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Preface to the Second Edition

A thorough revision of all the chapters has been carried out. Some sections have
been significantly expanded. Some sections have been interchanged for a better
sequence of presentation. Minor necessary corrections have been made throughout
the text.

The new topics included are: (i) Bode plots, (ii) Nyquist diagrams, (iii) down-
sampling, (iv) bilinear transformation, (v) diagonalization, (vi) similarity trans-
formation, (vii) controllability, (viii) observability, (ix) complex numbers, and (x)
more applications. Expanded sets of MATLAB programs are available at the book’s
website. Further, simulation programs are introduced to make the learning of
mathematical concepts easier.

I am grateful to my editor and his team at Springer for their help and encour-
agement in completing the second edition of the book. I thank my family for their
support during this endeavor.

D. Sundararajan
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Preface to the First Edition

The increasing number of applications, requiring a knowledge of the theory of sig-
nals and systems, and the rapid developments in digital systems technology and fast
numerical algorithms call for a change in the content and approach used in teaching
the subject. I believe that a modern signals and systems course should emphasize the
practical and computational aspects in presenting the basic theory. This approach
of teaching the subject makes the student more effective in subsequent courses. In
addition, the student is exposed to practical and computational solutions he will be
using in his professional career. This book is my attempt to adapt the theory of
signals and systems to use the digital computer efficiently as an analysis tool.

A good knowledge of the fundamentals of the analysis of signals and systems
is required to specialize in such areas as signal processing, communication, and
control. As most of the practical signals are continuous functions of time and
digital systems are mostly used to process them due to several advantages, the
study of both continuous and discrete signals and systems is required. The primary
objective of writing this book is to present the fundamentals of time-domain and
frequency-domain methods of signal and linear time-invariant system analysis from
a practical viewpoint. As the discrete signals and systems are more often used in
practice and their concepts are relatively easier to understand, for each topic, the
discrete version is presented first followed by the corresponding continuous version.
Typical applications of the methods of analysis are also provided. Comprehensive
coverage of the transform methods, and emphasis on practical methods of analysis
and physical interpretation of the concepts are the key features of this book. The
well documented software, which is a supplement to this book and available on
the Internet, further greatly reduces much of the difficulty in understanding the
concepts. Based on this software, a laboratory course can be tailored to suit the
individual course requirements.

This book is intended to be a textbook for junior undergraduate level one-
semester signals and systems course. This book will also be useful for self-study.
Answers to selected exercises, marked ∗, are given at the end of the book. I
assume the responsibility for all the errors in this book and in the accompanying
supplements, and would very much appreciate receiving readers’ suggestions and
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viii Preface to the First Edition

pointing of any errors (email address: d_sundararajan@yahoo.com). I am grateful
to my editor and his team at Wiley for their help and encouragement in completing
this project. I thank my family and my friend Dr. A. Pedar for their support during
this endeavor.

D. Sundararajan
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Chapter 1
Discrete Signals

1.1 Introduction

Signals convey some information about the nature of some physical phenomenon.
Based on that, we (the human system) or a machine take some action. Depending on
the weather (atmospheric conditions in terms of temperature, wind speed, clouds,
and precipitation), we decide to stay indoors or go out. A doctor decides on the
state of the health of a person based on the heartbeat, the blood pressure, and the
temperature of the body. A control system controls the input power to a heating
system based on a preset temperature. A communication system enables an audio or
video signal to reach its destination from its source. A system, in response to some
input signals, takes some action or produces new signals. The systems have to be
designed, and the signals have to be processed. The fundamentals of these aspects
constitute the signals and systems course. As such, it is required to further study
the applications in all areas of science and engineering, such as control systems,
communication systems, signal and image processing systems, etc.

Signals are abundant in the applications of science and engineering. Typical
signals are audio, video, biomedical, seismic, radar, vibration, communication, and
sonar. In typical applications, we have to process some signals using some systems.
While the applications vary from communication to control, the basic analysis and
design tools are the same. In signals and systems course, we study these tools, that
is, system models differential/difference equation, convolution, transfer function
and state-space, and transforms Fourier transform with all its versions, z-transform
and Laplace transform, and the associated basic signals. The use of these tools
in the analysis of linear time-invariant (LTI) systems with deterministic signals is
presented in this book. While most practical systems are nonlinear to some extent,
they can be analyzed, with acceptable accuracy, assuming linearity. In addition,
the analysis is much easier with this assumption. Good grounding in LTI system
analysis is also essential for further study of nonlinear systems and systems with
random signals.
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2 1 Discrete Signals

For most of the practical systems, the input and output signals are continuous
signals and these signals can be processed using continuous systems. However,
due to advances in digital systems technology and numerical algorithms, it is
advantageous to process continuous signals using digital systems, systems using
digital devices, by converting the input signal into a digital signal. Therefore, the
study of both continuous and digital systems is required. As the implementations
of most practical systems are digital and the concepts are relatively easier to
understand, we describe the discrete signals and systems first immediately followed
by the corresponding description of continuous signals and systems.

The major problem in signal and system analysis is their representation. Appro-
priate representation facilitates the analysis. The representation is common for all
applications of science and engineering. The necessity for the representation is that,
in their naturally occurring form, the amplitude profile of signals and the response
of systems are arbitrary. Therefore, it is expedient to explore into more efficient
form of representation. The signals occur usually in time-domain form. That is,
signals change with respect to time. It is found that the representation of signals
in the frequency domain provides efficient signal analysis. Another change that is
invariably required is to digitize the signal from the naturally occurring continuous
form. Therefore, most of the analysis of the digitized version of signals is carried
out in the frequency domain.

The frequency-domain analysis is similar to the use of logarithms to reduce a
multiplication operation into a much simpler addition operation. For example, let us
try to find the product of 8 and 16. The numbers can be represented in exponential
form as 23 and 24. Then,

8 × 16 = 2324 = 23+4 = 27 = 128

It is assumed that a table is available to find the exponential form of the numbers.
Similarly, fast algorithms are available to find the frequency-domain representation
of signals. This results in faster processing. For example, the system output can be
found faster in the frequency domain. Therefore, the study of signals and systems,
which is common to all applications of science and engineering, primarily involves
digitization and representation in the frequency domain. It is similar to the use of
logarithms. The analysis looks complex due to the details involved, but it is simple in
principle. One can become proficient in the indispensable signal and system analysis
with sufficient paper-and-pencil and computer programming practice.

The basic problem in the study of systems is how to analyze systems with
arbitrary input signals. The solution, in the case of linear time-invariant (LTI)
systems, is to decompose the signal in terms of basic signals, such as the impulse
or the sinusoid. Then, with the knowledge of the response of a system to these
basic signals, the response of the system to any arbitrary signal, that we shall ever
encounter in practice, can be obtained. Therefore, the study of the response of
systems to the basic signals, along with the methods of decomposition of arbitrary
signals in terms of the basic signals and modeling of practical systems, constitutes
the core of the study of the analysis of systems to arbitrary input signals.
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1.2 Basic Signals

A signal represents some information. Systems carry out some tasks or produce
some output signals in response to some input signals. A control system may set
the speed of a motor in accordance with an input signal. In a room temperature
control system, the power to the heating system is regulated with respect to the room
temperature. While signals may be electrical, mechanical, or any other form, they
are usually converted to electrical form for processing efficiency. The speech signal
is converted from a pressure signal to an electrical signal in the microphone. Signals,
in almost all practical systems, have arbitrary amplitude profile. These signals must
be represented in terms of simple and well-defined mathematical signals for ease
of representation and processing. The response of a system is also represented in
terms of these simple signals. Commonly used basic discrete signals are described
in Sect. 1.2. In Sect. 1.3, signals are classified according to some properties. Discrete
signal operations are presented in Sect. 1.4.

As we have already mentioned, most practical signals have arbitrary amplitude
profile. These signals are, for processing efficiency, decomposed in terms of some
mathematically well-defined and simple signals. These simple signals, such as the
sinusoid with infinite duration, are not practical signals. However, they can be
approximated to a desired accuracy. They are used as intermediaries in signal and
system analysis. The values of discrete signals are defined only at discrete intervals.
The discrete signal is a sequence of numbers with infinite precision. It is represented
as {x(n)}, where n is the independent variable and x(n) is the dependent variable.
While x(n) is a single value, although it is incorrect, x(n) is usually used to represent
the discrete sequence also.

Time-Domain Representation of Discrete Signals
There are variety of ways of representing a sequence. Consider a sequence

{4.1, 3.1, 2.1, 1.1}

Assuming the value 4.1 corresponds to index 0, it could be written as

{x(0) = 4.1, x(1) = 3.1, x(2) = 2.1, x(3) = 1.1}

or

{x(n), n = 0, 1, 2, 3} = {4.1, 3.1, 2.1, 1.1}

or

{ ˇ4.1, 3.1, 2.1, 1.1}

or
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Fig. 1.1 (a) The unit-impulse signal, δ(n); (b) the unit-step signal, u(n); (c) the unit-ramp signal,
r(n)

x(n) =
{−n + 4.1 for n = 0, 1, 2, 3
0 otherwise

or graphically. The check symbol ˇ indicates that the index of that element is 0 and
the samples to the right have positive indices and those to the left have negative
indices.

1.2.1 Unit-Impulse Signal

The unit-impulse signal, shown in Fig. 1.1a, is defined as

δ(n) =
{
1 for n = 0
0 for n �= 0

The unit-impulse signal is an all-zero sequence except that it has a value of one
when its argument is equal to zero. A time-shifted unit-impulse signal δ(n − m),
with argument (n − m), has its only nonzero value at n = m. Therefore,∑∞

n=−∞ x(n)δ(n − m) = x(m) is called the sampling or sifting property of the
impulse. For example,

∞∑
n=−∞

2nδ(n) = 1,
0∑

n=−2

2nδ(n − 1) = 0,
0∑

n=−2

2nδ(−n − 1) = 0.5,

0∑
n=−2

2nδ(n + 1) = 0.5,
∞∑

n=−∞
2nδ(n + 2) = 0.25,

∞∑
n=−∞

2nδ(n − 3) = 8

In the second summation, the argument n − 1 of the impulse never becomes zero
within the limits of the summation.

The decomposition of an arbitrary signal in terms of scaled and shifted impulses
is a major application of this signal. Consider the product of a signal with a shifted
impulse x(n)δ(n−m) = x(m)δ(n−m). Summing both sides with respect to m, we
get
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∞∑
m=−∞

x(n)δ(n − m) = x(n)

∞∑
m=−∞

δ(n − m) = x(n) =
∞∑

m=−∞
x(m)δ(n − m)

The general term x(m)δ(n − m) of the last sum, which is one of the constituent
impulses of x(n), is a shifted impulse δ(n − m) located at n = m with value
x(m). The summation operation sums all these impulses to form x(n). Therefore,
the signal x(n) is represented by the sum of scaled and shifted impulses with the
value of the impulse at any n being x(n). The unit-impulse is the basis function and
x(n) is its coefficient. As the value of the sum is nonzero only at n = m, the sum is
effective only at that point. By varying the value of n, we can sift out all the values of
x(n). For example, consider the signal x(−2) = 2, x(0) = 3, x(2) = −4, x(3) = 1,
and x(n) = 0 otherwise. This signal can be expressed, in terms of impulses, as

x(n) = 2δ(n + 2) + 3δ(n) − 4δ(n − 2) + δ(n − 3)

With n = 2, for instance,

x(2) = 2δ(4) + 3δ(2) − 4δ(0) + δ(−1) = −4

1.2.2 Unit-Step Signal

The unit-step signal, shown in Fig. 1.1b, is defined as

u(n) =
{
1 for n ≥ 0
0 for n < 0

The unit-step signal is an all-one sequence for positive values of its argument and is
an all-zero sequence for negative values of its argument. The causal form of a signal
x(n) (x(n) is zero for n < 0) is obtained by multiplying it with the unit-step signal
as x(n)u(n). For example, sin( 2π6 n) has nonzero values in the range −∞ < n < ∞,
whereas the values of sin( 2π6 n)u(n) are zero for n < 0 and sin( 2π6 n) for n ≥ 0. A
shifted unit-step signal, for example, u(n−1), is u(n) shifted by one sample interval
to the right (the first nonzero value occurs at n = 1). Using scaled and shifted
unit-step signals, any signal, described differently over different intervals, can be
specified, for easier mathematical analysis, by a single expression, valid for all n.
For example, a pulse with its only nonzero values defined as x(−1) = 2, x(0) = 2,
x(1) = −3, and x(2) = −3 can be expressed as x(n) = 2u(n + 1) − 5u(n − 1) +
3u(n − 3). Figure 1.2a shows the pulse and Fig. 1.2b shows its constituent scaled
and shifted unit-step components.
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Fig. 1.2 (a) A pulse and (b) its scaled and shifted unit-step components

1.2.3 Unit-Ramp Signal

Another signal that is often used in the analysis of systems is the unit-ramp signal,
shown in Fig. 1.1c. It is defined as

r(n) =
{

n for n ≥ 0
0 for n < 0

The unit-ramp signal linearly increases for positive values of its argument and is an
all-zero sequence for negative values of its argument.

The three signals, the unit-impulse, the unit-step, and the unit-ramp, are closely
related. The unit-impulse signal δ(n) is equal to u(n)−u(n−1). The unit-step signal
u(n) is equal to

∑∞
k=0 δ(n − k). The shifted unit-step signal u(n − 1) is equal to

r(n) − r(n − 1). The unit-ramp signal r(n) is equal to

r(n) = nu(n) =
∞∑

k=0

kδ(n − k)

1.2.4 Sinusoids and Exponentials

The sinusoidal waveform or sinusoid is the well-known trigonometric sine and
cosine functions, with arbitrary shift along the horizontal axis. Figure 1.3 shows
32 discrete points on the unit circle, characterized by

x2 + y2 = 1

The unit circle is a circle with its center at the origin and radius 1. For each point
on the unit circle, the cosine and sine functions are defined in terms its x and y

coordinates as
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Fig. 1.3 cos(ωn) and sin(ωn) functions defined on the unit circle, ω = 2π
32 and n =

−∞, . . . ,−1, 0, 1, . . . ,∞

cos(ωn) = x, and sin(ωn) = y

The coordinates of the points corresponding to angles

ωn = 2π

32
{0, 1, 2, 3, 4, 5, 6, 7, 8, 16, 24}

are shown in the figure. By using appropriate signs, the coordinates in the other three
quadrants can be found. The radian measure of the angle is the arc length. Since the
circumference of a circle is 2π , one rotation of the circle is 2π radians. In degree
measure, 2π = 360 degrees. Therefore, one radian is 180/π , and it is 57.2958
degrees approximately. Any function defined on a circle is a periodic function of the
angle. The function has the same value after any number of rotations on the circle.
For example,

cos
(π

4

)
= cos

(
2π + π

4

)
= 0.7071

The sinusoidal waveforms are oscillatory with peaks occurring at equal distance
from the horizontal axis. The waveforms have two zero-crossings in each cycle.
As the sinusoidal waveforms of a particular frequency and amplitude have the
same shape with the peaks occurring at different instants, we have to define a
reference position to distinguish the innumerable number of different sinusoids. Let
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the occurrence of the positive peak at the origin be the reference position. Then,
as the cosine wave has its positive peak at that point, it becomes the reference
waveform and is characterized by a phase of zero radians. The other sinusoidal
waveforms can be obtained by shifting the cosine waveform to the right or left. A
shift to the right is considered as negative and a shift to the left is positive. The phase
of the sine wave is −π

2 radians, as we get the sine wave by shifting a cosine wave to
the right by π

2 radians. The other sinusoidal waveforms have arbitrary phases. The
sine and cosine waves are important special cases of sinusoidal waveforms.

1.2.4.1 The Polar Form of Sinusoids

The polar form specifies a sinusoid, in terms of its amplitude and phase, as

x(n) = A cos(ωn + θ), n = −∞, . . . ,−1, 0, 1, . . . ,∞,

where A, ω, and θ are, respectively, the amplitude, the angular frequency, and the
phase. The amplitude A is the distance of either peak of the waveform from the
horizontal axis (A = 2 for the waveform shown in Fig. 1.4a). A discrete sinusoid
has to complete an integral number of cycles (say k, where k > 0 is an integer) over
an integral number of sample points, called its period (denoted by N , where N > 0
is an integer), if it is periodic. Then, as

cos(ω(n + N) + θ) = cos(ωn + ωN + θ) = cos(ωn + θ) = cos(ωn + θ + 2kπ),

N = 2kπ
ω

. Note that k is the smallest integer that will make 2kπ
ω

an integer. The
cyclic frequency, denoted by f , of a sinusoid is the number of cycles per sample
and is equal to the number of cycles the sinusoid makes in a period divided by
the period, f = k

N
= ω

2π cycles per sample. Therefore, the cyclic frequency of a
discrete periodic sinusoid is a rational number. The angular frequency, the number
of radians per sample, of a sinusoid is 2π times its cyclic frequency, that is,ω = 2πf

radians per sample.
The angular frequency of the sinusoid, shown in Fig. 1.4a, is ω = 2π

8 radians
per sample. The period of the discrete sinusoid is N = 2kπ

ω
= 8 samples, with

k = 1. The cyclic frequency of the sinusoid sin
(
2
√
2π

16 n + π
3

)
is

√
2

16 . As it is an

irrational number, the sinusoid is not periodic. The cyclic frequency of the sinusoid
in Fig. 1.4a is f = k

N
= 1

8 cycles per sample. The phase of the sinusoid 2 cos( 2π8 n+
π
3 ) in Fig. 1.4a is θ = π

3 radians. The peak of the waveform does not occur at a
sample point. If only the sample values are known, the amplitude and phase can be
determined using any two adjacent sample values. As it repeats a pattern over its
period, the sinusoid remains the same by a shift of an integral number of its period.
A phase-shifted sine wave can be expressed in terms of a phase-shifted cosine wave
as A sin(ωn + θ) = A cos(ωn + (θ − π

2 )). The phase of the sinusoid
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sin

(
2π

16
n + π

3

)
= cos

(
2π

16
n +

(π

3
− π

2

))
= cos

(
2π

16
n − π

6

)

is −π
6 radians. The phase of the sinusoid in Fig. 1.4b is 5π

6 radians. A phase-shifted
cosine wave can be expressed in terms of a phase-shifted sine wave as A cos(ωn +
θ) = A sin(ωn + (θ + π

2 )).

1.2.4.2 The Rectangular Form of Sinusoids

An arbitrary sinusoid is neither even- nor odd-symmetric. The even and odd
components of a sinusoid are, respectively, cosine and sine waveforms. That is,
a sinusoid is a linear combination of cosine and sine waveforms of the same
frequency as that of the sinusoid. Expressing a sinusoid in terms of its cosine and
sine components is called its rectangular form and is given as

A cos(ωn + θ) = A cos(θ) cos(ωn) − A sin(θ) sin(ωn) = C cos(ωn) + D sin(ωn),

where C = A cos θ and D = −A sin θ . The inverse relation is A = √
C2 + D2 and

θ = cos−1(C
A

) = sin−1(−D
A

). For example,

2 cos

(
2π

16
n + π

3

)
= cos

(
2π

16
n

)
− √

3 sin

(
2π

16
n

)

3√
2
cos

(
2π

16
n

)
+ 3√

2
sin

(
2π

16
n

)
= 3 cos

(
2π

16
n − π

4

)

1.2.4.3 The Sum of Sinusoids of the Same Frequency

The sum of sinusoids of arbitrary amplitudes and phases but with the same
frequency is also a sinusoid of the same frequency. Let

x1(n) = A1 cos(ωn + θ1) and x2(n) = A2 cos(ωn + θ2)

Then,

x(n) = x1(n) + x2(n) = A1 cos(ωn + θ1) + A2 cos(ωn + θ2)

= cos(ωn)(A1 cos(θ1) + A2 cos(θ2)) − sin(ωn)(A1 sin(θ1) + A2 sin(θ2))

= A cos(ωn + θ) = cos(ωn)(A cos(θ)) − sin(ωn)(A sin(θ))

Solving for A and θ , we get
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Fig. 1.4 (a) The sinusoid x1(n) = 2 cos( 2π8 n + π
3 ); (b) the sinusoid x2(n) = 3 cos( 2π8 n + 5π

6 );

(c) the sum of x1(n) and x2(n), x(n) = 3.6056 cos( 2π8 n + 2.03)

A =
√

A2
1 + A2

2 + 2A1A2 cos(θ1 − θ2)

θ = tan−1 A1 sin(θ1) + A2 sin(θ2)

A1 cos(θ1) + A2 cos(θ2)

Any number of sinusoids can be combined into a single sinusoid by repeatedly using
the formulas. Note that the formula for the rectangular form of the sinusoid is a
special case of the sum of two sinusoids, one sinusoid being the cosine and the
other being sine.

Example 1.1 Determine the sum of the two sinusoids x1(n) = 2 cos( 2π8 n + π
3 ) and

x2(n) = −3 cos( 2π8 n − π
6 ).

Solution As x2(n) = −3 cos( 2π8 n− π
6 ) = 3 cos( 2π8 n− π

6 +π) = 3 cos( 2π8 n+ 5π
6 ),

A1 = 2, A2 = 3, θ1 = π

3
, and θ2 = 5π

6
.

Substituting the numerical values in the equations, we get

A =
√
22 + 32 + 2(2)(3) cos

(
π

3
− 5π

6

)
= √

13 = 3.6056

θ = tan−1
2 sin

(
π
3

)+ 3 sin
(
5π
6

)

2 cos
(

π
3

)+ 3 cos
(
5π
6

) = 2.03 radians

The waveforms of the two sinusoids and their sum, x(n) = 3.6056 cos( 2π8 n+2.03),
are shown, respectively, in Fig. 1.4a, b, and c.

1.2.4.4 Exponentials

A real constant a �= 1 raised to the power of a variable n, x(n) = an is the
exponential function. We are more familiar with the exponential of the form e−2t
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Fig. 1.5 ejωn, the unit rotating vector, ω = 2π
32 and n = −∞, . . . ,−1, 0, 1, . . . ,∞

with base e, and this form is used in the analysis of continuous signals and systems.
The exponential esn is the same as an, where s = loge a and a = es . For example,
e−0.2231n = (0.8)n is a decaying discrete exponential. As both the forms are used
in the analysis of discrete signals and systems, it is necessary to get used to both of
them.

With base e, the most general form of the continuous exponential is Pest , where
P or s or both may be complex-valued. Let s = σ + jω. Then, est = e(σ+jω)t =
eσ t ejωt . Exponential ejωt = cos(ωt)+ j sin(ωt) is a constant amplitude oscillating
signal with the frequency of oscillation in the range 0 ≤ ω ≤ ∞. When the real part
of s is positive (σ > 0), est is a growing exponential. When σ < 0, est is a decaying
exponential. When σ = 0, est oscillates with constant amplitude. When s = 0, est

is a constant signal.
With base a, the most general form of the discrete exponential is Pan, where P

or a or both may be complex-valued. Let a = r ejω. Then, an = rnejωn. When
|a| = r > 1, an is a growing exponential. When |a| = r < 1, an is a decaying
exponential. When |a| = r = 1, an is a constant amplitude signal.

Exponential ejωn = cos(ωn) + j sin(ωn), shown in Fig. 1.5 with ω = 2π
32 , is a

constant amplitude oscillating signal with the frequency of oscillation in the range
0 ≤ ω ≤ 2π , since e±jωn = ej (2π±ω)n = ej (4π±ω)n = · · · . Essentially, it carries
the same information about the cosine and sine functions, shown in Fig. 1.3, in a
complex form, which is an ordered pair of real functions. For example,
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ej π
4 = cos

(π

4

)
+ j sin

(π

4

)
= 0.7071 + j0.7071

1.2.4.5 The Complex Sinusoids

In practice, the real sinusoid A cos(ωn + θ) is most often used and is easy to
visualize. At a specific frequency, a sinusoid is characterized by two real-valued
quantities, the amplitude and the phase. These two values can be combined into a
complex constant that is associated with a complex sinusoid. Then, we get a single
waveform with a single coefficient, although both of them are complex. Because of
its compact form and ease of manipulation, the complex sinusoid is used in almost
all theoretical analysis. The complex sinusoid is given as

x(n) = Aej(ωn+θ) = Aejθ ejωn, n = −∞, . . . ,−1, 0, 1, . . . ,∞

The term ejωn is the complex sinusoid with unit magnitude and zero phase. Its
complex (amplitude) coefficient is Aejθ . The amplitude and phase of the sinusoid
is represented by the single complex number Aejθ . The complex sinusoid is a
functionally equivalent mathematical representation of a real sinusoid. By adding
its complex conjugate, Ae−j (ωn+θ), with itself and dividing by two, due to Euler’s
identity, we get

x(n) = A

2

(
ej (ωn+θ) + e−j (ωn+θ)

)
= A cos(ωn + θ)

The use of two complex sinusoids to represent a single real sinusoid requires
four real quantities instead of two. This redundancy in terms of storage and
operations can be taken care of in the implementation of algorithms for processing

the exponentials. Figure 1.6b shows the complex sinusoid ej ( 2π16 n) with complex
coefficient 1ej π

3 .
One cycle of the continuous complex exponential signal, x(t) = ej ( 2π16 t+ π

3 ), is
shown in Fig. 1.6a. We denote a continuous signal, using the independent variable
t , as x(t). We call this representation the time-domain representation, although the
independent variable is not time for some signals. Using Euler’s identity, the signal

0 4 8 12 16

n

-1

0

0.5

1

x(
n)

(b)

real

imaginary

0 4 8 12 16

t

-1

0

0.5

1

x(
t)

(a)

real

imaginary

Fig. 1.6 (a) The continuous complex exponential signal, x(t) = ej ( 2π16 t+ π
3 ); (b) the discrete

complex exponential signal, x(n) = ej ( 2π16 n+ π
3 )
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can be expressed, in terms of cosine and sine signals, as

x(t) = ej ( 2π16 t+ π
3 ) = cos

(
2π

16
t + π

3

)
+ j sin

(
2π

16
t + π

3

)

The real part of x(t) is the real sinusoid cos( 2π16 t + π
3 ), and the imaginary part is

the real sinusoid sin( 2π16 t + π
3 ), as any complex signal is an ordered pair of real

signals. While practical signals are real-valued with arbitrary amplitude profile, the
mathematically well-defined complex exponential is predominantly used in signal
and system analysis. One cycle of the discrete complex exponential signal, x(n) =
ej ( 2π16 n+ π

3 ), is shown in Fig. 1.6b. This signal is obtained by sampling the continuous
signal x(t), replacing t by nTs , in Fig. 1.6a with Ts = 1 second.

1.2.4.6 Exponentially Varying Amplitude Sinusoids

An exponentially varying amplitude sinusoid, Arn cos(ωn + θ), is obtained by
multiplying a sinusoidal sequence, A cos(ωn+θ), with a real exponential sequence,
rn. The more familiar constant amplitude sinusoid results when the base of the real
exponential, r , is equal to one. If ω is equal to zero, then we get real exponential
sequences.

Sinusoid, x(n) = (0.9)n cos( 2π8 n), with exponentially decreasing amplitude is
shown in Fig. 1.7a. The amplitude of the sinusoid cos( 2π8 n) is constrained by the
exponential (0.9)n. When the value of the cosine function is equal to one, the
waveform reduces to (0.9)n. Therefore, the graph of the function (0.9)n is the
envelope of the positive peaks of the waveform, as shown in Fig. 1.7a. Similarly, the
graph of the function −(0.9)n is the envelope of the negative peaks of the waveform.
Sinusoid, x(n) = (1.1)n cos( 2π8 n), with exponentially increasing amplitude is
shown in Fig. 1.7b.

The complex exponential representation of an exponentially varying amplitude
sinusoid is given as

x(n) = A

2
rn
(
ej (ωn+θ) + e−j (ωn+θ)

)
= Arn cos(ωn + θ)

-10 0 10

n

-2
-1
0
1
2

x(
n)

(a)

(0.9)n

-(0.9)n

-10 0 10

n

-2
-1
0
1
2

x(
n)

(b)

(1.1)n

-(1.1)n

Fig. 1.7 (a) Exponentially decreasing amplitude sinusoid, x(n) = (0.9)n cos( 2π8 n); (b) exponen-
tially increasing amplitude sinusoid, x(n) = (1.1)n cos( 2π8 n)
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1.2.4.7 The Sampling Theorem and the Aliasing Effect

As we have already mentioned, most of the practical signals are continuous signals.
However, digital signal processing is so advantageous that we prefer to convert
the continuous signals into digital form and then process it. This process involves
sampling in time and in amplitude of a signal. The sampling in time involves
observing the signal only at discrete instants of time. By sampling a signal, we
are reducing the number of samples from infinite (of the continuous signal over
any finite duration) to finite (of the corresponding discrete signal over the same
duration). This reduction in the number of samples restricts the ability to represent
rapid time variations of a signal and, consequently, reduces the effective frequency
range of discrete signals. Note that high-frequency components of a signal provide
its rapid variations. As practical signals have negligible spectral values beyond some
finite frequency range, the representation of a continuous signal by a finite set of
samples is possible, satisfying a required accuracy. Therefore, we should be able to
determine the sampling interval required for a specific signal.

The sampling theorem states that a continuous signal x(t) can be uniquely
determined from its sampled version x(n) if the sampling interval Ts is less than
1

2fm
, where fm is the cyclic frequency of the highest-frequency component of x(t).

That is, a signal bandlimited to fm Hz can be reconstructed from its samples taken
at a sampling frequency fs greater than 2fm samples/second. This implies that
there are more than two samples per cycle of the highest-frequency component.
Therefore, a sinusoid, which completes f cycles, has a distinct set of 2f +1 sample
values. A cosine wave, however, can be represented with 2f samples. For example,
the cyclic frequency of the sinusoid x(t) = cos(3(2π)t − π

3 ) is f = 3(2π)
2π = 3Hz

and, therefore, Ts < 1
2(3) = 1

6 seconds, and the minimum sampling frequency is

fs = 1
Ts

= 2f + 1 = 6 + 1 = 7 samples per second. In practice, due to nonideal
response of physical devices, the sampling frequency used is typically more than
twice the theoretical minimum. Given a sampling interval Ts , the cyclic frequency
fm of the highest-frequency component of x(t), for the unambiguous representation
of its sampled version, must be less than 1

2Ts
. The corresponding angular frequency

ωm is equal to 2πfm < π
Ts

radians per second. Therefore, the frequency range of the
frequency components of the signal x(t), for the unambiguous representation of its
sampled version, must be 0 ≤ ω < π

Ts
.

To find out why the frequency range is limited, due to sampling of a signal,
consider the sinusoid x(t) = cos(ω0t + θ) with 0 ≤ ω0 < π

Ts
. The sampled version

of x(t) is x(n) = cos(ω0nTs + θ). Now, consider the sinusoid y(t) = cos((ω0 +
2πm
Ts

)t +θ), where m is any positive integer. The sampled version of y(t) is identical
with that of x(t), as

y(n) = cos

((
ω0 + 2πm

Ts

)
nTs + θ

)
= cos(ω0nTs+2πnm+θ) = cos(ω0nTs+θ) = x(n)
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Therefore, the effective frequency range is limited to 2π
Ts
.

Now, consider the sinusoid z(t) = cos(( 2πm
Ts

−ω0)t −θ), where m is any positive
integer. The sampled version of z(t) is identical with that of x(t), as

z(n) = cos

((
2πm

Ts
− ω0

)
nTs − θ

)
= cos(2πnm−ω0nTs −θ) = cos(ω0nTs +θ) = x(n)

We conclude that it is impossible to differentiate between the sampled versions
of two continuous sinusoids with the sum or difference of their angular frequencies
equal to an integral multiple of 2π

Ts
. Therefore, the effective frequency range is

further limited to π
Ts
, as given by the sampling theorem. For example, with 512

samples, the uniquely identifiable frequency components are

x(n) = cos

(
2π

512
kn + θ

)
, k = 0, 1, . . . , 255

The frequency π
Ts

is called the folding frequency, since higher frequencies are folded
back and forth into the frequency range from zero to π

Ts
. The problem is similar to

the number of bits available and the possible range of binary numbers. With N

bits, unsigned binary numbers in the range 0 to 2N − 1 can only be unambiguously
represented. Similarly, with N samples, sinusoids with frequencies in the range 0 to
(N/2) − 1 can only be represented.

Consider the continuous sinusoids x(t) = cos(2πt+π
3 ) and x(t) = cos(5(2π)t+

π
3 ), and their sampled versions, obtained from the corresponding continuous
sinusoids by replacing t by nTs = n 1

4 with the sampling interval Ts = 1
4 seconds,

x(n) = cos( 2π4 n+ π
3 ) and x(n) = cos(52π

4 n+ π
3 ), shown in Fig. 1.8. We can easily

distinguish one continuous sinusoid from the other, as they are clearly different.
However, the set of sample values, shown by dots, of the two discrete sinusoids are
the same, and it is impossible to differentiate them. The sample values of both the
sinusoids are the same, since

0 1 2 3

n

-0.8660
-0.5

0

0.5
0.8660

x(
n)

Fig. 1.8 The continuous sinusoids x(t) = cos(2πt + π
3 ) and x(t) = cos(5(2π)t + π

3 ), and their

sampled versions, with the sampling interval Ts = 1
4 seconds, x(n) = cos( 2π4 n + π

3 ) and x(n) =
cos(5 2π

4 n + π
3 ) = cos( 2π4 n + π

3 )
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cos

(
5
2π

4
n + π

3

)
= cos

(
(4 + 1)

2π

4
n + π

3

)
= cos

(
2π

4
n + π

3

)

With the sampling interval Ts = 1
4 seconds, the effective frequency range is limited

to π
Ts

= 4π . Therefore, the continuous sinusoid cos(5(2π)t + π
3 ), with its angular

frequency 10π greater than the folding frequency 4π , appears as or impersonates a
lower-frequency discrete sinusoid. The impersonation of high-frequency continuous
sinusoids as low-frequency discrete sinusoids, due to insufficient number of samples
in a cycle (the sampling interval is not short enough), is called the aliasing effect.

As only scaling of the frequency axis is required for any other sampling interval,
most of the analysis of discrete signals is carried out assuming that the sampling
interval is 1 s. The effective frequency range becomes 0 to π , and it is called half
the fundamental range. Low frequencies are those near zero and high frequencies
are those near π . The range, 0 to 2π or −π to π , is called the fundamental range of
frequencies.

1.2.4.8 Frequency-Sampling Theorem

A signal time-limited to T seconds can be reconstructed from its spectral samples
taken at frequency intervals not greater than Δf = 1/T Hz.

1.3 Classification of Signals

Signals are classified into different types, and the representation and processing of
a signal depend on its type.

1.3.1 Continuous, Discrete, and Digital Signals

A continuous signal is specified at every value of its independent variable. For
example, the temperature of a room is a continuous signal. However, the temperature
measured by a digital thermometer is a quantized continuous signal. That is, the
temperature values are displayed at all time, but the values can assume only certain
discrete levels. We encounter this type of signals in reconstructing a signal from its
samples.

A discrete signal is specified only at discrete values of its independent variable.
For example, a signal x(t) is represented only at t = nTs as x(nTs), where Ts is
the sampling interval and n is an integer. The discrete signal is usually denoted as
x(n), suppressing Ts in the argument of x(nTs). The important advantage of discrete
signals is that they can be stored and processed efficiently using digital devices



1.3 Classification of Signals 17

Table 1.1 Signal
classification

Characteristic Continuous Sampled

Unquantized Continuous Discrete

Quantized Quantized continuous Digital

and fast numerical algorithms. As most practical signals are continuous signals,
the discrete signal is often obtained by sampling the continuous signal. However,
signals such as yearly population of a country and monthly sales of a company
are inherently discrete signals. Whether a discrete signal arises inherently or by
sampling, it is represented as a sequence of numbers {x(n), −∞ < n < ∞}, where
the independent variable n is an integer. Although x(n) represents a single sample,
it is also used to denote the sequence instead of {x(n)}. In this book, we assume that
the sampling interval, Ts , is a constant. In sampling a signal, the sampling interval,
which depends on the frequency content of the signal, is an important parameter.
The sampling interval is required again to convert the discrete signal back to its
corresponding continuous form. However, when the signal is in discrete form, most
of the processing is independent of the sampling interval. For example, summing of
a set of samples of a signal is independent of the sampling interval.

When the sample values of a discrete signal are quantized, it becomes a digital
signal. That is, both the dependent and independent variables of a digital signal are
in discrete form. This form is actually used to process signals using digital devices,
such as a digital computer. Table 1.1 shows the signal classification based on
sampling the amplitude and time. Figure 1.9a shows a continuous-time signal. This
type of signals, with continuum of values both for its dependent and independent
variables, often occurs in practice. However, it is often converted to other types for
the convenience of analysis and implementation. When the independent variable
only is discrete, it is called a discrete-time signal. Figure 1.9b shows this type
of signal with its sample values known only at the interval of 0.1 s. When the
dependent variable only is discrete, it is called a quantized continuous-time signal.
Figure 1.9c shows this type of signal with its sample values known only at certain
discrete levels. When both the dependent and independent variables are discrete, it
is called a digital signal. Figure 1.9d shows this type of signal with its sample values
known only at certain time points with a predefined discrete levels. Discretization
of both the dependent and independent variables becomes necessary in practical
signal processing. Of course, sampling introduces some error, which has to be kept
sufficiently low by appropriately choosing the sampling intervals.

1.3.2 Periodic and Aperiodic Signals

The smallest positive integer N > 0 satisfying the condition x(n + N) = x(n), for
all n, is the period of the periodic signal x(n). Over the interval −∞ < n < ∞, a
periodic signal repeats its values in any interval equal to its period, at intervals of
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Fig. 1.9 (a) Continuous-time signal; (b) discrete-time signal; (c) quantized continuous-time
signal; (d) digital signal

its period. Cosine and sine waves, and the complex exponential, shown in Figs. 1.4
and 1.6, are typical examples of a periodic signal. A signal with constant value
(DC) is periodic with any period. In Fourier analysis, it is considered as A cos(ωn)

or Aejωn with the frequency ω equal to zero (period equal to ∞).
If a discrete signal x(n) satisfies the condition

x(k mod N) = x(n) for all n,

then it is said to be periodic, k = lN +n, and l is an integer. This alternate definition
emphasizes the cyclic nature of the signal. The smallest N > 0 satisfying the
constraint is its period. The mod function, r = k mod N , yields the remainder r

of dividing k by N .

r = k − �(k/N)	N, N �= 0

and r has the same sign as n. The floor function rounds the number to the nearest
integer less than or equal to its argument. For example, with N = 4, r = k mod 4
yields

k −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7
r 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

with a negative k, the corresponding positive value in the range 0 to N − 1 is
obtained. For example, with k = −2,

�(−2/4)	4 = �(−0.5)	4 = (−1)4 = −4 and r = −2 − (−4) = 2
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with k = −7, we get

�(−7/4)	4 = �(−1.75)	4 = (−2)4 = −8 and r = −7 − (−8) = 1

r = k mod N is periodic with period N since

r = k mod N = (k + N) mod N

Let x(n) = {2̌,−1, 3, 5} a periodic sequence with period 4. The check mark on 2
indicates that its index is zero. That is, x(0) = 2. The 17th number in the sequence
is −1. The index is obtained as 17mod 4 = 1 and x(1) = −1. x(−5) = x(3) = 5.

When the period of a periodic signal approaches infinity, there is no repetition of
a pattern indefinitely, and it degenerates into an aperiodic signal. Typical aperiodic
signals are shown in Fig. 1.1. It is easier to decompose an arbitrary signal in
terms of some periodic signals, such as complex exponentials, and the input-output
relationship of LTI systems becomes a multiplication operation for this type of
input signals. For these reasons, most of the analysis of practical signals, which
are mostly aperiodic having arbitrary amplitude profile, is carried out using periodic
basic signals.

1.3.3 Energy and Power Signals

The power or energy of a signal is also as important as its amplitude in its
characterization. This measure involves the amplitude and the duration of the signal.
Devices, such as amplifiers, transmitters, and motors, are specified by their output
power. In signal processing systems, the desired signal is usually mixed up with
certain amount of noise. The quality of these systems is indicated by the signal
to noise power ratio. Note that noise signals, which are typically of random type,
are usually characterized by their average power. In the most common signal
approximation method, the Fourier analysis, the goodness of the approximation
improves as more and more frequency components are used to represent a signal.
The quality of the approximation is measured in terms of the square error, which is
an indicator of the difference between the energy or power of a signal and that of its
approximate version.

The instantaneous power dissipated in a resistor of one ohm is x2(t), where x(t)

may be the voltage across it or the current through it. By integrating the power over
the interval the power is applied, we get the energy dissipated. Similarly, the sum of
the squared magnitude of the values of a discrete signal x(n) is an indicator of its
energy and is given as

E =
∞∑

n=−∞
|x(n)|2
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The use of the magnitude |x(n)| makes the expression applicable to complex signals
as well. Due to the squaring operation, the energy of a signal 2x(n), with double the
amplitude, is four times as that of x(n). Aperiodic signals with finite energy are
called energy signals. The energy of x(n) = 4(0.5)n, n ≥ 0 is

E =
∞∑

n=0

|4(0.5)n|2 = 16

1 − 0.25
= 64

3

If the energy of a signal is infinite, then it may be possible to characterize it in
terms of its average power. The average power is defined as

P = lim
N→∞

1

2N + 1

N∑
n=−N

|x(n)|2

For a periodic signal with period N , the average power can be determined as

P = 1

N

N−1∑
n=0

|x(n)|2

Signals, periodic or aperiodic, with finite average power are called power signals.
Cosine and sine waveforms are typical examples of power signals. The average
power of the cosine wave 2 cos( 2π4 n) is

P = 1

4

3∑
n=0

|x(n)|2 = 1

4
(22 + 02 + (−2)2 + 02) = 2

A signal is an energy signal or a power signal, since the average power of an energy
signal is zero while that of a power signal is finite. Signals with infinite average
power and infinite energy, such as x(n) = n, 0 ≤ n < ∞, are neither power signals
nor energy signals. The measures of signal power and energy are indicators of the
signal size, since the actual energy or power depends on the load.

1.3.4 Even- and Odd-Symmetric Signals

Figure 1.10a shows a signal, which is neither even- nor odd-symmetric. The storage
and processing requirements of a signal can be reduced by exploiting its symmetry.
A signal x(n) is even-symmetric, if x(−n) = x(n) for all n. The signal is
symmetrical about the vertical axis at the origin. The cosine waveform, shown in
Fig. 1.10b, is the even-symmetric component of the signal in (a). A signal x(n)

is odd-symmetric, if x(−n) = −x(n) for all n. The signal is asymmetrical about
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Fig. 1.10 (a) The sinusoid x(n) = cos( 2π8 n+ π
3 ) and its time reversed version x(−n); (b) its even

component xe(n) = 1
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8 n); (c) its odd component x0(n) = −
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the vertical axis at the origin. For an odd-symmetric signal, x(0) = 0. The sine
waveform, shown in Fig. 1.10c, is the odd-symmetric component of the signal in
(a).

If a N -point signal x(n) satisfies the condition

x((−n) mod N) = x(n) for all n,

then it is said to be circularly even. That is, its periodic extension is an even-
symmetric signal. For example, the sequences

{x(n), n = 0, 1, . . . , 7} = {−7, 1, 7, 5, 3, 5, 7, 1}

and

{x(n), n = 0, 1, . . . , 6} = {−7, 1, 7, 5, 5, 7, 1}

are even. The values at the beginning and at the middle can be arbitrary for a signal
with even number of elements, and the other values satisfy x(n) = x(−n), when
placed on a circle. Considering the finite extent alone, the condition is

x(N − n) = x(n), 1 ≤ n ≤ N − 1

The cosine waveform, with period N ,

x(n) = cos

(
2π

N
n

)

is even.
If a N -point signal x(n) satisfies the condition

−x((−n) mod N) = x(n) for all n,

then it is said to be circularly odd. That is, its periodic extension is an odd-symmetric
signal. For example, the sequences
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{x(n), n = 0, 1, . . . , 7} = {0, 3, 6, 4, 0,−4,−6,−3}

and

{x(n), n = 0, 1, . . . , 6} = {0, 3,−7,−4, 4, 7,−3}

are odd. The values at the beginning and at the middle must be zero for a signal
with even number of elements, and the other values satisfy x(n) = −x(−n), when
placed on a circle. Considering the finite extent alone, the condition is

x(N − n) = −x(n), 1 ≤ n ≤ N − 1

The sine waveform, with period N ,

x(n) = sin

(
2π

N
n

)

is odd.
The sum (x(n) + y(n)) of two odd-symmetric signals, x(n) and y(n), is an odd-

symmetric signal, since x(−n) + y(−n) = −x(n) − y(n) = −(x(n) + y(n)). For
example, the sum of two sine signals is an odd-symmetric signal. The sum (x(n) +
y(n)) of two even-symmetric signals, x(n) and y(n), is an even-symmetric signal,
since x(−n)+y(−n) = (x(n)+y(n)). For example, the sum of two cosine signals is
an even-symmetric signal. The sum (x(n) + y(n)) of an odd-symmetric signal x(n)

and an even-symmetric signal y(n) is neither even-symmetric nor odd-symmetric,
since x(−n) + y(−n) = −x(n) + y(n) = −(x(n) − y(n)). For example, the sum
of cosine and sine signals with nonzero amplitudes is neither even-symmetric nor
odd-symmetric.

Since x(n)y(n) = (−x(−n))(−y(−n)) = x(−n)y(−n), the product of two odd-
symmetric or two even-symmetric signals is an even-symmetric signal. The product
z(n) = x(n)y(n) of an odd-symmetric signal y(n) and an even-symmetric signal
x(n) is an odd-symmetric signal, since z(−n) = x(−n)y(−n) = x(n)(−y(n)) =
−z(n).

An arbitrary signal x(n) can always be decomposed in terms of its even-
symmetric and odd-symmetric components, xe(n) and xo(n), respectively. That is,
x(n) = xe(n) + xo(n). Replacing n by −n, we get x(−n) = xe(−n) + xo(−n) =
xe(n) − xo(n). Solving for xe(n) and xo(n), we get

xe(n) = x(n) + x(−n)

2
and xo(n) = x(n) − x(−n)

2

As the sum of an odd-symmetric signal x0(n), over symmetric limits, is zero,
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N∑
n=−N

x0(n) = 0

For an even-symmetric signal,

N∑
n=−N

x(n) =
N∑

n=−N

xe(n) = xe(0) + 2
N∑

n=1

xe(n)

For example, the even-symmetric component of x(n) = cos( 2π8 n + π
3 ) is

xe(n) = x(n) + x(−n)

2
= cos( 2π8 n + π

3 ) + cos( 2π8 (−n) + π
3 )

2

= 2 cos( 2π8 n) cos(π
3 )

2
= cos( 2π8 n)

2

The odd-symmetric component is

xo(n) = x(n) − x(−n)

2
= cos( 2π8 n + π

3 ) − cos( 2π8 (−n) + π
3 )

2

= −2 sin( 2π8 n) sin(π
3 )

2
= −

√
3

2
sin(

2π

8
n)

The sinusoid x(n) and its time reversed version x(−n), its even component, and its
odd component are shown, respectively, in Fig. 1.10a, b, and c. As the even and odd
components of a sinusoid are, respectively, cosine and sine functions of the same
frequency as that of the sinusoid, these results can also be obtained by expanding
the expression characterizing the sinusoid.

If a continuous signal is sampled with an adequate sampling rate, the samples
uniquely correspond to that signal. Assuming that the sampling rate is adequate,
in most of the figures in this book, we have shown the corresponding continuous
waveform only for clarity. It should be remembered that a discrete signal is
represented only by its sample values.

1.3.5 Causal and Noncausal Signals

Most signals, in practice, occur at some finite time instant, usually chosen as n = 0,
and are considered identically zero before this instant. These signals, with x(n) =
0 for n < 0, are called causal signals. Signals, with x(n) �= 0 for n < 0, are called
noncausal signals. Sine and cosine signals, shown in Fig. 1.10, are noncausal signals.
Typical causal signals are shown in Fig. 1.1.
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1.3.6 Deterministic and Random Signals

Signals such as x(n) = sin( 2π8 n), whose values are known for any value of n, are
called deterministic signals. Signals such as thermal noise generated in conductors
or speech signal, whose future values are not exactly known, are called random
signals. Despite the fact that rainfall record is available for several years in the past,
the amount of future rainfall at a place cannot be exactly predicted. This type of
signals is characterized by a probability model or a statistical model. The study of
random signals is important in practice, since all practical signals are random to
some extent. However, the analysis of systems is much simpler, mathematically,
with deterministic signals. The input-output relationship of a system remains the
same whether the input signal is random or deterministic. The time-domain and
frequency-domain methods of system analysis is common to both types of signals.
The key difference is to find a suitable mathematical model for random signals. In
this book, we confine to the study of deterministic signals only.

1.4 Signal Operations

In addition to the arithmetic operations, time shifting, time reversal, and time scaling
operations are also commonly used in the analysis of discrete signals. The three
operations described in this section are with respect to the independent variable, n.

1.4.1 Time Shifting

By replacing n by n−N , whereN is an integer, we get the shifted version, x(n−N),
of the signal x(n). The value of x(n) at n = n0 occurs at n = n0 + N in x(n − N).
If N is positive (negative), the values of the function are retarded (advanced) by N .
Graphically, it amounts to shifting the plot of the function forward (N positive) or
backward by N . The exponential signal x(n) = (0.7)nu(n) is shown in Fig. 1.11 by
dots. The signal x(n−1), shown in Fig. 1.11 by crosses, is the signal x(n) shifted by

-2 -1 0 1 2 3
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0.7

1

x(
n)

x(n+2) x(n) x(n-1)

Fig. 1.11 The exponential signal x(n) = (0.7)nu(n), the right shifted signal, x(n − 1) =
(0.7)(n−1)u(n − 1), and the left shifted signal, x(n + 2) = (0.7)(n+2)u(n + 2)
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one sample interval to the right (delayed by one sample interval, as the sample values
of x(n) occur one sample interval later). For example, the first nonzero sample value
occurs at n = 1 as (0.7)1−1u(1 − 1) = (0.7)0u(0) = 1. That is, the value of the
function x(n) at n0 occurs in the shifted signal one sample interval later at n0 + 1.
The signal x(n+ 2), shown in Fig. 1.11 by unfilled circles, is the signal x(n) shifted
by two sample intervals to the left (advanced by two sample intervals, as the sample
values of x(n) occur two sample intervals earlier). For example, the first nonzero
sample value occurs at n = −2 as (0.7)−2+2u(−2 + 2) = (0.7)0u(0) = 1. That is,
the value of the function x(n) at n0 occurs in the shifted signal two sample intervals
earlier at n0 − 2.

1.4.1.1 Circular Shifting

Circular shifting is simply the shifting of the values of a signal placed on a circle.
The right circular shift of a N -point signal x(n) by k sample intervals results in

x((n − k) mod N)

Let x(n) = {x(0), x(1), x(2), x(3)} = {3, 1, 2, 4}. Then,

x(n − 1) = {x(3), x(0), x(1), x(2)} = {4, 3, 1, 2}
x(n + 1) = {x(1), x(2), x(3), x(0)} = {1, 2, 4, 3}

1.4.2 Time Reversal

Forming the mirror image of a signal about the vertical axis at the origin is the time
reversal or folding operation. This is achieved by replacing the independent variable
n in x(n) by −n, and we get x(−n). The value of x(n) at n = n0 occurs at n = −n0
in x(−n). The exponential signal x(n) = (0.7)nu(n) is shown in Fig. 1.12 by a solid
line. The folded signal x(−n) is shown in Fig. 1.12 by crosses. Consider the folded
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x(n) x(-n+2)

Fig. 1.12 The exponential signal x(n) = (0.7)nu(n), the folded signal, x(−n) = (0.7)−nu(−n),
and the shifted and folded signal, x(−n + 2) = (0.7)(−n+2)u(−n + 2)
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and shifted signal x(−n + 2) = x(−(n − 2)), shown in Fig. 1.12 by unfilled circles.
This signal can be formed by first folding x(n) to get x(−n) and then shifting it to
the right by two sample intervals (n is replaced by (n − 2)). This signal can also be
formed by first shifting x(n) to the left by two sample intervals to get x(n + 2) and
then folding it about the vertical axis (n is replaced by −n). That is, the value of the
function x(n) at n0 occurs in the reversed and shifted signal at −(n0 − 2).

1.4.2.1 Circular Time Reversal

Circular time reversal of a N -point signal x(n) is given by

{
x(0) for n = 0
x(N − n) 1 ≤ n ≤ N − 1

This is just plotting x(n) in the other direction on a circle. For example, the samples
of one cycle of x(n) = sin(2πn/8) are

{0, 0.7071, 1, 0.7071, 0,−0.7071,−1,−0.7071}

and those of xr(n) = sin(2π(−n)/8) = − sin(2πn/8) are

{0,−0.7071,−1,−0.7071, 0, 0.7071, 1, 0.7071}

1.4.3 Time Scaling

Replacing the independent variable n in x(n) by an or n
a
results in the time scaled

signal x(an) (time compressed version of x(n)) or x(n
a
) (time expanded version of

x(n)), with a �= 0 being an integer. The value of x(n) at n = n0 occurs at n = n0
a

(for n0 being an integral multiple of a) in x(an) and at n = an0 in x(n
a
). Consider

the signal x(n) = (0.8)nu(n), shown in Fig. 1.13 by dots. The time compressed
version with a = 2, y(n) = x(2n), is shown in Fig. 1.13 by crosses. The values of

0 1 2 3 4
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x(n/2)

Fig. 1.13 The exponential x(n) = (0.8)nu(n), x(2n), and x( n
2 )
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Fig. 1.14 The sinusoid, x(n) = cos( π
5 n), x(−2n + 4), and x(− n

2 + 4)

the signal y(n) = x(2n) are the even-indexed values of x(n). That is, y(0) = x(0),
y(1) = x(2), y(2) = x(4), and so on. The odd-indexed values of x(n) are lost in
the time compression operation. In general, x(an) is composed only of every ath
sample of x(n).

The time expanded version with a = 2, y(n) = x(n
2 ), is shown in Fig. 1.14 by

unfilled circles. The values of the time expanded signal are defined from that of
x(n) only for the even-indexed values of y(n). That is, y(0) = x(0), y(2) = x(1),
y(4) = x(2), and so on. Odd-indexed values of y(n) are assigned the value zero. In
general, y(n) = x(n

a
) is defined only for n = 0,±a,±2a,±3a, . . . , and the rest of

the values of y(n) are undefined. Interpolation by assigning the value zero is often
used in practice. Of course, the undefined values can also be defined using a suitable
interpolation formula.

In general, the three operations described on a signal x(n) can be expressed as
y(n) = x(an − b) or y(n) = x(n

a
− b). The signal y(n) can be generated by

replacing n by (an − b) or ( n
a

− b) in x(n). However, it is instructive to consider it
as the result of a sequence of two steps: (i) first shifting the signal x(n) by b to get
x(n − b) and then (ii) time scaling (replace n by an or n

a
) the shifted signal by a to

get y(n) = x(an − b) or y(n) = x(n
a

− b). Note that, time reversal operation is a
special case of the time scaling operation with a = −1.

Let x(n) = cos(π
5 n), shown in Fig. 1.14 by dots. It is required to find x(−2n+4).

The shifted signal is x(n+4) = cos(π
5 (n+4)), shown by a dotted line. Now scaling

this signal by −2 yields the signal x(−2n + 4) = cos(π
5 (−2n + 4)), shown in

Fig. 1.14 by crosses. The value of the function x(n) at an even n0 occurs in the scaled
and shifted signal at − (n0−4)

2 . The period of x(n) is 10 and that of the compressed
signal is 5.

Let us find x(−n
2 +4). Scaling the shifted signal by − 1

2 yields the signal x(−n
2 +

4) = cos(π
5 (−n

2 + 4)), shown in Fig. 1.14 by unfilled circles. The value of the
function x(n) at n0 occurs in the scaled and shifted signal at −2(n0 − 4).
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Table 1.2 Basic signals Constant x(n) = c

Unit-impulse x(n) = δ(n)

Unit-step x(n) = u(n)

Unit-ramp x(n) = nu(n)

Real exponential x(n) = rn

Real sinusoid x(n) = A cos(ωn + θ)

Damped real sinusoid x(n) = Arn cos(ωn + θ)

Complex exponential x(n) = Aej(ωn+θ)

Damped complex exponential x(n) = Arnej (ωn+θ)

1.4.4 Zero Padding

In this operation, a sequence is appended by zero-valued samples. A N -point
sequence x(n) is expanded to aM-point,M > N , signal xz(n), n = 0, 1, . . . , M−1,
defined as

xz(n) =
{

x(n) for n = 0, 1, . . . , N − 1
0 for n = N,N + 1, . . . , M − 1

For example, xz(n) = {4, 1, 3, 0} is the zero-padded version of x(n) = {4, 1, 3} to
make its length equal to the nearest power of 2.

Table 1.2 shows a list of basic signals.

1.5 Numerical Integration

Integration, which is determining the area under a function, is one of the often used
operations in signal and system analysis. Numerical integration is the numerical
evaluation of a definite integral

I =
∫ b

a

x(t)dt,

where a and b are the limits of integration and x(t) is the function to be integrated.
As stated earlier, the amplitude profile of functions encountered in practical
applications is usually arbitrary. Then, it becomes a necessity to resort to numerical
integration. Numerical integration requires sampling the continuous function with
an appropriate sampling interval, Ts .

In numerical integration, the area to be integrated is divided into subintervals, and
an approximation function is used to find the area enclosed in each subinterval. One
of the approximation functions often used is based on the rectangle. Let the sampling
interval be Ts . The interval of integration is subdivided into N equal subintervals of
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Table 1.3 Numerical integration

Iteration No. 1 2 3 4 5 6 7 8

x(n) 0.5 0.3679 0.1353 0.0498 0.0183 0.0067 0.0025 0.0009

I (n) 1 1.7358 2.0064 2.1060 2.1426 2.1561 2.1611 2.1629

length Ts = (b − a)/N . Then, the rectangular rule of numerical integration is given
by

I (n) = I (n − 1) + Tsx(n), n = 0, 1, 2, . . . , N − 1

with the initial value I (−1) = 0.
Let us find the area under the continuous function x(t) = e−0.5t u(t), the real

causal exponential function. Analytically,

I =
∫ ∞

t=0
e−0.5t dt = −2e−0.5t |∞0 = 2

Let the sampling interval be Ts = 2 s and the record length be 16 s. Then, the first
eight samples of the signal are shown in the second row of Table 1.3. While the
actual value of the first sample is 1, a value of 0.5 is assumed for better accuracy,
as there is a discontinuity. The value 0.5 is the average at the discontinuity. Row 2
shows the partial results of numerical integration. The first partial result is 0+0.5×
2 = 1.

The second partial result is 1+0.3679×2 = 1.7358 and so on.With this sampling
interval, the final result of integration is 2.1629. The length of the record over which
the samples are taken and the sampling interval can be set to obtain the integration
value with a required accuracy.

1.6 The Organization of this Book

Four topics are covered in this book. The time-domain analysis of signals and
systems is presented in Chaps. 1–4. The four versions of the Fourier analysis are
described in Chaps. 5–8. The generalized Fourier analysis, the z-transform and
the Laplace transform, is presented in Chaps. 9 and 10. State-space analysis is
introduced in Chaps. 11 and 12.

The amplitude profile of practical signals is usually arbitrary. It is a necessity
to represent these signals in terms of well-defined basic signals in order to carry
out efficient signal and system analysis. The impulse and sinusoidal signals are
fundamental in signal and system analysis. In Chap. 1, Discrete Signals, we present
the basic signals, discrete signal classifications, and signal operations. In Chap. 2,
Continuous Signals, we present the basic signals, continuous signal classifications,
and signal operations.
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The study of systems involves modeling, analysis, and design. In Chap. 3, Time-
Domain Analysis of Discrete Systems, we start with the modeling of a system with
the difference equation. The classification of systems is presented next. Then, the
convolution-summation model is introduced. The zero-input, zero-state, transient,
and steady-state responses of a system are derived from its model. System stability is
considered in terms of impulse response. The basic components of discrete systems
are identified. In Chap. 4, Time-Domain Analysis of Continuous Systems, we start
with the classification of systems. The modeling of a system with the differential
equation is presented next. Then, the convolution-integral model is introduced. The
zero-input, zero-state, transient, and steady-state responses of a system are derived
from its model. System stability is considered in terms of impulse response. The
basic components of continuous systems are identified.

Basically, the analysis of signals and systems is carried out using impulse or
sinusoidal signals. The impulse signal is used in the time-domain analysis, which
is presented in Chaps. 3 and 4. Sinusoids (more generally complex exponentials)
are used as the basic signals in the frequency-domain analysis. As the frequency-
domain analysis is, in general, more efficient, it is most often used. Signals occur
usually in the time-domain. In order to use the frequency-domain analysis, signals
and systems must be represented in the frequency-domain. Transforms are used to
obtain the frequency-domain representation of a signal or a system from its time-
domain representation. All the essential transforms required in signal and system
analysis use the same family of basis signals, a set of complex exponential signals.
However, each transform is more advantageous to analyze certain type of signals
and to carry out certain type of system operations, since the basis signals consists of
a finite or infinite set of complex exponential signals with different characteristics,
continuous or discrete, and the exponent being complex or pure imaginary. The
transforms that use the complex exponential with a pure imaginary exponent comes
under the heading Fourier analysis. The other transforms use exponentials with
complex exponents as their basis signals.

There are four versions of the Fourier analysis, each primarily applicable to a
different type of signals such as continuous or discrete and periodic or aperiodic.
The discrete Fourier transform (DFT) is the only one in which both the time-
and frequency-domain representations are in finite and discrete form. Therefore,
it can approximate other versions of Fourier analysis through efficient numerical
algorithms. In addition, the physical interpretation of the DFT is much easier.
The basis signals of this transform is a finite set of harmonically related discrete
exponentials with pure imaginary exponent. In Chap. 5, The Discrete Fourier
Transform, the DFT, its properties, and some of its applications are presented.

The Fourier analysis of a continuous periodic signal, which is a generalization of
the DFT, is called the Fourier series (FS). The FS uses an infinite set of harmonically
related continuous exponentials with pure imaginary exponent as the basis signals.
This transform is useful in the frequency-domain analysis and design of periodic
signals and systems with continuous periodic signals. In Chap. 6, Fourier Series,
the FS, its properties, and some of its applications are presented.
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The Fourier analysis of a discrete aperiodic signal, which is also a generalization
of the DFT, is called the discrete-time Fourier transform (DTFT). The DTFT uses
a continuum of discrete exponentials, with pure imaginary exponent, over a finite
frequency range as the basis signals. This transform is useful in the frequency-
domain analysis and design of discrete signals and systems. In Chap. 7, The
Discrete-Time Fourier Transform, the DTFT, its properties, and some of its
applications are presented.

The Fourier analysis of a continuous aperiodic signal, which can be considered
as a generalization of the FS or the DTFT, is called the Fourier transform (FT). The
FT uses a continuum of continuous exponentials, with pure imaginary exponent,
over an infinite frequency range as the basis signals. This transform is useful in
the frequency-domain analysis and design of continuous signals and systems. In
addition, as the most general version of the Fourier analysis, it can represent all
types of signals and is very useful to analyze a system with different types of signals,
such as continuous or discrete and periodic or aperiodic. In Chap. 8, The Fourier
Transform, the FT, its properties, and some of its applications are presented.

Generalization of the Fourier analysis for discrete signals results in the z-
transform. This transform uses a continuum of discrete exponentials, with complex
exponent, over a finite frequency range of oscillation as the basis signals. With
a much larger set of basis signals, this transform is required for the design and
transient and stability analysis of discrete systems. In Chap. 9, The z-Transform,
the z-transform is derived from the DTFT, and its properties and some of its
applications are presented. The procedures for obtaining the forward and inverse
z-transforms are described.

Generalization of the Fourier analysis for continuous signals results in the
Laplace transform. This transform uses a continuum of continuous exponentials,
with complex exponent, over an infinite frequency range of oscillation as the basis
signals. With a much larger set of basis signals, this transform is required for the
design and transient and stability analysis of continuous systems. In Chap. 10, The
Laplace Transform, the Laplace transform is derived from the FT, and its properties
and some of its applications are presented. The procedures for obtaining the forward
and inverse Laplace transforms are described.

In Chap. 11, State-Space Analysis of Discrete Systems, the state-space analysis
of discrete systems is presented. This type of analysis is more general in that
it includes the internal description of a system in contrast to the input-output
description of other types of analysis. In addition, this method is easier to extend
to system analysis with multiple inputs and outputs and nonlinear and time-varying
system analysis. In Chap. 12, State-Space Analysis of Continuous Systems, the
state-space analysis of continuous systems is presented.

In Appendix A, the complex number system is reviewed. In Appendix B,
transform pairs and properties are listed. In Appendix C, useful mathematical
formulas are given.
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1.7 Summary

• In this chapter, basic discrete signals, signal classifications, and signal operations
have been presented.

• Signals are used for communication of information about some behavior or
nature of some physical phenomenon, such as audio, pressure, and temperature.

• In mathematical form, it is a function of one or more independent variables.
• Signals usually need some processing for their effective use.
• Continuous-time signal is defined at each and every instant of time over the

period of its occurrence.
• The values of discrete signals are available only at discrete intervals.
• The values of quantized continuous-time signals are quantized to certain levels.
• Both the dependent and independent variables of digital signals are sampled

values.
• A periodic signal repeats its values over any one period indefinitely. A signal that

is not periodic is aperiodic.
• As practical signals have arbitrary amplitude profile, these signals are usually

decomposed and processed in terms of basic signals, such as the sinusoid or the
impulse.

• The impulse is the basis signal in the time domain, while the sinusoid is the basis
signal in the frequency domain.

• The sinusoid is an everlasting periodic signal, while the strength of an impulse is
concentrated at a single point.

• The sinusoid is a linear combination of the well-known trigonometric functions,
sine and cosine.

• While sinusoidal signals are produced by physical devices, a mathematically
equivalent form, the complex exponential, is found to be more efficient and
compact in signal analysis.

• The sinusoidal signals dominate the linear signal and system analysis, as it
brings out the salient characteristics of signals and provides fast processing of
operations.

• Storage and processing requirements of a signal depend on its type.
• In addition to the arithmetic operations, time shifting, time reversal, and time

scaling operations are also commonly used in the analysis of signals.

Exercises

1.1 Is x(n) an energy signal, a power signal, or neither? If it is an energy signal,
find its energy. If it is a power signal, find its average power.

1.1.1 x(0) = 2, x(−1) = 2, x(−2) = −2, x(−3) = −2, and x(n) = 0
otherwise.

* 1.1.2 x(n) = 2(0.8)nu(n).
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1.1.3 x(n) = 2n.
1.1.4 x(n) = Cej( 6πn

8 ).
1.1.5 x(n) = 3 cos(πn

2 + π
4 ).

1.1.6 x(n) = u(n).
1.1.7 x(n) = 2.
1.1.8 x(n) = 2

n
u(n − 1).

1.1.9 x(n) = n.

1.2 Is x(n) even-symmetric, odd-symmetric, or neither? List the values of x(n) for
n = −3,−2,−1, 0, 1, 2, 3.

1.2.1 x(n) = 2 sin(π
5 n − π

3 ).
1.2.2 x(n) = sin(π

5 n).
1.2.3 x(n) = 2 cos(π

5 n).
1.2.4 x(n) = 3.
1.2.5 x(n) = n.

1.2.6 x(n) = 2 sin( π
3 n)

n
.

1.2.7 x(n) = 2 sin2( π
3 n)

n
.

1.2.8 x(0) = 0 and x(n) = (−1)n

n
otherwise.

1.2.9 x(n) = 3δ(n)

1.3 Find the even and odd components of the signal. List the values of the signal
and its components for n = −3,−2,−1, 0, 1, 2, 3. Verify that the values of the
components add up to the values of the signal. Verify that the sum of the values of
the even component and that of the signal are equal.

1.3.1 x(0) = 1, x(1) = 1, x(2) = −1, x(3) = −1, and x(n) = 0 otherwise.
1.3.2 x(n) = 3 cos(π

5 n + π
6 )

* 1.3.3 x(n) = (0.4)nu(n)

1.3.4 x(n) = u(n + 1)
1.3.5 x(n) = e−j ( π

3 n)

1.3.6 x(n) = n u(n)

1.4 Evaluate the summation.

1.4.1
∑∞

n=0 δ(n)(0.5)nu(n).
* 1.4.2

∑∞
n=0 δ(n + 1)(0.5)n.

1.4.3
∑∞

n=0 δ(n − 2)(0.5)nu(n).
1.4.4

∑∞
n=−∞ δ(n + 1)(0.5)n.

1.5 Express the signal in terms of scaled and shifted impulses.

1.5.1 x(0) = 2, x(1) = 3, x(2) = −1, x(3) = −4, and x(n) = 0 otherwise.
1.5.2 x(0) = 5, x(−1) = 3, x(2) = −7, x(−3) = −4, and x(n) = 0 otherwise.
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1.6 If the waveform is periodic, what is its period?

1.6.1 x(n) = 4 cos(0.7πn).
1.6.2 x(n) = 2 cos(

√
2n).

1.6.3 x(n) = 43 + 2 cos( 2π7 n).
1.6.4 x(n) = 2 cos( π

5
√
2
n).

* 1.6.5 x(n) = 4 cos( 4π9 n).

1.7 Find the rectangular form of the sinusoid. List the sample values of one cycle,
starting from n = 0, of the sinusoid.

1.7.1 x(n) = −2 sin(π
6 n − π

3 ).
1.7.2 x(n) = −2 cos(π

6 n − π
4 ).

1.7.3 x(n) = cos(π
6 n).

1.7.4 x(n) = 3 sin(π
6 n + π

3 ).
1.7.5 x(n) = − sin(π

6 n).
* 1.7.6 x(n) = 4 cos(π

6 n − π
6 ).

1.8 Find the polar form of the sinusoid. List the sample values of one cycle, starting
from n = 0, of the sinusoid.

1.8.1 x(n) = −2 sin(π
6 n).

1.8.2 x(n) = −2 cos(π
6 n) − 2 sin(π

6 n).
* 1.8.3 x(n) = 3 cos(π

6 n) + √
3 sin(π

6 n).
1.8.4 x(n) = −3 cos(π

6 n).
1.8.5 x(n) = √

3 cos(π
6 n) − sin(π

6 n).

1.9 Given x1(n) = A1e
j (ωn+θ1) and x2(n) = A2e

j (ωn+θ2), derive expressions for
A and θ of the complex sinusoid x(n) = x1(n) + x2(n) = Aej(ωn+θ) in terms of
those of x1(n) and x2(n).

1.10 Given the complex sinusoids x1(n) = A1e
j (ωn+θ1) and x2(n) = A2e

j (ωn+θ2),
find the complex sinusoid x(n) = x1(n) + x2(n) = Aej(ωn+θ), using the formulas
derived in Exercise 1.9. Find the sample values of one cycle, starting from n =
0, of the complex sinusoids x1(n) and x2(n) and verify that the sample values of
x1(n) + x2(n) are the same as those of x(n).

1.10.1 x1(n) = −2ej ( π
3 n+ π

3 ), x2(n) = 3ej ( π
3 n− π

6 ).
1.10.2 x1(n) = 3e−j ( π

3 n+ π
3 ), x2(n) = 2e−j ( π

3 n− π
3 ).

1.10.3 x1(n) = 2ej ( π
3 n), x2(n) = 3ej ( π

3 n).
1.10.4 x1(n) = ej ( π

3 n− π
2 ), x2(n) = ej ( π

3 n).
* 1.10.5 x1(n) = 2ej ( π

3 n+ π
6 ), x2(n) = 4ej ( π

3 n+ π
4 ).
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1.11 Find the corresponding exponential of the form an. List the values of the
exponential for n = 0, 1, 2, 3, 4, 5.

1.11.1 x(n) = e0.6931n.
1.11.2 x(n) = en.

* 1.11.3 x(n) = e−0.6931n.
1.11.4 x(n) = e−0.3567n.

1.12 Give the sample values of the exponentially varying amplitude sinusoid for
n = −2,−1, 0, 1, 2, 3, 4.

1.12.1 x(n) = (0.8)n sin( 2π6 n − π
6 ).

1.12.2 x(n) = (−0.6)n cos( 2π6 n + π
3 ).

1.12.3 x(n) = (1.1)n sin( 2π6 n − π
4 ).

1.12.4 x(n) = (−1.2)n cos( 2π6 n + π
6 ).

1.12.5 x(n) = (0.7)n cos(πn).

1.13 Find the next three higher-frequency sinusoids with the same set of sample
values as that of x(n).

1.13.1 x(n) = 2 cos(22π
9 n + π

6 ).
1.13.2 x(n) = 4 sin(32π

7 n − π
3 ).

1.13.3 x(n) = cos(42π
9 n − π

6 ).
* 1.13.4 x(n) = 3 sin(32π

8 n − π
3 ).

1.13.5 x(n) = 3 cos(πn).
1.13.6 x(n) = 5 cos(0n).

1.14 Find the minimum sampling rate required to represent the continuous signal
unambiguously.

1.14.1 x(t) = 3 cos(10πt).
1.14.2 x(t) = 3 cos(10πt + π

3 ).
* 1.14.3 x(t) = 2 sin(10πt).
1.14.4 x(t) = 2 sin(10πt − π

6 ).

1.15 The sinusoid x(n) and the value k are specified. Express the sinusoid x(n+k)

in polar form. List the sample values of one cycle, starting from n = 0, of the
sinusoids x(n) and x(n + k).

1.15.1 x(n) = 2 cos( 2π6 n − π
3 ), k = 2.

1.15.2 x(n) = −3 sin( 2π6 n + π
6 ), k = −1.

1.15.3 x(n) = cos( 2π6 n − π
6 ), k = 3.

1.15.4 x(n) = − sin( 2π6 n + π
3 ), k = 6.

* 1.15.5 x(n) = cos( 2π6 n + π
2 ), k = −7.

1.15.6 x(n) = sin( 2π6 n + 2π
3 ), k = 15.
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1.16 The sinusoid x(n) and the value k are specified. Express the sinusoid x(−n +
k) in polar form. List the sample values of one cycle, starting from n = 0, of the
sinusoids x(n) and x(−n + k).

1.16.1 x(n) = sin( 2π6 n − π
3 ), k = 0.

1.16.2 x(n) = sin( 2π6 n + π
3 ), k = −2.

* 1.16.3 x(n) = cos( 2π6 n − π
6 ), k = 1.

1.16.4 x(n) = sin( 2π6 n + π
2 ), k = −3.

1.16.5 x(n) = cos( 2π6 n − π
2 ), k = 6.

1.16.6 x(n) = sin( 2π6 n + π
6 ), k = 7.

1.16.7 x(n) = cos( 2π6 n + π
3 ), k = 14.

1.17 The sinusoid x(n) and the values k and a are specified. List the sample values
of one cycle, starting from n = 0, of the sinusoid x(n) and x(an + k). Assume
interpolation using zero-valued samples, if necessary.

1.17.1 x(n) = − sin( 2π6 n + π
3 ), a = −2, k = 0.

1.17.2 x(n) = 2 cos( 2π6 n − π
6 ), a = 1

2 , k = −2.
* 1.17.3 x(n) = sin( 2π6 n + π

6 ), a = −1, k = 1.
1.17.4 x(n) = 3 cos( 2π6 n + π

3 ), a = 1
3 , k = 6.

1.17.5 x(n) = sin( 2π6 n − π
2 ), a = −3, k = 7.

1.17.6 x(n) = cos( 2π6 n − π
6 ), a = −1, k = 15.

1.18 The waveform x(n) and the values k and a are specified. List the sample values
with indices n = −3,−2,−1, 0, 1, 2, 3 of the waveforms x(n) and x(an + k).
Assume interpolation using zero-valued samples, if necessary.

1.18.1 x(0) = 2, x(1) = 3, x(2) = −4, x(3) = 1, and x(n) = 0 otherwise.
a = −2, k = 2.

