the ESP32
Devkit-C connect. I connect the resistor to the 3.3 volts pin and the LED anode and then the
LED cathode directly to pin 2. When I say pin 2 in this case, I mean the pin that is labeled
with the number 2 on the board solder mask. This doesn't represent the physical pin 2 but
the I/O pin 2.

Once you have the LED connected, open your serial prompt so that you are in the
MicroPython REPL. Create the following function in the REPL:

def toggle(p):
 p.value(not p.value())

Make sure that you press Enter enough times to get back to the main prompt. Now, let's
define a pin that is connected to our LED:

import machine
pin = machine.Pin(2, machine.Pin.OUT)

Finally, we can create a simple loop that will call the pin every 500 milliseconds using the
following code:

import time
while True:
 toggle(pin)
 time.sleep_ms(500)

Once you have pressed Enter several times, the function will be complete and you will
observe that the LED is blinking at the desired frequency. Now that we have verified that
MicroPython is fully functional and that we can interface it's hardware successfully, use
Ctrl + C to stop the application from executing. Let's now set up our Wi-Fi access.

Automation and Control Using Android Chapter 8

[185]

Setting up WebREPL
The ESP32 MicroPython firmware behaves a little bit different from the firmware for the
STM32 processors. When the ESP32 development board is plugged into a computer, it
enumerates and provides the familiar serial REPL that we have all come to know and love.
However, the board does not enumerate as a mass storage device. This leaves us
developers with two options for loading our Python scripts:

Use the raw REPL mode
Use WebREPL

In this section, I'm going to show you how we can go about setting up WebREPL.

WebREPL is exactly what it sounds like—an HTML-based web page that allows a
developer to interact with the ESP32 MicroPython kernel. WebREPL allows a developer to
connect to the ESP32 Wi-Fi and then, through the web page files, they can be transferred
onto or off the filesystem.

By default, WebREPL is disabled. In order to enable it, perform the following steps:

Connect to the ESP32 serial REPL in a terminal.1.
Type the following and then press Enter:2.

import webrepl_setup

At the prompt, press E and then Enter.3.
Enter a password of between 4–9 characters.4.
Reboot the system by pressing Y and then Enter.5.

This entire sequence and the results that will be printed in the terminal can be seen in the
following screenshot:

Automation and Control Using Android Chapter 8

[186]

Once the ESP32 restarts, you might expect the Wi-Fi radio to be enabled by default and that
you would be able to connect to its SSID. Unfortunately, you would be mistaken. In order
to enable the Wi-Fi radio, we will need to issue a few commands through the serial REPL
and then update the boot.py script so that Wi-Fi is enabled by default.

In the serial REPL, type the following commands to enable the Wi-Fi radio:

import network
ap_if = network.WLAN(network.AP_IF)
ap_if.active(True)

You'll find that the Wi-Fi radio is now enabled. You should now see the ESP32 broadcasting
on an SSID, such as ESP_6B2D55. The SSID can be broken down into two parts: ESP and
XXXXXX. The ESP part shows that this is an ESP module, while the remaining six
characters are part of the device's MAC address. This means that your SSID for the device
will remain the same from one boot to the next, but if you configure multiple modules, they
will each have their own unique default SSID.

Once WebREPL is enabled, there are two options for using it to connect to the ESP32:

A developer can navigate to http:/ ​/​micropython. ​org/​webrepl in their web1.
browser and then, after the page loads, they can connect to their ESP32.
WebREPL can be downloaded from https:/ ​/​github. ​com/ ​micropython/ ​webrepl2.
and run directly from the local computer.

Running WebREPL will result in an interface similar to the one shown in the following
screenshot:

http://micropython.org/webrepl
http://micropython.org/webrepl
http://micropython.org/webrepl
http://micropython.org/webrepl
http://micropython.org/webrepl
http://micropython.org/webrepl
http://micropython.org/webrepl
http://micropython.org/webrepl
http://micropython.org/webrepl
https://github.com/micropython/webrepl
https://github.com/micropython/webrepl
https://github.com/micropython/webrepl
https://github.com/micropython/webrepl
https://github.com/micropython/webrepl
https://github.com/micropython/webrepl
https://github.com/micropython/webrepl
https://github.com/micropython/webrepl
https://github.com/micropython/webrepl
https://github.com/micropython/webrepl
https://github.com/micropython/webrepl

Automation and Control Using Android Chapter 8

[187]

There are several important features to notice about WebREPL:

First, WebREPL does not support HTTPS, so all connections must be done
through HTTP.
Second, the default IP address for the ESP32 is 192.168.4.1. The port that we
connect through is 8266, which is representative of the original MicroPython
port to the ESP8266 processors.
Finally, in order to establish a connection, you'll need to remember what your
WebREPL password is.

Once a developer connects through WebREPL, they can interact with the MicroPython
device exactly how they would if they had connected through a serial interface. The only
difference is that on the right-hand side of the web page, there are options to send a file to
the ESP32 filesystem and an option to get a file. As I mentioned earlier, we want to update
our filesystem so that the Wi-Fi radio is automatically enabled. To do this, we will modify
the boot.py script using the following procedure:

After connecting through WebREPL, type boot.py in the Get a file box.1.
Press the Get from device button.2.
Open the boot.py file that was just downloaded in a text editor of your choice.3.
You'll find that boot.py has just two lines of code:

import webrepl
webrepl.start()

Update the boot.py script to appear as follows:4.

import webrepl
import network
ap_if = network.WLAN(network.AP_IF)
ap_if.active(True)

In WebREPL, click the Choose a file button in the Send a file section.5.
Navigate to the modified boot.py file and select it.6.
Click the Send to device button to upload the new boot script.7.

The Wi-Fi radio access point will now be enabled by default when the ESP32 powers up.

Automation and Control Using Android Chapter 8

[188]

Simplifying application development with
Anaconda
WebREPL is a really cool tool that can be useful for working with an interactive web page
to move files to and from the ESP32 over Wi-Fi. For a seasoned developer, developing
software with WebREPL can seem quite tedious. For that reason, in this section, I'm going
to discuss an alternative way for you to push the application code to the ESP32. We are
going to do that using an Anaconda prompt.

Anaconda is a free package and environment manager that contains a Python distribution
that includes thousands of open source packages. It provides an Anaconda prompt that can
be used across any major PC platform and that allows a developer to create their own
Python virtual machines. Most importantly for us, it provides a convenient way to
download ampy, which is an Adafruit package specifically designed to interface with the
ESP32 for MicroPython development.

In order to set up Anaconda, perform the following steps:

Visit https:/ ​/ ​www. ​anaconda. ​com/ ​distribution/ ​, click Download, and select1.
your platform.
Once downloaded, install Anaconda.2.
When the download is complete, open the Anaconda prompt.3.

From within the prompt, set up your environment by issuing the following commands:

conda create -n ESP32-uPython python =3.71.
conda activate ESP32-uPython2.
pip3 install ampy-adafruit3.

Successfully installing ampy will result in a terminal output that looks something like the
following:

https://www.anaconda.com/distribution/
https://www.anaconda.com/distribution/
https://www.anaconda.com/distribution/
https://www.anaconda.com/distribution/
https://www.anaconda.com/distribution/
https://www.anaconda.com/distribution/
https://www.anaconda.com/distribution/
https://www.anaconda.com/distribution/
https://www.anaconda.com/distribution/
https://www.anaconda.com/distribution/
https://www.anaconda.com/distribution/
https://www.anaconda.com/distribution/

Automation and Control Using Android Chapter 8

[189]

You now have an Anaconda Python virtual machine set up that we can use to transfer files
to and from the ESP32. Let's quickly write a simple script to practice sending and getting
scripts:

From within the prompt, use the following command to pull the default1.
main.py script (obviously changing COM3 to the port that your device is on):

ampy –port COM3 --baud 115200 get main.py main.py

Yes, main.py is written twice in order to tell the prompt that we want to2.
download the file. Once you have downloaded main.py, open it in your favorite
text editor. Write a simple toggle application similar to the one shown here:

import machine
import time
pin = machine.Pin(2, machine.Pin.OUT)
def toggle(p):
 p.value(not p.value())
while True:
 toggle(pin)
 time.sleep_ms(500)

Save the script and then use the following command to upload the new script:3.

ampy --port COM3 --baud 115200 put main.py

Make sure that you connect an LED to the GPIO 2. Unplug the ESP32 and then 4.
plug it back in. You should now see your LED blinking at a rate of 500
milliseconds! You now have a simpler way to interact with the ESP32 and push
your scripts to it.

Note: Once you close out of Anaconda, your ampy virtual machine will be
closed. When you open Anaconda again, you will be in the base
environment. To restart your ampy environment, type activate ampy.
This will get you back to where you can use the terminal to load your
code.

Installing uasyncio
As you may recall from earlier chapters, uasyncio is a cooperative scheduling module that
is very useful for creating concurrent tasks. By default, the MicroPython port for the ESP32
does not have the uasyncio library built into the MicroPython kernel. It's up to us to install
it ourselves.

Automation and Control Using Android Chapter 8

[190]

Now, there are several ways that we can go about installing it, which are documented at
https:/​/​github.​com/ ​peterhinch/ ​micropython- ​async/ ​blob/ ​master/ ​TUTORIAL. ​md. I highly
recommend that you review the tutorial there. In case you are in a hurry, I'll provide the
basic steps on how to install uasyncio on the ESP32 here:

Download uasyncio from https:/ ​/​github. ​com/ ​micropython/ ​micropython- ​lib.1.
You can do this by either downloading the .zip file or by cloning the repository
using the following command:

git clone https://github.com/micropython/micropython-lib.git

Navigate to the folder that you are working out of in Anaconda and create a2.
directory named uasyncio.
Within the micropython-lib download, copy the following files to the new3.
usyncio folder:

uasyncio/uasyncio/__init__.py

uasyncio.core/uasyncio/core.py

uasyncio.synchro/uasyncio/synchro.py

asyncio.queues/uasyncio/queues.py

In the Anaconda prompt, issue the following command to install the uasyncio4.
directory:

ampy --port COM3 --baud 115200 put asyncio

The preceding command will copy the asyncio directory and all of its contents to the
ESP32.

Writing the sensor node application
Now that our environment is all set up, it's time for us to start writing our application. We
are going to look at each individual piece of the application and develop them one at a
time.

https://github.com/peterhinch/micropython-async/blob/master/TUTORIAL.md
https://github.com/peterhinch/micropython-async/blob/master/TUTORIAL.md
https://github.com/peterhinch/micropython-async/blob/master/TUTORIAL.md
https://github.com/peterhinch/micropython-async/blob/master/TUTORIAL.md
https://github.com/peterhinch/micropython-async/blob/master/TUTORIAL.md
https://github.com/peterhinch/micropython-async/blob/master/TUTORIAL.md
https://github.com/peterhinch/micropython-async/blob/master/TUTORIAL.md
https://github.com/peterhinch/micropython-async/blob/master/TUTORIAL.md
https://github.com/peterhinch/micropython-async/blob/master/TUTORIAL.md
https://github.com/peterhinch/micropython-async/blob/master/TUTORIAL.md
https://github.com/peterhinch/micropython-async/blob/master/TUTORIAL.md
https://github.com/peterhinch/micropython-async/blob/master/TUTORIAL.md
https://github.com/peterhinch/micropython-async/blob/master/TUTORIAL.md
https://github.com/peterhinch/micropython-async/blob/master/TUTORIAL.md
https://github.com/peterhinch/micropython-async/blob/master/TUTORIAL.md
https://github.com/peterhinch/micropython-async/blob/master/TUTORIAL.md
https://github.com/peterhinch/micropython-async/blob/master/TUTORIAL.md
https://github.com/peterhinch/micropython-async/blob/master/TUTORIAL.md
https://github.com/peterhinch/micropython-async/blob/master/TUTORIAL.md
https://github.com/peterhinch/micropython-async/blob/master/TUTORIAL.md
https://github.com/peterhinch/micropython-async/blob/master/TUTORIAL.md
https://github.com/micropython/micropython-lib
https://github.com/micropython/micropython-lib
https://github.com/micropython/micropython-lib
https://github.com/micropython/micropython-lib
https://github.com/micropython/micropython-lib
https://github.com/micropython/micropython-lib
https://github.com/micropython/micropython-lib
https://github.com/micropython/micropython-lib
https://github.com/micropython/micropython-lib
https://github.com/micropython/micropython-lib
https://github.com/micropython/micropython-lib
https://github.com/micropython/micropython-lib
https://github.com/micropython/micropython-lib

Automation and Control Using Android Chapter 8

[191]

Imports and supporting objects
We are going to start our application by first importing the libraries and modules that we
need for our application. First, we are going to use machine to access the GPIO ports.
machine is a generic MicroPython library that will allow us to easily port our code to any
MicroPython-based device. Next, we are going to use the socket library for all of our socket
communications. We will use asyncio to schedule our application tasks. Finally, we will
use ujson to create and parse JSON messages. The import section of our script will appear
as follows:

import machine
import socket
import uasyncio as asyncio
import ujson

LEDs and local control
We are using LEDs to simulate the control of physical mechanisms that we may want to
control with our sensor node. In order to control the LEDs, we need to assign several GPIO
pins to the LEDs and create a few simple functions to command them, such as
gpio_on and gpio_off. We can create a few LED objects using the following code:

LED1 = machine.Pin(2, machine.Pin.OUT)
LED2 = machine.Pin(0, machine.Pin.OUT)
LED3 = machine.Pin(4, machine.Pin.OUT)

As you can see, we use machine to generically assign the specific pins that we will be using
and to set the output mode. With the pins assigned, we can then write a few helper
functions to control the LEDs, such as the following:

def gpio_toggle(p):
 p.value(not p.value())
def gpio_on(p):
 p.value(0)
def gpio_off(p):
 p.value(1)

With these functions in place, we are now ready to start building out our socket
application.

Automation and Control Using Android Chapter 8

[192]

socket_connect()
We are going to create a function that allows us to connect to a socket server. The function
definition is as follows:

def socket_connect(address, port):
 s.settimeout(1.0)
 addr_info = socket.getaddrinfo(address, port)
 addr = addr_info[0][-1]
 try:
 print("Attempting to connect to socket server ...")
 s.connect(addr)
 print("Connection successful!")
 except Exception as e:
 print(e)

As you can see, we pass in an IP address and port number for where the socket server is
located. We then use socket.getaddrinfo to create the addr_info object that can be
passed into the socket connect method. We wrap the connection attempt in try/except
just in case we run into a connection issue, such as the server not existing.

There are two primary tasks that we need to develop: a receive task and a system
status task. Let's develop those now, along with any supporting application classes and
functions.

socket_receive()
The receive function will retrieve data that is sent to the sensor node from the socket
server. There are several different methods that can be used to pull data from the socket,
but the one that we are going to use is recv. The recv method allows us to specify how
many bytes of data we want to pull from the socket before processing it. This is more of a
maximum number than a minimum. The data in the socket is received as a string. We want
to take that string and convert it into a JSON dictionary that can then be parsed. We do this
by using the ujson.loads method.

There is something important to understand about our socket_receive function. The
function is going to be running as a task through uasyncio. This means that after a short
time, the recv method will time out and the task will then run and yield the CPU if there is
no data to process. In this example, I've set the time for the task to run every 0.5 seconds,
but it can be changed based on the application's needs. It also means that when the recv
method times out, we will receive a connection timeout exception!

Automation and Control Using Android Chapter 8

[193]

We want to make sure that in our error handler, we don't print out this message constantly,
so a few extra lines of code are necessary to process the exception. In general, our
socket_receive code would look something like the following:

def socket_receive():
 while True:
 try:
 receive_string = s.recv(500)
 rxjsonobj = ujson.loads(receive_string)
 parse_command(rxjsonobj)
 except Exception as e:
 if errno.ETIMEDOUT:
 pass
 else:
 print(e)
 await asyncio.sleep(0.5)

You'll notice from looking at the preceding code that we haven't yet defined the
parse_command function. Before we define the parse_command function, let's first define
the sensor node class that describes our example hardware and holds our object data.

The IotDevice class
The IotDevice class will contain the specific behavior for our sensor node. This class will
contain the methods necessary to sample our sensors, control external devices, and so on.
For our example, the IotDevice class will perform several functions, including the
following:

Manage the state of the LEDs (which represent the external devices to control)
Manage sensor variables, such as temperature and humidity
Hold the IoT device's ID
Include methods for sampling and controlling the IoT device

The first step is to create the IotDevice class and build the constructor. An example of
what this might look like can be seen in the following code:

class IotDevice:
 def __init__(self):
 self.LED1 = "Off"
 self.LED2 = "Off"
 self.LED3 = "Off"
 self.Temperature = 21.1
 self.Humidity = 63.4
 self.ID = "14-3826"

Automation and Control Using Android Chapter 8

[194]

We can then create a method that would manage sampling the onboard sensors. Now, we
don't have any sensors in our example so we will use the temperature and humidity
variables we created in our constructor and just create a pattern for it to generate, such as
incrementing every time the sample method is called. An example sample method can be
seen here:

 def sample(self):
 self.Temperature = self.Temperature + 0.1
 if self.Temperature >= 30.0:
 self.Temperature = 15
 self.Humidity = self.Humidity + 0.5
 if self.Humidity >= 100:
 self.Humidity = 25.0

If you are following along, a great extension to this code would be to integrate a real
temperature and humidity sensor that could then be sampled to provide real value. I'll
leave that as an exercise for you to try out.

Let's now look at how we can implement our command parsing function.