1.18.2 x(0) = 2, x(1) = 3, x(2) = −4, x(3) = 1, and x(n) = 0 otherwise.
a = − 1

2 , k = 1.
1.18.3 x(n) = (0.8)n. a = −3, k = −1.
1.18.4 x(n) = (0.8)n. a = 1

3 , k = 2.
1.18.5 x(n) = (1.1)n. a = 2, k = 2.
1.18.6 x(n) = (1.1)n. a = − 1

2 , k = 1.
1.18.7 x(n) = −2 sin( 2π6 n + π

6 )u(n). a = 1
2 , k = 3.

* 1.18.8 x(n) = −2 sin( 2π6 n + π
6 )u(n). a = −2, k = 2.

1.18.9 x(n) = (0.7)n cos( 2π6 n − π
3 )u(n). a = 1

3 , k = 3.
1.18.10 x(n) = (0.7)n cos( 2π6 n − π

3 )u(n). a = −2, k = 2.



Chapter 2
Continuous Signals

While the analysis of continuous signals is essentially the same as that of the
discrete signals, there are differences due to the continuous nature. For example, the
summation operation on a discrete signal corresponds to the integration operation
on a continuous signal, the difference operation corresponds to the derivative, and
the continuous impulse signal is defined in terms of area in contrast to the discrete
impulse signal defined by its amplitude. A continuous signal can be thought of as
a discrete signal in which the sampling interval is allowed to approach zero. Both
the continuous and discrete form of signals are important. The discrete signals are
amenable for numerical analysis and, therefore, mostly used in practice. Most of the
naturally occurring signals are, however, of continuous nature, and more formulas
are available for their analysis. In this chapter, basic signals, signal classifications,
and signal operations of continuous signals are described in Sects. 2.1, 2.2, and 2.3,
respectively.

2.1 Basic Signals

While the input signal to a system, in practice, is arbitrary, some mathematically
well-defined and simple signals are used for testing systems and decomposition
of the arbitrary signals for analysis. These signals, for example, the sinusoid with
infinite duration and the impulse with infinite bandwidth, are mathematical ideal-
izations and are not practical signals. However, they are convenient in the analysis
of signals and systems as intermediaries. In practice, they can be approximated to a
desired accuracy.
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2.1.1 The Unit-Step Signal

A system is usually turned on by closing a switch. While practical switches have
finite switching time, in theoretical analysis, zero switching time is assumed for
convenience. This implies that the input signal is applied instantaneously. A function
representing such a signal does not exist in the normal function theory, since the
derivative of a function, at a discontinuity, is not defined. As this type of function
is required frequently in the analysis of systems, we define such a function and its
derivative and denote them by special symbols. The unit-step function u(t), shown
in Fig. 2.1a, is defined as

u(t) =
⎧⎨
⎩
1 for t > 0
0 for t < 0
undefined for t = 0

The unit-step signal has a value of one for t > 0 and has a value of zero for t < 0.
The value u(0), if required, can be assigned values such as 0, 1

2 , or 1 to suit a specific
application. For example, the value 1

2 is assigned in Fourier analysis.
The causal form of a signal x(t), x(t) is zero for t < 0 is obtained by multiplying

it with the unit-step signal as x(t)u(t). For example, cos( 2π6 t) has nonzero values in
the range −∞ < t < ∞, whereas the values of cos( 2π6 t)u(t) are zero for t < 0 and
cos( 2π6 t) for t > 0. A time-shifted unit-step signal, for example u(t − 2), is u(t)

shifted by two units to the right (changes from 0 to 1 at t = 2). Using scaled and
shifted unit-step signals, a discontinuous signal, described differently over different
intervals, can be specified, for easier mathematical analysis, by a single expression,
valid for all t . For example, a signal that is identical to the first half period, beginning
at t = 0, of the sine wave sin(t) and is zero otherwise can be expressed as

x(t) = sin(t) (u(t) − u(t − π)) = sin(t) u(t) + sin(t − π) u(t − π)

The first expression can be interpreted as the sine wave multiplied by a pulse of unit
height over the interval 0 < t < π . The second expression can be interpreted as the
sum of the causal form of the sine wave and its right shifted version by π (a half
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Fig. 2.1 (a) The unit-step signal, u(t); (b) the unit-impulse signal, δ(t); (c) the unit-ramp signal,
r(t)
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Fig. 2.2 (a) sin(t) (u(t) − u(t − π)); (b) sin(t) u(t) and sin(t − π) u(t − π)
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Fig. 2.3 (a) The delayed unit-step signal, u(t − 2); (b) the delayed and compressed unit-step
signal, u(2t − 2) = u(t − 1)

period). Figure 2.2a and b show, respectively, x(t) = sin(t) (u(t) − u(t − π)) and
its two components.

The time scaled and shifted unit-step function u(±at − t0) is the same as u(±t −
t0
a
), where a �= 0 is a positive number. Figure 2.3a and b show, respectively, u(t −2)

and u(2t − 2) = u(t − 1).

2.1.2 The Unit-Impulse Signal

Consider a narrow unit area rectangular pulse, δq(t), of width 2a and height 1
2a

centered at t = 0 and the function x(t) = 2 + e−t . The integral of their product,
which is the local average of x(t), is

∫ ∞

−∞
x(t)δq(t) dt = 1

2a

∫ a

−a

(2 + e−t ) dt = 2 + ea − e−a

2a

The limiting value of the integral, as a → 0, is

lim
a→0

(
2 + ea − e−a

2a

)
= 2 + lim

a→0

(
ea + e−a

2

)
= 3 = x(0)

In evaluating the limit, we used the L’Hôpital’s rule. For a = {0.1, 0.4, 1}, the
integral evaluates to, respectively,

{3.0017, 3.0269, 3.1752}
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Fig. 2.4 (a) The pulse δq(t) (solid line) with width 2a = 2 and height 1
2a = 0.5. The function

x(t) = 2+ e−t (dashed line) and the product δq(t)x(t) (dotted line); (b) same as (a) with a = 0.4;
(c) same as (a) with a = 0.1; (d) the area enclosed by the product δq(t)x(t) for various values of a

As long as a is not equal to zero, the pulse is clearly defined by its width and height.
The integral is an integral in the conventional sense. As a → 0, the rectangular
pulse, δq(t), degenerates into an impulse δ(t) and it is characterized only by its unit
area at t = 0. Then, the integral becomes a definition

lim
a→0

∫ ∞

−∞
x(t)δq(t) dt =

∫ ∞

−∞
x(t)δ(t) dt = x(0)

∫ 0+

0−
δ(t) dt = x(0)

The pulse, δq(t), and the signal x(t) = 2+e−t are shown in Fig. 2.4a with a = 1.
Their product x(t)δq(t) is shown by the dotted line. The integral of the product
is 3.1752 with four-digit precision. The signal x(t) = 2 + e−t is approximated
by the rectangle, shown in dash-dot line, defined as 3.1752(2)δq(t) in the interval
−1 < t < 1. That is,

x(t) = 2 + e−t ≈ 3.1752(2)δq(t), −1 < t < 1

Obviously, the representation of the function by the pulse becomes better with a
shorter one.

Figure 2.4b and c show the functions with a = 0.4, and a = 0.1, respectively. As
the pulse width a is reduced, the variation in the amplitude of the function x(t) =
2+e−t is also reduced and the integral of the product δq(t)x(t) (the local average of
x(t)) approaches the value x(0), as shown in Fig. 2.4d. The reason for associating
the impulse in deriving the value of x(0), rather than replacing t by 0 in x(t), is to
express x(t) in terms of shifted and scaled impulses, as we shall see later.

The continuous unit-impulse signal δ(t), located at t = 0, is defined, in terms of
an integral, as
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∫ ∞

−∞
x(t)δ(t) dt = x(0)

assuming that x(t) is continuous at t = 0 (so that the value x(0) is unique). The
value of the function x(t) at t = 0 has been sifted out or sampled by the defining
operation. The impulse function is called a generalized function, since it is defined
by the result of its operation (integration) on an ordinary function, rather than by its
amplitude profile. A time-shifted unit-impulse signal δ(t −τ), located at t = τ , sifts
out the value x(τ),

∫ ∞

−∞
x(t)δ(t − τ) dt = x(τ),

assuming that x(t) is continuous at t = τ . As the amplitude profile of the impulse is
undefined, the unit-impulse is characterized by its unit area concentrated at t = 0 (in
general, whenever its argument becomes zero), called the strength of the impulse.
The unit-impulse is represented by a small triangle (pointing upward for a positive
impulse and pointing downward for a negative impulse), as shown in Fig. 2.1b. The
power or energy of the impulse signal is undefined.

The area enclosed by a function over some finite duration is easy to visualize.
For example, the distribution of mass along a line is defined by its density ρ(x), and
the mass between x = 0 and x = 1 is given by

∫ 1
0 ρ(x)dx. However, the symbol

δ(t) stands for a function, whose shape and amplitude is such that its integral at the
point t = 0 is unity. This is the limiting case of the density ρ(x), when unit mass
is concentrated at a single point x = 0. It is difficult to visualize such a function.
But, it is easy to visualize a function of arbitrarily brief but nonzero duration. For
example, the impulse can be considered, for practical purposes, as a sufficiently
narrow rectangular pulse of unit area. The width of the pulse Δt should be so short
that the variation of any ordinary function x(t), appearing in an expression involving
an impulse, is negligible in Δt seconds. Therefore, to understand any operation
involving the impulse, we start with a brief pulse, perform the operation, and take the
limiting form as the width of the pulse approaches zero. As only its area is specified,
it is possible to start with many functions of brief duration and apply the limiting
process. The only condition is that its area must be unity throughout the limiting
process. Some other functions, besides the rectangular pulse, those degenerate into
the unit-impulse signal in the limit, are shown in Fig. 2.5. For practical purposes,
any of these functions with a sufficiently short duration is adequate. The point is
that practical devices can produce a pulse of finite width only, whereas, in theory,
we use zero-width pulses for the sake of mathematical convenience.

The product of an ordinary function x(t), which is continuous at t = τ , and
δ(t − τ) is given as x(t)δ(t − τ) = x(τ)δ(t − τ), since the impulse has unit area
concentrated at t = τ and the value of x(t) at that point is x(τ). That is, the product
of an ordinary function with the unit-impulse is an impulse with its area or strength
equal to the value of the function at the location of the impulse. As the impulse is
defined by an integral, any expression involving an impulse has to be eventually
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integrated to have a numerical value. An expression like the product given above
implies that the integral of the two sides are equal. For example,

∫ ∞

−∞
et δ(t)dt = 1,

∫ ∞

−∞
et δ(t + 2)dt = e−2,

∫ 2

−2
et δ(−t)dt = 1,

∫ 4

2
et δ(t)dt = 0,

∫ 0+

0−
et δ(t)dt = 1,

∫ ∞

−∞
et−3δ(t − 3)dt = 1

In the fourth integral, the argument t of the impulse never becomes zero within the
limits of the integral.

2.1.2.1 The Impulse Representation of Signals

A major application of the impulse is to decompose an arbitrary signal x(t) into
scaled and shifted impulses, so that the representation and analysis of x(t) becomes
easier. In the well-known rectangular rule of numerical integration, an arbitrary
signal x(t) is approximated by a series of rectangles. Each rectangle is of fixed
width, say a, and height equal to a known value of x(t) in that interval. The area of
the rectangle is an approximation to that of x(t) in that interval. The sum of areas of
all such rectangles is an approximation of the area enclosed by the signal.

We can as well represent x(t) approximately, in each interval of width a, by
the area of the corresponding rectangle located at t = t0 multiplied by a unit area
rectangular pulse, δq(t−t0) of width a and height 1

a
, since the amplitude of the pulse

x(t0)aδq(t − t0) is x(t0). For example, x(t) can be represented by (3.1752)(2)δq(t)

in Fig. 2.4a, shown in dashdot line. The sum of a succession of all such rectangles
is an approximation to x(t). As the width a is made shorter, the approximation
becomes better. For example, x(t) is represented by (3.0269)(0.8)δq(t) in Fig. 2.4b
and (3.0017)(0.2)δq(t) in Fig. 2.4c. Eventually, as a → 0, the pulse degenerates
into impulse, and the representation becomes exact.

Consider the product of a signal with a shifted impulse x(t)δ(t −τ) = x(τ)δ(t −
τ). Integrating both sides with respect to τ , we get
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∫ ∞

−∞
x(t)δ(t − τ)dτ = x(t)

∫ ∞

−∞
δ(t − τ)dτ = x(t) =

∫ ∞

−∞
x(τ)δ(t − τ)dτ

The integrand x(τ)δ(t − τ)dτ , which is one of the constituent impulses of x(t), is
a shifted impulse δ(t − τ) located at t = τ with strength x(τ)dτ . The integration
operation, with respect to τ , sums all these impulses to form x(t). It should be
emphasized that the integral, in this instance, represents a sum of continuum of
impulses (not of evaluating any area). Therefore, the signal x(t) is represented
by the sum of scaled and shifted continuum of impulses with the strength of the
impulse at any t being x(t)dt . The unit-impulse is the basis function and x(t)dt is
its coefficient. As the area enclosed by the integrand is nonzero only at the point
t = τ , the integral is effective only at that point. By varying the value of t , we can
sift out all the values of x(t).

Let a quasi-impulse, δq(t), be defined by a rectangular pulse with its base of
width a, from t = 0 to t = a, and height 1

a
. Assume that the signal, x(t) =

e−1.2t (u(t) − u(t − 1.5)), is approximated by rectangles with width a and height
equal to the value of x(t) at the beginning of the corresponding rectangle. Figure 2.6
shows the approximation of x(t) by rectangular pulses of width a = 0.5. We break
up x(t) so that it is expressed as a sum of sections of width a = 0.5.

x(t) = x0(t) + x1(t) + x2(t)

= e−1.2t (u(t) − u(t − 0.5))

+ e−1.2t (u(t − 0.5) − u(t − 1))

+ e−1.2t (u(t − 1) − u(t − 1.5))

By replacing each section by a function that is constant with a value equal to that of
x(t) at the beginning of the section, we get

x(t) ≈ xa(t) + xb(t) + xc(t)

= e−1.2(0)(0.5)(u(t) − u(t − 0.5))

+ e−1.2(1)(0.5)(u(t − 0.5) − u(t − 1))

+ e−1.2(2)(0.5)(u(t − 1) − u(t − 1.5))

By multiplying and dividing by a = 0.5, we get

x(t) ≈ xa(t) + xb(t) + xc(t)

= e−1.2(0)(0.5)
(

u(t) − u(t − 0.5)

0.5

)
(0.5)

+ e−1.2(1)(0.5)
(

u(t − 0.5) − u(t − 1)

0.5

)
(0.5)
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Fig. 2.6 The approximation of a signal by a sum of scaled and shifted rectangular pulses: (a)
xa(t) = δq(t)(0.5), x0(t) = e−1.2t (u(t)−u(t −0.5)); (b) xb(t) = e−0.6δq(t −0.5)(0.5), x1(t) =
e−1.2t (u(t −0.5)−u(t −1)); (c) xc(t) = e−1.2δq(t −1)(0.5), x2(t) = e−1.2t (u(t −1)−u(t −1.5));
(d) x(t) = x0(t)+x1(t)+x2(t) = e−1.2t (u(t)−u(t−1.5)) ≈ δq(t)(0.5)+e−0.6δq(t−0.5)(0.5)+
e−1.2δq(t − 1)(0.5)

+ e−1.2(2)(0.5)
(

u(t − 1) − u(t − 1.5)

0.5

)
(0.5)

x(t) ≈ xa(t) + xb(t) + xc(t)

= δq(t)(0.5) + e−0.6δq(t − 0.5)(0.5) + e−1.2δq(t − 1)(0.5)

=
2∑

n=0

e−1.2(n)(0.5)δq(t − (n)(0.5))(0.5)

In general, we approximate an arbitrary x(t) as



2.1 Basic Signals 45

x(t) ≈
∞∑

n=−∞
x((n)(a))δq(t − (n)(a))(a),

which reverts to the exact representation of x(t)

x(t) =
∫ ∞

−∞
x(τ)δ(t − τ)dτ,

as a → 0 (a is replaced by the differential dτ and (n)(a) becomes the continuous
variable τ ).

2.1.2.2 The Unit-Impulse as the Derivative of the Unit-Step

A function, which is the derivative of the unit-step function, must have its integral
equal to zero for t < 0 and one for t > 0. Therefore, such a function must be
defined to have unit area at t = 0 and zero area elsewhere. Figure 2.7a shows the
quasi-impulse δq(t) with width 1 and height 1

1 = 1 (solid line), and Fig. 2.7b shows
its integral uq(t) (solid line), which is an approximation to the unit-step function. As
the width of δq(t) is reduced and its height correspondingly increased, as shown in
Fig. 2.7a (dashed line with width 0.5 and dotted line with width 0.2), δq(t) resembles
more like an impulse, and the corresponding integrals, shown in Fig. 2.7b (dashed
and dotted lines), become better approximations to the unit-step function. At any
stage in the limiting process, uq(t) remains the integral of δq(t), and δq(t) remains
the derivative (except at the corners) of uq(t) and is defined to be so even in the limit
(for the sake of mathematical convenience) as the width of δq(t) tends to zero. δq(t)

and uq(t) become, respectively, the unit-impulse and unit-step functions in the limit
and

du(t)

dt
= δ(t) and

∫ t

−∞
δ(τ )dτ = u(t)
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Fig. 2.7 (a) The quasi-impulse δq(t) with width 1 and height 1
1 = 1 (solid line), and with width

0.5 and height 1
0.5 = 2 (dashed line), and with width 0.2 and height 1

0.2 = 5 (dotted line), and (b)
their integrals uq(t), approaching the unit-step function as the width of the quasi-impulse tends to
zero
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For example, the voltage across a capacitor is proportional to the integral of the
current through it. Therefore, a unit-impulse current passing through a capacitor of
one Farad produces a unit-step voltage across the capacitor.

A signal x(t), with step discontinuities, for example, at t = t1 of height (x(t+1 )−
x(t−1 )) and at t = t2 of height (x(t+2 ) − x(t−2 )), can be expressed as

x(t) = xc(t) + (x(t+1 ) − x(t−1 ))u(t − t1) + (x(t+2 ) − x(t−2 ))u(t − t2),

where xc(t) is x(t) with the discontinuities removed and x(t+1 ) and x(t−1 ) are,
respectively, the right- and left-hand limits of x(t) at t = t1. The derivative of x(t)

is given by the generalized function theory as

dx(t)

dt
= dxc(t)

dt
+ (

x
(
t+1
)− x

(
t−1
))

δ(t − t1) + (
x
(
t+2
)− x

(
t−2
))

δ(t − t2),

where dxc(t)
dt

is the ordinary derivative of xc(t) at all t except at t = t1 and

t = t2. Note that dxc(t)
dt

may have step discontinuities. In the expression for
dx(t)
dt

, the impulse terms serve as indicators of step discontinuities in its integral,
that is, x(t). Therefore, the use of impulses in this manner prevents the loss of
step discontinuities in the integration operation, and we get back x(t) exactly by
integrating its derivative. That is,

x(t) = x(t0) +
∫ t

t0

dx(t)

dt
dt

For example, the derivative of the signal x(t), shown in Fig. 2.8a along with xc(t)

in dashed line,

x(t) = u(−t − 1) + e−t (u(t + 1) − u(t − 1)) + 2t (u(t − 1) − u(t − 2))

+ cos
(π

2
t
)

u(t − 2)

= xc(t) + 1.7183u(t + 1) + 1.6321u(t − 1) − 5u(t − 2),

is

dx(t)

dt
= 0 − e−t (u(t + 1) − u(t − 1)) + 2(u(t − 1) − u(t − 2))

−
(π

2

)
sin
(π

2
t
)

u(t − 2)

+ 1.7183δ(t + 1) + 1.6321δ(t − 1) − 5δ(t − 2),

shown in Fig. 2.8b. Note that 1/e ≈ 0.3679.
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Fig. 2.8 (a) Signal x(t) with step discontinuities and (b) its derivative

2.1.2.3 The Scaling Property of the Impulse

The area enclosed by a time-scaled pulse x(at) and that of its time-reversed version
x(−at) is equal to the area enclosed by x(t) divided by |a|. Therefore, the scaling
property of the impulse is given as

δ(at) = 1

|a|δ(t), a �= 0

With a = −1, δ(−t) = δ(t) implying that the impulse is an even-symmetric signal.
For example,

δ(2t+1) = δ

(
2

(
t + 1

2

))
= 1

2
δ

(
t + 1

2

)
and δ

(
1

2
t − 1

)
= δ

(
1

2
(t − 2)

)
= 2δ(t−2)

2.1.3 The Unit-Ramp Signal

The unit-ramp signal, shown in Fig. 2.1c, is defined as

r(t) =
{

t for t ≥ 0
0 for t < 0

The unit-ramp signal linearly increases, with unit slope, for positive values of its
argument, and its value is zero for negative values of its argument.

The unit-impulse, unit-step, and unit-ramp signals are closely related. The unit-
impulse signal δ(t) is equal to the derivative of the unit-step signal, du(t)

dt
, according

to the generalized function theory. The unit-step signal u(t) is equal to
∫ t

−∞ δ(τ )dτ .

The unit-step signal u(t) is equal to dr(t)
dt

, except at t = 0, where no unique
derivative exists. The unit-ramp signal r(t) is equal to

r(t) = tu(t) =
∫ t

−∞
u(τ)dτ
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2.1.4 Sinusoids

Sinusoidal representation of signals is indispensable in the analysis of signals and
systems for the following reasons. The steady-state waveforms, due to an input
sinusoid, in any part of a linear system is also a sinusoid of the same frequency
as that of the input differing only in its amplitude and phase. In addition, the
sum of any number of sinusoids of the same frequency is also a sinusoid of the
same frequency. The frequency of a sinusoid remains the same in its derivative
form also. Therefore, system models, such as differential equation and convolution,
reduce to algebraic equations for a sinusoidal input for linear systems. Further,
due to the orthogonal property, an arbitrary signal can be decomposed into a set
of sinusoids easily. In addition, this decomposition can be implemented faster, in
practice, using fast numerical algorithms resulting in finding the system output faster
than other methods. Physical systems also, such as a combination of an inductor and
a capacitor, produce an output of sinusoidal nature.

2.1.4.1 The Polar Form of Sinusoids

The polar form specifies a sinusoid, in terms of its amplitude and phase, as

x(t) = A cos(ωt + θ), −∞ < t < ∞

where A, ω, and θ are, respectively, the amplitude, the angular frequency, and the
phase. The amplitude A is the distance of either peak of the waveform from the
horizontal axis. Let the period of the sinusoid be T seconds. Then, as

cos(ω(t + T ) + θ) = cos(ωt + ωT + θ) = cos(ωt + θ) = cos(ωt + θ + 2π),

T = 2π
ω
. The cyclic frequency, denoted by f , of a sinusoid is the number of cycles

per second and is equal to the reciprocal of the period, f = 1
T

= ω
2π cycles per

second (Hz). Frequecy is the number of time the signal repeats itself in one unit
of time. The angular frequency, the number of radians per second, of a sinusoid is
2π times its cyclic frequency, that is, ω = 2πf radians per second. For example,
consider the sinusoid 3 cos(π

8 t + π
3 ), with A = 3. The angular frequency is ω = π

8
radians per second. The period is T = 2π

π
8

= 16 seconds. The cyclic frequency is

f = 1
T

= 1
16 Hz. The phase is θ = π

3 radians. The phase can also be expressed
in terms of seconds, as cos(ωt + θ) = cos(ω(t + θ

ω
)). The phase of π

3 radians
corresponds to 8

3 seconds. As it repeats a pattern over its period, the sinusoid remains
the same by a shift of an integral number of its period. A phase-shifted sine wave can
be expressed as a phase-shifted cosine wave, A sin(ωt + θ) = A cos(ωt + (θ − π

2 )).
The phase of the sinusoid
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sin

(
2π

16
t + π

3

)
= cos

(
2π

16
t +

(π

3
− π

2

))
= cos

(
2π

16
t − π

6

)

is −π
6 radians. A phase-shifted cosine wave can be expressed as a phase-shifted sine

wave, A cos(ωt + θ) = A sin(ωt + (θ + π
2 )).

2.1.4.2 The Rectangular Form of Sinusoids

An arbitrary sinusoid is neither even- nor odd-symmetric. The even component of
a sinusoid is the cosine waveform, and the odd component is the sine waveform.
That is, a sinusoid is a linear combination of cosine and sine waveforms of the same
frequency as that of the sinusoid. Expressing a sinusoid in terms of its cosine and
sine components is called its rectangular form and is given as

A cos(ωt + θ) = A cos(θ) cos(ωt) − A sin(θ) sin(ωt) = C cos(ωt) + D sin(ωt),

where C = A cos θ and D = −A sin θ . The inverse relation is A = √
C2 + D2 and

θ = cos−1(C
A

) = sin−1(−D
A

). For example,

cos

(
2π

16
t + π

3

)
= 1

2
cos

(
2π

16
t

)
−

√
3

2
sin

(
2π

16
t

)

3√
2
cos

(
2π

16
t

)
+ 3√

2
sin

(
2π

16
t

)
= 3 cos

(
2π

16
t − π

4

)

Figure 2.9a shows the continuous cosine waveform cos( 2π16 t). Figure 2.9b shows
the continuous sine waveform sin( 2π12 t). Cosine and sine waves are important special
cases of a sinusoid. The peak in (a) occurs at t = 0, and its phase is defined as zero
degrees. As sin( 2π12 t) = cos( 2π12 t − π

2 ), the peak occurs at t = 3 (the peak delayed
by one-quarter of a cycle). Figure 2.9c shows the continuous cosine waveform
cos( 2π16 t − π

3 ). With t = 8/3, the argument of the waveform becomes zero, and
its first peak closest to t = 0 occurs. Therefore, its phase shift is −π/3 radians.
Figure 2.9d shows the continuous sine waveform

sin

(
2π

12
t + π

6

)
= cos

(
2π

12
t + π

6
− π

2

)
= cos

(
2π

12
t − π

3

)

With t = 2, the argument of the sine waveform becomes π
2 and that of its equivalent

cosine waveform becomes zero. Therefore, its phase shift is −π/3 radians.



50 2 Continuous Signals

0 4 8 12

t

-1

0

1
x(

t)

(a)

0 3 6 9

t

-1

0

1

x(
t)

(b)

0 2.6667 8 12

t

-1

0

1

x(
t)

(c)

0 2 6 9

t

-1

0

1

x(
t)

(d)

Fig. 2.9 (a) cos( 2π16 t) ; (b) sin( 2π12 t); (c) cos( 2π16 t − π
3 ) ; (d) sin( 2π12 t + π

6 )

2.1.4.3 The Sum of Sinusoids of the Same Frequency

The sum of sinusoids of arbitrary amplitudes and phases but with the same
frequency is also a sinusoid of the same frequency. Let

x1(t) = A1 cos(ωt + θ1) and x2(t) = A2 cos(ωt + θ2)

Then, x(t) = x1(t) + x2(t) = A cos(ωt + θ), where

A =
√

A2
1 + A2

2 + 2A1A2 cos(θ1 − θ2)

θ = tan−1 A1 sin(θ1) + A2 sin(θ2)

A1 cos(θ1) + A2 cos(θ2)

Any number of sinusoids can be combined into a single sinusoid by repeatedly using
the formulas. Note that the formula for the rectangular form of the sinusoid is a
special case of the sum of two sinusoids, one sinusoid being the cosine and the
other being sine.

2.1.4.4 The Complex Sinusoids

The complex sinusoid is given as

x(t) = Aej(ωt+θ) = Aejθ ejωt , −∞ < t < ∞
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The term ejωt is the complex sinusoid with unit magnitude and zero phase. Its
complex (amplitude) coefficient is Aejθ . The amplitude and phase of the sinusoid is
represented by the single complex number Aejθ . By adding its complex conjugate,
Ae−j (ωt+θ), with itself and dividing by two, due to Euler’s identity, we get

x(t) = A

2

(
ej (ωt+θ) + e−j (ωt+θ)

)
= A cos(ωt + θ)

The use of two complex sinusoids to represent a single real sinusoid requires four
real quantities instead of two. This redundancy in terms of storage and operations
can be reduced by about a factor of 2 in practical implementation of the algorithms.

2.1.4.5 Exponentially Varying Amplitude Sinusoids

An exponentially varying amplitude sinusoid, Aeat cos(ωt + θ), is obtained by
multiplying a sinusoid,A cos(ωt+θ), with a real exponential, eat . The more familiar
constant amplitude sinusoid results when a = 0. If ω is equal to zero, then we get a
real exponential. Sinusoids, x(t) = e−0.1t cos( 2π8 t) and x(t) = e0.1t cos( 2π8 t), with
exponentially varying amplitudes are shown, respectively, in Figure 2.10a and b.

The complex exponential representation of a exponentially varying amplitude
sinusoid is given as

x(t) = A

2
eat
(
ej (ωt+θ) + e−j (ωt+θ)

)
= Aeat cos(ωt + θ)

Figure 2.11a and b shows, respectively, exponentially varying amplitude real and

complex exponentials, x(t) = e−0.1t and x(t) = e(−0.1+j (3 2π
16 ))t . The time constant,

which is the inverse of the coefficient associated with the independent variable t , is
10. The peak value is 1 at t = 0 in 2.11(a). At t = 10 (one time constant), its value
is 1/e ≈ 0.37. At t = 20 (two time constants), its value is (1/e)2 ≈ 0.135 and so
on.

A major advantage of the sinusoidal or complex exponential input functions is
that the particular solution of linear differential equations with constant coefficients
can be obtained by solving algebraic equations. Consider the circuit with a
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Fig. 2.10 (a) Exponentially decreasing amplitude cosine wave, x(t) = e−0.1t cos( 2π8 t); (b) expo-
nentially increasing amplitude cosine wave, x(t) = e0.1t cos( 2π8 t)



52 2 Continuous Signals

0 2 4 6 8 10 12

t

0

0.3679

1
x(

t)

(a)

e-0.1tu(t)

0 5 10 15

t

-1

0

1

x(
t)

(b)

real

imaginary

Fig. 2.11 (a) The damped continuous real exponential, x(t) = e−0.1t u(t); (b) the damped

continuous complex exponential, x(t) = e(−0.1+j (3 2π
16 ))t

resistance R in series with an inductance L. The differential equation characterizing
the circuit, with the input Eejωt , is

L
di(t)

dt
+ Ri(t) = Eejωt

The task is to find the current i(t) in the circuit. A function of the form i(t) = Iejωt

satisfies the differential equation. Substituting Iejωt for i(t), we get

(jωL + R)Iejωt = Eejωt

Solving for I , we get

I = E

R + jωL
= E

Z
,

where Z = R + jωL is called the impedance of the circuit.

2.2 Classification of Signals

Signals are classified into different types, and the representation and analysis of a
signal depend on its type.

2.2.1 Continuous Signals

A continuous signal x(t) is specified at every value of its independent variable t .
Figure 2.11a and b shows, respectively, the damped continuous real exponential,
x(t) = e−0.1t u(t), and three cycles of the damped complex exponential, x(t) =
e(−0.1+j (3 2π

16 ))t . As the value of the exponential is decreasing with time, it is called
a damped or decaying exponential, characterized by the negative constant, −0.1, in
its exponent. An exponential eat , where a is a positive constant, is an example of a
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growing exponential, as its value is increasing with time. We denote a continuous
signal, using the independent variable t , as x(t). We call this representation the
time-domain representation, although the independent variable is not time for some
signals. While most signals, in practical applications, are real-valued, complex-
valued signals are often used in analysis. A complex-valued or complex signal is
an ordered pair of real signals. The damped complex exponential signal, shown in
Fig. 2.11b, can be expressed, using Euler’s identity, in terms of damped cosine and
sine signals as

x(t) = e(−0.1+j (3 2π
16 ))t = e(−0.1t) cos

(
3
2π

16
t

)
+ je(−0.1t) sin

(
3
2π

16
t

)

The real and imaginary parts of x(t) are, respectively, e(−0.1t) cos(32π
16 t) (shown

by the solid line in Fig. 2.11b) and e(−0.1t) sin(32π
16 t) (shown by the dashed line in

Fig. 2.11b).

2.2.2 Periodic and Aperiodic Signals

The smallest positive number T > 0 satisfying the condition x(t+T ) = x(t), for all
t , is the fundamental period of the continuous periodic signal x(t). The reciprocal
of the fundamental period is the fundamental cyclic frequency, f = 1

T
Hz (cycles

per second). The fundamental angular frequency is ω = 2πf = 2π
T

radians per
second. Over the interval −∞ < t < ∞, a periodic signal repeats its values over
any interval equal to its period, at intervals of its period. Cosine and sine waves are
typical examples of a periodic signal. A signal with constant value (DC) is periodic
with any period. In Fourier analysis, it is considered as A cos(ωt) or Aejωt with the
frequency ω equal to zero (period equal to ∞). When the period of a periodic signal
approaches infinity, it degenerates into an aperiodic signal. The exponential signal,
shown in Fig. 2.10a, is an aperiodic signal.

It is easier to decompose an arbitrary signal in terms of some periodic signals,
such as complex exponentials, and the input-output relationship of a LTI system
becomes a multiplication operation for this type of input signals. For these reasons,
most of the analysis of practical signals, which are mostly aperiodic having arbitrary
amplitude profile, is carried out using periodic basic signals.

2.2.3 Energy and Power Signals

The energy of a signal x(t) is expressed as the integral of the squared magnitude of
its values as
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E =
∫ ∞

−∞
|x(t)|2dt

Aperiodic signals with finite energy are called energy signals. The energy of x(t) =
3e−t , t ≥ 0 is

E =
∫ ∞

0
|3e−t |2dt = 9

2

If the energy of a signal is infinite, then it may be possible to characterize it in
terms of its average power. The average power is defined as

P = lim
T →∞

1

T

∫ T
2

− T
2

|x(t)|2dt

For periodic signals, the average power can be computed over one period as

P = 1

T

∫ T
2

− T
2

|x(t)|2dt,

where T is the period. Signals, periodic or aperiodic, with finite average power are
called power signals. Cosine and sine waveforms are typical examples of power
signals. The average power of the cosine wave 3 cos(π

8 t) is

P = 1

16

∫ 8

−8
|3 cos

(π

8
t
)

|2dt = 9

32

∫ 8

−8

(
1 + cos

(
2
π

8
t
))

dt = 9

2

A signal is an energy signal or a power signal, since the average power of an energy
signal is zero while that of a power signal is finite. Signals with infinite power and
infinite energy, such as x(t) = t, t ≥ 0, are neither power signals nor energy
signals. The measures of signal power and energy are indicators of the signal size,
since the actual energy or power depends on the load.

2.2.4 Even- and Odd-Symmetric Signals

The analysis of a signal can be simplified by exploiting its symmetry. A signal x(t)

is even-symmetric, if x(−t) = x(t) for all t . The signal is symmetrical about the
vertical axis at the origin. The cosine waveform is an example of an even-symmetric
signal. A signal x(t) is odd-symmetric, if x(−t) = −x(t) for all t . The signal is
asymmetrical about the vertical axis at the origin. For an odd-symmetric signal,
x(0) = 0. The sine waveform is an example of an odd-symmetric signal.
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The sum (x(t) + y(t)) of two odd-symmetric signals, x(t) and y(t), is an odd-
symmetric signal, since x(−t) + y(−t) = −x(t) − y(t) = −(x(t) + y(t)). For
example, the sum of two sine signals is an odd-symmetric signal. The sum (x(t) +
y(t)) of two even-symmetric signals, x(t) and y(t), is an even-symmetric signal,
since x(−t)+y(−t) = (x(t)+y(t)). For example, the sum of two cosine signals is
an even-symmetric signal. The sum (x(t) + y(t)) of an odd-symmetric signal x(t)

and an even-symmetric signal y(t) is neither even-symmetric nor odd-symmetric,
since x(−t) + y(−t) = −x(t) + y(t) = −(x(t) − y(t)). For example, the sum
of cosine and sine signals with nonzero amplitudes is neither even-symmetric nor
odd-symmetric.

Since x(t)y(t) = (−x(−t))(−y(−t)) = x(−t)y(−t), the product of two odd-
symmetric or two even-symmetric signals is an even-symmetric signal. The product
z(t) = x(t)y(t) of an odd-symmetric signal y(t) and an even-symmetric signal x(t)

is an odd-symmetric signal, since z(−t) = x(−t)y(−t) = x(t)(−y(t)) = −z(t).
An arbitrary signal x(t) can be decomposed in terms of its even-symmetric and

odd-symmetric components, xe(t) and xo(t), respectively. That is, x(t) = xe(t) +
xo(t). Replacing t by −t , we get x(−t) = xe(−t)+xo(−t) = xe(t)−xo(t). Solving
for xe(t) and xo(t), we get

xe(t) = x(t) + x(−t)

2
and xo(t) = x(t) − x(−t)

2

As the integral of an odd-symmetric signal x0(t), over symmetric limits, is zero,

∫ t0

−t0

x0(t) dt = 0

For an even-symmetric signal

∫ t0

−t0

x(t) dt =
∫ t0

−t0

xe(t) dt = 2
∫ t0

0
xe(t) dt

For example, the even-symmetric component of x(t) = ej ( 2π16 t+ π
3 ) is

xe(t) = x(t) + x(−t)

2
= ej ( π

3 ) e
j ( 2π16 t) + ej ( 2π16 (−t))

2
= ej ( π

3 ) cos

(
2π

16
t

)

The odd-symmetric component is

xo(t) = x(t) − x(−t)

2
= ej ( π

3 ) e
j ( 2π16 t) − ej ( 2π16 (−t))

2
= jej ( π

3 ) sin

(
2π

16
t

)

Note that x(t) = xe(t) + xo(t). The complex exponential, its even component, and
its odd component are shown, respectively, in Fig. 2.12a, b, and c.
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Fig. 2.12 (a) The complex exponential x(t) = ej ( 2π16 t+ π
3 ); (b) its even component xe(t) =

ej ( π
3 ) cos( 2π16 t); (c) its odd component xo(t) = jej ( π

3 ) sin( 2π16 t)

2.2.5 Causal and Noncausal Signals

Most signals, in practice, occur at some finite time instant, usually chosen as t = 0,
and are considered identically zero before this instant. These signals, with x(t) =
0 for t < 0, are called causal signals (e.g., the exponential shown in Fig. 2.11a).
Signals, with x(t) �= 0 for t < 0, are called noncausal signals (e.g., the complex
exponential shown in Fig. 2.10b).

2.3 Signal Operations

In addition to the arithmetic operations, time shifting, time reversal, and time scaling
operations are also commonly used in the analysis of continuous signals. The three
operations described in this section are with respect to the independent variable, t .

2.3.1 Time Shifting

A signal x(t) is time shifted by T seconds by replacing t by t −T . The value of x(t)

at t = t0 occurs at t = t0 + T in x(t − T ). Graphically, it amounts to shifting the
plot of the function forward (T positive) or backward by T . The rectangular pulse
x(t) = u(t − 1) − u(t − 3), shown in Fig. 2.13 by a solid line, is a combination of
two delayed unit-step signals. The right shifted pulse x(t −1) = u(t −2)−u(t −4),
shown in Fig. 2.13 by a dashed line, is x(t) shifted by 1 s to the right (delayed by 1
s, as the values of x(t) occur 1 s late). For example, the first nonzero value occurs
at t = 2 as u(2 − 2) − u(2 − 4) = 1. That is, the value of x(t) at t0 occurs in
the shifted pulse 1 s later at t0 + 1. The pulse x(t + 1.5), shown in Fig. 2.13 by a
dotted line, is x(t) shifted by 1.5 s to the left (advanced by 1.5 s, as the values of
x(t) occur 1.5 s early). For example, the first nonzero value occurs at t = −0.5 as
u(−0.5 + 0.5) − u(−0.5 − 1.5) = 1. That is, the value of x(t) at t0 occurs in the
shifted pulse 1.5 s earlier at t0 − 1.5.
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Fig. 2.13 The rectangular pulse, x(t) = u(t − 1) − u(t − 3); the right shifted pulse, x(t − 1); and
the left shifted pulse, x(t + 1.5)

2.3.2 Time Reversal

Replacing the independent variable t in x(t) by −t results in the time reversed or
folded signal x(−t). The value of x(t) at t = t0 occurs at t = −t0 in x(−t). A
signal and its time reversed version are mirror images of each other. The signal
x(t) = r(t + 1) − r(t − 1), shown in Fig. 2.14 by a solid line, is a combination of
two shifted unit-ramp signals. Consider the folded and shifted signal x(−t − 1) =
x(−(t + 1)) = r(−t) − r(−t − 2), shown in Fig. 2.14 by a dashed line. This signal
can be formed by first folding x(t) to get x(−t) and then shifting it to the left
by 1 s (t is replaced by (t + 1)). This signal can also be formed by first shifting
x(t) to the right by 1 s to get x(t − 1) and then folding it about the vertical axis
at the origin (t is replaced by −t). The value of the signal x(t) at t0 occurs in
the folded and shifted signal at −t0 − 1. Consider the folded and shifted signal
x(−t + 3) = x(−(t − 3)) = r(−t + 4) − r(−t + 2), shown in Fig. 2.14 by a dotted
line. This signal can be formed by first folding x(t) to get x(−t) and then shifting it
to the right by 3 s (t is replaced by (t − 3)). This signal can also be formed by first
shifting x(t) to the left by 3 s to get x(t + 3) and then folding it about the vertical
axis at the origin (t is replaced by −t). The value of x(t) at t0 occurs in the folded
and shifted signal at −t0 + 3.

-2 -1 0 1 2 3 4

t

0

1

2

x(
t) x(t)x(-t-1) x(-t+3)

Fig. 2.14 The signal, x(t) = r(t + 1)− r(t − 1); the shifted and folded signal, x(−t − 1); and the
shifted and folded signal, x(−t + 3)



58 2 Continuous Signals

2.3.3 Time Scaling

Replacing the independent variable t in x(t) by at , (a �= 0), results in the time scaled
signal x(at). With |a| > 1, we get a time compressed version of x(t). With |a| < 1,
we get a time expanded version. The value of x(t) at t = t0 occurs at t = t0

a
in

x(at). The signal x(t) = cos(π
8 t), shown in Fig. 2.15 by a solid line, completes two

cycles during 32 s. The time compressed version with a = 2, x(2t) = cos(π
8 (2t)),

shown in Fig. 2.15 by a dashed line, completes four cycles during 32 s. The value of
the signal x(t) at t occurs at t

2 in x(2t). For example, the negative peak at t = 8 in
x(t) occurs at t = 4 in x(2t). The time expanded version with a = 0.5, x(0.5t) =
cos(π

8 (0.5t)), shown in Fig. 2.15 by a dotted line, completes one cycle during 32 s.
The value of the signal in x(t) at t occurs at t

0.5 in x(0.5t). For example, the negative
peak at t = 8 in x(t) occurs at t = 16 in x(0.5t).

In general, the three operations described on a signal x(t) can be expressed as
y(t) = x(at − b). The signal y(t) can be generated by replacing t by (at − b).
However, it is instructive to consider it as the result of a sequence of two steps: (i)
first shifting the signal x(t) by b to get x(t − b) and then (ii) time scaling (replace t

by at) the shifted signal by a to get x(at − b). An alternate sequence of two steps
is to (i) first time scale the signal x(t) by a to get x(at) and then (ii) shift (replace
t by t − b

a
) the time scaled signal by b

a
to get x(a(t − b

a
)) = x(at − b). Note that

time reversal operation is a part of the time scaling operation with a negative.
Let x(t) = cos(π

8 t + π
4 ), shown in Fig. 2.16 by a solid line. It is required to find

x(−2t +4). The shifted signal is x(t +4) = cos(π
8 (t +4)+ π

4 ), shown by a thin line.
Now scaling this signal by−2 yields the signal x(−2t+4) = cos(π

8 (−2t+4)+π
4 ) =

cos( 2π8 t − 3π
4 ), shown in Fig. 2.16 by a dashed line. The value of the signal x(t) at

-16 -12 -8 -4 0 4 8 12 16

t

-1

0

1

x(
t)

x(t) x(2t) x(0.5t)

Fig. 2.15 The cosine wave, x(t) = cos( π
8 t), the compressed version x(2t), and the expanded

version x(0.5t)
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x(
t)

x(t) x(-2t+4)
x(t+4)

Fig. 2.16 The sinusoid x(t) = cos( π
8 t + π

4 ) and x(−2t + 4)
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Table 2.1 Basic signals Constant x(t) = c

Unit-impulse x(t) = δ(t)

Unit-step x(t) = u(t)

Unit-ramp x(t) = tu(t)

Real exponential x(t) = eat

Real sinusoid x(t) = A cos(ωt + θ)

Damped real sinusoid x(t) = Aeat cos(ωt + θ)

Complex exponential x(t) = Aej(ωt+θ)

Damped complex exponential x(t) = Aeat ej (ωt+θ)

t0 occurs at −t0+4
2 in x(−2t + 4). We could have done the time scaling operation

by −2 first to obtain x(−2t) = cos(π
8 (−2t) + π

4 ). Shifting this signal by 4
−2 = −2

(replace t by t − 2), we get x(−2t + 4) = cos(π
8 (−2t + 4)+ π

4 ). The period of x(t)

is 16 and that of its compressed version is 8.
Table 2.1 shows a list of basic signals.

2.4 Summary

• In this chapter, continuous signal classifications, basic signals, and signal
operations have been presented.

• The representation and analysis of a signal depends on its type.
• Signals have to decompose in terms of some well-defined basic signals, such

as the impulse and sinusoid, for compact representation and easier processing.
Systems can be characterized by their responses to the basic signals, impulse,
unit-step, ramp, and sinusoids.

• The unit-step signal has a value of one for positive values of its argument t , and
its value is zero otherwise.

• The impulse function is called a generalized function, since it is defined by the
result of its operation (integration) on an ordinary function.

• The unit-ramp signal linearly increases, with unit slope, for positive values of its
argument and its value is zero for negative values of its argument.

• A general sinusoidal waveform is a linear combination of trigonometric sine and
cosine waveforms or shifted sine and cosine functions.

• While the sinusoidal waveform is generated by practical systems, its mathemati-
cally equivalent form, called the complex sinusoid,

v(t) = V ej(ωt+θ) = V ejθ ejωt , −∞ < t < ∞

is found to be indispensable for analysis due to its compact form and ease of
manipulation of the exponential function.
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• Another commonly encountered signal in signal and systems is the real causal
exponential signal.

• In addition to the arithmetic operations, time shifting, time reversal, and time
scaling operations are also commonly used in the analysis of continuous signals.

Exercises

2.1 Is x(t) an energy signal, a power signal, or neither? If it is an energy signal,
find its energy. If it is a power signal, find its average power.

2.1.1 x(t) = 3, −1 < t < 1 and x(t) = 0 otherwise.
2.1.2 x(t) = 2t, 0 < t < 1 and x(t) = 0 otherwise.
2.1.3 x(t) = 4e−0.2t u(t).
2.1.4 x(t) = et .
2.1.5 x(t) = Cej( 2πt

T
).

2.1.6 x(t) = 2 cos(πt
4 + π

3 ).
2.1.7 x(t) = u(t).
2.1.8 x(t) = t .

* 2.1.9 x(t) = 21
t
u(t − 1).

2.1.10 x(t) = 3ej ( 2πt
6 ).

2.1.11 x(t) = 3.
2.1.12 x(t) = 3 sin(πt

4 + π
3 ).

2.2 Is x(t) even-symmetric, odd-symmetric, or neither? List the values of x(t) at
t = −3,−2,−1, 0, 1, 2, 3.

2.2.1 x(t) = 3 cos( 2π6 t + π
6 ).

2.2.2 x(t) = 2 sin( 2π6 t − π
3 ).

2.2.3 x(t) = 4 cos( 2π6 t).
2.2.4 x(t) = 5.
2.2.5 x(t) = −2 sin( 2π6 t).
2.2.6 x(t) = t .

2.2.7 x(t) = sin( π
3 t)

t
.

2.2.8 x(t) = sin2( π
3 t)

t
.

2.2.9 x(t) = e−t .

2.3 Find the even and odd components of x(t). Verify that the integral of the odd
component is zero. Verify that the integral of the even component and that of x(t)

are equal.

2.3.1 x(t) = 2, −1 < t < 1 and x(t) = 0 otherwise.
2.3.2 x(t) = 3, −1 < t < 2 and x(t) = 0 otherwise.
2.3.3 x(t) = 2t, −1 < t < 1 and x(t) = 0 otherwise.
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* 2.3.4 x(t) = 3t, 0 < t < 1 and x(t) = 0 otherwise.
2.3.5 x(t) = 2 cos( 2π6 t − π

3 ).
2.3.6 x(t) = e−0.2t u(t).
2.3.7 x(t) = u(t).
2.3.8 x(t) = ej ( 2π6 t).
2.3.9 x(t) = t u(t).
2.3.10 x(t) = sin( 2π6 t).

2.4 Evaluate the integral.

2.4.1
∫ 0
−∞ u(3t + 1)dt .

2.4.2
∫ −2
−∞ u( 13 t + 2)dt .

2.4.3
∫ 5
−∞ u( 12 t − 4)dt .

* 2.4.4
∫∞
−11 u(− 1

2 t − 4)dt .

2.5 Assume that the impulse is approximated by a rectangular pulse, centered at t =
0, of width 2a and height 1

2a . Using this quasi-impulse, the signal x(t) is sampled.
What are the sample values of x(t) at t = 0 with a = 1, a = 0.1, a = 0.01,
a = 0.001, and a = 0.

2.5.1 x(t) = 4e−3t .
2.5.2 x(t) = 2 cos(t).

* 2.5.3 x(t) = 3 sin(t − π
6 ).

2.5.4 x(t) = cos(t + π
3 ).

2.5.5 x(t) = sin(t + π
4 ).

2.6 Evaluate the integral.

2.6.1
∫∞
−1 δ(t)etdt .

2.6.2
∫∞
0 δ(t + 1)etdt .

* 2.6.3
∫∞
0 δ(t − 2)etdt .

2.6.4
∫∞
−∞ δ(t + 1)etdt .

2.6.5
∫∞
−∞ δ(t + 1)etu(t)dt .

2.6.6
∫ 5
1 δ(t + 1)etdt .

2.6.7
∫ −1
−4 δ(t + 2)etdt .

2.6.8
∫∞
0 δ(t − 2)e(t−2)dt .

2.7 A quasi-impulse, δq(t), is defined by a rectangular pulse with its base of width
a, from t = 0 to t = a, and height 1

a
. Assume that the signal x(t) is approximated

by a series of rectangles with the height of each rectangle equal to the value of x(t)

at the beginning of the corresponding rectangle and width a. Express the signal x(t)

in terms of the quasi-impulse with a = 1 and a = 0.5.

2.7.1 x(t) = et , 0 ≤ t ≤ 5 and x(t) = 0 otherwise.
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* 2.7.2 x(t) = cos(π
6 t), 0 ≤ t ≤ 4 and x(t) = 0 otherwise.

2.7.3 x(t) = (t + 3), 0 ≤ t ≤ 3 and x(t) = 0 otherwise.

2.8 Find the derivative of the signal.

2.8.1 cos(πt)u(t).
2.8.2 sin(πt)u(t).

* 2.8.3 2e−3t u(t).

2.9 Evaluate the integral.

2.9.1
∫∞
−∞ δ(3t + 1)dt .

2.9.2
∫∞
−∞ δ( 13 t + 2)dt .

2.9.3
∫ 3
−∞ δ( 12 t − 2)dt .

* 2.9.4
∫ 4
−∞ δ(− 1

3 t + 2)dt .

2.9.5
∫ 4
−∞ δ(− 1

3 t − 2)dt .

2.10 Find the rectangular form of the sinusoid. Find the value of t > 0 where the
first positive peak of the sinusoid occurs. Find the values of t at which the next two
consecutive peaks, both negative and positive, occur.

2.10.1 x(t) = −3 cos( 2π8 t − π
3 ).

2.10.2 x(t) = 2 sin( 2π6 t + π
6 ).

* 2.10.3 x(t) = −5 sin(2πt + π
4 ).

2.10.4 x(t) = 2 cos(2πt + π
3 ).

2.10.5 x(t) = 4 cos( 2π5 t − 13π
6 ).

2.11 Find the polar form of the sinusoid. Find the values of t > 0 of the first three
zeros of the sinusoid.

2.11.1 x(t) = −√
3 cos( 2π6 t) − sin( 2π6 t).

2.11.2 x(t) = √
2 cos( 2π6 t) − √

2 sin( 2π6 t).
2.11.3 x(t) = −2 cos( 2π6 t) + 2

√
3 sin( 2π6 t).

* 2.11.4 x(t) = cos( 2π6 t) + sin( 2π6 t).
2.11.5 x(t) = 3 cos( 2π6 t) − √

3 sin( 2π6 t).
2.11.6 x(t) = −2 sin( 2π6 t).

2.12 Given the sinusoids x1(t) = A1 cos(ωt + θ1) and x2(t) = A2 cos(ωt + θ2),
find the sinusoid x(t) = x1(t) − x2(t) = A cos(ωt + θ). First add a phase of π or
−π to the sinusoid x2(t) and then use the summation formulas given in the book.
Find the sample values of the sinusoids x1(t) and x2(t) at t = 0, 1, 2 and verify that
the sample values of x1(t) − x2(t) are the same as those of x(t).

2.12.1 x1(t) = −2 cos( 2π6 t − π
3 ), x2(t) = 3 sin( 2π6 t + π

3 ).
2.12.2 x1(t) = sin( 2π6 t + π

4 ), x2(t) = cos( 2π6 t + 5π
6 ).
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* 2.12.3 x1(t) = 3 cos( 2π6 t + π
3 ), x2(t) = 4 cos( 2π6 t + π

4 ).
2.12.4 x1(t) = 2 cos( 2π6 t + π

6 ), x2(t) = 5 cos( 2π6 t + π
3 ).

2.13 Give the sample values of the exponentially varying amplitude sinusoid for
t = −1, 0, 1.

2.13.1 x(t) = e−t sin( 2π6 t + π
6 ).

2.13.2 x(t) = e2t cos( 2π6 t − π
3 ).

2.13.3 x(t) = e−2t cos(πt).
2.13.4 x(t) = e2t sin( 2π6 t).

2.14 The sinusoid x(t) and the value k are specified. Find the value of t > 0 where
the first positive peak of the sinusoid x(t) occur. From the sinusoid x(t + k), verify
that its first positive peak, after t > 0, occurs as expected from the value of k.

2.14.1 x(t) = 2 cos( 2π6 t − π
3 ), k = 2.

* 2.14.2 x(t) = sin( 2π6 t + π
6 ), k = −1.

2.14.3 x(t) = sin( 2π6 t − π
4 ), k = 15.

2.14.4 x(t) = cos( 2π6 t + 5π
6 ), k = 12.

2.14.5 x(t) = sin( 2π6 t), k = 1.

2.15 The sinusoid x(t) and the value k are specified. Find the value of t > 0 where
the first positive peaks of the sinusoids x(t) and x(−t + k) occur.

2.15.1 x(t) = 3 sin( 2π6 t + π
6 ), k = −1.

* 2.15.2 x(t) = 2 cos( 2π6 t − π
4 ), k = 2.

2.15.3 x(t) = sin( 2π6 t − π
3 ), k = −3.

2.15.4 x(t) = sin( 2π6 t + π
3 ), k = −12.

2.15.5 x(t) = cos( 2π6 t + π
6 ), k = 4.

2.16 The sinusoid x(t) and the values of a and k are specified. Find the value of
t > 0 where the first positive peaks of the sinusoids x(t) and x(at + k) occur.

2.16.1 x(t) = cos( 2π8 t + π
3 ), a = 2. k = 1.

2.16.2 x(t) = sin( 2π8 t + π
6 ), a = − 1

3 . k = −2.
2.16.3 x(t) = cos( 2π8 t − π

4 ), a = 3
2 . k = −1.

* 2.16.4 x(t) = sin( 2π8 t − π
3 ), a = − 2

3 . k = 2.
2.16.5 x(t) = cos( 2π8 t), a = 3. k = 1.

2.17 The waveform x(t) and the values k and a are specified. List the values at
t = −3,−2,−1, 0, 1, 2, 3 of the waveforms x(t), x(t + k), and x(at + k). Assume
that the value of the function is its right-hand limit at any discontinuity.

2.17.1 x(t) = e−0.1t . a = 2, k = −1.
2.17.2 x(t) = e−0.2t . a = 1

2 , k = 2.
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2.17.3 x(t) = e1.05t . a = 3
2 , k = 2.

2.17.4 x(t) = e1.2t . a = 1
3 , k = −3.

* 2.17.5 x(t) = −2 sin( 2π6 t + π
3 )u(t). a = 2, k = 3.

2.17.6 x(t) = −2 sin( 2π6 t + π
6 )u(t). a = 1

2 , k = −1.
2.17.7 x(t) = e−0.3t cos( 2π6 t + π

4 )u(t). a = −2, k = 1.
2.17.8 x(t) = e−0.4t cos( 2π6 t − π

6 )u(t). a = 1
3 , k = 3.



Chapter 3
Time-Domain Analysis of Discrete
Systems

A system carries out some task in response to an input signal or produces an output
signal that is an altered version of the input signal. For example, when we switch
the power on to an electrical motor, it produces mechanical power. A filter produces
an output signal in which the various frequency components of the input signal
are altered in a predefined way. A system is realized using physical components
(hardware realization) or using a computer program (software realization) or a
combination of both. In order to analyze a system, a mathematical model of the
system has to be derived using the laws governing the behavior of its components
and their interconnection. It is usually not possible to develop an accurate model of a
system. Therefore, a model, with minimum mathematical complexity, is developed
so that it is a sufficiently accurate representation of the actual system. Although
systems can have multiple inputs and multiple outputs, we consider single input and
single output systems only, for simplicity. For the reason that the frequency-domain
methods, described in later chapters, are easier for the analysis of higher-order
systems, only first-order systems are considered in this chapter.

The difference equation model of discrete systems is derived in Sect. 3.1. In
Sect. 3.2, the various classifications of systems are described. The convolution-
summation model of discrete systems is developed in Sect. 3.3. In Sect. 3.4, the
stability condition of discrete systems is derived in terms of their impulse response.
In Sect. 3.5, the basic components used in the implementation of discrete systems,
implementation of a specific system, and the decomposition of higher-order systems
are presented.

3.1 Difference Equation Model

The resistor-capacitor (RC) circuit, shown in Fig. 3.1, is a lowpass filter, as the
reactance of the capacitor is smaller at higher frequencies and larger at lower
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Fig. 3.1 An RC filter circuit

frequencies. Therefore, the output voltage across the capacitor y(t) is a filtered
version of the input x(t). The relationship between the current through the capacitor
and the voltage across it is i(t) = C

dy(t)
dt

. Then, due to Kirchhoff’s voltage law, we
get the linear differential equation (an equation that is a linear combination of the
derivatives of functions) model of the circuit

RC
dy(t)

dt
+ y(t) = x(t),

where R is in ohms and C is in farads. This model of the filter circuit can
be approximated by a difference equation (an equation that contains differences
of functions) by approximating the differential in the differential equation by a
difference. One of the ways of this approximation is by replacing the term dy(t)

dt
by

y(nTs)−y((n−1)Ts)
Ts

, where Ts is the sampling interval. The continuous variables x(t)

and y(t) become x(nTs) and y(nTs), respectively. As usual, the sampling interval
Ts in nTs is suppressed, and we get the difference equation as

RC
y(n) − y(n − 1)

Ts

+ y(n) = x(n)

Let b1 = Ts

Ts+RC
and a0 = − RC

Ts+RC
. Then, we get the difference equation

characterizing the circuit as

y(n) = b1x(n) − a0y(n − 1) (3.1)

Let us assume that the input voltage is applied to the circuit at n = 0. Then, the
output of the circuit at n = 0 is given by

y(0) = b1x(0) − a0y(0 − 1)

The voltage y(−1) across the capacitor at n = −1, called the initial condition of the
circuit, is required to find the output. The number of initial conditions required to
find the output indicates the number of independent storage devices in the system.
This number is also the order of the system. As only one value of initial condition is
required, the model of the RC circuit is a first-order difference equation. Given the
initial condition and the input, using this model, we can approximate the response
of the circuit.
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3.1.1 System Response

The response of a linear system is due to two independent causes, the input and the
initial condition of the system at the time the input is applied. The response due to
the initial condition alone is called the zero-input response, as the input is assumed
to be zero. The response due to the input alone is called the zero-state response, as
the initial condition or the state of the system is assumed to be zero. The complete
response of a linear system is the sum of the zero-input and zero-state responses.

3.1.1.1 Zero-State Response

The difference equation characterizing a system has to be solved to get the system
response. One way of solving a difference equation is by iteration. With the given
initial condition y(−1) and the inputs x(0) and x(−1), we can find the output y(0)
of a first-order difference equation. Then, in the next iteration, using y(0), x(1),
and x(0), we can compute y(1). We repeat this process to get the desired number of
outputs. Note that this method is suitable for programming in a digital computer. We
can also deduce the closed-form solution by looking at the pattern of the expressions
of the first few iterations. Let us solve Eq. (3.1) by iteration. Assume that the initial
condition is zero, and the input signal is the unit-step, u(n).

y(0) = b1x(0) + (−a0)y(−1) = b1

y(1) = b1x(1) + (−a0)y(0) = b1(1 + (−a0))

...

y(n) = b1(1 + (−a0) + (−a0)
2 + · · · + (−a0)

n)

= b1

(
1 − (−a0)

(n+1)

1 − (−a0)

)
, (−a0) �= 1, n = 0, 1, 2, . . .

3.1.1.2 Zero-Input Response

Assume that the initial condition is y(−1) = 3. Since x(n) = 0 for all n, Eq. (3.1)
reduces to y(n) = (−a0)y(n − 1), y(−1) = 3. Therefore,

y(0) = 3(−a0), y(1) = 3(−a0)
2, · · · , y(n) = 3(−a0)

(n+1)
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3.1.1.3 Complete Response

The complete response of the system is the sum of the zero-input and zero-state
responses.

y(n) =

zero-state︷ ︸︸ ︷
b1

(
1 − (−a0)

(n+1)

1 − (−a0)

)
+

zero-input︷ ︸︸ ︷
3(−a0)

n+1, n = 0, 1, 2, . . .

y(n) =

steady-state︷ ︸︸ ︷
b1

(
1

1 − (−a0)

)
+

transient︷ ︸︸ ︷
b1

(
−(−a0)

(n+1)

1 − (−a0)

)
+ 3(−a0)

(n+1)

3.1.1.4 Transient and Steady-State Responses

The transient response of the system is b1

(−(−a0)
(n+1)

1−(−a0)

)
+3(−a0)

(n+1). The steady-

state response of the system, b1

(
1

1−(−a0)

)
, is the response of the system after

the transient response has decayed. The transient response of a stable system
always decays with time. The form of the transient response depends solely on the
characteristics of the system while that of the steady-state response solely depends
on the input signal.

Figure 3.2 shows the various components of the response of the first-order system
governed by the difference equation

y(n) = 0.1x(n) + 0.9y(n − 1)
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n

0.5559
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y(
n)
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Fig. 3.2 The response of a first-order system for unit-step input signal: (a) zero-input response;
(b) zero-state response; (c) complete response; (d) transient response due to input; (e) transient
response; (f) steady-state response
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with the initial condition y(−1) = 3 and the input x(n) = u(n), the unit-step signal.
The zero-input response, shown in Fig. 3.2a, is 3(0.9)(n+1)u(n). The first ten values
are

{2.7000, 2.4300, 2.1870, 1.9683, 1.7715, 1.5943, 1.4349, 1.2914, 1.1623, 1.0460}

The zero-state response, shown in Fig. 3.2b, is (1 − (0.9)(n+1))u(n). The first ten
values are

{0.1000, 0.1900, 0.2710, 0.3439, 0.4095, 0.4686, 0.5217, 0.5695, 0.6126, 0.6513}

The sum of the zero-input and zero-state responses is the complete response, shown
in Fig. 3.2c, is 3(0.9)(n+1) + 1 − (0.9)(n+1) = (1 + 2(0.9)(n+1))u(n). The first ten
values are

{2.8000, 2.6200, 2.4580, 2.3122, 2.1810, 2.0629, 1.9566, 1.8609, 1.7748, 1.6974}

The transient response due to input alone, shown in Fig. 3.2d, is −(0.9)(n+1)u(n).
The total transient response, shown in Fig. 3.2e, is 3(0.9)(n+1) − (0.9)(n+1) =
2(0.9)(n+1)u(n). The steady-state response, shown in Fig. 3.2f, is u(n). The sum
of the transient and steady-state responses also forms the complete response.

3.1.1.5 Coding and Simulation

Simulation is the study of the behavior of a system without actually building
it. Simulations are easier to achieve by using functional blocks provided by the
software. Because simulation diagrams are graphic display of the models, it is easier
to read. In writing a coding program, we have to write our own codes, in addition
to those built-in in the software. While coding gives a detailed understanding of
the system response, it requires more effort. It is better to use both coding and
simulation in the analysis of systems. The results by both the methods for the same
system can be compared, and any bug in either of the methods can be found and
rectified. Further, we obtain two viewpoints from the two methods, which makes our
understanding of system analysis better. Simulations allow the analysis of nonlinear
systems also. In addition, initial conditions can be specified. It is easier to vary
parameters and input of the system and find the variations in the response.

Figure 3.3 shows the block diagram of the simulation model of the first-order
difference equation. The block with a triangle symbol is the gain block, where you
can set any gain. The square block with z−1 written in it is the unit-delay block,
which delays its input by one unit of delay. The initial value is also set in the delay
block. The sum block with two plus signs finds the sum of its inputs. The step input
values are generated and loaded into the simin block, by executing the given input
program. The simout variable stores the output values, which can be loaded for
external use. The output of the summer unit is
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Fig. 3.3 Block diagram of the simulation model of the first-order difference equation

0.1x(n) + 0.9y(n − 1) = y(n)

Running the simulation yields the same values, as given earlier.

3.1.1.6 Zero-Input Response by Solving the Difference Equation

Consider the N th order difference equation of a causal LTI discrete system relating
the output y(n) to the input x(n)

y(n) + aN−1y(n − 1) + aN−2y(n − 2) + · · · + a0y(n − N) =
bNx(n) + bN−1x(n − 1) + · · · + b0x(n − N),

where N is the order of the system and the coefficients a’s and b’s are real constants
characterizing the system. If the input is zero, the difference equation reduces to

y(n) + aN−1y(n − 1) + aN−2y(n − 2) + · · · + a0y(n − N) = 0

The solution to this equation gives the zero-input response of the system. This
equation is a linear combination of y(n) and its delayed versions equated to zero,
for all values of n. Therefore, y(n) and all its delayed versions must be of the
same form. Only the exponential function has this property. Therefore, the solution
is of the form Cλn, where C and λ are to be found. Substituting y(n) = Cλn,
y(n − 1) = Cλn−1, etc., we get

(1 + aN−1λ
−1 + aN−2λ

−2 + · · · + a0λ
−N)Cλn = 0

Multiplying both sides by λN , we get

(λN + aN−1λ
N−1 + aN−2λ

N−2 + · · · + a0)Cλn = 0

Assuming that the solution Cλn is nontrivial (C �= 0),
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(λN + aN−1λ
N−1 + aN−2λ

N−2 + · · · + a0) = 0 (3.2)

The characteristic polynomial on the left side has N roots, λ1, λ2, . . . , λN . There-
fore, we get N solutions, C1λ

n
1, C2λ

n
2, . . . , CNλn

N . As the system is assumed to be
linear and the solution has to satisfy N independent initial conditions of the system,
the zero-input response of the system is given by

y(n) = C1λ
n
1 + C2λ

n
2 + · · · + CNλn

N,

assuming all the roots of the characteristic polynomial are distinct. The constants
can be found using the N independent initial conditions of the system. The zero-
input response represents a behavior that is characteristic of the system. As the
form of the zero-input response of any N -th order system is the same, it is the
set of roots of the characteristic polynomial that distinguishes a specific system.
Therefore, Eq. (3.2) is called the characteristic equation of the system, and the roots,
λ1, λ2, . . . , λN , are called the characteristic roots or eigenvalues of the system. The
corresponding exponentials, λn

1, λn
2, . . . , λ

n
N , are called the characteristic modes

of the system. The characteristic modes of a system are also influential in the
determination of the zero-state response.

Example 3.1 Find the zero-input response of the system by solving its difference
equation

y(n) = 0.1x(n) + 0.9y(n − 1)

The initial condition is y(−1) = 3.

Solution The characteristic equation is λ − 0.9 = 0. The characteristic value of the
system is λ = 0.9. The characteristic mode of the system is (0.9)n. Therefore, the
zero-input response is of the form

y(n) = C (0.9)n

With y(−1) = 3 and letting n = −1, we get C = 2.7. Therefore, the zero-input
response, as shown in Fig. 3.2a, is

y(n) = 2.7 (0.9)n u(n)

3.1.2 Impulse Response

The impulse response, h(n), of a system is its response for a unit-impulse input
signal with the initial conditions of the system zero. One way to find the impulse
response of a system is by iteration. Another method is to find the zero-input
response by solving the characteristic equation.
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Example 3.2 Find the closed-form of the impulse response h(n) of the system
governed by the difference equation, with input x(n) and output y(n)

y(n) = 2x(n) + 3x(n − 1) + 1

2
y(n − 1)

(i) by solving the difference equation and (ii) by iteration. Find the first four values
of h(n).

Solution As the system is initially relaxed (initial conditions zero), we get from
the difference equation h(0) = 2 and h(1) = 4 by iteration. As the values of the
impulse signal is zero for n > 0, the response for n > 0 can be considered as
zero-input response. The characteristic equation is

(
λ − 1

2

)
= 0

The zero-input response is of the form

h(n) = C

(
1

2

)n

u(n − 1)

As u(n − 1) = u(n) − δ(n), the response is also given by

h(n) = C

(
1

2

)n

u(n) − Cδ(n), n > 0

Letting n = 1, with h(1) = 4, we get C = 8. The impulse response is the sum of the
response of the system at n = 0 and the zero-input response for n > 0. Therefore,

h(n) = 2δ(n) + 8

(
1

2

)n

u(n) − 8δ(n) = −6δ(n) + 8

(
1

2

)n

u(n)

By iteration,

h(0) = 2

h(1) =
(
3 + 2

1

2

)
= 4

h(2) =
(
1

2

)
4

h(3) =
(
1

2

)2

4
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...

h(n) =
(
1

2

)n−1

4

h(n) = 2δ(n) +
(
4

(
1

2

)n−1
)

u(n − 1) = −6δ(n) + 8

(
1

2

)n

u(n)

The first four values of h(n) are

{h(0) = 2, h(1) = 4, h(2) = 2, h(3) = 1}
In general, the impulse response of a first-order system governed by the difference
equation y(n) + a0y(n − 1) = b1x(n) + b0x(n − 1) is h(n) = b0

a0
δ(n) + (b1 −

b0
a0

)(−a0)
nu(n).

3.1.3 Characterization of Systems by Their Responses to
Impulse and Unit-Step Signals

We can get information about the system behavior from the impulse and unit-step
responses. If the significant values of the impulse response is of longer duration, as
shown by filled circles in Fig. 3.4a, then the response of the system is sluggish. The
corresponding unit-step response is shown by filled circles in Fig. 3.4b. The time
taken for the unit-step response to rise from 10% to 90% of its final value is called
the rise time of the system. If the significant values of the impulse response is of
shorter duration, as shown by unfilled circles in Fig. 3.4a, then the response of the
system is faster, as shown by unfilled circles in Fig. 3.4b. A system with a shorter
impulse response has less memory, and it is readily influenced by the recent values
of the input signal. Therefore, its response is fast. The faster is the rate of decay of
the impulse response, the faster the response approaches its steady-state value.

The unit-step response, at n, is the sum of the first n + 1 terms of the impulse
response, y(n) = ∑n

m=0 h(m). As the final value tends to one in Fig. 3.4b and as
the unit-step signal, ultimately, acts like a DC signal, the monotonically decreasing
impulse response indicates a system that passes low-frequency components of a
signal well.

Figure 3.4c shows typical alternating sequence impulse responses. The corre-
sponding unit-step responses are shown in Fig. 3.4d. In these cases also, the system
response time is faster with a short duration impulse response. However, note that
the final value of the unit-step response approaches a very low value in Fig. 3.4d.
This indicates a system that does not pass low-frequency components of a signal
well.
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Fig. 3.4 (a) Typical monotonically decreasing impulse responses; (b) the corresponding unit-
step responses; (c) typical alternating sequence impulse responses; (d) the corresponding unit-step
responses

3.2 Classification of Systems

3.2.1 Linear and Nonlinear Systems

Let the response of a system to signal x1(n) be y1(n) and the response to x2(n)

be y2(n). Then, the system is linear if the response to the linear combination
ax1(n)+bx2(n) is ay1(n)+by2(n), where a and b are arbitrary constants. A general
proof is required to prove that a system is linear. However, one counterexample
is enough to prove that a system is nonlinear. Nonlinear terms, such as x2(n) or
x(n)y(n−1) (terms involving the product of x(n), y(n), and their shifted versions),
in the difference equation are an indication that the system is not linear. Any nonzero
constant term is also an indication of a nonlinear system. The linearity condition
implies that the total response of a linear system is the sum of zero-input and zero-
state components. The linearity of a system with respect to zero-input and zero-state
responses should be checked individually. In most cases, zero-state linearity implies
zero-input linearity.

Example 3.3 Given the difference equation of a system, with input x(n) and output
y(n), determine whether the system is linear. Verify the conclusion with the inputs
{x1(n), n = 0, 1, 2, 3} = {1, 4, 3, 2}, {x2(n), n = 0, 1, 2, 3} = {2, 3, 4, 1}, and
x(n) = 2x1(n) − 3x2(n) by computing the first four values of the output. Assume
that the initial condition y(−1) is zero.

(a) y(n) = x(n) + y(n − 1) + 3
(b) y(n) = x(n) − (2n)y(n − 1)
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Solution

(a) As the nonzero term indicates that the system is nonlinear, we try the coun-
terexample method. By iteration, the first four output values of the system to
the input signal x1(n) are

y1(0) = x1(0) + y1(0 − 1) + 3 = 1 + 0 + 3 = 4

y1(1) = x1(1) + y1(1 − 1) + 3 = 4 + 4 + 3 = 11

y1(2) = x1(2) + y1(2 − 1) + 3 = 3 + 11 + 3 = 17

y1(3) = x1(3) + y1(3 − 1) + 3 = 2 + 17 + 3 = 22

The output to x2(n) is {y2(n), n = 0, 1, 2, 3} = {5, 11, 18, 22}. Now, y(n) =
{2y1(n) − 3y2(n), n = 0, 1, 2, 3} = {−7,−11,−20,−22}.
The system response to the combined input {2x1(n) − 3x2(n), n = 0, 1, 2, 3}
= {−4,−1,−6, 1} is {y(n), n = 0, 1, 2, 3} = {−1, 1,−2, 2}. As this output is
different from that computed earlier, the system is nonlinear.

(b) The system output to x1(n) is y1(n) = x1(n) − (2n) y1(n − 1). The system
output to x2(n) is y2(n) = x2(n) − (2n) y2(n − 1). Then,

ay1(n) + by2(n) = ax1(n) − (2an) y1(n − 1) + bx2(n) − (2bn) y2(n − 1)

The system output to ax1(n) + bx2(n) is

ax1(n) + bx2(n) − (2n)(ay1(n − 1) + by2(n − 1))

As both the expressions for the output are the same, the system is linear. The
output to x1(n) is {y1(n), n = 0, 1, 2, 3} = {1, 2,−5, 32}. The output to x2(n) is
{y2(n), n = 0, 1, 2, 3} = {2,−1, 8,−47}. Now, y(n) = {2y1(n) − 3y2(n), n =
0, 1, 2, 3} = {−4, 7,−34, 205}.

The system response to the combined input {2x1(n) − 3x2(n), n = 0, 1, 2, 3} =
{−4,−1,−6, 1} is {y(n), n = 0, 1, 2, 3} = {−4, 7,−34, 205}. This output is the
same as that computed earlier.

3.2.2 Time-Invariant and Time-Varying Systems

The output of a time-invariant system to the input x(n − m) must be y(n − m) for
all m, assuming that the output to the input x(n) is y(n) and the initial conditions
are identical. A general proof is required to prove that a system is time-invariant.
However, one counterexample is enough to prove that a system is time-variant.
Terms, such as x(2n) or x(−n), with a nonzero and nonunity constant associated
with the index n in the difference equation indicate a time-variant system. Any
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coefficient that is an explicit function of n in the difference equation also indicates
a time-variant system.

Example 3.4 Given the difference equation of a system, with input x(n) and output
y(n), determine whether the system is time-invariant. Verify the conclusion with
the inputs {x(n), n = 0, 1, 2, 3} = {1, 4, 3, 2} and {x(n − 2), n = 2, 3, 4, 5} =
{1, 4, 3, 2} by computing the first four values of the output. Assume that the initial
condition y(−1) is zero.

(a) y(n) = nx(n)

(b) y(n) = 2x(n)

Solution

(a) As the coefficient in the difference equation is the independent variable n, we
try the counterexample method. The output of the system to x(n) is {y(n), n =
0, 1, 2, 3} = {0, 4, 6, 6}. The output of the system to x(n − 2) is {y(n), n =
2, 3, 4, 5} = {2, 12, 12, 10}. As the two outputs are different, the system is
time-varying.

(b) The system output to x(n) is y(n) = 2x(n). By replacing n by (n − 2), we get
y(n−2) = 2x(n−2). The system output to x(n−2) is 2x(n−2). As the outputs
are the same, the system is time-invariant. The output of the system to x(n) is
{y(n), n = 0, 1, 2, 3} = {2, 8, 6, 4}. The output of the system to x(n − 2) is
{y(n), n = 2, 3, 4, 5} = {2, 8, 6, 4}.
Linear time-invariant (LTI) systems satisfy the linearity and time-invariant

properties and are easier to analyze and design. Most practical systems, although not
strictly linear and time-invariant, can be considered as LTI systems with acceptable
error limits.

3.2.3 Causal and Noncausal Systems

Practical systems respond only to present and past input values, but not to future
input values. These systems are called causal or nonanticipatory systems. If the
present output y(n) depends on the input x(n + k) with k > 0, then the system is
noncausal. This implies that the impulse response of a causal system h(n) is zero
for n < 0. Ideal systems, such as ideal filters, are noncausal. However, they are of
interest because they set an upper bound for the system response. Practical systems
approximate the ideal response while being causal (i.e., physically realizable).

Example 3.5 Given the difference equation of a system, with input x(n) and output
y(n), determine whether the system is causal. Find the impulse response.

(a) y(n) = x(n + 2) + 2x(n) − 3x(n − 1)
(b) y(n) = 2x(n) − x(n − 1) + 3x(n − 4).
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Solution

(a) As the output y(n) is a function of the future input sample x(n + 2), the system
is noncausal. The impulse response of the system is obtained, by substituting
x(n) = δ(n) in the input-output relation, as y(n) = h(n) = δ(n + 2) + 2δ(n) −
3δ(n − 1). That is, h(−2) = 1, h(−1) = 0, h(0) = 2, and h(1) = −3.

(b) The system is causal. The impulse response of the system is

{h(0) = 2, h(1) = −1, h(2) = 0, h(3) = 0, h(4) = 3}

3.2.4 Instantaneous and Dynamic Systems

With regard to system memory, systems are classified as instantaneous or dynamic.
A system is instantaneous (no memory) if its output at an instant is a function of
the input at that instant only. The system characterized by the difference equation
y(n) = 2x(n) is a system with no memory. An example is an electrical circuit
consisting of resistors only. Any system with storage elements, such as inductors
and capacitors, is a dynamic system, since the output at an instant of such systems
is a function of past values of the input also. The discrete model of this type of
systems will have terms, such as x(n − 1) or x(n − 2), that require memory units
to implement. If the output depends only on a finite number of past input samples,
then it is called a finite memory system. For example, y(n) = x(n−1)+x(n−2) is
the difference equation of a system with two memory units. Systems with capacitive
or inductive elements are infinite memory systems, since their output is a function
of entire past history of the input. Instantaneous systems are a special case of the
dynamic systems with zero memory.

3.2.5 Inverse Systems

A system is invertible if its input can be determined from its output. This implies
that each input has a unique output. Systems with the input-output relationship such
as y(n) = x2(n) are not invertible. If the impulse response of a system, made up
of two systems connected in cascade, is h(n) = δ(n), then the two systems are the
inverses of one another. For example, the inverse of the system with the input-output
relationship y(n) = 2x(n) is x(n) = 1

2y(n).

3.2.6 Continuous and Discrete Systems

In continuous systems, input, output, and all other signals are of continuous type,
and they are processed using devices such as resistors, inductors, and capacitors.
In a discrete system, input, output, and all other signals are of discrete type, and
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they are processed using discrete devices such as a digital computer. While most
naturally occurring signals are of continuous type, they are usually analyzed and
processed using their discrete approximations, as it is advantageous, by converting
the continuous signals to discrete signals by sampling. These types of systems, in
which both types of signals appear, are called hybrid systems.

3.3 Convolution-Summation Model

Commonly used models for discrete linear systems are difference equation, convo-
lution summation, transfer function, and state space. All the models are equivalent
representations of a system, in the sense that all of them produce the same
output for a certain input. Each model is advantageous in bringing out the salient
characteristics of the dynamic behavior of a system with some respect. Further,
studying different models of a system gives a better understanding of the system.

In the difference equation model of a system, we used some output and input
values in formulating the model. In the convolution-summation model, the model
is formulated in terms of all the input values applied to the system, assuming that
the initial conditions are zero. The input signal is decomposed in terms of scaled
and shifted unit-impulses. Therefore, with the knowledge of the response of the
system to just the unit-impulse (called the impulse response), we find the response to
each of the constituent impulses of an arbitrary input signal and sum the individual
responses to find the total response. As the initial conditions are assumed to be zero,
the response obtained using this model is the zero-state response.

The study of signals and systems has analogy with what we do in real life. We can
easily understand and remember the mathematical process of these models using
the analogy. Mathematical concepts such as convolution and Fourier analysis can
be presented using real-life processes. Let the problem be finding the amount in our
deposit at current time. Let the interest rate be 10% compounded annually. Let the
current (index 0) and the last 3 years deposits be

{x(−3) = 300, x(−2) = 400, x(−1) = 200, x(0) = 100}

The balance due to current deposit is obtained by multiplying it with 1. Similarly,
the balance due to past deposits are obtained by multiplying them with 1.1, 1,21,
and 1.331, respectively. The current balance in our account is

100 × 1 + 200 × 1.1 + 400 × 1.21 + 300 × 1.331 = 1203.3

With respect to running time, the computation required is to reverse one of the
sequences and find the sum of products. This is the essence of convolution. The
contributions of all the impulse components of the input of a system are found and
summed to find the total output. Figure 3.5 shows the basics of linear convolution.
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Fig. 3.5 Basics of linear
convolution. (a) annual
interest rate; (b) deposits; (c)
computation of current
balance
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(300)(1.331)+(400)(1.21) +(100)(1.1)+(100)(1) = 1023.3
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Alternately, we can compute the total amount using the updated last year deposit
and the present deposit. For example, for the present problem, the balance up to last
year, called the previous output, is

200 × 1 + 400 × 1.1 + 300 × 1.21 = 1003

Then, the current balance in our account is

1003 × 1.1 + 100 = 1203.3

This is the difference equation model, which uses past outputs, some past inputs,
and the present input.

Let us find the convolution of the impulse response {h(m),m = 0, 1, 2, 3} =
{5, 0, 3, 2} and the input {x(m),m = 0, 1, 2, 3} = {4, 1, 3, 2} shown in Fig. 3.6. The
time-reversed impulse response, {h(0 − m),m = 3, 2, 1, 0}, is {2, 3, 0, 5}. There
is only one nonzero product, x(0)h(0) = 4 × 5 = 20, of x(m)h(0 − m) with
m = 0, and the convolution output is y(0) = 20. The product x(0)h(0) is the
response of the system at n = 0 to the present input sample x(0). There is no
contribution to the output at n = 0 due to input samples x(1), x(2), and x(3), since
the system is causal. The time-reversed impulse response is shifted to the right by
one sample interval to get h(1−m) = h(−m+1)) = h(−(m−1)). The convolution
output y(1) at n = 1 is the sum of products x(m)h(1 − m), m = 0, 1. That is,
y(1) = x(0)h(1) + x(1)h(0) = 4 × 0 + 1 × 5 = 5. The product x(1)h(0) is
the response of the system at n = 1 to the present input sample x(1). The product
x(0)h(1) is the response of the system at n = 1 to the past input sample x(0).
Repeating the process, we find the remaining five output values. While x(n) and
h(n) have four elements each, the output sequence y(n) has seven elements. The
duration of the convolution of two finite sequences of length N and M is N +M −1
samples, as the overlap of nonzero portions can occur only over that length.
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Fig. 3.6 The linear
convolution operation
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A more formal development of the convolution operation is as follows. An
arbitrary signal can be decomposed, in terms of scaled and shifted impulses, as

x(n) =
∞∑

m=−∞
x(m)δ(n − m)

The impulse response h(n) of a LTI system is its response to an impulse δ(n) with
the system initially relaxed (initial conditions zero). Due to the time-invariance
property, a delayed impulse δ(n − m) will produce the response h(n − m). Since
a LTI system is linear, a scaled and shifted impulse x(m)δ(n − m) will produce
the response x(m)h(n − m). Therefore, using both the linearity and time-invariance
properties, the system response y(n) to an arbitrary signal x(n) can be expressed as

y(n) =
∞∑

m=−∞
x(m)h(n − m) = x(n) ∗ h(n)

The convolution-summation of the sequences x(n) and h(n) is denoted as x(n) ∗
h(n). For a causal system, as its impulse response h(n) is zero for n < 0, the upper
limit of the summation is n, instead of ∞, as h(n − m) = 0, m > n.

y(n) =
∞∑

m=−∞
x(m)h(n − m) =

n∑
m=−∞

x(m)h(n − m)

If the signal x(n) starts at any finite instant n = n0, then the lower limit is equal to
n0. The effective range of the summation is easily determined by observing that if
x(m) or h(n − m) or both are zero in a certain range, the product x(m)h(n − m) is
zero in that range.

Essentially, convolution operation is finding the sum of products of two
sequences, each other’s index running in opposite directions. To summarize, the
output of a system is found by convolution with the repeated use of four operations
(fold, shift, multiply, and add).
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1. One of the two sequences to be convolved (say h(m)) is time-reversed, that is,
folded about the vertical axis at the origin to get h(−m).

2. The time-reversed sequence, h(−m), is shifted by n0 sample intervals (right shift
for positive n0 and left shift for negative n0), yielding h(n0 − m), to find the
output at n = n0.

3. The term by term products of the overlapping samples of the two sequences,
x(m), and h(n0 − m), are computed.

4. The sum of all the products is the output sample value at n = n0.

Two finite sequences to be convolved overlap only partly at the beginning and the
end of the convolution operation, as can be seen in Fig. 3.6, and less arithmetic is
required to find the convolution output in these cases. The convolution expression,
requiring minimum arithmetic, for two finite sequences is given as follows. Let
x(n), n = 0, 1, . . . , N − 1 and h(n), n = 0, 1, . . . ,M − 1. Then,

y(n) =
Min(n,N−1)∑

m=Max(0,n−M+1)

x(m)h(n − m) =
Min(n,M−1)∑

m=Max(0,n−N+1)

h(m)x(n − m),

n = 0, 1, . . . , N + M − 2, (3.3)

where Min and Max stand, respectively, for “minimum of” and “maximum of.”
Along with the shift property of convolution presented shortly, this expression can
be used to evaluate the convolution of two finite sequences starting from any n.

Discrete Convolution Is Like Polynomial Multiplication
The coefficients of the product polynomial of the product of two polynomials is the
convolution sum of the coefficients of the two polynomials getting multiplied. Using
the sequences x(n) and h(n) as the coefficients of two polynomials and multiplying,
the coefficients of the product polynomial are the same as the convolution output of
the two sequences.

(4+q+3q2+2q3)(5+0q+3q2+2q3) = 20+5q+27q2+21q3+11q4+12q5+4q6

The convolution sum can be checked as follows. The product of the sum of the
terms of x(n) and h(n) must equal to the sum of the terms of the sequence y(n). For
the example,

(4+1+3+2)(5+0+3+2) = 10×10 = 100 = (20+5+27+21+11+12+4)

The same test, with the sign of the odd-indexed terms of all the three sequences
changed, also holds.

(4− 1+ 3− 2)(5− 0+ 3− 2) = 4× 6 = 24 = (20− 5+ 27− 21+ 11− 12+ 4)

Table 3.1 shows a list commonly occurring discrete convolution summations.
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Table 3.1 Convolution table x(n) h(n) x(n) ∗ h(n)

x(n) δ(n − k) x(n − k)

anu(n) u(n) an+1−1
a−1 u(n)

u(n) u(n) (n + 1)u(n))

anu(n) bnu(n) an+1−bn+1

a−b
u(n), a �= b

anu(n) anu(n) (n + 1)anu(n)

u(n) nu(n)
n(n+1)

2 u(n)

Example 3.6 Find the linear convolution of the sequences {x(n), n = 0, 1, 2} =
{1, 2, 3} and {h(n), n = 0, 1} = {2,−3}.

Solution Using Eq. (3.3), we get

y(0) = (1)(2) = 2

y(1) = (1)(−3) + (2)(2) = 1

y(2) = (2)(−3) + (3)(2) = 0

y(3) = (3)(−3) = −9

The values of the convolution of x(n) and h(n) are

{y(0) = 2, y(1) = 1, y(2) = 0, y(3) = −9}

Example 3.7 Find the closed-form expression of the convolution of the sequences
x(n) = (0.6)nu(n) and h(n) = (0.5)nu(n).

Solution

y(n) =
∞∑

l=−∞
x(l)h(n − l) =

n∑
l=0

(0.6)l(0.5)n−l , n ≥ 0

= (0.5)n
n∑

l=0

(
0.6

0.5

)l

= (0.5)n

⎛
⎜⎝1 −

(
0.6
0.5

)n+1

1 −
(
0.6
0.5

)
⎞
⎟⎠

= (6(0.6)n − 5(0.5)n)u(n)

The first four values of the convolution of x(n) and h(n) are

{y(0) = 1, y(1) = 1.1, y(2) = 0.91, y(3) = 0.671}
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3.3.1 Properties of Convolution-Summation

The convolution-summation is commutative, that is, the order of the two sequences
to be convolved is immaterial.

x(n) ∗ h(n) = h(n) ∗ x(n)

The convolution-summation is distributive. That is, the convolution of a sequence
with the sum of two sequences is the same as the sum of the individual convolution
of the first sequence with the other two sequences.

x(n) ∗ (h1(n) + h2(n)) = x(n) ∗ h1(n) + x(n) ∗ h2(n)

The convolution-summation is associative. That is the convolution of a sequence
with the convolution of two sequences is the same as the convolution of the
convolution of the first two sequences with the third sequence.

x(n) ∗ (h1(n) ∗ h2(n)) = (x(n) ∗ h1(n)) ∗ h2(n)

The shift property of convolution is that

if x(n) ∗ h(n) = y(n), then x(n − l) ∗ h(n − m) = y(n − l − m)

The convolution of two shifted sequences is the convolution of the two original
sequences shifted by the sum of the shifts of the individual sequences.

Convolution of a sequence x(n) with the unit-impulse leaves the sequence
unchanged except for the translation of the origin of the sequence to the location
of the impulse.

x(n) ∗ δ(n − k) =
∞∑

m=−∞
δ(m − k)x(n − m) = x(n − k)

Example 3.8 Find the linear convolution of the sequences {x(n), n = 0, 1, 2} =
{3, 2, 4} and h(n) = δ(n + 3).

Solution

x(n) ∗ δ(n + 3) = {x(n + 3), n = −3,−2,−1} = {3, 2, 4}
Convolution of x(n) with the unit-step is the running sum of x(n).

x(n) ∗ u(n) =
n∑

l=−∞
x(l)
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For example, let {x(n), n = 0, 1, 2} = {3, 2, 4} and h(n) = u(n).

x(n) ∗ h(n) = {3, 5, 9, 9, 9, 9, . . .}

3.3.2 The Difference Equation and the
Convolution-Summation

The difference equation and the convolution-summation are two different mathe-
matical models of a LTI system producing the same output for the same input.
Therefore, these twomodels are related. Consider the first-order difference equation,
with input x(n) and output y(n).

y(n) = b1x(n) + (−a0)y(n − 1)

As the initial conditions are assumed to be zero for the convolution-summation
model, y(−1) = 0. In order to derive the convolution-summation model, we have
to express the past output term in terms of input samples.

y(0) = b1x(0)

y(1) = b1x(1) + (−a0)y(0) = b1x(1) + (−a0)b1x(0)

y(2) = b1x(2) + (−a0)y(1) = b1x(2) + (−a0)b1x(1) + (−a0)
2b1x(0)

...

y(n) = b1x(n) + (−a0)b1x(n − 1) + · · · + (−a0)
nb1x(0)

Then, the impulse response, with x(n) = δ(n), is given as

h(0) = b1, h(1) = (−a0)b1, h(2) = (−a0)
2b1, . . . , h(n) = (−a0)

nb1

The output y(n), using h(n), can be expressed as

y(n) = h(0)x(n) + h(1)x(n − 1) + · · · + h(n)x(0) =
n∑

m=0

h(m)x(n − m),

which is the convolution-summation. For any n, h(0) determines the effect of the
current input x(n) on the output y(n). In general, h(m) determines the effect of
the input x(n − m), applied m iterations before, on the output y(n). A system,
whose impulse response is of finite duration, is called a finite impulse response
system. A system, whose impulse response is of infinite duration, is called an
infinite impulse response system. In the difference equation model of a system, a
system is characterized by the coefficients, a’s and b’s, of its difference equation.
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In the convolution-summation model of a system, the system is characterized by its
impulse response h(n).

3.3.3 Response to Complex Exponential Input

A complex exponential with frequency ω0 is given as x(n) = ejω0n, −∞ < n <

∞. Assuming a causal and stable system with real-valued impulse response h(n),
the output of the system is given by the convolution-summation as

y(n) =
∞∑

m=0

h(m)ejω0(n−m) = ejω0n
∞∑

m=0

h(m)e−jω0m

As the second summation is independent of n and letting

H(ejω0) =
∞∑

m=0

h(m)e−jω0m

we get,

y(n) = H(ejω0)ejω0n = H(ejω0)x(n)

H(ejω0) is called the frequency response since it is a constant complex scale factor
indicating the amount of change in the amplitude and phase of an input complex
exponential ejω0n, with frequency ω0, at the output. Since the impulse response is
real-valued for practical systems, the scale factor for an exponential with frequency
−ω0 is H ∗(ejω0), where the symbol ∗ indicates complex conjugation. The point
is that the input-output relationship of a LTI system becomes a multiplication
operation rather than the more complex convolution operation. As the complex
exponential is the only signal that has this property, it is used predominantly as the
basis for signal decomposition. Even if the exponent of the complex exponential
input signal has a real part, x(n) = e(σ+jω0)n, the response of the system is
still related to the input by the multiplication operation. A real sinusoidal input
A cos(ω0n + θ) is also changed at the output by the same amount of amplitude
and phase of the complex scale factor H(ejω0). That is, A cos(ω0n + θ) is changed
to (|H(ejω0)|A) cos(ω0n + (θ + � (H(ejω0))). The proof is as follows:

A cos(ω0n + θ) = 0.5A(ej (ω0n+θ) + e−j (ω0n+θ))

The response, due to linearity, is

0.5A|H(jω0|(ej (ω0n+θ+� (H(jω0)) + e−j (ω0n+θ+� (H(jω0)))

= A|H(jω0| cos(ω0n + θ + � (H(jω0)))



86 3 Time-Domain Analysis of Discrete Systems

There was no transient component in the output expression y(n), since the
exponential signal was applied at n = −∞. For finite values of n, any transient
component in the output of a stable systemmust have died out. However, if we apply
the exponential at any finite instant, say n = 0, there will be a transient component
in the response, in addition to the steady-state component H(ejω0)ejω0nu(n).

Example 3.9 Let the input signal to a stable system with impulse response h(n) =
b1(−a0)

nu(n) be x(n) = ejω0nu(n). Find the response of the system. Assume that
y(−1) = 0.

Solution Using the convolution-summation, we get

y(n) =
n∑

m=0

h(m)ejω0(n−m) = b1e
jω0n

n∑
m=0

(−a0)
me−jω0m

=
(

b1

1 − (−a0)e−jω0

)(
ejω0n − (−a0)

(n+1)e−jω0
)

, n = 0, 1, . . .

The first term, the steady-state component
(

b1
1−(−a0)e

−jω0

)
ejω0n, is the same as the

input complex exponential with a complex scale factor. The second term,

(
b1

1 − (−a0)e−jω0

)
(−(−a0)

(n+1)e−jω0),

is the transient component that will die for sufficiently large values of n.

3.4 System Stability

One of the criteria for the stability of a system is that the system output is bounded if
the input is bounded. A sequence x(n) is bounded if |x(n)| ≤ M for all values of n,
where M is a finite positive number. For example, the sequence x(n) = (0.8)nu(n)

is bounded and x(n) = (1.2)nu(n) is unbounded. As convolution-summation is a
sum of products, the sum is bounded if the input signal is bounded and the sum of
the magnitude of the terms of the impulse response is finite. Let the sample values of
the input signal x(n) are bounded by the positive constant M . From the convolution-
summation relation for a causal system with impulse response h(n), we get

|y(n)| = |
∞∑

m=0

h(m)x(n − m)|
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≤
∞∑

m=0

|h(m)x(n − m)| =
∞∑

m=0

|h(m)||x(n − m)|

|y(n)| ≤
∞∑

m=0

|h(m)|M = M

∞∑
m=0

|h(m)|

Therefore, if
∞∑

m=0

|h(m)| is bounded then |y(n)| is bounded. Consequently, a

necessary and sufficient stability condition is that the impulse response is absolutely
summable:

∞∑
m=0

|h(m)| < ∞

As we used the convolution-summation to derive the stability condition, the stability
condition ensures a bounded zero-state response. The stability of the zero-input
response should be separately checked and it is presented in Chap. 9.

Example 3.10 Is the system governed by the difference equation, with input x(n)

and output y(n), stable?

(i) y(n) = 9x(n) + 2y(n − 1)
(ii) y(n) = 9x(n) + 0.8y(n − 1)

Solution

(i) The impulse response of the system is h(n) = 9(2)nu(n). As h(n) is not
absolutely summable, the system is unstable.

(ii) The impulse response of the system is h(n) = 9(0.8)nu(n). As h(n) is
absolutely summable, the system is stable.

3.5 Realization of Discrete Systems

A discrete system can be realized in software or hardware or as a combination of
both. In any case, the three basic components required in the realization of discrete
systems are (i) multiplier units, (ii) adder units, and (iii) delay units. A multiplier
unit, shown in Fig. 3.7a, produces an output sequence c x(n), in which each element
is the product of the corresponding element in the input sequence x(n) and the
coefficient c. An adder unit, shown in Fig. 3.7b, produces an output sequence x(n)+
y(n), in which each element is the sum of the corresponding elements in the input
sequences x(n) and y(n). By complementing the subtrahend and then adding it with
the minuend, subtraction operation can be realized by an adder unit. A delay unit,
shown in Fig. 3.7c, produces an output sequence x(n−1), which is a delayed version
of the input sequence x(n) by one sampling interval.
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Fig. 3.7 Basic components
required in the realization of
discrete systems: (a)
multiplier unit; (b) adder unit;
(c) delay unit

Fig. 3.8 Block diagram of
the realization of a discrete
system

By using the necessary number of the basic units, any arbitrary difference
equation can be realized. Consider the implementation of the difference equation

y(n) = 2x(n) − 3x(n − 1) − 0.7y(n − 1),

shown in Fig. 3.8. Let the input be the unit-step:

x(0) = 1, x(2) = 1, x(3) = 1, x(4) = 1, x(5) = 1, . . .

Let the initial condition be y(−1) = 0. We get the delayed output term y(n − 1)
by passing y(n) through a delay unit. The product term −0.7y(n − 1) is obtained
by passing y(n − 1) through a multiplier unit with coefficient −0.7. The product
term 2x(n) is obtained by passing x(n) through a multiplier unit with coefficient
2. We get the delayed input term x(n − 1) by passing x(n) through a delay unit.
The product term −3x(n − 1) is obtained by passing x(n − 1) through a multiplier
unit with coefficient −3. The adder unit combines the partial results to produce the
output signal y(n). By iteration, the first few outputs, with x(−1) = y(−1) = 0, are

y(0) = 2, y(1) = −2.4, y(2) = 0.68, y(3) = −1.476, y(4) = 0.0332

Figure 3.9 shows the block diagram of the simulation model of the first-order
difference equation. The step input values have to be loaded into the simin block
by executing the given input program. The system can be implemented using only
one delay unit.

3.5.1 Decomposition of Higher-Order Systems

To meet a given specification, a higher-order system is often required. Due to several
advantages, a system is usually decomposed into first- and second-order systems
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Fig. 3.9 Block diagram of the simulation model of the first-order difference equation

Fig. 3.10 (a) Two systems
connected in parallel; (b) a
single system equivalent to
the system in (a)

connected in cascade or parallel. Figure 3.10a shows two systems with impulse
responses h1(n) and h2(n) connected in parallel. The same input is applied to each
system, and the total response is the sum of the individual responses. The combined
response of the two systems for the input x(n) is y(n) = x(n)∗h1(n)+x(n)∗h2(n).
This expression, due to the distributive property of convolution, can be written as
y(n) = x(n) ∗ (h1(n) + h2(n)). That is, the parallel connection of the two systems
is equivalent to a single system with impulse response h(n) = h1(n) + h2(n), as
shown in Fig. 3.10b.

Figure 3.11a shows two systems with impulse responses h1(n) and h2(n) con-
nected in cascade. The output of one system is the input to the other. The response
of the first system for the input x(n) is y1(n) = x(n) ∗ h1(n). The response of the
second system for the input y1(n) = x(n) ∗ h1(n) is y(n) = (x(n) ∗ h1(n)) ∗ h2(n).
This expression, due to the associative property of convolution, can be written as
y(n) = x(n) ∗ (h1(n) ∗ h2(n)). That is, the cascade connection of the two systems
is equivalent to a single system with impulse response h(n) = h1(n) ∗ h2(n), as
shown in Fig. 3.11b. Due to the commutative property of convolution, the order of
the systems in the cascade connection is immaterial, with respect to the input-output
relationship.
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Fig. 3.11 (a) Two systems
connected in cascade; (b) a
single system equivalent to
the system in (a)

Fig. 3.12 Two systems
connected in a feedback
configuration

3.5.2 Feedback Systems

Another configuration of systems, often used in control systems, is the feedback
configuration shown in Fig. 3.12. In feedback systems, a fraction of the output
signal is fed back and subtracted from the input signal to form the effective input
signal. A feedback signal r(n) is produced by a system with impulse response
h(n) from the delayed samples of the output signal, y(n − 1), y(n − 2), etc. That
is, r(n) = ∑∞

m=1 h(m)y(n − m). This implies that h(0) = 0. The error signal
e(n) is the difference between the input signal x(n) and the feedback signal r(n),
e(n) = x(n)− r(n). This error signal is the input to a system with impulse response
g(n), which produces the output signal y(n). That is, y(n) = ∑∞

m=0 g(m)e(n− m).

3.6 Summary

• In this chapter, the time-domain analysis of LTI discrete systems has been
presented.

• As discrete systems offer several advantages, they are mostly used instead of
continuous systems. These systems can be designed to approximate continuous
systems with a desired accuracy by selecting a sufficiently short sampling
interval.

• The zero-input component of the response of a LTI system is its response due
to the initial conditions alone with the input assumed to be zero. The zero-state
component of the response of a LTI system is its response due to the input alone
with the initial conditions assumed to be zero. The sum of the zero-input and
zero-state responses is the complete response of the system.

• Two of the commonly used system models for time-domain analysis are the
difference equation and convolution-summation models.
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• The convolution-summation model gives the zero-state response of a LTI system.
Both the zero-input and zero-state responses can be found using the difference
equation model either by solving the difference equation or by iteration.

• The impulse response of a system is its response to the unit-impulse input signal
with zero initial conditions.

• The convolution-summation model is based on decomposing the input signal into
a set of shifted and scaled impulses. The total response is found by summing the
responses to all the constituent impulses of the input signal.

• The complete response of a system can also be considered as the sum of the
transient component and the steady-state component. For a stable system, the
transient component always decays with time. The steady-state component is the
response after the transient response dies down.

• A system is stable if its response is bounded for all bounded input signals. As
the convolution-summation is a sum of products of the input and the impulse
response, with the input bounded, the impulse response of a stable system must
be absolutely summable for the convolution sum to be bounded.

• By interconnecting adder, multiplier, and delay units, any discrete system can
be realized. A higher-order system is usually decomposed into a set of first- and
second-order systems connected in cascade or parallel. A feedback system is
obtained by feeding back some part of the output to the input.

Exercises

3.1 Derive the closed-form expression for the impulse response h(n), by iteration,
of the system governed by the difference equation, with input x(n) and output y(n).
List the values of the impulse response h(n) at n = 0, 1, 2, 3, 4, 5.

3.1.1 y(n) = x(n) + 2x(n − 1) − 3y(n − 1).
3.1.2 y(n) = 2x(n) − 3x(n − 1) + 1

2y(n − 1).
* 3.1.3 y(n) = 3x(n) − 1

3y(n − 1).
3.1.4 y(n) = x(n) − 2x(n − 1) + 2y(n − 1).
3.1.5 y(n) = 3x(n) − 4x(n − 1) + y(n − 1).

3.2 Find the closed-form expression for the impulse response h(n) of the system
by solving its difference equation, with input x(n) and output y(n). List the values
of the impulse response h(n) at n = 0, 1, 2, 3, 4, 5.

3.2.1 y(n) = 3x(n) − x(n − 1) + 2y(n − 1).
3.2.2 2y(n) = x(n) + x(n − 1) − y(n − 1).
3.2.3 y(n) = 2x(n) + 1

4y(n − 1).
* 3.2.4 y(n) = 4x(n) + 3x(n − 1) − y(n − 1).
3.2.5 y(n) = x(n) + x(n − 1) − y(n − 1).
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3.3 Is the system governed by the given difference equation, with input x(n)

and output y(n), linear? Let {x1(n), n = 0, 1, 2, 3} = {1, 2, 3, 2}, {x2(n), n =
0, 1, 2, 3} = {2, 3, 0, 4} and x(n) = 2x1(n) − 3x2(n). Assuming that the initial
condition y(−1) is zero, compute the first four output values, and verify the
conclusion.

3.3.1 y(n) = 3x(n) − 2y(n − 1) + 1.
3.3.2 y(n) = (x(n))2 + y(n − 1).

* 3.3.3 y(n) = x(n) − (n)y(n − 1) + 2 cos(π
2 ).

3.3.4 y(n) = x(n) + x(n)y(n − 1).
3.3.5 y(n) = |x(n)|.
3.3.6 y(n) = (n)x(n) + y(n − 1) − 3 cos(π).

3.4 Is the system governed by the given difference equation, with input x(n)

and output y(n), time-invariant? Let {x(n), n = 0, 1, 2, 3, 4, 5, 6, 7, 8} =
{2, 1, 3, 3, 4, 2, 5, 1, 3}. Assuming that the initial condition is zero, compute the
first four output values and verify the conclusion to the input {x(n − 2), n =
2, 3, 4, 5, 6, 7, 8, 9, 10} = {2, 1, 3, 3, 4, 2, 5, 1, 3}.
3.4.1 y(n) = x(2n) + 2y(n − 1).
3.4.2 y(n) = 2x(n) − sin(π

2 n)y(n − 1).
* 3.4.3 y(n) = (x(n))2 − 2 cos(6πn)y(n − 1).
3.4.4 y(n) = x(n) + (n)y(n − 1).
3.4.5 y(n) = x(8 − n).

3.5 Find the linear convolution of the sequences x(n) and h(n).

3.5.1 {x(n), n = 0, 1, 2} = {4, 2, 1} and {h(n), n = 0, 1} = {−2,−3} .
3.5.2 {x(n), n = −2,−1, 0} = {2,−1, 4} and {h(n), n = 3, 4, 5, 6} =

{2, 1, 4, 3} .
* 3.5.3 {x(n), n = −3,−2,−1, 0} = {2, 2, 1, 4} and {h(n), n = 2, 3, 4, 5} =

{3, 2, 3, 4}.

3.6 Find the closed-form expression for the convolution of the sequences x(n) and
h(n). List the values of the convolution output at n = 0, 1, 2, 3, 4, 5.

3.6.1 x(n) = u(n − 1) and h(n) = u(n − 3).
3.6.2 x(n) = (0.5)nu(n − 2) and h(n) = (0.7)nu(n − 1).
3.6.3 x(n) = (0.5)n−1u(n − 1) and h(n) = (0.7)n−2u(n − 2).
3.6.4 x(n) = (0.6)nu(n) and h(n) = x(n).

* 3.6.5 x(n) = (0.6)nu(n − 2) and h(n) = u(n − 1).

3.7 Find the linear convolution of the sequences x(n) and h(n).

3.7.1 {x(n), n = 1, 2, 3, 4} = {3, 2, 4, 1} and h(n) = δ(n) .
3.7.2 {x(n), n = −4,−3,−2} = {1, 3, 2} and h(n) = δ(n − 2) .
3.7.3 {x(n), n = 3, 4, 5} = {5, 2, 3} and h(n) = δ(n + 3) .
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3.7.4 x(n) = ej 2π
6 nu(n) and h(n) = δ(n + 4) .

3.7.5 x(n) = ej 2π
6 n and h(n) = δ(n − 6) .

3.7.6 x(n) = cos( 2π6 n) and h(n) = δ(n) .

3.8 Verify the distributive and associative properties of convolution-summation

x(n) ∗ (h1(n) + h2(n)) = x(n) ∗ h1(n) + x(n) ∗ h2(n)

and

x(n) ∗ (h1(n) ∗ h2(n)) = (x(n) ∗ h1(n)) ∗ h2(n)

where {h1(n), n = 0, 1, 2, 3} = {1, 2, 3, 4}, {h2(n), n = 0, 1, 2, 3} = {3, 2, 1, 5},
and {x(n), n = 0, 1, 2, 3} = {4, 4, 3, 2}.

3.9 Find the steady-state response of the system, with the impulse response

h(n) = −5

3
δ(n) + 11

3
(−0.6)nu(n), n = 0, 1, 2, . . . ,

to the input x(n) = 3 sin( 2π6 n − π
6 )u(n). Deduce the response to the input ej 2π

6 n.

* 3.10 Find the steady-state response of the system, with the impulse response

h(n) = −4δ(n) + 7(0.5)nu(n), n = 0, 1, 2, . . . ,

to the input x(n) = 2 cos( 2π5 n + π
4 )u(n). Deduce the response to the input ej 2π

5 n.

3.11 Derive the closed-form expression for the complete response (by finding the
zero-state response using the convolution-summation and the zero-input response)
of the system governed by the difference equation

y(n) = 2x(n) − x(n − 1) + 1

3
y(n − 1)

with the initial condition y(−1) = 2 and the input x(n) = u(n), the unit-step
function. List the values of the complete response y(n) at n = 0, 1, 2, 3, 4, 5.
Deduce the expressions for the transient and steady-state responses of the system.

3.12 Derive the closed-form expression for the complete response (by finding the
zero-state response using the convolution-summation and the zero-input response)
of the system governed by the difference equation

y(n) = x(n) − 2x(n − 1) − 1

2
y(n − 1)



94 3 Time-Domain Analysis of Discrete Systems

with the initial condition y(−1) = −3 and the input x(n) = (−1)nu(n). List the
values of the complete response y(n) at n = 0, 1, 2, 3, 4, 5. Deduce the expressions
for the transient and steady-state responses of the system.

* 3.13 Derive the closed-form expression for the complete response (by finding the
zero-state response using the convolution-summation and the zero-input response)
of the system governed by the difference equation

y(n) = 3x(n) − 2x(n − 1) + 1

4
y(n − 1)

with the initial condition y(−1) = 1 and the input x(n) = nu(n). List the values of
the complete response y(n) at n = 0, 1, 2, 3, 4, 5. Deduce the expressions for the
transient and steady-state responses of the system.

3.14 Derive the closed-form expression for the complete response (by finding the
zero-state response using the convolution-summation and the zero-input response)
of the system governed by the difference equation

y(n) = x(n) + 3x(n − 1) − 3

5
y(n − 1)

with the initial condition y(−1) = −2 and the input x(n) = ( 25 )
nu(n). List the

values of the complete response y(n) at n = 0, 1, 2, 3, 4, 5. Deduce the expressions
for the transient and steady-state responses of the system.

3.15 Derive the closed-form expression for the complete response (by finding the
zero-state response using the convolution-summation and the zero-input response)
of the system governed by the difference equation

y(n) = 2x(n) − 4x(n − 1) + 1

3
y(n − 1)

with the initial condition y(−1) = −3 and the input x(n) = 2 sin( 2π6 n + π
3 )u(n).

List the values of the complete response y(n) at n = 0, 1, 2, 3, 4, 5. Deduce the
expressions for the transient and steady-state responses of the system.

3.16 The impulse response of a LTI system is given. Is the system stable?

3.16.1 h(0) = 0, h(n) = (−1)n+1

n
, n = 1, 2, . . ..

3.16.2 h(0) = 0, h(n) = 1
n
, n = 1, 2, . . ..

3.16.3 h(0) = 0, h(n) = 1
n2

, n = 1, 2, . . ..

3.17 Derive the closed-form expression of the impulse response h(n) of the
combined system consisting of systems governed by the given difference equations,
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with input x(n) and output y(n), if the systems are connected in (i) parallel and (ii)
in cascade. List the first four values of the impulse response of the combined system.

3.17.1

y1(n) = 3x1(n) + 2x1(n − 1) − 1

3
y1(n − 1) and

y2(n) = 2x2(n) − 3x2(n − 1) − 1

4
y2(n − 1)

* 3.17.2

y1(n) = x1(n) − x1(n − 1) + 1

5
y1(n − 1) and

y2(n) = x2(n) + 2x2(n − 1) − 3

5
y2(n − 1)

3.17.3

y1(n) = 2x1(n) + 2x1(n − 1) + 2

5
y1(n − 1) and

y2(n) = 3x2(n) − x2(n − 1) + 5

6
y2(n − 1)



Chapter 4
Time-Domain Analysis of Continuous
Systems

While discrete systems, in general, are advantageous, we still need the study of
continuous systems. Continuous systems offer higher speed of operation. Even if
we decide to use a discrete system, as the input and output signals are mostly
continuous, we still need continuous systems for the processing of signals before
and after the interface between the two types of systems. The design of a discrete
system can be made by first designing a continuous system and then using a suitable
transformation of that design. As the discrete systems, usually, approximate the
continuous systems, comparing with the exact analysis results of the continuous
systems with that of the actual performance of the corresponding discrete system
gives a measure of the approximation. For these reasons, the study of continuous
systems is as much required as that of the discrete systems. In this chapter, we study
two time-domain models of LTI continuous systems. We consider only first-order
systems in this chapter as frequency-domain methods, described in later chapters,
are easier for the analysis of higher-order systems. The analysis procedure remains
essentially the same as that of discrete systems except that continuous systems are
modeled using differential equation and convolution-integral, as the signals are of
continuous type.

In Sect. 4.1, the various classifications of LTI continuous systems are described.
In Sects. 4.2 and 4.3, we develop the differential equation and convolution-integral
models of a system, respectively. Using these models, in Sect. 4.4, the various
components of the system response are derived. The important property of an
exponential input signal to remain in the same form at the output of a stable
LTI system is demonstrated. In Sect. 4.5, the stability of a system in terms of its
impulse response is established. In Sect. 4.6, the basic components used in the
implementation of continuous systems are presented, and an implementation of a
specific system is given. The decomposition of an higher-order system into a set of
lower-order systems is also presented.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Sundararajan, Signals and Systems,
https://doi.org/10.1007/978-3-031-19377-4_4

97

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-19377-4_4&domain=pdf

 -2016 61494 a -2016
61494 a
 
https://doi.org/10.1007/978-3-031-19377-4_4


98 4 Time-Domain Analysis of Continuous Systems

4.1 Classification of Systems

4.1.1 Linear and Nonlinear Systems

A system is linear if its response to a linear combination of input signals is the same
linear combination of the individual responses to the inputs. Let the response of a
system to signal x1(t) be y1(t) and the response to x2(t) be y2(t). Then, the system
is linear if the response to a linear combination, ax1(t) + bx2(t), is ay1(t) + by2(t),
where a and b are arbitrary constants. Nonlinear terms, such as x2(t) or x(t)y(t)

(the products involving x(t), y(t), and their derivatives), in the differential equation
are an indication that the system is not linear. Any nonzero constant term is also
an indication of a nonlinear system. The linearity condition implies that the total
response of a linear system is the sum of zero-input and zero-state components. The
zero-input component of the response of a system is its response due to the initial
conditions alone with the input assumed to be zero. The zero-state component of the
response of a system is its response due to the input alone with the initial conditions
assumed to be zero. The linearity of a system with respect to zero-input and zero-
state responses should be checked individually. In most cases, zero-state linearity
implies zero-input linearity.

Example 4.1 Given the differential equation of a system, with output y(t) and input
x(t), determine whether the system is linear. Assume that the initial condition y(0)
is zero.

(a) y(t) = x(t) + t
dy(t)
dt

(b) y(t) = x(t) + (
dy(t)
dt

)2

Solution

(a) Let y1(t) be the output to x1(t) and y2(t) be the output to x2(t). The system
differential equation with x1(t) is y1(t) = x1(t) + t

dy1(t)
dt

. The system

differential equation with x2(t) is y2(t) = x2(t) + t
dy2(t)

dt
. Then,

ay1(t) + by2(t) = ax1(t) + at
dy1(t)

dt
+ bx2(t) + bt

dy2(t)

dt

= ax1(t) + bx2(t) + t
d

dt
(ay1(t) + by2(t))

The system output to x(t) = ax1(t) + bx2(t) is y(t) = ay1(t) + by2(t) for a
linear system. Substituting in the differential equation, we get

ay1(t) + by2(t) = ax1(t) + bx2(t) + t
d

dt
(ay1(t) + by2(t))

As both the differential equations are the same, the system is linear.
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(b) The system differential equation with x1(t) is y1(t) = x1(t) + (
dy1(t)

dt
)2. The

system differential equation with x2(t) is y2(t) = x2(t) + (
dy2(t)

dt
)2. Then,

ay1(t) + by2(t) = ax1(t) + a

(
dy1(t)

dt

)2

+ bx2(t) + b

(
dy2(t)

dt

)2

The system output to x(t) = ax1(t) + bx2(t) is y(t) = ay1(t) + by2(t) for a
linear system. Substituting in the differential equation, we get

ay1(t) + by2(t) = ax1(t) + bx2(t) +
(

a
dy1(t)

dt
+ b

dy2(t)

dt

)2

As the differential equations are different, the system is nonlinear.

4.1.2 Time-Invariant and Time-Varying Systems

The output of a time-invariant system to the input x(t − t0) must be y(t − t0) for
all t0, assuming that the output to the input x(t) is y(t) and the initial conditions
are identical. Terms, such as x(2t) or x(−t), with a nonzero and nonunity constant
associated with the argument t in the differential equation indicate a time-variant
system. Any coefficient that is an explicit function of t in the differential equation
also indicates a time-variant system.

Example 4.2 Given the differential equation of a system, with output y(t) and
input x(t), determine whether the system is time-invariant. Assume that the initial
condition is zero.

(a) y(t) = x(t) + t
dy(t)
dt

(b) y(t) = x(t) + (
dy(t)
dt

)2

Solution

(a) By replacing t by (t − a) in the differential equation, we get

y(t − a) = x(t − a) + (t − a)
dy(t − a)

dt

The system output to x(t−a) is y(t−a) for a time-invariant system. Substituting
in the differential equation, we get

y(t − a) = x(t − a) + t
dy(t − a)

dt
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As the differential equations are different, the system is time-varying.
(b) By replacing t by (t − a) in the differential equation, we get

y(t − a) = x(t − a) +
(

dy(t − a)

dt

)2

The system output to x(t−a) is y(t−a) for a time-invariant system. Substituting
in the differential equation, we get

y(t − a) = x(t − a) +
(

dy(t − a)

dt

)2

As both the differential equations are the same, the system is time-invariant.

Linear time-invariant (LTI) systems satisfy the linearity and time-invariant prop-
erties and are easier to analyze and design. Most practical systems, although not
strictly linear and time-invariant, can be considered as LTI systems with acceptable
error limits.

4.1.3 Causal and Noncausal Systems

Practical systems respond only to present and past input values, but not to the
future input values. These systems are called causal or nonanticipatory systems.
This implies that the impulse response of a causal system h(t) is zero for t < 0. If
the present output y(t) depends on the input x(t + t0) with t0 > 0, then the system is
noncausal. Ideal systems, such as ideal filters, are noncausal. However, they are of
interest because they set an upper bound for the system response. Practical systems
approximate the ideal response while being causal (i.e., physically realizable).

Example 4.3 Given the differential equation of a system, with output y(t) and input
x(t), determine whether the system is causal. Find the impulse response.

(a) y(t) = x(t + 1) + 2x(t) − 3x(t − 1)
(b) y(t) = 2x(t) − x(t − 1) + 3x(t − 2).

Solution

(a) As the output y(t) is a function of the future input sample x(t + 1), the system
is noncausal. The impulse response of the system is obtained by substituting
x(t) = δ(t) in the differential equation, as y(t) = h(t) = δ(t + 1) + 2δ(t) −
3δ(t − 1).
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(b) The system is causal. The impulse response of the system is y(t) = h(t) =
2δ(t) − δ(t − 1) + 3δ(t − 2).

4.1.4 Instantaneous and Dynamic Systems

With regard to system memory, systems are classified as instantaneous or dynamic.
A system is instantaneous (no memory) if its output at an instant is a function of the
input at that instant only. An example is an electrical circuit consisting of resistors
only with input-output relationship such as v(t) = Ri(t). Any system with storage
elements, such as inductors and capacitors, is called a dynamic system, since the
output at an instant of such systems is a function of past values of the input also. If
the output depends only on the input during T seconds of immediate past, then it
is called finite memory system. Systems with capacitive or inductive elements are
infinite memory systems, since their output is a function of entire past history of the
input. Instantaneous systems are a special case of the dynamic systems with zero
memory.

4.1.5 Lumped-Parameter and Distributed-Parameter Systems

If the propagation time of a signal through a system is negligible, then that system
is called a lumped-parameter system. For example, the current through a resistor in
such a system is a function of time only, but not on the dimensions of the resistor.
Such systems are modeled using ordinary differential equations. If the dimensions
of a component are large compared to the wavelength of the highest frequency
of interest, then the signal through that component is a function of time and the
dimensions of the component. A system with that type of components is called a
distributed-parameter system. Such systems, for example, transmission lines, are
modeled using partial differential equations.

4.1.6 Inverse Systems

A system is invertible if its input can be determined from its output. This implies
that each input has a unique output. Systems with the input-output relationship such
as y(t) = x2(t) are not invertible. If the impulse response of a system, made up
of two systems connected in cascade, is h(t) = δ(t), then the two systems are the
inverses of one another. For example, the inverse of the system with the input-output
relationship y(t) = 4x(t) is x(t) = 1

4y(t).
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4.2 Differential Equation Model

Commonly used models for continuous linear systems are differential equation,
convolution-integral, transfer function, and state space. Differential equations are
used in one type of time-domain modeling of continuous systems. The input-output
relationship of commonly used components of a system, such as inductors and
capacitors, is governed by differential equations. Therefore, differential equations
naturally arise in modeling systems. The interconnection of several elements leads
to a model represented by higher-order differential equations. Consider the N th
order differential equation of a causal LTI continuous system relating the output
y(t) to the input x(t)

dNy(t)

dtN
+ aN−1

dN−1y(t)

dtN−1 + · · · + a1
dy(t)

dt
+ a0y(t)

= bN

dNx(t)

dtN
+ bN−1

dN−1x(t)

dtN−1 + · · · + b1
dx(t)

dt
+ b0x(t)

where N is the order of the system and the coefficients a’s and b’s are real constants
characterizing the system. If the input is zero, the differential equation reduces to

dNy(t)

dtN
+ aN−1

dN−1y(t)

dtN−1 + · · · + a1
dy(t)

dt
+ a0y(t) = 0

Denoting d
dt

= D, we get

(DN + aN−1D
N−1 + · · · + a1D + a0)y(t) = 0

The solution to this equation gives the zero-input response of the system. This
equation is a linear combination of y(t) and its N successive derivatives equated
to zero, for all values of t . Therefore, y(t) and all its N successive derivatives must
be of the same form. Only the exponential function has this property. Therefore,
the solution is of the form Ceλt , where C and λ are to be found. Substituting
y(t) = Ceλt , dy(t)

dt
= Cλeλt , etc., we get

(λN + aN−1λ
N−1 + · · · + a1λ + a0)Ceλt = 0

Assuming that the solution is nontrivial (C �= 0),

(λN + aN−1λ
N−1 + · · · + a1λ + a0) = 0 (4.1)

The characteristic polynomial on the left side has N roots, λ1, λ2, . . . , λN . There-
fore, we get N solutions, C1e

λ1t , C2e
λ2t , . . . , CNeλN t . As the system is assumed

to be linear and the solution has to satisfy N independent initial conditions of the
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system, the zero-input response of the system is given by

y(t) = C1e
λ1t + C2e

λ2t + · · · + CNeλN t ,

assuming all the roots are distinct. The constants can be found using the N

independent initial conditions of the system. The zero-input response represents
a behavior that is characteristic of the system. As the form of the zero-input
response of any N -th order system is the same, it is the set of roots of the
characteristic polynomial that distinguishes a specific system. Therefore, Eq. (4.1)
is called the characteristic equation of the system, and the roots, λ1, λ2, . . . , λN , are
called the characteristic roots of the system. The corresponding exponentials, eλ1t ,
eλ2t , . . . , eλN t , are called the characteristic modes of the system. The characteristic
modes of a system are also influential in the determination of the zero-state response.

Example 4.4 Find the complete response of the system characterized by the
differential equation

dy(t)

dt
+ 4y(t) = 3x(t)

with x(t) = u(t), the unit-step input signal. Assume that y(0−) = 2.

Solution The characteristic equation of the system is λ + 4 = 0. The zero-input
response is of the form Ce−4t . For a unit-step input, the particular response is a
constant K. Therefore, the complete response is of the form

y(t) = K + Ce−4t

Substituting it in the differential equation,

−4Ce−4t + 4K + C4e−4t = 3

we get K = 3/4. Using the initial condition y(0−) = 2,

y(t) = 3

4
+ Ce−4t |t=0− = 2,

we get C = 5
4 . Therefore, the total response is

y(t) =
(
3

4
+ 5

4
e−4t

)
u(t)

The first term of the response is the steady-state response, and the second term
is the transient. The zero-input and the zero-state components of the response,
respectively, are
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Fig. 4.1 Block diagram of the simulation of the first-order differential equation

Fig. 4.2 Zero-state response

yzi(t) = 2e−4t u(t) and yzs(t) = 3

4
− 3

4
e−4t u(t)

These components, of course, add up to the total response. As the impulse is the
derivative of the step, the impulse response, h(t) = 3e−4t u(t), can be obtained by
differentiating the zero-state step response.

Block diagram of the simulation of the first-order differential equation is shown
in Fig. 4.1. The initial condition is set in the integrator block indicated by 1

s
. The

input to the integrator block is

dy(t)

dt
= 3x(t) − 4y(t)

The zero-state response is shown in Fig. 4.2. The zero-input response is shown in
Fig. 4.3. The total response is shown in Fig. 4.4.

Impulse Response
Block diagram of the simulation of the system to determine the impulse response
is shown in Fig. 4.5. The initial condition in the integrator block must be set to
zero. Further the pulse width of the pulse generator has to be very short, and the
corresponding height must be set such that the area of the pseudo impulse is one.
The impulse response, shown in Fig. 4.6, was obtained using a pulse width 0.0001
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Fig. 4.3 Zero-input response

Fig. 4.4 Total response

Fig. 4.5 Block diagram of the simulation of the system to determine the impulse response

Fig. 4.6 Impulse response
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and height 10,000. This simulation confirms the fact that, while the impulse is an
ideal signal, it can be approximated by a sufficiently short pulse with unit area for
all practical purposes. In all the figures, time versus amplitude of the response is
shown.

4.3 Convolution-Integral Model

We have shown, in Chap. 2, that an arbitrary signal x(t) can be decomposed into
scaled and shifted impulses as

x(t) =
∫ ∞

−∞
x(τ)δ(t − τ)dτ

Let the response of a system to the impulse δ(t) be h(t). Then, the system response
of a LTI system to x(τ)δ(t − τ)dτ is x(τ)h(t − τ)dτ . The total response y(t) of the
system to the signal x(t) is the integral of responses of all the constituent continuum
of impulse components of x(t):

y(t) =
∫ ∞

−∞
x(τ)h(t − τ)dτ = x(t) ∗ h(t)

This relation is the convolution-integral of the signals x(t) and h(t) denoted as x(t)∗
h(t). As the impulse response h(t) of a causal system is zero for t < 0, the upper
limit of the integral will be t in this case, instead of ∞, as h(t − τ) = 0, τ > t .
If the signal x(t) starts at the instant t = t0, then the lower limit is equal to t0. The
convolution output is the integral of products of two signals, each other’s argument
running in opposite directions.

To summarize, the zero-state output of a system is found by convolution with the
repeated use of four operations (fold, shift, multiply, and integrate).

1. One of the two signals to be convolved (say h(τ)) is time-reversed that is folded
about the vertical axis at the origin to get h(−τ).

2. The time-reversed signal, h(−τ), is shifted by t0 seconds (right shift for positive
t0 and left shift for negative t0), yielding h(t0 − τ), to find the output at t = t0.

3. The product of the two signals, x(τ) and h(t0 − τ), is found.
4. The integral of the product is the output value at t = t0.

Example 4.5 Find the convolution of the signals x(t) = e−2t u(t) and h(t) =
e−3t u(t).

Solution

y(t) =
∫ t

0
e−2τ e−3(t−τ)dτ = e−3t

∫ t

0
eτ dτ = (e−2t − e−3t )u(t)
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Fig. 4.7 (a) x(t) = e−2t u(t), x(τ) = e−2τ u(τ ); (b) h(t) = e−3t u(t), h(τ) = e−3τ u(τ ); (c)
x(τ) = e−2τ u(τ ) and the time-reversed signal h(−τ) = e3τ u(−τ); (d) x(τ) = e−2τ u(τ ) and the
time-reversed and advanced signal h(−(τ + 1)) = e3(τ+1)u(−(τ + 1)); (e) x(τ) = e−2τ u(τ ) and
the time-reversed and delayed signal h(−(τ − 1)) = e3(τ−1)u(−(τ − 1)); (f) The product of x(τ)

and h(−(τ −1)), e−2τ u(τ )e3(τ−1)u(−(τ −1)); (g) The convolution output of x(t) = e−2t u(t) and
h(t) = e−3t u(t), y(t) = (e−2t − e−3t )u(t)

Figure 4.7a and b shows the two signals to be convolved. These signals and
the convolution output, shown in Fig. 4.7g, have the same independent variable t .
However, the convolution-integral, for each value of t , is evaluated with respect
to the dummy variable τ (a dummy variable exists only during the operation).
Therefore, the two signals to be convolved are also shown with respect to τ in
Fig. 4.7a and b. Figure 4.7c shows x(τ) = e−2τ u(τ ) and the time-reversed signal
h(−τ) = e3τ u(−τ). The convolution output at t = 0 is zero, since the area
enclosed by the signal e−2τ u(τ )e3τ u(−τ) is zero (there is no overlap of nonzero
portions of the signals). Figure 4.7d shows x(τ) = e−2τ u(τ ) and the time-reversed
and advanced signal h(−(τ + 1)) = e3(τ+1)u(−(τ + 1)). The convolution output
at t = −1 is zero, since there is no overlap of nonzero portions of the signals.
Figure 4.7e shows x(τ) = e−2τ u(τ ) and the time-reversed and delayed signal
h(−(τ − 1)) = e3(τ−1)u(−(τ − 1)). The nonzero portions of the two signals
overlap in the interval from τ = 0 and τ = 1. The product of the signals,
e−2τ u(τ )e3(τ−1)u(−(τ −1)), in this interval is shown in Fig. 4.7f. The area enclosed
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by this signal is the convolution output at t = 1. The convolution output of
x(t) = e−2t u(t) and h(t) = e−3t u(t) is y(t) = (e−2t − e−3t )u(t) and is shown
in Fig. 4.7g.

Approximation of Continuous Convolution Through Discrete Convolution
As stated several times before, the amplitude profiles of practical signals are usually
arbitrary. Further, most of the signals are of infinite-extent. However, significant
values occur only during some finite interval. That is, all the practical signals can
be considered as time-limited with adequate accuracy. Similarly, all the practical
signals can be considered as band-limited. That is, no physical device can generate
signals with frequencies of infinite order. Due to these considerations, continuous
convolutions can be approximated, with adequate accuracy, using discrete convolu-
tion, which can be evaluated by a digital computer.

To approximate y(t) = x(t) ∗ h(t), the first step is to get the samples of x(t) and
h(t), over a finite duration, with a suitable sampling interval Ts . The selection of the
sampling interval depends on the frequency content of the signals. The duration of
the signals has to be decided so that the values outside the duration are insignificant.
At any discontinuity of the signals, the average value has to be taken. The sampling
and truncation operations yield the approximate discrete versions, x(n) and h(n),
of x(t) and h(t). The discrete convolution y(n) = x(n) ∗ h(n) is computed. Then,
y(t) ≈ Tsy(n). The sampling interval enters in the expression for y(t) since the
samples of the continuous signal is represented by an area of duration Ts . As
Ts → 0, the sampled signal reverts to the corresponding continuous signal. With
no idea of the effective duration of the signals or the frequency content, simply
choose arbitrary values. Compute the convolution. Then, double the duration of
the signals and reduce the sampling intervals by a factor of 2 and then recompute
the convolution. This is a trial-and-error procedure. A good approximation of the
continuous convolution is obtained, when two consecutive iterations yield almost
the same output. A program is available at the book’s website.

4.3.1 Properties of Convolution-Integral

The convolution-integral is commutative, that is, the order of the two signals to be
convolved is immaterial.

x(t) ∗ h(t) = h(t) ∗ x(t)

The convolution-integral is distributive. That is, the convolution of a signal with the
sum of two signals is the same as the sum of the individual convolutions of the first
signal with the other two signals.

x(t) ∗ (h1(t) + h2(t)) = x(t) ∗ h1(t) + x(t) ∗ h2(t)
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The convolution-integral is associative. That is, the convolution of a signal with the
convolution of two signals is the same as the convolution of the convolution of the
first two signals with the third signal.

x(t) ∗ (h1(t) ∗ h2(t)) = (x(t) ∗ h1(t)) ∗ h2(t)

The shift property of convolution is that

if x(t) ∗ h(t) = y(t), then x(t − t1) ∗ h(t − t2) = y(t − t1 − t2)

The convolution of two shifted signals is the convolution of the two original signals
shifted by the sum of the shifts of the individual signals.

The duration of the convolution of two finite length signals of duration T1 and T2
is T1 + T2, as the overlap of nonzero portions can occur only over that length.

Convolution of a signal x(t) with the unit-impulse leaves the signal unchanged
except for the translation of the origin of the signal to the location of the impulse.

x(t) ∗ δ(t − t1) =
∫ ∞

−∞
δ(τ − t1)x(t − τ)dτ = x(t − t1)

Convolution of x(t) with the unit-step is the running integral of x(t).

x(t) ∗ u(t) =
∫ t

−∞
x(τ)dτ

For example, u(t) ∗ u(t) = tu(t).

4.3.2 Convolution of a Function with a Narrow Unit Area
Pulse

Looking at the amplitude profile of signals, such as a sinusoid or a unit-step signal
or an arbitrary signal, we are able to visualize the function. As the amplitude profile
of the continuous unit-impulse signal is undefined, it is presented as an unit area
narrow pulse with the width of the pulse approaching zero. It was presented, in
Chap. 2, using a narrow rectangular pulse with its width approaching zero and the
unit area remaining constant throughout the limit process. As the concept is difficult,
we present the unit-impulse from the convolution point of view also.

Let x(t) = 2+ e−t and h(t) = 5(u(t + 0.1) − u(t − 0.1)), as shown in Fig. 4.8a
and b. Let us find the convolution of x(t) and h(t). Figure 4.9 shows the signal
x(τ) and the delayed by t = 1 and time-reversed h(τ), h(1 − τ), and their product
x(τ)h(1− τ). The area enclosed by x(τ)h(1− τ) is 2.3685, the convolution output
at t = 1. The value of the function x(t) at t = 1 is 2.3679. Both the values are
almost the same. By shifting the pulse and convolving at all points of the function
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Fig. 4.9 Convolution of x(τ) = 2 + e−τ and h(τ) = 5(u(τ + 0.1) − u(τ − 0.1)) at t = 1

will yield substantially the other function. Reducing the width of the pulse will
reduce the error of approximation. It is understood that the variation of the function
x(τ) throughout the width of the pulse is negligible so that the approximation of the
function is adequate. Of course, when the width of the pulse approaches zero, the
pulse degenerates into an impulse, and the representation becomes exact. Therefore,
an important property of the convolution-integral is that convolving any function
with the unit-impulse will result in a copy of the function shifted to the location of
the impulse. That is,

x(t) =
∫ ∞

−∞
x(τ)δ(t − τ)dτ

In experimental work and numerical analysis, finite width pulses of sufficiently short
duration should be used.

4.4 System Response

As the amplitude profile of practical signals is usually arbitrary, the output of a sys-
tem to such signals is found by decomposing the input signals into mathematically
well-defined impulse or sinusoidal (in general, exponential) signals. While we are
interested in the response of a system to a specific input signal, we use the impulse
and the sinusoidal signals as intermediaries. In the convolution-integral model of a
system, the impulse signal is used as an intermediary. While these intermediary
signals are mathematical idealizations, they can be approximated to a required
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accuracy for practical purposes. Therefore, it is important to find the response of
systems to these signals. In addition, system characteristics, such as rise-time, time-
constant, and frequency selectivity, can be obtained from these responses.

4.4.1 Impulse Response

The impulse response, h(t), of a system is its response to the unit-impulse input
signal with the initial conditions of the system zero.

Example 4.6 Find the closed-form of the impulse response of the system governed
by the differential equation, with output y(t) and input x(t):

dy(t)

dt
+ a0y(t) = b1

dx(t)

dt
+ b0x(t)

Solution The input signal x(t) = δ(t) is effective only at the instant t = 0 and
establishes nonzero initial conditions in the system, by storing energy in system
components such as capacitor, at the instant immediately after t = 0. Therefore,
for t > 0, this problem can be considered as finding the zero-input response of the
system with the initial condition y(0+). The symbol y(0+) indicates the value of
y(t) at the instant immediately after t = 0 and y(0−) indicates the value of y(t) at
the instant immediately before t = 0. Therefore, we have to find the initial condition
y(0+) first and then the response to δ(t). The response to the input b1

dδ(t)
dt

+ b0δ(t)

is found using the linearity property of the system. The value y(0+) is obtained by
integrating the differential equation

dy(t)

dt
+ a0y(t) = δ(t)

from t = 0− to t = 0+.
∫ 0+

0−
dy(t)

dt
dt +

∫ 0+

0−
a0y(t)dt =

∫ 0+

0−
δ(t)dt

The right-hand side is equal to one. The first term on the left-hand side reduces
to y(0+) as y(0−) = 0. Remember that the impulse response is defined as the
response of a system to the unit-impulse input with the initial conditions zero.
An impulse on the right-hand side implies an impulse on the left-hand side. This
impulse must occur in the highest derivative, dy(t)

dt
, of y(t) since an impulse in y(t)

requires the first term to contain the derivative of the impulse and the input does
not contain any such function. Therefore, the second term reduces to zero, since
the function y(t) is known to be finite (a step function as it the integral of the first
term) in the infinitesimal interval of integration. Therefore, the equation reduces to
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y(0+) = 1. In general, the integrals of all the lower-order derivative terms of an
N -th order differential equation evaluate to zero at t = 0+, and the only nonzero

initial condition is dN−1y(t)

dtN−1

∣∣∣
t=0+ = 1.

For a first-order system, the zero-input response is of the form Ce−a0t . With the
initial condition y(0+) = 1, we get the zero-input response as e−a0t u(t). For the
input b0δ(t), the response is b0e

−a0t u(t). For the input b1
dδ(t)
dt

, by differentiating
b1e

−a0t u(t), we get the response as b1δ(t) − b1a0e
−a0t u(t). Note that, for linear

systems, if y(t) is the output to x(t), then dy(t)
dt

is the output to dx(t)
dt

. Therefore, the
impulse response of the system is

h(t) = b0e
−a0t u(t) + b1δ(t) − b1a0e

−a0t u(t) = b1δ(t) + (b0 − b1a0)e
−a0t u(t)

4.4.2 Response to Unit-Step Input

Example 4.7 Find the complete response of the system characterized by the
differential equation

dy(t)

dt
+ 4y(t) = 3x(t)

with x(t) = u(t), the unit-step input signal. Assume that y(0−) = 2.

Solution

Zero-Input Response
The characteristic equation of the system is λ+4 = 0. The zero-input response is of
the form Ce−4t . Using the given initial condition, we get C = 2 and the zero-input
response is 2e−4t u(t).

Zero-State Response
The impulse response of the system is h(t) = 3e−4t u(t). Using the convolution-
integral, we get the zero-state response as

y(t) =
∫ t

0
u(t − τ)3e−4τ dτ = 3

∫ t

0
e−4τ dτ = 3

4
(1 − e−4t )u(t)

As the unit-step signal is the integral of the unit-impulse, the unit-step response is
the integral of the of the unit-impulse response. The unit-impulse response h(t) is
the derivative of the unit-step response y(t).
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Fig. 4.10 The response of the system for unit-step signal: (a) zero-input response; (b) zero-state
response; (c) complete response; (d) transient response due to input; (e) transient response; (f)
steady-state response

Complete Response
The complete response of the system is the sum of the zero-input and zero-state
responses.

y(t) =
zero-state︷ ︸︸ ︷
3

4
− 3

4
e−4t +

zero-input︷ ︸︸ ︷
2e−4t , t ≥ 0

=

steady-state︷︸︸︷
3

4

transient︷ ︸︸ ︷
−3

4
e−4t + 2e−4t = 3

4
+ 5

4
e−4t

Transient and Steady-State Responses
The transient response of the system is 5

4e
−4t . The steady-state response of the

system, 3
4 , is the response of the system after the transient response dies down.

The transient response of a stable system always decays with time. The form of
the transient response depends solely on the characteristics of the system while the
form of the steady-state response solely depends on the input signal. The various
components of the response are shown in Fig. 4.10. The first three responses have
been already obtained by simulation.

Table 4.1 shows a list commonly occurring convolution integrals.
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Table 4.1
Convolution-integral table

x(t) h(t) x(t) ∗ h(t)

x(t) δ(t − T ) x(t − T )

eatu(t) u(t) eat −1
a

u(t)

u(t) u(t) tu(t)

eatu(t) ebtu(t) eat −ebt

a−b
u(t), a �= b

eatu(t) eatu(t) teatu(t)

teatu(t) eatu(t) 0.5t2eatu(t)

Fig. 4.11 (a) Typical monotonically decreasing impulse responses; (b) the corresponding unit-
step responses; (c) an impulse response that is a combination of an impulse and an exponential; (d)
the corresponding unit-step response

4.4.3 Characterization of Systems by Their Responses to
Impulse and Unit-Step Signals

We can get information about the system behavior from the impulse and unit-step
responses. If the significant portions of the impulse response is of longer duration,
as shown by solid line in Fig. 4.11a, then the response of the system is sluggish.
The corresponding unit-step response is shown by solid line in Fig. 4.11b. The time
taken for the unit-step response to rise from 10% to 90% of its final value is called
the rise time of the system. If the significant portions of the impulse response is
of shorter duration, as shown by dashed line in Fig. 4.11a, then the response of the
system is faster, as shown by dashed line in Fig. 4.11b. A system with a shorter
impulse response has less memory, and it is readily influenced by the recent values
of the input signal. Therefore, its response is fast. The faster is the rate of decay of
the impulse response, the faster the response approaches its steady-state value.

The unit-step response is the integral of the unit-impulse response, y(t) =∫ t

0 h(τ)dτ . The final value tends to one in Fig. 4.11b, as the unit-step signal,
ultimately, acts like a DC signal. The monotonically decreasing impulse response
indicates a system that passes low-frequency components of a signal well.
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Figure 4.11c shows the impulse response δ(t) − e−t u(t). The corresponding
unit-step response is shown in Fig. 4.11d. Note that the final value of the unit-step
response approaches a very low value in Fig. 4.11d. This indicates a system that
does not pass low-frequency components of a signal well.

4.4.4 Response to Complex Exponential Input

A complex exponential with frequency ω0 is given as x(t) = ejω0t , −∞ < t < ∞.
Assuming a causal and stable system with impulse response h(t), the output is given
by the convolution-integral as

y(t) =
∫ ∞

0
h(τ)ejω0(t−τ)dτ = ejω0t

∫ ∞

0
h(τ)e−jω0τ dτ

Note that the second integral is independent of t . Let

H(jω0) =
∫ ∞

0
h(τ)e−jω0τ dτ

Then,

y(t) = H(jω0)e
jω0t = H(jω0)x(t)

H(jω0) is called the frequency response since it is a constant complex scale
factor indicating the amount of change in the amplitude and phase of an input
complex exponential ejω0t with frequency ω0 at the output. The point is that the
input-output relationship of a LTI system becomes a multiplication operation rather
than the more complex convolution operation. As the complex exponential is the
only signal that has this property, it is used predominantly as the basis for signal
decomposition. Even if the exponent of the exponential input signal has a real part,
x(t) = e(σ+ω0)t = es0t , the response of the system is still related to the input by
the multiplication operation. A real sinusoid input A cos(ω0t + θ) is also changed
at the output by the same amount of amplitude and phase of the complex scale
factor H(jω0). That is, A cos(ω0t + θ) is changed to (|H(jω0)|A) cos(ω0t + (θ +
� (H(jω0))).

There was no transient component in the output expression y(t), since the
exponential signal was applied at t = −∞. For finite values of t , any transient
component in the output of a stable systemmust have died out. However, if we apply
the exponential at any finite instant, say t = 0, there will be a transient component,
in addition to the steady-state component H(jω0)e

jω0t u(t).
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Example 4.8 Let the input signal to a stable system with impulse response h(t) =
e−t u(t) be x(t) = es0t u(t). Find the response y(t) of the system. Assume that
y(0−) = 0.

Solution Using the convolution-integral, we get

y(t) =
∫ t

0
e−τ es0(t−τ)dτ = es0t

∫ t

0
e−τ(1+s0)dτ

=
(

1

s0 + 1

) (
es0t − e−t

)
u(t), s0 �= −1

The steady-state component,
(

1
s0+1

) (
es0t
)
u(t), is the same as the input complex

exponential with a complex scale factor. The second term,
(−e−t

s0+1

)
u(t), is the

transient component that will die for sufficiently large values of t .

4.5 System Stability

One of the criteria for the stability of a system is that the system output is bounded
if the input is bounded. A signal x(t) is bounded if |x(t)| ≤ P for all values of t ,
where P is a finite positive number. For example, the signal x(t) = e−0.8t u(t) is
bounded and x(t) = e0.8t u(t) is unbounded. As convolution-integral is an integral
of products, its value is bounded if the input signal is bounded and the value of the
integral of the magnitude of the impulse response is bounded. Let the input signal
x(t) be bounded by the positive constant P . From the convolution-integral relation
for a causal system with impulse response h(t), we get

|y(t)| = |
∫ ∞

0
h(τ)x(t − τ)dτ |

≤
∫ ∞

0
|h(τ)x(t − τ)dτ | =

∫ ∞

0
|h(τ)||x(t − τ)|dτ

|y(t)| ≤
∫ ∞

0
|h(τ)|Pdτ = P

∫ ∞

0
|h(τ)|dτ

Therefore, if
∫ ∞

0
|h(τ)|dτ is bounded then |y(t)| is bounded. Consequently, a

necessary and sufficient stability condition is that the impulse response is absolutely
integrable:

∫ ∞

0
|h(τ)|dτ < ∞
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As we used the convolution-integral to derive the stability condition, the stability
condition ensures a bounded zero-state response. The stability of the zero-input
response should be separately checked, and it is presented in Chap. 10.

Example 4.9 Find the condition so that the causal LTI system governed by the
differential equation, with output y(t) and input x(t),

dy(t)

dt
+ a0y(t) = b0x(t)

is stable.

Solution As the impulse response of this system, h(t) = b0e
−a0t u(t), is an

exponential signal, the condition a0 > 0 ensures that h(t) is absolutely integrable.

4.6 Realization of Continuous Systems

The three basic components required in the realization of continuous systems are
(i) multiplier unit, (ii) adder unit, and (iii) integrator unit. A multiplier unit, shown
in Fig. 4.12a, produces an output signal c x(t), which is the product of the input
signal x(t) with the coefficient c. An adder unit, shown in Fig. 4.12b, produces an
output signal x(t) + y(t), which is the sum of the input signals x(t) and y(t). By
changing the sign of the subtrahend and then adding it with the minuend, subtraction
operation can be realized by an adder unit. An integrator unit, shown in Fig. 4.12c,
produces an output

∫ t

−∞ x(τ) dτ for an input x(t). The output is the integral of the
input.

The realization of a continuous system is an interconnection of the basic
components. Consider the realization, shown in Fig. 4.13, of a first-order system
governed by the differential equation, with output y(t) and input x(t):

dy(t)

dt
+ 3y(t) = 2x(t)

A multiplier unit with coefficient −3 and input y(t) produces −3y(t). A multiplier
unit with coefficient 2 and input x(t) produces 2x(t). The adder unit combines the
two partial results to produce the signal −3y(t) + 2x(t), which is equal to dy(t)

dt
. By

passing this signal through an integrator unit, we get y(t).

Fig. 4.12 Basic components
required in the realization of
continuous systems: (a)
multiplier unit; (b) adder unit;
(c) integrator unit
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Fig. 4.13 A continuous
system realization

Fig. 4.14 (a) Two systems
connected in parallel: (b) a
single system equivalent to
the system in (a)

4.6.1 Decomposition of Higher-Order Systems

To meet a given specification, a higher-order system is often required. Due to several
advantages, a system is usually decomposed into first- and second-order systems
connected in cascade or parallel. Consider two systems with impulse responses
h1(t) and h2(t) connected in parallel, shown in Fig. 4.14a. The same input is applied
to each system, and the total response is the sum of the individual responses. The
combined response of the two systems for the input x(t) is y(t) = x(t) ∗ h1(t) +
x(t) ∗ h2(t). This expression, due to the distributive property of convolution, can be
written as y(t) = x(t) ∗ (h1(t) + h2(t)). That is, the parallel connection of the two
systems is equivalent to a single system with impulse response h(t) = h1(t)+h2(t),
as shown in Fig. 4.14b.

Consider two systems with impulse responses h1(t) and h2(t) connected in
cascade, shown in Fig. 4.15a. The output of one system is the input to the other. The
response of the first system for the input x(t) is y1(t) = x(t)∗h1(t). The response of
the second system for the input y1(t) = x(t) ∗h1(t) is y(t) = (x(t) ∗h1(t)) ∗h2(t).
This expression, due to the associative property of convolution, can be written as
y(t) = x(t) ∗ (h1(t) ∗ h2(t)). That is, the cascade connection of the two systems
is equivalent to a single system with impulse response h(t) = h1(t) ∗ h2(t), as
shown in Fig. 4.15b. Due to the commutative property of convolution, the order of
the systems in the cascade connection is immaterial, with respect to the input-output
relationship.
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Fig. 4.15 (a) Two systems
connected in cascade; (b) a
single system equivalent to
the system in (a)

Fig. 4.16 Two systems
connected in a feedback
configuration

4.6.2 Feedback Systems

Another configuration of systems, often used in control systems, is feedback
configuration shown in Fig. 4.16. In feedback systems, a fraction of the output signal
is fed back and subtracted from the input signal to form the effective input signal.
A feedback signal r(t) is produced by a causal system with impulse response h(t)

from the the output signal, y(t). That is, r(t) = ∫∞
0 h(τ)y(t−τ)dτ . The error signal

e(t) is difference between the input signal x(t) and the feedback signal r(t), e(t) =
x(t) − r(t). This error signal is the input to a causal system with impulse response
g(t), which produces the output signal y(t). That is, y(t) = ∫∞

0 g(τ)e(t − τ)dτ .