Command parsing
The command parsing function is going to parse the incoming socket data, which will be in
JSON, to determine what command the system is receiving. The commands that we will
look at supporting right now are as follows:

LED1

LED2

LED3

These commands can have only two possible values:

On

Off

Now, if you recall, the receive function takes the received string and then reconstructs it
into a JSON-formatted dictionary. Our parsing function needs to search the dictionary to
see whether there are references to our command words in the message and, if there are, we
can reference the value using the command as a key. For example, our parse_command
function might look something like the following:

def parse_command(message):
 if "LED1" in message:

Automation and Control Using Android Chapter 8

[195]

 if message["LED1"] == "On":
 gpio_on(LED1)
 Device.LED1 = "On"
 print("LED 1 On")
 else:
 gpio_off(LED1)
 Device.LED1 = "Off"
 print("LED 1 Off")
 if "LED2" in message:
 if message["LED2"] == "On":
 gpio_on(LED2)
 Device.LED2 = "On"
 print("LED 2 On")
 else:
 gpio_off(LED2)
 Device.LED2 = "Off"
 print("LED 2 Off")
 if "LED3" in message:
 if message["LED3"] == "On":
 gpio_on(LED3)
 Device.LED3 = "On"
 print("LED 3 On")
 else:
 gpio_off(LED3)
 Device.LED3 = "Off"
 print("LED 3 Off")

In this example, we use separate if statements to check whether the command is in the
message by using statements such as the following:

if "LED1" in message:

If there is a reference to that command in the dictionary, we use the LED1 command as a
key to the dictionary to then get an On or Off value by using the following code line:

 if message["LED1"] == "On":

At this point, we can decide what we want our application to do when we receive that
command and value.

Note: There are improvements that can be made; for example, the parse
command and GPIO functionality could be built into our IotDevice
class, but I've left them separate in this example so that they can be easily
removed when you add your own custom code.

Extending the command parser is as easy as adding additional if statements to the
function to check for other command and status values.

Automation and Control Using Android Chapter 8

[196]

The system status task
We are now able to receive and parse commands, but we also need to be able to send status
information back to the server. In order to do this, we are going to create a system status
task that will call the IotDevice object's sample method and then package the data up and
send it in JSON format to the socket server. This system_status task will be added to the
asyncio task list when we write the main application code. The task code can be seen as
follows:

def system_status():
 while True:
 # Sample Sensors or get the latest result
 Device.sample()
 data = {}
 data['id'] = Device.ID
 data['temperature'] = Device.Temperature
 data['humidity'] = Device.Humidity
 data['led1'] = Device.LED1
 data['led2'] = Device.LED2
 data['led3'] = Device.LED3
 socket_send(data)
 await asyncio.sleep(0.5)

There are two things that you'll notice:

First, we are sending update information to the server every 500 milliseconds.
This is probably faster than is necessary, but again can be easily adjusted for the
application needs.
You will also notice that we pass the data into a function named socket_send.

Let's now look at the socket_send function in a little more detail.

socket_send()
The socket_send function needs to take the packaged data and then convert it into a
JSON string. This can be done using the ujson.dumps function. This function takes the
received JSON data and then literally dumps it into a string that can then be transmitted.
The function looks like the following:

def socket_send(Data):
 mystring = ujson.dumps(Data)
 try:
 s.write(mystring + "\r\n")
 except Exception as e:

Automation and Control Using Android Chapter 8

[197]

 if errno.ECONNRESET:
 socket_connect()
 print(e)

You can see that once we create the string, we can access the s object, which is our socket
connection, and then call the write method. If there is an error sending, then we just print
it into the REPL. With this in place, we have everything we need to finally pull together the
main application.

The main application
The main application has several tasks that it needs to complete, such as the following:

Instantiate the IotDevice object.1.
Initialize the LEDs to Off.2.
Create the socket connection.3.
Initialize the scheduler.4.

Let's look at the code for each of these:

First, instantiate the IotDevice object and initialize the LEDs, as follows:1.

Device = IotDevice()
gpio_off(LED1)
gpio_off(LED2)
gpio_off(LED3)

Next, we want to create the socket object and then connect to the socket server.2.
We are going to use a socket server that is hosted on an Android device for our
example, but it could easily be hosted on the web somewhere and we could then
set up a relay for the socket server, an Android device, and our sensor node. The
options are limitless, but we will use Android with the socket server for now.

The socket server address that we will use will depend on the application. I'll talk
more about this in the Testing the sensor node section. For now, we will use
the 1024 port and the 192.168.4.2 address. The code to create the socket and
connect to the server is as follows:

s = socket.socket()
socket_connect("192.168.4.2", 1024)

Automation and Control Using Android Chapter 8

[198]

Finally, we need to initialize the cooperative scheduler. There are two tasks that3.
we want to create: one for the system status and the other for receiving data from
the socket. The code looks like the following:

loop = asyncio.get_event_loop()

loop.create_task(system_status())
loop.create_task(socket_receive())
loop.run_forever()

Don't forget that each task has to have a while loop in it.

We now have everything in place and are ready to test our sensor node using an Android
socket server. In the next section, I will describe how to set up the server on Android and
then establish two-way communication with our sensor node.

Testing the sensor node
The code for this project can again be found at https:/ ​/​github. ​com/ ​PacktPublishing/
MicroPython-​Projects/ ​ch8. Download the code and then copy it to your development
board using the procedure that we discussed in the Simplifying application development with
Anaconda section.

The Android socket server
There are several different pre-built socket applications that are written for use on Android.
The application that I used to test the sensor node was called Simple TCP Socket Tester,
but other applications could also be used. The socket tester is particularly interesting
because it allows the Android tablet to act either as a socket server or a socket client. This
provides us with the flexibility to use the same application, regardless of whether we have
our ESP32 act as a client or a server.

Take a few moments now to go to the Google Play Store app and install Simple TCP Socket
Tester.

Once you have downloaded the application, open it and you will find a screen that looks
like the following:

https://github.com/PacktPublishing/MicroPython-Projects/ch8
https://github.com/PacktPublishing/MicroPython-Projects/ch8
https://github.com/PacktPublishing/MicroPython-Projects/ch8
https://github.com/PacktPublishing/MicroPython-Projects/ch8
https://github.com/PacktPublishing/MicroPython-Projects/ch8
https://github.com/PacktPublishing/MicroPython-Projects/ch8
https://github.com/PacktPublishing/MicroPython-Projects/ch8
https://github.com/PacktPublishing/MicroPython-Projects/ch8
https://github.com/PacktPublishing/MicroPython-Projects/ch8
https://github.com/PacktPublishing/MicroPython-Projects/ch8
https://github.com/PacktPublishing/MicroPython-Projects/ch8
https://github.com/PacktPublishing/MicroPython-Projects/ch8
https://github.com/PacktPublishing/MicroPython-Projects/ch8
https://github.com/PacktPublishing/MicroPython-Projects/ch8

Automation and Control Using Android Chapter 8

[199]

Notice that there are two areas at the top, one for the server and one for the client. The IP
address that it is assigned will be based on the IP address of the Android device. We have a
button to start and stop the server, along with the ability to specify the port that will be
used.

Below the server configuration, we have a textbox to send string messages from the socket
server to the client that is connected, and then below that, we have a textbox that shows the
client messages. Just like most applications, we are able to clear these boxes out as well.

Automation and Control Using Android Chapter 8

[200]

In order to successfully communicate with the sensor node, we need to complete the
following steps:

Power up the sensor node with the application running.1.
Connect your Android device to the sensor node's Wi-Fi. The SSID will start with2.
ESP_ followed by six characters from the MAC address, as shown:

Once connected, in the REPL, stop the application and restart it. This ensures that3.
the application can successfully connect to the server.

Automation and Control Using Android Chapter 8

[201]

In the Android application, observe that the number of clients has gone from 0 to4.
1. You might also see that the IP address has changed since you are now on a
different network.
You should also see that messages are now coming in from the sensor node5.
displaying the sensor sample data, as shown here:

{“led3”: “Off”, “led1”: “Off”, “humidity”: 66.9, “led2”: “Off”, “id”:
“14-3826”, “temperature”: 21.8}

Now that we have a connection and see a stream of data from the device, let's look at what
messages we can send to the device to control the LEDs.

Commanding the sensor node
The command parser that we created earlier has several commands that you will recognize:

LED1

LED2

LED3

We need to send these commands to the sensor node in a JSON formatted string. For
example, we can send a message to turn on LED1 by sending the following code line:

{“LED1”: “On”}

We can also turn the same LED off by sending the following code line:

{“LED1”: “Off”}

We are not limited to controlling a single LED at once. For example, we can construct a
JSON message that allows us to command all the LEDs at once. If I wanted to turn on LED1
and LED3 while turning LED2 off, I could construct a JSON message that looks like the
following:

{“LED1”: “On”, “LED2”: “Off”, “LED3”: “On”}

The final test for our sensor node is to try this in our socket test application.

Automation and Control Using Android Chapter 8

[202]

Testing the commands
Testing our control of the LEDs just requires us to construct a JSON message, such as those
that we created in the previous section. The steps to perform the test can be found here:

Verify that the TCP Socket Tester application is connected by verifying that it has1.
1 connected client and that you can see data packets streaming to the server from
the sensor node.
In the Write here the info to send... section of the application, type in the2.
following JSON message:

{“LED1”: “On”, “LED2”: “Off”, “LED3”: “On”}

Press the SEND button. You will find that your LEDs have now turned on!3.
Now, update the message to the following:4.

{“LED1”: “Off”, “LED2”: “On”, “LED3”: “Off”}

Press the SEND button. You'll see that the LED states have switched.5.

The Android application messages might look something like the following:

Automation and Control Using Android Chapter 8

[203]

Congratulations! You now have a functional sensor node that can communicate with a
socket server. The possibilities for where you can go from here are endless!

Summary
In this chapter, we explored how we can build an Android controlled sensor node using the
ESP32 and an Android-based socket server. We learned how to deploy MicroPython on the
ESP32 and how to install the asyncio module. We also examined how to write a script that
would allow us to connect to a socket server and transmit and receive data from it.

The example we used simply sent fake sensor data in JSON format to the server and
accepted data from the server in JSON format. The received messages were then parsed and
used to control the LEDs, which can now be swapped out for more interesting control
schemes, such as motors, and relays.

In the next chapter, we will design and build a basic object detection mechanism using
machine learning and MicroPython.

Questions
What library do we use to create tasks within MicroPython?1.
What MicroPython image do we use when flashing the ESP32?2.
What tool is used to flash the ESP32 with MicroPython?3.
Which MicroPython module can be used to generically control I/O across any4.
MicroPython port?
What methods can be used to push scripts to the ESP32?5.

Further reading
https:/​/ ​docs. ​anaconda. ​com/ ​anaconda/ ​user- ​guide/ ​getting- ​started/ ​

https:/​/ ​docs. ​micropython. ​org/ ​en/ ​latest/ ​library/ ​usocket. ​html

https://docs.anaconda.com/anaconda/user-guide/getting-started/
https://docs.anaconda.com/anaconda/user-guide/getting-started/
https://docs.anaconda.com/anaconda/user-guide/getting-started/
https://docs.anaconda.com/anaconda/user-guide/getting-started/
https://docs.anaconda.com/anaconda/user-guide/getting-started/
https://docs.anaconda.com/anaconda/user-guide/getting-started/
https://docs.anaconda.com/anaconda/user-guide/getting-started/
https://docs.anaconda.com/anaconda/user-guide/getting-started/
https://docs.anaconda.com/anaconda/user-guide/getting-started/
https://docs.anaconda.com/anaconda/user-guide/getting-started/
https://docs.anaconda.com/anaconda/user-guide/getting-started/
https://docs.anaconda.com/anaconda/user-guide/getting-started/
https://docs.anaconda.com/anaconda/user-guide/getting-started/
https://docs.anaconda.com/anaconda/user-guide/getting-started/
https://docs.anaconda.com/anaconda/user-guide/getting-started/
https://docs.anaconda.com/anaconda/user-guide/getting-started/
https://docs.anaconda.com/anaconda/user-guide/getting-started/
https://docs.anaconda.com/anaconda/user-guide/getting-started/
https://docs.anaconda.com/anaconda/user-guide/getting-started/
https://docs.anaconda.com/anaconda/user-guide/getting-started/
https://docs.micropython.org/en/latest/library/usocket.html
https://docs.micropython.org/en/latest/library/usocket.html
https://docs.micropython.org/en/latest/library/usocket.html
https://docs.micropython.org/en/latest/library/usocket.html
https://docs.micropython.org/en/latest/library/usocket.html
https://docs.micropython.org/en/latest/library/usocket.html
https://docs.micropython.org/en/latest/library/usocket.html
https://docs.micropython.org/en/latest/library/usocket.html
https://docs.micropython.org/en/latest/library/usocket.html
https://docs.micropython.org/en/latest/library/usocket.html
https://docs.micropython.org/en/latest/library/usocket.html
https://docs.micropython.org/en/latest/library/usocket.html
https://docs.micropython.org/en/latest/library/usocket.html
https://docs.micropython.org/en/latest/library/usocket.html
https://docs.micropython.org/en/latest/library/usocket.html
https://docs.micropython.org/en/latest/library/usocket.html
https://docs.micropython.org/en/latest/library/usocket.html
https://docs.micropython.org/en/latest/library/usocket.html
https://docs.micropython.org/en/latest/library/usocket.html

9
Building an Object Detection

Application Using Machine
Learning

The ability to recognize objects is becoming a critical skill for embedded systems. Whether
the system needs to recognize an object on an assembly line or recognize a person or objects
in its path, environmental awareness is becoming an important feature for many systems.
Hand coding a recognition algorithm using traditional coding techniques is extremely
difficult and challenging. Using machine learning and leveraging the CIFAR-10 classes, to
build object recognition into a system, is nearly as simple as writing a Hello
World! application.

In this project, we will explore machine learning and the embedded libraries that allow us
to perform object detection on a microcontroller-based device.

The following topics will be covered in this chapter:

An introduction to machine learning
Object detection requirements
Object detection design and theory
Implementing and testing object detection

Building an Object Detection Application Using Machine Learning Chapter 9

[205]

Technical requirements
The example code for this chapter can be found at the following GitHub location:

https:/​/​github.​com/ ​PacktPublishing/ ​MicroPython- ​Projects

In order to run the examples, you will want to have the following hardware and software
available:

An OpenMV camera module
OpenMV IDE
A breadboard
Wire jumpers

Introducing machine learning
Traditionally, embedded software developers had eight core pillars or skills that they
needed to master in order to successfully design and build an embedded product. These
included the following:

Architecture design
Code analysis
Defect management/debugging
Documentation
Language skills
Processes and standards
Testing
Tools

An important and emerging area of interest for many developers, and a tool that has the
potential to be a game-changer in embedded software development, is machine learning.

According to the great scholar that is Wikipedia:

"Machine learning is a field of computer science that often uses statistical techniques to
give computers the ability to 'learn' with data, without being explicitly programmed."

https://github.com/PacktPublishing/MicroPython-Projects
https://github.com/PacktPublishing/MicroPython-Projects
https://github.com/PacktPublishing/MicroPython-Projects
https://github.com/PacktPublishing/MicroPython-Projects
https://github.com/PacktPublishing/MicroPython-Projects
https://github.com/PacktPublishing/MicroPython-Projects
https://github.com/PacktPublishing/MicroPython-Projects
https://github.com/PacktPublishing/MicroPython-Projects
https://github.com/PacktPublishing/MicroPython-Projects
https://github.com/PacktPublishing/MicroPython-Projects
https://github.com/PacktPublishing/MicroPython-Projects
https://github.com/PacktPublishing/MicroPython-Projects
https://github.com/PacktPublishing/MicroPython-Projects

Building an Object Detection Application Using Machine Learning Chapter 9

[206]

It's important to note that in this definition, the machine is not actually learning, but is
instead using an algorithm to statistically determine a result based on the input that it is
provided with. Many machine learning algorithms use a collection of neurons that may
contain multiple inputs and outputs that are set up in layers to decompose the problem.
Each input to a neuron has a weight associated with it and each neuron has an activation
bias associated with it that determines whether the neuron's output fires.

The output layer neurons often output a single value that provides the statistical chance
that the output is a particular value. For example, the output from a neuron that represents
the number 0 may have an output of 0.97, which means there is a 97% chance that the
image provided to it is a numerical 0. A simple example of how a perceptron neuron works
can be seen in the following diagram:

In the preceding diagram, the perceptron neuron is only allowed to have input values of
zero or one and output 0 or 1. It contains three inputs that have weights associated with
them, such as 4, -2 and 1, respectively. The neuron has an activation bias equal to three. The
output can only be a zero or a one in this case and is determined by summing the dot
product of the input value with its associated weight. If the sum of the dot product plus the
activation bias is greater than 0, then the neuron fires and the output would be a 1.

As you might imagine, a perceptron was one of the first neurons employed in machine
learning due to its simplicity. There are problems with using perceptrons though. For
example, a very tiny change in the inputs can result in a complete change of the output. The
output behaves as a step function since it can only be zero or one. This is why there are
often other neuron types used, such as the sigmoid, that allow values between zero and
one. This has the effect of smoothing the output so that minor changes in the input don't
result in major changes to the output.