4.7 Summary

• In this chapter, the time-domain analysis of LTI continuous systems has been
presented.

• The zero-input component of the response of a LTI system is its response due
to the initial conditions alone with the input assumed to be zero. The zero-state
component of the response of a LTI system is its response due to the input alone
with the initial conditions assumed to be zero. The sum of the zero-input and
zero-state responses is the complete response of the system.

• Two of the commonly used system models for time-domain analysis are differ-
ential equation and convolution-integral models.

• The convolution-integral model gives the zero-state response of a LTI system.
Both the zero-input and zero-state responses can be found by solving the
differential equation.

• The impulse response of a system is its response to the unit-impulse input signal
with the initial conditions zero.
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• The convolution-integral model is based on decomposing the input signal into
continuum of shifted and scaled impulses. The total response is found by the
integral of the responses to all the constituent impulses of the input signal.

• The complete response of a system can also be considered as the sum of transient
and steady-state components. For a stable system, the transient component
decays with time. The steady-state component is the response after the transient
response dies down.

• A system is stable if its response is bounded for all bounded input signals.
As the convolution-integral is an integral of the product of input and impulse
responses, with the input bounded, the impulse response of a stable system must
be absolutely integrable for the value of the convolution-integral to be bounded.

• By interconnecting adder, multiplier, and integrator units, any continuous system
can be realized. An higher-order system is usually decomposed into a set of first-
and second-order systems connected in cascade or parallel. A feedback system is
obtained by feeding back some part of the output to the input.

Exercises

4.1 Is the system governed by the given differential equation, with output y(t) and
input x(t), linear?

4.1.1 dy(t)
dt

+ 2y(t) + 2 = x(t).

4.1.2
(

dy(t)
dt

)2 + y(t) = dx(t)
dt

+ x(t).

4.1.3 dy(t)
dt

+ t y(t) = 3 dx(t)
dt

+ 2x(t).

4.1.4 dy(3t)
dt

+ y(3t) = x(t).

4.1.5 dy(t)
dt

+ y(t) + sin(π) = x(t).

4.1.6 dy(t)
dt

+ y(t) + cos(π) = x(t).

4.1.7 dy(t)
dt

+ y(t) = x(t)
dx(t)
dt

.

4.1.8 dy(t)
dt

+ ey(t) = x(t).

* 4.1.9 dy(t)
dt

= |x(t)|.

4.2 Is the system governed by the given differential equation, with output y(t) and
input x(t), time-invariant?

4.2.1 dy(t)
dt

+ y(2t) = x(t).

4.2.2 dy(t)
dt

+ cos(π
2 t)y(t) = x(t).

4.2.3 dy(t)
dt

+ y(t) = tx(t).
* 4.2.4 y(t) = x(t − 5).
4.2.5 dy(t)

dt
+ ty(t) = x(t).

4.2.6 dy(t)
dt

+ y(t) = x(t)
dx(t)
dt

.
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4.2.7 dy(t)
dt

+ ey(t) = x(t).

4.2.8 dy(t)
dt

+ y(−t) = x(t).

4.3 Find the closed-form expression for the convolution of the signals x(t) and
h(t). List the values of the convolution output at t = 0, 1, 2, 3, 4, 5.

4.3.1 x(t) = 3u(t + 1) and h(t) = 2u(t − 3).
4.3.2 x(t) = 2e−2t u(t − 1) and h(t) = 2e−2t u(t + 3).
4.3.3 x(t) = 4u(t − 1) and h(t) = 2e−2(t+2)u(t + 2).

* 4.3.4 x(t) = (u(t) − u(t − 3)) and h(t) = (u(t) − u(t − 3)).

4.4 Find the convolution of the signals x(t) and h(t).

4.4.1 x(t) = ej 2π
6 t u(t) and h(t) = δ(t + 4) .

4.4.2 x(t) = ej 2π
6 t and h(t) = δ(t + 12) .

4.4.3 x(t) = cos( 2π6 t) and h(t) = δ(t) .

4.5 Verify the distributive property of convolution integral, x(t)∗ (h1(t)+h2(t)) =
x(t) ∗ h1(t) + x(t) ∗ h2(t).

4.5.1 h1(t) = 2e−2t u(t), h2(t) = 3e−2t u(t), x(t) = u(t).
4.5.2 h1(t) = 3e−3t u(t), h2(t) = 5e−3t u(t), x(t) = e−t u(t).

4.6 Verify the associative property of convolution integral, x(t) ∗ (h1(t) ∗ h2(t)) =
(x(t) ∗ h1(t)) ∗ h2(t).

4.6.1 h1(t) = e−2t u(t), h2(t) = e−3t u(t), x(t) = u(t).
4.6.2 h1(t) = e−2t u(t), h2(t) = e−3t u(t), x(t) = e−t u(t).

4.7 Find the closed-form expression for the impulse response h(t) of the system
characterized by the differential equation, with output y(t) and input x(t). Deduce
the closed-form expression for the unit-step response y(t) of the system.

4.7.1 dy(t)
dt

+ 2y(t) = − dx(t)
dt

+ x(t).

* 4.7.2 dy(t)
dt

− y(t) = 2 dx(t)
dt

+ 3x(t).

4.7.3 dy(t)
dt

+ 3y(t) = 2x(t).

4.7.4 dy(t)
dt

+ 4y(t) = −2 dx(t)
dt

+ x(t).

4.7.5 dy(t)
dt

+ 2y(t) = 4x(t).

4.8 Derive the closed-form expression for the complete response (by finding the
zero-state response by convolution and the zero-input response) of the system
governed by the differential equation

dy(t)

dt
+ y(t) = 3

dx(t)

dt
+ 2x(t)
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with the initial condition y(0−) = 2 and the input x(t) = u(t), the unit-step
function. Deduce the expressions for the transient and steady-state responses of the
system.

4.9 Derive the closed-form expression for the complete response (by finding the
zero-state response by convolution and the zero-input response) of the system
governed by the differential equation

dy(t)

dt
− 2y(t) = −3

dx(t)

dt
+ x(t)

with the initial condition y(0−) = 1 and the input x(t) = tu(t), the unit-ramp
function. Deduce the expressions for the transient and steady-state responses of the
system.

4.10 Derive the closed-form expression for the complete response (by finding
the zero-state response by convolution and the zero-input response) of the system
governed by the differential equation

dy(t)

dt
+ 4y(t) = 2

dx(t)

dt
− 3x(t)

with the initial condition y(0−) = 2 and the input x(t) = e−3t u(t). Deduce the
expressions for the transient and steady-state responses of the system.

* 4.11 Derive the closed-form expression for the complete response (by finding
the zero-state response by convolution and the zero-input response) of the system
governed by the differential equation

dy(t)

dt
+ y(t) = −dx(t)

dt
+ x(t)

with the initial condition y(0−) = 3 and the input x(t) = 2 cos(t)u(t). Deduce the
expressions for the transient and steady-state responses of the system.

4.12 Derive the closed-form expression for the complete response (by finding
the zero-state response by convolution and the zero-input response) of the system
governed by the differential equation

dy(t)

dt
+ 5y(t) = 3

dx(t)

dt
− x(t)

with the initial condition y(0−) = −2 and the input x(t) = sin(t)u(t). Deduce the
expressions for the transient and steady-state responses of the system.
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4.13 Find the steady-state response of the system, with the impulse response

h(t) = 3δ(t) − 2e−2t u(t),

to the input x(t) = 3 cos( 2π8 t + π
3 )u(t). Deduce the response for the input ej 2π

8 t .

* 4.14 Find the steady-state response of the system, with the impulse response

h(t) = 2δ(t) − 4e−t u(t),

to the input x(t) = 2 sin( 2π6 t − π
6 )u(t). Deduce the response for the input ej 2π

6 t .

4.15 The impulse response of a LTI system is given. Use the bounded input
bounded output test to find whether the system is stable?

4.15.1 h(t) = e−2t u(t) .
4.15.2 h(t) = u(t) .
4.15.3 h(t) = sin(2t)

t
u(t).

4.15.4 h(t) =
(
sin(2t)

t

)2
u(t).

4.15.5 h(t) = −e3t u(t) .

4.16 Derive the closed-form expression of the impulse response h(t) of the
combined system consisting of systems with impulse responses h1(t) and h2(t),
if the systems are connected in (i) parallel and (ii) cascade.

4.16.1 h1(t) = e−2t u(t) and h2(t) = e−5t u(t).
4.16.2 h1(t) = δ(t) + e−3t u(t) and h2(t) = δ(t) − e−2t u(t).
4.16.3 h1(t) = 2δ(t) − e−4t u(t) and h2(t) = e−3t u(t).



Chapter 5
The Discrete Fourier Transform

In this chapter, the most often used tools for the transformation of signals from the
time- to the frequency-domain and back again, the DFT and the IDFT, are presented.
The frequency-domain representation of signals and systems is introduced in
Sect. 5.1. In Sect. 5.2, a brief review of Fourier analysis is presented. The DFT
and the IDFT are derived in Sect. 5.3. The properties of the DFT are presented in
Sect. 5.4. Some applications of the DFT are presented in Sect. 5.5.

5.1 The Time-Domain and the Frequency-Domain

The independent variable, in the time-domain representation of signals and systems,
is usually time. It could be anything else also, such as distance. In this domain,
we analyze arbitrary signals in terms of scaled and shifted impulses. A system is
characterized in terms of its impulse response (Chaps. 3 and 4). We still look for
simple signals that provide more efficient signal and system analysis. This leads
us to an alternate representation of signals and systems, called the frequency-
domain representation. In this representation (which can be considered as the
transformation of the independent variable), the variation of a signal with respect
to the frequency of its constituent sinusoids is used in its characterization. At each
frequency, the amplitude and phase or, equivalently, the amplitudes of the cosine
and sine components of the sinusoid are used for representing a signal. Systems
are characterized in terms of their responses to sinusoids. Both the time-domain
and frequency-domain representations completely specify a signal or a system.
In the frequency-domain, the independent variable is frequency thereby explicitly
specifying the frequency components of a signal. While there are other basic signals,
the sinusoid is mostly used for signal and LTI system analysis because it provides
ease of signal decomposition, simpler system analysis, and more insight into the
signal and system characteristics. Except for the fact that the independent variable
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126 5 The Discrete Fourier Transform

is frequency, the system analysis is very similar to that used in the time-domain.
That is, we decompose an input signal in terms of sinusoids, find the response of the
system to each sinusoid, and, using the linearity and time-invariant properties of LTI
systems, sum up all the responses to find the complete response of the system. The
big advantage of the sinusoids is that the steady-state output of a stable LTI system
for a sinusoidal input is of the same form. Therefore, the output of a system can be
found using much simpler multiplication operation compared with the convolution
operation required using the impulse signal.

A set of complex exponentials or sinusoids is used as the basis signals in the
principal transforms used in signal and LTI system analysis. While sinusoidal
waveforms are generated by physical devices and are easy to visualize, the complex
exponential, which is a functionally equivalent mathematical representation of a
sinusoid, is often used in signal and system analysis, due to its compact form and
ease of manipulation. In Fourier analysis, sinusoids with constant amplitudes (or
exponentials with pure imaginary exponents) are used as basis signals. Sinusoids
with exponentially varying amplitudes (or exponentials with complex exponents)
are used in Laplace and z-transforms. Each transform is more suitable for the
analysis of certain class of signals and systems.

Fourier analysis problem is to find the coefficients X(k) in the the complex
exponential polynomial representation of a time-domain function x(n), for example,
with N = 4 coefficients,

x(n) = X(0)ej0 2π
4 n + X(1)ej 2π

4 n + X(2)ej2 2π
4 n + X(3)ej3 2π

4 n, n = 0, 1, 2, 3,
(5.1)

For the given N = 4, x(n) and the exponentials are known. The Fourier synthesis
problem is to find x(n), given X(k) and the exponentials. In the frequency-domain
representation of signals, the signals are decomposed into its constituent sinusoids
or exponentials. This representation reduces the more difficult convolution operation
to the much simpler multiplication, in addition to other advantages. It is similar to
representing numbers by real exponentials in logarithms, which reduces the more
difficult multiplication operation to the much simpler addition.

This representation is similar to decomposing a box of mixed coins of various
denominations into their respective denominations. Then, finding the amount of
coins reduces to counting the number of coins, multiplying by their respective
values, and summing it up. This procedure is simpler than finding the amount by
adding the value of the coins one by one picked up from the box. It is assumed
that a coin sorting machine is available. Similarly, the availability of fast algorithms
for decomposing an arbitrary waveform with adequate accuracy makes the Fourier
analysis indispensable in linear signal and system analysis in all areas of science
and engineering. The Laplace and the z-transforms are generalized versions of
the Fourier analysis with a larger set of basis functions. In all cases, the basic
decomposition, in principle, is the same as given in Eq. (5.1). Signals and their
spectrums may be periodic or aperiodic and of continuous or discrete type. Still,
the principle behind frequency-domain analysis remains the same. The analysis
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becomes simpler with sufficient paper-and-pencil and programming practice. It
looks complex due to the details involved in the representation.

5.2 The Fourier Analysis

The theory of the Fourier analysis is that any periodic signal satisfying certain
conditions, which are met by most signals of practical interest, can be represented
uniquely as the sum of a constant value and an infinite number of harmonics.
Harmonically related sinusoids, called harmonics, are a set of sinusoids consisting
a fundamental harmonic with frequency f and other harmonics having frequencies
those are integral multiples of f . The sum of a set of harmonically related sinusoids
is not a sinusoid but is a periodic waveform with period that is the same as that of the
fundamental. Given a waveform, finding the amplitude of its constituent sinusoids
is called the Fourier analysis. To sum up a set of harmonically related sinusoids
to synthesize an arbitrary waveform is called the Fourier synthesis. Consider the
discrete periodic waveform, x(n) = 2 + 3 sin( 2π4 n) + cos(22π

4 n), with period
4 samples, shown in Fig. 5.1a. The independent variable n (actually nTs , where
Ts is the sampling interval) is time, and the dependent variable is amplitude.
Figure 5.1b shows the frequency-domain representation of the waveform in (a).
It shows the complex amplitude, multiplied by the factor four, of its constituent
complex exponentials. To find the real sinusoids, shown in Fig. 5.1c, those constitute
the signal, we add up the complex exponentials.

x(n) = 1

4

(
8ej0 2π

4 n − j6ej 2π
4 n + 4ej2 2π

4 n + j6ej3 2π
4 n
)

= 2 + 3 sin

(
2π

4
n

)
+ cos

(
2
2π

4
n

)

As can be seen from this example, Fourier analysis represents a signal as a
linear combination of sinusoids or, equivalently, complex exponentials with pure
imaginary exponents.

The Fourier reconstruction of a waveform is with respect to the least squares
error criterion. That is, the mean value for power signals or the total value for
the energy signals of the integral or sum of the squared magnitude of the error
between the given waveform and the corresponding Fourier reconstructed waveform
is guaranteed to be minimum if part of the constituent sinusoids of a waveform is
used in the reconstruction and will be zero if all the constituent sinusoids are used.
The reason this criterion, based on signal energy or power, is used rather than a
minimum uniform deviation criterion is that (i) it is acceptable for most applications
and (ii) it leads to closed-form formulas for the analytical determination of Fourier
coefficients.



128 5 The Discrete Fourier Transform

0 1 2 3

n

-2

0

3
4

x(
n)

(a)

0 1 2 3

k

-6

0

4

8

X(
k)

real
imaginary

(b)

0 1 2 3

n

-3

-1
0
1
2
3

x(
n)

(c)

1.5 2 2.5

a

22

23

er
ro

r

(d)

Fig. 5.1 (a) A periodic waveform, x(n) = 2+3 sin( 2π4 n)+cos(2 2π
4 n), with period 4 samples and

(b) its frequency-domain representation; (c) the frequency components of the waveform in (a); (d)
the square error in approximating the waveform in (a) using only the DC component with different
amplitudes

Let xa(n) be an approximation of a given waveform x(n) of period N , using
fewer harmonics than required. The square error between x(n) and xa(n) is defined
as

error =
N−1∑
n=0

|x(n) − xa(n)|2

For a given number of harmonics, there is no better approximation for the signal than
that provided by the Fourier approximation when the least squares error criterion
is applied. Assume that, we are constrained to use only the DC component to
approximate the waveform in Fig. 5.1a. Let the optimal value of the DC component
be a. To minimize the square error,

(3 − a)2 + (4 − a)2 + (3 − a)2 + (−2 − a)2

must be minimum. Differentiating this expression with respect to a and equating it
to zero, we get

2(3 − a)(−1) + 2(4 − a)(−1) + 2(3 − a)(−1) + 2(−2 − a)(−1) = 0

Solving this equation, we get a = 2 as given by the Fourier analysis. The square
error, for various values of a, is shown in Fig. 5.1d.
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5.2.1 The Four Versions of Fourier Analysis

Fourier analysis has four versions, each of them using a set of constant amplitude
sinusoids, differing in some respect, as the basis signals. Continuous periodic
signals are analyzed using an infinite number of harmonically related continuous
sinusoids in the FS, described in Chap. 6. Discrete aperiodic signals are analyzed
using a continuum of discrete sinusoids over a finite frequency range in the DTFT,
presented in Chap. 7. Continuous aperiodic signals are analyzed using a continuum
of continuous sinusoids over an infinite frequency range in the FT, described in
Chap. 8. The topic of the present chapter is the DFT, which analyzes the periodic
extension of a finite duration discrete signal using a finite number of harmonically
related discrete sinusoids. The DFT, because of its finite and discrete nature, is
the simplest of the four versions of the Fourier analysis to visualize the analysis
and synthesis of waveforms. Problems in understanding the concepts in other
versions of the Fourier analysis may be resolved by considering an equivalent
DFT version.

5.3 The Discrete Fourier Transform

5.3.1 The Approximation of Arbitrary Waveforms with Finite
Number of Samples

We need a minimum of 2k + 1 samples to represent a sinusoid uniquely, which
completes k cycles in a period, as presented in Chap. 1. To approximate a periodic
waveform in terms of DC, we need a minimum of one sample in a period. If
we use the fundamental or first harmonic, which has the same period as that of
the waveform to be analyzed, we need a minimum of three samples (2k + 1 =
2(1) + 1 = 3) in a period, since the first harmonic completes one cycle. In the
frequency-domain, we need one value to represent the DC and two values (the
amplitude and the phase or the amplitudes of its cosine and sine components) to
specify the first harmonic. That is, three samples are required in both the time and
frequency-domains. With N independent values in one domain, we can generate
only N independent values in the other domain. Therefore, we need 2k + 1 samples
in both the time and frequency-domains to represent a waveform with the DC and
the first k harmonically related sinusoids.

In general, an infinite number of sinusoids are required to represent an arbitrary
waveform exactly. The concept of using a finite number of sinusoids is based on
the fact that the waveforms encountered in practice can be approximated by a finite
number of sinusoids with a finite but arbitrarily small tolerance, since, beyond some
range, the spectral values become negligible. That is, all practical signals can be
considered as band-limited. If the magnitude of the frequency components of a
signal is identically zero outside some finite frequency range, then the signal is
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called band-limited. In addition, the waveforms are generally aperiodic. In order
to make it finite duration, we have to truncate some part of it. Then, a periodic
extension of the waveform is represented by discrete sinusoids. The truncation is
acceptable because waveforms, in practice, have negligible values beyond some
range. That is, all practical signals can be considered as time-limited. If the
amplitude of a signal is identically zero outside some finite time interval, then the
signal is called time-limited Therefore, we can represent any waveform, encountered
in practice, by a finite number of samples in both the time and frequency-domains
with adequate accuracy. This representation, using a finite number of samples in
both the domains, is the feature of the DFT version of the Fourier analysis. That is
to make the essential information, characterizing a waveform, available in any one
period, in both the domains, with sufficient accuracy. The point is that, while the
representation of a waveform can be made adequate, the discrete and finite nature
of the DFT makes it inherently suitable for numerical analysis. And, finally, the
fact that Fourier analysis plays a central part in signal and system analysis and
fast algorithms are available for computing the DFT makes the DFT the heart of
practical signal and system analysis. Note that, with continuous signals, both the
time- and frequency-domain signals cannot be periodic. However, with uniformly
sampled signals, it is possible for both the time- and frequency-domain signals to be
periodic. The condition is that the ratio of the period to the sampling interval is an
integer.

5.3.2 The DFT and the IDFT

In the DFT, a set of N samples represents a waveform in both the time and
frequency-domains, whether the waveform is periodic or aperiodic and continuous
or discrete. It is understood that the number of samples is adequate to represent
the waveform with sufficient accuracy. The set of N samples is periodically
extended and N harmonically related complex exponentials are used to represent
the waveform. That is, for a real-valued signal with N samples, we are using
real sinusoids with frequency indices 0, 1, 2, . . . , N

2 only. Frequency index zero
represents the DC and N

2 represents a cosine waveform, assuming N is even.
The frequency components of a waveform are separated using the orthogonality

property of the exponentials. For two complex exponentials ej 2π
N

ln and ej 2π
N

kn over
a period of N samples, the orthogonality property is defined as

N−1∑
n=0

ej 2π
N

(l−k)n =
{

N for l = k

0 for l �= k

where l, k = 0, 1, . . . , N −1. If l = k, the summation is equal to N as ej 2π
N

(l−k)n =
e0 = 1. Otherwise, by using the closed-form expression for the sum of a geometric
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progression, we get

N−1∑
n=0

ej 2π
N

(l−k)n = 1 − ej2π(l−k)

1 − ej
2π(l−k)

N

= 0, for l �= k

It is also known that the sine and cosine waveforms are symmetrical about the x-
axis. Therefore, the sum of the equidistant samples of a sinusoid, over an integral
number of periods, with a nonzero frequency index is always zero. That is, in order
to find the coefficient, with a scale factor N , of a complex exponential, we multiply
the samples of a signal with the corresponding samples of the complex conjugate
of the complex exponential. Using each complex exponential in turn, we get the
frequency coefficients of all the components of a signal as

X(k) =
N−1∑
n=0

x(n)Wnk
N , k = 0, 1, . . . , N − 1 (5.2)

where WN = e−j 2π
N . This is the DFT equation analyzing a waveform with

harmonically related discrete complex sinusoids. X(k) is the coefficient, scaled by

N, of the complex sinusoid ej 2π
N

kn with a specific frequency index k (frequency
2π
N

k radians per sample). The summation of the sample values of the N complex
sinusoids multiplied by their respective frequency coefficients X(k) is the IDFT
operation. The N -point IDFT of the frequency coefficients X(k) is defined as

x(n) = 1

N

N−1∑
k=0

X(k)W−nk
N , n = 0, 1, . . . , N − 1 (5.3)

The sum of the sample values is divided by N in Eq. (5.3) as the coefficients X(k)

have been scaled by the factor N in the DFT computation.
The DFT equation can be as well written using matrices. With N = 4, the DFT

is given by

⎡
⎢⎢⎣

X(0)
X(1)
X(2)
X(3)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

W 0
4 W 0

4 W 0
4 W 0

4
W 0

4 W 1
4 W 2

4 W 3
4

W 0
4 W 2

4 W 4
4 W 6

4
W 0

4 W 3
4 W 6

4 W 9
4

⎤
⎥⎥⎦

⎡
⎢⎢⎣

x(0)
x(1)
x(2)
x(3)

⎤
⎥⎥⎦

The values of the transform matrix, called the twiddle factors, are equally spaced
samples on the unit-circle. They are the N th roots of unity. For example, the second
row values raised to the power 4 yield 1.

(e−j 2π
4 n)4 = e−j2πn = 1, n = 0, 1, 2, 3
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The inverse and forward transform matrices are orthogonal. That is,

1

4

⎡
⎢⎢⎣
1 1 1 1
1 j −1 −j

1 −1 1 −1
1 −j −1 j

⎤
⎥⎥⎦

⎡
⎢⎢⎣
1 1 1 1
1 −j −1 j

1 −1 1 −1
1 j −1 −j

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

If we use the definition of the DFT, we need N complex multiplications and (N −1)
complex additions for computing each of the N coefficients. The computational
complexity of computing all the N coefficients is of the order of O(N2). Fast
algorithms reduce this computational complexity to the order of O(N log2 N).
Because of these algorithms, the use of the DFT is more efficient in most
applications compared with alternate methods.

With N = 2, the DFT definition is

[
X(0)
X(1)

]
=
[
1 1
1 −1

] [
x(0)
x(1)

]

The IDFT is defined as

[
x(0)
x(1)

]
= 1

2

[
1 1
1 −1

] [
X(0)
X(1)

]

The DFT of {x(0) = −4, x(1) = 2} is {X(0) = −2, X(1) = −6}. It can be
verified that IDFT gets back the time-domain samples. With N = 2, the waveform

is composed of 2 complex exponentials, ej 2π
2 0n and ej 2π

2 1n. The two samples of
these waveforms are {1, 1} and {1,−1}. The DFT finds the coefficients of these
components from x(n) as −2 and −6, so that

−2{1, 1} − 6{1,−1}
2

= {−4, 2} = x(n)

This summation is carried out by the IDFT. The DFT correlates the samples of the

input {−4, 2} with samples of the complex exponential ej 2π
2 0n, {1, 1}, to find out

X(0) = −2. The operation required is the sum of products of the two sequences.
That is

X(0) = −4 × 1 + 2 × 1 = −2

Similarly,

X(1) = −4 × 1 + 2 × (−1) = −6
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This decomposition works for any arbitrary waveform x(n) of arbitrary length N

due to the orthogonality of the harmonically related complex exponentials.
Let us compute the DFT of {x(0) = 3, x(1) = 4, x(2) = 3, x(3) = −2}. The

DFT of this set of data is computed as

⎡
⎢⎢⎣

X(0)
X(1)
X(2)
X(3)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
1 1 1 1
1 −j −1 j

1 −1 1 −1
1 j −1 −j

⎤
⎥⎥⎦

⎡
⎢⎢⎣

3
4
3

−2

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

8
−j6

4
j6

⎤
⎥⎥⎦

The DFT spectrum is {X(0) = 8, X(1) = −j6, X(2) = 4, X(3) = j6}, as shown
in Fig. 5.1b. The sample values of the DC component are {2, 2, 2, 2}, as shown in
Fig. 5.1c. Pointwise multiplication of these values with the first row values of the
transform matrix {1, 1, 1, 1} and summing the product yields 8. This is the scaled
value of the DC component, which is 2. The same computation with the other 3
rows of the transform matrix yields 0, due to orthogonality. It is instructive to try to
find the DFT coefficients of the other three frequency components.

Now, let us compute the sample values of the waveform from its DFT coefficients
using the IDFT.

⎡
⎢⎢⎣

x(0)
x(1)
x(2)
x(3)

⎤
⎥⎥⎦ = 1

4

⎡
⎢⎢⎣
1 1 1 1
1 j −1 −j

1 −1 1 −1
1 −j −1 j

⎤
⎥⎥⎦

⎡
⎢⎢⎣

8
−j6

4
j6

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

3
4
3

−2

⎤
⎥⎥⎦

We get back the time-domain sample values confirming that the DFT and IDFT
form a transform pair. What one operation does the other undoes.

5.3.2.1 Center-Zero Format of the DFT and IDFT

The DFT coefficients X(k) are periodic with period N , the number of samples of
x(n). Therefore, N coefficients, over any consecutive part of the spectrum, define
the spectrum. However, the coefficients are usually specified in two ranges. In the
standard format, the N coefficients are specified over one period starting from index
k = 0. That is,

X(0),X(1), . . . , X(N − 1)

For example, with N = 4,

X(0),X(1),X(2),X(3)
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In the other format, called center-zero format, the coefficient X(0) is placed
approximately in the middle. That is, with N even,

X

(
−N

2

)
, X

(
−N

2
+ 1

)
, . . . , X(−1),X(0),X(1), . . . , X

(
N

2
− 2

)
, X

(
N

2
− 1

)

For example, with N = 4,

X(−2),X(−1),X(0),X(1)

One format from the other can be obtained by circularly shifting the spectrum by
N/2 number of sample intervals. The use of the center-zero format is convenient
in some derivations. Further, the display of the spectrum in this format is better for
viewing. The definitions of the DFT and IDFT in this format, with N even, are

X(k) =
N
2 −1∑

n=(− N
2 )

x(n)e−jk 2π
N

n, k = −
(

N

2

)
,−
(

N

2
− 1

)
, . . . ,

N

2
− 1 (5.4)

x(n) = 1

N

N
2 −1∑

k=−( N
2 )

X(k)ejk 2π
N

n, n = −
(

N

2

)
,−
(

N

2
− 1

)
, . . . ,

N

2
−1 (5.5)

When the spectrum is displayed in this format, the interpretation of the spectral
features is easier. The conversion of the data or spectrum from one format to another
involves circular shift by half the number of samples. The spectrum

{X(0) = 2, X(1) = 2 − j
√
2, X(2) = 3, X(3) = 2 + j

√
2}

in center-zero format is

{X(−2) = 3, X(−1) = 2 + j
√
2, X(0) = 2, X(1) = 2 − j

√
2}

5.3.3 DFT of Some Basic Signals

While the primary purpose of the DFT is to approximate the spectra of arbitrary
signals using numerical procedures, it is useful, for understanding, to derive the DFT
of some simple signals analytically. The DFT of the impulse signal x(n) = 2δ(n)

is simply X(k) = 2. As the impulse signal is nonzero only at n = 0, the DFT
equation reduces to x(0) for any value of k. A signal and its DFT form a transform
pair and is denoted as x(n) ⇐⇒ X(k). For the specific example, the transform
pair is denoted as 2δ(n) ⇐⇒ 2. The DFT, with N = 16, is shown in Fig. 5.2a.



5.3 The Discrete Fourier Transform 135

A plot of the complex coefficients X(k) of the constituent complex sinusoids of a
signal x(n) versus k is called the complex spectrum of x(n). The spectral value of
two for all the frequency components implies that the impulse signal, with a value

of two, is the sum of all the exponentials 2
16e

j 2π
16 kn, k = 0, 1, . . . , 15. In terms of

real sinusoids, this impulse signal is the sum of DC component 2
16 , cosine waves

2
8 cos(

2π
16 kn), k = 1, 2, . . . , 7, and 2

16 cos(πn).
The DFT of the DC signal x(n) = 3, with N samples, is X(k) = 3Nδ(k).

That is, 3 ⇐⇒ 3Nδ(k). As the DC signal has a constant value, its DFT evaluation
essentially reduces to the summation of the sample values of the various complex
exponentials. This sum is zero for all the complex exponentials with nonzero

frequency index k. For k = 0, X(0) = 3
∑N−1

n=0 e−j 2π
N

n0 = 3
∑N−1

n=0 1 = 3N .
The complex exponential with k = 0 is the DC signal. The DFT of the DC signal
x(n) = 3, with 16 samples, is shown in Fig. 5.2b.

The frequency range of the spectral components of a signal is called its
bandwidth. The essential bandwidth of a signal is the frequency range of its
spectral components containing most of its energy. The longer is the duration of
a signal in the time-domain, the shorter is the essential bandwidth in its frequency-
domain representation and vice versa. This is called reciprocal spreading and is
well demonstrated in the case of the DC and impulse signals. The impulse signal is
nonzero only at n = 0 in the time-domain, and its spectrum is spread with significant
values throughout the whole frequency range. The reverse is the case for the DC
signal.

The complex exponential signal, although of no physical significance, is the
standard unit in the frequency-domain representation and analysis of signals and
systems, as it is easier to manipulate and the sum of its conjugate with itself is
capable of representing a physical signal. Due to the orthogonality property, the

complex exponential x(n) = ej 2π
N

np with frequency index p has the transform pair

ej 2π
N

np ⇐⇒ Nδ(k−p). The DC case presented earlier is a specific case with p = 0.

The complex exponential signal x(n) = ej 2π
16 n with N = 16 and its spectrum with

X(1) = 16 are shown in Fig. 5.2c and d, respectively.

The complex exponential signal x(n) = ej (2 2π
16 n− π

6 ) with N = 16 and its
spectrum are shown in Fig. 5.2e and f, respectively. This signal can be expressed

as x(n) = e−j π
6 ej2 2π

16 n. Therefore, the DFT coefficient is that of x(n) = ej2 2π
16 n,

which is 16 at k = 2, multiplied by the complex constant e−j π
6 =

√
3
2 − j 1

2 , as
shown in Fig. 5.2f.

A real sinusoid, x(n) = cos( 2π
N

np+θ), is the sum of a pair of complex conjugate
exponentials:

x(n) = cos

(
2π

N
np + θ

)
= 1

2
(ejθ ej 2π

N
np + e−jθ e−j 2π

N
np)

Using the DFT of complex exponentials, we get
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Fig. 5.2 (a) The spectrum of the impulse x(n) = 2δ(n) with N = 16; (b) the spectrum of the DC

signal x(n) = 3 with N = 16; (c) the complex sinusoid x(n) = ej 2π
16 n and (d) its spectrum; (e)

the complex sinusoid x(n) = ej (2 2π
16 n− π

6 ) and (f) its spectrum; (g) the sinusoids x(n) = cos( 2π16 n)

and x(n) = sin(2 2π
16 n), and (h) their spectra; (i) The sinusoid x(n) = cos(2 2π

16 n − π
3 ) and (j) its

spectrum

cos

(
2π

N
np + θ

)
⇐⇒ N

2
(ejθ δ(k − p) + e−jθ δ(k − (N − p)))

Note that, due to periodicity, e−j 2π
N

np = ej 2π
N

n(N−p). We get the transform pairs for
the cosine and sine waves, with θ = 0 and θ = −π

2 , as
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cos

(
2π

N
np

)
⇐⇒ N

2
(δ(k − p) + δ(k − (N − p)))

sin

(
2π

N
np

)
⇐⇒ N

2
(−jδ(k − p) + jδ(k − (N − p)))

The cosine and sine waves x(n) = cos( 2π16 n) and x(n) = sin(22π
16 n) with N = 16

and their spectra are shown in Fig. 5.2g and h, respectively. The sinusoid x(n) =
cos(22π

16 n − π
3 ) with N = 16 and its spectrum are shown in Fig. 5.2i and j,

respectively.
An infinite or finite sequence

ban = {b, ba, ba2, . . . , }

is a geometric sequence, where b and a are some fixed numbers. The first term is a
constant. The rest of the terms are the product of the preceding term by the common
ratio of the terms. The sum of the terms of a geometric sequence is a geometric
series. For example,

�N = 1 + a + a2 + · · · + aN−1, a = e−j 2π
N

is a geometric series. To find the sum in a closed form, we multiply �N by a to get
a�N . Now,

�N − a�N = 1 − aN and �N = 1 − aN

1 − a

The DFT of the rectangular waveform is derived as follows.

x(n) =
{
1 for n = 0, 1, . . . , M − 1
0 for n = M,M + 1, . . . , N − 1

X(k) =
M−1∑
n=0

e−j 2π
N

nk = 1 − e−j 2π
N

Mk

1 − e−j 2π
N

k
= ej 2π

N
M
2 k − e−j 2π

N
M
2 k

ej 2π
N

k
2 − e−j 2π

N
k
2

= e−j 2π
N

(M−1)
2 k

sin( 2π
N

M
2 k)

sin( 2π
N

k
2 )

= e−j π
N

(M−1)k sin(
π
N

Mk)

sin( π
N

k)

Verify the DFT of δ(n) and DC signals, obtained earlier, using this formula.

Example 5.1 The samples of a signal are {x(0) = 1, x(1) = 1, x(2) = 1, x(3) = 0}
and



138 5 The Discrete Fourier Transform

⎡
⎢⎢⎣

X(0)
X(1)
X(2)
X(3)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
1 1 1 1
1 −j −1 j

1 −1 1 −1
1 j −1 −j

⎤
⎥⎥⎦

⎡
⎢⎢⎣
1
1
1
0

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

3
−j

1
j

⎤
⎥⎥⎦

⎡
⎢⎢⎣

x(0)
x(1)
x(2)
x(3)

⎤
⎥⎥⎦ = 1

4

⎡
⎢⎢⎣
1 1 1 1
1 j −1 −j

1 −1 1 −1
1 −j −1 j

⎤
⎥⎥⎦

⎡
⎢⎢⎣

3
−j

1
j

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
1
1
1
0

⎤
⎥⎥⎦

As the basis signals of the DFT are complex exponentials, the DFT is as well
applicable to complex signals, although physical signals are real-valued. Of course,
the real-valued signals can be expressed as a linear combination of complex signals.

Example 5.2 The samples of a signal are {x(0) = 2 + j1, x(1) = 1 − j2, x(2) =
1 + j1, x(3) = 3 + j2} and

⎡
⎢⎢⎢⎢⎣

X(0)

X(1)

X(2)

X(3)

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

1 1 1 1

1 −j −1 j

1 −1 1 −1

1 j −1 −j

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

2 + j1

1 − j2

1 + j1

3 + j2

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

7 + j2

−3 + j2

−1 + j2

5 − j2

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

x(0)

x(1)

x(2)

x(3)

⎤
⎥⎥⎥⎥⎦ = 1

4

⎡
⎢⎢⎢⎢⎣

1 1 1 1

1 j −1 −j

1 −1 1 −1

1 −j −1 j

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

7 + j2

−3 + j2

−1 + j2

5 − j2

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

2 + j1

1 − j2

1 + j1

3 + j2

⎤
⎥⎥⎥⎥⎦

5.4 Properties of the Discrete Fourier Transform

In signal and system analysis, it is often required to carry out operations such as
shifting, scaling, convolution etc., in both the domains. We know the effect, in
the other domain, of carrying out an operation in one domain through properties.
We repeatedly use the properties in applications of the DFT and in deriving DFT
algorithms. In addition, new transform pairs can be derived from available ones
easily.
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5.4.1 Linearity

If a sequence is a linear combination of a set of sequences, each of the same length
N , then the DFT of that combined sequence is the same linear combination of the
DFT of the individual sequences. That is,

x(n) ⇐⇒ X(k), y(n) ⇐⇒ Y (k), ax(n) + by(n) ⇐⇒ aX(k) + bY (k),

where a and b are arbitrary constants.
For example,

cos

(
2π

4
n

)
⇐⇒ 2 (δ(k − 1) + δ(k − 3))

sin

(
2π

4
n

)
⇐⇒ 2 (−jδ(k − 1) + jδ(k − 3))

Then,

ej 2π
4 n = cos

(
2π

4
n

)
+ j sin

(
2π

4
n

)
⇐⇒

2 (δ(k − 1) + δ(k − 3)) + j2 (−jδ(k − 1) + jδ(k − 3))

= 4δ(k − 1)

5.4.2 Periodicity

As the complex exponential Wnk
N is periodic in both the variables n and k with

period N (Wnk
N = W

n(k+N)
N = W

(n+N)k
N ), a sequence x(n) of N samples and its

DFT X(k) are periodic with period N . By substituting k + aN for k in the DFT
equation and n + aN for n in the IDFT equation, we get X(k) = X(k + aN) and
x(n) = x(n + aN), where a is any integer.

Let

x(n) = {1,−3, 2, 4} ⇐⇒ X(k) = {4,−1 + j7, 2,−1 − j7}

As −4mod 4 = 0, x(−4) = x(0) = 1. Similarly, X(5) = X(1) = −1 + j7.
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5.4.3 Circular Time Reversal

Let the N -point DFT of x(n) be X(k). The DFT of the time reversal x(N − n) of
x(n) is

⎡
⎢⎢⎣

X(0)
X(3)
X(2)
X(1)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
1 1 1 1
1 −j −1 j

1 −1 1 −1
1 j −1 −j

⎤
⎥⎥⎦

⎡
⎢⎢⎣

x(0)
x(3)
x(2)
x(1)

⎤
⎥⎥⎦ = X(N − k)

Therefore,

x(N − n) ⇐⇒ X(N − k)

For example,

x(n) = {2̌, 1, 3, 4} ⇐⇒ X(k) = {1̌0,−1 + j3, 0,−1 − j3}

x(4 − n) = {2̌, 4, 3, 1} ⇐⇒ X(4 − k) = {1̌0,−1 − j3, 0,−1 + j3}

5.4.4 Duality

The DFT and IDFT operations are almost similar. The differences are that the sign of
the exponents in the definitions differ and there is a constant in the IDFT definition.
Let the DFT of x(n) be X(k) with period N . Then, due to the dual nature of the
definitions, we can interchange the independent variables and make the time-domain
function as the DFT of the frequency-domain function with some minor changes.
That is, if we compute the DFT of X(n), then we get Nx(N − k). That is,

X(n) ⇐⇒ Nx(N − k)

For example, the DFT of {1̌, 2, 3, 4} is {1̌0,−2 + j2,−2,−2 − j2}. The DFT of
this is 4{1̌, 4, 3, 2}.

5.4.5 Sum and Difference of Sequences

As the twiddle factors are all 1s with the frequency index k = 0, the coefficient of
the DC frequency component X(0) is just the sum of the time-domain samples x(n).
Let the transform length N be even. As the twiddle factors are all alternating 1s and
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-1s with the frequency index k = N/2, the coefficient X(N/2) is just the difference
of the sum of the even and odd time-domain samples x(n). These values computed
this way are a check on the DFT computation.

X(0) =
N−1∑
n=0

x(n) and X

(
N

2

)
=

N−2∑
n=0,2

x(n) −
N−1∑
n=1,3

x(n)

Similarly, in the frequency-domain,

x(0) = 1

N

N−1∑
k=0

X(k) and x

(
N

2

)
= 1

N

⎛
⎝ N−2∑

k=0,2

X(k) −
N−1∑
k=1,3

X(k)

⎞
⎠

For example, let {1̌, 1, 3, 2} ⇐⇒ {7̌,−2 + j1, 1,−2 − j1}. We can verify the
formulas using this transform pair.

5.4.6 Upsampling of a Sequence

Consider the sequence and its DFT

x(n) = { ˇ1 + j1, 2 − j3} ⇐⇒ X(k) = { ˇ3 − j2,−1 + j4}

Let us upsample x(n) by a factor of 2 to get

xu(n) = { ˇ1 + j1, 0, 2− j3, 0} ⇐⇒ Xu(k) = { ˇ3 − j2,−1+ j4, 3− j2,−1+ j4}

The spectrum is repeated.
In general, with

x(n) ⇐⇒ X(k), n, k = 0, 1, . . . , N − 1

and a positive integer upsampling factor L,

xu(n) =
{

x( n
L

) for n = 0, L, 2L, . . . , L(N − 1)

0 otherwise
⇐⇒ X(k) = X(k mod N), k = 0, 1, . . . , LN − 1

The spectrum X(k) is repeated L times.
The same thing happens in the upsampling of a spectrum, except for a constant

factor in the amplitude of the time-domain signal. Consider the sequence and its
DFT

x(n) = { ˇ1 + j1, 2 − j3} ⇐⇒ X(k) = { ˇ3 − j2,−1 + j4}
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Let us upsample X(k) by a factor of 2 to get

Xu(k) = { ˇ3 − j2, 0,−1 + j4, 0} ⇐⇒ { ˇ1 + j1, 2 − j3, ˇ1 + j1, 2 − j3}/2

The time-domain sequence is repeated.

5.4.7 Zero Padding the Data

Appending zeros to a sequence x(n) is carried out mostly for two purposes. As
the practically fast DFT algorithms are of length 2, x(n) is zero padded to meet
this constraint. Another purpose is to make the spectrum denser, as the frequency
increment in the spectrum is inversely proportional to the length of the time-domain
sequence. Sufficient number of zeros should be appended so that all the essential
features, such as a peak, are adequately represented. While any number of zeros can
be appended, we present the case of making the signal longer by an integer number
of times, L.

Let L = 2 and x(n) = {3̌, 1, 2, 4}. X(k) = {1̌0, 1 + j3, 0, 1 − j3}. Then

xz(n) = {3̌, 1, 2, 4, 0, 0, 0, 0} ⇐⇒ Xz(k) = {1̌0, ∗, 1 + j3, ∗, 0, ∗, 1 − j3, ∗}

With lengths of the sequences being 4 and 8, the DFT computes the coefficients at
frequencies

{0, 1, 2, 3}/4 and {0, 1, 2, 3, 4, 5, 6, 7}/8

Therefore, the even-indexed DFT coefficients of xz(n) are the same as that of X(k).
With eight frequency components, the spectrum is denser.

In general, with x(n) ⇐⇒ X(k), n, k = 0, 1, . . . , N − 1,

xz(n) =
{

x(n) for n = 0, 1, . . . , N − 1

0 for n = N, N + 1, . . . , LN − 1
⇐⇒ Xz(Lk) = X(k), k = 0, 1, . . . , N − 1

Similarly, the zero padding of a spectrum results in a denser and scaled time-
domain signal. For example, let x(n) = {4̌, 2} ↔ {6̌, 2}. Then,

xz(n) = {4̌, ∗, 2, ∗}/2 ⇐⇒ {6̌, 2, 0, 0}

The even-indexed samples of xz(n) are the same as that of x(n) divided by 2.
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5.4.8 Circular Shift of a Sequence

As any periodic sequence is completely specified by its elements over a period,
the shifted version of a periodic sequence can be obtained by circularly shifting
its elements over a period. As the time-domain sequence x(n) and its DFT X(k)

are considered periodic, the shift of these sequences are called as circular shift. For
example, the delayed sequence (x − 1) is obtained by moving the last sample of
x(n) to the beginning of the sequence. Similarly, the advanced sequence (x + 2) is
obtained by moving the first two samples of x(n) to the end of the sequence. Only
(N − 1) unique shifts are possible for a sequence with N samples.

The distance between two samples of a sinusoid completing k cycles in its period
ofN samples is 2π

N
k radians. Therefore, a shift of the sinusoid bym sample intervals

to the right amounts to changing its phase by − 2π
N

mk radians, with its amplitude
unchanged. The change in the phase is 2π

N
mk radians for a left shift. Let x(n) ⇐⇒

X(k). Then,

x(n ± m) ⇐⇒ e±j 2π
N

mkX(k) = W∓mk
N X(k)

The cosine waveform x(n) = cos( 2π16 n) with N = 16 and its DFT are shown,
respectively, in Fig. 5.2g and h. By shifting x(n) to the right by two sample intervals,
we get x(n) = cos( 2π16 (n − 2)). The spectral value X(1) of the delayed waveform

is obtained by multiplying X(1) = 8 in Fig. 5.2h by e−j 2π
16 (2)(1) = e−j π

4 = 1√
2
(1 −

j1). The result is X(1) = 8√
2
(1 − j1). Similarly, X(15) = 8√

2
(1 + j1).

5.4.9 Circular Shift of a Spectrum

The spectrum, X(k), of a signal, x(n), can be shifted by multiplying the signal by a

complex exponential, e±jk0
2π
N

n, where k0 is an integer and N is the length of x(n).

The new spectrum is X(k ∓ k0), since a spectral component X(ka)e
jka

2π
N

n of the

signal, multiplied by ejk0
2π
N

n, becomes X(ka)e
j ((ka+k0)

2π
N

n) and the corresponding
spectral value occurs at k = (ka + k0), after a delay of k0 samples. The spectrum
is circularly shifted by k0 sample intervals. For example, if k0 = 1 or k0 = N + 1,
then the DC spectral value of the original signal appears at k = 1. With k0 = −1 or
k0 = N − 1, it appears at k = N − 1. Let x(n) ⇐⇒ X(k). Then,

e∓j 2π
N

k0nx(n) = W
±k0n
N x(n) ⇐⇒ X(k ± k0)
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The complex exponential x(n) = ej 2π
16 n with N = 16 and its spectrum X(1) = 16

are shown, respectively, in Fig. 5.2c and d. By multiplying x(n) with ej 2π
16 2n, we get

x(n) = ej 2π
16 3n. Then, the spectrum becomes X(3) = 16.

For example,

x(n) = {1̌, 2, 3, 4} ⇐⇒ X(k) = {1̌0,−2 + j2,−2,−2 − j2}

ej 2π
4 nx(n) = {1̌, j2,−3,−j4} ⇐⇒ X(k) = {−2 − j2, 1̌0,−2 + j2,−2}

ej 2π
4 2nx(n) = (−1)nx(n) = {1̌,−2, 3,−4} ⇐⇒ X(k) = {−2,−2 − j2, 1̌0,−2 + j2}

This frequency shift by N/2 sample intervals is often used to find the center-zero
spectrum.

5.4.10 Symmetry

Symmetry of a signal can be used to reduce its storage and computational
requirements. The DFT symmetry properties for various types of signals are shown
in Table 5.1. In this table, Re stands for “real part of” and Im stands for “imaginary
part of.” The symbol ∗ indicates the complex conjugation operation. Note that the
even-symmetry condition x(n) = x(−n) is the same as x(n) = x(N − n) for a
periodic signal of period N .

The DFT is formulated using the complex exponentials as basis functions.
Therefore, a real signal has to be reconstructed using complex conjugate pairs.
Consequently, the coefficients, for each frequency component, are also conjugate
symmetric. That is, the real part is even and the imaginary part is odd. Figure 5.3a
shows the real signal

x(n) = −0.1 + sin

(
2π

16
n + π

3

)
+ cos

(
2
2π

16
n + π

6

)
− 0.2 sin

(
3
2π

16
n

)

and Fig. 5.3b shows its hermitian symmetric spectrum, both with period 16. For
example,

sin

(
2π

16
n + π

3

)
= cos

(
2π

16
n − π

6

)
⇐⇒ 8

(
e−j π

6 δ(k − 1) + ej π
6 δ(k − 15)

)
= 6.9282∓ j4

The nonzero spectral values are

{X(0) = −1.6, X(1, 15) = 6.9282 ∓ j4, X(2, 14) = 6.9282 ± j4, X(3, 13) = ±j1.6}
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Table 5.1 DFT symmetry properties

Signal x(n), n = 0, 1, . . . , N − 1 DFT X(k)

Real

Im(x(n)) = 0 Hermitian X(k) = X∗(N − k)

Real and even Real and even

Im(x(n)) = 0 and x(n) = x(N − n) Im(X(k)) = 0 and X(k) = X(N − k)

Real and odd Imaginary and odd

Im(x(n)) = 0 and x(n) = −x(N − n) Re(X(k)) = 0 and X(k) = −X(N − k)

Real and even half-wave Hermitian and even-indexed only

Im(x(n)) = 0 and x(n) = x(n ± N
2 ) X(k) = X∗(N − k) and X(2k + 1) = 0

Real and odd half-wave Hermitian and odd-indexed only

Im(x(n)) = 0 and x(n) = −x(n ± N
2 ) X(k) = X∗(N − k) and X(2k) = 0

Imaginary

Re(x(n)) = 0 Antihermitian X(k) = −X∗(N − k)

Imaginary and even Imaginary and even

Re(x(n)) = 0 and x(n) = x(N − n) Re(X(k)) = 0 and X(k) = X(N − k)

Imaginary and odd Real and odd

Re(x(n)) = 0 and x(n) = −x(N − n) Im(X(k)) = 0 and X(k) = −X(N − k)

Imaginary and even half-wave Antihermitian and even-indexed only

Re(x(n)) = 0 and x(n) = x(n ± N
2 ) X(k) = −X∗(N − k) and X(2k + 1) = 0

Imaginary and odd half-wave Antihermitian and odd-indexed only

Re(x(n)) = 0 and x(n) = −x(n ± N
2 ) X(k) = −X∗(N − k) and X(2k) = 0

Complex and even, x(n) = x(N − n) Even, X(k) = X(N − k)

Complex and odd, x(n) = −x(N − n) Odd, X(k) = −X(N − k)

Complex and even half-wave Even-indexed only

x(n) = x(n ± N
2 ) X(2k + 1) = 0

Complex and odd half-wave Odd-indexed only

x(n) = −x(n ± N
2 ) X(2k) = 0

A real and even-symmetric signal is composed of cosine waves only. Therefore, for
each frequency component, the coefficients are real and even. Figure 5.3c shows the
real and even-symmetric signal

x(n) = −0.2 + 0.6 cos

(
2π

16
n

)
− cos

(
2
2π

16
n

)
+ 0.1 cos

(
8
2π

16
n

)

and Fig. 5.3d shows its real and even-symmetric spectrum. For example,

− cos

(
2
2π

16
n

)
⇐⇒ −8 (δ(k − 2) + δ(k − 14))

The nonzero spectral values are

{X(0) = −3.2, X(1, 15) = 4.8, X(2, 14) = −8, X(8) = 1.6}



146 5 The Discrete Fourier Transform

0 4 8 12

n

-2

0

2
x(

n)

(a)

real

0 4 8 12

k

-4

0

4

X(
k)

real
imaginary

(b)

hermitian

0 4 8 12

n

-2

-1

0

1

x(
n)

(c)

real and even

0 4 8 12

k

-8

0

4

X(
k)

(d)

real and even

0 4 8 12

n

-2

0

2

x(
n)

(e)

real and odd

0 4 8 12

k

-8

0

8

X(
k)

(f)

imginary and odd

0 4 8 12

n

-1

0

1

x(
n)

(g)

real and even half-wave

0 2 4 6 8 10 12 14

k

-4

0

4

X(
k)

(h)

hermitian and even-indexed

0 4 8 12

n

-2

0

2

x(
n)

(i)

real and odd half-wave

1 3 5 7 9 11 13 15

k

-8

0

8

X(
k)

(j)

hermitian and odd-indexed

Fig. 5.3 (a) A real signal and (b) its hermitian-symmetric spectrum; (c) an even-symmetric real
signal and (d) its real and even-symmetric spectrum; (e) an odd-symmetric real signal and (f) its
imaginary and odd-symmetric spectrum; (g) a real signal with even half-wave symmetry and (h)
its hermitian-symmetric spectrum with zero-valued odd-indexed harmonics; (i) a real signal with
odd half-wave symmetry and (j) its hermitian-symmetric spectrum with zero-valued even-indexed
harmonics

A real and odd-symmetric signal is composed of sine waves only. Therefore, for
each frequency component, the coefficients are imaginary and odd. Figure 5.3e
shows the real and odd-symmetric signal
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x(n) = − sin

(
2π

16
n

)
+ 0.6 sin

(
2
2π

16
n

)
− sin

(
5
2π

16
n

)

and Fig. 5.3f shows its imaginary and odd-symmetric spectrum. For example,

− sin

(
5
2π

16
n

)
⇐⇒ −8 (−jδ(k − 5) + jδ(k − 11))

The nonzero spectral values are

{X(1, 15) = ±j8, X(2, 14) = ∓j4.8, X(5, 11) = ±j8}

A real and even half-wave symmetric signal is composed of even-indexed real
frequency components only. Therefore, its spectrum is conjugate symmetric for each
even-indexed frequency components and zero otherwise. Figure 5.3g shows the real
and even half-wave symmetric signal

x(n) = −0.1+ 0.6 cos

(
2
2π

16
n + π

3

)
+ 0.3 sin

(
4
2π

16
n + π

6

)
+ 0.2 cos

(
8
2π

16
n

)

and Fig. 5.3h shows its hermitian symmetric spectrum with its odd-indexed values
zero. For example,

0.6 cos

(
2
2π

16
n + π

3

)
⇐⇒ 8(0.6)

(
ej π

3 δ(k − 2) + e−j π
3 δ(k − 14)

)

{X(0) = −1.6, X(2, 14) = 2.4±j4.1569, X(4, 12) = 1.2∓j2.0785, X(8) = 3.2}

A real and odd half-wave symmetric signal is composed of odd-indexed real
frequency components only. Therefore, its spectrum is conjugate symmetric for each
odd-indexed frequency components and zero otherwise. Figure 5.3i shows the real
and odd half-wave symmetric signal

x(n) = − sin

(
2π

16
n + π

3

)
+ cos

(
3
2π

16
n + π

6

)
+ 0.6 sin

(
5
2π

16
n

)

and Fig. 5.3j shows its hermitian symmetric spectrum with its even-indexed values
zero. For example,

cos

(
3
2π

16
n + π

6

)
⇐⇒ 8

(
ej π

6 δ(k − 3) + e−j π
6 δ(k − 13)

)

{X(1, 15) = −6.9282 ± j4, X(3, 13) = 6.9282 ± j4, X(5, 11) = ∓j4.8}
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The Basis of Fast DFT Algorithms
Any periodic function can be uniquely decomposed into its even half-wave and
odd half-wave symmetric components. The even half-wave symmetric component
is composed of the even-indexed frequency components, and the odd half-wave
symmetric component is composed of the odd-indexed frequency components.
Therefore, if an arbitrary function is decomposed into its even half-wave and odd
half-wave symmetric components, then we have divided the original problem of
finding the N frequency coefficients into two problems, each of them being the
determination of N/2 frequency coefficients. This decomposition is continued until
each frequency component is isolated.

5.4.11 Circular Convolution of Time-Domain Sequences

Let x(n) and h(n) be two periodic time-domain sequences of the same period N .
Then, the circular convolution of the sequences is defined as

y(n) =
N−1∑
m=0

x(m)h(n − m) =
N−1∑
m=0

h(m)x(n − m), n = 0, 1, . . . , N − 1

The principal difference of this type of convolution from that of the linear
convolution (Chap. 3) is that the range of the summation is restricted to a single
period. Figure 5.4 shows the position of two sequences x(n) and h(n), of length
8, for finding their convolution output for n = 0 and n = 2 on the left and right,
respectively. The process is similar to linear convolution except that the sequences
are placed on a circle. Obviously, both must be of the same length. The inner
sequence x(n) is placed counterclockwise and is fixed. The time-reversed outer

Fig. 5.4 Circular convolution
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sequence is placed clockwise. The sum of products of the corresponding elements
of the sequences is the convolution output y(0).

y(0) = x(0)h(0)+x(1)h(7)+x(2)h(6)+x(3)h(5)+x(4)h(4)+x(5)h(3)+x(6)h(2)+x(7)h(1)

The outer sequence is rotated counterclockwise by one sample interval and, at
each point, the sum of products form the convolution output. For example,

y(2) = x(0)h(2)+x(1)h(1)+x(2)h(0)+x(3)h(7)+x(4)h(6)+x(5)h(5)+x(6)h(4)+x(7)h(3)

For N -point sequences, the output is also periodic of period N .
The convolution of h(n) with a complex exponential ejk0ω0n, ω0 = 2π

N
is given

as

N−1∑
m=0

h(m)ejk0ω0(n−m) = ejk0ω0n
N−1∑
m=0

h(m)e−jk0ω0m = H(k0)e
jk0ω0n

As an arbitrary x(n) is reconstructed by the IDFT as

x(n) = 1

N

N−1∑
k=0

X(k)W−nk
N ,

the convolution of x(n) and h(n) is given by

y(n) = 1

N

N−1∑
k=0

X(k)H(k)W−nk
N ,

where X(k) and H(k) are, respectively, the DFT of x(n) and h(n). The IDFT of
X(k)H(k) is the circular convolution of x(n) and h(n).

Example 5.3 Convolve x(n) = {2, 1, 3, 3} and h(n) = {1, 0, 2, 4}.

Solution

X(k) = {9,−1 + j2, 1,−1 − j2} and H(k) = {7,−1 + j4,−1,−1 − j4}
X(k)H(k) = {63,−7 − j6,−1,−7 + j6}

The product X(k)H(k) is obtained by multiplying the corresponding terms in
the two sequences. The IDFT of X(k)H(k) is the convolution sum, y(n) =
{12, 19, 19, 13}. �
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5.4.12 Circular Convolution of Frequency-Domain Sequences

Let X(k) and H(k) be two periodic frequency-domain sequences of the same period
N . Then, the circular convolution of the sequences, divided by N , is given as

x(n)h(n) ⇐⇒ 1

N

N−1∑
m=0

X(m)H(k − m) = 1

N

N−1∑
m=0

H(m)X(k − m),

where x(n) and h(n) are the IDFT, respectively, of X(k) and H(k).

Example 5.4 Convolve X(k) = {9,−1 + j2, 1,−1 − j2} and H(k) = {7,−1 +
j4,−1,−1 − j4}.

Solution

x(n) = {2, 1, 3, 3} and h(n) = {1, 0, 2, 4}
x(n)h(n) = {2, 0, 6, 12}

The product x(n)h(n) is obtained by multiplying the corresponding terms in the two
sequences. The DFT of x(n)h(n) multiplied by four is the convolution sum of X(k)

and H(k), 4{20,−4 + j12,−4,−4 − j12}. �

5.4.13 Parseval’s Theorem

This theorem expresses the power of a signal in terms of its DFT spectrum. Let
x(n) ⇐⇒ X(k) with sequence length N . The sum of the squared magnitude of
the samples of a complex exponential with amplitude one, over the period N , is
N . Remember that these samples occur on the unit-circle. The DFT decomposes a
signal in terms of complex exponentials with coefficients X(k)/N . Therefore, the

power of a complex exponential is |X(k)|2
N2 N = |X(k)|2

N
. The power of the signal is

the sum of the powers of its constituent complex exponentials and is given as

N−1∑
n=0

|x(n)|2 = 1

N

N−1∑
k=0

|X(k)|2

Example 5.5 Consider the DFT pair

{2, 1, 3, 3} ⇐⇒ {9,−1 + j2, 1,−1 − j2}
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The sum of the squared magnitude of the data sequence is 23 and that of the DFT
coefficients divided by 4 is also 23. �

5.5 Applications of the Discrete Fourier Transform

The DFT is extensively used to approximate the forward and inverse transforms of
the other versions of the Fourier analysis as described in other chapters. In addition,
important operations such as convolution, interpolation, and decimation are carried
out efficiently using the DFT as presented in this section.

5.5.1 Computation of the Linear Convolution Using the DFT

Circular convolution assumes two periodic sequences of the same period and results
in a periodic sequence with that period. Using the DFT, circular convolution can be
efficiently carried out, as the DFT assumes a finite length sequence is periodically
extended. However, the linear convolution is of prime interest in LTI system
analysis. The linear convolution of two finite sequences of length N and M is a
sequence of length (N + M − 1).

The basis of using the DFT to evaluate the linear convolution operation, as well
as approximating other versions of the Fourier analysis, is to make the period of
the DFT so that all the essential information required is available in any one period
with sufficient accuracy. Therefore, both the sequences to be convolved must be
zero-padded to make them of length (N + M − 1), at the least. This prevents the
wrap-around effect of the circular convolution and makes one period output of the
circular convolution the same as that of the linear convolution.

The linear convolution of {2, 1} and {3, 4} is {6, 11, 4}. The DFT of the sequences
are, respectively, {3, 1} and {7,−1}. The term by term product of these DFT is
{21,−1}. The IDFT of this product yields the periodic convolution output {10, 11}.
The last value 4 of the linear convolution is added to the first value 6 to make the
first value of the circular convolution 10. The last value of the circular convolution
is unaffected by aliasing in the time-domain. The DFT of the 4-point zero-padded
sequences {2, 1, 0, 0} and {3, 4, 0, 0}, respectively, are {3, 2−j, 1, 2+j} and {7, 3−
j4,−1, 3 + j4}. The term by term product of these DFT is {21, 2 − j11,−1, 2 +
j11}. The IDFT of this product yields the linear convolution output with one zero
appended {6, 11, 4, 0}. We could have avoided the zero at the end by zero-padding
the signals to make their length three. As fast DFT algorithms with high regularity
are available only for data lengths those that are an integral power of two, the input
sequences are usually zero padded to make the length of the sequences an integral
power of two. Of course, this length must be greater than or equal to the sum of the
lengths of the two given sequences minus one.
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Fig. 5.5 Linear convolution using the DFT

Figure 5.5 shows the linear convolution implemented using the DFT and the
IDFT. The sequences x(n) and h(n) are sufficiently zero-padded, as presented
earlier, to form the sequences xz(n) and hz(n). The DFT, X(k) and H(k), of the
zero-padded sequences are computed. The pointwise product Y (k) = X(k)H(k)

is the convolution output in the frequency-domain. The IDFT of Y (k) is the linear
convolution of the sequences x(n) and h(n) with some zero padding.

5.5.2 Interpolation and Decimation

Changing the sampling rate of a signal is required for efficient signal processing. For
example, reconstructing a signal is easier with a higher sampling rate, while a lower
sampling rate may be adequate for processing, requiring a shorter computation
time. Changing the sampling rate of a signal by reconstructing the corresponding
analog signal and resampling it at the new sampling rate introduces large errors.
Therefore, sampling rate is usually changed in the discrete form itself. An analog
signal sampled with an adequate sampling rate results in its proper discrete form.
Sampling rate can be increased (interpolation) or decreased (decimation) to suit the
processing requirements as long as the sampling theorem is not violated.

5.5.2.1 Interpolation

Increasing the sampling rate of a signal by a factor I is called interpolation. First,
the signal is zero padded with (I − 1) samples with value zero between successive
samples. In the frequency-domain, the operation of zero-padding corresponds to
duplicating the spectrum of the given waveform (I −1) times, due to the periodicity
of the complex exponential Wnk

N . This signal is passed through a lowpass filter
with a cutoff frequency π

I
radians and a passband gain I . The resulting spectrum

corresponds to that of the interpolated version of the given waveform. Note that
all the frequency components of the given signal lies in the range from zero to π

I

radians of the duplicated spectrum. Frequency π corresponds to half the sampling
frequency and the frequency with index N

2 in the DFT spectrum.
The signal, x(n) = cos( 2π8 n − π

3 ), is shown in Fig. 5.6a and its spectrum is
shown in Fig. 5.6b. With the interpolation factor I = 2, we want twice the number
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Fig. 5.6 (a) A real signal and (b) its spectrum; (c) the signal shown in (a) with zero padding in
between the samples and (d) its spectrum, which is the same as that shown in (b) but repeats; (e)
the spectrum shown in (d) after lowpass filtering and (f) the corresponding time-domain signal,
which is an interpolated version of that shown in (a)

of samples in a cycle than that in Fig. 5.6a. This requires the insertion of one sample
with zero value in between the samples, as shown in Fig. 5.6c. The DFT of the
zero padded signal is shown in Fig. 5.6d. Except for the repetition, this spectrum
is the same as that in Fig. 5.6b. This spectrum has two frequency components
with frequency indices k = 1 and k = 7. We have to filter out the frequency
component with k = 7. Therefore, lowpass filtering of this signal with the filter
cutoff frequency π

2 radians and gain two yields the the spectrum shown in Fig. 5.6e
and the corresponding interpolated signal, x(n) = cos( 2π16 n − π

3 ), is shown in
Fig. 5.6f. The spectrum in Fig. 5.6b is the DFT of the sinusoid with eight samples
in a cycle, whereas that in Fig. 5.6e is the DFT of the sinusoid with 16 samples in a
cycle.

5.5.2.2 Decimation

Reducing the sampling rate of a signal by a factor D is called decimation. As we
reduce the sampling rate, we have to filter the high-frequency components of the
signal first, by a filter with a cutoff frequency π

D
and a passband gain 1, to eliminate

aliasing. Then, we take every Dth sample. It is assumed that the filtered out high-
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Fig. 5.7 (a) A real signal and (b) its spectrum; (c) the spectrum shown in (b) after lowpass filtering
and (d) the corresponding time-domain signal; (e) the signal shown in (d) with decimation of
alternate samples and (f) its spectrum, which is the same as that shown in (c) but compressed

frequency components are of no interest. The signal, x(n) = cos( 2π16 n − π
6 ) +

cos(52π
16 n), is shown in Fig. 5.7a and its spectrum is shown in Fig. 5.7b. With the

decimation factor D = 2, we want half the number of samples in a cycle than that
in Fig. 5.7a. The signal is passed through a lowpass filter with cutoff frequency π

2
and gain of 1. The spectrum of the filter output is shown in Fig. 5.7c and the filtered
signal, x(n) = cos( 2π16 n − π

6 ), is shown in Fig. 5.7d. Now, the decimated signal,
x(n) = cos( 2π8 n − π

6 ), is obtained by taking every second sample. The decimated
signal is shown in Fig. 5.7e, and its spectrum is shown in Fig. 5.7f.

5.5.2.3 Interpolation and Decimation

A sampling rate converter, which is a cascade of an interpolator and a decimator,
can be used to convert the sampling rate by any rational factor, I

D
. A single lowpass

filter, with a cutoff frequency that is the smaller of π
I
and π

D
, and gain of I , is

adequate. The signal, x(n) = cos( 2π4 n − π
3 ), is shown in Fig. 5.8a and its spectrum

is shown in Fig. 5.8b. With I = 3, D = 2, and I
D

= 3
2 , we want one and a half times

the number of samples in a cycle than that in Fig. 5.8a. The insertion of two samples
with zero value is required, as shown in Fig. 5.8c. The spectrum of this signal, which
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Fig. 5.8 (a) A real signal and (b) its spectrum; (c) the signal shown in (a) with zero padding in
between the samples and (d) its spectrum, which is the same as that shown in (b) but repeats twice;
(e) the spectrum shown in (d) after lowpass filtering and (f) the corresponding time-domain signal,
which is an interpolated version of that shown in (a); (g) the signal shown in (f) with decimation
of alternate samples and (h) its spectrum, which is the same as that shown in (e) but compressed

repeats twice, is shown in Fig. 5.8d. A lowpass filter, with cutoff frequency π
3 and

gain of 3, eliminates the two high-frequency components. The resulting spectrum
is shown in Fig. 5.8e, and the interpolated signal, x(n) = cos( 2π12 n − π

3 ), is shown
in Fig. 5.8f. Now, by taking alternate samples, we get the decimated signal, x(n) =
cos( 2π6 n− π

3 ), shown in Fig. 5.8g. Its spectrum is shown in Fig. 5.8h. Sampling rate
conversion by a factor 3

2 resulted in six samples in a cycle, as shown in Fig. 5.8g,
compared with four samples in a cycle in Fig. 5.8a.
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5.5.3 Image Boundary Representation

Despite the fact that most signals in practical applications are real-valued, the most
efficient way of formulating the Fourier analysis is using complex exponentials
rather than using real sinusoids. In addition to its compactness of representation,
it is easier to manipulate complex exponentials. In addition to these advantages,
the complex exponential formulation turns out to be efficient in the applications
involving real signals also. In such applications as bandpass signal sampling and
single side-band modulation, the real signals are transformed to equivalent complex
signals with advantage. Another example is boundary representation in image
processing. This is similar to evaluation of real integrals, which cannot be evaluated
in the real plane, in the complex plane.

In image processing, a major task is to identify the objects in the image. For
that purpose, the image is segmented into various regions. These regions have to
be compactly represented. The representation using the DFT is quite effective in
identifying the boundary of a region. The boundary of an object is represented by a
set of its x and y coordinates in the spatial domain. The closed boundary of a region
can be considered as a pair of periodic data. Therefore, we form a set of periodic
complex data using the x and y coordinates of a boundary as the real and imaginary
parts, respectively.

Let there be N boundary coordinates given as

{(x(0), y(0)), (x(1), y(1)), . . . , (x(N − 1), y(N − 1))}

Forming the corresponding complex data, we get

border(n) = {(x(0) + jy(0)), (x(1) + jy(1)), . . . , (x(N − 1) + jy(N − 1))}

The DFT of border(n), BORDER(k), represents the 2-D boundary in the
frequency-domain by a 1-D data. One major advantage of this representation, as
in almost all applications of Fourier analysis, is that much fewer than the required
N DFT coefficients provide an adequate representation of the border, depending on
the smoothness of the border.

For example, let us find the boundary representation of the 4 × 4 binary image
x(m, n).

x(m, n) =

⎡
⎢⎢⎣
1 1 1 0
1 0 1 0
1 0 1 0
1 1 1 0

⎤
⎥⎥⎦

Assume that the top left corner is the origin with coordinates (0, 0).
The complex data formed from the boundary coordinates of x(m, n) is
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border(n) = {0+ j0, 1+ j0, 2+ j0, 3+ j0, 3+ j1, 3+ j2, 2+ j2, 1+ j2, 0+ j2, 0+ j1}

The DFT of border(n), BORDER(k), is

{15 + j10,−11.8339 − j8.5978, 0, 0.3031 − j0.9329, 0,

−1, 0,−0.5949 − j1.8310, 0,−1.8743 + j1.3618}

Let us use just three coefficients to reconstruct the boundary. That is, we find the
IDFT of

{15 + j10,−11.8339 − j8.5978, 0, 0, 0, 0, 0, 0, 0,−1.8743 + j1.3618}

to get

{0.1292 + j0.2764, 0.9764 − j0.1708, 2.0236 − j0.1708, 2.8708 + j0.2764, 3.1944 + j1,

2.8708+ j1.7236, 2.0236+ j2.1708, 0.9764+ j2.1708, 0.1292+ j1.7236, −0.1944+ j1}

By rounding these values, we get back the original coordinates of the boundary.
In reconstructing real waveforms, the DFT coefficients occur in conjugate pairs

resulting in a real sinusoid for each pair of coefficients. As more and more
frequency components are used, the reconstructed waveform becomes more closer
to the original. In contrast, in reconstructing a closed boundary, the complex DFT
coefficients of the coordinates are arbitrary. Each complex coefficient corresponds
to a complex exponential in the time-domain, whose shape is a circle. The radius
of the circle depends on the magnitude of the corresponding DFT coefficient.
Therefore, a closed boundary is a sum of circles with different diameters traversed
with different speeds. As in the case of real signals, the magnitude of the coefficients
may become negligible, which depends on the smoothness of the boundary, over a
considerable range of the spectrum. Therefore, a boundary can be represented with
fewer coefficients with a required accuracy.

5.6 Summary

• In this chapter, the DFT, its properties, and some of its applications have been
presented.

• Transform methods change a problem into another equivalent form so that it is
relatively easier to interpret and solve problems.
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• Frequency-domain analysis uses sinusoids or complex exponentials as basis
signals to represent signals and systems, in contrast to impulse in the time-
domain analysis.

• The basis functions used in Fourier analysis are constant amplitude sinusoids or
exponentials with pure imaginary arguments. Fourier analysis has four versions,
each version suitable for different types of signals. The sinusoidal basis functions
differ, in each case, in characteristics such as discrete or continuous and finite or
infinite in number.

• In all versions of Fourier analysis, the signal is represented with respect to the
least squares error criterion.

• The DFT version of the Fourier analysis uses a finite number of harmonically
related discrete sinusoids as basis functions. Therefore, both the input data and
its spectrum are periodic and discrete. This fact makes it inherently suitable for
numerical computation.

• The input to the DFT is a finite sequence of samples, and it is assumed to be
periodically extended. The DFT coefficients are the coefficients of the basis
complex exponentials whose superposition sum yields the periodically extended
discrete signal. The IDFT carries out this sum.

• The DFT is extensively used in the approximation of the other versions of the
Fourier analysis, in addition to efficient evaluation of important operations such
as convolution, interpolation, and decimation.

• The periodicity property of the DFT is the key factor in deriving fast algorithms
for its computation. These algorithms make the use of the DFT more efficient in
most applications compared with alternate methods.

• The DFT, because of its finite and discrete nature, is the simplest of the four
different versions of the Fourier analysis to visualize the analysis and synthesis
of waveforms. Problems in understanding the concepts in other versions of the
Fourier analysis may be resolved by considering an equivalent DFT version.

Exercises

5.1 Given the DFT spectrum X(k), express the corresponding time-domain signal
x(n) in terms of its constituent real sinusoids.

5.1.1 {X(0) = 3, X(1) = 1√
2

− j 1√
2
, X(2) = −2, X(3) = 1√

2
+ j 1√

2
}.

5.1.2 {X(0) = −2, X(1) = √
3 + j1, X(2) = 3, X(3) = √

3 − j1}.
* 5.1.3 {X(0) = 1, X(1) = 2 − j2

√
3, X(2) = −3, X(3) = 2 + j2

√
3}.

5.1.4 {X(0) = 3, X(1) = 4, X(2) = 1, X(3) = 4}.
5.1.5 {X(0) = −5, X(1) = j8, X(2) = 2, X(3) = −j8}.

5.2 Find the four samples of x(n) over one period, and, then, use the DFT matrix
equation to compute the spectrum X(k).
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5.2.1 x(n) = 2 + 3 sin( 2π4 n − π
6 ) − cos(πn).

* 5.2.2 x(n) = −1 − 2 cos( 2π4 n + π
3 ) + 2 cos(πn).

5.2.3 x(n) = 3 + cos( 2π4 n − π
4 ) − 3 cos(πn).

5.2.4 x(n) = 1 − 2 sin( 2π4 n + π
4 ) + 4 cos(πn).

5.2.5 x(n) = −2 + 3 cos( 2π4 n + π
6 ) − 2 cos(πn).

5.3 Find the IDFT of the given spectrum X(k) using the IDFT matrix equation.

5.3.1 {X(0) = −12, X(1) = 2 − j2
√
3, X(2) = 8, X(3) = 2 + j2

√
3}.

5.3.2 {X(0) = 4, X(1) = −4
√
3 + j4, X(2) = −4, X(3) = −4

√
3 − j4}.

5.3.3 {X(0) = 8, X(1) = 3 − j3
√
3, X(2) = 8, X(3) = 3 + j3

√
3}.

* 5.3.4 {X(0) = −16, X(1) = −3
√
2−j3

√
2, X(2) = 8, X(3) = −3

√
2+j3

√
2}.

5.3.5 {X(0) = 12, X(1) = −2 − j2
√
3, X(2) = −12, X(3) = −2 + j2

√
3}.

5.4 Find the sample values of the waveform over one period first, and then use the
matrix equation to find its DFT spectrum. Verify that the spectral values are the
same as the corresponding coefficients of the exponentials multiplied by four.

5.4.1 x(n) = (1 + j
√
3)ej0 2π

4 n + (2 − j2
√
3)ej 2π

4 n + (1 − j1)ej2 2π
4 n − (1 +

j1)ej3 2π
4 n.

5.4.2 x(n) = (2+j1)ej0 2π
4 n + (3−j2)ej 2π

4 n + (4−j1)ej2 2π
4 n − (3+j2)ej3 2π

4 n.

5.4.3 x(n) = (1−j2)ej0 2π
4 n + (2+j2)ej 2π

4 n + (3−j3)ej2 2π
4 n + (1−j4)ej3 2π

4 n.

5.4.4 x(n) = (1+j2)ej0 2π
4 n + (2+j3)ej 2π

4 n + (4+j4)ej2 2π
4 n + (3−j2)ej3 2π

4 n.

5.4.5 x(n) = (2−j2)ej0 2π
4 n + (1−j4)ej 2π

4 n + (2+j1)ej2 2π
4 n + (1−j2)ej3 2π

4 n.

5.5 Find the IDFT of the given spectrum X(k) using the matrix IDFT equation.

* 5.5.1 {X(0) = 1 − j1, X(1) = 3 − j2, X(2) = 4 + j1, X(3) = 1 + j2}.
5.5.2 {X(0) = 3 + j3, X(1) = 1 − j1, X(2) = 2 + j3, X(3) = 1 − j4}.
5.5.3 {X(0) = 2 − j3, X(1) = 1 + j5, X(2) = 2 + j3, X(3) = 2 + j4}.
5.5.4 {X(0) = 1 − j4, X(1) = 4 + j2, X(2) = 3 + j1, X(3) = 2 + j2}.
5.5.5 {X(0) = 3 − j4, X(1) = 2 + j5, X(2) = 1 − j3, X(3) = 2 − j4}.

5.6 Find the DFT X(k) of the given x(n). Using the periodicity property of the
DFT and the IDFT, find the required x(n) and X(k).

5.6.1 x(n) = {2 + j3, 1 − j2, 2 + j1, 3 + j4}. Find x(13), x(−22), X(10), and
X(−28).

* 5.6.2 x(n) = {1 + j2, 2 − j3, 2 + j2, 1 − j4}. Find x(−14), x(43), X(12), and
X(−7).

5.7 Find the DFT X(k) of x(n) = {2 − j2, 1 + j3, 4 + j2, 1 − j2}. Using the
time-domain shift property and X(k), deduce the DFT of x(n + 1), x(n − 2), and
x(n + 3).
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5.8 Find the IDFT x(n) of X(k) = {12 + j4, 8 − j4, 4 + j4, 4 + j8}. Using
the frequency-domain shift property, deduce the IDFT of X(k + 1), X(k − 2), and
X(k + 3).

5.9 Find the circular convolution of two frequency-domain sequences X(k) and
H(k) using the DFT and the IDFT.

5.9.1 X(k) = {8 − j4, 4 + j4, 12 − j8, 8 − j12} and H(k) = {12 − j4, 8 −
j4, 4 + j8, 2 + j12}.

* 5.9.2 X(k) = {8, 4, 8, 4} and H(k) = {12, 8, 4, 12}.
5.9.3 X(k) = {0, j4, 0,−j4} and H(k) = {0, 4, 0,−4}.

5.10 Find the DFT of x(n) and verify the Parseval’s theorem.

5.10.1 x(n) = {2, 4, 3, 1}.
5.10.2 x(n) = {−2, 4, 2, 5}.
5.10.3 x(n) = {4,−1, 3, 1}.

5.11 Find the linear convolution of the sequences x(n) and y(n) using the DFT and
the IDFT.

5.11.1 {x(0) = 2, x(1) = 4, x(2) = 3} and {y(0) = 1, y(1) = −2}.
5.11.2 {x(0) = 2, x(1) = −4, x(2) = 3} and {y(0) = 1, y(1) = 2}.

* 5.11.3 {x(0) = 1, x(1) = 4, x(2) = −3} and {y(0) = −4, y(1) = 3}.



Chapter 6
Fourier Series

Continuous periodic signals are analyzed using an infinite set of harmonically
related sinusoids and a DC component in the FS frequency-domain representation.
Increasing the number of samples in a period, by decreasing the sampling interval,
results in a densely sampled time-domain waveform and a broader DFT periodic
spectrum. As the sampling interval tends to zero, the time-domain waveform
becomes a continuous function, and the discrete spectrum becomes aperiodic. As
the period of the waveform remains the same, the fundamental frequency and the
harmonic spacing of the spectrum is fixed. Therefore, the discrete nature of the
spectrum is unchanged. In Sect. 6.1, we derive the exponential form of the FS,
starting from the defining equations of the DFT and the IDFT. Then, two equivalent
trigonometric forms of the FS are deduced from the expressions of the exponential
form. The properties of the FS are described in Sect. 6.2. The approximation of the
FS coefficients by the DFT is presented in Sect. 6.3. Typical applications of the FS
are presented in Sect. 6.4.

6.1 Fourier Series

A continuous periodic signal, x(t), with period T is expressed as a sum of an
infinite set of harmonically related sinusoids and a DC component in the FS. The
frequency of the fundamental or first harmonic is the frequency of the waveform
under analysis. That is, ω0 = 2π

T
. The frequency of the second harmonic is 2ω0,

that of the third harmonic is 3ω0, and so on.
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162 6 Fourier Series

6.1.1 FS as the Limiting Case of the DFT

While the FS can be derived using the orthogonality property of sinusoids, it is
instructive to consider it as the limiting case of the DFT with the sampling interval
tending to zero. Consider the continuous periodic signal x(t), with period T = 5 s,

x(t) = 2 − cos

(
2π

5
t

)
+ cos

(
2
2π

5
t

)

and its five sample values, with a sampling interval of Ts = 1 s, shown in Fig. 6.1a.
The scaled DFT spectrum of this sample set is shown in Fig. 6.1b. The frequency
increment of the spectrum is ω0 = 2π

5 radians per second, and one period of the
DFT spectrum corresponds to 2π

5 5 = 2π radians. The samples of the same signal,
with a sampling interval of Ts = 0.125 s, are shown in Fig. 6.1c. Reducing the
sampling interval results in a densely sampled time-domain waveform. The scaled
DFT spectrum of this sample set is shown in Fig. 6.1d. As the frequency increment is
fixed at 2π

5 , the larger number of spectral values corresponds to a broader spectrum
of width 2π

5 40 = 16π radians. Eventually, as the sampling interval tends to zero,
the time-domain waveform becomes continuous and the discrete spectrum becomes
aperiodic.

The mathematical presentation of the foregoing argument is as follows. The
IDFT of X(k), −N ≤ k ≤ N is defined as

x(n) = 1

2N + 1

N∑
k=−N

X(k)e
j 2π

(2N+1) nk
, n = 0,±1,±2, . . . ,±N
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Fig. 6.1 (a) The samples, at intervals of 1 s, of a periodic continuous signal x(t) with period 5 s
and (b) its scaled DFT spectrum; (c) the samples of x(t) at intervals of 0.125 s and (d) its scaled
DFT spectrum
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Substituting the DFT expression for X(k), we get

x(n) = 1

2N + 1

N∑
k=−N

(
N∑

l=−N

x(l)e
−j 2π

(2N+1) lk

)
e
j 2π

(2N+1) nk

The frequency index k represents the discrete frequency 2π
(2N+1) k. If the periodic

signal, with period T , is sampled with a sampling interval of Ts seconds in
order to get the samples, then the corresponding continuous frequency is given
by 2π

(2N+1)Ts
k = 2π

T
k = kω0. The time index n corresponds to nTs seconds. The

number of samples in a period is (2N + 1) = T
Ts
. With these substitutions, we get

x(nTs) =
N∑

k=−N

(
1

T

N∑
l=−N

x(lTs)e
−j 2π

T
lTskTs

)
ej 2π

T
nTsk

As Ts is reduced, the number of samples (2N + 1) increases, but the product
(2N + 1)Ts = T remains constant. Hence, the fundamental frequency ω0 also
remains constant. As Ts → 0, nTs and lTs become continuous time variables t

and τ , respectively, the inner summation becomes an integral over the period T ,
N → ∞, and differential dτ formally replaces Ts . Therefore, we get

x(t) =
∞∑

k=−∞

(
1

T

∫ T
2

− T
2

x(τ)e−j 2π
T

τkdτ

)
ej 2π

T
tk

The exponential form of the FS for a signal x(t) is

x(t) =
∞∑

k=−∞
Xcs(k)ejkω0t , (6.1)

where the FS coefficients Xcs(k) are given as

Xcs(k) = 1

T

∫ t1+T

t1

x(t)e−jkω0t dt, k = 0,±1,±2, . . . (6.2)

and t1 is arbitrary. Because of periodicity of the FS with period T , the integral from
t1 to (t1 + T ) will have the same value for any value of t1. Since sinusoids are
represented in terms of exponentials, Eq. (6.1) is called the exponential form of the
FS.
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6.1.2 The Compact Trigonometric Form of the FS

The form of the FS, with sinusoids represented in polar form, is called the compact
trigonometric form. Eq. (6.1) can be rewritten as

x(t) = Xcs(0) +
∞∑

k=1

(Xcs(k)ejkω0t + Xcs(−k)e−jkω0t )

Since Xcs(k)ejkω0t and Xcs(−k)e−jkω0t form complex conjugate pair for real
signals and their sum is twice the real part of either of the terms, we get

x(t) = Xp(0) +
∞∑

k=1

Xp(k) cos(kω0t + θ(k)), (6.3)

where

Xp(0) = Xcs(0), Xp(k) = 2|Xcs(k)|, θ(k) = � (Xcs(k)), k = 1, 2, . . . ,∞

6.1.3 The Trigonometric Form of the FS

The form of the FS, with sinusoids represented in rectangular form, is called the
trigonometric form. Expressing the sinusoid in Eq. (6.3) in rectangular form, we get

x(t) = Xc(0) +
∞∑

k=1

(Xc(k) cos(kω0t) + Xs(k) sin(kω0t)), (6.4)

where

Xc(0) = Xp(0) = Xcs(0)

Xc(k) = Xp(k) cos(θ(k)) = 2Re(Xcs(k)),Xs(k) = −Xp(k) sin(θ(k)) = −2 Im(Xcs(k))

6.1.4 Periodicity of the FS

The FS is a periodic waveform of period that is the same as that of the fundamental,
T = 2π

ω0
. Replacing t by t + T in Eq. (6.3), we get
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x(t) = Xp(0) +
∞∑

k=1

Xp(k) cos(kω0(t + T ) + θk)

= Xp(0) +
∞∑

k=1

Xp(k) cos(kω0t + 2kπ + θk) = x(t)

If the waveform to be analyzed is defined only over the interval T , the FS represents
the waveform only in that interval. On the other hand, if the waveform is periodic
of period T , then the FS is valid for all t .

6.1.5 Existence of the FS

Any signal satisfying Dirichlet conditions, which are a set of sufficient conditions,
can be expressed in terms of a FS. The first of these conditions is that the signal
x(t) is absolutely integrable over one period, that is,

∫ T

0 |x(t)|dt < ∞. From the
definition of the FS, we get

|Xcs(k)| ≤ 1

T

∫ t1+T

t1

|x(t)e−jkω0t | dt = 1

T

∫ t1+T

t1

|x(t)||e−jkω0t | dt

Since |e−jkω0t | = 1,

|Xcs(k)| ≤ 1

T

∫ t1+T

t1

|x(t)| dt

The second condition is that the number of finite maxima and minima in one
period of the signal must be finite. The third condition is that the number of finite
discontinuities in one period of the signal must be finite. Most signals of practical
interest satisfy these conditions.

Example 6.1 Find the three forms of the FS for the signal

x(t) = −1 − 2 cos

(
2π

6
t − π

3

)

Solution As this signal can be expressed in terms of sinusoids easily, we do not need
to evaluate any integral. The fundamental frequency of the waveform is ω0 = 2π

6 ,
which is the same as that of the sinusoid. Note that the DC component is periodic
with any period.
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Fig. 6.2 (a) The FS amplitude spectrum and (b) the phase spectrum of the signal in compact
trigonometric form; (c) the FS amplitude spectrum and (d) the phase spectrum of the signal in
exponential form

Compact trigonometric form

x(t) = −1 − 2 cos

(
2π

6
t − π

3

)
= −1 + 2 cos

(
2π

6
t + 2π

3

)

Comparing this expression with the definition, Eq. (6.3), we get the compact
trigonometric form of the FS coefficients as

Xp(0) = −1, Xp(1) = 2, θ(1) = 2π

3

A plot of the amplitude Xp(k) of the constituent sinusoids of a signal x(t) versus k

or kω0 is called the amplitude spectrum of x(t). Similarly, the plot of the phase θ(k)

is called the phase spectrum. The FS amplitude spectrum and the phase spectrum of
the signal in compact trigonometric form are shown, respectively, in Fig. 6.2a and b.

Trigonometric form

x(t) = −1 − 2 cos

(
2π

6
t − π

3

)
= −1 − cos

(
2π

6
t

)
− √

3 sin

(
2π

6
t

)

Comparing this expression with the definition, Eq. (6.4), we get the trigonometric
form of the FS coefficients as

Xc(0) = −1, Xc(1) = −1, Xs(1) = −√
3

Exponential form

x(t) = −1 − 2 cos

(
2π

6
t − π

3

)
= −1 + 2 cos

(
2π

6
t + 2π

3

)
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= −1 + e
j
(
2π
6 t+ 2π

3

)
+ e

−j
(
2π
6 t+ 2π

3

)

Comparing this expression with the definition, Eq. (6.1), we get the exponential form
of the FS coefficients as

Xcs(0) = −1, Xcs(1) = 1� 2π

3
, Xcs(−1) = 1� −2π

3

The FS amplitude spectrum and the phase spectrum of the signal in exponential
form are shown, respectively, in Fig. 6.2c and d.

The frequencies of harmonically related continuous sinusoids must be rational
numbers or rational multiples of the same transcendental or irrational number.
Therefore, the ratio of frequencies of any two harmonically related sinusoids is a
rational number. The fundamental frequency (of which the harmonic frequencies
are integral multiples) of a combination of sinusoids is found as follows: (i) any
common factors of the numerators and denominators of each of the frequencies are
cancelled, and (ii) the greatest common divisor of the numerators is divided by the
least common multiple of the denominators of the frequencies.

Example 6.2 Find the exponential form of the FS for the signal

x(t) = 2 + 4 sin

(
1

2
t + π

6

)
+ 3 cos

(
3

5
t − π

4

)

Solution The frequency of the waveforms are 1
2 and 3

5 . There are no common
factors of the numerators and denominators. The least common multiple of the
denominators (2,5) is 10. The greatest common divisor of the numerators (1,3) is
one. Therefore, the fundamental frequency is ω0 = 1

10 radians per second. The
fundamental period is T = 2π

ω0
= 2π10

1 = 20π . The first sinusoid, the fifth
harmonic shown in Fig. 6.3 (dashed line), completes five cycles, and the second
sinusoid (dotted line), the sixth harmonic, completes six cycles in the period. The
combined waveform (solid line) completes one cycle in the period.

x(t) = 2 + 2e
j
(
1
2 t− π

3

)
+ 2e

−j
(
1
2 t− π

3

)
+ 3

2
e
j
(
3
5 t− π

4

)
+ 3

2
e
−j
(
3
5 t− π

4

)

Comparing this expression with the definition, Eq. (6.1), we get the exponential form
of the FS coefficients as Xcs(0) = 2, Xcs(±5) = 2� ∓π

3 , Xcs(±6) = 3
2
� ∓π

4 .

Example 6.3 Find the FS for a square wave defined over one period as

x(t) =
{
1 for |t | < 1

4
0 for 1

4 < |t | < 1
2
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Fig. 6.3 The harmonics and the combined waveform
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Fig. 6.4 (a) The FS amplitude spectrum and (b) the phase spectrum of the square wave in
exponential form

Solution The period of the waveform is one, and the fundamental frequency is 2π .
The waveform is even-symmetric and odd half-wave symmetric with a DC bias.
Therefore, in addition to the DC component, the waveform is composed of odd-
indexed cosine waves only.

Xc(0) = 2
∫ 1

4

0
dt = 1

2

Xc(k) = 4
∫ 1

4

0
cos(2πk t)dt =

{ 2
kπ

sin(π
2 k) for k odd

0 for k even and k �= 0

x(t) = 1

2
+ 2

π
(cos(2πt) − 1

3
cos(3(2πt)) + 1

5
cos(5(2πt)) − · · · ) (6.5)

The FS amplitude spectrum and the phase spectrum of the signal in exponential
form are shown, respectively, in Fig. 6.4a and b.

6.1.6 Gibbs Phenomenon

The FS converges uniformly for waveforms with no discontinuity. At any discon-
tinuity of a waveform, the FS converges to the average of the left- and right-hand
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Fig. 6.5 The FS for the square wave; (a) using up to the first harmonic; (b) using up to the third
harmonic; (c) using up to the seventh harmonic; (d) using up to the fifteenth harmonic

limits with overshoots and undershoots in the vicinity of the discontinuity. As the
basis waveforms of the Fourier series are continuous sinusoids, they can never
exactly add up to a discontinuity. This inability of the FS is referred as the Gibbs
phenomenon.

Figure 6.5a, b, c, and d shows the FS for the square wave, using up to the first,
third, seventh, and fifteenth harmonics, respectively. Consider the FS for the square
wave using up to the first harmonic, x(t) = 1

2 + 2
π
cos(2πt). By differentiating

this expression with respect to t and equating it to zero, we get sin(2πt) = 0. The
expression evaluates to zero for t = 0. Substituting t = 0 in the expression for
x(t), we get the value of the peak as 1.1366, as shown in Fig. 6.5a. We can find the
maximum overshoots in other cases similarly.

As we use more number of harmonics, the frequency of oscillations increases,
and the oscillations are confined more closer to the discontinuity. But, the largest
amplitude of the oscillations settles at 1.0869 for relatively small number of
harmonics. Therefore, even if we use an infinite number of harmonics to represent a
waveform with discontinuity, there will be deviations of 8.69 % of the discontinuity
for a moment. Of course, the area under the deviation tends to zero.

Example 6.4 Find the three forms of the FS for the periodic impulse train, shown
in Fig. 6.6a, with period T seconds defined as

x(t) =
∞∑

n=−∞
δ(t − nT )
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Fig. 6.6 (a) Impulse train with period T seconds and (b) its FS spectrum

Solution

Xcs(k) = 1

T

∫ T
2

− T
2

δ(t)e−jkω0t dt = 1

T

∫ T
2

− T
2

δ(t) dt = 1

T
, −∞ < k < ∞

The spectrum, shown in Fig. 6.6b, is also a periodic impulse train with period ω0 =
2π
T

and constant amplitude 1
T
. Note that the impulses in the time-domain are of

continuous type (as x(t) is a function of the continuous variable t), while those of
the spectrum are of discrete type (as Xcs(k) is a function of the discrete variable k).
The FS for the impulse train, in exponential form, is given by

x(t) =
∞∑

k=−∞
Xcs(k)ejkω0t = 1

T

∞∑
k=−∞

ejkω0t , ω0 = 2π

T

The FS coefficients, in compact trigonometric form, are

Xp(0) = Xcs(0) = 1

T
, Xp(k) = 2|Xcs(k)| = 2

T
, θ(k) = 0, k = 1, 2, 3, . . .

The FS is given by

x(t) = 1

T
(1 + 2(cos(ω0t) + cos(2ω0t) + cos(3ω0t) + · · · )), ω0 = 2π

T

As the phase θ(k) = 0 is zero, the trigonometric form of the FS is the same as this
form.

An alternate way of obtaining this FS is to consider the FS for a train of unit area
rectangular pulses of width a and height 1

a
, with the width a of one pulse including

the point t = 0. In the limiting case of a → 0, the train of pulses degenerates into
an impulse train, and the limiting form of its FS is the FS for the impulse train.

6.2 Properties of the Fourier Series

For each operation in one domain, the properties establish the corresponding
operation in the other domain, making it evident of the simpler relationship between
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variables for a particular operation. For example, the convolution operation in
the time-domain corresponds to the much simpler multiplication operation in the
frequency-domain. In addition, we can derive the FS coefficients for functions from
that for related functions more easily than deriving them from the definition.

6.2.1 Linearity

The FS coefficients for a linear combination of a set of periodic signals, with the
same period, is the same linear combination of their individual FS coefficients. That
is,

x(t) ⇐⇒ Xcs(k), y(t) ⇐⇒ Ycs(k), ax(t) + by(t) ⇐⇒ aXcs(k) + bYcs(k),

where a and b are arbitrary constants. For example, the FS coefficients for cos(t)
and sin(t) are Xcs(±1) = 1

2 and Xcs(±1) = ∓ j
2 , respectively. The FS coefficients

for cos(t) + j sin(t) = ejt are Xcs(±1) = 1
2 + (j)(∓ j

2 ). That is, the only nonzero
FS coefficient is Xcs(1) = 1.

6.2.2 Symmetry

The symmetry properties simplify the evaluation of the FS coefficients. Each
frequency component of a real waveform is composed of complex conjugate
exponentials. Therefore, if the signal is real, then the real part of its spectrum is
even, and the imaginary part is odd, called the conjugate symmetry. The FS for a
real signal x(t), with period T , is given by

Xcs(k) = 1

T

∫ T

0
x(t)e−jk 2π

T
t dt = 1

T

∫ T

0
x(t)

(
cos

(
k
2π

T
t

)
− j sin

(
k
2π

T
t

))
dt

Conjugating both sides, we get

X∗
cs(k) = 1

T

∫ T

0
x(t)

(
cos

(
k
2π

T
t

)
+ j sin

(
k
2π

T
t

))
dt

Replacing k by −k, we get X∗
cs(−k) = Xcs(k). For example, the FS coefficients for

4 cos(t + π
3 ) are Xcs(±1) = 1 ± j

√
3.
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6.2.2.1 Even Symmetry

If the signal x(t) is real and even, then its product with sine basis waveforms is
odd, and the Xs(k) coefficients are, therefore, zero. That is, the signal is composed
of cosine waveforms alone and its spectrum is real and even. As the product of
the cosine basis waveforms and the signal is even, the FS defining integral can be
evaluated over half the period. That is,

Xc(0) = 2

T

∫ t1+ T
2

t1

x(t) dt,

Xc(k) = 4

T

∫ t1+ T
2

t1

x(t) cos(kω0t) dt, k = 1, 2, . . . ,∞

For example, the FS coefficients for cos(t) are Xcs(±1) = 1
2 .

6.2.2.2 Odd Symmetry

If the signal x(t) is real and odd, then its product with cosine basis waveforms is
odd, and the Xc(k) coefficients are, therefore, zero. That is, the signal is composed
of sine waveforms alone and its spectrum is imaginary and odd. As the product of
the sine basis waveforms and the signal is even, the FS defining integral can be
evaluated over half the period. That is,

Xs(k) = 4

T

∫ t1+ T
2

t1

x(t) sin(kω0t) dt, k = 1, 2, . . . ,∞

For example, the FS coefficients for sin(t) are Xcs(±1) = ∓ j
2 .

As the FS coefficients for a real and even signal are real and even and that for
a real and odd signal are imaginary and odd, it follows that the real part of the FS
coefficients, Re(Xcs(k)), of an arbitrary real signal x(t) is the FS coefficients for its
even component xe(t) and j Im(Xcs(k)) are that for its odd component xo(t).

6.2.2.3 Half-Wave Symmetry

Even half-wave symmetry

If a periodic signal of period T satisfies the property x(t ± T
2 ) = x(t), then it is said

to have even half-wave symmetry. That is, it completes two cycles of a pattern in
the interval T . The FS coefficients can be expressed as
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Xcs(k) = 1

T

∫ t1+ T
2

t1

(
x(t) + (−1)kx

(
t + T

2

))
e−jkω0t dt (6.6)

The odd-indexed FS coefficients are zero. The even-indexed FS coefficients are
given by

Xcs(k) = 2

T

∫ t1+ T
2

t1

x(t)e−jkω0t dt, k = 0, 2, 4, . . .

The full-wave rectified sine waveform, in Fig. 6.8, is an example of even half-wave
symmetry.

Odd half-wave symmetry

If a periodic signal of period T satisfies the property −x(t ± T
2 ) = x(t), then it

is said to have odd half-wave symmetry. That is, the values of the signal over any
half period are the negatives of the values over the succeeding or preceding half
period. It is obvious, from Eq. (6.6), that the even-indexed FS coefficients are zero.
The odd-indexed FS coefficients are given by

Xcs(k) = 2

T

∫ t1+ T
2

t1

x(t)e−jkω0t dt, k = 1, 3, 5, . . .

The square waveform, in Fig. 6.5, is an example of odd half-wave symmetry, if the
DC component is subtracted.

Any periodic signal x(t), with period T , can be decomposed into its even and odd
half-wave symmetric components xeh(t) and xoh(t), respectively. That is, x(t) =
xeh(t) + xoh(t), where

xeh(t) = 1

2

(
x(t) + x

(
t ± T

2

))
and xoh(t) = 1

2

(
x(t) − x

(
t ± T

2

))

6.2.3 Time Shifting

When we shift a signal, the shape remains the same, but the signal is relocated.
The shift of a typical spectral component, Xcs(k0)e

jk0ω0t , by t0 to the right results
in the exponential, Xcs(k0)e

jk0ω0(t−t0) = e−jk0ω0t0Xcs(k0)e
jk0ω0t . That is, a delay

of t0 results in changing the phase of the exponential by −k0ω0t0 radians without
changing its amplitude.

Therefore, if the FS spectrum for x(t), with the fundamental frequency ω0 = 2π
T
,

is Xcs(k), then
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x(t ± t0) ⇐⇒ e±jkω0t0Xcs(k)

Consider the FS coefficients Xcs(±1) = ∓ j
2 for sin(2t). The FS coefficients for

sin(2t + π
2 ) = cos(2t), with k = ±1, ω0 = 2, and t0 = π

4 , are Xcs(±1) =
e±j (1)(2) π

4 (∓ j
2 ) = 1

2 .

6.2.4 Frequency Shifting

The spectrum, Xcs(k), of a signal, x(t), can be shifted by multiplying the signal
by a complex exponential, e±jk0ω0t , where k0 is an integer and ω0 is the funda-
mental frequency. The new spectrum is Xcs(k ∓ k0), since a spectral component
Xcs(ka)e

jkaω0t of the signal, multiplied by ejk0ω0t , becomes Xcs(ka)e
j ((ka+k0)ω0t)

and the corresponding spectral value occurs at k = (ka + k0), after a delay of k0
samples. Therefore, we get

x(t)e±jk0ω0t ⇐⇒ Xcs(k ∓ k0)

For example, consider the FS coefficients Xcs(±1) = ∓ j
2 for sin(t). The FS

coefficients for cos(2t) sin(t) can be computed using this property. As cos(2t) =
1
2 (e

j2t + e−j2t ), the FS coefficients for the new function is the sum of the FS
coefficients for sin(t) shifted to the right and left by two, in addition to the scale
factor 1

2 . That is,

Xcs(±1) = ±j

4
and Xcs(±3) = ∓j

4

This spectrum corresponds to the time-domain function 1
2 (sin(3t) − sin(t)), which

is, of course, equal to cos(2t) sin(t).

6.2.5 Time Reversal

x(t) ⇐⇒ Xcs(k), x(−t) ⇐⇒ Xcs(−k)

Time reversal of x(t) results in the reversal of Xcs(k) also. For example,

sin(t) ⇐⇒ Xcs(±1) = ∓j

2

and
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sin(−t) ⇐⇒ Xcs(±1) = ±j

2

6.2.6 Convolution in the Time-Domain

Using the FS, we get periodic or cyclic convolution as FS analyzes periodic time-
domain signals. The periodic convolution is defined for two periodic signals, x(t)

of period T1 and h(t) of period T2, as

y(t) =
∫ T

0
x(τ)h(t − τ)dτ,

where T (common period of x(t) and h(t)) is the least common multiple of T1 and
T2. The FS coefficients for y(t) are to be expressed in terms of those of x(t) and
h(t).

The convolution of h(t) of period T with a complex exponential ejk0ω0t , ω0 =
2π
T

is given as

∫ T

0
h(τ)ejk0ω0(t−τ)dτ = ejk0ω0t

∫ T

0
h(τ)e−jk0ω0τ dτ = T Hcs(k0)e

jk0ω0t

As an arbitrary x(t) of period T is reconstructed by the inverse FS as x(t) =∑∞
k=−∞ Xcs(k)ejk0ω0t , the convolution of x(t) and h(t) is given by y(t) =∑∞
k=−∞ T Xcs(k)Hcs(k)ejkω0t , where Xcs(k) and Hcs(k) are, respectively, the FS

coefficients for x(t) and h(t). The inverse of the FS spectrum T Xcs(k)Hcs(k) is the
periodic convolution of x(t) and h(t). That is,

∫ T

0
x(τ)h(t − τ)dτ =

∞∑
k=−∞

T Xcs(k)Hcs(k)ejkω0t ⇐⇒ T Xcs(k)Hcs(k)

Consider the convolution of x(t) = cos(t) and h(t) = sin(t) with the FS
coefficients Xcs(±1) = 1

2 and Hcs(±1) = ∓ j
2 , respectively. Then, with T = 2π,

we get

T Xcs(±1)Hcs(±1) = 2π

(
∓j

4

)
= π

(
∓j

2

)

These FS coefficients correspond to the time-domain function π sin(t). By directly
evaluating the time-domain convolution, we get

∫ 2π

0
cos(τ ) sin(t−τ)dτ =

∫ 2π

0
cos(τ )(sin(t) cos(τ )−cos(t) sin(τ ))dτ = π sin(t)
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An important application of this property is in modeling the truncation of the FS
spectrum. The signal corresponding to the truncated spectrum has to be expressed
in terms of the original signal x(t) with fundamental frequency ω0. The truncation
operation can be considered as multiplying the spectrum of x(t) with the spectrum
that is one for −N ≤ k ≤ N and zero otherwise. The signal corresponding to this
spectrum is

y(t) =
sin
(

(2N+1)ω0t
2

)
sin(ω0t

2 )

Therefore, the signal corresponding to the truncated spectrum of x(t) (using only
2N + 1 FS coefficients) is given by the convolution of x(t) and y(t), multiplied by
the factor 1

T
, as

xN(t) = 1

T

∫ T

0
x(τ)

sin
(

(2N+1)ω0(t−τ)
2

)

sin
(

ω0(t−τ)
2

) dτ

This expression is often used in explaining the Gibbs phenomenon. The alternating
nature of the second function in the integrand, even in the limit as N → ∞, does
not change and produces deviations at any discontinuity of x(t).

6.2.7 Convolution in the Frequency-Domain

Consider the FS representations of x(t) and y(t) with a common fundamental
frequency ω0 = 2π

T
.

x(t) =
∞∑

m=−∞
Xcs(m)ejmω0t and y(t) =

∞∑
l=−∞

Ycs(l)e
jlω0t

The FS coefficients for x(t)y(t) are to be expressed in terms of those of x(t) and
y(t). The product of the two functions is given by

z(t) = x(t)y(t) =
∞∑

m=−∞

∞∑
l=−∞

Xcs(m)Ycs(l)e
j (m+l)ω0t

Letting m + l = k, we get

z(t) = x(t)y(t) =
∞∑

k=−∞

( ∞∑
m=−∞

Xcs(m)Ycs(k − m)

)
ejkω0t
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This is a FS for z(t) = x(t)y(t)with coefficientsZcs(k) = ∑∞
m=−∞ Xcs(m)Ycs(k−

m). The convolution of two frequency-domain functions, with a common fun-
damental frequency, corresponds to the multiplication of their inverse FS in the
time-domain. That is,

x(t)y(t) ⇐⇒ 1

T

∫ T

0
x(t)y(t)e−jkω0t dt =

∞∑
m=−∞

Xcs(m)Ycs(k − m)

The convolution is aperiodic as the FS spectra are aperiodic.
Consider the convolution of the FS spectra given asXcs(±1) = 1

2 and Ycs(±2) =
∓ j

2 , with ω0 = 1. The linear convolution of these spectra is Zcs(±3) = ∓ j
4 and

Zcs(±1) = ∓ j
4 . The corresponding time-domain function is

1

2
(sin(t) + sin(3t)) = cos(t) sin(2t)

Note that the given FS spectra corresponds to the time-domain functions cos(t) and
sin(2t).

6.2.8 Duality

The analysis equation of the FS is an integral and the synthesis equation is a
summation. Therefore, there is no duality between these operations. However, as
the synthesis equation of the DTFT is an integral and the analysis equation is a
summation, there is duality between these two transforms. This will be presented in
the next chapter.

6.2.9 Time Scaling

Scaling is the operation of replacing the independent variable t by at , where
a �= 0 is a constant. As we have seen in Chap. 2, the signal is compressed or
expanded in the time-domain by this operation. As a consequence, the spectrum
of the signal is expanded or compressed in the frequency-domain. The amplitude
of the spectrum remains the same with the fundamental frequency changed to aω0.
Let the spectrum of a signal x(t), with the fundamental frequency ω0 = 2π

T
, be

Xcs(k). Then, x(at) ⇐⇒ Xcs(k) with the fundamental frequency aω0 and a > 0.
If a < 0, the spectrum, with the fundamental frequency |a|ω0, is also frequency-
reversed. For example, with a = 0.2, the signal cos(t) becomes cos(0.2t). The
spectrum remains the same, that is, Xcs(±1) = 1

2 , with the fundamental frequency
changed to 0.2 radians from one radian. With a = −3, the signal sin(t) becomes
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sin(−3t) = − sin(3t). The spectrum gets frequency-reversed, Xcs(±1) = ± j
2 , and

the fundamental frequency of the FS spectrum is changed to three radians from one
radian.

6.2.10 Time-Differentiation

As the signal is decomposed in terms of exponentials of the form ejk0ω0t , this
property is essentially finding the derivative of all the constituent exponentials of
a signal. The derivative of ejk0ω0t is jk0ω0e

jk0ω0t . Therefore, if the FS spectrum
for a time-domain function x(t) is Xcs(k), then the FS spectrum for its derivative is
jkω0Xcs(k), where ω0 is the fundamental frequency. Note that, the FS coefficient
with k = 0 is zero, as the DC component is lost in differentiating a signal. In general,

dnx(t)

dtn
⇐⇒ (jkω0)

n Xcs(k)

This property can be stated as the invariance of the exponentials with respect to
the differentiation operation. That is, the derivative of an exponential is the same
exponential multiplied by a complex scale factor. The exponentials are invariant
with respect to integration and summation operations also. These properties change
an integro-differential equation in the time-domain to an algebraic equation in
the frequency-domain. Therefore, the analysis of linear systems is easier in the
frequency-domain.

Another use of this property, in common with other properties, is to find FS
spectra for signals from those of the related signals. This property can be used to
find the FS for the functions represented by polynomials in terms of the FS for their
derivatives. When a function is reduced to a sum of impulses, by differentiating it
successively, the FS of the impulses can be found easily, and this FS is used to find
the FS of x(t) using the differentiation property. Consider a periodic rectangular
pulse defined over one period as x(t) = 1, |t | < a and x(t) = 0, a < |t | <
T
2 . The derivative of this signal in a period are the impulses δ(t + a) and −δ(t −
a). The FS spectrum for this pair is 1

T
(ejkω0a − e−jkω0a) = j2

T
sin(kω0a), where

ω0 = 2π
T
. This spectrum is related to the spectrum of the rectangular pulse by the

factor 1
jkω0

, k �= 0. Therefore, the FS spectrum for the periodic rectangular pulse is

Xcs(k) = 2 sin(kω0a)
kω0T

= sin(kω0a)
πk

. In general, use this property to obtain Xcs(k) for
k �= 0 only and determine Xcs(0) directly from the given waveform.

6.2.11 Time-Integration

For a signal x(t) ⇐⇒ Xcs(k) with fundamental frequency ω0,
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∫ t

−∞
x(τ)dτ ⇐⇒ 1

jkω0
Xcs(k)

provided the DC component of x(t) is zero (Xcs(0) = 0). Consider the function
cos(2t) with FS coefficients Xcs(±1) = 1

2 . Then, its integral, y(t) = sin(2t)
2 , has the

FS coefficients:

Ycs(±1) = 1

j (±1)(2)

1

2
= ∓j

4

6.2.11.1 Rate of Convergence of the Fourier Series

In practical problems, only the sum of a finite number of the infinite terms of
the FS are used to approximate a given function x(t), as no physical device can
generate harmonics of infinite order. The rate of convergence of a FS indicates
how rapidly the partial sums converge to x(t). A smoother function has a higher
rate of convergence. According to the time-integration property, each time the FS
is integrated term by term, the coefficients are divided by the factor k, the index.
That is, the rate of convergence of the FS is increased by the factor k, as the
function becomes smoother by the integration operation. The FS for an impulse train
converges slowly as all its coefficients are the same (no dependence on the index k).
As the integral of a function with impulses is a function with discontinuities, the FS
of such a function converges more rapidly as the magnitude of their coefficients
decrease at the rate 1

k
, for large values of k. As the integral of a function with

discontinuities results in a function with no discontinuity, the FS for such functions
converges still more rapidly as the magnitude of their coefficients decrease at the rate
1
k2
. The magnitude of the coefficients of a function, whose nth derivative contains

impulses, decreases at the rate 1
kn .

6.2.12 Parseval’s Theorem

As the frequency-domain representation of a signal is an equivalent representation,
the power of a signal can also be expressed in terms of its spectrum. That is,
the average power of a signal is the sum of the average powers of its frequency
components. The average power of a complex exponential, Aejω0t , is

P = 1

T

∫ T

0
|Aejω0t |2dt = |A|2

since |ejω0t | = 1. That is, the average power of a complex exponential is the
magnitude squared of its complex amplitude (irrespective of its frequency and
phase). Therefore, the total average power of a signal is
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P = 1

T

∫ T

0
|x(t)|2dt =

∞∑
k=−∞

|Xcs(k)|2

Example 6.5 Verify Parseval’s theorem for the square wave of Example 6.3. Find
the sum of the powers of the DC, first harmonic, and the third harmonic components
of the signal.

Solution The power using the time-domain representation is

P = 1

T

∫ T

0
|x(t)|2dt = 2

∫ 1
4

0
dt = 1

2

The power using the FS is

P =
∞∑

k=−∞
|Xcs(k)|2 =

(
1

2

)2

+ 2
∞∑

k=1,3,

(
1

kπ

)2

= 1

4
+ 2

π2

π2

8
= 1

2

The sum of the power of the components of the signal up to the third harmonic is

1

4
+ 2

π2
+ 2

9π2
= 1

4
+ 20

9π2
= 0.25 + 0.2252 = 0.4752

This example shows that the approximation of the signal by a few harmonics
includes most of its power.

6.3 Approximation of the Fourier Series

We approximate the integral in Eq. (6.2) by the rectangular rule of numerical
integration. We take N samples of the signal

x(0), x

(
T

N

)
, x

(
2

T

N

)
, . . . , x

(
(N − 1)

T

N

)
,

by dividing the period T of the signal into N intervals. The sampling interval is
Ts = T

N
. Now, Eq. (6.2) is approximated as

Xcs(k) = 1

T

N−1∑
n=0

x(nTs)e
−jkω0nTs

T

N
= 1

N

N−1∑
n=0

x(nTs)e
−jk 2π

N
n (6.7)

This is the analysis equation. The synthesis equation, Eq. (6.1), is approximated as



6.3 Approximation of the Fourier Series 181

x(nTs) =
N−1∑
k=0

Xcs(k)ej 2π
N

nk, n = 0, 1, . . . , N − 1.

Except for constant factors, the approximations of the analysis and synthesis
equations are the same as the DFT and IDFT equations, respectively. Note that
Xcs(k) is aperiodic and periodicity of N selected values is assumed in the IDFT
computation. For example, if we truncate the FS spectrum to Xcs(−1), Xcs(0),
and Xcs(1), then the periodic extension can be written, starting with Xcs(0) and
N = 3, as Xcs(0), Xcs(1), and Xcs(−1). With N = 4, the periodic values are
Xcs(0), Xcs(1), 0, and Xcs(−1).

For N even, comparing the coefficients of the DFT with that in Eq. (6.2), we get,
for real signals,

Xc(0) = X(0)

N
, Xc

(
N

2

)
= X

(
N
2

)
N

Xc(k) = 2

N
Re(X(k)), Xs(k) = − 2

N
Im(X(k)), k = 1, 2, . . . ,

N

2
− 1

Xcs(k) = X(k)

N
, k = 0, 1, . . . ,

N

2
− 1 and Re

(
Xcs

(
N

2

))
= X

(
N
2

)
2N

For example,

sin(t) ⇐⇒ Xcs(±1) = ∓0.5j

The four samples of sin(t) are {0, 1, 0,−1}. The DFT is {0,−j2, 0, j2}, which is
N = 4 times of Xcs(±1) = ∓0.5j . Now, if we want to find the inverse FS of
Xcs(±1) = ∓0.5j using the IDFT, we have to multiply the FS coefficients by
N = 4 and then take the IDFT.

6.3.1 Aliasing Effect

Let us find the FS spectrum of a sampled signal. The sampling operation can
be considered as multiplying the signal (x(t) with spectrum Xcs(k)) by the
sampling signal (s(t) = ∑∞

n=−∞ δ(t − nTs) with spectrum 1
Ts
). The sampled

signal is
∑∞

n=−∞ x(nTs)δ(t − nTs). In the frequency-domain, sampling operation
corresponds to the convolution of the spectra of the two signals. As the convolution
of a signal with an impulse is just translation of the origin of the signal to the
location of the impulse, we get the spectrum of the sampled signal x(t)s(t) as
the superposition sum of the infinite frequency-shifted spectrum of the signal,
multiplied by the factor 1

Ts
. That is, the FS spectrum for the sampled signal is
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Fig. 6.7 (a) Four samples of the square wave and (b) its DFT; (c) eight samples of the square wave
and (d) its DFT

1

Ts

∞∑
m=−∞

Xcs

(
k − m

T

Ts

)
,

where T is the period of the signal. Let us construct a sequence x(n) such that its nth
element has the value that is the same as the strength of the impulse x(nTs)δ(t−nTs)

of the sampled signal. We get the DFT spectrum of x(n) by multiplying the spectrum
of the sampled signal by T (remember that there is no normalization factor in the
definition of the DFT) and noting that T

Ts
= N . Therefore, we get

X(k) = N

∞∑
m=−∞

Xcs(k − mN), k = 0, 1, . . . , N − 1 (6.8)

This equation shows how the DFT spectrum is corrupted due to aliasing. By
sampling the signal, in order to use the DFT, to obtain a finite number of N

samples in a period, we simultaneously reduce the number of distinct sinusoids
and, hence, the number of distinct spectral coefficients to N . Therefore, if the signal
is bandlimited, we can get the exact FS coefficients by computing the DFT of the
samples of the signal. If the signal is not bandlimited or the number of samples is
inadequate, we get a corrupted FS spectrum using the DFT due to the aliasing effect.

Consider the sampling of the square wave (Example 6.3) with N = 4 samples,
shown in Fig. 6.7a. Note that, at any discontinuity, the average of the left- and right-
hand limits should be taken as the sample value. The sample values, starting from
n = 0, are {1, 0.5, 0, 0.5}. The DFT of this set of samples is {2, 1, 0, 1}, shown in
Fig. 6.7b. These values can be obtained from the FS coefficients using Eq. (6.8). The
DC value is 2/4 = 0.5, which is equal to the analytical value. The coefficient of the
first harmonic is (1 + 1)/4 = 0.5, which differs from the analytical value of 0.637.
This is due to the fact that, with only four samples, all the other odd harmonics alias
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as the first harmonic.

Xc(1) = 2

π

(
1 − 1

3
+ 1

5
− 1

7
+ · · ·

)

The value of the summation can be obtained from Eq. (6.5) by substituting t = 0.

1 = 1

2
+ 2

π

(
1 − 1

3
+ 1

5
− 1

7
+ · · ·

)

Therefore, we get Xc(1) = 0.5. As we double the number of samples, we get
a better approximation of the FS coefficients by the DFT. Figure 6.7c shows the
square wave with N = 8 samples, and its DFT is shown in Fig. 6.7d. The value of
the first harmonic is (2.4142 + 2.4142)/8 = 0.6036, which is much closer to the
actual value of 0.637. The point is that DFT should be used to approximate the FS
coefficients with sufficient number of time-domain samples so that the accuracy of
the approximation is adequate.

Let us compute the FS coefficients of x(t) of period 4, using the DFT.

x(t) = 1 + 2 cos

(
2π

4
t

)
+ 4 sin

(
2
2π

4
t + π

3

)
= 1 + 2 cos

(
2π

4
t

)
+ 4 cos

(
2
2π

4
t − π

6

)

= 1 + ej ( 2π4 t) + e−j ( 2π4 t) + 2e−j ( π
6 )ej ( 2π4 2t) + 2ej ( π

6 )e−j ( 2π4 2t)

The FS coefficients Xcs(k) are

{1, 1,√3 − j1,
√
3 + j1, 1}

With Ts = 1, the four samples over the period of 4 s are

{3 + 2
√
3, 1 − 2

√
3, 2

√
3 − 1, 1 − 2

√
3} = {6.4641,−2.4641, 2.4641,−2.4641}

With four samples, the DFT coefficients are

{4, 4, 8√3, 4}

Dividing X(2) by 8 and the rest by 4, we get

{1, 1,√3, 1}

The 2nd harmonic is

4 cos

(
2
2π

4
t − π

6

)
= 2

√
3 cos

(
2
2π

4
t

)
− 2 sin

(
2
2π

4
t

)
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With N = 4 samples, the samples of both the cos(22π
4 t) and the DFT basis function

with index 2 are {1,−1, 1,−1}, and the sum of pointwise multiplication yields 4.
By multiplying with the constant 2

√
3, we get the DFT coefficient as 8

√
3. Dividing

8
√
3 by 2N = 8, we get the real part of the FS coefficient

√
3, as given earlier.

The samples of the sine component with frequency index 2 are all zero and gets no
representation.

With Ts = 0.8, the five samples are

{6.4641,−0.0089,−1.4497, 2.3545,−2.3601}

The DFT coefficients are

{5, 5, 8.6603 − j5, 8.6603 + j5, 5}

which are the correct FS coefficients scaled by 5.
In practice, the number of samples has to be a power of 2 to suit fast practical

DFT algorithms. With Ts = 0.5, the eight samples are

{6.4641, 4.4142,−2.4641,−2.4142, 2.4641, 1.5858,−2.4641, 0.4142}

The DFT coefficients, divided by 8, are

{1, 1, 1.7321 − j1, 0, 0, 0, 1.7321 + 1, 1}

which are the correct FS coefficients.
The FS coefficients in the center-zero format are

Xf s(k), k = −2,−1, 0, 1, 2 = {√3 + j1 , 1 , 1̌ , 1,
√
3 − j1}

If we sum the shifted copies of the spectral values placed at a distance of four
samples, we get a corrupted periodic spectrum {1̌, 1, 2√3, 1} in the standard format.

√
3 + j1 1 1̌ 1

√
3 − j1

√
3 + j1 1 1̌ 1

√
3 − j1

The sum is

{2√3, 1, 1̌, 1}

in the center-zero format. The DFT coefficients, divided by N = 4, are also

{1̌,1, 2√3, 1}
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6.4 Applications of the Fourier Series

The FS is used to analyze periodic waveforms, such as half- and full-wave rectified
waveforms. The steady-state response of stable LTI systems to periodic input signals
can also be found using the FS. The steady-state response is the response of a system
after the transient has decayed. The transient response of a stable system always
decays with time. The steady-state output of a LTI system to an input ejk0ω0t is
the same function multiplied by the complex scale factor, H(jk0ω0). Therefore, the
output of the system is H(jk0ω0)e

jk0ω0t . The function H(jkω0) is the frequency
response H(jω) (Chap. 4) of the system, sampled at the discrete frequencies ω =
kω0.

Consider the system governed by the differential equation

dy(t)

dt
+ y(t) = x(t)

The differential equation can be written, with the input x(t) = ejk0ω0t , as

d(H(jk0ω0)e
jk0ω0t )

dt
+ H(jk0ω0)e

jk0ω0t = ejk0ω0t

Solving for H(jk0ω0), we get

H(jk0ω0) = 1

1 + jk0ω0

For an arbitrary periodic input, as x(t) = ∑∞
k=−∞ Xcs(k)ejkω0t , we get

y(t) =
∞∑

k=−∞
H(jkω0)Xcs(k)ejkω0t =

∞∑
k=−∞

Xcs(kω0)

1 + jkω0
ejkω0t

The more complex operation of solving a differential equation has been reduced to
the evaluation of an algebraic operation.

6.4.1 Analysis of Rectified Power Supply

Most of the electronic devices require a DC supply for their operation. The input
supply is usually alternating current. Therefore, two diodes or a bridge rectifier is
used to convert the bipolar input voltage to DC. This way, both the positive and
negative halves of the input sine wave are used. This is called a full-wave rectifier.
The average value of the full-wave rectifier output is 0.637 of the peak value of
the sine wave input. In addition to the required DC component, the output of the
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rectifier is composed of ripples. In order to design a filter circuit to reduce the ripples
to negligible levels, an analysis of the output waveform of the rectifier is required.
Fourier series provides such an analysis.

Let us derive the FS representation of the full-wave rectified waveform given by

x(t) = | sin(2πt)|

with period 1 and the fundamental frequency ω0 = 2π . The waveform is shown
in Fig. 6.8a. The waveform is even-symmetric, x(−t) = x(t), and, hence it is
composed of cosine components only. In addition, the waveform is even half-wave
symmetric. That is, the first-half and second-half of the waveform are identical,
x(t + T

2 ) = x(t). Consequently, the components of the waveform are even-indexed
cosine waves only. The DC component is the average value of the waveform, and it
is

Xc(0) = 2
∫ 0.5

0
sin(2πt) dt = 2

π

For even-indexed k, except k = 0, we get

Xc(2k) = 4
∫ 0.5

0
sin(2πt) cos(2π(2k)t) dt

= 2
∫ 0.5

0
(sin(2π(1 − 2k)t) + sin(2π(1 + 2k)t)) dt

= − 1

π

(
cos(2π(1 − 2k)t)

(1 − 2k)
+ cos(2π(1 + 2k)t)

(1 + 2k)

) ∣∣∣0.50

= 2

π

(
1

(1 − 2k)
+ 1

(1 + 2k)

)
= 4

π

(
1

1 − 4k2

)

x(t) = 2

π
− 4

π

∞∑
k=1

(
1

4k2 − 1

)
cos(2k(2π)t)

= 2

π
− 4

3π
cos(2(2π)t) − 4

15π
cos(4(2π)t) − 4

35π
cos(6(2π)t) − · · ·

Figure 6.8b shows its DC component and its reconstruction with the DC and the
2nd harmonic. Figure 6.8c shows its reconstruction with the DC and the 2nd and 4th
harmonics. Figure 6.8d shows its reconstruction with the DC and the 2nd, 4th, and
6th harmonics. As the number of harmonics is increased in the synthesis process,
the approximation becomes better.

There are two important aspects in the analysis of waveforms: (i) the reconstruc-
tion and (ii) the amplitude of the harmonics. Figure 6.8e and f shows, respectively,



6.4 Applications of the Fourier Series 187

0 0.5 1

t

0

1

x(
t)

(a)
0 0.5 1

t

0

0.6366

1.0610

x(
t)

(b)

DC

0 0.5 1

t

0

1

x(
t)

(c)
0 0.5 1

t

0

1

x(
t)

(d)

0 0.5 1

t

-0.4244

0

0.4244

x(
t)

(e)
0 0.5 1

t

-0.0849

0

0.0849

x(
t)

(f)

Fig. 6.8 (a) Full-wave rectified sine wave; (b) its reconstruction with DC and 2nd harmonic; (c)
and (d) its reconstruction with up to 4th and 6th harmonics, respectively; (e) the 2nd harmonic; (f)
the 4th harmonic

the second and fourth harmonics of the waveform in (a). The harmonics make two
and four cycles in a period. In applications where the harmonics are unwanted, the
amplitude of the harmonics has to be reduced below some prescribed levels. Fourier
series is a tool in carrying out this task.

In the time-domain, any linear system can be modeled by integro-differential
equations. It turns out that the equivalent representation in the frequency-domain
provides much easier analysis. Consider the RC filter circuit shown in Fig. 3.1. This
is one type of lowpass filter circuit. In general, the basic components of an electrical
circuit are resistor R, inductance L, and capacitance C.

The voltage v(t) across a resistor R Ohms due to current i(t) flowing through it
is given by

v(t) = Ri(t)
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in the time-domain. In the frequency-domain, all voltages and currents in the time-
domain are represented by their transforms. Therefore, the input-output relationship
for a resistor is

V ejωt = RIejωt

in the frequency-domain. For an inductor with L henries, we get, in the time-domain
and frequency-domain, respectively,

L
di(t)

dt
and jωLIejωt

The model for an inductor in the frequency-domain is jωL, as the rate of change of
the current is proportional to the frequency. Similarly, for a capacitor with C farads,
we get

1

C

∫
i(t)dt and

Iejωt

jωC

Therefore, the model for a capacitor in the frequency-domain is 1/(jωC).
As the voltage across an inductor is accentuated more with increasing frequency,

the behavior of an inductor is of a highpass nature. From the time-domain represen-
tation also, it is evident as the derivative is high for rapid changes. As differentiation
is the inverse of integration, a capacitor tends to attenuate high frequencies more. It
is obvious in the frequency-domain model, as the frequency variable appears in the
denominator. Therefore, the behavior of a capacitor is of a lowpass nature. These
characteristics, along with resistors to limit the current, enables to build filters with
different frequency responses using these components. The opposition to the flow
of current through a resistor is called the resistance. Similarly, the opposition to
the flow of current through an inductor or capacitor is called the reactance. The
impedance is the sum of the resistive and reactive part of a circuit. For example, the
impedance of a series connected resistorR and inductorL isR+jωL. Similarly, the
impedance of a series connected resistor R and capacitor C is R + (1/(jωC)). The
frequency-domain model of a circuit makes the analysis of circuits with inductors
and capacitances also similar to that of Ohm’s law for DC circuit analysis.

Let the input x(t) = | sin(2πt)| be applied to the lowpass filter circuit, shown
in Fig. 3.1. Let the values of resistor and capacitor be 10 ohms and 1/2 farads,
respectively. Let us derive an expression, using the FS representation of the input
waveform x(t), for the output voltage across the capacitor, y(t).

The FS for the full-wave rectified sine wave is

x(t) = 2

π
− 4

π

∞∑
k=1

(
1

4k2 − 1

)
cos(2k(2π)t)
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= 2

π
− 4

3π
cos(2(2π)t) − 4

15π
cos(4(2π)t) − 4

35π
cos(6(2π)t) − · · ·

The voltage across the capacitor, by voltage division, is

y(t) = x(t)
1/(jωC)

R + 1/(jωC)
= x(t)

1

1 + jωRC

For DC, with the fundamental frequency ω0 = 2π and k = 0,

y(t) = 2

π

since the capacitor is an open circuit to DC. For the 2nd harmonic, with the
fundamental frequency ω0 = 2π and k = 2,

y(t) = − 4

3π

1

1 + j2(2π)RC
cos((2)2πt)

With R = 10 and C = 0.5, the magnitude of the output is

∣∣∣∣ 43π
1

1 + j20π

∣∣∣∣ = 4

3π
0.0159

The magnitude of the 2nd harmonic has been reduced by a factor of 0.0159, and
the output becomes closer to the ideal output, which is DC. A large portion of the
ripples drop across the series resistor. Figure 6.9a shows the rectified waveform.
Figure 6.9b shows the DC component and the ripple due to 2nd harmonic. The
ripple magnitude has been reduced by a factor of about 16. Figure 6.9c shows the
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Fig. 6.9 (a) Full-wave rectified sine wave; (b) 2nd harmonic in (a) filtered with R = 10 ohms and
C = 0.5 farads; (c) 2nd harmonic in (a) filtered with R = 10 ohms and C = 1 farads; (d) 2nd
harmonic in (a) filtered with R = 10 ohms and C = 2 farads
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DC component and the ripple due to 2nd harmonic with C = 1. The magnitude of
the 2nd harmonic has been reduced by a factor of 0.0080. Figure 6.9d shows the
DC component and the ripple due to 2nd harmonic with C = 2. The magnitude of
the 2nd harmonic has been reduced by a factor of 0.0040. The sum of the responses
to all the harmonic components of the input is the total response of the circuit. As
it passes more readily the low-frequency components of the input compared with
those of the high-frequency components, the RC circuit is a lowpass filter. As only
a finite number of frequency components can be used in numerical analysis, this
number has to be determined appropriately.

Similar frequency-domain analysis is applicable for other applications. For
example, in mechanical engineering, friction, spring, and mass correspond to
resistor, inductor, and capacitor, respectively.

6.5 Summary

• FS is one of the four versions of Fourier analysis that provides the representation
of a continuous periodic time-domain waveform by a discrete aperiodic spectrum
in the frequency-domain.

• FS represents a continuous periodic waveform as a linear combination of
sinusoidal or, equivalently, complex exponential basis functions of harmonically
related frequencies.

• Harmonics are any of the frequency components whose frequencies are integral
multiples of a fundamental. The frequency of the fundamental is the same as that
of the periodic waveform being analyzed.

• The FS is the limiting case of the DFT as the sampling interval of the time-
domain sequence tends to zero with the period fixed.

• While physical devices generate real sinusoidal waveforms, it is found that the
analysis is mostly carried out using complex exponentials due to its compact
form and ease of manipulation.

• While an infinite number of frequency components are required to represent
an arbitrary waveform exactly, it is found that, in practice, a finite number of
frequency components provides an adequate representation.

• The orthogonality property of the basis signals makes it easy to determine the FS
coefficients.

• The representation of a signal in terms of its spectrum is just as complete and
specific as its time-domain representation in every respect.

• The independent variable of the waveform may be other than time, such as
distance.

• The conditions for the existence of a Fourier representation of a waveform are
met by signals generated by physical devices.

• The amplitude versus frequency plot of the harmonics is called the spectrum. As
the spectrum is usually complex, it is represented by two plots, either the real and
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imaginary parts or the magnitude and phase. While the time-domain waveform
is continuous and periodic, its FS spectrum is aperiodic and discrete.

• The more smoother the waveform, the faster is the convergence of its spectrum.
• A signal can be reconstructed using its spectral components.
• The exponential and trigonometric forms of Fourier analysis are related by

Euler’s formula.
• The least squares error is the criterion for the representation of a signal by the

Fourier analysis. With respect to this criterion, there is no better approximation
than that provided by the Fourier analysis.

• The properties of Fourier analysis help to relate the effects of characteristics of
signals in one domain into the other.

• LTI system analysis is simpler with the Fourier representation of signals and
systems.

• The Fourier spectrum can be adequately approximated by the DFT in practical
applications.

• FS is important in the analysis of signals such as acoustical, vibration, power
system, communication, electrocardiogram, and frequency response.

Exercises

6.1 The FS representation of a real periodic signal x(t) of period T , satisfying
Dirichlet conditions, is given as

x(t) = Xc(0) +
∞∑

k=1

(Xc(k) cos(kω0t) + Xs(k) sin(kω0t)),

where ω0 = 2π
T

and Xc(0), Xc(k), and Xs(k), the FS coefficients of the dc, cosine,
and sine components of x(t), respectively, are defined as

Xc(0) = 1

T

∫ t1+T

t1

x(t) dt,

Xc(k) = 2

T

∫ t1+T

t1

x(t) cos(kω0t) dt, k = 1, 2, . . . ,∞

Xs(k) = 2

T

∫ t1+T

t1

x(t) sin(kω0t) dt, k = 1, 2, . . . ,∞

and t1 is arbitrary. Derive the expressions for the coefficients using trigonometric
identities.
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6.2 Expand x(t) and find the three forms of its FS coefficients without evaluating
any integral. What is the fundamental frequency ω0?

6.2.1 x(t) = cos(t).
6.2.2 x(t) = cos2(t).
6.2.3 x(t) = cos3(t).

* 6.2.4 x(t) = cos4(t).
6.2.5 x(t) = cos5(t).
6.2.6 x(t) = sin(t).
6.2.7 x(t) = sin2(t).
6.2.8 x(t) = sin3(t).
6.2.9 x(t) = sin4(t).
6.2.10 x(t) = sin5(t).

6.3 Find the three forms of the FS coefficients of x(t) without evaluating any
integral. What is the fundamental frequency ω0?

6.3.1 x(t) = 3 + cos(2πt − π
3 ) − 2 sin(4πt + π

6 ).
6.3.2 x(t) = −1 − 2 sin(4πt − π

6 ) + 6 sin(8πt − π
3 ).

6.3.3 x(t) = 2 − 3
√
2 cos(2πt − π

4 ) + 2 sin(6πt + π
3 ).

6.3.4 x(t) = −3 + √
3 cos(2πt) − sin(2πt) + √

2 cos(8πt) − √
2 sin(8πt).

* 6.3.5 x(t) = 1 + 1
j2e

j (2πt+ π
3 ) + ej (6πt− π

6 ) − 1
j2e

−j (2πt+ π
3 ) + e−j (6πt− π

6 ).

6.4 Find the trigonometric form of the FS coefficients. What is the fundamental
frequency ω0?

6.4.1 x(t) = 1 + 2 sin
(
4
7 t
)

+ 3 cos
(
2
3 t
)
.

* 6.4.2 x(t) = 2 − 5 cos
(
3
7 t
)

− 2 sin
(
2
9 t
)
.

6.4.3 x(t) = −3 + 2 cos
(
3
7 t
)

− sin
(
1
3 t
)
.

6.5 Find the FS of a periodic pulse train of period T , defined over one period as

x(t) =
{ 1

a
for |t | < a

2
0 for a

2 < |t | < T
2

Apply a limiting process, as a → 0, to the pulse train and its FS to obtain the FS of
the periodic impulse train of period T :

x(t) =
∞∑

n=−∞
δ(t − nT )

6.6 Find the FS coefficients, using the time-domain convolution property, of y(t) =
x(t) ∗ x(t), the convolution of x(t) with itself, with x(t) defined over a period as
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x(t) =
{

A 0 < t < T
2

0 T
2 < t < T

6.7 Find the FS coefficients of z(t) = x(t)y(t) with period equal to the common
period of x(t) and y(t), where x(t) = 2 sin(t) + 4 cos(3t) and y(t) = 6 cos(2t),
using the frequency-domain convolution property. Verify that the FS coefficients
represent z(t) = x(t)y(t).

6.8 Find the trigonometric FS representation of the periodic full-wave rectified sine
wave defined over a period as

x(t) =
{

A sin(ω0t) 0 ≤ t < T
2

A sin(ω0(t − T
2 )) T

2 ≤ t < T
, ω0 = 2π

T

using the time-differentiation property.

6.9 Using the time-differentiation property, find the FS coefficients of the periodic
signal x(t) defined over a period.

6.9.1

x(t) =
{−A 0 < t < T

2
A −T

2 < t < 0

6.9.2

x(t) =
{

A + 2 0 < t < T
2

−A + 2 −T
2 < t < 0

6.9.3

x(t) =
{
0 0 < t < T

2
−(t + T

2 ) −T
2 < t < 0

6.9.4

x(t) = t

T
, 0 < t < T

6.9.5

x(t) =
{ 2t

T
0 ≤ t ≤ T

2
2 − 2t

T
T
2 < t < T
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* 6.9.6

x(t) = sin(2t), 0 < t <
π

2

6.10 Find the trigonometric FS representation, using Eq. (6.2), of the periodic
signal defined over a period as x(t) = 3

2 t, 0 < t < 2. Using the results, find
the sum of the infinite series

1 − 1

3
+ 1

5
− 1

7
+ · · ·

Verify Parseval’s theorem.
Find the power of the frequency components of the signal up to the (i) third

harmonic and (ii) fifth harmonic.
Approximate the trigonometric FS coefficients using the DFTwithN = 4. Verify

that they are the same using Eq. (6.8).
Find the location and the magnitude of a largest deviation due to Gibbs

phenomenon if the signal is reconstructed using up to the third harmonic.
Deduce the trigonometric FS representation of the signals x(t −1) and 2x(t)−3.

* 6.11 Find the trigonometric FS representation, using Eq. (6.2), of the periodic
signal defined over a period as

x(t) =
{ 1

2 t 0 ≤ t < 2
2(1 − t

4 ) 2 ≤ t < 4

Using the results, find the sum of the infinite series

1 + 1

9
+ 1

25
+ 1

49
+ · · ·

Verify Parseval’s theorem. Find the power of the frequency components of the signal
up to the (i) third harmonic and (ii) fifth harmonic.

Approximate the trigonometric FS coefficients using the DFTwithN = 4. Verify
that they are the same using Eq. (6.8).

Deduce the trigonometric FS representation of the signals x(t +2) and 3x(t)−2.

6.12 Find the trigonometric FS representation of the periodic half-wave rectified
sine wave defined over a period as

x(t) =
{

A sin( 2π
T

t) 0 ≤ t < T
2

0 T
2 ≤ t < T

using the frequency-domain convolution property. Verify Parseval’s theorem. Find
the power of the frequency components of the signal up to the third harmonic.
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Approximate the trigonometric FS coefficients using the DFTwithN = 4. Verify
that they are the same using Eq. (6.8).

Deduce the FS coefficients of x(t) + x(t − T
2 ) and x(t) − x(t − T

2 ).

6.13 Find the trigonometric FS representation of the periodic half inverted cosine
wave defined over a period as

x(t) =
{−A cos( 2π

T
t) 0 < t < T

2
0 T

2 < t < T

using the frequency-domain convolution property. Verify Parseval’s theorem. Find
the power of the frequency components of the signal up to the fifth harmonic. Find
the FS coefficients using the DFT with N = 4. Verify that they are the same using
Eq. (6.8). Find the location and the magnitude of a largest deviation due to Gibbs
phenomenon if the signal is reconstructed using up to the third harmonic. Deduce
the FS coefficients of x(t) − x(t − T

2 ).

6.14 Using the result of Exercise 6.13, deduce the FS representation of periodic
two inverted half cosine waves defined over a period as

x(t) =
{−A cos( 2π

T
t) 0 < t < T

2
A cos( 2π

T
t) T

2 < t < T

* 6.15 Find the response of the system governed by the differential equation:

dy(t)

dt
+ y(t) = ej2t + ej3t

6.16 Find the response of the system governed by the differential equation:

dy(t)

dt
+ 2y(t) = 2 − 3 sin(t) + cos

(
2t + π

3

)



Chapter 7
The Discrete-Time Fourier Transform

A continuum of discrete sinusoids over a finite frequency range is used as the
basis signals in the DTFT to analyze aperiodic discrete signals. Compared with
the DFT, as the discrete aperiodic time-domain waveform contains infinite number
of samples, the frequency increment of the periodic spectrum of the DFT tends to
zero and the spectrum becomes continuous. The period is not affected since it is
determined by the sampling interval in the time-domain. An alternate view of the
DTFT is that it is the same as the FS with the roles of time- and frequency-domain
functions interchanged.

In Sect. 7.1, the DTFT and its inverse and the dual relationship between the
DTFT and the FS are derived. The properties of the DTFT are presented in Sect. 7.2.
The approximation of the DTFT by the DFT is described in Sect. 7.3. Some typical
applications of the DTFT are presented in Sect. 7.4.

7.1 The Discrete-Time Fourier Transform

7.1.1 The DTFT as the Limiting Case of the DFT

In the last chapter, we found that the FS is the limiting case of the DFT as the
sampling interval in the time-domain tends to zero with the period of the waveform
fixed. In this chapter, we find that the DTFT is the limiting case of the DFT as the
period in the time-domain tends to infinity with the sampling interval fixed. With
a predetermined sampling interval, the effective frequency range of the spectrum is
fixed.

Consider the DFT magnitude spectrum |X(k)| of x(n) with N = 5 samples,
shown, respectively, in Fig. 7.1b and a. The frequency increment of the spectrum
is 2π

5 . Even if a signal x(n) is aperiodic, in the DFT computation, periodicity
is assumed. Therefore, only a set of samples of the continuous spectrum of an
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Fig. 7.1 (a) The time-domain function x(n) with N = 5 and (b) the corresponding DFT
magnitude spectrum, |X(k)|; (c) same as (a) with N = 33 and (d) the corresponding DFT
magnitude spectrum, |X(k)|

aperiodic x(n) is computed by the DFT. By zero-padding on either side of x(n),
we have made the signal longer with N = 33 samples, as shown in Fig. 7.1c. Its
spectrum is shown in Fig. 7.1d, which is denser (frequency increment 2π

33 ) compared
with that in Fig. 7.1b. Eventually, as N tends to infinity, we get the aperiodic discrete
signal and its periodic continuous spectrum. The spectrum is always periodic with
the same period, 2π , as the sampling interval is fixed at Ts = 1.

The foregoing argument can be, mathematically, put as follows. The IDFT of
X(k), −N ≤ k ≤ N is defined as

x(n) = 1

2N + 1

N∑
k=−N

X(k)e
j 2π

(2N+1) nk
, n = 0,±1,±2, . . . ,±N

Substituting the DFT expression for X(k), we get

x(n) = 1

2N + 1

N∑
k=−N

(
N∑

l=−N

x(l)e−j 2π
2N+1 lk

)
ej 2π

2N+1nk

As N tends to ∞, due to zero-padding of x(n), 2π
2N+1k becomes a continuous

variable ω, differential dω formally replaces 2π
2N+1 , and 2N + 1 = 2π

dω
. The outer

summation becomes an integral with limits −π and π (actually any continuous
interval of 2π ). The limits of the inner summation can be written as −∞ and ∞.
Therefore, the DTFT X(ejω) of the signal x(n) is defined as

X(ejω) =
∞∑

n=−∞
x(n)e−jωn (7.1)
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The DTFT is commonly written as X(ejω) instead of X(jω) to emphasize the fact
that it is a periodic function of ω. The inverse DTFT x(n) of X(ejω) is defined as

x(n) = 1

2π

∫ π

−π

X(ejω)ejωndω, n = 0,±1,±2, . . . (7.2)

When deriving closed-form expressions for x(n) or X(ejω),

X(ej0) =
∞∑

n=−∞
x(n), X(ejπ ) =

∞∑
n=−∞

(−1)nx(n), x(0) = 1

2π

∫ π

−π

X(ejω)dω,

which can be easily evaluated, are useful to check their correctness.
The analysis equation of the DTFT is a summation, and the synthesis equation is

an integral. In these equations, it is assumed that the sampling interval of the time-
domain signal, Ts, is 1 s. For other values of Ts , only scaling of the frequency axis
is required. However, the DTFT equations can also be expressed including Ts as

X(ejωTs ) =
∞∑

n=−∞
x(nTs)e

−jnωTs (7.3)

x(nTs) = 1

ωs

∫ ωs
2

− ωs
2

X(ejωTs )ejnωTs dω, n = 0,±1,±2, . . . , (7.4)

where ωs = 2π
Ts
. The DTFT represents a discrete aperiodic signal, x(nTs), with

Ts seconds between consecutive samples, as integrals of a continuum of complex
sinusoids ejnωTs (amplitude 1

ωs
X(ejωTs )dω) over the finite frequency range −ωs

2

to ωs

2 (over one period of X(ejωTs )). X(ejωTs ) is periodic of period ωs = 2π
Ts
,

since e−jnωTs = e
−jn(ω+ 2π

Ts
)Ts . Therefore, the integration in Eq. (7.4) can be

evaluated over any interval of length ωs . As the amplitude, 1
ωs

X(ejωTs )dω, of the

constituent sinusoids of a signal is infinitesimal, the spectral density X(ejωTs ),
which is proportional to the spectral amplitude, represents the frequency content
of a signal. Although the DTFT is the spectral density of a signal, it is still called
the spectrum. Therefore, the DTFT spectrum is a relative amplitude spectrum.

The summation in Eq. (7.3) converges uniformly to X(ejωTs ), if x(nTs) is

absolutely summable, that is
∞∑

n=−∞
|x(nTs)| < ∞. The summation converges in the

least squares error sense, if x(nTs) is square summable, that is
∞∑

n=−∞
|x(nTs)|2 < ∞

(e.g., x(n) in Example 7.2). Gibbs phenomenon is also common to all forms of
Fourier analysis whenever reconstructing a continuous waveform, with one or more
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Fig. 7.2 (a) One period of a DTFT spectrum; (b) the corresponding aperiodic discrete signal

discontinuities, in either domain. In the case of the DTFT, Gibbs phenomenon
occurs in the frequency-domain as the spectrum is a continuous function.

Example 7.1 Find the DTFT of the unit-impulse signal x(n) = δ(n).

X(ejω) =
∞∑

n=−∞
δ(n)e−jωn = 1 and δ(n) ⇐⇒ 1

That is, the unit-impulse signal is composed of complex sinusoids of all frequencies
from ω = −π to ω = π in equal proportion.

Example 7.2 One period of a DTFT spectrum, shown in Fig. 7.2a, is given as
X(ejω) = u(ω + π

4 ) − u(ω − π
4 ), −π < ω ≤ π . Find the corresponding x(n).

Solution As the spectrum is even-symmetric,

x(n) = 1

π

∫ π
4

0
cos(ωn) dω = sin(πn

4 )

nπ
, −∞ < n < ∞

The time-domain signal x(n) is shown in Fig. 7.2b.

The function of the form x(n) = sin( πn
4 )

nπ
, shown in Fig. 7.2b, is called the sinc

function that occurs often in signal and system analysis. It is an even function of n.
At n = 0, the peak value is 1

4 , as lim
θ→0

sin(θ) = θ . The zeros of the sinc function

occur whenever the argument of the sine function in the numerator is equal to
±π,±2π,±3π, . . .. For the specific case, the zeros occur whenever n is an integral
multiple of four. As a → 0, sin(an)

an
degenerates into a DC function with amplitude

one, as the zeros move to infinity. The sinc function is an energy signal, as it is
square summable. However, it is not absolutely summable.

Example 7.3 Find the DTFT of the signal x(n) = anu(n), |a| < 1.

X(ejω) =
∞∑

n=−∞
anu(n)e−jωn =

∞∑
n=0

(ae−jω)n = 1

1 − ae−jω
, |a| < 1
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The DTFT of some frequently used signals, which are neither absolutely nor
square summable, such as the unit-step, is obtained by applying a limiting process
to appropriate signals so that they degenerate into these signals in the limit. The limit
of the corresponding transform is the transform of the signal under consideration,
as presented in the next example.

Example 7.4 Find the DTFT of the unit-step signal x(n) = u(n).
As this signal is not absolutely or square summable, its DTFT is derived as that

of the limiting form of the signal anu(n), as a → 1.