Building an Object Detection Application Using Machine Learning Chapter 9

[207]

If you are new to machine learning and the last few paragraphs just flew over your head,
please don't be alarmed. You won't need an in-depth understanding of the mathematical
constructs that go into a machine learning algorithm to complete this chapter's project.
However, if you are interested in attaining a rudimentary understanding of what is
happening behind the scenes, I recommend that you watch the following YouTube videos,
which provide great background on what neurons are and how they are built up to create a
network that can be used for machine learning:

https:/​/ ​www. ​youtube. ​com/ ​watch? ​v= ​aircAruvnKk ​t=​28s (~20 minutes)
https:/​/ ​www. ​youtube. ​com/ ​watch? ​v= ​IHZwWFHWa- ​w (~20 minutes)
https:/​/ ​www. ​youtube. ​com/ ​watch? ​v= ​Ilg3gGewQ5U (~14 minutes)
https:/​/ ​www. ​youtube. ​com/ ​watch? ​v= ​tIeHLnjs5U8 ​t=​106s (~10 minutes)

The need for intelligent systems
Machine learning provides developers with the ability to design a completely new class of
system, intelligent systems. Intelligent systems are growing in importance because they
enable developers to do the following:

Solve problems that are not easy for a human to code for
Scale system behaviors and results based on new data and situations
Perform tasks that are easy for a human but traditionally difficult for computers
Decrease system costs in certain applications
And because it's cool and cutting edge

Machine learning can be applied to a wide range of applications:

Image recognition
Speech and audio processing
Language processing
Robotics
Bioinformatics
Chemistry
Video games
Search

The applications can be quite varied depending upon the processing power that is available
to an application. For example, examine the following diagram:

https://www.youtube.com/watch?v=aircAruvnKk&t=28s
https://www.youtube.com/watch?v=aircAruvnKk&t=28s
https://www.youtube.com/watch?v=aircAruvnKk&t=28s
https://www.youtube.com/watch?v=aircAruvnKk&t=28s
https://www.youtube.com/watch?v=aircAruvnKk&t=28s
https://www.youtube.com/watch?v=aircAruvnKk&t=28s
https://www.youtube.com/watch?v=aircAruvnKk&t=28s
https://www.youtube.com/watch?v=aircAruvnKk&t=28s
https://www.youtube.com/watch?v=aircAruvnKk&t=28s
https://www.youtube.com/watch?v=aircAruvnKk&t=28s
https://www.youtube.com/watch?v=aircAruvnKk&t=28s
https://www.youtube.com/watch?v=aircAruvnKk&t=28s
https://www.youtube.com/watch?v=aircAruvnKk&t=28s
https://www.youtube.com/watch?v=aircAruvnKk&t=28s
https://www.youtube.com/watch?v=aircAruvnKk&t=28s
https://www.youtube.com/watch?v=aircAruvnKk&t=28s
https://www.youtube.com/watch?v=aircAruvnKk&t=28s
https://www.youtube.com/watch?v=aircAruvnKk&t=28s
https://www.youtube.com/watch?v=aircAruvnKk&t=28s
https://www.youtube.com/watch?v=IHZwWFHWa-w
https://www.youtube.com/watch?v=IHZwWFHWa-w
https://www.youtube.com/watch?v=IHZwWFHWa-w
https://www.youtube.com/watch?v=IHZwWFHWa-w
https://www.youtube.com/watch?v=IHZwWFHWa-w
https://www.youtube.com/watch?v=IHZwWFHWa-w
https://www.youtube.com/watch?v=IHZwWFHWa-w
https://www.youtube.com/watch?v=IHZwWFHWa-w
https://www.youtube.com/watch?v=IHZwWFHWa-w
https://www.youtube.com/watch?v=IHZwWFHWa-w
https://www.youtube.com/watch?v=IHZwWFHWa-w
https://www.youtube.com/watch?v=IHZwWFHWa-w
https://www.youtube.com/watch?v=IHZwWFHWa-w
https://www.youtube.com/watch?v=IHZwWFHWa-w
https://www.youtube.com/watch?v=IHZwWFHWa-w
https://www.youtube.com/watch?v=IHZwWFHWa-w
https://www.youtube.com/watch?v=IHZwWFHWa-w
https://www.youtube.com/watch?v=Ilg3gGewQ5U
https://www.youtube.com/watch?v=Ilg3gGewQ5U
https://www.youtube.com/watch?v=Ilg3gGewQ5U
https://www.youtube.com/watch?v=Ilg3gGewQ5U
https://www.youtube.com/watch?v=Ilg3gGewQ5U
https://www.youtube.com/watch?v=Ilg3gGewQ5U
https://www.youtube.com/watch?v=Ilg3gGewQ5U
https://www.youtube.com/watch?v=Ilg3gGewQ5U
https://www.youtube.com/watch?v=Ilg3gGewQ5U
https://www.youtube.com/watch?v=Ilg3gGewQ5U
https://www.youtube.com/watch?v=Ilg3gGewQ5U
https://www.youtube.com/watch?v=Ilg3gGewQ5U
https://www.youtube.com/watch?v=Ilg3gGewQ5U
https://www.youtube.com/watch?v=Ilg3gGewQ5U
https://www.youtube.com/watch?v=Ilg3gGewQ5U
https://www.youtube.com/watch?v=tIeHLnjs5U8&t=106s
https://www.youtube.com/watch?v=tIeHLnjs5U8&t=106s
https://www.youtube.com/watch?v=tIeHLnjs5U8&t=106s
https://www.youtube.com/watch?v=tIeHLnjs5U8&t=106s
https://www.youtube.com/watch?v=tIeHLnjs5U8&t=106s
https://www.youtube.com/watch?v=tIeHLnjs5U8&t=106s
https://www.youtube.com/watch?v=tIeHLnjs5U8&t=106s
https://www.youtube.com/watch?v=tIeHLnjs5U8&t=106s
https://www.youtube.com/watch?v=tIeHLnjs5U8&t=106s
https://www.youtube.com/watch?v=tIeHLnjs5U8&t=106s
https://www.youtube.com/watch?v=tIeHLnjs5U8&t=106s
https://www.youtube.com/watch?v=tIeHLnjs5U8&t=106s
https://www.youtube.com/watch?v=tIeHLnjs5U8&t=106s
https://www.youtube.com/watch?v=tIeHLnjs5U8&t=106s
https://www.youtube.com/watch?v=tIeHLnjs5U8&t=106s
https://www.youtube.com/watch?v=tIeHLnjs5U8&t=106s
https://www.youtube.com/watch?v=tIeHLnjs5U8&t=106s
https://www.youtube.com/watch?v=tIeHLnjs5U8&t=106s
https://www.youtube.com/watch?v=tIeHLnjs5U8&t=106s

Building an Object Detection Application Using Machine Learning Chapter 9

[208]

As you can see, at the low end of the power spectrum, microcontrollers based on the Arm
Cortex-M processors can be used in real-time systems in applications such as keyword
detection, pattern training, and object detection. These applications are often associated
with IoT-based applications. As the energy profile for the processor increases, additional
application domains start to become possible, including autonomous vehicles at the high
end.

From a microcontroller perspective, there is a wide range of processors that can be used for
machine learning. These can generally be categorized into small, medium, or large
microcontroller systems, as can be seen in the following diagram:

Building an Object Detection Application Using Machine Learning Chapter 9

[209]

The project that we will be experimenting with within this chapter will utilize an OpenMV
camera module that is based on an STM32 microcontroller, which falls into the medium
category. In general, with today's technology, at a minimum, a developer would want to
use a medium system to run any machine learning inferences. It is possible to do this on a
small system, something that is becoming easier as technology advances, but if you are new
to machine learning, then I highly recommended starting with a system that has more
processing power.

For microcontroller-based embedded systems, the most common application to date is for
speech recognition and image recognition. For speech recognition, a common application is
to use a small microcontroller to recognize a trigger word that then wakes up an
application processor. The application processor has much more processing power and can
then perform full speech recognition or interact with a user or the cloud much more
efficiently. Image recognition is being used in all sorts of applications, ranging from object
detection to facial recognition. This chapter will focus on object detection.

Machine learning from the cloud to the edge
Machine learning is a technology that has traditionally resided in the cloud and has
powered everything from search engines to your recommended playlist on your favorite
streaming service. Running a machine learning inference often required a lot of processing
power, especially to train the algorithm. Machine learning, therefore, has mostly lived in
the cloud and has been completely off the radar to embedded system developers until just
recently.

Machine learning started to find its uses for IoT edge devices, but the processing wasn't
being done on the edge device. The first machine learning applications used the edge
device as a sensor node to collect the information that was needed, the processing was done
in the cloud, and then the result was transmitted back down to the edge device. While this
saved the need to have a heavy-duty processor at the edge, machine learning is beginning
to shift from the cloud to the edge for several reasons, including the following:

Bandwidth: As more devices are connected to the IoT, it becomes unrealistic to
have trillions of devices constantly connecting back to the cloud and transferring
large amounts of data. There is limited bandwidth that can be used through the
internet and, more importantly, that bandwidth costs money. The less bandwidth
that is used the better, and this is helping to drive machine learning from the
cloud to the edge.

Building an Object Detection Application Using Machine Learning Chapter 9

[210]

Power: Power is an important factor because when a data packet is sent to the
cloud, devices may have to stay awake in order to receive the processed
response. This means that the device will be unable to go into a low-power state
and will use more energy. While this may not be an issue for a device that is
connected to the power grid, many IoT devices are battery-operated devices, and
the longer a Wi-Fi module is powered up, the faster that battery will be drained.
Processing as much as possible at the edge can therefore potentially improve the
energy usage for the device.
Cost: The cost to run a machine learning algorithm in the cloud can also get
expensive. Cloud-based machine learning has a monthly cost associated with it.
Developers have to pay for access to the following:

The cloud
The bandwidth they use
The specific machine learning features they use
The number of devices connecting to that service, and so on.

Moving to the edge won't necessarily remove all these costs, but it can help to
potentially decrease them dramatically.

Latency: This is an important issue to consider when using cloud-based machine
learning. Every time an edge device has to send data to the cloud and wait for a
response, there is going to be a non-deterministic latency associated with that
transaction. Network communications are inherently inconsistent, which means
that running a real-time edge node that meets its deadlines can be nearly
impossible. Again, the more that can be done at the edge, the lower the latency
and the response times.
Reliability: The reliability for an edge device can also be improved by removing
its reliance on the cloud. If the cloud were to go down, the connection was to be
severed, or even the cloud APIs were updated, the edge device's reliability could
easily be compromised. The fewer device resource dependencies there are, the
better it is for the system and the less complicated it will be to design and test.
Security: Finally, the security for a system can be improved by keeping the
system as self-contained as possible. Pushing extra data up to the cloud and
processing it there increases the attack surface for a would-be hacker. For IoT
devices, security is a critical component in system design.

As you can see, the need to move machine learning from the cloud to the edge is quite
important to embedded system developers. Now that we understand this importance, let's
define some requirements for our own machine learning project.

Building an Object Detection Application Using Machine Learning Chapter 9

[211]

Object detection requirements
The main purpose of this project is to build an embedded system that can detect objects.
Object detection can be applied to a wide range of applications, from robotics through IoT
devices such as person recognition for a smart doorbell. For this project, we are going to
have two primary goals:

First, we want to be able to detect general objects that we could apply to a rover
like a robot that is looking for objects in its path that would require it to change
course.
Second, we want to create a second project that is able to recognize whether a
person is present.

Hardware requirements
There are several different approaches that we could take for object detection that would
cost anywhere from a nice meal for two up to several thousand dollars. Since we don't want
to break the bank in order to build this project, the one hardware requirement that we are
going to have is to use the OpenMV camera module.

According to the OpenMV website:

"The OpenMV project is about creating low-cost, extensible, Python-powered, machine
vision modules and aims at becoming the 'Arduino of Machine Vision'."

The OpenMV Cam H7 module is based on an Arm Cortex-M7 processor, the
STM32H743VI, running at 480 MHz with 1 MB of RAM and 2 MB of flash. The OpenMV
Cam H7 comes with an OV7725 camera module capable of taking 640 x 480 8-bit grayscale
images, or 640 x 480 16-bit RGB565 images at 60 FPS when the resolution is above 320 x 240,
and 120 FPS when the resolution is below this. The camera sensor comes with a 2.8 mm
lens, but there are other options available. The module itself comes in a small package that
you can see as follows:

Building an Object Detection Application Using Machine Learning Chapter 9

[212]

The OpenMV Cam H7 is particularly well suited for our object detection project for several
reasons, including the following:

The hardware form factor.
The hardware module cost is well under USD 100.
The OpenMV software framework is written in MicroPython.
The OpenMV software framework includes machine learning libraries that will
dramatically simplify our project.

For this project, all our hardware needs will be handled by the OpenMV module.

Software requirements
For this project, we are actually going to create two different projects. We will break up our
requirements for each project separately.

First, we have standard object detection. For this project, our software requirements are as
follows:

Use the CIFAR10 classes to detect common objects.
When an object is detected, use the OpenMV Cam H7 GPIO to turn on an LED.

Building an Object Detection Application Using Machine Learning Chapter 9

[213]

Second, we have person detection. For this project, our software requirement is as follows:

When a person is detected, use the OpenMV Cam H7 GPIO to turn on an LED.

We could list the specific frameworks that we want to use, such as the CMSIS-NN, but
again, as we develop requirements, we don't necessarily want to design the system for the
developer or constrain their ability to solve the problem unless it is absolutely necessary.
For this project, we could also add a number of interesting requirements, such as writing a
recognition log to an SD card, communicating a data packet back to a master processor, or
something more complex. I'm going to leave those interesting additions to you though once
you understand how to detect an object.

Let's now dig into the design for our system and discuss the software theory on how we
can recognize objects.

Object detection design and theory
The detailed theory on how to detect objects in an image and all the machine learning
details that go into it is well beyond the scope of this book. However, understanding the
general theory about how to successfully perform object detection on a microcontroller
device is exactly what we are interested in doing. In this section, we are going to explore
the major components that are required in order to perform machine learning on a
microcontroller and how those components come together to create an object detection
application.

The five main components that we are going to need in order to detect objects can be seen
in the following diagram:

Let's explore each of these components in more detail and see how they interact with one
another to achieve our goal.

Building an Object Detection Application Using Machine Learning Chapter 9

[214]

The CIFAR-10 and CIFAR-100 datasets
Machine learning can only get so far without having a dataset to train the model. You may
recall from earlier in the chapter that we discussed how a neural network is a collection of
neurons and connections between those neurons. The connection weights and the
activation bias can't be set properly without using some form of training to set their values.
Setting those weights and values is really the learning aspect for the model.

If you were to go out on the internet, you would discover that there are tons of different
datasets that are available online that can be used to train a machine learning model. If you
are interested in training a model to detect whether someone is smiling, you can use the
Smiles dataset at https:/ ​/​github. ​com/ ​hromi/​SMILEsmileD/ ​tree/ ​master/ ​SMILEs.

You could also use the Labeled Faces in the Wild dataset, which can be found at http:/ ​/​vis-
www.​cs.​umass.​edu/ ​lfw/ ​.

No matter which dataset you decide best fits your application, there are a couple of key
points that should be remembered when you consider your dataset for training your
machine learning model. These include the following:

Use 80% of your dataset for training.
Use 20% for testing and verifying the model.
The datasets should be labeled data.
Your dataset should, at a minimum, contain 5,000 labeled examples per category.

The types and sizes of the datasets that are publicly available have been growing at an
exponential rate. Following is an interesting diagram that has been recreated from the book
Deep Learning, by Ian Goodfellow, Yoshua Bengio, and Aaron Courville[1]:

https://github.com/hromi/SMILEsmileD/tree/master/SMILEs
https://github.com/hromi/SMILEsmileD/tree/master/SMILEs
https://github.com/hromi/SMILEsmileD/tree/master/SMILEs
https://github.com/hromi/SMILEsmileD/tree/master/SMILEs
https://github.com/hromi/SMILEsmileD/tree/master/SMILEs
https://github.com/hromi/SMILEsmileD/tree/master/SMILEs
https://github.com/hromi/SMILEsmileD/tree/master/SMILEs
https://github.com/hromi/SMILEsmileD/tree/master/SMILEs
https://github.com/hromi/SMILEsmileD/tree/master/SMILEs
https://github.com/hromi/SMILEsmileD/tree/master/SMILEs
https://github.com/hromi/SMILEsmileD/tree/master/SMILEs
https://github.com/hromi/SMILEsmileD/tree/master/SMILEs
https://github.com/hromi/SMILEsmileD/tree/master/SMILEs
https://github.com/hromi/SMILEsmileD/tree/master/SMILEs
https://github.com/hromi/SMILEsmileD/tree/master/SMILEs
https://github.com/hromi/SMILEsmileD/tree/master/SMILEs
https://github.com/hromi/SMILEsmileD/tree/master/SMILEs
http://vis-www.cs.umass.edu/lfw/
http://vis-www.cs.umass.edu/lfw/
http://vis-www.cs.umass.edu/lfw/
http://vis-www.cs.umass.edu/lfw/
http://vis-www.cs.umass.edu/lfw/
http://vis-www.cs.umass.edu/lfw/
http://vis-www.cs.umass.edu/lfw/
http://vis-www.cs.umass.edu/lfw/
http://vis-www.cs.umass.edu/lfw/
http://vis-www.cs.umass.edu/lfw/
http://vis-www.cs.umass.edu/lfw/
http://vis-www.cs.umass.edu/lfw/
http://vis-www.cs.umass.edu/lfw/
http://vis-www.cs.umass.edu/lfw/
http://vis-www.cs.umass.edu/lfw/

Building an Object Detection Application Using Machine Learning Chapter 9

[215]

There are several things that should be noted about the preceding diagram. First, the plot
lists the databases that are most popular with machine learning researchers. Second, as you
can see, the size of the datasets in modern times has grown dramatically as compared to the
earlier datasets.

A very popular dataset that is used among many machine learning researchers is the
CIFAR-10 dataset. CIFAR-10 is a collection of 60,000 images from the following 10 image
classes:

Airplanes
Cars
Birds
Cats
Deer
Dogs
Frogs
Horses
Ships
Trucks

Each image is a 32-pixel x 32-pixel color image. The CIFAR-10 dataset provides developers
with a way to quickly try out different models and determine which ones are the best at
recognizing the objects the most efficiently.