X(ejω) = lim
a→1

1

1 − ae−jω
= lim

a→1

(
1 − a cos(ω)

1 − 2a cos(ω) + a2
− j

a sin(ω)

1 − 2a cos(ω) + a2

)

The real and imaginary parts of the DTFT spectrum of the signal 0.8nu(n), shown
in Fig. 7.3a, are shown, respectively, in Fig. 7.3c and e. Figure 7.3d and f shows the
same for the signal 0.99nu(n), shown in Fig. 7.3b. The real part of the spectrum
is even, and the imaginary part is odd. The area enclosed by the real part of the
spectrum is a constant (2π) independent of the value a, the base of the exponential
signal. This is so because, from the inverse DTFT with n = 0,

x(0) = 1 = 1

2π

∫ π

−π

1 − a cos(ω)

1 − 2a cos(ω) + a2
ejω0dω = 1

2π

∫ π

−π

1 − a cos(ω)

1 − 2a cos(ω) + a2
dω

As can be seen from the figures, the real part of the spectrum becomes more peaked
as a → 1. Eventually, the spectrum consists of a strictly continuous component
(except at ω = 0) and an impulsive component. The constant area 2π is split up, as
the function evaluates to 0.5 for ω �= 0 with a → 1, between these components, and
the spectrum becomes

X(ejω) = πδ(ω) + 1

1 − e−jω
and u(n) ⇐⇒ πδ(ω) + 1

1 − e−jω

Example 7.5 Find the DTFT of the DC signal, x(n) = 1.
The DC signal can be written as x(n) = u(n) + u(−n) − δ(n). Due to time

reversal property, if x(n) ⇐⇒ X(ejω) then x(−n) ⇐⇒ X(e−jω). The DTFT of
u(−n) is obtained from that of u(n) by replacing ω by −ω. Therefore, the DTFT of
the DC signal is

πδ(ω) + 1

1 − e−jω
+ πδ(−ω) + 1

1 − ejω
− 1 = 2πδ(ω)

Explicitly showing the periodicity of the DTFT spectrum, we get

1 ⇐⇒ 2π
∞∑

k=−∞
δ(ω + 2kπ)
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Fig. 7.3 (a) x(n) = 0.8nu(n); (b) x(n) = 0.99nu(n); (c) the real part of the DTFT spectrum of
the signal in (a) and (e) its imaginary part; (d) the real part of the DTFT spectrum of the signal in
(b) and (f) its imaginary part

That is, the DC signal, which is the complex exponential x(n) = ejωn with ω = 0,
has nonzero spectral component only at the single frequency ω = 0. Note that 2π
in the spectral value is a constant factor.

Consider the transform pair

2u(n) − 1 ⇐⇒ 2

(
πδ(ω) + 1

1 − e−jω

)
− 2πδ(ω) = 2

1 − e−jω

2{. . . , 0, 0, 0, 1̌, 1, 1, 1, . . .}−{. . . , 1, 1, 1, 1̌, 1, 1, 1, . . .} = {. . . , −1, −1, −1, 1̌, 1, 1, 1, . . .}

The sign or signum function sgn(n) is defined as

sgn(n) =
{

1 for n ≥ 0
−1 for n < 0

There is an odd version of the sign or signum function defined as

sgn(n) = 2u(n) − 1 − δ(n) ⇐⇒ 2

(
πδ(ω) + 1

1 − e−jω

)
− 2πδ(ω) − 1 = 2

1 − e−jω
− 1

2{. . . , 0, 0, 0, 1̌, 1, 1, 1, . . .} − {. . . , 1, 1, 1, 1̌, 1, 1, 1, . . .} − {. . . , 0, 0, 0, 1̌, 0, 0, 0, . . .} =



7.1 The Discrete-Time Fourier Transform 203

{. . . ,−1,−1,−1, 0̌, 1, 1, 1, . . .}

7.1.2 The Dual Relationship between the DTFT and the FS

The DTFT is the same as the FS with the roles of time- and frequency-domain
functions interchanged. The analysis equation, with period of the time-domain
waveform T and the fundamental frequency ω0 = 2π

T
, of the FS is

Xcs(kω0) = 1

T

∫ T
2

− T
2

x(t)e−jkω0t dt, k = 0,±1,±2, . . .

Replacing ω0 by Ts , T by ωs = 2π
Ts
, ω by t , t by ω, and k by −k in this equation,

we get

Xcs(−kTs) = 1

ωs

∫ ωs
2

− ωs
2

x(ω)ejkωTs dω, k = 0,±1,±2, . . .

This equation is the same as the inverse DTFT with x(kTs) = Xcs(−kTs) and
X(ejωTs ) = x(ω). Due to this similarity,

x(kTs) ⇐⇒ X(ejωTs ) implies X(ejtTs ) = x(t) ⇐⇒ x(−kTs) = Xcs(kω0)

For the same periodic waveform, we get two sets of FS coefficients related by the
time reversal operation because the periodic waveform occurs in the frequency-
domain in the case of the DTFT and in the time-domain in the case of the FS. It
is due to convention, we use complex exponential with negative exponent in the
forward transform definitions of the FS and the DTFT.

Consider the signal x(t) = sin(3t) shown in Fig. 7.4a and the corresponding
FS coefficients Xcs(kω0) = Xcs(±3) = ∓j0.5 shown in Fig. 7.4b. From the
FS synthesis equation, −0.5jej3t + 0.5je−j3t = sin(3t). Consider the spectrum
X(ejωTs ) = sin(3ω) shown in Fig. 7.4c and the corresponding x(kTs), (x(±3) =
±j0.5), shown in Fig. 7.4d. From the DTFT analysis equation, 0.5je−j3ω −
0.5jej3ω = sin(3ω).

7.1.3 The DTFT of a Discrete Periodic Signal

A periodic signal x(n) is reconstructed using its DFT coefficients X(k) as



204 7 The Discrete-Time Fourier Transform

0

, radians

-1

0

1

X(
ej

T s)

(c)

DTFTsin(3 )

2-
3 -3  0  3

kTs, seconds

-j0.5

    0

 j0.5

x(
kT

s)

(d)

0

t, seconds

-1

0

1
x(

t)

(a)

sin(3t)

2-
3 -3  0  3

k 0, radians

-j0.5

    0

 j0.5

X
cs

(k
0)

(b)

FS

Fig. 7.4 (a) One period of the periodic time-domain function x(t) = sin(3t) and (b) the
corresponding FS spectrum, Xcs(kω0); (c) one period of the periodic frequency-domain function
X(ejωTs ) = sin(3ω) and (d) the corresponding inverse DTFT, x(kTs), which is the time reversal
of Xcs(kω0) in (b)

x(n) = 1

N

N−1∑
k=0

X(k)ejkω0n, ω0 = 2π

N

Since the DTFT of ejkω0n is 2πδ(ω − kω0), we get, from the linearity property of
the DTFT, one period of the DTFT X(ejω) of x(n) as

X(ejω) = 2π

N

N−1∑
k=0

X(k)δ(ω − kω0)

Therefore, the DTFT of a periodic signal is a periodic train of impulses with strength
2π
N

X(k) at 2π
N

k with period 2π .
For example, the DFT of cos( 2π4 n) is {X(0) = 0, X(1) = 2, X(2) = 0, X(3) =

2} with N = 4. One period of the DTFT X(ejω) is given as {X(ej0) =
0, X(ej 2π

4 ) = πδ(ω − 2π
4 ),X(ej2 2π

4 ) = 0, X(ej3 2π
4 ) = πδ(ω − 32π

4 )}.

7.1.4 Determination of the DFT from the DTFT

The DTFT of a finite sequence x(n), starting from n = n0, of length N is given as

X(ejω) =
n0+N−1∑

n=n0

x(n)e−jnω
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Fig. 7.5 (a) Sinusoid sin( 2π4 n); (b) DFT coefficients as the samples of the DTFT

The DFT of x(n) is given as

X(k) =
n0+N−1∑

n=n0

x(n)e−jkω0n, ω0 = 2π

N

Comparing the DFT and DTFT definitions of the signal, we get

X(k) = X(ejω)|ω=kω0 = X(ejkω0)

The DTFT spectrum is evaluated at all frequencies along the unit-circle in the
complex plane, whereas the DFT spectrum is the set of N samples of the DTFT
spectrum at intervals of 2π

N
.

Let the four samples of a signal x(n) be defined as {x(−2) = 0, x(−1) = −1,
x(0) = 0, x(1) = 1}. The DTFT of x(n) is X(ejω) = −ejω + e−jω = −j2 sin(ω).
The set of samples of X(ejω), {X(0) = 0, X(1) = −j2, X(2) = 0, X(3) = j2},
at ω = 0, ω = 2π

4 , ω = 22π
4 , and ω = 32π

4 is the DFT of x(n) = sin(2πn/4).
Figure 7.5a and b shows, respectively, the discrete sinusoid sin( 2π4 n) and its DFT
coefficients as the samples of the DTFT.

7.2 Properties of the Discrete-Time Fourier Transform

Properties present the frequency-domain effect of time-domain characteristics and
operations on signals and vice versa. In addition, they are used to find new transform
pairs more easily.

7.2.1 Linearity

The DTFT of a linear combination of a set of signals is the same linear combination
of their individual DTFT. That is,

x(n) ⇐⇒ X(ejω), y(n) ⇐⇒ Y (ejω), ax(n) + by(n) ⇐⇒ aX(ejω) + bY (ejω),
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where a and b are arbitrary constants. This property follows from the linearity
property of the summation operation defining the DTFT.

Consider the signal x(n) = a|n|, |a| < 1. This signal can be decomposed as
x(n) = anu(n) + a−nu(−n) − δ(n). The DTFT of anu(n), from Example 7.3,
is 1

1−ae−jω . Due to time reversal property, if x(n) ⇐⇒ X(ejω) then x(−n) ⇐⇒
X(e−jω). Therefore, the DTFT of a−nu(−n) is obtained from that of anu(n) as

1
1−aejω . The DTFT of the signal x(n) = a|n|, |a| < 1, due to linearity property, is

X(ejω) = 1

1 − ae−jω
+ 1

1 − aejω
− 1 = 1 − a2

1 − 2a cos(ω) + a2

7.2.2 Time Shifting

When we shift a signal, the shape remains the same, but the signal is relocated.
The shift of a typical spectral component, X(ejωa )ejωan, by an integral number of
sample intervals, n0, to the right results in the exponential, X(ejωa )ejωa(n−n0) =
e−jωan0X(ejωa )ejωan. That is, a delay of n0 results in changing the phase of the
exponential by −ωan0 radians without changing its amplitude. Therefore, if the
transform of a time-domain function x(n) isX(ejω), then the transform of x(n±n0)

is given by e±jωn0X(ejω). That is,

x(n ± n0) ⇐⇒ e±jωn0X(ejω)

Consider the transform pair

(0.8)nu(n) ⇐⇒ 1

1 − 0.8e−jω

Then, due to this property, we get the transform pair

(0.8)(n−2)u(n − 2) ⇐⇒ e−j2ω

1 − 0.8e−jω

While this result is correct theoretically, to visualize, understand, and convince
ourselves, we have to use the DFT and IDFT in this type of situations. As a checkup
of this property using the IDFT, we found the 32 samples of the spectrum in the
range −π < ω < π at uniform intervals and the result of the first 8 samples of the
IDFT of the samples, shifted appropriately, are

{1.0008, 0.8006, 0.6405, 0.5124, 0.4099, 0.3279, 0.2624, 0.2099}

{0.0012, 0.0010, 1.0008, 0.8006, 0.6405, 0.5124, 0.4099, 0.3279, }
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With more number of samples, the result will be more accurate. For both
understanding and practical use of the Fourier analysis, the DFT and IDFT
are essential and should be employed to the full extent they are required.

7.2.3 Frequency Shifting

The spectrum, X(ejω), of a signal, x(n), can be shifted by multiplying the signal
by a complex exponential, e±jω0n. The new spectrum is X(ej (ω∓ω0)), since a
spectral component X(ejωa )ejωan of the signal multiplied by ejω0n becomes
X(ejωa )ej (ωa+ω0)n and the spectral value X(ejωa ) occurs at (ωa +ω0), after a delay
of ω0 radians. Therefore, we get

x(n)e±jω0n ⇐⇒ X(ej (ω∓ω0))

The complex exponential ejω0n can be considered as the product of the DC signal
x(n) = 1 and ejω0n. From the frequency shift property, we get the transform pair

1ejω0n = ejω0n ⇐⇒ 2πδ(ω − ω0)

The complex exponential is characterized by the single frequency ω0 alone.
Therefore, its spectrum is an impulse at ω0 in the fundamental frequency range from
−π to π . As cos(ω0n) = 0.5(ejω0n+e−jω0n) and sin(ω0n) = 0.5j (e−jω0n−ejω0n),

cos(ω0n) ⇐⇒ π(δ(ω − ω0) + δ(ω + ω0))

sin(ω0n) ⇐⇒ jπ(δ(ω + ω0) − δ(ω − ω0))

In Example 7.2, the frequency response of an ideal lowpass filter and its impulse
response were presented. By shifting the frequency response, shown in Fig. 7.2a,
by π radians, we get the frequency response of an ideal highpass filter with cutoff
frequency π − π

4 = 3π
4 , as shown in Fig. 7.6a. As the frequency response is shifted

by π radians, we get the impulse response of the highpass filter by multiplying that
of the lowpass filter by ejπn = (−1)n. That is, the impulse response of the highpass

filter is (−1)n
sin( πn

4 )

nπ
, shown in Fig. 7.6b.

7.2.4 Convolution in the Time-Domain

The convolution of signals x(n) and h(n) is defined, in Chap. 3, as

y(n) =
∞∑

m=−∞
x(m)h(n − m)
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Fig. 7.6 (a) One period of a DTFT spectrum of a highpass filter; (b) the corresponding impulse
response

The convolution of h(n) with a complex exponential ejω0n is given as

∞∑
m=−∞

h(m)ejω0(n−m) = ejω0n
∞∑

m=−∞
h(m)e−jω0m = H(ejω0)ejω0n

As an arbitrary x(n) is reconstructed by the inverse DTFT as x(n) =
1
2π

∫ π

−π
X(ejω)ejωndω, the convolution of x(n) and h(n) is given by y(n) =

1
2π

∫ π

−π
X(ejω)H(ejω)ejωndω, where X(ejω) and H(ejω) are, respectively, the

DTFT of x(n) and h(n). The inverse DTFT of X(ejω)H(ejω) is the convolution of
x(n) and h(n). Therefore, we get the transform pair

∞∑
m=−∞

x(m)h(n − m) = 1

2π

∫ π

−π

X(ejω)H(ejω)ejωndω ⇐⇒ X(ejω)H(ejω)

Consider the rectangular signal

x(n) =
{
1 for |n| ≤ 2
0 for |n| > 2

shown in Fig. 7.7a and its spectrum shown in Fig. 7.7b. The DTFT of the signal

is
sin( 5ω2 )

sin( ω
2 )

. The DTFT of the convolution of this signal with itself is, due to the

property,

(
sin( 5ω2 )

sin( ω
2 )

)2

. As the convolution of a rectangular signal with itself is a

triangular signal, this DTFT is that of a triangular signal. The triangular signal and
its spectrum, which is positive for all ω, are shown, respectively, in Fig. 7.7c and d.

7.2.5 Convolution in the Frequency-Domain

The convolution of two functions in the frequency-domain corresponds to the
multiplication of the inverse DTFT of the functions in the time-domain with a scale
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Fig. 7.7 (a) The rectangular signal and (b) its spectrum; (c) The triangular signal, which is the
convolution of the signal in (a) with itself, and (d) its spectrum

factor. That is,

x(n)y(n) ⇐⇒
∞∑

n=−∞
x(n)y(n)e−jωn = 1

2π

∫ 2π

0
X(ejv)Y (ej (ω−v))dv

Note that this convolution is periodic, since the DTFT spectrum is periodic.
Consider finding the DTFT of the product of the signal sin(n)

πn
with itself. One

period of the DTFT of the signal is the rectangular function

{
1 for |ω| < 1
0 for 1 < |ω| < π

The convolution of this function with itself divided by 2π is the periodic triangular
function, one period of which is defined as

⎧⎨
⎩

ω+2
2π for − 2 ≤ ω ≤ 0
2−ω
2π for 0 < ω ≤ 2
0 for − π ≤ ω < −2 and 2 < ω < π

7.2.6 Symmetry

If a signal is real, then the real part of its spectrumX(ejω) is even, and the imaginary
part is odd, called the conjugate symmetry. The DTFT of a real signal is given by
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X(ejω) =
∞∑

n=−∞
x(n)e−jωn =

∞∑
n=−∞

x(n)(cos(ωn) − j sin(ωn))

Conjugating both sides, we get

X∗(ejω) =
∞∑

n=−∞
x(n)(cos(ωn) + j sin(ωn))

Replacing ω by −ω, we get X∗(e−jω) = X(ejω). For example, the DTFT of
cos(ωa(n − π

4 )) = cos(ωa
π
4 ) cos(ωan) + sin(ωa

π
4 ) sin(ωan) is

X(ejω) = π cos
(
ωa

π

4

)
(δ(ω − ωa) + δ(ω + ωa))

+ jπ sin
(
ωa

π

4

)
(δ(ω + ωa) − δ(ω − ωa))

If a signal is real and even, then its spectrum also is real and even. Since
x(n) cos(ωn) is even and x(n) sin(ωn) is odd,

X(ejω) = x(0) + 2
∞∑

n=1

x(n) cos(ωn) and x(n) = 1

π

∫ π

0
X(ejω) cos(ωn)dω

The DTFT of cosine function is an example of this symmetry.
If a signal is real and odd, then its spectrum is imaginary and odd. Since

x(n) cos(ωn) is odd and x(n) sin(ωn) is even,

X(ejω) = −j2
∞∑

n=1

x(n) sin(ωn) and x(n) = j

π

∫ π

0
X(ejω) sin(ωn)dω

The DTFT of sine function is an example of this symmetry.
As the DTFT of a real and even signal is real and even and that of a real and

odd is imaginary and odd, it follows that the real part of the DTFT, Re(X(ejω)),
of an arbitrary real signal x(n) is the transform of its even component xe(n) and
j Im(X(ejω)) is that of its odd component xo(n).

7.2.7 Time Reversal

Let the spectrum of a signal x(n) be X(ejω). Then, x(−n) ⇐⇒ X(e−jω). That is
the time reversal of a signal results in its spectrum also reflected about the vertical
axis at the origin. This result is obtained if we replace n by −n and ω by −ω in the
DTFT definition.
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7.2.8 Time Expansion

As we have seen in Chap. 1, a signal is compressed or expanded by scaling
operation. Consider the case of signal expansion. Let the spectrum of a signal x(n)

be X(ejω). If we pad x(n) with zeros to get y(n) defined as

y(an) = x(n) for − ∞ < n < ∞ and y(n) = 0 otherwise

where a �= 0 is any positive integer, then,

Y (ejω) = X(ejaω)

The DTFT of the sequence y(n) is given by

Y (ejω) =
∞∑

n=−∞
y(n)e−jωn

Since we have nonzero input values only if n = ak, k = 0,±1,±2, . . ., we get

Y (ejω) =
∞∑

k=−∞
y(ak)e−jωak =

∞∑
k=−∞

x(k)e−jωak = X(ejaω)

Therefore,

y(n) ⇐⇒ X(ejaω)

The spectrum is compressed. That is, the spectral value at ω in the spectrum of
the signal occurs at ω

a
in the spectrum of its expanded version. If a is negative, the

spectrum is also frequency-reversed.
For example, the DTFT of the signal x(n) shown in Fig. 7.7a with dots, with

its only nonzero values given as x(−1) = 1 and x(1) = 1, is X(ejω) = ejω +
e−jω = 2 cos(ω). Using the theorem, we get the DTFT of y(n) with a = 2, shown
in Fig. 7.8a with unfilled circles, as

Y (ejω) = X(ej2ω) = 2 cos(2ω)

This result can be verified from the DTFT definition. The DTFT of the signal (solid
line) and that of its expanded version (dashed line) are shown in Fig. 7.8b. Since the
signal is expanded by a factor of two, the spectrum is compressed by a factor of two.

As an another example, consider the cosine signal x(n) = cos( 2π8 n), shown in
Fig. 7.8c by dots, and its DTFT
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Fig. 7.8 (a) Signal x(n) (dots) and its expanded version y(n) (unfilled circles) with a = 2, and (b)
the DTFT of x(n) (solid line) and that of y(n) (dashed line); (c) signal x(n) (dots) and its expanded
version y(n) (unfilled circles) with a = 2, and (d) the DTFT of x(n) (two impulses of strength π )
and that of y(n) (four impulses of strength π

2 )

X(ejω) = π

∞∑
k=−∞

(
δ

(
ω − 2π

8
+ 2πk

)
+ δ

(
ω + 2π

8
+ 2πk

))
,

shown in Fig. 7.7d with two impulses of strength π . The DTFT of y(n) with a = 2,
shown in Fig. 7.7c by unfilled circles, is

Y (ejω) = π

∞∑
k=−∞

(
δ

(
2ω − 2π

8
+ 2πk

)
+ δ

(
2ω + 2π

8
+ 2πk

))

= π

2

∞∑
k=−∞

(
δ
(
ω − π

8
+ πk

)
+ δ

(
ω + π

8
+ πk

))

= π

2

((
δ
(
ω − π

8

)
+ δ

(
ω + π

8

))
+
(

δ

(
ω − 7π

8

)
+ δ

(
ω + 7π

8

)))
,

−π < ω ≤ π , shown in Fig. 7.8d with four impulses of strength π
2 in the

fundamental frequency range from −π to π . The expanded time-domain signal is
reconstructed from its spectrum as follows:

y(n) = 0.5 cos
(π

8
n
)

+ 0.5 cos
((

π − π

8

)
n
)

= 0.5 cos
(π

8
n
)

(1 + (−1)n) = cos
(π

8
n
)

for n even and y(n) is zero otherwise.
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7.2.9 Frequency Differentiation

Differentiating both sides of the DTFT defining equation, with respect to ω, we get
the transform pair

(−jn)x(n) ⇐⇒ dX(ejω)

dω
or (n)x(n) ⇐⇒ (j)

dX(ejω)

dω

In general,

(−jn)kx(n) ⇐⇒ dkX(ejω)

dωk
or (n)kx(n) ⇐⇒ (j)k

dkX(ejω)

dωk

This property is applicable only if the resulting signal satisfies the existence
conditions of the DTFT. Consider the transform pair

δ(n − 2) ⇐⇒ e−j2ω

Using the property, we get the transform pair

nδ(n − 2) ⇐⇒ (j)(−j2)e−j2ω = 2e−j2ω

7.2.10 Difference

The derivative of a function is approximated by differences in the discrete case

y(n) = x(n) − x(n − 1) ⇐⇒ Y (ejω) = (1 − e−jω)X(ejω)

using the time shifting property.

7.2.11 Summation

The summation of a time-domain function, x(n), can be expressed, in terms of its
DTFT X(ejω), as

y(n) =
n∑

l=−∞
x(l) ⇐⇒ Y (ejω) = X(ejω)

(1 − e−jω)
+ πX(ej0)δ(ω), −π < ω ≤ π

The transform X(ejω)

(1−e−jω)
+ πX(ej0)δ(ω) is the product of the transforms of x(n)

and u(n) and corresponds to the convolution of x(n) and u(n) in the time-domain,
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which, of course, is equivalent to the sum of the values of x(n) from −∞ to n. The
time-summation operation can be considered as the inverse of the time-differencing
operation, if X(ej0) = 0. This justifies the strictly continuous component of the
spectrum. The impulsive component is required to take into account of the DC
component of x(n). This property is applicable only if the resulting signal satisfies
the existence conditions of the DTFT.

Since the DTFT of unit-impulse is one and the unit-step function is a summation
of the impulse, we get, using this property, the DTFT of u(n), over one period, as

u(n) =
n∑

l=−∞
δ(l) ⇐⇒ 1

(1 − e−jω)
+ πδ(ω), −π < ω ≤ π

As an another example, consider the signal, shown in Fig. 7.9a, and the resulting
signal, shown in Fig. 7.9b, obtained by summing it. The DTFT of the given signal
is, from the DTFT definition, 1 + e−jω. Using the property, we get the DTFT of its
summation as

1 + e−jω

1 − e−jω
+ 2πδ(ω), −π < ω ≤ π

The summation of x(n) is y(n), shown in Fig. 7.9b along with its two components
corresponding to the two terms of the transform. Note that 1 ⇐⇒ 2πδ.

7.2.12 Parseval’s Theorem and the Energy Transfer Function

As the frequency-domain representation of a signal is an equivalent representation,
the energy of a signal can also be expressed in terms of its spectrum.

E =
∞∑

n=−∞
|x(n)|2 = 1

2π

∫ 2π

0
|X(ejω)|2dω
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Fig. 7.9 (a) Signal x(n) = u(n) − u(n − 2); (b) y(n) = ∑n
l=−∞ x(l) (dotted line) and its two

components
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Since x(n) can be considered as the FS coefficients of X(ejω), this expression is the
same as that corresponding to the FS with the roles of the domains interchanged.
The quantity |X(ejω)|2 is called the energy spectral density of the signal, since
1
2π |X(ejω)|2dω is the signal energy over the infinitesimal frequency band ω to ω +
dω.

Consider the signal, shown in Fig. 7.8a, and its DTFT 1 + e−jω. The energy of
the signal, from its time-domain representation, is 12 + 12 = 2. The energy of the
signal, from its frequency-domain representation, is

E = 1

2π

∫ 2π

0
|1 + e−jω|2dω = 1

2π

∫ 2π

0
(2 + 2 cos(ω))dω = 2

The input and output of a LTI system, in the frequency-domain, is related by the
transfer function H(ejω) as

Y (ejω) = H(ejω)X(ejω)

where X(ejω), Y (ejω), and H(ejω) are the DTFT of the input, output, and impulse
response of the system. The output energy spectrum is given by

|Y (ejω)|2 = Y (ejω)Y ∗(ejω)

= H(ejω)X(ejω)H ∗(ejω)X∗(ejω) = |H(ejω)|2|X(ejω)|2

The quantity |H(ejω)|2 is called the energy transfer function, as it relates the input
and output energy spectral densities of the input and output of a system.

7.3 Approximation of the Discrete-Time Fourier Transform

In the computation of the DFT, we usually use the time-domain range from n = 0
to n = N − 1. Due to periodicity of the DFT, we can always get the samples in this
interval even though the data is defined in other intervals. Replacing ω by 2π

N
k in

the DTFT definition, we get

X(ej 2π
N

k) =
N−1∑
n=0

x(n)e−j 2π
N

nk =
N−1∑
n=0

x(n)Wnk, k = 0, 1, . . . , N − 1

Let us approximate the samples of the DTFT spectrum shown in Fig. 7.2a using
the DFT. The time-domain signal, shown in Fig. 7.2b, is of infinite duration,
and, therefore, we have to truncate it. For example, let us take the 15 sam-
ples x(−7), x(−6), . . . , x(6), x(7). The record length of the truncated signal
should be such that most of the energy of the signal is retained in the truncated
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Fig. 7.10 (a) and (c) One period of the periodic extension of the truncated and zero padded
aperiodic discrete signal, shown in Fig. 7.2b, with N = 16 and N = 64 samples, respectively;
(b) and (d) the DFT of the signals in (a) and (c), respectively

signal. As the most efficient and regular DFT algorithms are of length that
is an integral power of two, the truncated data is usually zero-padded. With
one zero added and N = 16, the data for the DFT computation becomes
x(0), x(1), . . . , x(7), 0, x(−7), . . . , x(−2), x(−1), as shown in Fig. 7.10a. The
corresponding DFT spectrum is shown in Fig. 7.10b. As the spectrum is even-
symmetric, only the positive frequency half of the spectrum is shown. As the number
of samples is increased, the spectral samples become more accurate, as shown in
Fig. 7.10c and d with N = 64. Note the Gibbs phenomenon in the vicinity of the
discontinuity of the spectrum.

The spectral samples obtained using the DFT are not exact because of the
truncation of the input data. In effect, the actual data is multiplied by a rectangular
window. Therefore, the desired spectrum is convolved with that of the rectangular
window (a sinc function). This results in the distortion of the spectrum. As the
level of truncation is reduced, the distortion also gets reduced. In the end, with
no truncation (a rectangular window of infinite length), we get the undistorted
spectrum. As an infinite data length is unacceptable for DFT computation, we start
with some finite data length and keep increasing it until the difference between two
successive spectra becomes negligible.

As the input signal to the DTFT is aperiodic while that of the DFT is assumed
to be periodic, inevitably, truncation is required. If no truncation is necessary, we
approximate the samples of the continuous DTFT spectrum by its exact samples
using the DFT. We can increase the number of samples by zero padding the input
data. Let

x(n) = {x(−2) = 3, x(−1) = −3, x(0) = 2, x(1) = 1}

and zero otherwise. The DTFT of x(n) is
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X(ejω) = 3ej2ω − 3ejω + 2 + e−jω

The input samples x(n) can be specified anywhere in the infinite range. The DFT
algorithms usually assume theN -point data is in the range from 0 toN−1. Using the
assumed periodicity of the DFT, the data can be specified in that range by periodic
extension, and we get

xp(n) = {x(0) = 2, x(1) = 1, x(2) = 3, x(3) = −3}

The fast and practically used DFT algorithms are of length that is an integer power
of 2. This requirement can be fulfilled by sufficient zero padding of the data and,
at the same time, to satisfy the required number of samples of the spectrum. For
example, with data length 3 and spectral samples 5, we have to zero pad the data to
make the length 8. The DFT of xp(n), XP(k), is

{XP(0) = 3, XP (1) = −1 − j4, XP (2) = 7, XP (3) = −1 + j4},

The set of samples of the DTFT X(ejω), at

ω = 0, ω = 2π

4
, ω = 2π

4
, ω = 3

2π

4

are the same as the DFT XP(k). Let us zero pad the signal xp(n) to make its length
8. Then,

xp(n) = {x(0) = 2, x(1) = 1, x(2) = 3, x(3) = −3, x(4) = 0, x(5) = 0, x(6) = 0, x(7) = 0}

The DFT is

{3, 4.8284−j1.5858,−1−j4,−0.8284+j4.4142, 7,−0.8284−j4.4142,−1+j4, 4.8284+j1.5858}

The even-indexed samples are the same as those obtained for the xp(n) with four
samples.

Let us consider the effect of data truncation. The criterion for data truncation is
that most of the energy of the signal is retained. Let

x(n) = {x(−3) = 3, x(−2) = −3, x(−1) = 1, x(0) = 2, x(1) = 1}

and zero otherwise. Then,

xp(n) = {x(0) = 2, x(1) = 1, x(2) = 3, x(3) = −3, x(4) = 1}

The DFT of xp(n) is

XP(k) = {4, 2.6180 − j3.5267, 0.3820 + j5.7063, 0.3820 − j5.7063, 2.6180 + j3.5267}
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The truncation operation can be considered as multiplying the signal with a window,
which reduces the effective length of the data. The DFT of window

w(n) = {1, 1, 1, 1, 0}

is

W(k) = {4, −0.3090 − j0.9511, 0.8090 − j0.5878, 0.8090 + j0.5878i − 0.3090 + j0.9511}

If we multiply xp(n) point-by-point by the window w(n), we get the truncated
signal xp_t (n). The DFT of the truncated signal xp_t (n)

xp_t (n) = {2, 1, 3,−3, 0}

is

XP _t (k) = {3, 2.3090 − j4.4778, 1.1910 + j5.1186, 1.1910 − j5.1186, 2.3090 + j4.4778}

This is the DFT of the circular convolution of a rectangular window W(k) and that
of xp(n), XP(k), divided by 5, the convolution theorem in the frequency-domain.
Let us also compute the spectrum of the truncated signal using the truncation model.
The circular convolution of the two spectra can be obtained using the DFT and IDFT.
The DFT of W(k) is

{5, 0, 5, 5, 5}

The DFT of XP(k) is

{10, 5,−15, 15, 5}

The point-by-point multiplication of the two spectra divided by 5 is

{10, 0,−15, 15, 5}

The IDFT of this spectrum is the spectrum of xp_t (n), XP_t (k), which is the same
as that we found already. In summary, to approximate the DTFT of an arbitrary
signal, start with some data length and find its DFT. Repeat this operation by
doubling the data length until the difference between the energy of the signal of
two consecutive iterations is negligible.

7.3.1 Approximation of the Inverse DTFT by the IDFT

Replacing ω by 2π
N

k and dω by 2π
N

in the inverse DTFT definition, we get
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x(n) = 1

N

N−1∑
k=0

X(ej 2π
N

k)ej 2π
N

nk = 1

N

N−1∑
k=0

X(ej 2π
N

k)W−nk, n = 0, 1, . . . , N − 1

Let us approximate the inverse DTFT of the spectrum shown in Fig. 7.2a by the
IDFT. As always, at points of discontinuity, the average of the left- and right-
hand limits should be taken as the sample value in Fourier analysis. The sample
values of the spectrum with N = 8 are shown in Fig. 7.11a. The IDFT of these
samples is shown in Fig. 7.11b along with the exact values. Only half of the signal is
shown, as it is even-symmetric. As the number of samples is increased, as shown in
Fig. 7.11c, the time-domain values become more accurate, as shown in Fig. 7.11d.
As the time-domain data length is infinite, the necessary sampling interval of the
spectrum is zero radians. However, as that interval is not practical with numerical
analysis, we use some finite sample interval. That results in time-domain aliasing.
As mentioned earlier, practical signals, with an adequate sampling interval and a
sufficient record length, can be considered as both time-limited and bandlimited
with a desired accuracy. This fact enables the use of the DFT and IDFT, which can
be computed using fast algorithms, to approximate the other versions of Fourier
analysis.

Let

x(n) = {x(0) = 3, x(1) = 1, x(2) = 2, x(3) = 4}

The DTFT of x(n) is

X(ejω) = 3 + e−jω + 2e−j2ω + 4e−j3ω
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Fig. 7.11 (a) and (c) Samples of one period of the periodic DTFT spectrum, shown in Fig. 7.2a,
with N = 8 and N = 32 samples, respectively; (b) and (d) The IDFT of the spectra in (a) and (c),
respectively
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The samples of the spectrum at ω = 0, π/2, π, 3π/2 are

{10, 1 + j3, 0, 1 − j3}

The 4-point DFT of x(n) is also the same. The IDFT of these samples yields x(n)

exactly, since the number of samples of the spectrum is sufficient to represent the
data. However, if we take just two samples of the spectrum {10, 0}, and taking the
IDFT, we get {5, 5}. Time-domain aliasing has occurred. That is, the time-domain
samples are

{3 + 2 = 5, 1 + 4 = 5}

due to insufficient number of bins to hold the exact data. Aliasing is unavoidable in
practice due to the finite and infinite natures, respectively, of the DFT and the DTFT
in the time-domain. If we take more number of samples of the DTFT spectrum, we
get the exact data with some zeros appended. With six spectral samples

{10,−1.5000− j2.5981, 5.5000+ j0.8660, 0, 5.5000− 0.8660,−1.5000+ j2.5981},

the IDFT yields

{3, 1, 2, 4, 0, 0}

With time-limited data, the exact time-domain samples can be obtained from
adequate samples of the DTFT spectrum. Otherwise, aliasing is unavoidable. Then,
it has to be ensured that time-domain aliasing is negligible by taking sufficient
number of spectral samples. In summary, to approximate the inverse DTFT of an
arbitrary signal, start with some number of spectral samples and find its IDFT.
Repeat this operation by doubling the data length until the difference between the
energy of the signal of two consecutive iterations is negligible.

7.4 Applications of the Discrete-Time Fourier Transform

7.4.1 Transfer Function and the System Response

The input-output relationship of a LTI system is given by the convolution oper-
ation in the time-domain. Since convolution corresponds to multiplication in the
frequency-domain, we get

y(n) =
∞∑

m=−∞
x(m)h(n − m) ⇐⇒ Y (ejω) = X(ejω)H(ejω),
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where x(n), h(n), and y(n) are, respectively, the system input, impulse response,
and output and X(ejω), H(ejω), and Y (ejω) are their respective transforms. As
input is transferred to output by multiplication with H(ejω), H(ejω) is called the
transfer function of the system. The transfer function, which is the transform of
the impulse response, characterizes a system in the frequency-domain just as the
impulse response does in the time-domain.

Since the impulse function, whose DTFT is one (a uniform spectrum), is
composed of complex exponentials, ejωn, of all frequencies from ω = −π to ω = π

with equal magnitude and zero-phase, the transform of the impulse response, the
transfer function, is also called the frequency response of the system. Therefore,
an exponential Aej(ωan+θ) is changed to (|H(ejωa )|A)ej (ωan+(θ+� (H(ejωa ))) at the
output. A real sinusoidal input signal A cos(ωan + θ) is also changed at the output
by the same amount of amplitude and phase of the complex scale factor H(ejωa ).
That is, A cos(ωan + θ) is changed to (|H(ejωa )|A) cos(ωan + (θ + � (H(ejωa ))).
The steady-state response of a stable system to the input Aej(ωan+θ)u(n) is also the
same.

As H(ejω) = Y (ejω)

X(ejω)
, the transfer function can also be described as the ratio of

the transform Y (ejω) of the response y(n) to an arbitrary signal x(n) to that of its
transform X(ejω), provided |X(ejω)| �= 0 for all frequencies of interest and the
system is initially relaxed.

Since the transform of a delayed signal is its transform multiplied by a factor,
we can as well find the transfer function by taking the transform of the difference
equation characterizing a system. Consider the difference equation of a causal LTI
discrete system.

y(n) + aK−1y(n − 1) + aK−2y(n − 2) + · · · + a0y(n − K)

= bMx(n) + bM−1x(n − 1) + · · · + b0x(n − M)

Taking the transform of both sides, we get, assuming initial conditions are all zero,

Y (ejω)(1 + aK−1e
−jω + aK−2e

−j2ω + · · · + a0e
−jKω)

= X(ejω)(bM + bM−1e
−jω + · · · + b0e

−jMω)

The transfer function H(ejω) is obtained as

H(ejω) = Y (ejω)

X(ejω)
= bM + bM−1e

−jω + · · · + b0e
−jMω

1 + aK−1e−jω + aK−2e−j2ω + · · · + a0e−jKω

Example 7.6 Find the response, using the DTFT, of the system governed by the
difference equation

y(n) = x(n) + 0.6y(n − 1)
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to the input x(n) = cos( 2π6 n + π
6 ).

Solution

H(ejω) = ejω

ejω − 0.6

Substituting ω = 2π
6 , we get

H(ej 2π
6 ) = ej 2π

6

ej 2π
6 − 0.6

= 1.1471� (−0.6386)

The response of the system to the input x(n) = cos( 2π6 n + π
6 ) is y(n) =

1.1471 cos( 2π6 n + π
6 − 0.6386).

Example 7.7 Find the impulse response h(n), using the DTFT, of the system
governed by the difference equation

y(n) = x(n) − x(n − 1) + 2x(n − 2) + 7

12
y(n − 1) − 1

12
y(n − 2)

Solution

H(ejω) = 1 − e−jω + 2e−j2ω

(1 − 7
12e

−jω + 1
12e

−j2ω)
= 1 − e−jω + 2e−j2ω

(1 − 1
3e

−jω)(1 − 1
4e

−jω)

H(ejω)

ejω
= ej2ω − ejω + 2

ejω(ejω − 1
3 )(e

jω − 1
4 )

The last step is required, since the degree of the numerator polynomial must be less
than that of the denominator to expand into partial fractions. Expanding into partial
fractions, we get

H(ejω) = 24 + 64ejω

(ejω − 1
3 )

− 87ejω

(ejω − 1
4 )

For example, putting ejω = 0 on the right side of the previous expression suppress-
ing the term ejω in the denominator, we get the first coefficient 24. Similarly, putting
ejω = 1/3 and ejω = 1/4 in turn and suppressing the corresponding denominator
term, we get the other two coefficients. Taking the inverse DTFT, we get the impulse
response as
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Fig. 7.12 The simulation model to find the impulse response

h(n) = 24δ(n) +
(
64

(
1

3

)n

− 87

(
1

4

)n)
u(n)

The first four values of the impulse response h(n) are

h(0) = 1, h(1) = −0.4167, h(2) = 1.6736, h(3) = 1.011

The simulation model to find the impulse response is shown in Fig. 7.12. The
impulse input values have to be loaded into the simin block by executing the given
input program.

Example 7.8 Find the zero-state response, using the DTFT, of the system governed
by the difference equation

y(n) = 2x(n) − x(n − 1) + 3x(n − 2) + 9

20
y(n − 1) − 1

20
y(n − 2)

with the input x(n) = u(n), the unit-step function.

Solution

H(ejω) = 2 − e−jω + 3e−j2ω

(1 − 9
20e

−jω + 1
20e

−j2ω)
= 2 − e−jω + 3e−j2ω

(1 − 1
5e

−jω)(1 − 1
4e

−jω)

With X(ejω) = 1
(1−e−jω)

+ πδ(ω),

Y (ejω) = H(ejω)X(ejω) = 2 − e−jω + 3e−j2ω

(1 − e−jω)(1 − 1
5e

−jω)(1 − 1
4e

−jω)
+ 20

3
πδ(ω)

Expanding into partial fractions, we get
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Y (ejω) =
20
3

(1 − e−jω)
+ 72

(1 − 1
5e

−jω)
−

230
3

(1 − 1
4e

−jω)
+ 20

3
πδ(ω)

Taking the inverse DTFT, we get the zero-state response.

y(n) =
(
20

3
+ 72

(
1

5

)n

− 230

3

(
1

4

)n)
u(n)

The steady-state response is 20
3 u(n), the response after the transient response has

died out completely. The first four values of the sequence y(n) are

{y(0) = 2, y(1) = 1.9, y(2) = 4.755, y(3) = 6.0448}
The simulation model to find the step response is shown in Fig. 7.13. The step input
values have to be loaded into the simin block by executing the given input program.

The transfer function concept can still be used even if the initial conditions of a
system are nonzero. In that case, we have to assume that additional inputs are applied
to the system at the instant the system is turned on, which will produce the same
response as do the initial conditions. However, the z-transform is relatively easier
for system analysis. In addition, it can handle a larger class of signals and systems
than that can be analyzed by the DTFT. Wherever the DTFT is more suitable, it
is better for numerical analysis as it can be approximated by the DFT using fast
algorithms.

Fig. 7.13 The simulation model to find the step response
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7.4.2 Digital Filter Design Using DTFT

Digital filter is widely used in signal processing applications. Usually, the specifi-
cation of a filter is given in terms of its frequency response. As the filter, which
is a system, is characterized by its impulse response, the design of a filter is to
determine its impulse response. Therefore, one way of finding the impulse response
is to find inverse DTFT of its frequency response. For example, the frequency
response and the corresponding impulse response of an ideal lowpass filter are
shown, respectively, in Fig. 7.2a and b, and those of an high-pass filter are shown,
respectively, in Fig. 7.6a and b. A system with this type of impulse response is not
practically implementable because (i) as the impulse response is not absolutely
summable, it is an unstable system; and (ii) the impulse response is noncausal.
The first problem is overcome by truncating part of the impulse response. The
second problem is solved by shifting the impulse response to the right so that it
becomes causal. With these modifications of the impulse response, of course, the
filter response will not be ideal.

We prefer the response of the actual filter to uniformly converge to that of the
ideal filter. But, in Fourier analysis, the convergence criteria is with respect to the
square error. That is, there is a 9 % deviation of the frequency response at the band
edges (discontinuities) of the filter. This problem can be reduced by using window
functions to smooth the truncated impulse response. This time the price that is paid
is of longer transition bands.

Figure 7.14 shows the frequency response of the ideal discrete lowpass filter. It is
a periodic rectangular waveform with period 2π and even-symmetric. Therefore,
the response over one-half of the period 0 to π , shown in thick lines, uniquely
characterizes the filter. The expression for the frequency response is

H(ejω) =
{
1 for 0 ≤ ω ≤ ωc

0 for ωc < ω ≤ π

where ωc is the cutoff frequency. The filter passes frequency components from 0 to
the cutoff frequency and rejects the rest. It is evident as the magnitude of the transfer
function from 0 to ωc, called the passband of the filter, is 1 and the magnitude
elsewhere, called the stopband, is zero.

The impulse response of the ideal lowpass filter, with cutoff frequency ωc, is
given by the inverse DTFT of its frequency response, and it is

Fig. 7.14 Periodic frequency response of an ideal discrete lowpass filter
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h(n) = sin(ωcn)

πn
, −∞ < n < ∞

With ωc = π
4 , it is derived in Example 7.2. The duration of the impulse response

is infinity and, hence, it is not practically realizable. Further, it is unstable as the
impulse response, which is a sinc function, is not absolutely summable. In order to
make it realizable, we truncate the response to N + 1 terms and shift it to make it
causal. With these modifications, the impulse response becomes

h(n) = sin(ωc(
N
2 − n))

π(N
2 − n)

, n = 0, 1, . . . , N,

where N is the order of the filter.

7.4.2.1 Rectangular Window

The rectangular window, which is the truncation process itself, is given by

wr(n) =
{
1 for n = 0, 1, . . . , N
0 otherwise

Due to the discontinuity at the borders, the rate of convergence of the spectrum
of a rectangular function is slow. Therefore, while this type of windows provides
the shortest width of the transition band of the resulting filter, the attenuation
possible is low due to the large side lobes of its spectrum. It is well-known that, due
to Gibbs phenomenon (Chap. 6), the magnitude of the overshoot and undershoot
at a discontinuity of reconstructed waveform is 0.0895. Therefore, the maximum
attention possible with this type of window, irrespective of the window length, is

−20 log10 0.0895 = 20.96 dB

In order to design a filter using window, the possible slope of the transition band of
the filter is required.

The average slope of the transition band using the rectangular window is given
as 0.92π

N
approximately. Some trial and error may be required to find the desired

frequency response by changing the band edges or the filter length. Of course,
after completing the filter design using any method, the frequency response must
be computed and verified to ensure that it satisfies the design specifications. Using
the slope of the transition band and the passband and stopband edge frequencies of
a lowpass filter, ωc and ωr , the order of the filter is computed as

N ≥ 0.9
2π

ωr − ωc
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Then, the impulse response is specified as

h(n) = sin(ωc(
N
2 − n))

π(N
2 − n)

, n = 0, 1, . . . , N, ωc = ωr + ωc

2

Example 7.9 Given that the passband and stopband edge frequencies of a lowpass
filter are 0.25π radians and 0.35π radians, respectively. The minimum attenuation in
the stopband is to be 20 dB. Assuming that the sampling frequency is fs = 512Hz,
design the lowpass filter using the rectangular window.

Solution The passband edge frequency 0.25π corresponds to 0.25π
2π 512 = 64Hz.

The stopband edge frequency 0.35π corresponds to 0.35π
2π 512 = 89.6Hz. As the

maximum attenuation possible using the rectangular window is about 21 dB, the
specification of 20 dB is attainable. From the given specifications, the order of the
filter is computed as

N ≥ 0.9
2π

0.35π − 0.25π
= 18

The cutoff frequency of the corresponding ideal filter is the average of the band
edges, and it is

ωc = ωr + ωc

2
= 0.35π + 0.25π

2
= 0.3π

The impulse response of the filter is given by

h(n) = sin(ωc(
N
2 − n))

π(N
2 − n)

= sin(0.3π(9 − n))

π(9 − n)
, n = 0, 1, . . . , 18

The impulse response values, with a precision of four digits after the decimal point,
are

{h(n), n = 0, 1, . . . , 18}
= {0.0286, 0.0378, 0.0141,−0.0312,−0.0637,−0.0468,

0.0328, 0.1514, 0.2575, 0.3, 0.2575, 0.1514, 0.0328,

−0.0468,−0.0637,−0.0312, 0.0141, 0.0378, 0.0286}

The impulse response and the magnitude and phase of the frequency response of the
filter are shown in Fig. 7.15a, b, and d, respectively. The passband in (b) is shown in
expanded linear scale in Fig. 7.15c. The passband and stopband ripples are equal in
the filters designed using the window method.
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Fig. 7.15 (a) Filter impulse response; (b) the magnitude of the frequency response; (c) the
passband in (b) shown in expanded linear scale; (d) the phase response

Filters can be designed with arbitrary frequency specifications using other
methods. However, there are certain basic types of filters, which are often used in
practice. These filters are lowpass, highpass, bandpass, and bandstop. While each
type can be designed independently, usually, the other types of filters are expressed
as a linear combination of lowpass filters of various parameters, or they are designed
using some transformation. Let us design two lowpass filters with one having a
cutoff frequency π radians and the other having a cutoff frequency ωc < π . Then,
by subtracting the impulse response of the second filter from that of the first, we
get a highpass filter with cutoff frequency ωc. That is, the impulse response of a
highpass filter is given by

h(n) = sin(π(N
2 − n))

π(N
2 − n)

− sin(ωc(
N
2 − n))

π(N
2 − n)

, n = 0, 1, . . . , N

The order of the filter N must be even for highpass and bandstop filters.
Now, the steps involved in designing FIR filters using the window method are

listed.

1. The ideal frequency response is specified.
2. Compute the corresponding impulse response.
3. An appropriate window is selected.
4. By multiplying the impulse response with the window function, the filter

coefficients are obtained.
5. A trial-and-error procedure is followed, typically by varying the window length,

so that the filter satisfies the given specifications.
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7.4.2.2 Hamming Window

Several windows are available with different characteristics for filter design. The
Hamming window is defined as

wham(n) =
{
0.54 − 0.46 cos( 2π

N
n) for n = 0, 1, . . . , N

0 otherwise

This window is a linear combination of three time-shifted rectangular windows,
resulting in the reduction of the amplitude of the side lobes at the cost of increased
width of the transition band. The window provides attenuation up to about 53 dB.
The average slope of the transition band obtained using this window is 3.32π

N
. In

common with filter design using windows, some trial and error is required to get
the required filter. Given the passband and stopband edge frequencies of a lowpass
filter, ωc and ωr , we find the order of the filter as

N ≥ 3.3
2π

ωr − ωc

Then, the impulse response is specified as

h(n) = wham(n)
sin(ωc(

N
2 − n))

π(N
2 − n)

, n = 0, 1, . . . , N, ωc = ωr + ωc

2

Example 7.10 The passband and stopband edge frequencies of a highpass filter are
0.55π and 0.25π , respectively. The minimum attenuation required in the stopband
is 49 dB. Design the highpass filter using the Hamming window. The sampling
frequency is fs = 512Hz.

Solution The maximum attenuation provided by filters using the Hamming window
is about 53 dB. Therefore, the specification of 49 dB is realizable. Now, we find the
order of the filter as

N ≥ 3.3
2π

0.55π − 0.25π
= 22

The cutoff frequency of the corresponding ideal filter is computed as

ωc = ωr + ωc

2
= 0.25π + 0.55π

2
= 0.4π

The impulse response of the highpass filter is given by

h(n) = wham(n)

(
sin(π(11 − n))

π(11 − n)
− sin(0.4π(11 − n))

π(11 − n)

)
, n = 0, 1, . . . , 22
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Fig. 7.16 (a) Filter impulse response; (b) the magnitude of the frequency response; (c) the
passband in (b) shown in expanded linear scale; (d) the phase response

The impulse response values, with a precision of four digits after the decimal point,
are

{h(n), n = 0, 1, . . . , 22}
= −0.0022, 0, 0.0051, 0.0056,−0.0093,−0.0239, 0, 0.0553,

0.0525,−0.0867,−0.2971, 0.6,−0.2971,−0.0867, 0.0525,

0.0553, 0,−0.0239,−0.0093, 0.0056, 0.0051, 0,−0.0022}

The impulse response and the magnitude and phase of the frequency response of the
filter are shown in Fig. 7.16a, b, and d, respectively. The passband in (b) is shown in
expanded linear scale in Fig. 7.16c.

7.4.3 Digital Differentiator

In this subsection, we derive the impulse response of the digital differentiator from
its frequency response. This differentiator takes the samples of a continuous signal
x(t) and produces the samples of its derivative. The periodic frequency response,
shown in Fig. 7.17a over one period, of the ideal digital differentiator is defined as

H(ejω) = jω, −π < ω < π

For example, the input and the output of the differentiator are

sin(ω0n) ⇐⇒ jπ(δ(ω + ω0) − δ(ω − ω0))

jπ(j)(−ω0δ(ω + ω0) − ω0δ(ω − ω0)) ⇐⇒ ω0 cos(ω0n)
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Fig. 7.17 (a) The frequency response of the ideal digital differentiator; (b) the frequency response
of the ideal Hilbert transformer

The impulse response of the ideal differentiator is obtained by finding the inverse
DTFT of its frequency response.

h(n) = 1

2π

∫ π

−π

jωejωndω = cos(πn)

n
=
{

(−1)n

n
for n �= 0

0 for n = 0
,−∞ < n < ∞

As the frequency response of the differentiator is imaginary and odd-symmetric, the
impulse response is real and odd-symmetric.

7.4.4 Hilbert Transform

Although most practical signals are real-valued, we need, in applications such as
the sampling of bandpass signals and single-sideband amplitude modulation, a
complex signal whose real part is the given real signal x(n) and the imaginary
part is the Hilbert transform of x(n). In the Hilbert transform, every real frequency
component of a real signal x(n) is shifted to the right by −π

2 radians. That is, a
phase of −π

2 radians is added. For example, the Hilbert transform of sin(ωn) is
sin(ωn − π

2 ) = − cos(ωn). Most of the transforms have two domains, whereas
there is only one domain in the Hilbert transform. Consider the complex signal
formed with the real part being a real signal and the imaginary part being its
Hilbert transform. The spectral values of this complex signal are zero for negative
frequencies (a one-sided spectrum). The complex signal formed by the sine signal
and its Hilbert transform is

sin(ωn) − j cos(ωn) = −jejωn

The DFT of sin(ωn), with N samples in a cycle, is −j N
2 at ω and j N

2 at −ω,
whereas that of −jejωn is −jN at ω only. Similarly, a transform with its imaginary
part being the Hilbert transform of its real part, for example, the transfer function of
a causal system, corresponds to a one-sided time-domain signal. In this subsection,
the impulse response of the Hilbert transformer is derived from its frequency
response.
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Figure 7.18a and b shows the signal

x(n) = 0.3 + sin

(
2π

16
n

)
+ cos

(
3
2π

16
n

)
+ sin

(
5
2π

16
n − π

3

)
+ cos(πn)

and its DFT spectrum, respectively. Figure 7.18c and d shows the Hilbert transform
of the signal in (a)

xH (n) = sin

(
2π

16
n − π

2

)
+ cos

(
3
2π

16
n − π

2

)
+ sin

(
5
2π

16
n − π

3
− π

2

)

and its spectrum, respectively. The DC component 0.3 and the component with
frequency π , cos(πn), become sine terms with frequencies 0 and π radians. At these
frequencies, the samples of the sine wave are all zero. The differences between the
spectra in (b) and (d) are that the values at index k = 0 and at k = N

2 = 8 are zero
in (d), the values of the other positive frequency components in (b) are multiplied
by −j , and those of the negative frequency components in (b) are multiplied by
j . Therefore, the spectrum of a real signal modified in this way is the DFT of its
Hilbert transform, and its IDFT gives the Hilbert transform of the signal.

The signal jxH (n) and its spectrum are shown in Fig. 7.18e and f, respectively.
Compared with the spectrum in Fig. 7.18b, the coefficients at index k = 0 and
at k = N

2 = 8 are zero, the coefficients of the positive frequency components
are modified by j (−j) = 1, and those of the negative frequency components are
modified by j (j) = −1. Therefore, the spectrum is the same as in (b) with the
values of the negative frequency components negated and the values with indices
0 and 8 zero. The complex signal x(n) + jxH (n) and its spectrum are shown in
Fig. 7.18g and h, respectively. The spectral values in (h) with indices from 1 to 7 are
twice of those in the first half of (b). Values with indices 0 and 8 are the same and
the rest of the values are zero.

The periodic frequency response, shown in Fig. 7.17b over one period, of the
ideal Hilbert transformer is defined as

H(ejω) =
{−j for 0 < ω < π

j for − π < ω < 0

The impulse response of the ideal Hilbert transformer is obtained by finding the
inverse DTFT of its frequency response.

h(n) = 1

2π

∫ π

0
−jejωndω + 1

2π

∫ 0

−π

jejωndω

=
{

2 sin2( πn
2 )

πn
for n �= 0

0 for n = 0
,−∞ < n < ∞
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Fig. 7.18 (a) An arbitrary signal and (b) its DFT; (c) the Hilbert transform of signal in (a) and (d)
its DFT; (e) the signal in (c) multiplied by j and (f) its DFT; (g) the sum of signals in (a) and (e),
and (h) its one-sided DFT spectrum

7.4.5 Downsampling

In multirate digital signal processing, two more basic operations, upsampling and
downsampling, are required in addition to addition, multiplication, and delaying.
The upsampling operation has been presented in the properties section. Downsam-
pling a signal is reducing its sampling rate by discarding the samples whose indices
are not integer multiples ofM , whereM is the downsampling factor. The nth sample
of the downsampled version, xd(n), of a signal, x(n), is defined as

xd(n) = x(Dn)

For example, the downsampled version of the signal

x(n) = {x(0) = 3, x(1) = 2, x(2) = 1, x(3) = 4}
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by a factor of 2 is

xd(n) = {x(0) = 3, x(1) = 1}

Now, the task is to express the DTFT, Xd(ejω), of xd(n) in terms of that, X(ejω),
of x(n). Due to frequency-shift property, we get DTFT pair

(−1)nx(n) = e−jπnx(n) ⇐⇒ X(ej (ω+π))

Now,

1

2

(
x(n) + (−1)nx(n)

) ↔ 1

2

(
X(ejω) + X(ej (ω+π))

)
(7.5)

For the example x(n),

x(n) = {x(0) = 3, x(1) = 2, x(2) = −1, x(3) = 4} ↔ X(ejω) = 3 + 2e−jω − e−j2ω + 4e−j3ω

(−1)nx(n) = {x(0) = 3, x(1) = −2, x(2) = −1, x(3) = −4} ↔ X(ej (ω+π))

= 3 − 2e−jω − e−j2ω − 4e−j3ω

Now,

1

2

(
x(n) + (−1)nx(n)

) = {x(0) = 3, x(1) = 0, x(2) = −1, x(3) = 0}

↔ 1

2

(
X(ejω) + X(ej (ω+π))

)
= 3 − e−j2ω

The DTFT spectrum is periodic with period π since

3 − e−j2(ω+π) = 3 − e−j2ω

The spectral samples at

ω = 0,
π

2
, π,

3π

2

are, respectively,

{2, 4, 2, 4}

The IDFT of one period of the spectral samples {2, 4} is {3,−1}, which is the
downsampled version of x(n). Therefore, we compress the spectrum by replacing
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ω by ω/2 in Equation (7.5), which is the spectrum Xd(ejω) of the downsampled
signal

xd(n) = x(2n) ↔ Xd(ejω) = 1

2

(
X(ej ω

2 ) + X(ej ( ω
2 +π))

)
, 0 < ω < 2π

(7.6)

7.5 Summary

• In this chapter, the DTFT, its properties, its applications, and its approximation
by the DFT have been presented.

• The DTFT analyzes aperiodic discrete signals in terms of a continuum of discrete
sinusoids over a finite frequency range. Due to the discrete nature of the signal
with an infinite range, the DTFT spectrum is periodic and continuous.

• The DTFT is the limiting case of the DFT as the period of the time-domain
sequence tends to infinity with the sampling interval fixed.

• The DTFT spectrum is continuous and the magnitude of the infinite frequency
components is infinitesimal. The spectral density X(ejω) represents x(n) as a
relative amplitude spectrum.

• The DFT spectrum is the samples of the DTFT spectrum at equal intervals of
2π/N .

• There is a dual relationship between the FS and the DTFT.
• The spectral analysis of discrete signals, design of filters, and LTI discrete system

analysis are typical applications of the DTFT.
• As is the case with the other versions of the Fourier analysis, the DTFT is also

approximated by the DFT.

Exercises

7.1 Find the DTFT of

x(n) =
{
1 for 0 ≤ n < N

0 otherwise

With N = 5, compute the values of X(ejω) of x(n) at ω = 0, π .

* 7.2 Find the DTFT of

x(n) =
{
1 for − N ≤ n ≤ N

0 otherwise
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With N = 5, compute the values of X(ejω) of x(n) at ω = 0, π .

7.3 Find the DTFT of x(n) = (a)n cos(ω0n)u(n), a < 1. With ω0 = π
2 and

a = 0.9, compute the values of X(ejω) of x(n) at ω = 0, π .

* 7.4 Find the DTFT of x(n) = (a)n sin(ω0n)u(n), a < 1. With ω0 = π
2 and

a = 0.7, compute the values of X(ejω) of x(n) at ω = 0, π .

7.5 Apply a limiting process, as N → ∞, so that

x(n) =
{
cos(ω0n) for |n| ≤ N

0 for |n| > N

degenerates into the cosine function and, hence, derive the DTFT of the signal
cos(ω0n), −∞ < n < ∞.

7.6 Apply a limiting process, as a → 1, so that a|n| cos(ω0n), a < 1 degenerates
into cos(ω0n) and, hence, derive the DTFT of the signal cos(ω0n), −∞ < n < ∞.

7.7 Apply a limiting process so that x(n) degenerates into the dc function and,
hence, derive the DTFT of the dc function, x(n) = 1.

7.7.1 x(n) =
{
1 for |n| ≤ M

0 for |n| > M
as M → ∞.

7.7.2 x(n) = a|n|, 0 < a < 1 as a → 1.
7.7.3 x(n) = sin(an)

an
as a → 0.

7.8 Given the description of the periodic signal x(t) over one period, find its FS.
Then, using the duality property, find the corresponding DTFT pair. Verify the
DTFT pair using the inverse DTFT equation.

7.8.1

x(t) =
{

2 for 0 < t < 2
−2 for2 < t < 4

7.8.2 x(t) = 1.5t, 0 ≤ t < 2.
7.8.3

x(t) =
{ 4

3 t for 0 ≤ t < 1.5
4
3 (3 − t) for 1.5 ≤ t < 3

7.9 Find the DTFT of x(n).
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7.9.1 x(n) = 2 cos( 2π8 n + π
3 ).

7.9.2 x(n) = j4 sin( 2π6 n − π
6 ).

7.9.3 x(n) = 2ej ( 2π9 n+ π
4 ).

7.9.4 x(n) = u(n − 2).
* 7.9.5 x(n) = (0.6)nu(n − 2).

7.10 Given the sample values over a period of a periodic sequence, find its DTFT
using the DFT.

7.10.1 {x(0) = 2, x(1) = 3, x(2) = 1, x(3) = 4}.
* 7.10.2 {x(0) = 4, x(1) = 1, x(2) = 2, x(3) = 3}.
7.10.3 {x(0) = 3, x(1) = 4, x(2) = −2, x(3) = 1}.

7.11 Find the DTFT, X(ejω), of x(n). Find also the DFT, X(k), of x(n) with
N = 4. Verify that the DFT values correspond to the samples of X(ejω) at
ω = 0, π

2 , π, 3π
2 .

7.11.1 {x(n), n = 0, 1, 2, 3} = {2, 3,−1, 4} and x(n) = 0 otherwise.
7.11.2 {x(n), n = 0, 1, 2, 3} = {4, 0, 0, 0} and x(n) = 0 otherwise.
7.11.3 {x(n), n = 0, 1, 2, 3} = {0,−2, 0, 0} and x(n) = 0 otherwise.
7.11.4 {x(n), n = 0, 1, 2, 3} = {3, 3, 3, 3} and x(n) = 0 otherwise.
7.11.5 {x(n), n = 0, 1, 2, 3} = {2,−2, 2,−2} and x(n) = 0 otherwise.

7.12 Find the DTFT of the signal

x(n) =
{

1 for n ≥ 0
−1 for n < 0

using the linearity property.

7.13 Find the DTFT of the signal x(n) = (n + 1)(0.7)nu(n) using the linearity
property. Find the spectral values at ω = 0, π .

7.14 Find the DTFT of the signal x(n) = 0, n < 0, x(0) = 2, x(1) = 2, and
x(n) = 5, n > 1 using the transform of u(n), and linearity and time shifting
properties.

7.15 Find the DTFT of the signal with its nonzero values defined as x(n) =
(0.6)n, 0 ≤ n ≤ 7 using the transform of (0.6)nu(n), and the linearity and time
shifting properties.

7.16 Find the inverse DTFT of X(ejω) using the linearity property.

7.16.1 X(ejω) = 1
(1−0.5e−jω)(1−0.4e−jω)

.

* 7.16.2 X(ejω) = 1
(1−0.5e−jω)(1−0.25e−jω)

.
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7.17 Find the impulse response hl(n) of an ideal lowpass filter with cutoff
frequency π

3 radians. Using the frequency shifting property and the hl(n) obtained,
find the impulse response hh(n) of an ideal highpass filter with cutoff frequency 2π

3
radians.

7.18 Find the DTFT of the signal

x(n) =
{
1 for − N ≤ n ≤ N

0 otherwise

using the DTFT of shifted unit-step signals.

7.19 Using the frequency shifting property, find the inverse DTFT of X(ejω) =
1

(1−0.6e−j (ω− π
3 )

)
.

7.20 Find the DTFT of the signal x(n) = ejω0nu(n) using the frequency shifting
property.

7.21 Find the convolution of the finite sequences x(n) and h(n) using the DTFT.

* 7.21.1 {x(n), n = 0, 1, 2, 3} = {1, 0, 2, 3} and {h(n), n = 1, 2, 3} =
{−2, 1,−4}.

7.21.2 {x(n), n = −4,−3,−2,−1} = {3, 1, 0,−4} and {h(n), n =
−4,−3,−2,−1} = {1, 0,−1, 3}.

7.21.3 {x(n), n = −1, 0, 1} = {2, 0, 3} and {h(n), n = −1, 0, 1} = {−3, 2, 2}.

7.22 Using the time-domain convolution property, find the DTFT of the convolu-
tion of x(n) and h(n).

7.22.1 x(n) = (0.5)nu(n) and h(n) = x(n).
7.22.2 x(n) = (0.6)nu(n) and h(n) = u(n).
7.22.3 x(n) = (0.7)nu(n) and h(n) = (0.3)nu(n).

7.23 Using the frequency-domain convolution property, find the DTFT of the
product of x(n) and h(n).

7.23.1 x(n) = 2 sin(n) and h(n) = cos(n).
7.23.2 x(n) = e(jω0n) and h(n) = u(n).

7.24 Using the time expansion property, find the DTFT of the signal y(n) defined
as

y(an) = x(n) for − ∞ < n < ∞ and y(n) = 0 otherwise
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7.24.1 x(n) = 3, |n| ≤ 2 and x(n) = 0 otherwise, and a = 2.
* 7.24.2 x(n) = (0.6)nu(n) and a = −4.

7.24.3 x(n) = sin( πn
3 )

πn
and a = 2.

7.24.4 x(n) = u(n) and a = 3.
7.24.5 x(n) = u(n − 2) and a = 2.
7.24.6 x(n) = cos( 2π8 (n − 1)) and a = 2.

7.25 Find the DTFT of the signal x(n) = n(0.8)nu(n) using the multiplication by
n property.

7.26 Using the time-summation property, find the DTFT of the summation

y(n) =
n∑

l=−∞
x(l)

7.26.1 x(−1) = 2, x(1) = −2 and x(n) = 0 otherwise.
7.26.2 x(n) = δ(n + 2).
7.26.3 x(n) = u(n + 2).

* 7.26.4 x(n) = (0.6)nu(n).

7.27 Verify Parseval’s theorem.

7.27.1 x(−1) = 1, x(1) = −1, and x(n) = 0 otherwise.
7.27.2 x(n) = sin(n)

πn
.

7.28 Find the DTFT of x(n) = (0.4)nu(n). Compute the samples of X(ejω) of
x(n) using the DFT with N = 4. Compare the DFT values with the exact sample
values of X(ejω).

* 7.29 Find the DTFT of x(n) = (0.3)nu(n). Approximate the values of x(n),
using the IDFT with N = 4, from the samples of the DTFT of x(n). Compare the
IDFT values with the exact values of x(n).

7.30 Using the DTFT, find the impulse response h(n) of the system governed by
the difference equation

y(n) = 2x(n) − 3x(n − 1) + 2x(n − 2) + 5

6
y(n − 1) − 1

6
y(n − 2)

with input x(n) and output y(n). List the first four values of h(n).

* 7.31 Using the DTFT, find the impulse response h(n) of the system governed by
the difference equation
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y(n) = x(n) − 4x(n − 1) − 11

12
y(n − 1) − 1

6
y(n − 2)

with input x(n) and output y(n). List the first four values of h(n).

7.32 Using the DTFT, find the impulse response h(n) of the system governed by
the difference equation

y(n) = x(n) + 11

15
y(n − 1) − 2

15
y(n − 2)

with input x(n) and output y(n). List the first four values of h(n).

7.33 Using the DTFT, find the frequency response of the system governed by the
difference equation

y(n) = x(n) + 0.8y(n − 1)

Deduce the steady-state response of the system to the input x(n) = cos( 2π8 n −
π
6 )u(n).

7.34 Using the DTFT, find the zero-state response of the system governed by the
difference equation

y(n) = x(n) − 2x(n − 1) + 3x(n − 2) + 7

12
y(n − 1) − 1

12
y(n − 2)

with the input x(n) = u(n), the unit-step function.

* 7.35 Using the DTFT, find the zero-state response of the system governed by the
difference equation

y(n) = 3x(n) + 2x(n − 1) + x(n − 2) + 8

15
y(n − 1) − 1

15
y(n − 2)

with the input x(n) = ( 12 )
nu(n).

7.36 Find the Hilbert transform xH (n) of the signal.

8.36.1 x(n) = 2 − cos2(2πn/8).
* 8.36.2 x(n) = (−1)n + sin2(2πn/12).

7.37 Find the Hilbert transform xH (n) of the signal {x(n), n = 0, 1, 2, 3} =
{4, 5, 4, 3} using the DFT and the IDFT.



Chapter 8
The Fourier Transform

The FT is the frequency-domain representation of continuous aperiodic signals in
terms of a continuum of sinusoids over an infinite frequency range. Compared with
the FS, as the period of the periodic waveform tends to infinity, the waveform
becomes aperiodic, and the interval between the spectral points tends to zero
resulting in a continuous aperiodic spectrum. Compared with the DTFT, as the
sampling interval of the time-domain waveform tends to zero, the waveform
becomes continuous, and the period of the spectrum tends to infinity resulting in
the continuous periodic spectrum of the DTFT becoming a continuous aperiodic
spectrum.

In Sect. 8.1, we derive the FT starting from the definition of the DTFT. The
properties of the FT are presented in Sect. 8.2. The FT of mixed class of signals
is derived in Sect. 8.3. In Sect. 8.4, the approximation of the samples of the FT by
those of the DFT is described. Some typical applications of the FT are presented in
Sect. 8.5.

8.1 The Fourier Transform

8.1.1 The FT as a Limiting Case of the DTFT

The FT is the same as the DTFT with the sampling interval of the time-domain
waveform tending to zero. Consider the samples of the continuous sinc function,
sin( π

3 t)
πt

, with sampling interval Ts = 1 s and its DTFT spectrum, multiplied by
Ts , shown, respectively, in Fig. 8.1a and b. The DTFT spectrum is periodic with
period 2π

Ts
= 2π

1 radians. Reducing the sampling interval by a factor of 2 results
in the doubling of the period of the spectrum, as shown in Fig. 8.1c and d. As the
number of samples is increased, the amplitude of the spectrum will also increase.
But the product of the amplitude and the sampling interval approaches a finite
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Fig. 8.1 (a) Samples of the sinc function
sin( π

3 t)
πt

, with Ts = 1 s and (b) its DTFT spectrum,
multiplied by Ts , with period 2π radians; (c) sinc function with Ts = 0.5 s and (d) its DTFT
spectrum, multiplied by Ts , with period 4π radians

limiting function. As the sampling interval tends to zero, the time-domain waveform
becomes continuous with a corresponding aperiodic spectrum.

The foregoing argument can be, mathematically, put as follows. Substituting for
X(ejωTs ) and 1

ωs
replaced by Ts

2π in Eq. (7.4), we get

x(nTs) = Ts

2π

∫ ωs
2

− ωs
2

ejωnTs

( ∞∑
l=−∞

x(lTs)e
−jωlTs

)
dω

As Ts tends to 0, ωs tends to ∞; nTs and lTs become, respectively, continuous time
variables t and τ ; differential dτ formally replaces Ts ; and the summation becomes
an integral. Therefore, we get

x(t) = 1

2π

∫ ∞

−∞

(∫ ∞

−∞
x(τ)e−jωτ dτ

)
ejωtdω = 1

2π

∫ ∞

−∞
X(jω)ejωtdω

The FT X(jω) of x(t) is defined as

X(jω) =
∫ ∞

−∞
x(t)e−jωtdt (8.1)

The inverse FT x(t) of X(jω) is defined as

x(t) = 1

2π

∫ ∞

−∞
X(jω)ejωtdω (8.2)

The FT represents a continuous aperiodic signal x(t) as integrals of a continuum
of complex sinusoids (amplitude 1

2π X(jω)dω) over an infinite frequency range.
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Although the amplitudes are infinitesimal, the spectrumX(jω) (actually the spectral
density) gives the relative variations of the amplitudes of the constituent complex
sinusoids of a signal. When deriving closed-form expressions for X(jω) or x(t),

X(j0) =
∫ ∞

−∞
x(t)dt and x(0) = 1

2π

∫ ∞

−∞
X(jω)dω,

which can be easily evaluated, are useful to check their correctness. By replacing ω

by 2πf and since dω = 2πdf , Eqs. (8.1) and (8.2) can be expressed in terms of the
cyclic frequency f as

X(j2πf ) =
∫ ∞

−∞
x(t)e−j2πf tdt and x(t) =

∫ ∞

−∞
X(j2πf )ej2πf tdf

Gibbs phenomenon is common to all forms of Fourier analysis, whenever a
continuous function, with one or more discontinuities, is reconstructed in either
domain.

8.1.2 Existence of the FT

Any signal satisfying Dirichlet conditions, which are a set of sufficient conditions,
can be expressed in terms of a FT. The first of these conditions is that the signal x(t)

is absolutely integrable, that is,
∫∞
−∞ |x(t)|dt < ∞. From the definition of the FT,

we get

|X(jω)| ≤
∫ ∞

−∞
|x(t)e−jωt | dt =

∫ ∞

−∞
|x(t)||e−jωt | dt

Since |e−jωt | = 1,

|X(jω)| ≤
∫ ∞

−∞
|x(t)| dt

Hence, the condition
∫∞
−∞ |x(t)|dt < ∞ implies that X(jω) will exist. The second

condition is that the number of finite maxima and minima of x(t) in any finite
interval must be finite. The third condition is that the number of finite discontinuities
of x(t) in any finite interval must be finite. Most signals of practical interest satisfy
these conditions.

As Fourier analysis approximates a signal in the least squares error sense,

∫ ∞

−∞
|x(t)|2dt − 1

2π

∫ ∞

−∞
|X(jω)|2dω = 0,

the FT X(jω) of a square integrable signal,
∫∞
−∞ |x(t)|2dt < ∞, also exists.
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Fig. 8.2 (a) The pulse x(t) = u(t + 0.25) − u(t − 0.25) and (b) its FT spectrum

Example 8.1 Find the FT of the rectangular pulse x(t) = u(t + a) − u(t − a).

Solution

X(jω) =
∫ a

−a

e−jωtdt = 2
∫ a

0
cos(ωt)dt = 2 sin(ωa)

ω

u(t + a) − u(t − a) ⇐⇒ 2 sin(ωa)

ω

The pulse and its FT are shown, respectively, in Fig. 8.2a and b with a = 0.25.