There are plenty of other datasets as well. For example, the CIFAR-100 dataset expands on
CIFAR-10 by including 100 classes that contain 600 images for each class. There is also
ImageNet, which contains more than 14 million images in over 20,000 categories.

For our purposes, we will keep things simple and use the CIFAR-10 dataset for our project.

Machine learning modeling languages
There are several different libraries and frameworks that developers can use to create a
model for their dataset. A quick overview of the different tools can be seen in the following
diagram:

Building an Object Detection Application Using Machine Learning Chapter 9

[216]

For developers working with embedded systems, it's fairly common for either TensorFlow
or Caffe to be used to convert their dataset into a machine learning model.

TensorFlow is a software library developed by Google that is used for machine learning
applications that use neural networks. The library was open sourced in 2015 under the
Apache 2.0 license.

Caffe is a deep learning framework that is written in C++ and was developed for
applications involving image classification. The framework was developed at the
University of California, Berkeley, and released under a BSD license.

These libraries and frameworks allow a developer to train a machine learning model that
could then be used for object detection. The problem with these tools is that they are too big
to run on a microcontroller. Even a model generated from these libraries would require too
much computational horsepower to be useful on a microcontroller. In order to use them
effectively on a microcontroller, we require an additional tool that can convert the model
into something that can run on a microcontroller. In order to do this, we use Arm-NN.

TFLu
TFLu is TensorFlow Lite for Microcontrollers. According to the tensorflow.org website:

TensorFlow Lite for Microcontrollers is an experimental port of TensorFlow Lite designed
to run machine learning models on microcontrollers and other devices with only kilobytes
of memory.

Running a machine learning framework directly on a Cortex-M processor is impractical.

Building an Object Detection Application Using Machine Learning Chapter 9

[217]

The computing resources necessary to run such frameworks are too intense for a resource-
constrained device. However, it is possible to run a trained model, the inference, on a
microcontroller.

On a microcontroller, the inference needs to run bare-metal in order to efficiently use the
limited resources of the processor. While a microcontroller with a megabyte of RAM and
flash may not seem resource-constrained to an embedded developer, for a framework that
can leverage terabytes of storage space and high-end, cloud-based computing resources, a
microcontroller offers nearly no resources in comparison.

TFLu helps to translate the trained model to code that can run on Cortex-M processors. It
leverages API calls from CMSIS-NN, which we will discuss in more detail shortly. This can
be seen quite clearly in the following diagram:

You can learn a bit more about TFLu at https:/ ​/ ​www.​tensorflow. ​org/​lite/
microcontrollers. Let's now take a look at how CMSIS-NN comes into play.

https://www.tensorflow.org/lite/microcontrollers
https://www.tensorflow.org/lite/microcontrollers
https://www.tensorflow.org/lite/microcontrollers
https://www.tensorflow.org/lite/microcontrollers
https://www.tensorflow.org/lite/microcontrollers
https://www.tensorflow.org/lite/microcontrollers
https://www.tensorflow.org/lite/microcontrollers
https://www.tensorflow.org/lite/microcontrollers
https://www.tensorflow.org/lite/microcontrollers
https://www.tensorflow.org/lite/microcontrollers
https://www.tensorflow.org/lite/microcontrollers
https://www.tensorflow.org/lite/microcontrollers

Building an Object Detection Application Using Machine Learning Chapter 9

[218]

CMSIS-NN
CMSIS-NN is a software framework that is optimized for the low-level neural network
(NN) functions on Arm Cortex-M microcontrollers. CMSIS-NN is often called by TFLu in
order to interact directly with the microcontroller hardware, but developers can make calls
directly to CMSIS-NN from their application code if necessary. CMSIS-NN can be summed
up as a collection of neural network functions that includes important features such as the
following:

A minimal memory footprint
Optimizations specific to neural networks, such as data layout and offline weight
ordering
Improved performance using Cortex-M SIMD instructions

The following diagram provides the reader with an overview of what they can expect to
find in CMSIS-NN. A more detailed discussion about the framework is beyond the scope of
this book:

The hardware
The hardware that we will be working with within this chapter has already been described
back in the section on hardware requirements. However, I think it is important to note here
that the OpenMV camera does provide examples of how to use machine learning to detect
objects. In fact, since the OpenMV camera uses an Arm Cortex-M processor, the very
software frameworks we have just been talking about are used by OpenMV to provide
machine learning capabilities!

We are now at the point where we have enough background information on what we are
trying to do that we can dive in and start to implement object detection.

Building an Object Detection Application Using Machine Learning Chapter 9

[219]

Implementing and testing object detection
on the OpenMV camera
There are several different ways that we can implement object detection using the OpenMV
camera. In this section, we are going to use two different methods:

First, we are going to use a pretrained convolutional neural network (CNN) that
was trained by OpenMV using the CIFAR-10 dataset. We will load the example
and then provide it with several images to see how the network behaves and to
become familiar with OpenMV operations.
Second, we will move beyond the pretrained network and train a network of our
own that we will then deploy to the OpenMV camera. By the time you have
completed this section, you will be able to train a network to detect whatever
object it is that you are interested in detecting and be able to start building your
own control application.

Getting familiar with OpenMV IDE
Before we start playing with the pretrained CIFAR-10 network, let's first discuss how to set
up and configure our OpenMV camera using OpenMV IDE. Begin by opening OpenMV
IDE. You'll notice that the IDE is broken up into four main areas:

Building an Object Detection Application Using Machine Learning Chapter 9

[220]

The main areas that are marked in the preceding screenshot are as follows:

The code editor1.
A terminal window2.
An image preview3.
An image histogram4.

On the lower left-hand side of the screen, you'll also notice that there are two buttons:

One for connecting to the OpenMV camera
One for running the current OpenMV script

By default, the OpenMV IDE loads with the hello_world.py script ready to run. This
script continuously takes images from the camera and displays the frames per second
(FPS) that it is able to achieve. (Note that the maximum achievable FPS is much higher if
the camera is not connected to a PC). The script is shown in full as follows (script source:
OpenMV IDE hello_world.py):

Hello World Example
Welcome to the OpenMV IDE! Click on the green run arrow button below
to run the script!

import sensor, image, time

sensor.reset() # Reset and initialize the sensor.
sensor.set_pixformat(sensor.RGB565) # Set pixel format to RGB565
 # (or GRAYSCALE)
sensor.set_framesize(sensor.QVGA) # Set frame size to QVGA (320x240)
sensor.skip_frames(time = 2000) # Wait for settings take effect.
clock = time.clock() # Create a clock object to track the
FPS.

while(True):
 clock.tick() # Update the FPS clock.
 img = sensor.snapshot() # Take a picture and return the image.
 print(clock.fps()) # Note: OpenMV Cam runs about half
 # as fast when connected
 # to the IDE. The FPS should increase
 # once disconnected.

Building an Object Detection Application Using Machine Learning Chapter 9

[221]

Let's take a moment to run this script and make sure that we are able to successfully
connect to the OpenMV camera. (Note, if your camera is brand new, you should review the
OpenMV getting started documentation for how to focus the camera). You can perform the
following steps:

Connect the OpenMV camera to your computer.1.
In the lower-left corner, click the icon that looks like a plug-in order to connect2.
the camera.
If this is your first time using the camera, OpenMV IDE may tell you that the3.
firmware is outdated. Allow the IDE to update the firmware before continuing.
(This may take a few minutes.)
Click on the green arrow execute button.4.

At this point, you should see a read-out in the terminal that displays the calculated FPS, as
shown in the following screenshot:

You should also see that the histogram and the image preview window changes as you
move the camera around to point at different objects in your environment. Now that the
camera is up and running and we have some basic experience with it, let's try playing with
the pretrained CIFAR-10 network.

Implementing a pretrained CIFAR-10 network
First, if you were just running the hello_world.py script, go ahead and stop the script
from executing by pressing the stop button in the lower left-hand corner of the OpenMV
IDE. This will get you back to square one and ensure that nothing interferes with our ability
to load the CIFAR-10 example.

Building an Object Detection Application Using Machine Learning Chapter 9

[222]

Next, before we can execute the example code, we need to save the CIFAR-10 trained
network interface on the OpenMV camera. This will provide the camera with the trained
network and we will need to reference it in our application script. Perform the following
steps to load and save the CIFAR-10 network file:

From the top menu, click Tools | Machine Learning | CNN Network Library.1.
In the pop-up window, navigate to CMSIS-NN | cifar10.2.
Click the cifar10.network file and select Open.3.
Another window will pop up. This window will ask where to save the selected4.
file. Navigate to the OpenMV mass storage device drive that appeared when
you connected the camera. Click Save.

Now that the network file is saved to the camera filesystem, we can load the example script
by clicking File | Examples | 25-Machine-Learning -| py.

You may have noticed that there were several additional nn_cifar10 scripts. These scripts
provide examples of how to reduce the area that the network is evaluating. For example,
one example will search a smaller area of the image in the center versus examining the
entire image. For our purposes, we will just use the whole window classification, but I
encourage you to try the others as well. The example script for
nn_cifar10_search_whole_window.py can be seen as follows:

CIFAR-10 Search Whole Window Example
#
CIFAR is a convolutional neural network designed to classify its field of
view into several different object types and works on RGB video data.
#
In this example, we slide the LeNet detector window over the image and
get a list of activations where there might be an object. Note that using
a CNN with a sliding window is extremely compute expensive, so for an
exhaustive search do not expect the CNN to be real-time.
import sensor, image, time, os, nn
sensor.reset() # Reset and initialize the sensor.
sensor.set_pixformat(sensor.RGB565) # Set pixel format to RGB565
sensor.set_framesize(sensor.QVGA) # Set frame size to QVGA (320x240)
sensor.set_windowing((128, 128)) # Set 128x128 window.
sensor.skip_frames(time=750) # Don't let autogain run very long.
sensor.set_auto_gain(False) # Turn off autogain.
sensor.set_auto_exposure(False) # Turn off whitebalance.
Load the cifar10 network (You can get the network from OpenMV IDE).
net = nn.load('/cifar10.network')
Faster, smaller and less accurate.
net = nn.load('/cifar10_fast.network')
labels = ['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog',
 'horse', 'ship', 'truck']

Building an Object Detection Application Using Machine Learning Chapter 9

[223]

clock = time.clock()
while(True):
 clock.tick()
 img = sensor.snapshot()
 # net.search() will search an roi in the image for the network
 # (or the whole image if the roi is not specified). At each location to
 # look in the image if one of the classifier outputs is larger than
 # threshold the location and label will be stored in an object list and
 # returned. At each scale the detection window is moved around in the
 # ROI
 # using x_overlap (0-1) and y_overlap (0-1) as a guide.
 # If you set the overlap to 0.5 then each detection window will overlap
 # the previous one by 50%. Note the computational workload goes WAY up
 # the more overlap. Finally, for mult-scale matching after sliding the
 # network around in the x/y dimensions the detection window will shrink
 # by scale_mul (0-1)down to min_scale (0-1). For example, if scale_mul
 # is 0.5 the detection window will shrink by 50%.
 # Note that at a lower scale there's even more area to search if
 # x_overlap and y_overlap are small... contrast_threshold skips running
 # the CNN in areas that are flat.
 for obj in net.search(img, threshold=0.6, min_scale=0.5, scale_mul=0.5,
 x_overlap=0.5, y_overlap=0.5, contrast_threshold=0.5):
 print("Detected %s - Confidence %f%%"% (labels[obj.index()],\
 obj.value()))
 img.draw_rectangle(obj.rect(), color=(255, 0, 0))
 print(clock.fps())

Take a few minutes to read through the comments in the script. The comments provide all
the information you need to understand what is happening in the script and how it is
trying to detect an object in the image. Once you have read through the comments, perform
the following steps to run and test the network:

Click the Run button in the lower left-hand corner of the IDE.1.
Using a mobile device, use your favorite search engine to find and2.
present the following images to the camera:

Airplanes
Cars
Birds
Cats
Deer
Dogs
Frogs
Horses

Building an Object Detection Application Using Machine Learning Chapter 9

[224]

Ships
Trucks

While you present the images, take note of the classification result and3.
the confidence level that you are achieving.

How did that exercise go for you? When I ran this example myself, I found that the
pretrained network was able to achieve around 70% accuracy. That was under ideal
conditions. In fact, I often found that it was achieving a mid-60% confidence level. An
example Terminal output for my confidence levels can be seen in the following screenshot:

Depending on the image that I showed it, I also found that I received quite a few false
classifications. For example, I provided the camera with a picture of a cat and, 7 times out
of 10, it was a cat, while on the other three occasions, it was classified as a ship!

Now, this is certainly not optimal, but for getting a machine learning object detection
inference up and running in just a few minutes, it really isn't that bad. Let's now take a look
at an example where we train the model ourselves and run it on the OpenMV camera.

Person detection with a TensorFlow model
We can't detect an object without first training a model. Training a model requires
significant resources in order to perform the calculations to set the weights and neural
biases. This is usually done using backpropagation, but it depends on the techniques that
are being used. The problem that is encountered by many embedded engineers looking to
use machine learning is that once they train their model, they need to convert that model to
something that can run within a resource constrained environment.

Building an Object Detection Application Using Machine Learning Chapter 9

[225]

Working from within an embedded environment often limits the number of neural layers
that can be included in a model. Models that are generated using popular tools such as
Caffe or TensorFlow also generate their models in floating point. As you know, floating-
point calculations are notoriously slow and cumbersome within a microcontroller
environment. For this reason, once a model is trained, it needs to be quantized and
optimized in order to move to fixed point mathematics and reduce the model size. This is
often done using scripts that are provided by Arm to convert a model for use with TFLu
and CMSIS-NN. Thankfully, we don't have to develop those scripts ourselves.

A very useful blog that you can read through on the process can be found at https:/ ​/
community.​arm.​com/ ​innovation/ ​b/ ​blog/ ​posts/ ​low-​power- ​deep- ​learning- ​on- ​openmv-
cam.

What's great about this blog is that it even explains how you can convert a Caffe model
specifically for use on the OpenMV module! All the steps are necessary to train and deploy
a model using Caffe.

You may be wondering though, what about TensorFlow? TensorFlow is too resource-heavy
to be used with a microcontroller directly; instead, TensorFlow Lite (TF Lite) could be used.
TF Lite is an open source deep learning framework for on-device inferences. TF Lite for
MCUs is an experimental port of TensorFlow Lite that is designed to run inferences on
microcontrollers with only a few kilobytes of memory! For readers who are interested, you
can find the port at https:/ ​/​github. ​com/ ​tensorflow/ ​tensorflow/ ​tree/ ​master/
tensorflow/​lite/ ​experimental/ ​micro.

The process to deploy a TF Lite model onto an embedded target is straightforward. You can
see the general process in the following diagram:

TF Lite for MCUs has also been integrated within MicroPython through the OpenMV
project! You can check out the details at http:/ ​/​docs. ​openmv. ​io/​library/ ​omv. ​tf.​html.
For the most part, this integration is completely seamless for a developer and it is just
useful for a developer to understand what is happening behind the scenes even though
they don't have to do any of the integration themselves.

https://community.arm.com/innovation/b/blog/posts/low-power-deep-learning-on-openmv-cam
https://community.arm.com/innovation/b/blog/posts/low-power-deep-learning-on-openmv-cam
https://community.arm.com/innovation/b/blog/posts/low-power-deep-learning-on-openmv-cam
https://community.arm.com/innovation/b/blog/posts/low-power-deep-learning-on-openmv-cam
https://community.arm.com/innovation/b/blog/posts/low-power-deep-learning-on-openmv-cam
https://community.arm.com/innovation/b/blog/posts/low-power-deep-learning-on-openmv-cam
https://community.arm.com/innovation/b/blog/posts/low-power-deep-learning-on-openmv-cam
https://community.arm.com/innovation/b/blog/posts/low-power-deep-learning-on-openmv-cam
https://community.arm.com/innovation/b/blog/posts/low-power-deep-learning-on-openmv-cam
https://community.arm.com/innovation/b/blog/posts/low-power-deep-learning-on-openmv-cam
https://community.arm.com/innovation/b/blog/posts/low-power-deep-learning-on-openmv-cam
https://community.arm.com/innovation/b/blog/posts/low-power-deep-learning-on-openmv-cam
https://community.arm.com/innovation/b/blog/posts/low-power-deep-learning-on-openmv-cam
https://community.arm.com/innovation/b/blog/posts/low-power-deep-learning-on-openmv-cam
https://community.arm.com/innovation/b/blog/posts/low-power-deep-learning-on-openmv-cam
https://community.arm.com/innovation/b/blog/posts/low-power-deep-learning-on-openmv-cam
https://community.arm.com/innovation/b/blog/posts/low-power-deep-learning-on-openmv-cam
https://community.arm.com/innovation/b/blog/posts/low-power-deep-learning-on-openmv-cam
https://community.arm.com/innovation/b/blog/posts/low-power-deep-learning-on-openmv-cam
https://community.arm.com/innovation/b/blog/posts/low-power-deep-learning-on-openmv-cam
https://community.arm.com/innovation/b/blog/posts/low-power-deep-learning-on-openmv-cam
https://community.arm.com/innovation/b/blog/posts/low-power-deep-learning-on-openmv-cam
https://community.arm.com/innovation/b/blog/posts/low-power-deep-learning-on-openmv-cam
https://community.arm.com/innovation/b/blog/posts/low-power-deep-learning-on-openmv-cam
https://community.arm.com/innovation/b/blog/posts/low-power-deep-learning-on-openmv-cam
https://community.arm.com/innovation/b/blog/posts/low-power-deep-learning-on-openmv-cam
https://community.arm.com/innovation/b/blog/posts/low-power-deep-learning-on-openmv-cam
https://community.arm.com/innovation/b/blog/posts/low-power-deep-learning-on-openmv-cam
https://community.arm.com/innovation/b/blog/posts/low-power-deep-learning-on-openmv-cam
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/lite/experimental/micro
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/lite/experimental/micro
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/lite/experimental/micro
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/lite/experimental/micro
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/lite/experimental/micro
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/lite/experimental/micro
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/lite/experimental/micro
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/lite/experimental/micro
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/lite/experimental/micro
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/lite/experimental/micro
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/lite/experimental/micro
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/lite/experimental/micro
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/lite/experimental/micro
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/lite/experimental/micro
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/lite/experimental/micro
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/lite/experimental/micro
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/lite/experimental/micro
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/lite/experimental/micro
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/lite/experimental/micro
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/lite/experimental/micro
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/lite/experimental/micro
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/lite/experimental/micro
http://docs.openmv.io/library/omv.tf.html
http://docs.openmv.io/library/omv.tf.html
http://docs.openmv.io/library/omv.tf.html
http://docs.openmv.io/library/omv.tf.html
http://docs.openmv.io/library/omv.tf.html
http://docs.openmv.io/library/omv.tf.html
http://docs.openmv.io/library/omv.tf.html
http://docs.openmv.io/library/omv.tf.html
http://docs.openmv.io/library/omv.tf.html
http://docs.openmv.io/library/omv.tf.html
http://docs.openmv.io/library/omv.tf.html
http://docs.openmv.io/library/omv.tf.html
http://docs.openmv.io/library/omv.tf.html
http://docs.openmv.io/library/omv.tf.html
http://docs.openmv.io/library/omv.tf.html
http://docs.openmv.io/library/omv.tf.html
http://docs.openmv.io/library/omv.tf.html

Building an Object Detection Application Using Machine Learning Chapter 9

[226]

Just like before, we are going to leverage an existing model that was trained by OpenMV
using TensorFlow. In this example, we are going to look at how we can detect that a person
is present in the image. So, the object that we are trying to detect is a person (or at least
resembles a person). Perform the following steps to prepare the system:

Connect your OpenMV camera to the computer.1.
Launch OpenMV IDE.2.
Load the person detection example by clicking the following: File | Examples |3.
25-Machine-Learning | tf_person_detection_search_just_center.py.

The development window will now be filled with the example MicroPython script. Take a
few minutes to read through the script. You can also find it listed as follows (script source:
OpenMV tf_person_detection_search_just_center.py):

TensorFlow Lite Person Detection Example
#
Google's Person Detection Model detects if a person is in view.
#
In this example we slide the detector window over the image and get a
list
of activations. Note that use a CNN with a sliding window is extremely
compute
expensive so for an exhaustive search do not expect the CNN to be real
-time.
import sensor, image, time, os, tf
sensor.reset() # Reset and initialize the sensor.
sensor.set_pixformat(sensor.GRAYSCALE) # Set pixel format to RGB565 (or
 # GRAYSCALE)
sensor.set_framesize(sensor.QVGA) # Set frame size to QVGA (320x240)
sensor.set_windowing((240, 240)) # Set 240x240 window.
sensor.skip_frames(time=2000) # Let the camera adjust.
Load the built-in person detection network (the network is in your OpenMV
Cam's firmware).
net = tf.load('person_detection')
labels = ['unsure', 'person', 'no_person']
clock = time.clock()
while(True):
 clock.tick()
 img = sensor.snapshot()
 # net.classify() will run the network on an roi in the image (or on the
 # whole
 # image
 # if the roi is not
 # specified). A classification score output vector will be generated
 # for each location. At each scale the

Building an Object Detection Application Using Machine Learning Chapter 9

[227]

 # detection window is moved around in the ROI using x_overlap (0-1) and
 # y_overlap (0-1) as a guide.
 # If you set the overlap to 0.5 then each detection window will overlap
 # the
 # previous one by 50%. Note
 # the computational work load goes WAY up the more overlap. Finally,
 # for
 # multi-scale matching after
 # sliding the network around in the x/y dimensions the detection window
 # will
 # shrink by scale_mul (0-1)
 # down to min_scale (0-1). For example, if scale_mul is 0.5 the
 # detection
 # window will shrink by 50%.
 # Note that at a lower scale there's even more area to search if
 # x_overlap
 # and y_overlap are small...
 # Setting x_overlap=-1 forces the window to stay centered in the ROI in
 # the x direction always. If
 # y_overlap is not -1 the method will search in all vertical positions.
 # Setting y_overlap=-1 forces the window to stay centered in the ROI in
 # the y direction always. If
 # x_overlap is not -1 the method will search in all horizontal
 # positions.
 # default settings just do one detection... change them to search the
 # image...
 for obj in net.classify(img, min_scale=0.5, scale_mul=0.5,
 x_overlap=-1, y_overlap=-1):
 print("**********\nDetections at [x=%d,y=%d,w=%d,h=%d]" %
 obj.rect())
 for i in range(len(obj.output())):
 print("%s = %f" % (labels[i], obj.output()[i]))
 img.draw_rectangle(obj.rect())
 img.draw_string(obj.x()+3, obj.y()-1, labels[obj.output().
 index(max(obj.output()))], mono_space = False)
 print(clock.fps(), "fps")

Now that you have an idea of how the script works, let's run it! Perform the following
steps:

Click the connect button in the lower-left corner of the OpenMV IDE.1.
Click Run.2.

Building an Object Detection Application Using Machine Learning Chapter 9

[228]

Make sure that your serial terminal is open. If it does not display, click Serial3.
Terminal in the lower-left corner.
Now, present a person to the camera and notice the confidence level in the4.
terminal that there is a person present.

When I ran the example, I decided to present to it not my face, but instead my Dr. Leonard
McCoy Star Trek action figure (the one played by Karl Urban). You can see that I presented
the action figure to the OpenMV camera in the person box that is generated in the center of
the view in the following screenshot:

When I presented the action figure, the image was pushed through the person detection
inference that is running in the example MicroPython script. The serial terminal output can
be seen in the following screenshot:

Building an Object Detection Application Using Machine Learning Chapter 9

[229]

As you can see, the application tells us the framerate, which in this case is typically between
1–2 frames per second. You can see that it also calculates whether it thinks there is a person
in the image. In this case, you can see it is ~95% sure that there is a person there. It also
evaluates whether it thinks there is no person there and how unsure it is about its answers.

Using machine learning to detect objects can be that simple! If you can, find an existing
model that you can leverage for application. If a model doesn't exist, then you need to train
a model yourself.

Summary
In this chapter, we explored how a developer could get started with object detection
applications using the OpenMV camera. We examined the machine learning technologies
that drive this capability under the hood, such as CMSIS-NN. While training cannot be
done on the target device, the inference can be executed on a resource-constrained
processor.

Depending on the end application and the object that needs to be detected, a developer may
be able to leverage existing datasets to train their model. Worst case scenario, a developer
may need to acquire and classify the data themselves. With the knowledge gained in this
chapter, you should now be able to train your own custom models and deploy them on the
OpenMV camera. You can also leverage the existing, pretrained models and examples to
develop extremely sophisticated applications.

In the next chapter, we are going to discuss where MicroPython may be headed and how it
will impact the way that embedded systems are designed and built.

Questions
What skill areas are traditionally covered within embedded systems?1.
Why are intelligent systems now required in the industry?2.
What are the benefits of moving machine learning from the cloud to the edge?3.
What image dataset is most commonly used in machine learning algorithm4.
development?
What tools are used to train and deploy a machine learning model on an5.
embedded system?

Building an Object Detection Application Using Machine Learning Chapter 9

[230]

Further reading
There are quite a few resources on machine learning and object detection that can be found
throughout the internet. Many are resources that can be read, but there are also resources
that can be watched on YouTube. Here are several additional resources that you will
undoubtedly find useful:

Introduction video: https:/ ​/​www.​youtube. ​com/ ​watch? ​v=​aircAruvnKk

Online book: http:/ ​/​neuralnetworksanddeeplearning. ​com/ ​

MIT course: http:/ ​/​introtodeeplearning. ​com/​

CMSIS-NN paper: https:/ ​/​arxiv. ​org/ ​abs/​1801. ​06601

KWS (Keyword Spotting) paper: https:/ ​/ ​arxiv. ​org/ ​abs/​1711. ​07128

OpenMV NN module documentation: https:/ ​/​docs. ​openmv. ​io/ ​library/ ​omv.
nn.​html

Model conversion: https:/ ​/​community. ​arm. ​com/ ​innovation/ ​b/​blog/ ​posts/
low-​power- ​deep- ​learning- ​on- ​openmv- ​cam

TensorFlow Lite integration in MicroPython: http:/ ​/​docs. ​openmv. ​io/ ​library/
omv.​tf. ​html

References
Here is a list of references you can refer to:

Deep Learning, Ian Goodfellow, Yoshua Bengio, and Aaron Courville, page 18.
https:/​/ ​developer. ​arm. ​com/ ​ip-​products/ ​processors/ ​machine- ​learning/ ​arm-
nn

https:/​/ ​www. ​tensorflow. ​org/ ​lite/ ​microcontrollers

https:/​/ ​www. ​tensorflow. ​org/ ​lite/ ​microcontrollers#developer_ ​workflow

https://www.youtube.com/watch?v=aircAruvnKk
https://www.youtube.com/watch?v=aircAruvnKk
https://www.youtube.com/watch?v=aircAruvnKk
https://www.youtube.com/watch?v=aircAruvnKk
https://www.youtube.com/watch?v=aircAruvnKk
https://www.youtube.com/watch?v=aircAruvnKk
https://www.youtube.com/watch?v=aircAruvnKk
https://www.youtube.com/watch?v=aircAruvnKk
https://www.youtube.com/watch?v=aircAruvnKk
https://www.youtube.com/watch?v=aircAruvnKk
https://www.youtube.com/watch?v=aircAruvnKk
https://www.youtube.com/watch?v=aircAruvnKk
https://www.youtube.com/watch?v=aircAruvnKk
https://www.youtube.com/watch?v=aircAruvnKk
https://www.youtube.com/watch?v=aircAruvnKk
http://neuralnetworksanddeeplearning.com/
http://neuralnetworksanddeeplearning.com/
http://neuralnetworksanddeeplearning.com/
http://neuralnetworksanddeeplearning.com/
http://neuralnetworksanddeeplearning.com/
http://neuralnetworksanddeeplearning.com/
http://neuralnetworksanddeeplearning.com/
http://neuralnetworksanddeeplearning.com/
http://introtodeeplearning.com/
http://introtodeeplearning.com/
http://introtodeeplearning.com/
http://introtodeeplearning.com/
http://introtodeeplearning.com/
http://introtodeeplearning.com/
http://introtodeeplearning.com/
http://introtodeeplearning.com/
https://arxiv.org/abs/1801.06601
https://arxiv.org/abs/1801.06601
https://arxiv.org/abs/1801.06601
https://arxiv.org/abs/1801.06601
https://arxiv.org/abs/1801.06601
https://arxiv.org/abs/1801.06601
https://arxiv.org/abs/1801.06601
https://arxiv.org/abs/1801.06601
https://arxiv.org/abs/1801.06601
https://arxiv.org/abs/1801.06601
https://arxiv.org/abs/1801.06601
https://arxiv.org/abs/1801.06601
https://arxiv.org/abs/1801.06601
https://arxiv.org/abs/1711.07128
https://arxiv.org/abs/1711.07128
https://arxiv.org/abs/1711.07128
https://arxiv.org/abs/1711.07128
https://arxiv.org/abs/1711.07128
https://arxiv.org/abs/1711.07128
https://arxiv.org/abs/1711.07128
https://arxiv.org/abs/1711.07128
https://arxiv.org/abs/1711.07128
https://arxiv.org/abs/1711.07128
https://arxiv.org/abs/1711.07128
https://arxiv.org/abs/1711.07128
https://arxiv.org/abs/1711.07128
https://docs.openmv.io/library/omv.nn.html
https://docs.openmv.io/library/omv.nn.html
https://docs.openmv.io/library/omv.nn.html
https://docs.openmv.io/library/omv.nn.html
https://docs.openmv.io/library/omv.nn.html
https://docs.openmv.io/library/omv.nn.html
https://docs.openmv.io/library/omv.nn.html
https://docs.openmv.io/library/omv.nn.html
https://docs.openmv.io/library/omv.nn.html
https://docs.openmv.io/library/omv.nn.html
https://docs.openmv.io/library/omv.nn.html
https://docs.openmv.io/library/omv.nn.html
https://docs.openmv.io/library/omv.nn.html
https://docs.openmv.io/library/omv.nn.html
https://docs.openmv.io/library/omv.nn.html
https://docs.openmv.io/library/omv.nn.html
https://community.arm.com/innovation/b/blog/posts/low-power-deep-learning-on-openmv-cam
https://community.arm.com/innovation/b/blog/posts/low-power-deep-learning-on-openmv-cam
https://community.arm.com/innovation/b/blog/posts/low-power-deep-learning-on-openmv-cam
https://community.arm.com/innovation/b/blog/posts/low-power-deep-learning-on-openmv-cam
https://community.arm.com/innovation/b/blog/posts/low-power-deep-learning-on-openmv-cam
https://community.arm.com/innovation/b/blog/posts/low-power-deep-learning-on-openmv-cam
https://community.arm.com/innovation/b/blog/posts/low-power-deep-learning-on-openmv-cam
https://community.arm.com/innovation/b/blog/posts/low-power-deep-learning-on-openmv-cam
https://community.arm.com/innovation/b/blog/posts/low-power-deep-learning-on-openmv-cam
https://community.arm.com/innovation/b/blog/posts/low-power-deep-learning-on-openmv-cam
https://community.arm.com/innovation/b/blog/posts/low-power-deep-learning-on-openmv-cam
https://community.arm.com/innovation/b/blog/posts/low-power-deep-learning-on-openmv-cam
https://community.arm.com/innovation/b/blog/posts/low-power-deep-learning-on-openmv-cam
https://community.arm.com/innovation/b/blog/posts/low-power-deep-learning-on-openmv-cam
https://community.arm.com/innovation/b/blog/posts/low-power-deep-learning-on-openmv-cam
https://community.arm.com/innovation/b/blog/posts/low-power-deep-learning-on-openmv-cam
https://community.arm.com/innovation/b/blog/posts/low-power-deep-learning-on-openmv-cam
https://community.arm.com/innovation/b/blog/posts/low-power-deep-learning-on-openmv-cam
https://community.arm.com/innovation/b/blog/posts/low-power-deep-learning-on-openmv-cam
https://community.arm.com/innovation/b/blog/posts/low-power-deep-learning-on-openmv-cam
https://community.arm.com/innovation/b/blog/posts/low-power-deep-learning-on-openmv-cam
https://community.arm.com/innovation/b/blog/posts/low-power-deep-learning-on-openmv-cam
https://community.arm.com/innovation/b/blog/posts/low-power-deep-learning-on-openmv-cam
https://community.arm.com/innovation/b/blog/posts/low-power-deep-learning-on-openmv-cam
https://community.arm.com/innovation/b/blog/posts/low-power-deep-learning-on-openmv-cam
https://community.arm.com/innovation/b/blog/posts/low-power-deep-learning-on-openmv-cam
https://community.arm.com/innovation/b/blog/posts/low-power-deep-learning-on-openmv-cam
https://community.arm.com/innovation/b/blog/posts/low-power-deep-learning-on-openmv-cam
https://community.arm.com/innovation/b/blog/posts/low-power-deep-learning-on-openmv-cam
https://community.arm.com/innovation/b/blog/posts/low-power-deep-learning-on-openmv-cam
http://docs.openmv.io/library/omv.tf.html
http://docs.openmv.io/library/omv.tf.html
http://docs.openmv.io/library/omv.tf.html
http://docs.openmv.io/library/omv.tf.html
http://docs.openmv.io/library/omv.tf.html
http://docs.openmv.io/library/omv.tf.html
http://docs.openmv.io/library/omv.tf.html
http://docs.openmv.io/library/omv.tf.html
http://docs.openmv.io/library/omv.tf.html
http://docs.openmv.io/library/omv.tf.html
http://docs.openmv.io/library/omv.tf.html
http://docs.openmv.io/library/omv.tf.html
http://docs.openmv.io/library/omv.tf.html
http://docs.openmv.io/library/omv.tf.html
http://docs.openmv.io/library/omv.tf.html
http://docs.openmv.io/library/omv.tf.html
https://developer.arm.com/ip-products/processors/machine-learning/arm-nn
https://developer.arm.com/ip-products/processors/machine-learning/arm-nn
https://developer.arm.com/ip-products/processors/machine-learning/arm-nn
https://developer.arm.com/ip-products/processors/machine-learning/arm-nn
https://developer.arm.com/ip-products/processors/machine-learning/arm-nn
https://developer.arm.com/ip-products/processors/machine-learning/arm-nn
https://developer.arm.com/ip-products/processors/machine-learning/arm-nn
https://developer.arm.com/ip-products/processors/machine-learning/arm-nn
https://developer.arm.com/ip-products/processors/machine-learning/arm-nn
https://developer.arm.com/ip-products/processors/machine-learning/arm-nn
https://developer.arm.com/ip-products/processors/machine-learning/arm-nn
https://developer.arm.com/ip-products/processors/machine-learning/arm-nn
https://developer.arm.com/ip-products/processors/machine-learning/arm-nn
https://developer.arm.com/ip-products/processors/machine-learning/arm-nn
https://developer.arm.com/ip-products/processors/machine-learning/arm-nn
https://developer.arm.com/ip-products/processors/machine-learning/arm-nn
https://developer.arm.com/ip-products/processors/machine-learning/arm-nn
https://developer.arm.com/ip-products/processors/machine-learning/arm-nn
https://developer.arm.com/ip-products/processors/machine-learning/arm-nn
https://developer.arm.com/ip-products/processors/machine-learning/arm-nn
https://developer.arm.com/ip-products/processors/machine-learning/arm-nn
https://developer.arm.com/ip-products/processors/machine-learning/arm-nn
https://www.tensorflow.org/lite/microcontrollers
https://www.tensorflow.org/lite/microcontrollers
https://www.tensorflow.org/lite/microcontrollers
https://www.tensorflow.org/lite/microcontrollers
https://www.tensorflow.org/lite/microcontrollers
https://www.tensorflow.org/lite/microcontrollers
https://www.tensorflow.org/lite/microcontrollers
https://www.tensorflow.org/lite/microcontrollers
https://www.tensorflow.org/lite/microcontrollers
https://www.tensorflow.org/lite/microcontrollers
https://www.tensorflow.org/lite/microcontrollers
https://www.tensorflow.org/lite/microcontrollers
https://www.tensorflow.org/lite/microcontrollers
https://www.tensorflow.org/lite/microcontrollers#developer_workflow
https://www.tensorflow.org/lite/microcontrollers#developer_workflow
https://www.tensorflow.org/lite/microcontrollers#developer_workflow
https://www.tensorflow.org/lite/microcontrollers#developer_workflow
https://www.tensorflow.org/lite/microcontrollers#developer_workflow
https://www.tensorflow.org/lite/microcontrollers#developer_workflow
https://www.tensorflow.org/lite/microcontrollers#developer_workflow
https://www.tensorflow.org/lite/microcontrollers#developer_workflow
https://www.tensorflow.org/lite/microcontrollers#developer_workflow
https://www.tensorflow.org/lite/microcontrollers#developer_workflow
https://www.tensorflow.org/lite/microcontrollers#developer_workflow
https://www.tensorflow.org/lite/microcontrollers#developer_workflow
https://www.tensorflow.org/lite/microcontrollers#developer_workflow
https://www.tensorflow.org/lite/microcontrollers#developer_workflow
https://www.tensorflow.org/lite/microcontrollers#developer_workflow

10
The Future of MicroPython

Since 2013, MicroPython has been gaining popularity not just among hobbyists and Python
enthusiasts, but also among professional developers who are willing to explore innovative
and unconventional ways to develop embedded systems. Will MicroPython survive in the
long term or is it just a short-term fad that will disappear over the next few years?