The function of the form sin(ωa)
ω

, a specific case shown in Fig. 8.2b, is called
the sinc function that occurs often in signal and system analysis. It is an even
function of ω. At ω = 0, the peak value is a, as lim

θ→0
sin(θ) = θ . The zeros of

the sinc function occur whenever the numerator argument (ωa) of the sine function
is equal to ±π,±2π, . . .. That is, at ω = ±π

a
,± 2π

a
, . . .. For the specific case, the

zeros occur whenever ω equals a multiple of 4π . The area enclosed by the sinc
function is π irrespective of the value of a, as, by finding the inverse FT of X(jω)

in Example 8.1 with t = 0,

x(0) = 1

2π

∫ ∞

−∞
2 sin(ωa)

ω
dω = 1

It is also known that the area enclosed by the function is equal to the area of
the triangle inscribed within its main hump. The sinc function is not absolutely
integrable. But, it is square integrable and, hence, is an energy signal.

As a → 0, the function sin(ωa)
aω

is expanded and, eventually, degenerates into a
DC function. The first pair of zeros at ω = ±π

a
move to infinity, and the function

becomes a horizontal line with amplitude 1. As a becomes larger, the numerator
sine function sin(ωa) of sin(ωa)

πω
alone is compressed (frequency of oscillations is

increased). As a consequence, the amplitudes of all the ripples along with that of
the main hump increase with fixed ratios to one another. While the ripples and the
main hump become taller and narrower, the area enclosed by each and the total area
enclosed by the function remain fixed. In the limit, as a → ∞, the main hump
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and all the ripples of significant amplitude are concentrated at ω = 0, and sin(ωa)
πω

degenerates into a unit impulse.

Example 8.2 Find the FT X(jω) of the real, causal, and decaying exponential
signal x(t) = e−atu(t), a > 0. Find the value of x(0) from X(jω).

Solution

X(jω) =
∫ ∞

0
e−at e−jωtdt =

∫ ∞

0
e−(a+jω)t dt = −e−(a+jω)t

a + jω

∣∣∣∣∣
∞

0

= 1

a + jω

e−atu(t), a > 0 ⇐⇒ 1

a + jω

x(0) = 1

2π

∫ ∞

−∞
1

a + jω
dω = 1

2π

∫ ∞

−∞
a

ω2 + a2
dω − j

2π

∫ ∞

−∞
ω

ω2 + a2
dω

As the imaginary part of X(jω) is odd, its integral evaluates to zero. Therefore,

x(0) = 1

2π

∫ ∞

−∞
a

ω2 + a2
dω = 1

2π

∫ ∞

−∞
d
(

ω
a

)
(

ω
a

)2 + 1
= 1

2π
tan−1

(ω

a

)∣∣∣∞
−∞

= 1

2

The value of x(t) at t = 0 is always 1
2 for any value of a. Note that the Fourier

reconstructed waveform converges to the average of the right- and left-hand limits
at any discontinuity.

For some signals, such as a step signal or a sinusoid, which are neither
absolutely nor square integrable, the FT is obtained by applying a limiting process to
appropriate signals so that they degenerate into these signals in the limit. The limit
of the corresponding transform is the transform of the signal under consideration,
as presented in the next example.

Example 8.3 Find the FT of x(t) = u(t), the unit step function.

Solution As u(t) is not absolutely or square integrable, we consider it as the limiting
form of the decaying exponential, e−atu(t), a > 0, as a → 0. Therefore, as the FT
of the exponential is 1

jω+a
, the FT of u(t) is given by

X(jω) = lim
a→0

1

jω + a
= lim

a→0

a

ω2 + a2
− lim

a→0

jω

ω2 + a2
= lim

a→0

a

ω2 + a2
+ 1

jω

The area under the real part of X(jω) is π regardless of the value of a, as found in
Example 8.2. As a → 0, the value of this function tends to zero at all values of ω

except when ω = 0, where its area is π . Therefore, lima→0
a

ω2+a2
= πδ(ω), and
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Fig. 8.3 (a) x(t) = e−atu(t)and a = 1 and (b) its FT spectrum. The real part of the FT is
shown by the continuous line, and the imaginary part is shown by the dashed line; (c) x(t) =
e−atu(t)and a = 0.1 and (d) its FT spectrum

u(t) ⇐⇒ πδ(ω) + 1

jω

That is, the spectrum of the unit step function is composed of an impulsive
component πδ(ω) (an impulse of strength π at ω = 0) and a strictly continuous
(except at ω = 0) component 1

jω
. The real part of the transform πδ(ω) corresponds

to the even component ue(t) = 0.5 of u(t), and the imaginary part 1
jω

corresponds
to the odd component uo(t) = −0.5, t < 0 and uo(t) = 0.5, t > 0.

Figure 8.3 depicts the limiting process by which a real exponential function
degenerates into a unit step function. Figure 8.3a and c shows, respectively, the
signal e−atu(t) with a = 1 and a = 0.1. Figure 8.3b and d shows, respectively,
their corresponding spectra. The real part of the spectrum (continuous line) is an
even function with a peak value of 1

a
at ω = 0, and the imaginary part (dashed line)

is an odd function with peaks of value ± 1
2a at ω = ∓a. As a → 0, the real part

becomes more peaked and, eventually, degenerates into an impulse of strength π ,
that is, πδ(ω). The imaginary part becomes a rectangular hyperbola in the limit.

Example 8.4 Find the FT of the unit impulse signal x(t) = δ(t).

Solution Using the sampling property of the impulse, we get

X(jω) =
∫ ∞

−∞
δ(t)e−jωtdt = e−jω0

∫ ∞

−∞
δ(t)dt = 1 and δ(t) ⇐⇒ 1

The unit impulse signal is composed of complex sinusoids, with zero phase shift, of
all frequencies from ω = −∞ to ω = ∞ in equal proportion. That is,
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δ(t) = 1

2π

∫ ∞

−∞
ejωtdω = 1

2π

∫ ∞

−∞
cos(ωt)dω = 1

π

∫ ∞

0
cos(ωt)dω

Example 8.5 Find the inverse FT of X(jω) = δ(ω).

Solution

x(t) = 1

2π

∫ ∞

−∞
δ(ω)ejωtdω = 1

2π
and 1 ⇐⇒ 2πδ(ω)

An impulse at ω = 0 properly represents the DC signal, since it is characterized
by the single frequency ω = 0 alone. That is, x(t) = ejω0t with ω0 = 0. Similar
to the DFT, the scale factor 1

2π is included in the inverse transform. Therefore, the
spectrum of DC is an impulse at ω = 0 with strength 2π rather than one. The
placement of the constant in the forward or inverse definition of a transform is a
matter of convention.

Example 8.6 Find the inverse FT of X(jω) = δ(ω − ω0).

Solution

x(t) = 1

2π

∫ ∞

−∞
δ(ω−ω0)e

jωtdω = 1

2π
ejω0t and ejω0t ⇐⇒ 2πδ(ω−ω0)

That is, the spectrum of the complex sinusoid ejω0t is an impulse at ω = ω0 with
strength 2π .

8.2 Properties of the Fourier Transform

Properties present the frequency-domain effect of time-domain characteristics and
operations on signals and vice versa. In addition, they are used to find new transform
pairs more easily.

8.2.1 Linearity

The FT of a linear combination of a set of signals is the same linear combination of
their individual FT. That is,

x(t) ⇐⇒ X(jω), y(t) ⇐⇒ Y (jω), ax(t) + by(t) ⇐⇒ aX(jω) + bY (jω),



248 8 The Fourier Transform

where a and b are arbitrary constants. This property follows from the linearity
property of the integral defining the FT. Consider the sign, sgn(t) (pronounced as
signum(t)) signal, defined as

x(t) =
{

1 for t > 0
−1 for t < 0

This signal can be expressed as (2u(t) − 1). Substituting the respective FT, we get
the FT of x(t) as 2(πδ(ω) + 1

jω
) − 2πδ(ω) = 2

jω
.

8.2.2 Duality

The forward and inverse FT definitions differ only by the reversed algebraic sign
in the exponent of the complex exponential, the interchange of the variables t and
ω, and the constant 1

2π in the inverse FT. Due to this similarity, there exists a dual
relationship between time- and frequency-domain functions. Consider the inverse
FT defined as

x(t) = 1

2π

∫ ∞

−∞
X(jω)ejωtdω

By replacing t by −t , we get

x(−t) = 1

2π

∫ ∞

−∞
X(jω)e−jωtdω and 2πx(−t) =

∫ ∞

−∞
X(jω)e−jωtdω

This is a forward transform with 2πx(−t) being the FT of X(jω). To put it
another way, we get 2πx(−t) by taking the FT of x(t) twice in succession,
2πx(−t) = FT(FT(x(t))). Let x(t) ⇐⇒ X(jω). If we replace the variable ω

in the frequency-domain function by ±t , then the corresponding frequency-domain
function is obtained by replacing the variable t by ∓ω in the original time-domain
function multiplied by 2π . For an even x(t), as X(jω) is also even, the sign change
of either t or ω is not required. For example, consider the FT pairs

cos(2t) ⇐⇒ π(δ(ω+2)+δ(ω−2)) and sin(3t) ⇐⇒ jπ(δ(ω+3)−δ(ω−3))

Using the property, we get the transform pairs

2 cos(2(−ω)) = 2 cos(2ω) ⇐⇒ δ(t + 2) + δ(t − 2)

2 sin(3ω) ⇐⇒ j (δ(−t + 3) − δ(−t − 3)) = j (δ(t − 3) − δ(t + 3))
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8.2.3 Symmetry

If a signal x(t) is real, then the real part of its spectrum X(jω) is even, and the
imaginary part is odd, called the conjugate symmetry. The FT of x(t) is given by

X(jω) =
∫ ∞

−∞
x(t)e−jωtdt =

∫ ∞

−∞
x(t)(cos(ωt) − j sin(ωt))dt

Conjugating both sides, we get

X∗(jω) =
∫ ∞

−∞
x(t)(cos(ωt) + j sin(ωt))dt

Replacing ω by −ω, we get X∗(−jω) = X(jω). This is expected since a real
sinusoid is composed of a pair of complex exponentials. An example is

x(t) = e−t u(t) ⇐⇒ X(jω) = 1

jω + 1
= 1

ω2 + 1
− jω

ω2 + 1

If a signal x(t) is real and even, then its spectrum also is real and even. Since
x(t) cos(ωt) is even and x(t) sin(ωt) is odd,

X(jω) = 2
∫ ∞

0
x(t) cos(ωt)dt and x(t) = 1

π

∫ ∞

0
X(jω) cos(ωt)dω

The FT π(δ(ω+1)+δ(ω−1)) of cos(t) is an example of the FT of an even function.
Similarly, if a signal x(t) is real and odd, then its spectrum is imaginary and odd.

X(jω) = −j2
∫ ∞

0
x(t) sin(ωt)dt and x(t) = j

π

∫ ∞

0
X(jω) sin(ωt)dω

The FT jπ(δ(ω+1)−δ(ω−1)) of sin(t) is an example of the FT of an odd function.
As the FT of a real and even signal is real and even and that of a real and odd is

imaginary and odd, it follows that the real part of the FT, Re(X(jω)), of an arbitrary
real signal x(t) is the transform of its even component xe(t) and j Im(X(jω)) is that
of its odd component xo(t). For example,

x(t) = e−t u(t) = xe(t) + xo(t) = 0.5e−|t | + (0.5e−t u(t) − 0.5etu(−t))

⇐⇒ X(jω) = 1

jω + 1
= 1

ω2 + 1
− jω

ω2 + 1
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8.2.4 Time Shifting

When we shift a signal, the shape remains the same, but the signal is relocated. The
shift of a typical spectral component, X(jωa)e

jωat , by t0 to the right results in the
exponential, X(jωa)e

jωa(t−t0) = e−jωat0X(jωa)e
jωat . That is, a delay of t0 results

in changing the phase of the exponential by −ωat0 radians without changing its
amplitude. Therefore, if the FT of x(t) is X(jω), then

x(t ± t0) ⇐⇒ e±jωt0X(jω)

Consider the FT of cos(2t), π(δ(ω+2)+δ(ω−2)). Now, the FT of cos(2(t − π
4 )) =

cos(2t − π
2 ) = sin(2t) is

π(e−j (−2) π
4 δ(ω + 2) + e−j2 π

4 δ(ω − 2)) = jπ(δ(ω + 2) − δ(ω − 2))

8.2.5 Frequency Shifting

The spectrum, X(jω), of a signal, x(t), can be shifted by multiplying the signal
by a complex exponential, e±jω0t . The new spectrum is X(j (ω ∓ ω0)), since
a spectral component X(jωa)e

jωat of the signal multiplied by ejω0t becomes
X(jωa)e

j (ωa+ω0)t and the spectral value X(jωa) occurs at (ωa + ω0), after a delay
of ω0 radians. That is,

x(t)e±jω0t ⇐⇒ X(j (ω ∓ ω0))

Duality applies for both transform pairs and properties. This property is the dual of
the time-shifting property.

Consider the FT pair e−2t u(t) ⇐⇒ 1
2+jω

. The FT of e−2t cos(3t)u(t) =
e−2t (ej3t+e−j3t )

2 u(t) is

X(jω) = 1

2

(
1

2 + j (ω − 3)
+ 1

2 + j (ω + 3)

)
= 2 + jω

(2 + jω)2 + 9

For example,

1

2 + jω
|ω=0 = 1

2

and

1

2 + j (ω − 3)
|ω=3 = 1

2
and

1

2 + j (ω + 3)
|ω=−3 = 1

2
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8.2.6 Convolution in the Time Domain

The convolution x(t) ∗ h(t) of signals x(t) and h(t) is defined, in Chap. 4, as

y(t) = x(t) ∗ h(t) =
∫ ∞

−∞
x(τ)h(t − τ)dτ

The convolution of h(t) with a complex exponential ejω0t is given as

∫ ∞

−∞
h(τ)ejω0(t−τ)dτ = ejω0t

∫ ∞

−∞
h(τ)e−jω0τ dτ = H(jω0)e

jω0t

As an arbitrary signal x(t) is reconstructed by the inverse FT as x(t) =
1
2π

∫∞
−∞ X(jω)ejωtdω, the convolution of x(t) and h(t) is given by y(t) =

1
2π

∫∞
−∞ X(jω)H(jω)ejωtdω. The inverse FT of X(jω)H(jω) is the convolution

of x(t) and h(t). That is,

∫ ∞

−∞
x(τ)h(t − τ)dτ = 1

2π

∫ ∞

−∞
X(jω)H(jω)ejωtdω ⇐⇒ X(jω)H(jω)

Therefore, convolution in the time domain corresponds to multiplication in the
frequency domain. This property is one of the major reasons for the dominant role
of the frequency-domain analysis in the study of signals and systems.

The convolution of a rectangular pulse, centered at the origin, of width a and
height 1

a
with itself yields a triangular waveform, centered at the origin, with width

2a and height 1
a
. Figure 8.4a and b shows, respectively, these waveforms with

a = 2. Since convolution in the time domain corresponds to multiplication in the
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Fig. 8.4 (a) The rectangular pulse with width 2 and height 0.5; (b) the triangular waveform with
width 4 and height 0.5, which is the convolution of the pulse in (a) with itself; (c) and (d) their
corresponding FT spectra
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frequency domain and the FT of the rectangular pulse is
2 sin( ωa

2 )

aω
, we get the FT of

the triangular waveform as

X(jω) = 2 sin(ωa
2 )

aω

2 sin(ωa
2 )

aω
=
(
2 sin(ωa

2 )

aω

)2

Figure 8.4c and d shows, respectively, their FT spectra.

8.2.7 Convolution in the Frequency Domain

Similar to the time-domain convolution, we find that the convolution of two
frequency-domain functions corresponds to the multiplication of the inverse FT of
the functions in the time domain with a scale factor. That is,

x(t)y(t) ⇐⇒
∫ ∞

−∞
x(t)y(t)e−jωtdt = 1

2π

∫ ∞

−∞
X(jv)Y (j (ω − v))dv

The FT of sin(t) cos(t) is the convolution of the FT of sin(t) and cos(t) divided by
2π . That is,

1

2π
(jπ(δ(ω + 1) − δ(ω − 1)) ∗ π(δ(ω + 1) + δ(ω − 1)))

= jπ2

2π
((δ(ω + 1) ∗ δ(ω + 1)) − (δ(ω − 1) ∗ δ(ω − 1)))

= jπ

2
(δ(ω + 2) − δ(ω − 2)) ⇐⇒ 1

2
sin(2t) = sin(t) cos(t)

8.2.8 Conjugation

Let x(t) ⇐⇒ X(jω). Then, x∗(±t) ⇐⇒ X∗(∓jω). This result is obtained if
we replace t by −t or ω by −ω, in addition to conjugating both sides of the FT
definition. For example,

e−(1+j2)tu(t) ⇐⇒ 1

(1 + j2) + jω
and e(1−j2)tu(−t) ⇐⇒ 1

(1 − j2) − jω
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8.2.9 Time Reversal

Let x(t) ⇐⇒ X(jω). Then, x(−t) ⇐⇒ X(−jω). That is, the time reversal of
a signal results in its spectrum also reflected about the vertical axis at the origin.
This result is obtained if we replace t by −t and ω by −ω in the FT definition. For
example,

e−3t u(t) ⇐⇒ 1

3 + jω
and e3t u(−t) ⇐⇒ 1

3 − jω

8.2.10 Time Scaling

Scaling is the operation of replacing the independent variable t by at , where a �= 0
is a real constant. As we have seen in Chap. 2, the signal is compressed (|a| > 1)
or expanded (|a| < 1) in the time domain by this operation. As a consequence, the
spectrum of the signal is expanded or compressed in the frequency domain. With a

negative, the signal is also time-reversed.
Let the spectrum of a signal x(t) be X(jω). By replacing at by τ , t by τ

a
, and dt

by dτ
a
, with a > 0, in the FT definition of x(at), we get

∫ ∞

−∞
x(at)e−jωtdt = 1

a

∫ ∞

−∞
x(τ)e−jω τ

a dτ = 1

a
X
(
j
(ω

a

))

The FT of x(−at), due to the time-reversal property, becomes

1

a
X

(
j

(−ω

a

))
= 1

a
X

(
j

(
ω

−a

))

By combining both the results, we get

x(at) ⇐⇒ 1

|a|X
(
j
(ω

a

))
, a �= 0

The factor 1
|a| ensures that the scaled waveforms in both the domains have the same

energy or power. A compressed signal varies more rapidly and, hence, requires
higher-frequency components to synthesize. Therefore, the spectrum is expanded.
The reverse is the case for signal expansion.

Consider the transform pair sin(2t) ⇐⇒ (jπ)(δ(ω + 2) − δ(ω − 2)). sin(6t) is
a time-compressed version of sin(2t) with a = 3. Using the property, the transform
of sin(6t) is obtained from that of sin(2t) as follows.
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1

3
(jπ)

(
δ
(ω

3
+ 2

)
− δ

(ω

3
− 2

))
= 1

3
(jπ)

(
δ

(
ω + 6

3

)
− δ

(
ω − 6

3

))

= (jπ)(δ(ω + 6) − δ(ω − 6))

Note that δ(aω) = 1
|a|δ(ω).

Consider the transform pair

cos(t) ⇐⇒ π(δ(ω + 1) + δ(ω − 1))

cos(−2t) is a time-compressed version of cos(t) with a = −2. Using the property,
the transform of cos(−2t) = cos(2t) is obtained from that of cos(t) as follows.

1

2
(π)

(
δ

(
ω

−2
+ 1

)
+ δ

(
ω

−2
− 1

))
= 1

2
(π)

(
δ

(
ω − 2

−2

)
+ δ

(
ω + 2

−2

))

= π(δ(ω + 2) + δ(ω − 2))

8.2.11 Time Differentiation

The derivative of a typical spectral component X(jωa)e
jωat is jωaX(jωa)e

jωat .
Therefore, if the transform of a time-domain function x(t) is X(jω), then the
transform of its derivative is given by jωX(jω). That is,

dx(t)

dt
⇐⇒ jω X(jω)

Note that the spectral value with ω = 0 is zero, as the DC component is lost
in differentiating a signal. The factor ω implies that the magnitude of the high-
frequency components is enhanced more and, hence, rapid time variations of the
signal are accentuated. The property is valid only if the derivative function is Fourier
transformable. For example,

e−t u(t) ⇐⇒ 1

jω + 1
and

d(e−t u(t))

dt
= (δ(t) − e−t u(t)) ⇐⇒ jω

jω + 1

In general,

dnx(t)

dtn
⇐⇒ (jω)n X(jω)

Consider finding the FT, shown in Fig. 8.5b, of the triangular waveform x(t) =
0.5(t +2)u(t +2)− tu(t)+0.5(t −2)u(t −2), shown in Fig. 8.5a. This problem was
solved using the convolution property. Now, we use the differentiation property. The
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Fig. 8.5 (a) The triangular waveform and (b) its spectrum; (c) the first derivative of the triangular
waveform; (d) the second derivative of the triangular waveform

FT of scaled and shifted impulse function can be found easily. Therefore, the idea
is to reduce the given function to a set of impulses by differentiating it successively.
(This method is applicable to signals that are characterized or approximated by any
piecewise polynomial function with finite energy.) Then, the FT of the impulses can
be related to the FT of the given function by the differentiation property. The first
and second derivatives of the triangular waveform, dx(t)

dt
= 0.5u(t + 2) − u(t) +

0.5u(t − 2) and d2x(t)

dt2
= 0.5δ(t + 2) − δ(t) + 0.5δ(t − 2), are shown, respectively,

in Fig. 8.5c and d. Let the FT of the triangular waveform be X(jω). Then, the FT of

the impulses of d2x(t)

dt2
shown in Fig. 8.5d, (0.5ej2ω − 1 + 0.5e−j2ω), must be equal

to (jω)2X(jω). That is,

(0.5ej2ω − 1 + 0.5e−j2ω) = cos(2ω) − 1 = −2 sin2(ω) = −ω2X(jω)

Solving for X(jω), we get the FT of the triangular waveform as

X(jω) = 2

(
sin(ω)

ω

)2

8.2.12 Time Integration

The definite integral, y(t), of a time-domain signal, x(t), can be expressed as the
convolution of x(t) and the unit-step signal, u(t), as

y(t) =
∫ t

−∞
x(τ)dτ =

∫ ∞

−∞
x(τ)u(t − τ)dτ = x(t) ∗ u(t)
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Fig. 8.6 (a) Signal x(t). (b) The integral of x(t), y(t) (solid line), and its two components

As convolution in the time domain corresponds to multiplication in the frequency
domain, with x(t) ⇐⇒ X(jω) and u(t) ⇐⇒ 1

jω
+ πδ(ω), we get

∫ t

−∞
x(τ)dτ ⇐⇒ X(jω)

(
1

jω
+ πδ(ω)

)
= X(jω)

jω
+ πX(j0)δ(ω)

Note that, if X(j0) = 0, the integration operation can be considered as the
inverse of the differentiation operation. The property is valid only if y(t) is Fourier
transformable. The factor ω in the denominator implies that the magnitude of the
high-frequency components is reduced more and, hence, rapid time variations of
the signal are reduced, resulting in a smoother signal.

Consider the signal x(t) = u(t) − u(t − 2), shown in Fig. 8.6a, with the FT
X(jω) = 1

jω
(1 − e−j2ω) and X(j0) = 2. Now, using the property,

y(t) =
∫ t

−∞
x(τ)dτ ⇐⇒ Y (jω) = X(jω)

jω
+ 2πδ(ω) = 2πδ(ω) +

(
e−j2ω − 1

)
ω2

The integral of x(t) is y(t) = tu(t)− (t − 2)u(t − 2), shown in Fig. 8.6b along with
its two components corresponding to the two terms of its transform.

8.2.13 Frequency Differentiation

Differentiating both sides of the FT definition with respect to ω yields

(−j t)x(t) ⇐⇒ dX(jω)

dω
or tx(t) ⇐⇒ j

dX(jω)

dω

The property is valid only if the resulting function is Fourier transformable. In
general,

(−j t)nx(t) ⇐⇒ dnX(jω)

dωn
or (t)nx(t) ⇐⇒ (j)n

dnX(jω)

dωn

For example,
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e−2t u(t) ⇐⇒ 1

jω + 2
and te−2t u(t) ⇐⇒ 1

(jω + 2)2

8.2.14 Parseval’s Theorem and the Energy Transfer Function

As the frequency-domain representation of a signal is an equivalent representation,
energy E of a signal can also be expressed in terms of its spectrum. Note that this
theorem is only applicable to FT of energy signals. From the frequency-domain
convolution property, we get

∫ ∞

−∞
x(t)y(t)e−jωtdt = 1

2π

∫ ∞

−∞
X(jv)Y (j (ω − v))dv

Letting ω = 0 and then replacing v by ω, we get

∫ ∞

−∞
x(t)y(t)dt = 1

2π

∫ ∞

−∞
X(jω)Y (−jω)dω

Assuming x∗(t) = y(t), X∗(−jω) = Y (jω) and X∗(jω) = Y (−jω). Therefore,
we get

∫ ∞

−∞
x(t)x∗(t)dt = 1

2π

∫ ∞

−∞
X(jω)X∗(jω)dω

E =
∫ ∞

−∞
|x(t)|2dt = 1

2π

∫ ∞

−∞
|X(jω)|2dω

This relationship is called Parseval’s theorem. This expression is the limiting form
of the corresponding expression for DTFT as the sampling interval of the time-
domain signal tends to zero. Alternately, this expression can also be considered as
the limiting form of the corresponding expression for FS as the period of the signal
tends to infinity. For real signals, as |X(jω)| is even, we get

E =
∫ ∞

−∞
|x(t)|2dt = 1

π

∫ ∞

0
|X(jω)|2dω

The quantity |X(jω)|2 is called the energy spectral density of the signal, since
1
2π |X(jω)|2dω is the signal energy over the infinitesimal frequency band ω to
ω + dω.

Example 8.7 Find the energy of the signal x(t) = e−t u(t). Find the value of T such
that 99% of the signal energy lies in the range 0 ≤ t ≤ T . What is the corresponding
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signal bandwidthB, whereB is such that 99% of the spectral energy lies in the range
0 ≤ ω ≤ B?

Solution From the transform pair of Example 8.2, we get

e−t u(t) ⇐⇒ 1

1 + jω

The energy E of the signal is

E =
∫ ∞

−∞
|x(t)|2dt =

∫ ∞

0
e−2t dt = 1

2

By changing the upper limit to T , we get

∫ T

0
e−2t dt = −1

2
(e−2T − 1) = 0.99

2
= 0.495

Solving for T , we get T = 2.3026 s. This value is required in order to truncate the
signal for numerical analysis.

Using the spectrum,

1

π

∫ B

0

dω

1 + ω2 = 1

π
tan−1(B) = 0.495 or B = tan(0.495π) = 63.6567

Using this value, we can determine the sampling interval required to sample this
signal. As the sampling frequency must be greater than twice of that of the highest-
frequency component, the sampling frequency must be greater than (2)(63.6567)
radians/second. Therefore, the sampling interval must be smaller than 2π

(2)(63.6567) =
0.0494 s.

Since |X(jω)|2 = X(jω)X∗(jω) = X(jω)X(−jω) for real signals,
x(t)∗x(−t) ⇐⇒ |X(jω)|2. The convolution x(t)∗x(−t), called the autocorrelation
of x(t), is defined as

x(t) ∗ x(−t) =
∫ ∞

−∞
x(τ)x(τ − t)dτ ⇐⇒ |X(jω)|2

The input and output of a LTI system, in the frequency domain, are related by
the transfer function H(jω) as Y (jω) = H(jω)X(jω), where X(jω), Y (jω), and
H(jω) are the FT of the input, output, and impulse response of the system. The
output energy spectrum is given by

|Y (jω)|2 = Y (jω)Y ∗(jω)

= H(jω)X(jω)H ∗(jω)X∗(jω) = |H(jω)|2|X(jω)|2
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The quantity |H(jω)|2 is called the energy transfer function, as it relates the input
and output energy spectral densities of a system.

8.3 Fourier Transform of Mixed Class of Signals

As the most general version of the Fourier analysis, the FT is capable of representing
all types of signals. Therefore, the relation between the FT and other versions of the
Fourier analysis is important in dealing with mixed class of signals. The signal x(t)

and its FT X(jω) are, in general, continuous and aperiodic. The inverse FT of a
sampled spectrum Xs(jω) yields a periodic signal, which is the sum of a periodic
repetition of x(t). This version corresponds to the FS. On the other hand, the FT of
a sampled signal xs(t) yields a periodic spectrum, which is the sum of a periodic
repetition of X(jω). This version corresponds to the DTFT. Sampling in both the
domains corresponds to the DFT with both the signal and its spectrum sampled and
periodic.

8.3.1 The FT of a Continuous Periodic Signal

A periodic signal x(t) is reconstructed using its FS coefficients Xcs(k) as

x(t) =
∞∑

k=−∞
Xcs(k)ejkω0t ,

where ω0 is the fundamental frequency. Since the FT of ejkω0t is 2πδ(ω− kω0), we
get, from the linearity property of the FT,

x(t) =
∞∑

k=−∞
Xcs(k)ejkω0t ⇐⇒ X(jω) = 2π

∞∑
k=−∞

Xcs(k)δ(ω − kω0)

Therefore, the FT of a periodic signal is a sum of impulses with strength 2πXcs(k)

occurring at intervals of ω0.

Example 8.8 Find the FT of the signal x(t) = cos(ω0t).

Solution The FS spectrum for cos(ω0t) is 1
2 (δ(k − 1) + δ(k + 1)). Multiplying this

result by 2π and with the discrete impulse δ(k −1) corresponding to the continuous
impulse δ(ω − ω0), we get the FT as π(δ(ω − ω0) + δ(ω + ω0)). Hence,

cos(ω0t) ⇐⇒ π(δ(ω − ω0) + δ(ω + ω0))
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Fig. 8.7 (a) The sinusoid cos(3t); (b) its FS spectrum, Xcs(k); (c) its FT, X(jω)

Similarly,

sin(ω0t) ⇐⇒ (jπ)(δ(ω + ω0) − δ(ω − ω0))

In general,

cos(ω0t + φ) ⇐⇒ π(ejφδ(ω − ω0) + e−jφδ(ω + ω0))

For example, the FS and FT spectra of cos(3t), shown in Fig. 8.7a, are shown in
Fig. 8.7b and c, respectively.

The spectra in Fig. 8.7b and c are the equivalent representations of a single
sinusoid by the FS and the FT. In Fig. 8.7b, the discrete spectrum Xcs(k) consists
of two nonzero discrete impulses of value 0.5. In Fig. 8.7c, the continuous spectrum
X(jω) consists of two continuous impulses with the value of their integrals being
π , which, after dividing by the scale factor 2π , becomes 0.5. The amplitude of a
constituent complex exponential of a signal x(t) is Xcs(k) in the case of the FS and
1
2π X(jω)dω in the case of the FT. Note that (δ(ω − ω0)dω)|ω=ω0 = 1. Remember
that both the spectra in Fig. 8.7b and c represent the same waveform and, from either
spectra, we get 0.5(ej3t + e−j3t ) = cos(3t).

cos(3t) ⇐⇒ π(δ(ω − 3) + δ(ω + 3))

The conclusion is that, in this case, the FT includes impulses on the imaginary axis,
which are the equivalent of coefficients in a FS.

cos(3t) ⇐⇒ 0.5(δ(k − 1) + δ(k + 1))

8.3.2 Determination of the FS from the FT

Let x(t) be a periodic signal of period T . Let us define an aperiodic signal xp(t)

that is identical with x(t) over its one period from t1 to t1 +T and is zero otherwise,
where t1 is arbitrary. The FT of this signal is
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Xp(jω) =
∫ ∞

−∞
xp(t)e−jωtdt =

∫ t1+T

t1

x(t)e−jωtdt

The FS spectrum for x(t) is

Xcs(k) = 1

T

∫ t1+T

t1

x(t)e−jkω0t dt, ω0 = 2π

T

Comparing the FS and FT definitions of the signals, we get

Xcs(k) = 1

T
Xp(jω)|ω=kω0 = 1

T
Xp(jkω0)

The discrete samples of 1
T

Xp(jω), at intervals of ω0, constitute the FS spectrum
for the periodic signal x(t). While the spectral values at discrete frequencies are
adequate to reconstruct one period of the periodic waveform using the inverse FS,
spectral values at continuum of frequencies are required to reconstruct one period of
the periodic waveform and the infinite extent zero values of the aperiodic waveform
using the inverse FT. Note the similarity of this relationship to that between the
DTFT and the DFT.

Example 8.9 Find the FS spectrum for the periodic signal x(t), one period of which
is defined as

x(t) =
{
1 for |t | < 1
0 for 1 < |t | < 2

Solution Using the derivative method, the FT of xp(t) is obtained as follows:

jωXp(jω) = ejω − e−jω and Xp(jω) = 2
sin(ω)

ω

Since Xcs(k) = 1
T

Xp(jkω0), with T = 4 and ω = kω0 = k 2π
4 = π

2 k, we get

Xcs(k) = 2

4

sin(π
2 k)

π
2 k

= sin(π
2 k)

πk

Figure 8.8a and b shows, respectively, one period of a periodic square wave and its
FS spectrum, Xcs(k), as the samples of its FT, X(jω), divided by its period T .
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Fig. 8.8 (a) One period of a periodic square wave; (b) its FS spectrum, Xcs(k), as the samples of
its FT, X(jω), divided by its period T

8.3.3 The FT of a Sampled Signal and the Aliasing Effect

Two equivalent expressions for the FT of a sampled signal are derived. Once we
sample a signal, its spectrum becomes periodic due to the reduction in the range
of the frequencies from infinity to some finite value. The periodic spectrum has a
FS representation. Another point of view is that the sampled signal is considered as
obtained by multiplying a continuous signal by an impulse train. Then, the FT of
the sampled signal is the convolution of the FT of the continuous signal and the FT
of the impulse train.

Let the FT of a signal x(t) be X(jω). The sampled version of this signal, xs(t), is
obtained by multiplying it with an impulse train, s(t) = ∑∞

n=−∞ δ(t − nTs), where
Ts is the period and n is an integer. That is,

xs(t) = x(t)s(t) = x(t)

∞∑
n=−∞

δ(t − nTs) =
∞∑

n=−∞
x(nTs)δ(t − nTs)

The FS representation of the impulse train, from Chap. 6, is given as

s(t) = 1

Ts

∞∑
k=−∞

ejkωs t ,

where ωs = 2π
Ts
. Therefore, the sampled signal xs(t) is also given by

xs(t) = 1

Ts

∞∑
k=−∞

x(t)ejkωs t

= 1

Ts

(· · · + x(t)e−jωs t + x(t) + x(t)ejωs t + · · · )

Let the FT of xs(t) be Xs(jω). Then, using the linearity and frequency-shifting
properties of the Fourier transform, we get
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Xs(jω) = 1

Ts

(· · · + X(j (ω + ωs)) + X(jω) + X(j (ω − ωs)) + · · · )

= 1

Ts

∞∑
k=−∞

X(j (ω − kωs))

This expression represents the convolution of the spectra of x(t) and s(t) (since it is
the FT of their product), and we could as well have obtained the result through
the frequency-domain convolution property, as we shall see later. As the FT of
the sampled signal is expressed as a sum of the shifted versions of that of the
corresponding continuous signal, it is easy to visualize the form of Xs(jω) if we
know X(jω). The sampling of a signal has made the resulting spectrum periodic
with period ωs , the sampling frequency, in addition to scaling the amplitude by the
factor 1

Ts
, where Ts is the sampling interval. The periodicity is the result of the

reduction of the range of frequencies, due to sampling, over which sinusoids can be
distinguished. The factor 1

Ts
arises from the fact that

x(t) =
∫ ∞

−∞
x(τ)δ(t − τ)dτ = lim

Ts→0

∞∑
n=−∞

x(nTs)Tsδ(t − nTs) = lim
Ts→0

Tsxs(t)

Figure 8.9a and b shows, respectively, the continuous sinc function and its aperiodic
FT spectrum.

x(t) =
sin
(
2π
3 t
)

πt
⇐⇒ X(jω) =

(
u

(
ω + 2π

3

)
− u

(
ω − 2π

3

))

With Ts = 0.1, period 2π
0.1 = 20π radians and amplitude 1

0.1 = 10. Then,

xs(t) =
∞∑

n=−∞

sin
(
2π
3 (0.1n)

)
π(0.1n)

δ(t − 0.1n) ⇐⇒

Xs(jω) =
∞∑

k=−∞
10

(
u

(
ω + 2π

3
− 20kπ

)
− u

(
ω − 2π

3
− 20kπ

))

At any discontinuity of the time-domain function, the strength of the sample should
be equal to the average value of the right- and left-hand limits.

While the FT X(jω) of x(t) uniquely determines the FT Xs(jω) of xs(t), the
converse is not necessarily true. By sampling the signal, we simultaneously reduce
the effective frequency range of the sinusoids available to represent the signal,
and, hence, the FT of the sampled signal becomes periodic due to aliasing effect.
Therefore, if the signal is bandlimited and the sampling frequency is greater than
twice the highest-frequency component of the signal, we can recover its exact FT
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and (b) its FT spectrum; (c) discrete samples of (a) with

Ts = 0.1 s and (d) its periodic DTFT spectrum with period 20π radians; (e) discrete samples of
(a) with Ts = 0.2 s and (f) its DTFT spectrum with period 10π radians

from that of its sampled version by lowpass filtering (since the periodic repetition of
X(jω), yielding Xs(jω), does not result in the overlapping of its nonzero portions).
If the sampling frequency is not sufficiently high, we can only recover a corrupted
version of its FT spectrum, since the periodic repetition of X(jω) results in the
overlapping of its nonzero portions. For example, with Ts = 2,

xs(t) =
∞∑

n=−∞

sin
(
2π
3 (2n)

)
π(2n)

δ(t − 2n) ⇐⇒

Xs(jω) =
∞∑

k=−∞
0.5(u(ω + 2π

3
− kπ) − u(ω − 2π

3
− kπ))

As the FT of δ(t − nTs) is e−jnωTs and due to the linearity property of the FT,
the FT of the sampled signal xs(t) = ∑∞

n=−∞ x(nTs)δ(t − nTs) is also given by

Xs(jω) =
∞∑

n=−∞
x(nTs)e

−jnωTs

This expression, which, of course, is completely equivalent to that derived earlier
for Xs(jω), reminds us that the relation is a FS with the roles of the domains



8.3 Fourier Transform of Mixed Class of Signals 265

interchanged and corresponds to the DTFT. The time-domain samples x(nTs) are
the FS coefficients of the corresponding continuous periodic spectrum Xs(jω) of
period 2π/Ts .

8.3.4 The FT and the DTFT of Sampled Aperiodic Signals

Let us construct a sequence with the discrete sample values, at intervals of Ts , of
the signal x(t). These sample values are the same as the strengths (areas) of the
corresponding impulses x(nTs)δ(t − nTs) of the sampled signal. The DTFT of
x(nTs) is defined as

X(ejωTs ) =
∞∑

n=−∞
x(nTs)e

−jnωTs

That is, the DTFT of a sequence x(nTs) and the FT of the corresponding sampled
signal,

∞∑
n=−∞

x(nTs)δ(t − nTs),

are the same when the DTFT version includes the sampling interval, Ts . Figure 8.9c
and d shows, respectively, the discrete samples of the sinc function x(0.1n) =
sin
(
2π
3 (0.1n)

)
π(0.1n)

with Ts = 0.1 s and 2010 samples. The DTFT spectrum with period
20π radians is the same as the corresponding Xs(jω). The DTFT spectrum is
approximated by the DFT with 2010 samples. The edge frequency is

67 × 2π

2010 × 0.1
= 2.0944 = 2π

3
radians

Note the overshoots at the edges of the spectrum due to Gibbs phenomenon.
Figure 8.9e and f shows, respectively, the discrete samples of the sinc function

x(0.2n) = sin
(
2π
3 (0.2n)

)
π(0.2n)

with Ts = 0.2 s and its DTFT spectrum with period 10π
radians, which is the same as the corresponding Xs(jω).

Usually, the DTFT spectrum is computed with the assumption of Ts = 1 s. The
FT of the corresponding sampled continuous signal xs(t) is obtained by scaling the
frequency axis of this DTFT spectrum so that the period of the spectrum becomes
2π
Ts
.
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8.3.5 The FT and the DFT of Sampled Periodic Signals

The FT of a bandlimited periodic signal x(t), from earlier results, is

x(t) =
N∑

k=−N

Xcs(k)ejkω0t ⇐⇒ X(jω) = 2π
N∑

k=−N

Xcs(k)δ(ω − kω0),

where ω0 = 2π
T
, the fundamental frequency of x(t). Let us sample the periodic

signal by multiplying it with an impulse train

s(t) =
∞∑

n=−∞
δ(t − nTs) ⇐⇒ S(jω) = 2π

Ts

∞∑
m=−∞

δ(ω − mωs)

with the interval between impulses being Ts = 2π
ωs
. Then, as multiplication in the

time domain corresponds to convolution in the frequency domain, the FT Xs(jω)

of the sampled signal xs(t) = x(t)s(t) is 1
2π X(jω) ∗ S(jω). The FT of the sampled

signal, as convolution of a signal with an impulse is the relocation of the origin of
the signal at the location of the impulse, is

Xs(jω) = 2π

Ts

∞∑
m=−∞

N∑
k=−N

Xcs(k)δ(ω − kω0 − mωs)

where ωs = 2π
Ts
. As X(k) = (2N + 1)Xcs(k), where X(k) is the DFT of the 2N + 1

discrete samples of x(t) over one period, we get

Xs(jω) = 2π

(2N + 1)Ts

∞∑
m=−∞

N∑
k=−N

X(k)δ(ω − kω0 − mωs)

This FT corresponds to the sampled periodic time-domain signal

xs(t) =
∞∑

n=−∞
x(nTs)δ(t − nTs)

The period of the time-domain signal x(n) of the DFT is 2N +1 samples, and that of
corresponding sampled continuous signal xs(t) is (2N + 1)Ts = T s. The period of
the FT spectrum is ωs = 2π

Ts
radians, and the spectral samples are placed at intervals

of ω0 = 2π
(2N+1)Ts

= 2π
T

radians.
Consider the discrete samples, over two periods, of the continuous cosine

wave cos(22π
48 t) with sampling interval Ts = 3 s and its DFT spectrum shown,

respectively, in Fig. 8.10a and b. Both the waveform and its spectrum are periodic
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Fig. 8.10 (a) The discrete samples, over two periods, of the continuous cosine wave cos(2 2π
48 t)

with sampling interval Ts = 3 s and (b) its DFT spectrum; (c) the sampled version of the cosine
wave cos(2 2π

48 t) and (d) its periodic FT spectrum

with period N = 16 samples. The sampled version of the cosine wave is shown
in Fig. 8.10c. The waveform is periodic with period NTs = T = 48 s. The FT
spectrum of the waveform in Fig. 8.10c is shown in Fig. 8.10d. The spectrum is
periodic with period 2π

Ts
= 2π

3 radians. The spectral samples are placed at intervals

of ωs = 2π
NTs

= 2π
48 = 0.1309 radians.

xs(t) =
∞∑

n=−∞
cos(2

2π

48
n(3))δ(t − 3n) ⇐⇒

Xs(jω) = π

3

∞∑
m=−∞

(
δ(ω − 2

2π

48
− 2mπ

3
) + δ(ω + 2

2π

48
− 2mπ

3
)

)

The point is that we should mean the same waveform by looking at DFT and
FT spectra. The term 2mπ

3 indicates that the spectrum is periodic with period 2π
3

radians and, hence, the time-domain waveform is sampled with a sampling interval
of 3 s. The two impulse terms, with strength π

3 , indicate a cosine waveform with
frequency 22π

48 radians and amplitude 1. The DFT spectrum indicates a cosine
waveform cos(22π

16 n). With a sampling interval of 3 s, this waveform corresponds
to cos(22π

48 t). xs(t) repeats with a period equal to the total sample time NTs , and
Xs(jω) repeats with a period equal to the total bandwidth Nωs . With Ts = 1 sec,
the usual way the DFT is defined, the total bandwidth is Nωs = 2π radians. Then,
we rescale the frequency axis, with Ts = 3. That is, 2π becomes 2π/3 radians.

Consider the differences between the cosine waveforms with amplitude 1 and
their spectra in Figs. 8.7 and 8.10. The waveform is continuous in Fig. 8.7a and
makes one cycle in the fundamental period. The FS and FT spectra in Fig. 8.7b and c
are aperiodic. The waveforms in Fig. 8.10a and c, with two cycles in the fundamental
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period, are sampled, and, hence, their spectra are periodic with the spectral values
of the second harmonic in one period the same as those shown in Fig. 8.7b and c
except for scale factors. As the DFT coefficients X(k) are equal to N times the FS
coefficients Xcs(k), the spectral values in Fig. 8.10b, with the number of samples
N = 16, are (0.5)16 = 8. As the FT spectrum of a sampled signal Xs(jω) is
1
Ts

X(jω), the spectral values in Fig. 8.10d are π
3 .

8.3.6 Approximation of the Continuous Signal from Its
Sampled Version

The zero-order hold filter is commonly used to approximate a continuous signal x(t)

from its sampled version xs(t). The impulse response of this filter is a rectangular
pulse of unit height and width Ts , h(t) = u(t)−u(t −Ts), where Ts is the sampling
interval of xs(t). By passing xs(t) through this filter, we get an output signal, which
is the convolution of xs(t) and h(t), that is a staircase approximation of x(t). The
convolution of xs(t), which is a sum of impulses, with h(t) results in replacing each
impulse of xs(t) by a pulse of width Ts and height equal to its strength (holding the
current sample value until the next sample arrives).

8.4 Approximation of the Fourier Transform

In approximating the FS by the DFT, we determine the appropriate sampling interval
and take samples over one period. In approximating the FT by the DFT, we have to
fix the record length as well. These two parameters have to be fixed so that most of
the energy of the signal is included in the selected record length and the continuous
spectrum of the FT is represented by a sufficiently accurate and dense set of spectral
samples.

The integral in Eq. (8.1) is approximated by the rectangular rule of numerical
integration. The summation interval can start from zero, since the truncated signal,
of length T , is assumed periodic by the DFT, although the input signal can be
nonzero in any interval. We divide the period T into N intervals of width Ts = T

N

and represent the signal at N points as x(0), x( T
N

), x(2 T
N

), . . . , x((N − 1) T
N

). The
sampling interval in the time domain is Ts seconds, and that in the frequency domain
is 2π

NTs
= 2π

T
radians per second. Now, Eq. (8.1) is approximated as

X

(
j
2πk

NTs

)
= Ts

N−1∑
n=0

x(nTs)e
−j 2π

N
nk, k = 0, 1, . . . , N − 1 (8.3)
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Fig. 8.11 (a) The exponential waveform x(t) = e−t u(t), with four samples over the range 0 ≤
t < 8; (b) the magnitude of the FT (solid line) and the samples of the FT obtained through the
DFT with N = 4 (dots) and N = 1024 (crosses) samples; (c) the magnitude of the FT spectrum;
(d) the partially (dotted) and fully reconstructed waveforms

Equation (8.2) is approximated as

x(nTs) = 1

NTs

N−1∑
k=0

X

(
j
2πk

NTs

)
ej 2π

N
nk, n = 0, 1, . . . , N − 1 (8.4)

Except for the scale factors, Eqs. (8.3) and (8.4) are, respectively, the DFT and the
IDFT of N samples. By multiplying the DFT coefficients by the sampling interval
Ts , we get the approximate samples of the FT. By multiplying the IDFT values by
1
Ts
, we get the approximate samples of the time-domain signal.

Example 8.10 Approximate the magnitude of the FT of the signal x(t) = e−t u(t)

using the DFT.

Solution From the transform pair of Example 8.7, we get

X(jω) = 1

1 + jω
and |X(jω)| = 1√

1 + ω2

Figure 8.11a shows the exponential signal e−t u(t) with four samples over a period
of T = 8 s. Figure 8.11b shows the magnitude of the FT and the samples of the FT
obtained through the DFTwithN = 4 andN = 1024 samples. While the signal is of
infinite duration, we have truncated it to 8 s duration. The truncated signal has most
of the energy of the untruncated signal. This signal has also an infinite bandwidth.
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Here again, the spectral values become negligible beyond some finite range. The
sample values of the signal in Fig. 8.11a are {0.5, 0.1353, 0.0183, 0.0025}. The first
sample value occurs at a discontinuity, and it is the average of the left- and right-
hand limits at the discontinuity. The magnitude of the DFT of these values, after
scaling by Ts = 2 s, is {1.3123, 0.9993, 0.7610, 0.9993}. As the second half of the
DFT spectrum is redundant, only the first three values are useful. The corresponding
samples of the FT are {1, 0.7864, 0.5370}. The spectral samples obtained by the
DFT are very inaccurate since the number of samples N = 4 is very small and the
frequency range is inadequate, thereby resulting in large amount of aliasing. The
magnitude of the first five samples of the FT obtained through the DFT with N =
1024 are {0.9997, 0.7862, 0.5368, 0.3905, 0.3032}. The corresponding samples of
the FT are {1, 0.7864, 0.5370, 0.3907, 0.3033}. This time, while the DFT values are
still inaccurate, the error is much less compared with the last case. In general, the
DFT values will never be exactly equal to the analytical values, but can be made, by
increasing the number of samples, to be sufficiently accurate.

In order to approximate the FT of an arbitrary signal by the DFT, a trial-and-
error procedure is used. A set of samples over a reasonable record length of the
signal with an initial sampling interval is taken, and the DFT is computed. Then,
keeping the record length the same, we double the number of samples. That is, we
reduce the sampling interval by one-half, and the DFT is computed. This process
is repeated until the spectral values near the middle of the spectrum for real signals
(at the end of the spectrum for complex signals) become negligibly small, which
ensures very little aliasing. Now, the sampling interval is fixed. Truncation of a
signal is multiplying it with a rectangular window. As the window becomes longer,
the truncation becomes less. In the frequency domain, the spectrum of the window
becomes more closer to an impulse from that of a sinc function. The convolution
of the spectra of the untruncated signal and the window distorts the spectrum of the
signal to a lesser extent. Therefore, keeping the sampling interval the same, we keep
doubling the record length and use the DFT to compute the spectral samples. When
truncation becomes negligible, the spectral values with two successive lengths will
be almost the same. Now, the record length is fixed.

A similar procedure for the approximation of the IFT is required. Now, we have
to fix the record length of the spectrum. The spectrum, as shown in Fig. 8.11c for
positive values of ω (the spectrum is conjugate symmetric), is slowly decaying and
is of infinite extent. The cutoff frequency has to be selected to suit the accuracy
requirements. The magnitude of the spectrum is approximately 1/ω for large values
of ω. The peak value of the spectrum is 1. If we want to discard the values of the
spectrum that are less than two-hundredth of the peak, then ω = 200 radians is the
cutoff frequency. Of course, the cutoff frequency can also be fixed based on signal
energy.

In contrast to most signals in the time domain, the spectra of signals are almost
always two-sided. For real signals, the spectrum is conjugate symmetric, and,
usually, the positive frequency side is shown, as can be seen in Fig. 8.11b and c.
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For the example waveform, the record length T in the time domain is 4 s, and ωs ,
the sampling frequency of the spectrum, is π/2 radians.

Let the sampling interval of the reconstructed signal be Ts seconds. Then, the
record length of the reconstructed signal is NTs seconds, where N is the number of
samples. Let the number of samples N be 7 and the sampling interval Ts be 0.2 s.
Then, the record length T in the time domain is 1.4 s. Let the frequency increment
be 2.5π . Then, the four samples of the FT spectrum at

ω = {0, 7.8540, 15.7080, 23.5619}

are

{1, 0.0160 − j0.1253, 0.0040 − j0.0634, 0.0018 − j0.042}

Conjugating the last three spectral samples and concatenating in the reverse order,
we get

{1, 0.0160 − j0.1253, 0.0040 − j0.0634, 0.0018 − j0.042, 0.0018

+j0.042, 0.0040 + j0.0634, 0.0160 + j0.1253}

The IDFT of these values divided by Ts = 0.2 are

{0.7454, 0.9794, 0.7935, 0.7626, 0.6309, 0.6177, 0.4704}

shown in Fig. 9.10d. The actual samples of e−t at

t = {0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2}

are

{1, 0.8187, 0.6703, 0.5488, 0.4493, 0.3679, 0.3012}

The fully reconstructed waveform, with N = 400 and T = 4, is also shown in
Fig. 8.11d.

8.5 Applications of the Fourier Transform

8.5.1 Transfer Function and the System Response

The input-output relationship of a LTI system is given by the convolution operation
in the time domain. Since convolution corresponds to multiplication in the frequency
domain, we get
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y(t) =
∫ ∞

−∞
x(τ)h(t − τ)dτ ⇐⇒ Y (jω) = X(jω)H(jω),

where x(t), h(t), and y(t) are, respectively, the system input, impulse response,
and output and X(jω), H(jω), and Y (jω) are their respective transforms. As
input is transferred to output by multiplication with H(jω), H(jω) is called the
transfer function of the system. The transfer function, which is the transform of
the impulse response, characterizes a system in the frequency domain just as the
impulse response does in the time domain.

Since the impulse function, whose FT is one (a uniform spectrum), is composed
of complex exponentials, ejωt , of all frequencies with equal magnitude and zero
phase, the transform of the impulse response, the transfer function, is also called the
frequency response of the system. Therefore, an exponential Aej(ωat+θ) is changed
to (|H(jωa)|A)ej (ωat+(θ+� (H(jωa))) at the output. A real sinusoidal input signal
A cos(ωat + θ) is also changed at the output by the same amount of amplitude and
phase of the complex scale factor H(jωa). That is, A cos(ωat + θ) is changed to
(|H(jωa)|A) cos(ωat + (θ + � (H(jωa))). The steady-state response of a stable
system to the input Aej(ωat+θ)u(t) is also the same.

As H(jω) = Y (jω)
X(jω)

, the transfer function can also be described as the ratio
of the transform Y (jω) of the response y(t) to an arbitrary signal x(t) to that of
its transform X(jω), provided |X(jω)| �= 0 for all frequencies and the system is
initially relaxed.

As the transform of the derivative of a signal is its transform multiplied by
a factor, we can readily find the transfer function from the differential equation.
Consider the second-order differential equation of a stable and initially relaxed LTI
continuous system.

d2y(t)

dt2
+ a1

dy(t)

dt
+ a0y(t) = b2

d2x(t)

dt2
+ b1

dx(t)

dt
+ b0x(t)

Taking the FT of both sides, we get

(jω)2Y (jω) + a1(jω)Y (jω) + a0Y (jω) =
(jω)2b2X(jω) + b1(jω)X(jω) + b0X(jω)

The transfer function H(jω) is obtained as

H(jω) = Y (jω)

X(jω)
= (jω)2b2 + (jω)b1 + b0

(jω)2 + a1(jω) + a0

Example 8.11 Find the response, using the FT, of the system governed by the
differential equation
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dy(t)

dt
+ y(t) = x(t)

to the input x(t) = 2 cos(t + π
4 ).

Solution

H(jω) = 1

1 + jω

Substituting ω = 1, we get

H(j1) = 1

1 + j1
= 1√

2
�
(
−π

4

)

The response of the system to the input x(t) = 2 cos(t + π
4 ) is y(t) = 2√

2
cos(t +

π
4 − π

4 ) = √
2 cos(t).

Example 8.12 Find the impulse response, using the FT, of the system governed by
the differential equation

dy(t)

dt
+ 3y(t) = x(t)

Solution

H(jω) = 1

3 + jω

The impulse response of the system, which is the inverse FT of H(jω), is h(t) =
e−3t u(t).

Example 8.13 Find the zero-state response of the system governed by the differen-
tial equation

d2y(t)

dt2
+ 4

dy(t)

dt
+ 4y(t) = d2x(t)

dt2
+ dx(t)

dt
+ 2x(t)

with the input x(t) = u(t), the unit-step function.

Solution

H(jω) = (jω)2 + (jω) + 2

(jω)2 + 4(jω) + 4
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Fig. 8.12 The simulation model for step input

With X(jω) = πδ(ω) + 1
jω

,

Y (jω) = H(jω)X(jω) = (jω)2 + (jω) + 2

(jω)((jω)2 + 4(jω) + 4)
+πδ(ω)((jω)2 + (jω) + 2)

(jω)2 + 4(jω) + 4

Expanding into partial fractions, we get

Y (jω) = 0.5

jω
+ 0.5

jω + 2
− 2

(jω + 2)2
+ 0.5πδ(ω)

Taking the inverse FT, we get the zero-state response

y(t) = (0.5 + 0.5e−2t − 2te−2t )u(t)

The steady-state response is 0.5u(t), and the transient response due to the input is
(0.5e−2t − 2te−2t )u(t). The simulation model for step input is shown in Fig. 8.12.
Running this model will yield the same response as that obtained analytically.

Systems with nonzero initial conditions cannot be directly analyzed with FT.
Further, handling of the frequency variable jω is relatively more difficult. For these
reasons, the Laplace transform is preferable for system analysis. However, the FT,
wherever it is more suitable, is efficient, as it can be approximated by the DFT using
fast algorithms.
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Fig. 8.13 Frequency
response of an ideal lowpass
filter

8.5.2 Ideal Filters and Their Unrealizability

Filters are prominent examples of LTI systems for signal analysis, manipulation, and
processing. Common applications of filters include removing noise from signals and
selection of individual channels in radio or television receivers. We present, in this
subsection, the constraints involved in the realization of practical filters.

The frequency response of an ideal lowpass filter is shown in Fig. 8.13. As it is
even-symmetric, the specification of the response over the interval from ω = 0 to
ω = ∞, shown in thick lines, characterizes a filter.

H(jω) =
{
1 for 0 ≤ ω < ωc

0 for ω > ωc

From ω = 0 to ω = ωc, the filter passes frequency components of a signal with a
gain of 1 and rejects the other frequency components, since the output of the filter,
in the frequency domain, is given by Y (jω) = H(jω)X(jω). The magnitudes
of the frequency components of the signal, X(jω), with frequencies up to ωc are
multiplied by 1 and the rest by 0. The range of frequencies from 0 to ωc is called the
passband, and the range from ωc to ∞ is called the stopband. This ideal filter model
is practically unrealizable since its impulse response (inverse of H(jω)) extends
from t = −∞ to t = ∞, which requires a noncausal system. Practical filters
approximate this model.

The impulse response of practical systems must be causal. The even and odd
components, for t > 0, of a causal time function x(t) are given as

xe(t) = x(t) + x(−t)

2
= x(t)

2
and xo(t) = x(t) − x(−t)

2
= x(t)

2

That is, x(t) = 2xe(t) = 2x0(t), t > 0 and xe(t) = −x0(t), t < 0. As the FT of
an even signal is real and that of an odd signal is imaginary, x(t) can be obtained
by finding the inverse FT of either the real part or the imaginary part of its spectrum
X(jω). That is,

x(t) = 2

π

∫ ∞

0
Re(X(jω)) cos(ωt)dω = − 2

π

∫ ∞

0
Im(X(jω)) sin(ωt)dω, t > 0

The point is that the real and imaginary parts or, equivalently, the magnitude and the
phase of the FT of a causal signal are related. This implies that there are constraints,
for the realizability, on the magnitude of the frequency response, H(jω), of a
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practical filter. These constraints are given by the Paley-Wiener criterion as

∫ ∞

−∞
| loge |H(jω)||

1 + ω2 dω < ∞

To satisfy this criterion, the magnitude of the frequency response |H(jω)| can be
zero at discrete points but not over any continuous band of frequencies. If H(jω) is
zero over a band of frequencies, | loge |H(jω)|| = ∞, and the condition is violated.
On the other hand, if H(jω) is zero at a finite set of discrete frequencies, the
value of the integral may still be finite, although the integrand is infinite at these
frequencies. In addition, any transition of this function cannot vary more rapidly
than by exponential order. The H(jω) of the ideal filter shown in Fig. 8.11 does
not meet the Paley-Wiener criterion. Further, the order of the filter must be infinite
to have a constant gain all over the passband. Therefore, neither the flatness of
the bands nor the sharpness of the transition between the bands of ideal filters is
realizable by practical filters.

8.5.3 Modulation and Demodulation

Modulation and demodulation operations are fundamental to communication appli-
cations. These operations are required in signal communication because of different
frequency ranges required for the signals to be communicated and for efficient
transmission of signals. As the antenna size is inversely proportional to the fre-
quency of the signal, the lower the frequency of the signal, the larger is the required
antenna size. For example, an antenna of size about 30 km is required to transmit the
audio signal efficiently. Therefore, it is a necessity to embed the audio signal, called
the message signal, in a much higher-frequency signal, called the carrier signal,
which can be transmitted more efficiently. The operation of embedding the message
signal in a carrier signal is called modulation. The embedding involves the variation
of some property of the carrier signal in accordance with the message signal. At
the receiving end, the message signal has to be extracted from the modulated
carrier signal. This operation is called demodulation. There are different types of
these operations with distinct characteristics. We understand these operations using
the property of the FT that the multiplication of two signals in the time domain
corresponds to convolution in the frequency domain.

8.5.3.1 Double Sideband, Suppressed Carrier (DSB-SC), Amplitude
Modulation

In this type of modulation, the amplitudeA of the carrier signal,A cos(ωc(t)+θc), is
varied in some manner with the message signal,m(t), where ωc and θc are constants.
Let the FT ofm(t) beM(jω). Then, the FT of the product of the message and carrier
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Fig. 8.14 (a) m(t) = sin(2πt) and c(t) = cos(20πt); (b) m(t)c(t); (c) the magnitude of the FT
spectrum of m(t)c(t); (d) the magnitude of the FT spectrum of (m(t)c(t))c(t)

signals, with A = 1 and θc = 0, is given as

m(t) cos(ωc(t)) ⇐⇒ 1

2
(M(j (ω + ωc)) + M(j (ω − ωc)))

After modulation, a copy of the spectrum of the message signal is placed at ωc,
and another copy is placed at −ωc. Each copy of the spectrum of the message
signal has the upper sideband (USB) portion (the right half of the spectrum centered
at ωc and the left half of the spectrum centered at −ωc) and the lower sideband
(LSB) portion (the left half of the spectrum centered at ωc and the right half of
the spectrum centered at −ωc). As there are two sidebands and no carrier in the
spectrum, this form of modulation is called double sideband, suppressed carrier,
amplitude modulation. Note that the message signal can be recovered from either
sideband.

Let the message signal be m(t) = sin(2πt) and the carrier signal be c(t) =
cos(20πt), as shown in Fig. 8.14a. For illustration, we are using a sine wave of 1Hz
as the message signal and cosine wave of 10Hz as the carrier signal. However, it
should be noted that, in practice, the message signal will have a finite bandwidth
and the carrier frequency will be much higher. For example, the bandwidth of a
message signal could be 3 kHz with a carrier frequency 3000 kHz. The product
m(t)c(t) is shown in Fig. 8.14b. The envelopes of m(t)c(t) are m(t) and −m(t),
since m(t) cos(20πt) = m(t) when cos(20πt) = 1 and m(t) cos(20πt) = −m(t)

when cos(20πt) = −1. For this specific example, the FT X(jω) of m(t)c(t) is

jπ

2
(−δ(f + (10 + 1)) + δ(f + (−10 − 1))︸ ︷︷ ︸

USB

+ δ(f + (10 − 1)) − δ(f + (−10 + 1))︸ ︷︷ ︸
LSB

)
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Therefore, the magnitude of the FT spectrum of m(t)c(t), shown in Fig. 8.14c, has
impulses with strength π

2 at −11Hz, −9Hz, 9Hz, and 11Hz.

Demodulation
To demodulate the modulated signal, m(t) cos(ωc(t)), at the receiver, we simply
multiply the signal by the carrier, cos(ωc(t)). This results in

m(t) cos2(ωc(t)) = 1

2
(m(t) + m(t) cos(2ωc(t))

The FT of this signal is

1

2
M(jω) + 1

4
(M(j (ω + 2ωc)) + M(j (ω − 2ωc)))

The spectrum of the message signal is centered at ω = 0 and can be recovered by
lowpass filtering. The other two spectra are the transform of m(t) modulated by a
carrier with frequency 2ωc. For the specific example, the magnitude of the spectrum
of (m(t)c(t))c(t) is shown in Fig. 8.14d.

To use this type of demodulation, we have to generate the carrier signal with
the same frequency and phase. This requires a complex receiver. While this form
is used in certain applications, for commercial radio broadcasting, another type of
modulation and demodulation, described next, is most commonly used.

8.5.3.2 Double Sideband, with Carrier (DSB-WC), Amplitude Modulation

In this type of modulation, the amplitude of the carrier signal, cos(ωc(t)), is varied in
some manner with the modulating signal, (1+km(t)), where ωc and k are constants.
Let the FT ofm(t) beM(jω). Then, the FT of the product of the message and carrier
signal is given as

(1 + km(t)) cos(ωct) ⇐⇒
k

2
(M(j (ω + ωc)) + M(j (ω − ωc))) + π(δ(ω + ωc) + δ(ω − ωc))

After modulation, a copy of the spectrum of the message signal is placed at ωc,
and another copy is placed at −ωc. As there are two sidebands and the carrier in
the spectrum of the transmitted signal, this form of modulation is called double
sideband, with carrier, amplitude modulation. This form of modulation is intended
for simple receivers without the need for generating the carrier signal. For example,
let the signals m(t) and c(t) be the same as shown in Fig. 8.14a. Figure 8.15a and
b shows, respectively, (1 + 0.8m(t))c(t) and the magnitude of the FT spectrum of
(1 + 0.8m(t))c(t). The signal can be demodulated by a simple envelope detector
circuit or a rectifier followed by a lowpass filter, if the message signal rides on the
carrier signal. That is, (1 + km(t)) ≥ 0 for all values of t .
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Fig. 8.15 (a) (1 + 0.8m(t))c(t); (b) the magnitude of the FT spectrum of (1 + 0.8m(t))c(t)

The basis of modulation in the two cases studied is frequency shifting. One
advantage of this type of modulation is the transmission of several signals over the
same channel using the frequency-division multiplexing method. The signals share
portions of the bandwidth of the channel with adequate separation between them.

8.5.3.3 Pulse Amplitude Modulation (PAM)

In the modulation types so far presented, the carrier is a sinusoid. The use of a pulse
train as the carrier and modulating its amplitude in accordance with the message
signal is called the pulse amplitude modulation (PAM). The pulse train consists
of constant width and amplitude pulses with uniform spacing between them. The
message signal modulates the amplitude of the pulses. This is essentially the same
as that of sampling of continuous signals using an impulse train, presented earlier.
The difference is that the sampling pulse, unlike the impulse, has a finite width.
The FS spectrum of this signal is sin(a kωs)

kπ
, where a is half the width of the pulse,

ωs = 2π
Ts
, and Ts is the sampling interval. Proceeding as in the case of the impulse

sampling, we get the FT of the modulated signal as

Xs(jω) =
(

· · · + sin(aωs)

π
X(j (ω + ωs)) + 2a

Ts

X(jω) + · · ·
)

The spectrum, centered at ω = 0, is unaltered except for a scale factor compared
with that of the signal. Therefore, we can recover the original spectrum using
a lowpass filter. Using this type of modulation, several message signals can be
transmitted over the same channel by the method called time-division multiplexing.
The time between two pulses of a modulated signal can be used by other modulated
signals.

8.6 Summary

• In this chapter, we studied the FT, its properties, its approximation by the DFT,
and some of its applications.
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• The FT is primarily intended to analyze continuous aperiodic signals in terms of
a continuum of complex exponentials over an infinite frequency range.

• The FT spectrum is a relative amplitude spectrum.
• The FT can also be considered as the limiting case of the FS with the period of the

waveform tending to infinity. The FT can also be considered as the limiting case
of the DTFT with the sampling interval of the time-domain sequence tending to
zero.

• The FT is the most general type of Fourier analysis, and, hence, it can be used to
analyze a mixed class of signals.

• The FT can be approximated by the DFT to a desired accuracy with proper choice
of the record length and the number of samples.

• The FT has wide applications in signal and system analysis.

Exercises

8.1 Starting from the defining equations of the exponential form of the FS and the
inverse FS, derive the defining equations of the FT and the inverse FT as the period
of the time-domain waveform tends to infinity.

8.2 Derive an expression, using the defining integral, for the FT of the signal x(t) =
e−at cos(ω0t)u(t), a > 0. With a = 0.4 and ω0 = 3, compute X(j0).

8.3 Derive an expression, using the defining integral, for the FT of the signal x(t) =
e−at sin(ω0t)u(t), a > 0. With a = 0.1 and ω0 = 2, compute X(j0).

8.4 Derive an expression, using the defining integral, for the FT of the signal

x(t) =
{
1 − |t | for |t | < 1
0 elsewhere

Compute X(j0) and X(j (2π)).

8.5 Derive an expression, using the defining integral, for the FT of the signal x(t) =
e−3|t |. Compute X(j0).

8.6 Derive an expression, using the defining integral, for the FT of the signal

x(t) =
{
cos(10t) for |t | < 1
0 for |t | > 1

Compute X(j0).
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* 8.7 Derive an expression, using the defining integral, for the FT of the signal
x(t) = te−2t u(t). Compute X(j0).

8.8 Apply a limiting process so that x(t) degenerates into the impulse function,
and, hence, derive the FT of the impulse function δ(t).

8.8.1 x(t) = ae−atu(t), a > 0, as a → ∞.

8.8.2 x(t) =
{ 1

2a for |t | < a

0 for |t | > a
, a > 0, as a → 0.

8.8.3 x(t) =
{ 1

a
for 0 < t < a

0 elsewhere
, a > 0, as a → 0.

8.8.4 x(t) =
{ 1

a
for − a < t < 0

0 elsewhere
, a > 0, as a → 0.

8.8.5 x(t) =
{

1
a2

(a − |t |) for |t | < a

0 for |t | > a
, a > 0, as a → 0.

8.8.6 x(t) =
{

1
2a2

(2a + t) for − 2a < t < 0

0 elsewhere
, a > 0, as a → 0.

8.9 Apply a limiting process so that x(t) degenerates into the DC function, and,
hence, derive the FT of the DC function, x(t) = 1.

x(t) =
{
1 for |t | < a

0 for |t | > a
, a > 0, as a → ∞.

8.10 Derive the FT of the function y(t) =
{−1 for t < 0

1 for t > 0
by applying a limiting

process to the signal x(t) = e−atu(t) − eatu(−t), as a → 0.

8.11 Apply a limiting process so that x(t) degenerates into the cosine function, and,
hence, derive the FT of the cosine function, cos(t).

x(t) =
{
cos(t) for |t | < a

0 for |t | > a
, a > 0, as a → ∞

8.12 Apply a limiting process so that e−a|t | sin(t), a > 0 degenerates into sin(t),
as a → 0, and, hence, derive the FT of sin(t).

8.13 Derive the FT of the unit-step function u(t) using the FT of the functions

x(t) =
{

1 for t > 0
−1 for t < 0

and y(t) = 1

8.14 Using the duality property, find the FT of the signal x(t).
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8.14.1 x(t) = 1
2+j t

.

* 8.14.2 x(t) = 2 sin(3t)
t

.
8.14.3 x(t) = πδ(t) + 1

j t
.

8.15 Using the linearity and frequency-shifting properties, find the FT of x(t).

8.15.1 x(t) = cos(ω0t)u(t).
8.15.2 x(t) = sin(ω0t)u(t).

* 8.15.3 x(t) =
{
cos(ω0t) for |t | < a

0 for |t | > a
, a > 0.

8.15.4 x(t) =
{
sin(ω0t) for |t | < a

0 for |t | > a
, a > 0.

* 8.16 Derive the inverse FT of the function

X(jω) = 1

ω2

(
e−j4ω − 1

)

using the time-domain convolution property.

8.17 Using the time-domain convolution property, find the FT of the convolution
of x(t) and h(t).

8.17.1 x(t) =
{−2 for 0 < t < 4

0 for t < 0 and t > 4
and h(t) =

{
3 for 0 < t < 5
0 for t < 0 and t > 5

8.17.2 x(t) = e−2t u(t) and h(t) = e−3t u(t).

8.17.3 x(t) = e−t u(t) and h(t) =
{
1 for 0 < t < 1
0 for t < 0 and t > 1

8.17.4 x(t) =
{

(1 − |t |) for |t | < 1
0 otherwise

and h(t) =
{
1 for 0 < t < 1
0 for t < 0 and t > 1

8.17.5 x(t) = e−atu(t), a > 0 and h(t) = x(t).

8.18 Using the frequency-domain convolution property, find the FT of the product
of x(t) and h(t).

8.18.1 x(t) = cos(ω0t) and h(t) = u(t).
* 8.18.2 x(t) = sin(ω0t) and h(t) = u(t).

8.18.3 x(t) = cos(ω0t) and h(t) =
{
1 for |t | < a

0 for |t | > a
, a > 0.

8.18.4 x(t) = sin(ω0t) and h(t) =
{
1 for |t | < a

0 for |t | > a
, a > 0.
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8.19 Derive the FT of the function x(t) = e−a|t |, a > 0 using the linearity and
time-reversal properties.

8.20 Using the time-scaling property, find the FT of the signal x(at).

8.20.1 x(t) = cos(t) and a = −2.
8.20.2 x(t) = e−2t u(t) and a = 2.
8.20.3 x(t) = e−2t u(t) and a = 1

2 .
8.20.4 x(t) = e−2t u(t) and a = − 1

2 .

8.20.5 x(t) =
{
1 for |t | < 2
0 for |t | > 2

and a = 2.

8.20.6 x(t) =
{
1 for |t | < 2
0 for |t | > 2

and a = −2.

8.20.7 x(t) =
{
1 for |t | < 2
0 for |t | > 2

and a = 1
2 .

8.20.8 x(t) = u(t) and a = 3.
* 8.20.9 x(t) = u(t) and a = −2.
8.20.10 x(t) = u(t − 4) and a = 2.

8.21 Using the time-differentiation property, find the FT of the derivative of the
signal x(t) = sin(4t).

8.22 Using the time-differentiation property, find the FT of the signal x(t).

8.22.1 x(t) =
{

(1 − t) for 0 < t < 1
0 for t < 0 and t ≥ 1

8.22.2 x(t) =
{

t for 0 < t < 1
0 for t ≤ 0 and t > 1

8.22.3 x(t) =
⎧⎨
⎩

1 for − 1 < t < 0
−1 for 0 < t < 1
0 for t < −1 and t > 1

* 8.22.4 x(t) =

⎧⎪⎪⎨
⎪⎪⎩

t for 0 ≤ t < 1
1 for 1 ≤ t < 2

(3 − t) for 2 ≤ t < 3
0 for t < 0 and t > 3

8.22.5 x(t) = e−2|t |.

8.23 Using the time-integration property, find the FT of y(t), where

y(t) =
∫ t

−∞
x(τ)dτ
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8.23.1 x(t) = δ(t − 3).

8.23.2 x(t) =
⎧⎨
⎩

2 for − 1 < t < 0
−2 for 0 < t < 1
0 for t < −1 and t > 1

8.23.3 x(t) = cos(3t).

8.23.4 x(t) =
{
sin(t) for 0 ≤ t < π

2
0 for t < 0 and t > π

2

8.23.5 x(t) =
{
cos(t) for 0 < t < π

0 for t < 0 and t > π

* 8.23.6 x(t) = e−t u(t).
8.23.7 x(t) = u(t).

8.24 Using the frequency-differentiation property, find the FT of the signal x(t).

8.24.1 x(t) = t2e−t u(t).
8.24.2 x(t) = tu(t).
8.24.3 x(t) = te−2|t |.

* 8.24.4 x(t) =
{

t for 0 < t < 1
0 for t < 0 and t > 1

8.24.5 x(t) =
{

t for − 1 < t < 1
0 for t < −1 and t > 1

8.24.6 x(t) =
{

t sin(t) for 0 < t < π

0 for t < 0 and t > π

8.25 Using the linearity, time-shifting, frequency-differentiation properties and the
FT of u(t), find the FT of the signal

x(t) =
⎧⎨
⎩
0 for t < 0
t for 0 ≤ t ≤ 3
3 for t > 3

8.26 Find the energy of the signal x(t) = e−2t u(t). Find the value of T such that
90% of the signal energy lies in the range 0 ≤ t ≤ T . What is the corresponding
signal bandwidth?

8.27 Derive Parseval’s theorem for aperiodic signals from that for the Fourier series
of periodic signals, as the period tends to infinity.

8.28 Using the complex FS coefficients of the periodic signal x(t), find its FT.

8.28.1 x(t) = ∑∞
n=−∞ δ(t − nT ).