In this chapter, we will explore current trends and what the future of MicroPython might
look like for professional and DIY developers. We will also examine some of the latest and
greatest hardware and software for MicroPython that will help round out your
MicroPython toolkit.

The following topics will be covered in this chapter:

The advancing MicroPython
The pyboard D-series
Example professional projects
Example maker projects
How MicroPython can be used professionally
Going further

The advancing MicroPython
The greatest advantage that MicroPython currently has going for it is that Python, in
general, has become one of the most popular programming languages in the world.
Whether you are working in the cloud or at the edge, with a Windows or with a Linux
machine, Python can be found there. There are Python libraries for serial communication,
analyzing data, creating graphical user interfaces, analyzing images, and running machine
learning inferences, just to name a few. Python is widely supported and has a fantastic
ecosystem surrounding it.

The Future of MicroPython Chapter 10

[232]

All the advantages that you can think of for Python can also be applied to MicroPython, in
addition to several additional advantages including the following:

Abstracting the low-level electronics
Lowering the barrier to entry for new developers (think electrical engineers and
students)

There are still many challenges that developers interested in using MicroPython still face,
despite all the advantages and the advances that have been made. For example, developers
who want to use MicroPython may come across the following challenges:

The integrity of the filesystem is questionable under certain circumstances, such
as after an unexpected power disruption.
Having enough memory available for application scripts and to run the scripts.
Developing an adequate backup and recovery mechanism for the system.
Recovering from low-level hardware failures such as an I2C bus fault that may
not be handled properly by the low-level drivers.
Additional hardware costs for a microcontroller that can run the MicroPython
kernel.
Securing an application that uses MicroPython.

While these can be challenging for developers to overcome, they are not impossible and the
continued improvements to MicroPython over the next several years will undoubtedly
address them. In fact, several of these challenges are currently being dramatically improved
through the pyboard D-Series module and the latest MicroPython kernel releases. Let's take
a moment to explore the pyboard D-Series and some of the software capabilities that can
help minimize these challenges for developers.

The pyboard D-series
While I was writing this project book, the MicroPython community was waiting in
anticipation for the release of the latest flagship MicroPython development board, the
pyboard D-series. (The module went into production a few months before this book was
published.) Unlike its predecessors, the pyboard D-series was designed to be a module that
could be used in production systems. Developers can design their end application and put
all their hardware on a carrier or daughter board and then, through a mezzanine connector,
add the pyboard D-series module in order to command and control their specific
application hardware.

The Future of MicroPython Chapter 10

[233]

There are several advantages to the module approach for the pyboard D-series, including
the following:

Developers can design their hardware completely independently of the
microcontroller.
Over time, their product or project processing power can be upgraded or scaled
by swapping out the pyboard D-series module for the latest and greatest.
Bluetooth and Wi-Fi are included in the module, so there is no need to spend
time adding these features to the carrier board.

Beyond these advantages, the pyboard D-series brought with it several new hardware
capabilities and features that make MicroPython more robust and interesting for
developers to use in both professional and hobby projects. Let's take a look at these new
features.

The pyboard D-series hardware
First, the pyboard D-series (PYBD-SFxW) is not a single development module. There are
three different versions of the module that allow developers to customize the features and
capabilities that they need in their projects and can help them meet their budgets. Each
module is based on an Arm Cortex-M7 microcontroller from STMicroelectronics and
includes the following microcontrollers:

STM32F722
STM32F723
STM32F767

The modules are designated based on the last number in the microcontroller. For example,
the module that uses the STM32F722 is the PYBD-SF2W, while the STM32F767 module is
the PYBD-SF6W.

These microcontrollers are all capable of running at 216 MHz, which provides a lot of
processing power to run MicroPython, but they don't come clocked at their maximum
speed. For example, the PYBD-SF2W has an initial clock rate of 120 MHz, while the PYBD-
SF6W has a clock rate of 144 MHz. Developers have the ability to control what performance
level they need from the module by adjusting the clock rate at 2 MHz increments, all the
way from 48 MHz to 216 MHz. It's interesting to note that developers can even go below
the 48 MHz rate, but developers will no longer be able to run the onboard Wi-Fi stack.

The Future of MicroPython Chapter 10

[234]

Changing the clock rate can be done through the freq method from the machine module.
For example, we can set the clock rate to 100 MHz using the following code:

machine.freq(100000000)

The PYBD-SFxWs all come with at least 256 kB RAM, with the STM32F767 including 512
kB. Each module also includes a dedicated 2 MiB external QSPI flash module that extends
the internal flash memory so that developers have more space to store their scripts. A
second 2 MiB external QSPI flash module is also on the modules to store user files and data,
in addition to the standard SD card slot. These devices can all be mounted on the
MicroPython filesystem.

The PYBD-SFxW also includes an integrated Wi-Fi and Bluetooth 4.1 (classic and BLE)
module through a Murata 1DX CYW4343 chip. The MicroPython implementation has the
TCP/IP and Bluetooth stacks running on the microcontroller in order to provide developers
with more flexibility to customize them. While this is great, developers working with these
features will need to monitor their CPU usage because these software stacks can be
demanding from a processing standpoint. It also means that they can't drop the clock rate
below 48 MHz, as we previously discussed. However, these are most likely not major
design constraints for most developers.

Additional features on the module that are interesting include the following:

The ability to connect an external antenna through a selectable RF switch
Access to I/O through a 40+40 pin mezzanine connector
2 I2C buses
4 UARTs
3 SPI interfaces
1 CAN
46 GPIO

There are many other features, but I would recommend visiting http:/ ​/​store.
micropython.​org to see them all.

http://store.micropython.org
http://store.micropython.org
http://store.micropython.org
http://store.micropython.org
http://store.micropython.org
http://store.micropython.org
http://store.micropython.org
http://store.micropython.org

The Future of MicroPython Chapter 10

[235]

The PYBD-SFxW modules are also quite small, coming in at only 23.8 x 33.5 mm! The
module layout can be seen in the following image:

As you may have noticed, there are pins along the side of the module that provide
developers with a way to access specific I/O pins. These pins are broken up into two
separate categories: X and Y positions.

The Future of MicroPython Chapter 10

[236]

These are important to note because if you want to access these pins in MicroPython, you'll
need to know their pin specifier. The pinouts can be seen in the following image:

Beyond the pins that are available in the X and Y positions, there are many more GPIOs
available through the WBUS connector, which is available on the bottom of the PYBD-
SFxW module. The easiest way to access these pins is through an adapter board that
converts the WBUS into a DIP socket that can then be placed on a breadboard. This
provides us with the most effective way to start development and prototyping.

The Future of MicroPython Chapter 10

[237]

The WBUS, along with the location for many of the other parts on the PYBD-SFxW module,
can be seen in the following image:

Now that we have become familiar with some of the hardware capabilities of the PYBD-
SFxW module, let's look at some of the software capabilities that we can use to leverage
these features.

The Future of MicroPython Chapter 10

[238]

The pyboard D-series software
Each MicroPython release brings with it new features, but also performance improvements,
bug fixes, and library enhancements. There are some features that are just tried and true
that have existed since the first MicroPython release, while there are also some new
features. In this section, we will explore some useful software features, such as the
following:

How to control the boot sequence
Detecting errors
Mounting and accessing the QSPI memory
Adjusting the clock frequency

These are features that every MicroPython developer needs to understand in order to
successfully develop their application.

Controlling the boot sequence
When the MicroPython board boots, it will eventually reach a point where it needs to
mount a filesystem to look for the boot.py and main.py scripts so that it can execute any
application scripts. There are several different places where these scripts could be located,
including the following:

The microcontroller's internal flash memory
An SD card that has been inserted into the SD card slot
An attached eMMC module

So, how does MicroPython decide where to look when booting? The answer depends on
the MicroPython build that you are using. For example, builds for the PYBD1.x boards
always defaulted to the SD card if an SD card was inserted. If developers wanted to force
MicroPython to boot from the internal flash, they would have to include the following in
their SD card's boot.py file:

pyb.main(('/flash/main.py')

There is also the option to add a file named SKIPSD to the internal flash filesystem. During
boot up, if MicroPython sees the SKIPSD file in the filesystem, even if an SD card is present,
it will look at the internal flash for boot.py and main.py. Having SKIPSD is interesting
because it allows developers to force the use of an internal application and if something
goes wrong, the SKIPSD file could be removed and a backup copy of the application could
be loaded from the SD card to safely boot the system and recover the internal filesystem.

The Future of MicroPython Chapter 10

[239]

Developers working with the new pyboard D-series will find that MicroPython works a
little bit differently. Instead of defaulting to using an SD card unless the SKIPSD file is
present, the kernel always boots from the internal flash and then the developer mounts the
SD card and any other memory within their application. In this case, developers can mount
the SD card using the following code:

import sys, os, pyb
if pyb.SDCard().present():
 os.mount(pyb.SDCard(), '/sd')
 sys.path[1:1] = ['/sd', '/sd/lib']

The preceding code checks to see whether an SD card is present. If so, it mounts the card
and also adds it to the path list so that MicroPython can search it for scripts and libraries.
It's important to note that while this works for detecting whether the SD card is present,
this same technique cannot be used to detect whether an eMMC device is present.

With several different memory sources now available, developers need to modify their
boot.py script to determine which memory source will be viewable through the USB mass
storage device. For example, if a developer wanted the internal flash filesystem to be
available, they would use the following line of code:

pyb.usb_mode('VCP+MSC', msc=(pyb.Flash(),))

If the developer wanted to make available the SD card, they would use the following line of
code:

pyb.usb_mode('VCP+MSC', msc=(pyb.SDCard(),))

Finally, to make the eMMC available, a developer would use the following line of code:

pyb.usb_mode('VCP+MSC', msc=(pyb.MMCard(),))

As you can see, there are many different ways that a developer can configure their
application to boot and configure which memory sources are available over USB. One
question you may have, though, is, what happens if something goes wrong?

Recovering from system faults
The most common fault that will be encountered by a developer working with
MicroPython is a corrupt filesystem. The filesystem can become corrupted due to a power
failure that occurred before the MicroPython board was properly ejected via USB or due to
a brown-out that occurred from operating the device from a battery. MicroPython uses an
FAT filesystem that does not power down gracefully in situations where power is removed
unexpectedly. When this happens, the filesystem can become corrupted.

The Future of MicroPython Chapter 10

[240]

The way that a developer recovers in these cases will depend on their application needs.
For example, if it is a DIY project, a developer may simply boot into safe mode by following
this process:

Connect the pyboard to USB so it powers up.1.
Hold down the USR switch, and while doing so, press and release the RST2.
switch.
The LEDs will then cycle green to orange to green and orange and back again.3.
Keep holding down USR until only the orange LED is lit, and then let go of the4.
USR switch. The orange LED should flash quickly four times, and then turn
off. You are now in safe mode.

Safe mode boots MicroPython normally but skips the boot.py and main.py files. This
provides the developer with access to the REPL to perform their system recovery.

It may turn out that if the filesystem was corrupted and MicroPython detected the
corruption, the entire filesystem will be reset to the factory settings. This means that the
following files will be completely reset:

boot.py

main.py

README.txt

pybcdc.info

While it's great that MicroPython can recover in this manner, it also means that any custom
code that was created for boot.py and main.py will now be completely erased, along with
any additional scripts that may have been on the filesystem. Again, for a DIY project, this
may not be a big deal, but for a professional project, this could be devastating! There are a
few options for recovery, though.

First, if the application is relatively simple and contains only a main.py module and a few
additional modules, it's possible to include a default version of these files in the kernel that
would be copied back to the filesystem if the filesystem becomes corrupted. These custom
files would have to be compiled and added to the kernel, creating a custom kernel similar
to how we did in Chapter 4, Developing an Application Test Harness. However, if we have a
complex project that has dozens of files and tens of thousands of lines of code, this
procedure is not going to work.

The Future of MicroPython Chapter 10

[241]

This brings us to a second recovery mechanism, which is to store a backup of our
application scripts on an SD card or on eMMC memory. When the internal filesystem
becomes corrupt, or vice versa, we can customize a main.py module that is copied back to
the filesystem and then copies our application back to the filesystem. Then, once recovery is
complete, the system can be restarted and boot normally. This procedure still requires us to
customize the kernel main.py script that is created in the filesystem, but the modifications
are minor compared to the first option.

Resetting the system from within a script is relatively easy and there are two options
available to developers. The first option will exit the application and behave similarly to a
soft reset. A soft reset will not restart the microcontroller or its peripherals. For example, if
there was a timer running, the timer would continue to count. The code to perform this
function can be seen as follows:

import sys
sys.exit()

What a developer really wants to do is perform a hard reset that power cycles the
microcontroller and has the application launch from scratch. This can be done using the
reset method, which is located in the machine module. A developer would first import
machine and then execute the following line of code:

machine.reset()

This code can be executed from within a recovery script or it can be done from the REPL if
it is readily accessible.

MicroPython in the real world
Throughout this book, we have been exploring how developers can leverage MicroPython
to quickly and efficiently develop embedded systems using MicroPython. With each
passing day, there are more and more examples for both DIY projects and professional
products that are using MicroPython. As we move toward the conclusion of this book, I
think it would be interesting to discuss how MicroPython is being used in each of these
very distinct areas.

The Future of MicroPython Chapter 10

[242]

Example DIY/maker projects
DIY and maker projects are a great place to look for inspiration for your next MicroPython
project, and there is no shortage of example projects out on the internet. A quick web search
reveals that there are all kinds of MicroPython projects, ranging from the simple to the
complex. For example, you might find projects such as the following:

Electronic games
Piggybanks
Weather stations
Irrigation systems
Robots
Drones

A great place to look for inspiration and to see what other developers are working on is to
visit the following websites:

Hackster.io (https:/ ​/ ​www. ​hackster. ​io/ ​projects/ ​tags/ ​micropython)
Hackaday.io (https:/ ​/ ​hackaday. ​io/ ​projects? ​tag= ​micropython)

These sites have dozens of projects that makers built or are building that not only provide
inspiration but also include schematics and source code that you can review to improve
your own skills.

Example professional projects
Makers and hobbyists aren't the only developers leveraging MicroPython – professional
developers are getting in on the action as well. One of my favorite examples of
MicroPython being used by professional developers is its use in the OpenMV module. The
best way to describe OpenMV is to use their own words:

"The OpenMV project is about creating low-cost, extensible, Python-powered, machine
vision modules and aims at becoming the "Arduino of Machine Vision." Our goal is to
bring machine vision algorithms closer to makers and hobbyists. We've done the difficult
and time-consuming algorithm work for you, leaving more time for your creativity!"

- https://openmv.io/

https://www.hackster.io/projects/tags/micropython
https://www.hackster.io/projects/tags/micropython
https://www.hackster.io/projects/tags/micropython
https://www.hackster.io/projects/tags/micropython
https://www.hackster.io/projects/tags/micropython
https://www.hackster.io/projects/tags/micropython
https://www.hackster.io/projects/tags/micropython
https://www.hackster.io/projects/tags/micropython
https://www.hackster.io/projects/tags/micropython
https://www.hackster.io/projects/tags/micropython
https://www.hackster.io/projects/tags/micropython
https://www.hackster.io/projects/tags/micropython
https://www.hackster.io/projects/tags/micropython
https://www.hackster.io/projects/tags/micropython
https://www.hackster.io/projects/tags/micropython
https://hackaday.io/projects?tag=micropython
https://hackaday.io/projects?tag=micropython
https://hackaday.io/projects?tag=micropython
https://hackaday.io/projects?tag=micropython
https://hackaday.io/projects?tag=micropython
https://hackaday.io/projects?tag=micropython
https://hackaday.io/projects?tag=micropython
https://hackaday.io/projects?tag=micropython
https://hackaday.io/projects?tag=micropython
https://hackaday.io/projects?tag=micropython
https://hackaday.io/projects?tag=micropython
https://hackaday.io/projects?tag=micropython
https://hackaday.io/projects?tag=micropython

The Future of MicroPython Chapter 10

[243]

What's great about OpenMV is that the Python it uses to accomplish its mission is
MicroPython! The module runs MicroPython on an STM32H7 microcontroller and all their
machine vision algorithms are accessible through Python modules. Not only do developers
not need to be experts in low-level microcontroller technology, but they also don't even
need to be experts in machine vision! They can leverage the OpenMV libraries for objects,
faces, eyes, and colors, and apply many other capabilities from within the MicroPython
environment. An example of the OpenMV module can be seen as follows:

OpenMV is not the only professional team using MicroPython in their products. Another
area where MicroPython is finding use is in space systems. I've worked on several
applications internally at my own company and with my clients that use MicroPython in
small satellite applications. For example, we have used MicroPython to create a CubeSat
flight computer that can run a spacecraft and provides scalability to grow between using a
microcontroller-based system and a Linux-based system. We've also developed additional
CubeSat and nanosatellite subsystems such as Electronic Power Supplies (EPS) that power
the spacecraft.

These applications required customizing the MicroPython kernel and also improving the
robustness of several kernel modules to ensure that MicroPython would operate safely in
orbit. For example, power fluctuations or an unexpected shutdown would not be allowed
to corrupt the filesystem. A servicing mission for a small satellite in near-Earth orbit is just
not an option and, given the costs to develop and launch a system, it's just not feasible. The
MicroPython system has to run without issue or, if an issue is encountered, it needs to be
able to recover on its own with minimal user interaction.

The Future of MicroPython Chapter 10

[244]

The future of MicroPython
MicroPython might look like a fad or an interesting language to play with, but it has a
bright future ahead of it. Professional developers will find it interesting to rapidly
prototype their systems and test their hardware without having to fully understand the
low-level workings of a microcontroller. When it comes to developing a product, you want
to fail fast if you are going to fail, and MicroPython provides developers with that speed
and agility to quickly try out new concepts before becoming fully invested in them. DIY
and maker types will find that MicroPython provides them with a far easier language to
use and learn than any of the Arduino platforms that are currently quite popular.

MicroPython won't replace traditional programming languages such as C or C++ in the
near future, but slowly, it will gain market share among professional developers.
Developers right now might complain that the MicroPython kernel is too big or that it
doesn't offer hard real-time performance or sufficient low-level error handling. As time
passes by, MicroPython has become more efficient and robust, and it will continue to do so
as the underlying code and third-party software, such as the STM32 HALs, become more
efficient and bulletproof.

Microcontroller and memory technology is also advancing at a staggering pace, which is
resulting in high-performance MCUs with megabytes of flash and RAM at extremely
affordable prices. As this technology progresses, many of the efficiency and storage
constraints that may be plaguing MicroPython applications will quickly disappear.
MicroPython's support for external storage devices has at least temporarily solved some of
these issues, in addition to providing support for eMMC. There is undoubtedly still some
work to be done there, but the progress that is being made is rapid!

There are also interesting MicroPython forks that are occurring, such as CircuitPython,
which are taking MicroPython in new directions for electronics education. Even if you
aren't on the MicroPython bandwagon yet, it's easy to see that MicroPython has the
potential to help both hobbyists and professional developers develop embedded systems
and projects more efficiently. The only question remaining is how you will leverage
MicroPython. The answer is only limited by your own imagination.

The Future of MicroPython Chapter 10

[245]

Going further
This chapter reviewed the major topics that have been explored in this book and set the
stage for where MicroPython is going. We've also covered several other reasons and ways
for developers to get more involved in MicroPython.

Thank you for coming on this journey of MicroPython Projects. I've tried to cover all the
topics that will provide you with a foundation to create your own project with
MicroPython. Engineering is always progressing, and while this book has covered core
language features and processes, it was impossible to cover everything. The following are
several additional resources for you to review that I hope will provide you with additional
details that we weren't able to cover in this book:

MicroPython documentation: https:/ ​/​docs. ​micropython. ​org/ ​en/ ​latest/
index.​html

MicroPython forums: https:/ ​/​forum. ​micropython. ​org/​

References
Here is a list of references you can refer to:

Pyboard D-series: https:/ ​/​pybd. ​io/ ​hw/​pybd_ ​sfxw. ​html

MicroPython tutorial for pyboard: https:/ ​/​docs. ​micropython. ​org/​en/ ​latest/
pyboard/ ​tutorial/ ​reset. ​html

https://docs.micropython.org/en/latest/index.html
https://docs.micropython.org/en/latest/index.html
https://docs.micropython.org/en/latest/index.html
https://docs.micropython.org/en/latest/index.html
https://docs.micropython.org/en/latest/index.html
https://docs.micropython.org/en/latest/index.html
https://docs.micropython.org/en/latest/index.html
https://docs.micropython.org/en/latest/index.html
https://docs.micropython.org/en/latest/index.html
https://docs.micropython.org/en/latest/index.html
https://docs.micropython.org/en/latest/index.html
https://docs.micropython.org/en/latest/index.html
https://docs.micropython.org/en/latest/index.html
https://docs.micropython.org/en/latest/index.html
https://docs.micropython.org/en/latest/index.html
https://docs.micropython.org/en/latest/index.html
https://forum.micropython.org/
https://forum.micropython.org/
https://forum.micropython.org/
https://forum.micropython.org/
https://forum.micropython.org/
https://forum.micropython.org/
https://forum.micropython.org/
https://forum.micropython.org/
https://forum.micropython.org/
https://forum.micropython.org/
https://pybd.io/hw/pybd_sfxw.html
https://pybd.io/hw/pybd_sfxw.html
https://pybd.io/hw/pybd_sfxw.html
https://pybd.io/hw/pybd_sfxw.html
https://pybd.io/hw/pybd_sfxw.html
https://pybd.io/hw/pybd_sfxw.html
https://pybd.io/hw/pybd_sfxw.html
https://pybd.io/hw/pybd_sfxw.html
https://pybd.io/hw/pybd_sfxw.html
https://pybd.io/hw/pybd_sfxw.html
https://pybd.io/hw/pybd_sfxw.html
https://pybd.io/hw/pybd_sfxw.html
https://pybd.io/hw/pybd_sfxw.html
https://pybd.io/hw/pybd_sfxw.html
https://pybd.io/hw/pybd_sfxw.html
https://docs.micropython.org/en/latest/pyboard/tutorial/reset.html
https://docs.micropython.org/en/latest/pyboard/tutorial/reset.html
https://docs.micropython.org/en/latest/pyboard/tutorial/reset.html
https://docs.micropython.org/en/latest/pyboard/tutorial/reset.html
https://docs.micropython.org/en/latest/pyboard/tutorial/reset.html
https://docs.micropython.org/en/latest/pyboard/tutorial/reset.html
https://docs.micropython.org/en/latest/pyboard/tutorial/reset.html
https://docs.micropython.org/en/latest/pyboard/tutorial/reset.html
https://docs.micropython.org/en/latest/pyboard/tutorial/reset.html
https://docs.micropython.org/en/latest/pyboard/tutorial/reset.html
https://docs.micropython.org/en/latest/pyboard/tutorial/reset.html
https://docs.micropython.org/en/latest/pyboard/tutorial/reset.html
https://docs.micropython.org/en/latest/pyboard/tutorial/reset.html
https://docs.micropython.org/en/latest/pyboard/tutorial/reset.html
https://docs.micropython.org/en/latest/pyboard/tutorial/reset.html
https://docs.micropython.org/en/latest/pyboard/tutorial/reset.html
https://docs.micropython.org/en/latest/pyboard/tutorial/reset.html
https://docs.micropython.org/en/latest/pyboard/tutorial/reset.html
https://docs.micropython.org/en/latest/pyboard/tutorial/reset.html
https://docs.micropython.org/en/latest/pyboard/tutorial/reset.html

Downloading and Running
MicroPython Code

Running the script in Listing 2 on the pyboard can be accomplished in just a few easy steps:

Connect the pyboard to your computer.1.
Open your terminal application and connect to the pyboard (refer to the2.
MicroPython documentation | Quick reference for the pyboard | MicroPython
tutorial for the pyboard |3. Getting a MicroPython REPL prompt, for details).
In the terminal, press Ctrl + C to interrupt any currently running scripts.3.
Copy the script to the pyboard USB drive.4.
Once the red light has turned off, the pyboard flash system will be updated.5.
In the terminal, press Ctrl + D to perform a soft reset.6.

Assessments

Chapter 1
What Python features make it a competitive choice for use in embedded systems?1.

It's taught at many universities around the world.
It's easy to learn (I've seen elementary students write Python code).
It is object oriented.
It is an interpreted scripting language, which removes compilation.
It's supported by a robust community, including many add-on
libraries, which minimizes the need to re-invent the wheel.
It includes error handling (something that C didn't get the memo on).
It's easily extensible.

Which three use cases does MicroPython match well with?2.
DIY projects
Rapid prototyping
Low-volume production products

What business ramifications should be evaluated for using MicroPython?3.
Risk tolerance for security vulnerabilities
Cost savings from needing fewer embedded developers
Impact on time-to-market
Overall system quality and customer reactions

What microcontroller architecture is supported the most by MicroPython?4.
STMicroelectronics STM32 microcontrollers

What decision-making tool can be used to remove human bias?5.
KT Matrix

What five categories make up the Software Development Life Cycle (SDLC)?6.
Requirements
Design
Implementation
Testing
Maintenance

Assessments

[248]

What key combination in the REPL will produce a soft reset?7.
Ctrl + D

Which workbench resources do you need to develop a MicroPython project? Are8.
you currently missing any?

Male-to-female 6" jumpers
Male-to-male 6" jumpers
Female-to-female 6" jumpers
A terminal application such as PuTTY or real-time
A high-speed micro SD card
Logic Analyzer
SPI/I2C bus tool

Chapter 2
What characteristics define a real-time embedded system?1.

They are event driven and do not poll inputs.
They are deterministic; given the same initial conditions, they produce
the same outputs in the same time frame.
They are often resource constrained in some manner, such as the
following:

Clock speed
Memory
Energy consumption

The use of a dedicated microcontroller-based processor.
May have a RTOS to manage system tasks.

What four scheduling algorithms are commonly used with MicroPython?2.
Round robin scheduling
Periodic scheduling using timers
Cooperative scheduling
MicroPython threads

Assessments

[249]

What best practices should a developer follow when using callbacks in3.
MicroPython?

Keep interrupt service routines (ISRs) short and fast.
Perform measurements to understand interrupt timing and latency.
Use interrupt priority settings to emulate preemption.
Make sure task variables are declared as volatile.
Avoid calling multiple functions from an ISR.
Disable interrupts as little as possible.

What process should be followed to load new code onto a MicroPython board?4.
Connect the pyboard to your computer.1.
Open your terminal application and connect to the pyboard (refer to2.
the MicroPython documention | Quick reference for the pyboard |
MicroPython tutorial for the pyboard section 3 for details).
In the terminal, press Ctrl + C to interrupt any currently running3.
scripts.
Copy the script to the pyboard USB drive.4.
Once the red light has turned off, the pyboard flash system will be5.
updated.
In the terminal, press Ctrl + D to perform a soft reset.6.

Why would a developer place5.
micropython.alloc_emergency_exception_buf(100) in their application?

A developer would include this line of code to allocate buffer space to
store exceptions where memory cannot be allocated, such as in an ISR.

What reasons might deter a developer from using the _thread library?6.
Threads are not officially supported in MicroPython. They are
experimental.
Threads can create difficult-to-solve bugs if the developer is not
familiar with multithreading best practices.
Threads use more resources than other techniques, such as the
asyncio library.

What keywords indicate that a function is being defined as a coroutine?7.
async/await

Assessments

[250]

Chapter 3
What is a high-level system diagram called?1.

A block diagram
What is a detailed hardware diagram called?2.

A schematic or wiring diagram
What three diagrams did we use in this chapter to define our software3.
architecture?

An application flowchart
A state diagram
A class diagram

What is it called when two classes are connected together without the use of the4.
inheritance mechanism?

Composition
What information should be included in a test case?5.

The test case number.
The test case objective (why are we doing the test?)
Conditions that need to occur before the test is performed.
Input that needs to be applied to the system during testing (push a
button).
Expected results (what should we see happen?)
Who did the testing? (yes, who can we blame if we discover a problem
in the future?)
When was the test performed?
The software version number that the test is to be performed on.

How can a developer create a constant in Python?6.
There are no constants in Python so it's the same as defining a variable.
A developer just needs to make sure they don't modify the constant
value!

What line of code should a developer write to learn what addresses have slaves7.
present on the I2C bus?

I2C_List = i2c.scan()

What can be used to catch an exception and print it out?8.
except Exception as e: print(e)

Assessments

[251]

What statement can be written to force the application to exit?9.
sys.exit(0)

What type of setup can be used to fully test and validate the drivers created in an10.
application?

A test suite or test harness

Chapter 4
What are the three main components that are part of nearly every test harness?1.

A test execution engine
A repository of tests
A test reporting mechanism

What are the advantages of using a test harness?2.
Automating testing, which then frees up developers to focus on other
activities.
Performing regression testing, which can verify that recent changes
haven't broken other pieces of code.
Increased code quality.

What are a few examples of faults that we would want a test harness to test for?3.
Non-responsive slave device
Invalid response
I2C bus errors

What are some of the architectures that a test harness can follow?4.
PC to embedded device
Embedded device monitor to embedded device target
Self-contained embedded device target and tester

What are the four operations that we need our module tests to perform?5.
Test setup
Test execution
Test cleanup
Test reporting

Assessments

[252]

Chapter 5
In which folder in the kernel can you find all the MicroPython-supported1.
architectures?

The ports/ folder
Which microcontroller architecture has the most supported development boards?2.

STM32
What three types of files can be found in a development board's board folder?3.

Supported board folders
STM32 derivative linker files
STM32 derivative pin maps

What are a few features that make the STM32L475E_IOT01A board interesting4.
for MicroPython?

Arduino headers
On-board Wi-Fi
On-board Bluetooth
A built-in DFU bootloader
The PMOD expansion header

Which board kernel file can be modified to change the pin designation that is5.
used to control a pin in a MicroPython script?

pins.csv

What function must be defined in order to customize the startup code6.
initialization?

MICRO_BOARD_EARLY_INIT

What steps should be followed to customize the startup code?7.
Update the board's mpconfigboard.h module with the1.
MICROPY_BOARD_EARLY_INIT definition along with the function
name that will be called.
Create a module to contain the code.2.
Define the function that will be executed.3.
Add the custom startup code.4.

Which compiler tool is used to generate .mpy files and to convert Python scripts8.
to frozen modules?

mpy-cross

Assessments

[253]

What are the advantages of using a frozen module?9.
The Python module cannot be modified without flashing the kernel.
The module is compiled into byte code, which keeps the source code
away from prying eyes.
Updating the application scripts is faster because there are fewer
modules to update.
If something goes wrong with the filesystem and it gets set back to
default, the compiled modules will still be present and can be called as
part of the default script to get the system into a safe state.
You can put the compiled module into zero-wait RAM if it has some
speed-critical functionality, which will ensure it executes as efficiently
as possible.
The compiled module can now also be stored and executed from the
flash memory, which will free up RAM for the Python compiler and
the scripts that are stored on the filesystem.

What command is used to compile the kernel with frozen modules?10.
make BOARD= B_L475E_IOT01A FROZEN_MPY_DIR=boards/
B_L475E_IOT01A /script

Chapter 6
What files is used to modify what USB classes are supported on startup by the1.
MicroPython board?

boot.py

What are some reasons we would use generated data in our development rather2.
than a live sensor?

Less code to write initially
No need to troubleshoot sensor code
A simpler hardware setup

At what chart refresh rate does the user interface start to become sluggish?3.
100 milliseconds

What are some reasons for using the MicroPython UART for communication4.
over using USB?

It's useful to gain experience with the UART, which can be used to
interface with other sensors and devices.

Assessments

[254]

What Python function is used to convert a floating-point number into a string?5.
str()

What module is used to create command-line arguments?6.
args

What are some new features that could be added to the visualizer to enhance its7.
capabilities?

Add a configuration file.
Add a data packet checksum.
Save the incoming data stream.
Add two-way communication.
Use USB instead of a UART.

Chapter 7
What are the technologies that are typically used in gesture-control applications?1.

IR LEDs and photodiodes
Cameras

What four main gestures were covered in this chapter?2.
Forward
Backward
Left
Right

What three analog engines are provided in the APDS-9660?3.
Proximity detection
Gesture detection
RGB color detection

What is the difference between a driver and an integrated application module?4.
A driver provides access to all functionality within a chip for use
generically by the application. A driver requires a developer to create a
higher-level module to use the data from the driver to perform useful
work. An integrated application module integrates some driver
functionality into the application module so that they are highly
integrated and coupled together.

Assessments

[255]

What method was used to determine the gesture direction?5.
Using four of the last five data points with the last data point thrown
out. The separation distance between each axis diode was calculated to
determine on which axis the gesture direction was. The direction of the
axis counts was then used to determine in which direction the gesture
was.

Chapter 8
What library do we use to create tasks within MicroPython?1.

uasyncio

What MicroPython image do we use when flashing the ESP32?2.
Generic-SPIRAM with support for BLE but no LAN or PPP

What tool is used to flash the ESP32 with MicroPython?3.
esptool.py

Which MicroPython module can be used to generically control I/O across any4.
MicroPython port?

machine

What methods can be used to push scripts to the ESP32?5.
WebREPL
Anaconda terminal

Chapter 9
What skill areas are traditionally covered within embedded systems?1.

Architecture design
Code analysis
Defect management/debugging
Documentation
Language skills
Processes and standards
Testing tools

Assessments

[256]

Why are intelligent systems now required in the industry?2.
To solve problems that are not easy for a human to code for
To scale system behaviors and results based on new data and
situations
To perform tasks that are easy for a human but traditionally difficult
for computers
To decrease system costs in certain applications
And because it's cool and cutting edge

What are the benefits of moving machine learning from the cloud to the edge?3.
Bandwidth
Power
Cost
Latency
Reliability
Security

What image dataset is most commonly used in machine learning algorithm4.
development?

CIFAR-10
What tools are used to train and deploy a machine learning model on an5.
embedded system?

A dataset
Machine learning libraries and frameworks
TFLu
CMSIS-NN

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Hands-On Embedded Programming with Qt
John Werner

ISBN: 978-1-78995-206-3

Understand how to develop Qt applications using Qt Creator on Linux
Explore various Qt GUI technologies to build resourceful and interactive
applications
Understand Qt’s threading model to maintain a responsive UI
Get to grips with remote target load and debug using Qt Creator
Become adept at writing IoT code using Qt
Learn a variety of software best practices to ensure that your code is efficient

https://www.packtpub.com/in/application-development/hands-embedded-programming-qt

Other Books You May Enjoy

[258]

Hands-On Embedded Programming with C++17
Maya Posch

ISBN: 978-1-78862-930-0

Choose the correct type of embedded platform to use for a project
Develop drivers for OS-based embedded systems
Use concurrency and memory management with various microcontroller units
(MCUs)
Debug and test cross-platform code with Linux
Implement an infotainment system using a Linux-based single board computer
Extend an existing embedded system with a Qt-based GUI
Communicate with the FPGA side of a hybrid FPGA/SoC system

https://www.packtpub.com/in/application-development/hands-embedded-programming-c17

Other Books You May Enjoy

[259]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

A
Anaconda prompt 188
Anaconda
 reference link 188
 used, for simplifying application development

188, 189
Android socket server
 used, for testing sensor node project 198, 200,

201

APDS-9960 gesture class constructor 163, 164,
166

APDS-9960 gesture class detect method 166,
168, 169

APDS-9960 gesture driver 162, 163
APDS-9960
 about 155, 156, 157, 158
 capabilities 153
 gesture data, analyzing 158, 159, 161
asyncio
 about 38, 39, 42
 reference link 42
 used, for cooperative multitasking 37

C
CIFAR-10 datasets
 about 214, 215
 CIFAR-100 datasets 214
CIFAR-100 datasets 214, 215
CMSIS-NN 218
convolutional neural network (CNN) 219
cooperative multitasking blinky LED
 example 40, 41, 42
cooperative multitasking
 using, asyncio 37
cooperative scheduling 36
custom kernel, deploying to development board

 about 113
 board, programming 114, 115, 116
 compiled output files 113, 114
custom MicroPython kernel
 testing 116, 117, 118, 119

D
default GPIO initialization
 modifying 105, 106, 107, 108, 109, 110
development platform
 available architectures, surveying 11
 boards, identifying of interest 12, 13, 14
 selecting 10
 selecting, with KT matrix 15, 16
Device Firmware Update (DFU) 114
DIY/maker projects
 examples 242
Do-it-yourself (DIY) 6

E
Electronic Power Supplies (EPS) 8, 96, 243
embedded software language menagerie
 about 2, 3, 4
 URL 4
embedded systems
 debugging 122
 visualizing 122
ESP32 flash utilities
 download link 182
 setting up 182
ESP32
 MicroPython, installing 181
event-driven scheduling 36

F
Field Programming Gate Array (FPGA) 23

[261]

first in first out (FIFO) 156
frames per second (FPS) 220
frozen 19
frozen modules 110

G
garbage collector (gc) 29
General Purpose Input/Output (GPIO) 150
gesture controller applications 169, 170, 171, 172
gesture controllers, requisites
 about 148
 hardware requirements 148, 149
 software requirements 149
gesture controllers
 about 147, 148
 constructing 155
 hardware architecture 150, 151
 hardware design 150, 151
 software architecture 152, 154
 software design 150
 testing 172, 173, 174

H
Hackaday.io
 reference link 242
Hackster.io
 reference link 242
hardware-in-the-loop (HIL) 73
Human Machine Interface (HMI) 24

I
I/O expander driver
 constructing 55, 56, 57
I/O expander schematic 49, 50
infrared light-emitting diode (IR LED) 147
inter-integrated circuit (I2C) 150
Internet of Things (IoT) 175

K
Kepner-Tregoe (KT) 10
KT matrix
 reference link 15
 used, for selecting development platform 15, 16

L
LEDs
 used, for testing MicroPython 184
Lowest Significant Bit (LSB) 84

M
machine learning
 about 205, 206, 207
 intelligent systems, need for 207, 208, 209
 modeling languages 215, 216
 shifting, from cloud to edge 209, 210
MicroPython board
 mpconfigboard.h 97
 mpconfigboard.mk 97, 98
 pins.csv 98
 stm3214xx_hal_conf.h 99
MicroPython cross compiler
 compilation process 111, 112
MicroPython documentation
 reference link 245
MicroPython Forums
 reference link 245
MicroPython kernel
 downloading 91, 92
 organization 92, 93
 overview 91
 Python modules, adding 110
 STM32L475SE_IOT01A port 93, 94, 95, 96
MicroPython scheduling, techniques
 about 24
 cooperative scheduling 36
 event-driven scheduling 36
 periodic scheduling, with timers 28, 29, 30
 round-robin scheduling 25, 26
 thread mechanism 32, 33
MicroPython tutorial, for pyboard
 reference link 245
MicroPython-based projects
 useful development resources 19, 20
MicroPython
 advantages 231, 232
 advantages, of using threads in 33
 considerations, when using threads in 34
 development processes 17, 18, 19

[262]

 development strategies 17, 18, 19
 evaluating 9, 10
 future 244
 installing, on ESP32 181
 reference link 181
 testing, with LEDs 184
 use cases 4, 5
 used, for programming ESP32 182, 183
 using 241
 using, in DIY/maker projects example 242
 using, in professional projects examples 242,

243

mock 73
module testing 73

N
neural network (NN) 218

O
object detection application
 CIFAR-10 datasets 214, 215
 CIFAR-100 datasets 214, 215
 CMSIS-NN 218
 design 213
 hardware 218
 hardware, requisites 211, 212
 implementing, on OpenMV camera 219
 machine learning, modeling languages 215, 216
 requisites 211
 software, requisites 212, 213
 testing, on OpenMV camera 219
 TFLu 216
 theory 213
OpenMV camera
 object detection application, implementing on

219

 object detection application, testing on 219
OpenMV IDE 219, 220, 221
OpenMV project
 reference link 225

P
periodic scheduling
 used, for building task manager 30, 31, 32
 using, timers 28, 29, 30

Power ON (PON) 156
pretrained CIFAR-10 network
 implementing 221, 223, 224
printed circuit board (PCB) 54
professional projects
 example 242, 243
pulse width modulation (PWM) 150
pyboard D-series (PYBD-SFxW), software features
 boot sequence, controlling 238, 239
 recovering, from system faults 239, 241
 system faults, recovering 240
pyboard D-series (PYBD-SFxW)
 about 232, 233
 advantages 233
 features 234
 hardware 233, 234, 235, 236, 237
 software 238
 software features 238
Pyboard D-series
 URL 245
pySerial 128
Python modules
 adding, to MicroPython kernel 110

R
Read-Evaluate-Print Loop (REPL) 17, 18, 150
real-time operating system (RTOS)
 characteristics 23
 need for 23
 types 23, 24
requisites, sensor node project
 hardware 176
 software 177, 178
RGB driver
 constructing 57, 58
RGB pushbutton driver
 constructing 58
RGB pushbutton I/O expander project
 application, writing 63, 64, 65, 66, 68, 69
 construction 54
 developing 63
 hardware architecture 47, 48
 hardware architecture design 47
 hardware design 48, 49
 hardware, building 54, 55

[263]

 hardware, requisites 45, 46
 requisites 45
 software architecture 51, 52, 53
 software architecture design 47
 software, requisites 46
 test cases, developing 59, 60, 61
 testing 59
 validating 59
RGB pushbutton
 selecting 49
round-robin scheduling
 about 25, 26
 used, for building task manager 27, 28

S
sensor node application
 command parsing function 194, 195
 imports 191
 IotDevice class 193, 194
 LEDs, used for controlling physical mechanisms

191

 main application, tasks 197, 198
 socket_connect() function, creating 192
 socket_receive() function, creating 192
 socket_send function 196
 supporting objects 191
 system status task 196
 writing 190
sensor node project
 application development simplification, with

Anaconda 188
 building 181
 commands, sending 201
 commands, testing 202, 203
 ESP32 flash utilities, setting up 182
 ESP32, programming with MicroPython 182,

183

 hardware 177
 hardware architecture 178
 MicroPython, installing on ESP32 181
 MicroPython, testing with LEDs 184
 requisites 176
 software architecture 178, 179
 testing 198
 testing, with Android socket server 198

 uasyncio, installing 189
 WebREPL, setting up 185, 186, 187
sensors, Adafruits
 reference link 125
Simple TCP Socket Tester 198
software architecture, sensor node
 socket receive task 180
 system status task 179, 180
software development kits (SDKs) 147
Software Development Life Cycle (SDLC) 17
Software Engineering Body of Knowledge

(SWEBOK) 17
solder bridge (SB) 114
state diagram 52
STM32 port
 startup code, navigating 99, 100, 101, 102, 103,

104

STM32L475SE_IOT01A port 93, 94, 95, 96
System on Chip (SoC) 23

T
task manager
 building, with periodic scheduling 30, 31, 32
 building, with round-robin scheduling 27, 28
 building, with threads 34, 35, 36
TensorFlow model
 used, for person detection 224, 225, 226, 227,

228, 229
test function, operations
 test cleanup 83
 test execution 83
 test reporting 83
 test setup 83
test harness, components
 test execution engine 72
 test reporting mechanism 72
 test repository 72
test harness, design
 about 76
 hardware architecture 77, 78
 hardware architecture, features 77
 hardware architecture, monitoring tasks 77
 software architecture 78, 79, 80
 software architecture, benefits 79
 software architecture, disadvantages 81

test harness
 about 72, 73
 advantages 73
 constructing 82
 executing 87, 88
 hardware requisites 74, 75
 PCA8574, tests adding 84, 86, 87
 requisites 74
 scaffolding, writing 82
 software requisites 75, 76
Test-Driven Development (TDD) 82
test_harness.py 82
TFLu
 about 216
 reference link 217

U
uasyncio
 download link 190
 installing 189
ujson 191
Universal Asynchronous Receiver/Transmitter

(UART) 29, 129
use cases, for MicroPython
 DIY projects 6

 low-volume production products 7, 8
 rapid prototyping 6, 7

V
virtual communication port (VCP) 124
visualizer hardware architecture 125, 126
visualizer requisites
 about 123
 hardware requisites 123
 software requisites 124
visualizer software architecture 126, 127
visualizer, constructing
 about 127
 COM port, opening with command-line

arguments 133, 134, 135
 incoming data stream, plotting 137, 138, 140
 project libraries, installing 128
 serial data stream, setting up in MicroPython

129, 130, 131, 132
 user interface, creating with Matplotlib 135, 136,

137

visualizer
 design 124
 enhancements 143, 144
 running 141, 142
voltage common collector (VCC) 170

	Cover
	Title Page
	Copyright and Credits
	About Packt
	Contributors
	Preface
	Table of Contents
	Chapter 01: Down the Rabbit Hole with MicroPython
	The embedded software language menagerie
	The case for MicroPython
	Use cases for MicroPython
	Use case #1 – DIY projects
	Use case #2 – rapid prototyping
	Use case #3 – low-volume production products

	Evaluating whether MicroPython is right for you
	Selecting the right development platform
	Surveying the available architectures
	Identifying boards of interest
	Selecting a development board using a KT matrix

	MicroPython development processes and strategies
	Useful development resources
	Summary
	Questions
	Further reading

	Chapter 02: Managing Real-Time Tasks
	Technical requirements
	The need for real-time scheduling
	Real-time system types

	MicroPython scheduling techniques
	Round-robin scheduling
	Building a task manager using round-robin scheduling

	Periodic scheduling using timers
	Building a task manager using periodic scheduling

	MicroPython thread mechanism
	Advantages of using threads in MicroPython
	Considerations when using threads in MicroPython
	Building a task manager using threads

	Event-driven scheduling
	Cooperative scheduling

	Cooperative multitasking using asyncio
	Introducing asyncio
	A cooperative multitasking blinky LED example
	Going further with asyncio

	Summary
	Questions
	Further reading

	Chapter 03: Writing a MicroPython Driver for an I/O Expander
	Technical requirements
	The RGB pushbutton I/O expander project requirements
	Hardware requirements
	Software requirements

	The hardware and software architecture design
	The hardware architecture
	Detailed hardware design
	Selecting a pushbutton
	The I/O expander schematic
	The software architecture

	Project construction
	Building the hardware
	I/O expander driver construction
	RGB driver construction
	RGB pushbutton driver construction

	Testing and validation
	Developing the test cases
	Writing the application

	Summary
	Questions
	Further reading

	Chapter 04: Developing an Application Test Harness
	Technical requirements
	A brief introduction to test harnesses
	Test harness requirements
	Hardware requirements
	Software requirements

	Test harness design
	The test harness hardware architecture
	The test harness software architecture

	Constructing the test harness
	Writing the test harness scaffolding
	Tests for the PCA8574

	Running the test harness
	Summary
	Questions
	Further reading

	Chapter 05: Customizing the MicroPython Kernel Start Up Code
	Technical requirements
	An overview of the MicroPython kernel
	Downloading the MicroPython kernel
	MicroPython kernel organization
	Becoming familiar with the STM32L475SE_IOT01A port
	mpconfigboard.h
	mpconfigboard.mk
	pins.csv
	stm3214xx_hal_conf.h

	Navigating the startup code
	Modifying the default GPIO initialization

	Adding MicroPython modules to the kernel
	The compilation process

	Deploying the custom kernel to a board
	The compiled output files
	Programming the board
	Testing the updated kernel

	Summary
	Questions
	Further reading

	Chapter 06: A Custom Debugging Tool to Visualize Sensor Data
	Technical requirements
	Debugging and visualizing embedded systems
	Visualizer requirements
	Hardware requirements
	Software requirements

	Visualizer design
	The visualizer hardware architecture
	The visualizer software architecture

	Constructing the visualizer
	Installing the project libraries
	Setting up a serial data stream in MicroPython
	Opening a COM port using command-line arguments
	Creating a user interface with Matplotlib
	Plotting the incoming data stream

	Running the visualizer
	Going further with visualizer enhancements

	Summary
	Questions
	Further reading

	Chapter 07: Device Control Using Gestures
	Technical requirements
	Introducing gesture controllers
	Gesture controller requirements
	Hardware requirements
	Software requirements

	Hardware and software design
	The gesture hardware architecture
	The detailed hardware design
	The software architecture

	Constructing the gesture controller
	The APDS-9960 theory of operation
	Analyzing gesture data
	The APDS-9960 gesture driver
	The APDS-9960 gesture class constructor
	The APDS-9960 gesture class detect method
	The gesture controller applications

	Testing the gesture controller
	Summary
	Questions
	Further reading

	Chapter 08: Automation and Control Using Android
	Technical requirements
	The sensor node project requirements
	Hardware requirements
	Software requirements

	Hardware and software design
	The hardware architecture
	The software architecture

	Building a sensor node
	Installing MicroPython on the ESP32
	Setting up the ESP32 flash utilities
	Programming the ESP32 with MicroPython
	Testing MicroPython with LEDs
	Setting up WebREPL
	Simplifying application development with Anaconda
	Installing uasyncio
	Writing the sensor node application
	Imports and supporting objects
	LEDs and local control
	socket_connect()
	socket_receive()
	The IotDevice class
	Command parsing
	The system status task
	socket_send()
	The main application

	Testing the sensor node
	The Android socket server
	Commanding the sensor node
	Testing the commands

	Summary
	Questions
	Further reading

	Chapter 09: Building an Object Detection Application Using Machine Learning
	Technical requirements
	Introducing machine learning
	The need for intelligent systems
	Machine learning from the cloud to the edge

	Object detection requirements
	Hardware requirements
	Software requirements

	Object detection design and theory
	The CIFAR-10 and CIFAR-100 datasets
	Machine learning modeling languages
	TFLu
	CMSIS-NN
	The hardware

	Implementing and testing object detection on the OpenMV camera
	Getting familiar with OpenMV IDE
	Implementing a pretrained CIFAR-10 network
	Person detection with a TensorFlow model

	Summary
	Questions
	Further reading
	References

	Chapter 10: The Future of MicroPython
	The advancing MicroPython
	The pyboard D-series
	The pyboard D-series hardware
	The pyboard D-series software
	Controlling the boot sequence
	Recovering from system faults

	MicroPython in the real world
	Example DIY/maker projects
	Example professional projects

	The future of MicroPython
	Going further
	References

	Downloading and Running MicroPython Code
	Assessments
	Other Books You May Enjoy
	Index