8.28.2 x(t) = 2 + 3 cos(2t) + 4 sin(4t) − 5e−j6t + 6ej10t .
* 8.28.3 x(t) = −1 − 3 sin(3t) + 2 cos(5t) + 6e−j7t .
8.28.4 x(t) = 3 − 2 cos(10t) + 3 sin(15t) − ej25t .
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8.29 Using the FT, find the complex FS coefficients of the periodic signal x(t).

8.29.1 x(t) = 5e−j (t+ π
3 ).

8.29.2 x(t) = 2 cos(2t − π
4 ).

8.29.3 x(t) = 3 sin(3t − π
6 ).

* 8.29.4 x(t) = ∑∞
n=−∞(t)(u(t) − u(t − 2)).

8.30 Find the inverse FT, x(t), of X(jω). Find the sampled signal xs(t) and its
transform Xs(jω) for the sampling interval Ts = 0.25, 0.5, 1, 2, and 3 s.

8.30.1

X(jω) =
{
cos(ω) for |ω| < π

0 elsewhere

8.30.2

X(jω) =
{
sin(2ω) for |ω| < π

0 elsewhere

8.31 Find the FT of x(t) and its sampled versions with the sampling interval Ts =
0.01, 0.1, 1, and 10 s. What are the spectral values of x(t) and its sampled versions
at ω = 0?

8.31.1 x(t) = e−t u(t).
* 8.31.2 x(t) = e−|t |.

8.32 Find the FT of x(t) and its sampled versions with the sampling interval Ts =
0.1, 0.5, 1, and 2 s.

8.32.1 x(t) = 2 cos( 2π32 t) + sin(32π
32 t).

8.32.2 x(t) = 4 sin( 2π24 t) + cos(52π
24 t).

* 8.33 Approximate the samples of the FT of the signal

x(t) =
{
1 − |t | for |t | < 1
0 elsewhere

using the DFT with N = 4 samples. Assume that the signal is periodically extended
with period T = 2 s. Compare the first two samples of the FT obtained using the
DFT with that of the exact values.
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8.34 Approximate the samples of the FT of the signal

x(t) =
{
1 for |t | < 2
0 for |t | > 2

using the DFT with N = 4 samples. Assume that the signal is periodically extended
with period T = 8 s. Compare the first two samples of the FT obtained using the
DFT with that of the exact values.

8.35 Find the response y(t), using the FT, of the system governed by the differential
equation

dy(t)

dt
+ y(t) = ejt

Verify your solution by substituting it into the differential equation.

8.36 Using the FT, find the zero-state response y(t) of the system governed by the
differential equation

2
dy(t)

dt
+ 3y(t) = δ(t)

Verify your solution by substituting it into the differential equation.

8.37 Using the FT, find the zero-state response y(t) of the system governed by the
differential equation

dy(t)

dt
+ 2y(t) = u(t)

Verify your solution by substituting it into the differential equation.

8.38 Using the FT, find the zero-state response y(t) of the system governed by the
differential equation

3
dy(t)

dt
+ 2y(t) = 4e−2t u(t)

Verify your solution by substituting it into the differential equation.



Chapter 9
The z-Transform

In the Fourier analysis, we decompose a signal in terms of its constituent constant
amplitude sinusoids. Systems are modeled in terms of their responses to sinusoids.
This representation provides an insight into the signal and system characteristics
and makes the evaluation of important operations, such as convolution, easier.
The general constraint on the signal to be analyzed is that it is absolutely or
square integrable/summable. Even with this constraint, the use of Fourier analysis is
extensive in signal and system analysis. However, we still need the generalization of
the Fourier analysis so that a larger class of signals and systems could be analyzed
in the frequency domain, retaining all the advantages of the frequency-domain
methods. The generalization of the Fourier analysis for discrete signals, called the
z-transform, is described in this chapter.

The differences between the z-transform and the Fourier analysis are presented in
Sect. 9.1. In Sect. 9.2, the z-transform is derived starting from the DTFT definition.
In Sect. 9.3, the properties of the z-transform are described. In Sect. 9.4, the inverse
z-transform is derived, and two frequently used methods to find the inverse z-
transform are presented. Typical applications of the z-transform are described in
Sect. 9.5.

9.1 Fourier Analysis and the z-Transform

In Fourier analysis, we analyze a waveform in terms of constant amplitude sinusoids
A cos(ωn + θ) (shown in Fig. 1.4). The Fourier analysis is generalized by making
the basis signals a larger set of sinusoids, by including sinusoids with exponentially
varying amplitudes Arn cos(ωn + θ) (shown in Fig. 1.7). This extension enables
us to analyze a larger set of signals and systems than that is possible with the
Fourier analysis. The sinusoids, whether they have constant amplitude or varying
amplitude, have the key advantages to be the basis signals in terms of ease of signal
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decomposition and efficient signal and system analysis. In Fourier analysis, we use
fast algorithms to obtain the frequency-domain representation of signals. In the case
of the transforms that use sinusoids with exponentially varying amplitudes, it is
found that a short table of transform pairs is adequate for most practical purposes.

In the Fourier representation, the spectrum of a one-dimensional signal is also
one-dimensional, the spectral coordinates being the frequency ω and the complex
amplitude of the complex sinusoids. In the case of the generalized transforms, the
rate of change of the amplitude of the exponentially varying amplitude sinusoids
is also a parameter. This makes the spectrum of a one-dimensional signal two-
dimensional, a surface. The spectrum provides infinite spectral representations of
the signal, that is, the spectral values along any appropriate closed contour of the
two-dimensional spectrum could be used to reconstruct the signal. Therefore, a
signal may be reconstructed using constant amplitude sinusoids or exponentially
decaying sinusoids or exponentially growing sinusoids or an infinite combination of
these types of sinusoids.

The advantages of the z-transform include the pictorial description of the
behavior of the system obtained by the use of the complex frequency; the ability to
analyze unstable systems or systems with exponentially growing inputs; automatic
inclusion of the initial conditions of the system in finding the output; and easier
manipulation of the expressions involving the variable z than those with ejω.

9.2 The z-Transform

We assume, in this chapter, that all signals are causal, that is, x(n) = 0, n < 0,
unless otherwise specified. This leads to the one-sided or unilateral version of the z-
transform, which is mostly used for practical system analysis. If a signal x(n)u(n) is
not Fourier transformable, then its exponentially weighted version, (x(n)r−n), may
be Fourier transformable for the positive real quantity r > 1. If x(n)u(n) is Fourier
transformable, (x(n)r−n) may still be transformable for some values of r < 1. The
DTFT of this signal is

∞∑
n=0

(x(n)r−n)e−jωn

By combining the exponential factors, we get

X(rejω) =
∞∑

n=0

x(n)(rejω)−n

This equation can be interpreted as the generalized Fourier analysis of the signal
x(n) using exponentials with complex exponents or sinusoids with varying ampli-
tudes as the basis signals. By substituting z = rejω, we get the defining equation of
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the one-sided or unilateral z-transform of x(n) as

X(z) =
∞∑

n=0

x(n)z−n (9.1)

Expanding the summation, we get

X(z) = x(0) + x(1)z−1 + x(2)z−2 + x(3)z−3 + · · ·

where z is a complex variable. Therefore, the basis functions used in the z-transform
are of the form zn = e(σ+jω)n = rnejωn = rn(cos(ωn) + j sin(ωn)) = (a + jb)n.
While X(ejω) is the DTFT of x(n), X(z) = X(rejω) is the DTFT of x(n)r−n for
all values of r for which

∑∞
n=0 |x(n)r−n| < ∞. If the value one is included in these

values of r , then X(ejω) can be obtained from X(z) by the substitution z = ejω.
The z-transform of a signal x(n), X(z), exists for |z| > r0 if |x(n)| ≤ rn

0 for some

constant r0. For example, x(n) = an2 does not have a z-transform. In essence,
the z-transform of a signal, whether it is converging or not, is the DTFT of all its
versions, obtained by multiplying it with a real exponential of the form r−n, so that
the modified signal is guaranteed to converge.

The z-transform, X(z), represents a sequence only for the set of values of z

for which it converges, that is, the magnitude of X(z) is finite. The region that
comprises this set of values in the z-plane (a complex plane used for displaying
the z-transform) is called the region of convergence (ROC). For a given positive
number c, the equation |z| = |a + jb| = c or a2 + b2 = c2 describes a circle in the
z-plane with center at the origin and radius c. Consequently, the condition |z| > c

for ROC specifies the region outside this circle. If the ROC of the z-transform of
a sequence includes the unit circle, then its DTFT can be obtained from X(z) by
replacing z with ejω.

Example 9.1 Find the z-transform of the unit-impulse signal, δ(n).

Solution Using the definition, we get

X(z) = 1, for all z and δ(n) ⇐⇒ 1, for all z

The transform pair for a delayed impulse δ(n − m) is

δ(n − m) ⇐⇒ z−m, |z| > 0,

where m is positive.

Example 9.2 Find the z-transform of the finite sequence with its only nonzero
samples specified as {x(0) = 5, x(2) = 4, x(5) = −2}.
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Solution Using the definition, we get

X(z) = 5 + 4z−2 − 2z−5 = 5z5 + 4z3 − 2

z5
, |z| > 0

The geometric sequence, anu(n), is fundamental to the study of linear discrete
systems, as the natural response of systems is in that form.

Example 9.3 Find the z-transform of the geometric sequence, anu(n).

Solution Substituting x(n) = an in the defining equation of the z-transform, we get

X(z) =
∞∑

n=0

(a−1z)−n = 1 + (a−1z)−1 + (a−1z)−2 + (a−1z)−3 + · · ·

= 1

1 − (a−1z)−1 = z

z − a
, |z| > |a|

It is known that the geometric series 1 + r + r2 + · · · converges to 1
1−r

, if |r| < 1.
If |z| > |a|, the common ratio of the series r = a

z
has magnitude that is less than

one. Therefore, the ROC of the z-transform is given as |z| > |a|, and we get the
transform pair

anu(n) ⇐⇒ z

z − a
, |z| > |a|

Note that the DTFT of anu(n) does not exist for a > 1, whereas the z-transform
exists for all values of a as long as |z| > |a|. The z-transform spectrum of a sequence
is usually displayed by the locations of zeros and poles of the z-transform and its
magnitude. The pole-zero plot and the magnitude of the z-transform z

z−0.8 of the
signal anu(n) with a = 0.8 are shown, respectively, in Fig. 9.1a and b. When z =
0.8, |X(z)| = ∞. This point marked by the symbol × in Fig. 9.1a is called a pole
of X(z) (the peak in Fig. 9.1b). When z = 0, X(z) = 0. This point marked by the
symbol o in Fig. 9.1a is called a zero of X(z) (the valley in Fig. 9.1b). The pole-zero
plot specifies a transform X(z), except for a constant factor. In the region outside the
circle with radius 0.8, X(z) exists and is a valid frequency-domain representation of
the signal. In general, the ROC of a z-transform is the region in the z-plane that is
exterior to the smallest circle, centered at the origin, enclosing all its poles.

Example 9.4 Find the z-transform of the signal ejωnu(n). Deduce the z-transform
of sin(ωn)u(n).

Solution Using the transform of anu(n) with a = ejω, we get

ejωnu(n) ⇐⇒ z

z − ejω
, |z| > 1
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Fig. 9.1 (a) The pole-zero plot of the z-transform z
z−0.8 of (0.8)nu(n); (b) the magnitude of the

z-transform

Fig. 9.2 (a) The pole-zero plot of the z-transform
z sin( π

4 )

(z−e
j π
4 )(z−e

−j π
4 )

of sin( π
4 n)u(n); (b) the

magnitude of the z-transform

Since the magnitude of a = ejω is 1, the convergence condition is |z| > 1. Using
the fact that j2 sin(ωn) = (ejωn − e−jωn), we get

j2X(z) = z

z − ejω
− z

z − e−jω
, |z| > 1

sin(ωn)u(n) ⇐⇒ z sin(ω)

(z − ejω)(z − e−jω)
= z sin(ω)

z2 − 2z cos(ω) + 1
, |z| > 1

Figure 9.2a shows the pole-zero plot, and Fig. 9.2b shows the magnitude of the z-

transform
z sin( π

4 )

z2−2z cos( π
4 )+1

of the signal sin(π
4 n)u(n). There are a zero at z = 0 and

poles at z = ej π
4 and z = e−j π

4 , a pair of complex conjugate poles.

Example 9.5 Find the z-transform of the signal defined as
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x(n) =
⎧⎨
⎩

(0.2)n for 0 ≤ n ≤ 5
(0.2)n + (−0.6)n for 6 ≤ n ≤ 8
(−0.6)n for 9 ≤ n < ∞

Solution From the definition of the z-transform, we get

X(z) =
8∑

n=0

(0.2)nz−n +
∞∑

n=0

(−0.6)nz−n −
5∑

n=0

(−0.6)nz−n

X(z) = z9 − (0.2)9

z8(z − 0.2)
+ z

z + 0.6
− z6 − (−0.6)6

z5(z + 0.6)
, |z| > 0.6

9.3 Properties of the z-Transform

Properties present the frequency-domain effect of time-domain characteristics and
operations on signals and vice versa. In addition, they are used to find new transform
pairs more easily.

9.3.1 Linearity

It is often advantageous to decompose a complex sequence into a linear combination
of simpler sequences (as in Example 9.4) in the manipulation of sequences and their
transforms. If x(n) ⇐⇒ X(z) and y(n) ⇐⇒ Y (z), then

ax(n) + by(n) ⇐⇒ aX(z) + bY (z),

where a and b are arbitrary constants. The z-transform of a linear combination
of sequences is the same linear combination of the z-transforms of the individual
sequences. This property is due to the linearity of the defining summation operation
of the transform.

9.3.2 Left Shift of a Sequence

The shift property is used to express the transform of the shifted version, x(n +
m)u(n), of a sequence x(n) in terms of its transform X(z). If x(n)u(n) ⇐⇒ X(z)

and m is a positive integer, then
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Fig. 9.3 (a) x(n); (b) p(n) = x(n + 1); (c) q(n) = x(n − 1)

x(n + m)u(n) ⇐⇒ zmX(z) − zm
m−1∑
n=0

x(n)z−n

Let the z-transform of the sequence x(n + m)u(n) be Y (z). Then,

z−mY(z) = x(m)z−m + x(m + 1)z−m−1 + · · ·

By adding m terms,
∑m−1

n=0 x(n)z−n, to both sides of the equation, we get

z−mY(z) + x(m − 1)z−m+1 + x(m − 2)z−m+2 + · · · + x(0) = X(z)

Y (z) = zmX(z) − zm
m−1∑
n=0

x(n)z−n

For example,

x(n+ 1)u(n) ⇐⇒ zX(z)− zx(0) and x(n+ 2)u(n) ⇐⇒ z2X(z)− z2x(0)− zx(1)

Consider the sequence x(n) with x(−2) = 1, x(−1) = 2, x(0) = −1, x(1) =
1, x(2) = −2, x(3) = 2, and x(n) = 0 otherwise, shown in Fig. 9.3a. The transform
of x(n) is X(z) = −1+z−1−2z−2+2z−3. The sequence p(n), shown in Fig. 9.3b,
is the left-shifted sequence x(n+ 1). The transform of p(n)u(n) = x(n+ 1)u(n) is

P(z) = 1 − 2z−1 + 2z−2 = zX(z) − zx(0) = z(−1 + z−1 − 2z−2 + 2z−3) + z

9.3.3 Right Shift of a Sequence

If x(n)u(n) ⇐⇒ X(z) and m is a positive integer, then
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x(n − m)u(n) ⇐⇒ z−mX(z) + z−m
m∑

n=1

x(−n)zn

For example,

x(n − 1)u(n) ⇐⇒ z−1X(z) + x(−1)

x(n − 2)u(n) ⇐⇒ z−2X(z) + z−1x(−1) + x(−2)

The sequence q(n), shown in Fig. 9.3c, is the right-shifted sequence x(n − 1). The
transform of q(n)u(n) = x(n − 1)u(n) is

Q(z) = 2 − z−1 + z−2 − 2z−3 + 2z−4

= 2 + z−1(−1 + z−1 − 2z−2 + 2z−3) = x(−1) + z−1X(z)

In finding the response y(n) of a system for n ≥ 0, the initial conditions, such
as y(−1) and y(−2), must be taken into account. The shift properties provide the
way for the automatic inclusion of the initial conditions. The left shift property
is more convenient for solving difference equations in advance operator form.
Consider solving the difference equation y(n) = x(n) + 1

2y(n − 1) with the initial

condition y(−1) = 3 and x(n) = 0. The solution is y(n) = 3
2

(
1
2

)n

u(n), using

time-domain method. Taking the z-transform of the difference equation, we get

Y (z) = X(z) + 1
2 (z

−1Y (z) + 3). Solving for Y (z), Y (z) = 3
2 z

z− 1
2
. The inverse

transform of Y (z) is y(n) = 3
2

(
1
2

)n

u(n), which is the same as that obtained earlier.

9.3.4 Convolution

If x(n)u(n) ⇐⇒ X(z) and h(n)u(n) ⇐⇒ H(z), then

y(n) =
∞∑

m=0

h(m)x(n − m) ⇐⇒ Y (z) = H(z)X(z)

The DTFT of x(n)r−n is the z-transform X(z) of x(n). The convolution of x(n)r−n

and h(n)r−n corresponds to X(z)H(z) in the frequency domain. The inverse DTFT
of X(z)H(z), therefore, is the convolution of x(n)r−n and h(n)r−n given by

∞∑
m=0

x(m)r−mh(n − m)r(−n+m) = r−n
∞∑

m=0

x(m)h(n − m) = r−n(x(n) ∗ h(n))
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As finding the inverse z-transform is the same as finding the inverse DTFT in
addition to multiplying the signal by rn, as will be seen later, we get the convolution
of x(n) and h(n) by finding the inverse z-transform of X(z)H(z).

Consider the two sequences and their transforms x(n) = ( 12 )
nu(n) ⇐⇒ X(z) =

z

z− 1
2
and h(n) = ( 13 )

nu(n) ⇐⇒ H(z) = z

z− 1
3
. The convolution of the sequences, in

the transform domain, is given by the product of their transforms,

X(z)H(z) = z

z − 1
2

z

z − 1
3

= 3z

z − 1
2

− 2z

z − 1
3

The inverse transform of X(z)H(z) is the convolution of the sequences in the time

domain, and it is
(
3( 12 )

n − 2( 13 )
n
)

u(n).

9.3.5 Multiplication by n

If x(n)u(n) ⇐⇒ X(z), then

nx(n)u(n) ⇐⇒ −z
d

dz
X(z)

Differentiating the defining expression for X(z) with respect to z and multiplying it
by −z, we get

−z
d

dz
X(z) = −z

d

dz

∞∑
n=0

x(n)z−n =
∞∑

n=0

nx(n)z−n =
∞∑

n=0

(nx(n))z−n

For example,

δ(n) ⇐⇒ 1 and nδ(n) = 0 ⇐⇒ 0

u(n) ⇐⇒ z

z − 1
and nu(n) ⇐⇒ z

(z − 1)2

9.3.6 Multiplication by an

If x(n)u(n) ⇐⇒ X(z), then

anx(n)u(n) ⇐⇒ X
( z

a

)
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From the z-transform definition, we get

X(z) =
∞∑

n=0

anx(n)z−n =
∞∑

n=0

x(n)
( z

a

)−n = X
( z

a

)

Multiplication of x(n) by an corresponds to scaling the frequency variable z. For
example,

u(n) ⇐⇒ z

z − 1
and (2)nu(n) ⇐⇒

z
2

( z
2 − 1)

= z

z − 2

The pole at z = 1 in the transform of u(n) is shifted to the point z = 2 in the
transform of (2)nu(n).

With a = −1 and x(n)u(n) ⇐⇒ X(z), (−1)nx(n)u(n) ⇐⇒ X(−z). For
example, u(n) ⇐⇒ z

z−1 and (−1)nu(n) ⇐⇒ −z
−z−1 = z

z+1 .

9.3.7 Summation

If x(n)u(n) ⇐⇒ X(z), then y(n) = ∑n
m=0 x(m) ⇐⇒ Y (z) = z

z−1X(z). The
product z

z−1X(z) corresponds to the convolution of x(n) and u(n) in the time
domain, which, of course, is equivalent to the sum of the first n + 1 values of x(n).

For example, x(n) = (−1)nu(n) ⇐⇒ z
z+1 . Then, Y (z) = z

z−1
z

z+1 =
1
2

(
z

z−1 + z
z+1

)
. Taking the inverse z-transform, we get y(n) = 1

2 (1 + (−1)n).

9.3.8 Initial Value

Using this property, the initial value of x(n), x(0), can be determined directly from
X(z). If x(n)u(n) ⇐⇒ X(z), then

x(0) = lim
z→∞ X(z) and x(1) = lim

z→∞(z(X(z) − x(0)))

From the definition of the transform, we get

lim
z→∞ X(z) = lim

z→∞(x(0) + x(1)z−1 + x(2)z−2 + x(3)z−3 + · · · ) = x(0)

As z → ∞, each term, except x(0), tends to zero. Let X(z) = (z2−2z+5)
(z2+3z−2)

. Then,
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x(0) = lim
z→∞

(z2 − 2z + 5)

(z2 + 3z − 2)
= 1

Note that, when z → ∞, only the terms of the highest power are significant.

9.3.9 Final Value

Using this property, the final value of x(n), x(∞), can be determined directly from
X(z). If x(n)u(n) ⇐⇒ X(z), then

lim
n→∞ x(n) = lim

z→1
((z − 1)X(z))

provided the ROC of (z − 1)X(z) includes the unit circle (otherwise, x(n) has no

limit as n → ∞). LetX(z) = (z2−2z+5)
(z2+3z−2)

. The property does not apply since the ROC

of (z − 1)X(z) does not include the unit circle. Let X(z) = (z2−2z+5)
(z2−1.5z+0.5)

. Then,

lim
n→∞ x(n) = lim

z→1
(z − 1)

(z2 − 2z + 5)

(z2 − 1.5z + 0.5)
= lim

z→1

(z2 − 2z + 5)

(z − 0.5)
= 8

The value limn→∞ x(n), if it is nonzero, is solely due to the scaled unit-step
component of x(n). Multiplying X(z) by (z − 1) and setting z = 1 is just finding
the partial fraction coefficient of the unit-step component of x(n).

9.3.10 Transform of Semiperiodic Functions

Consider the function x(n)u(n) that is periodic of period N for n ≥ 0, that is,
x(n + N) = x(n), n ≥ 0. Let x1(n) = x(n)u(n) − x(n − N)u(n − N) ⇐⇒ X1(z).
x1(n) is equal to x(n)u(n) over its first period and is zero elsewhere. Then,

x(n)u(n) = x1(n) + x1(n − N) + x1(n − 2N) + · · ·

Using the right shift property, the transform of x(n)u(n) is

X(z) = X1(z)(1 + z−N + z−2N + · · · ) = X1(z)

1 − z−N
= X1(z)

(
zN

zN − 1

)

Let us find the transform of x(n) = (−1)nu(n) with period N = 2. X1(z) =
1 − z−1 = z−1

z
. From the property,
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X(z) = z2

(z2 − 1)

(z − 1)

z
= z

(z + 1)

9.4 The Inverse z-Transform

Consider the transform pair x(n)u(n) ⇐⇒ z
z−2 , |z| > 2. Multiplying the signal by

( 14 )
nu(n) gives x(n)( 14 )

nu(n) ⇐⇒ z
z−0.5 , |z| > 0.5, due to the multiplication by

an property. Now, the ROC includes the unit circle in the z-plane. Let us substitute
z = ejω in z

z−0.5 to get 1
1−0.5e−jω . The inverse DTFT of this transform is the signal

0.5nu(n) = x(n)( 14 )
nu(n). Now, multiplying both sides by 4nu(n) gives the original

time-domain signal x(n)u(n) = 2nu(n). This way of finding the inverse z-transform
gives us a clear understanding of how the z-transform is the generalized version of
the DTFT.

The inverse z-transform relation enables us to find the corresponding sequence
from its z-transform. The DTFT of x(n)r−n can be written as

X(rejω) =
∞∑

n=0

x(n)(rejω)−n

The inverse DTFT of X(rejω) is

x(n)r−n = 1

2π

∫ π

−π

X(rejω)ejωndω

Multiplying both sides by rn, we get

x(n) = 1

2π

∫ π

−π

X(rejω)(rejω)ndω

Let z = rejω. Then, dz = jrejωdω = jzdω. Now, the inverse z-transform of X(z),
in terms of the variable z, is defined as

x(n) = 1

2πj

∮
C

X(z)zn−1dz (9.2)

with the integral evaluated, in the counterclockwise direction, along any simply
connected closed contour C, encircling the origin, that lies in the ROC of X(z).
As ω varies from −π to π , the variable z traverses the circle of radius r in the
counterclockwise direction once. We can use any appropriate contour of integration
in evaluating the inverse z-transform because the transform values corresponding
to the contour are taken in the inverse process. As can be seen from Figs. 9.1b and
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9.2b, the z-transform values vary with each of the infinite choices for the contour of
integration.

9.4.1 Finding the Inverse z-Transform

While the most general way of finding the inverse z-transform is to evaluate the
contour integral Eq. (9.2), for most practical purposes, two other simpler methods
are commonly used.

9.4.1.1 The Partial Fraction Method

In LTI system analysis, we are mostly encountered with the problem of inverting a
z-transform that is a rational function (a ratio of two polynomials in z). In the partial
fraction method, the rational function of the z-transform is decomposed into a linear
combination of transforms such as those of δ(n), anu(n), and nanu(n). Then, it is
easy to find the inverse transform from a short table of transform pairs.

Consider finding the partial fraction expansion of X(z) = z

(z− 1
5 )(z− 1

4 )
. As the

partial fraction of the form kz
(z−p)

is more convenient, we first expand X(z)
z

and then
multiply both sides by z.

X(z)

z
= 1

(z − 1
5 )(z − 1

4 )
= A

(z − 1
5 )

+ B

(z − 1
4 )

Multiplying all the expressions by (z − 1
5 ), we get

(
z − 1

5

)
X(z)

z
= 1

(z − 1
4 )

= A + B(z − 1
5 )

(z − 1
4 )

Letting z = 1
5 , we get A = (z − 1

5 )
X(z)

z
|
z= 1

5
= −20. Similarly, B = (z −

1
4 )

X(z)
z

|
z= 1

4
= 20. Therefore,

X(z) = −20z

(z − 1
5 )

+ 20z

(z − 1
4 )

The time-domain sequence x(n) corresponding to X(z) is given by

x(n) =
(

−20

(
1

5

)n

+ 20

(
1

4

)n)
u(n)
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The first four values of the sequence x(n) are

x(0) = 0, x(1) = 1, x(2) = 0.45, x(3) = 0.1525

As the sum of the terms of a partial fraction will always produce a numerator
polynomial whose order is less than that of the denominator, the order of the
numerator polynomial of the rational function must be less than that of the
denominator. This condition is satisfied by X(z)

z
, as the degree of the numerator

polynomial, for z-transforms of practical interest, is at the most equal to that of the
denominator.

Example 9.6 Find the inverse z-transform of

X(z) = z2

(z − 1
2 )(z + 1

3 )

Solution

X(z)

z
=
(

z

(z − 1
2 )(z + 1

3 )

)
and X(z) =

3
5z

(z − 1
2 )

+
2
5z

(z + 1
3 )

x(n) =
(
3

5

(
1

2

)n

+ 2

5

(
−1

3

)n)
u(n)

The first four values of the sequence x(n) are

x(0) = 1, x(1) = 0.1667, x(2) = 0.1944, x(3) = 0.0602

The partial fraction method applies for complex poles also. Of course, the
complex poles and their coefficients will always appear in conjugate pairs for X(z)

with real coefficients. Therefore, finding one of the coefficients of each pair of poles
is sufficient.

Example 9.7 Find the inverse z-transform of

X(z) = z

(z2 − 2z + 4)

Solution Factorizing the denominator of X(z) and finding the partial fraction, we
get

X(z)

z
=
(

1

(z − (1 + j
√
3))(z − (1 − j

√
3))

)
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X(z) =
( z

j2
√
3

z − (1 + j
√
3)

+
z

−j2
√
3

z − (1 − j
√
3)

)

x(n) =
(

1

j2
√
3

)
(1 + j

√
3)n +

(
1

−j2
√
3

)
(1 − j

√
3)n, n = 0, 1, . . .

The two terms of x(n) form a complex conjugate pair. The conjugate of a complex
number z = x + jy, denoted by z∗, is defined as z∗ = x − jy, that is, the imaginary
part is negated. Now, z + z∗ = 2x (twice the real part of z or z∗). This result is very
useful in simplifying expressions involving complex conjugate poles. Let (a + jb)

and (a−jb) be a pair of complex conjugate poles and (c+jd) and (c−jd) be their
respective partial fraction coefficients. Then, the poles combine to produce the time-
domain response 2A(r)n cos(ωn+θ), where r = √

a2 + b2 and ω = tan−1( b
a
), and

A = √
c2 + d2 and θ = tan−1( d

c
). For the specific example, twice the real part of(

1
j2

√
3

)
(1 + j

√
3)n or

(
1

−j2
√
3

)
(1 − j

√
3)n is

x(n) = 1√
3
(2)n cos

(π

3
n − π

2

)
u(n)

The first four values of the sequence x(n) are

x(0) = 0, x(1) = 1, x(2) = 2, x(3) = 0

Example 9.8 Find the inverse z-transform of

X(z) = (z2 − 2z + 2)

(z2 − 7
12z + 1

12 )

Solution

X(z)

z
=
(

(z2 − 2z + 2)

z(z − 1
3 )(z − 1

4 )

)
and X(z) =

(
24 + 52z

(z − 1
3 )

− 75z

(z − 1
4 )

)

x(n) = 24δ(n) +
(
52

(
1

3

)n

− 75

(
1

4

)n)
u(n)

The first four values of the sequence x(n) are

x(0) = 1, x(1) = −1.4167, x(2) = 1.0903, x(3) = 0.7541

For a pole of order m, there must be m partial fraction terms corresponding to
poles of order m,m − 1, . . . , 1.
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Example 9.9 Find the inverse z-transform of

X(z) = z2

(z − 1
3 )

2(z − 1
2 )

Solution

X(z)

z
=
(

z

(z − 1
3 )

2(z − 1
2 )

)
=
(

A

(z − 1
3 )

2
+ B

(z − 1
3 )

+ C

(z − 1
2 )

)

Now, A can be found to be −2 by substituting z = 1
3 in the expression z

(z− 1
2 )
. C can

be found to be 18 by substituting z = 1
2 in the expression z

(z− 1
3 )2

. One method to

determine the value of B is to substitute a value for z, which is not equal to any of
the poles. For example, by substituting z = 0 in the expression, the only unknown
B is evaluated to be −18. Another method is to subtract the term −2

(z− 1
3 )2

from the

expression z

(z− 1
3 )2(z− 1

2 )
to get 3

(z− 1
2 )(z− 1

3 )
. Substituting z = 1

3 in the expression

3
(z− 1

2 )
, we get B = −18. Therefore,

X(z) =
(

− 2z

(z − 1
3 )

2
− 18z

(z − 1
3 )

+ 18z

(z − 1
2 )

)

x(n) =
(

−2n

(
1

3

)n−1

− 18

(
1

3

)n

+ 18

(
1

2

)n
)

u(n)

The first four values of the sequence x(n) are

x(0) = 0, x(1) = 1, x(2) = 1.1667, x(3) = 0.9167

The next example is similar to Example 9.9 with the difference that a second-
order pole occurs at z = 0.

Example 9.10 Find the inverse z-transform of

X(z) = z2 + 1

z2(z − 1
3 )

Solution

X(z)

z
=
(

z2 + 1

z3(z − 1
3 )

)
=
(

A

z3
+ B

z2
+ C

z
+ D

(z − 1
3 )

)
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X(z) =
(

−3

z2
+ −9

z
− 30 + 30z

(z − 1
3 )

)

x(n) = −30δ(n) − 9δ(n − 1) − 3δ(n − 2) + 30

(
1

3

)n

u(n)

The first four values of the sequence x(n) are

x(0) = 0, x(1) = 1, x(2) = 0.3333, x(3) = 1.1111

9.4.1.2 The Long Division Method

By dividing the numerator polynomial by the denominator polynomial, we can
express a z-transform in a form that is similar to that of the defining series. Then,
from inspection, the sequence values can be found. For example, the inverse z-
transform of X(z) = z

z−0.8 is obtained dividing z by z − 0.8. The quotient is

X(z) = 1 + 0.8z−1 + 0.64z−2 + 0.512z−3 + · · ·

Comparing with the definition of the z-transform, the time-domain values are
x(0) = 1, x(1) = 0.8, x(2) = 0.64, x(3) = 0.512, and so on. These values can be
verified from x(n) = (0.8)nu(n), which is the closed-form solution of the inverse
z-transform (Example 9.3). This method is particularly useful when only the first
few values of the time-domain sequence are required.

9.5 Applications of the z-Transform

9.5.1 Transfer Function

The input-output relationship of a LTI system is given by the convolution operation
in the time domain. Since convolution corresponds to multiplication in the frequency
domain, we get

y(n) =
∞∑

m=0

x(m)h(n − m) ⇐⇒ Y (z) = X(z)H(z),

where x(n), h(n), and y(n) are, respectively, the system input, impulse response,
and output and X(z), H(z), and Y (z) are their respective transforms. As input
is transferred to output by multiplication with H(z), H(z) is called the transfer
function of the system. The transfer function, which is the transform of the impulse
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response, characterizes a system in the frequency domain just as the impulse
response does in the time domain. For stable systems, the frequency response
H(ejω) is obtained from H(z) by replacing z by ejω.

We can as well apply any input, with nonzero spectral amplitude for all values of
z in the ROC, to the system and find the response, and the ratio of the z-transforms
Y (z) of the output and X(z) of the input is H(z) = Y (z)

X(z)
. Consider the system

governed by the difference equation

y(n) = 2x(n) − 3y(n − 1)

The impulse response of the system is h(n) = 2(−3)n. The transform of h(n) is
H(z) = 2z

z+3 . The output of this system, with initial condition zero, to the input

x(n) = 3u(n) is y(n) = 3
2 (1 + 3(−3)n)u(n), using time-domain method. The

transform of y(n) is

Y (z) = 3

2

(
z

z − 1
+ 3z

z + 3

)

The transform of the input x(n) = 3u(n) is X(z) = 3z
z−1 . Now,

H(z) = Y (z)

X(z)
=

3
2

(
z

z−1 + 3z
z+3

)
3z

z−1

= 2z

z + 3
,

which is the same as the transform of the impulse response.
Since the transform of a delayed signal is its transform multiplied by a factor,

we can as well find the transfer function by taking the transform of the difference
equation characterizing a system. Consider the difference equation of a causal LTI
discrete system.

y(n) + aK−1y(n − 1) + aK−2y(n − 2) + · · · + a0y(n − K)

= bMx(n) + bM−1x(n − 1) + · · · + b0x(n − M)

Taking the z-transform of both sides, we get, assuming initial conditions are all zero,

Y (z)(1 + aK−1z
−1 + aK−2z

−2 + · · · + a0z
−K)

= X(z)(bM + bM−1z
−1 + · · · + b0z

−M)

The transfer function H(z) is obtained as

H(z) = Y (z)

X(z)
= bM + bM−1z

−1 + · · · + b0z
−M

1 + (aK−1z−1 + aK−2z−2 + · · · + a0z−K)
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=
∑M

l=0 bM−lz
−l

1 +∑K
l=1 aK−lz−l

The transfer function written in positive powers of z,

H(z) = zK−M(bMzM + bM−1z
M−1 + · · · + b0)

zK + (aK−1zK−1 + aK−2zK−2 + · · · + a0)
,

is more convenient for manipulation.

9.5.2 Characterization of a System by Its Poles and Zeros

By using the pole-zero representation of the z-transform, the transfer function can
be written as

H(z) = B
zK−M(z − z1)(z − z2) · · · (z − zM)

(z − p1)(z − p2) · · · (z − pK)
= BzK−M

∏M
i=1(z − zi)∏K
i=1(z − pi)

where B is a constant. As the coefficients of the polynomials of H(z) are real
for practical systems, the zeros and poles are real-valued, or they always occur as
complex conjugate pairs.

The numerator and denominator polynomials of H(z), when equated to zero,
have M and K roots, respectively. The roots

{z1, z2, . . . , zM } and {p1, p2, . . . , pK }

are complex frequencies. As H(z) evaluates to zero at {z1, z2, . . . , zM}, these
frequencies are called the zeros of H(z). As H(z) evaluates to infinity at
{p1, p2, . . . , pM }, these frequencies are called the poles of H(z). Any linear
system is completely specified by its poles and zeros and a constant factor. The
poles determine the time variation of the response of the system, while the zeros
determine the magnitude. When a pole or zero repeats m times, it is said to be of
multiplicity m. They are also referred to as second-order or third-order poles or
zeros. A nonrepetitive pole or zero is called a simple pole or zero.

The pole-zero plot of the transfer function H(z) of a system is a pictorial
description of its characteristics, such as speed of response, frequency selectivity,
and stability. Poles with magnitudes much smaller than one result in a fast-
responding system with its transient response decaying rapidly. On the other hand,
poles with magnitudes closer to one result in a sluggish system. Complex conjugate
poles located inside the unit circle result in an oscillatory transient response that
decays with time. The frequency of oscillation is higher for poles located in the
second and third quadrants of the unit circle. Complex conjugate poles located on



306 9 The z-Transform

the unit circle result in a steady oscillatory transient response. Poles located on the
positive real axis inside the unit circle result in exponentially decaying transient
response. An alternating positive and negative sample is the transient response due
to poles located on the negative real axis. The frequency components of an input
signal with frequencies close to a zero will be suppressed, while those close to
a pole will be readily transmitted. Poles located symmetrically about the positive
real axis inside the unit circle and close to the unit circle in the passband result
in a lowpass system that more readily transmits low-frequency signals than high-
frequency signals. Zeros located symmetrically about the negative real axis in the
stopband further enhance the lowpass character of the frequency response. On the
other hand, poles located symmetrically about the negative real axis inside the
unit circle and close to the unit circle in the passband result in a highpass system
that more readily transmits high-frequency signals than low-frequency signals. For
example, a system with its pole-zero plot such as that shown in Fig. 9.1 is a lowpass
filter. The stability of a system can also be determined from its pole-zero plot, as
presented later.

9.5.3 Frequency Response and the Locations of the Poles and
Zeros

The frequency response of a system characterizes its performance. For example, a
high-fidelity amplifier should have distortion-free response up to 20 kHz. Even for
system design, the required frequency response is usually specified. Mathematically,
it is obtained from H(z) by replacing z by ejω. Note that z = rejω and on the unit
circle r = 1. Frequency response is the response of the system for an everlasting
complex exponential with unit magnitude and zero phase. As that type of signal
starts at time −∞, the response of the system observed at any finite time is that
of steady state. In practice, the frequency response is approximated by applying a
sinusoidal signal to the system, starting at a finite time, and measuring the response
after the transient response decays to a negligible level.

Replacing z by ejω in H(z), we get

H(z)|z=ejω = a(0)
(ej (K−M)ω)(ejω − z1)(e

jω − z2) · · · (ejω − zM)

(ejω − p1)(ejω − p2) · · · (ejω − pK)

Let the magnitude and phase of the terms in the numerator be

(1� θKM), (r1 � θ1), (r2 � θ2), . . . , (rM � θM)

Let the magnitude and phase of the terms in the denominator be

(d1 � φ1), (d2 � φ2), . . . , (dK
� φK)
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Then, the frequency response H(ejω) is given by

H(ejω) = |a(0)|� (a(0))
(1� θKM)(r1 � θ1)(r2 � θ2) · · · (rM � θM)

(d1 � φ1)(d2 � φ2) · · · (dK
� φK)

Therefore, the magnitude of the frequency response is given as

|H(ejω)| = |a(0)| (r1)(r2) · · · (rM)

(d1)(d2) · · · (dK)

The phase of the frequency response is given as

� H(ejω) = ( � (a(0)) + θKM + θ1 + θ2 + · · · + θM) − (φ1 + φ2 + · · · + φK)

These expressions are useful for understanding and can be used to find the
response using graphical methods. However, in practice, DFT is commonly used
to approximate the frequency response.

Let us find the frequency response of the transfer function

H(z) = z + 1

z − 0.8

Replacing z by ejω, we get

H(ejω) = ejω + 1

ejω − 0.8

Let us use the DFT to evaluate the frequency response. DFT is polynomial evalu-
ation at roots of unity. The DFTs of the numerator and denominator polynomials
of H(z) are separately computed, and term-by-term division yields the frequency
response. The frequency response is continuous. But, in practice, it is computed
at finite number of points. Let use compute at 512 points. The 512-point DFTs of
the numerator and denominator polynomials are separately computed, and, then,
term-by-term division is carried out. To make the length 512, both the numeration
and denominator coefficients are sufficiently zero-padded. Figure 9.4a and b shows,
respectively, the magnitude and phase of the frequency response. The magnitude
plot is even symmetric about the midpoint, while the phase plot is odd symmetric.
Therefore, only positive half of the spectra are shown. Let us check the plot at π/2.
Then,

H(ej 2π128
512 ) = j + 1

j − 0.8
= 1.1043� − 83.6598◦

At ω = 0, the magnitude is 10 and the phase is 0.
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Fig. 9.4 (a) Magnitude of the frequency response; (b) phase response

9.5.4 Design of Digital Filters

Normalized lowpass analog filter design procedures are well established. Further,
transformation methods, which operate on the independent variable, are available to
design other types of filters. However, digital filters are preferred in practice. Now,
the task reduces to finding a suitable transformation to obtain the transfer function
of the corresponding digital filter from that of the analog filter. The criterion in the
transformation is to preserve the desired characteristics of the analog filter as much
as possible. We obtained the corresponding difference equation from that of the
differential equation of a RC lowpass filter in Chap. 3.

9.5.4.1 The Bilinear Transformation

One of the transformations often used in the transformation of an analog transfer
function to the corresponding digital transfer function is the bilinear transformation.
Basically, it is an approximation of a differential equation into a difference equation
using the trapezoidal algorithm of numerical integration. The resulting digital filter
preserves the steady-state response of the analog filter.

Let the transfer function of the analog filter be

H(s) = 2

s + 2

The corresponding differential equation is

dy(t)

dt
+ 2y(t) = 2x(t)

Now, the derivative can be replaced by a finite difference, as shown in Chap. 3.
Instead, the trapezoidal algorithm approximates the derivative by several trapezoids
of sufficiently small width. The difference equation characterizing this algorithm is

y(n) = y(n − 1) + Ts

2
(x(n) + x(n − 1)),
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where Ts is the sampling interval. The z-transform of this equation is

Y (z) = z−1Y (z) + Ts

2
(X(z) + z−1X(z))

Multiplying both sides by z, we get

zY (z) = Y (z) + Ts

2
(zX(z) + X(z))

Finding the transfer function, we get

H(z) = Y (z)

X(z)
= Ts

2

(z + 1)

(z − 1)

As the transfer function of the integrator in the s-plane is 1/s, we get the
transformation by the substitution

s = 2

Ts

(z − 1)

(z + 1)

For the H(s) given earlier, the corresponding H(z) is

H(z) = 2

s + 2
|
s= 2

Ts

(z−1)
(z+1)

= Ts(z + 1)

(Ts + 1)z + (Ts − 1)

Frequency Warping
The frequency response in the s-plane is aperiodic and extends from −∞ < ωa <

∞. On the other hand, the frequency response in the z-plane is periodic with a finite
range, −π < ωdTs ≤ π . Substituting s = jωa and z = ejωdTs in

s = 2

Ts

(z − 1)

(z + 1)

we get

jωa = 2

Ts

(ejωdTs − 1)

(ejωdTs + 1)

= 2

Ts

(e0.5jωdTs − e−0.5jωdTs )

(e0.5jωdTs + e−0.5jωdTs )
= j2

Ts

−0.5j (e0.5jωdTs − e−0.5jωdTs )

0.5(e0.5jωdTs + e−0.5jωdTs )

= 2

Ts

j tan

(
Ts

2
ωd

)
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Fig. 9.5 The nonlinear relationship between analog, ωa , and discrete, ωd , frequencies in the
bilinear transformation

Therefore, the relationship between the frequency variables ωa and ωd is given by

ωd = 2

Ts

tan−1
(

Ts

2
ωa

)
and ωa = 2

Ts

tan

(
Ts

2
ωd

)

The relationship is obviously nonlinear. The bilinear transformation is a confor-
mal mapping, which preserves the angles between oriented curves with respect to
both magnitude and direction, that maps the jω axis in the Laplace plane onto the
unit circle in the z-plane only once. The region to the left-half Laplace plane is
mapped inside the unit circle, and the right half is mapped to the outside, between
ωa and ωd . Figure 9.5 shows the nonlinear relationship between analog, ωa , and
discrete, ωd , frequencies in the bilinear transformation, with Ts = 1 s. The entire
frequency range from 0 to ∞ in the s-plane is mapped into the range 0 to π/Ts

in the z-plane only once. Therefore, there is no aliasing problem in using this
transformation. However, as an infinite range of frequencies is compressed to a finite
range, the frequency scale is compressed. For example, ωa = 2 radians is mapped
to

ωd = 2 tan−1
(ωa

2

)
= 2 tan−1

(
2

2

)
= 2 tan−1(1) = 2

π

4
= π

2
= 1.5708 radians,

as shown in the figure. Initially, the relationship is almost linear for a short range.
That is, for ωd < 0.3/Ts , ωd ≈ ωa . With increasing frequency, the corresponding
range in the z-plane becomes progressively shorter compared with that in the s-
plane.

The transfer functions of the analog and the corresponding digital filter, obtained
using the bilinear transformation with Ts = 0.2 s, are

H(s) = 2

s + 2
and H(z) = 0.1667(z + 1)

z − 0.6667

The details of obtaining the digital filter coefficients are given later. Figure 9.6a
shows the magnitude of the frequency response in dB of the analog and digital
(dotted line) filters. The responses are obtained by replacing s = jω in H(s) and
z = ejω in H(z). That is,
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Fig. 9.6 (a) The frequency response; (b) response in expanded scale around the cutoff frequency;
(c) the frequency response with prewarping; (b) response in expanded scale around the cutoff
frequency

H(jω) = 2

jω + 2
and H(ejω) = 0.1667(ejω + 1)

ejω − 0.6667

For example, with ω = 0, ejω = 1, and the magnitude of both the transfer functions
is 1 or 20 log 10(1) = 0 dB. With ω = 2, the magnitude of the analog filter is

|H(j2)| =
∣∣∣∣ 2

j2 + 2

∣∣∣∣ = 1√
2
or 20 log 10

(
1√
2

)
= −3.0103 dB

With ω = 2, 20 log 10(|H(ej2)|) = −3.0671 dB, which is not equal to that of
the analog filter due to warping. The divergence of the two responses begins before
ω = 2, and the expanded responses around the cutoff frequency are shown Fig. 9.6b.

Let us prewarp the cutoff frequency. That is, we design an analog filter with a
higher cutoff frequency. With Ts = 0.2,

ωa = (2/Ts) tan((0.5)(2)Ts) = 10 tan(0.2) = 2.0271

The transfer functions of the analog and the corresponding digital filter, obtained
using the bilinear transformation with Ts = 0.2 s and prewarping, are

H(s) = 2.0271

s + 2.0271
and H(z) = 0.1685(z + 1)

z − 0.0.6629

With ω = 2, 20 log 10(|H(ej2)|) = −3.0127 dB, which is much closer to that of the
analog filter due to prewarping. Figure 9.6c shows the magnitude of the frequency
response in dB of the analog and digital (dotted line) filters. The divergence of the
two responses begins after ω = 2, and the expanded responses around the cutoff
frequency are shown Fig. 9.6d.
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9.5.4.2 Implementation of the Bilinear Transformation

Usually, the required order of the filter is long. The direct implementation of
their transfer functions leads to coefficient sensitivity. That is, a small change in
a coefficient affects the signal to other sections of the filter with feedback and
feedforward sections. Therefore, a long filter is usually decomposed into first-
and second-order sections for implementation purposes. The necessity for second-
order sections is to realize filters with complex conjugate poles. The sections can
be connected in parallel or cascade configuration. This way, a small change in a
coefficient affects only a small part of the filter. Therefore, the problem is reduced
to the implementation of first- and second-order sections. Formulas can be derived
for the transformation of a first- and second-order section of an analog filter into
the corresponding digital filter. Let us find the formulas for the transformation of
a first-order filter and use them to find the digital filter coefficients of the example
filter. The general form of analog and discrete first-order transfer function are

c1s + c0

d1s + d0
and

a1z + a0

z + b0

H(s) = 2

s + 2
and H(z) = 0.1667

z + 1

z − 0.6667

The coefficients of the digital filter, designed using the bilinear transformation with
Ts = 0.2, have to be obtained. Using the transformation

s = 2

Ts

(z − 1)

(z + 1)
= k

(z − 1)

(z + 1)
,

we get, with k = 2/Ts = 2/0.2 = 10,

a1 = (c0 + c1k)

D
, a0 = (c0 − c1k)

D
, b0 = (d0 − d1k)

D
, where D = (d0 + d1k)

Further simplifications may be possible where some of the values are 0 or 1. For the
filter

H(s) = 2

s + 2
,

with Ts = 0.2, we get

a1 = 2

D
, a0 = 2

D
, b0 = (2 − k)

D
, where D = (2 + k)

With D = 2 + 10 = 12,
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Fig. 9.7 (a) Pole-zero plot of a lowpass filter; (b) the magnitude of its frequency response

a(0) = a(1) = 2

12
= 1

6
= 0.1667, b(0) = (2 − 10)

12
= − 8

12
= −2

3
= −0.6667

Therefore, the transfer function of the digital filter is

H(z) = 0.1667(ejω + 1)

ejω − 0.6667

The pole-zero plot of the filter is shown in Fig. 9.7a. The pole is located at
ω = 0.6667, and the zero is located at ω = −1. Therefore, the magnitude of the
frequency response is high for low frequencies, which are near (1,0) point on the
unit circle. The zero suppresses the response for high frequencies, which are near
(−1,0) point on the unit circle. The magnitude of the frequency response is shown
in Fig. 9.7b, which clearly depicts the lowpass nature of the response on the unit
circle (shown in a thick line). The z-plane is like a rubber sheet. Zeros pin the sheet
down at zero level, and poles push it up to infinite level. The net response due to all
the zeros and poles is the frequency response.

Let us approximate the frequency response using the DFT. The numerator
coefficients of the filter are {0.1667, 0.1667}. The denominator coefficients
are {1,−0.6667}. The 2-point DFT of the coefficients are {0.3333, 0} and
{0.3333, 1.6667}, respectively. The pointwise division of the coefficients yields

(0.3333, 0)/(0.3333, 1.6667) = (1, 0)

The magnitude of the response is 1 at ω = 0 radian and 0 at ω = π .
Typically, the frequency response is computed at 256 or 512 points in the

frequency range 0 to π radians by computing the DFT of zero-padded coefficients.
For illustration, let us use points from 0 to 2π radians. The zero-padded numerator
coefficients of the filter are {0.1667, 0.1667, 0, 0}. The zero-padded denominator
coefficients are {1,−0.6667, 0, 0}. The 4-point DFT of the coefficients are
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{0.3333, 0.1667 − j0.1667, 0, 0.1667 + j0.1667} and

{0.3333, 1 + j0.6667, 1.6667, 1 − j0.6667},

respectively. The pointwise division of the coefficients yields

{1, 0.0385 − j0.1923, 0, 0.0385 + j0.1923}

The magnitude of the response at

{
ω = 0,

π

2
, π,

3π

2

}

radians is

{1, 0.1961, 0, 0.1961}

The corresponding angles are, in degrees,

{0,−78.6901, 0, 78.6901}

At ω = π , the phase angle jumps from −90 to 90, and the average is 0.
The transfer functions of the analog highpass filter and the corresponding digital

filter, obtained using the bilinear transformation with Ts = 0.1 s, are

H(s) = s

s + 5
and H(z) = 0.8(z − 1)

z − 0.6

The pole-zero plot of the filter is shown in Fig. 9.8a. The pole is located at ω = 0.6,
and the zero is located at ω = 1. Therefore, the magnitude of the frequency response
is small for low frequencies, which are near (1,0) point on the unit circle. The
zero suppresses the response for low frequencies. The magnitude of the frequency
response is shown in Fig. 9.8b, which clearly depicts the highpass nature of the
response on the unit circle (shown in a thick line).

9.5.5 System Response

Example 9.11 Find the zero-input, zero-state, transient, steady-state, and complete
responses of the system governed by the difference equation

y(n) = 2x(n) − x(n − 1) + 3x(n − 2) + 9

20
y(n − 1) − 1

20
y(n − 2)
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Fig. 9.8 (a) Pole-zero plot of a highpass filter; (b) the magnitude of its frequency response

with the initial conditions y(−1) = 3 and y(−2) = 2 and the input x(n) = u(n),
the unit-step function.

Solution The z-transforms of the terms of the difference equation are

x(n) ⇐⇒ z

z − 1
, x(n − 1) ⇐⇒ 1

z − 1
, x(n − 2) ⇐⇒ 1

z(z − 1)

y(n) ⇐⇒ Y (z), y(n − 1) ⇐⇒ y(−1) + z−1Y (z) = z−1Y (z) + 3

y(n − 2) ⇐⇒ y(−2) + z−1y(−1) + z−2Y (z) = z−2Y (z) + 3z−1 + 2

Substituting the corresponding transform for each term in the difference equation
and factoring, we get

Y (z)

z
= 2z2 − z + 3

(z − 1)(z − 1
5 )(z − 1

4 )
+

(
5
4z − 3

20

)
(z − 1

5 )(z − 1
4 )

The first term on the right-hand side is H(z)X(z)/z and corresponds to the zero-
state response. The second term is due to the initial conditions and corresponds to
the zero-input response.

Expanding into partial fractions, we get

Y (z)

z
=

20
3

(z − 1)
+ 72

(z − 1
5 )

−
230
3

(z − 1
4 )

− 2

(z − 1
5 )

+
13
4

(z − 1
4 )

Taking the inverse z-transform, we get the complete response.

y(n) =

zero-state︷ ︸︸ ︷
20

3
+ 72

(
1

5

)n

− 230

3

(
1

4

)n

zero-input︷ ︸︸ ︷
−2

(
1

5

)n

+ 13

4

(
1

4

)n

, n = 0, 1, . . .
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Fig. 9.9 Various components of the response of the system in Example 9.11

y(n) = 20

3
+ 70

(
1

5

)n

− 881

12

(
1

4

)n

, n = 0, 1, . . .

The first four values of y(n) are

y(0) = 3.2500, y(1) = 2.3125, y(2) = 4.8781, y(3) = 6.0795

The responses are shown in Fig. 9.9. The zero-input response (a) is−2( 15 )
n+ 13

4 ( 14 )
n,

the response due to initial conditions alone. The zero-state response (b) is 20
3 +

72
(
1
5

)n − 230
3

(
1
4

)n

, the response due to input alone. The transient response (e)

is 72
(
1
5

)n − 230
3

(
1
4

)n − 2
(
1
5

)n + 13
4

(
1
4

)n = 70
(
1
5

)n − 881
12

(
1
4

)n

, the response

that decays with time. The steady-state response (f) is 20
3 u(n), the response after

the transient response has died out completely. Either the sum of the zero-input
and zero-state components (a) and (b) or the sum of the transient and steady-
state components (e) and (f) of the response is the complete response (c) of the
system. Either the difference of the transient and zero-input components (e) and (a)
or the difference of the zero-state and steady-state components (b) and (f) of the
response is the transient response (d) of the system due to input alone. The initial
and final values of y(n) are 3.25 and 20

3 , respectively. These values can be verified
by applying the initial and final value properties to Y (z). We can also verify that
the initial conditions at n = −1 and at n = −2 are satisfied by the zero-input
component of the response. Figure 9.10 shows the simulation diagram of the system
with initial conditions producing the total response. The initial conditions are set in
the delay units on the output side. The unit-step input values have to be loaded into
the simin block by executing the given input program.

The same set of coefficients is involved in both the difference equation and
transfer function models of a system. Therefore, either of the models can be used to
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Fig. 9.10 The simulation diagram of the system

determine the complete response of a system. In formulating the transfer function
model, we have assumed that the initial conditions are zero. However, it should be
noted that, with appropriately chosen input that yields the same output as the initial
conditions, we can use the transfer function concept even for problems with nonzero
initial conditions. Consider the transform of the output obtained in the example in

presenting the right-shift property, Y (z) = 3
2 z

z− 1
2
. This equation can be considered

as Y (z) = H(z)X′(z) with H(z) = z

z− 1
2
and X′(z) = 3

2 . X
′(z) corresponds to the

time-domain input 3
2δ(n), which produces the same response that results from the

initial condition.

9.5.5.1 Inverse Systems

Two systems with impulse responses h1 and h2 form an inverse system, when
connected in cascade, if h1 ∗ h2 = δ(n). That is, input remains the same at the
output. This implies that, in the frequency domain, H1(z)H2(z) = 1.

The difference equation characterizing the trapezoidal numerical algorithm, used
in the bilinear transform, is

y(n) = y(n − 1) + Ts

2
(x(n) + x(n − 1)),

where Ts is the sampling interval. The z-transform of this equation is

Y (z) = z−1Y (z) + Ts

2
(X(z) + z−1X(z))

Multiplying both sides by z, we get
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Fig. 9.11 Two systems in cascade forming an inverse system

zY (z) = Y (z) + Ts

2
(zX(z) + X(z))

Finding the transfer function, we get

H1(z) = Y (z)

X(z)
= Ts

2

(z + 1)

(z − 1)

The transfer function of the inverse of this system is

H2(z) = 2

Ts

(z − 1)

(z + 1)

The difference equation characterizing the inverse system is

y(n) = 2

Ts

(x(n) − x(n − 1)) − y(n − 1)),

which is a numerical differentiator. Figure 9.11 shows the simulation of the two
systems in cascade forming an inverse system

9.5.6 System Stability

The zero-input response of a system depends solely on the locations of its poles. A
system is considered stable if its zero-input response, due to finite initial conditions,
converges, marginally stable if its zero-input response tends to a constant value or
oscillates with a constant amplitude, and unstable if its zero-input response diverges.
Commonly used marginally stable systems are oscillators, which produce a bounded
zero-input response. The response corresponding to each pole p of a system is of the
form rnejnθ , where the magnitude and phase of the pole are r and θ , respectively. If
r < 1, then rn tends to zero as n tends to ∞. If r > 1, then rn tends to ∞ as n tends
to ∞. If r = 1, then rn = 1 for all n. However, the response tends to infinity, for
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poles of order more than 1 lying on the unit circle, as the expression for the response
includes a factor that is a function of n. Poles of any order lying inside the unit circle
do not cause instability. Therefore, we conclude that, from the locations of the poles
of a system,

• All the poles, of any order, of a stable system must lie inside the unit circle. That
is, the ROC of H(z) must include the unit circle.

• Any pole lying outside the unit circle or any pole of order more than 1 lying on
the unit circle makes a system unstable.

• A system is marginally stable if it has no poles outside the unit circle and has
poles of order 1 on the unit circle.

Figure 9.12 shows pole locations of some transfer functions and the corresponding
impulse responses. If all the poles of a system lie inside the unit circle, the
bounded-input bounded-output stability condition (Chap. 3) is satisfied. However,
the converse is not necessarily true, since the impulse response is an external
description of a system and may not include all its poles. The bounded-input
bounded-output stability condition is not satisfied by a marginally stable system.

9.5.7 Realization of Systems

To implement a system, a realization diagram has to be derived. Several realizations
of a system are possible, each realization differing in such characteristics as the
amount of arithmetic required, sensitivity to coefficient quantization, etc. The z-
transform of the output of a N th-order system is given as

Y (z) = X(z)H(z) = X(z)
N(z)

D(z)
= X(z)(bN + bN−1z

−1 + · · · + b0z
−N)

1 + aN−1z−1 + · · · + a0z−N

Let R(z) = X(z)
D(z)

. Then, Y (z) = R(z)N(z). Now, the system structure can be

realized as a cascade of two systems. The first system, R(z) = X(z)
D(z)

, has only poles
with input x(n) and output r(n). The second system, Y (z) = R(z)N(z), has only
zeros with input r(n) and output y(n), where

r(n) = x(n) −
N∑

k=1

aN−kr(n − k) and y(n) =
N∑

k=0

bN−kr(n − k)

Both the systems can share a set of delay units as the term r(n − k) is common.
The realization of a second-order system is shown in Fig. 9.13. This realization
is known as the canonical form I realization, implying the use of the minimum
number of delay elements. A transposed form of a system structure is obtained by
(i) reversing the directions of all the signal flow paths, (ii) replacing the junction



320 9 The z-Transform

-1 0.7071

Re (z)

-1

0

0.7071

Im
(z

)

(a)

0 4 8 12

n

-1

0

1

h(
n)

(b)

0 4 8 12

n

0

1

h(
n)

(c)

-1 0 1

Re(z)

-1

0

1

Im
(z

)

(d)

0 4 8

n

-8
0

32

h(
n)

(e)

0 4 8 12

n

-1

0

1

h(
n)

(f)

-1 0 0.5

Re(z)

-0.5

0

0.5

Im
(z

)

2

(g)

0 4 8

n

-0.25
0

1

h(
n)

(h)

0 4 8 12

n

0

4

8

12

h(
n)

(i)

0.51.1

Re(z)

0

Im
(z

)

(j)

0 4 8 12

n

0

1

h(
n)

(k)

0 4 8 12

n

1

4

h(
n)

(l)

-1.1-0.4

Re(z)

0

Im
(z

)

(m)

0 4 8 12

n

-1

0

1

h(
n)

(n)

0 4 8 12

n

-4

0

4

h(
n)

(o)

Fig. 9.12 The poles of some transfer functions H(z) and the corresponding impulse responses

h(n): (a) H(z) = (z/
√
2)

z2−√
2z+1

= 0.5jz

z−((1/
√
2)−(j/

√
2))

− 0.5jz

z−((1/
√
2)+(j/

√
2))

and H(z) = z
z−1 ; (b)

h(n) = sin( π
4 n)u(n) and (c) h(n) = u(n); (d) H(z) = z

z2−2z+2
= 0.5jz

z−(1−j1) − 0.5jz
z−(1+j1) and

H(z) = z
z+1 ; (e) h(n) = (

√
2)n sin( π

4 n)u(n) and (f) h(n) = (−1)nu(n); (g) H(z) = z(z−0.5)
z2−z+0.5

=
0.5z

z−(0.5−0.5j)
+ 0.5z

z−(0.5+0.5j)
and H(z) = z

(z−1)2
; (h) h(n) = ( 1√

2
)n cos( π

4 n)u(n) and (i) h(n) =
nu(n); (j) H(z) = z

z−0.5 and H(z) = z
z−1.1 .; (k) h(n) = (0.5)nu(n) and (l) h(n) = (1.1)nu(n);

(m) H(z) = z
z+0.4 and H(z) = z

z+1.1 ; (n) h(n) = (−0.4)nu(n) (n) and (o) h(n) = (−1.1)nu(n)
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Fig. 9.13 Realization of a
second-order system

points by adders and vice versa, and (iii) interchanging the input and output points.
The transposed form of the system in Fig. 9.13 is shown in Fig. 9.14. This realization
is known as the canonical form II realization. This form is derived as follows.

H(z) = Y (z)

X(z)
= b2z

2 + b1z + b0

z2 + a1z + a0
= b2 + b1z

−1 + b0z
−2

1 + a1z−1 + a0z−2

Y (z)(1 + a1z
−1 + a0z

−2) = X(z)(b2 + b1z
−1 + b0z

−2)

Y (z) = b2X(z) + z−1(b1X(z) − a1Y (z)) + z−2(b0X(z) − a0Y (z))

= b2X(z) + z−1{(b1X(z) − a1Y (z)) + z−1(b0X(z) − a0Y (z))}
= b2X(z) + z−1{(b1X(z) − a1Y (z)) + z−1r(2)(z)}
= b2X(z) + z−1r(1)(z)

Therefore, the following difference equations characterize this system structure.

y(n) = b2x(n) + r(1)(n − 1)

r(1)(n) = b1x(n) − a1y(n) + r(2)(n − 1)

r(2)(n) = b0x(n) − a0y(n)

These realizations have the advantage of using the coefficients of the transfer
function directly.
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Fig. 9.14 Transposed form
of the system structure shown
in Fig. 9.13

While this type of realizations is applicable to system of any order, it becomes
more sensitive to coefficient quantization due to the tendency of the poles and zeros
to occur in clusters. Therefore, usually, a higher-order system is decomposed into
first- and second-order sections connected in cascade or parallel. In the cascade
form, the transfer function is decomposed into a product of first- and second-order
transfer functions.

H(z) = H1(z)H2(z) · · · Hm(z)

In the parallel form, the transfer function is decomposed into a sum of first- and
second-order transfer functions.

H(z) = g + H1(z) + H2(z)+, · · · ,+Hm(z),

where g is a constant. Each section is independent, and clustering of poles and zeros
is avoided as the maximum number of poles and zeros in each section is limited to
2. Each second-order section is realized as shown in Figs. 9.13 or 9.14.

9.5.8 Feedback Systems

In feedback systems, a fraction of the output signal is fed back and subtracted from
the input signal to form the effective input signal. By using negative feedback, we
can change the speed of response, reduce sensitivity, improve stability, and increase
the range of operation of a system at the cost of reducing the open-loop gain.
Consider the feedback system shown in Fig. 9.15. The feedback signal R(z) can
be expressed as
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Fig. 9.15 Two systems
connected in a feedback
configuration

R(z) = F(z)Y (z),

where F(z) is the feedback transfer function of the system and Y (z) is the output.
Now, the error signal E(z) is

E(z) = X(z) − R(z) = X(z) − F(z)Y (z)

The output Y (z) is expressed as

Y (z) = G(z)E(z) = G(z)(X(z) − F(z)Y (z)),

where G(z) is the forward transfer function of the system. Therefore, the transfer
function of the feedback system is given as

Y (z)

X(z)
= G(z)

1 + G(z)F (z)

If G(z) is very large, the transfer function of the feedback system approximates to
the inverse of the feedback transfer function of the system.

Y (z)

X(z)
� 1

F(z)

Consider the system with the transfer function

G(z) = z

z − 3
2

.

G(z) has a pole at z = 3
2 , and, therefore, the system is unstable. We can make a

stable feedback system, using this system in the forward path and another suitable
system in the feedback path. Let the transfer function of the system in the feedback
path be

F(z) = 1

z − 1
5
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Then, the transfer function of the feedback system is

G(z)

1 + G(z)F (z)
=

z

z− 3
2

1 + z

z− 3
2

1
z− 1

5

= z(z − 1
5 )

z2 − 7
10z + 3

10

Now, both the poles of this system lie inside the unit circle, and, therefore, the
system is stable.

9.6 Summary

• In this chapter, the theory of the one-sided z-transform and its properties and
some applications have been described. As practical systems are causal, the one-
sided z-transform is mostly used in practice.

• The z-transform is a generalized version of the Fourier analysis. The basis
waveforms consist of sinusoids with varying amplitudes or exponentials with
complex exponents. The larger set of basis waveforms makes this transform
suitable for the analysis of a larger class of signals and systems.

• While the DTFT changes a sequence of numbers into a function of the purely
imaginary complex variable ejω, the z-transform changes a sequence of numbers
into a function of the complex variable z with an expanded set of basis functions.
That is, the DTFT of a signal is its z-transform with z = ejω, if the DTFT
exists.

• The z-transform corresponding to a one-dimensional sequence is two-
dimensional (a surface), since it is a function of two variables (the real and
imaginary parts of the complex frequency). In the frequency domain, a sequence
is uniquely specified by its z-transform along with its ROC. The spectral values
along any simply connected closed contour, encircling the origin, in the ROC
can be used to reconstruct the corresponding time-domain sequence. There is no
z-transform representation for a signal, which grows faster than an exponential.

• All practical signals satisfy the convergence condition and, therefore, have z-
transform representation.

• The inverse z-transform is defined by a contour integral. However, for most
practical purposes, the partial fraction method along with a short list of z-
transform pairs is adequate to find the inverse z-transform.

• The z-transform is essential for the design and transient and stability analysis of
discrete LTI systems. The z-transform of the impulse response of a system, the
transfer function, is a frequency-domain model of the system.



Exercises 325

Exercises

9.1 The nonzero values of a sequence x(n) are specified as {x(−2) = 1, x(0) =
2, x(3) = −4}. Find the unilateral z-transform of

9.1.1 x(n − 3).
9.1.2 x(n − 1).

* 9.1.3 x(n).
9.1.4 x(n + 1).
9.1.5 x(n + 2).
9.1.6 x(n + 4).

9.2 Find the nonzero values of the inverse z-transform of

9.2.1 X(z) = 2 − 3z−2 + z−4.
9.2.2 X(z) = z−2 − 2z−5.
9.2.3 X(z) = −2 + 3z−1 − z−10.

* 9.2.4 X(z) = 1 + z−1 − z−2.
9.2.5 X(z) = z−2 + 2z−3.

9.3 Using the z-transform of u(n) and nu(n) and the shift property, find the z-
transform of x(n).

9.3.1 x(n) = u(n − 3) − u(n − 5).
9.3.2 x(n) = nu(n − 3).
9.3.3 x(n) = n, 0 ≤ n ≤ 4 and x(n) = 0 otherwise.

* 9.3.4 x(n) = (n − 2)u(n).

9.4 The nonzero values of two sequences x(n) and h(n) are given. Using the z-
transform, find the convolution of the sequences y(n) = x(n) ∗ h(n).

* 9.4.1 {x(0) = 2, x(2) = 3, x(4) = −2} and {h(1) = 2, h(3) = −4}.
9.4.2 {x(1) = 3, x(4) = −4} and {h(0) = −2, h(3) = 3}.
9.4.3 {x(2) = 3, x(4) = −2} and {h(1) = 4, h(2) = 1}.
9.4.4 {x(0) = −4, x(3) = −1} and {h(0) = 1, h(2) = −2}.
9.4.5 {x(2) = 3, x(4) = −1} and {h(1) = 2, h(3) = 2}.

9.5 Using the multiplication by n property, find the z-transform of x(n).

9.5.1 x(n) = nu(n).
* 9.5.2 x(n) = n2nu(n).
9.5.3 x(n) = nu(n − 2).

9.6 Using the multiplication by an property, find the z-transform of x(n).

9.6.1 x(n) = 3nu(n).
* 9.6.2 x(n) = n4nu(n).
9.6.3 x(n) = 2n cos(n)u(n).
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9.7 Using the summation property, find the sum y(n) = ∑n
m=0 x(m).

9.7.1 x(n) = cos( 2π4 n)u(n).
* 9.7.2 x(n) = sin( 2π4 n)u(n).

9.7.3 x(n) = e(j 2π
4 n)u(n).

9.7.4 x(n) = u(n).
9.7.5 x(n) = (n)u(n).

9.8 Find the initial and final values of the sequence x(n) corresponding to the
transform X(z), using the initial and final value properties.

9.8.1 X(z) = z(3z+2)
(z− 1

2 )(z+ 1
4 )
.

9.8.2 X(z) = 3z
(z−2)(z+3) .

* 9.8.3 X(z) = 2z(z+3)
(z− 1

2 )(z−1)
.

9.8.4 X(z) = z
(z−1)2

.

9.8.5 X(z) = 2z2
(z−1)(z+2) .

9.9 Given the sample values of the first period, find the z-transform of the
semiperiodic function x(n)u(n).

9.9.1 {1, 0,−1, 0}.
9.9.2 {0, 1, 0,−1}.
9.9.3 {1, j,−1,−j}.

* 9.9.4 {1, 1,−1,−1}.
9.9.5 {0, 1, 2, 1}.

9.10 Find the inverse z-transform of X(z) using the inverse DTFT.

9.10.1 X(z) = z
z−5 .

9.10.2 X(z) = z
z−0.8 .

9.10.3 X(z) = z
(z−1)2

.

9.11 Find the inverse z-transform of

X(z) = z(2z + 3)

(z2 − 2
15z − 1

15 )

List the first four values of x(n).
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9.12 Find the inverse z-transform of

X(z) = (3z − 1)

(z2 − 11
12z + 1

6 )

List the first four values of x(n).

* 9.13 Find the inverse z-transform of

X(z) = z(z + 2)

(z2 + 2z + 2)

List the first four values of x(n).

9.14 Find the inverse z-transform of

X(z) = 2z2 + 1

(z2 − z − 6)

List the first four values of x(n).

9.15 Find the inverse z-transform of

X(z) = z

(z3 + 3
2z

2 − 1
2 )

List the first four values of x(n).

9.16 Find the inverse z-transform of

X(z) = z2 − 1

z2(z + 1
3 )

List the first four values of x(n).

9.17 Find the first four values of the inverse z-transform of X(z) by the long
division method.

9.17.1 X(z) = 2z2+2z−3
z2−z+1

.
9.17.2 X(z) = z

z2+2z−2
.

9.17.3 X(z) = 3z2−z+2
2z2+z−3

.

9.18 Using the z-transform, derive the closed-form expression of the impulse
response h(n) of the system governed by the difference equation

y(n) = x(n) + 2x(n − 1) + x(n − 2) + 3y(n − 1) − 2y(n − 2)
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with input x(n) and output y(n). List the first four values of h(n).

9.19 Given the difference equation of a system and the input signal x(n), find the
steady-state response of the system.

9.19.1 y(n) = x(n) + 0.8y(n − 1) and x(n) = 2ej ( 2π4 n+ π
6 )u(n).

* 9.19.2 y(n) = x(n) + 0.7y(n − 1) and x(n) = 3 cos( 2π4 n − π
3 )u(n)

9.19.3 y(n) = x(n) + 0.5y(n − 1) and x(n) = 4 sin( 2π4 n + π
4 )u(n).

9.20 Using the z-transform, derive the closed-form expression of the complete
response of the system governed by the difference equation

y(n) = 2x(n) − x(n − 1) + x(n − 2) + 7

6
y(n − 1) − 1

3
y(n − 2)

with the initial conditions y(−1) = 2 and y(−2) = −3 and the input x(n) = u(n),
the unit-step function. List the first four values of y(n). Deduce the expressions for
the zero-input, zero-state, transient, and steady-state responses of the system.

* 9.21 Using the z-transform, derive the closed-form expression of the complete
response of the system governed by the difference equation

y(n) = x(n) + 2x(n − 1) − x(n − 2) + 5

4
y(n − 1) − 3

8
y(n − 2)

with the initial conditions y(−1) = 2 and y(−2) = 1 and the input x(n) =
(−1)nu(n). List the first four values of y(n). Deduce the expressions for the zero-
input, zero-state, transient, and steady-state responses of the system.

9.22 Using the z-transform, derive the closed-form expression of the complete
response of the system governed by the difference equation

y(n) = 3x(n) − 3x(n − 1) + x(n − 2) + 7

12
y(n − 1) − 1

12
y(n − 2)

with the initial conditions y(−1) = 1 and y(−2) = 2 and the input x(n) = nu(n),
the unit-ramp function. List the first four values of y(n). Deduce the expressions for
the zero-input, zero-state, transient, and steady-state responses of the system.

9.23 Using the z-transform, derive the closed-form real-valued expression of the
complete response of the system governed by the difference equation

y(n) = x(n) − 3x(n − 1) + 2x(n − 2) + y(n − 1) − 2

9
y(n − 2)
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with the initial conditions y(−1) = 3 and y(−2) = 2 and the input x(n) =
( 14 )

nu(n). List the first four values of y(n). Deduce the expressions for the zero-
input, zero-state, transient, and steady-state responses of the system.

9.24 Using the z-transform, derive the closed-form real-valued expression of the
complete response of the system governed by the difference equation

y(n) = x(n) + x(n − 1) − x(n − 2) + 3

4
y(n − 1) − 1

8
y(n − 2)

with the initial conditions y(−1) = 1 and y(−2) = 2 and the input x(n) =
2 cos( 2π4 n − π

6 )u(n). List the first four values of y(n). Deduce the expressions for
the zero-input, zero-state, transient, and steady-state responses of the system.

9.25 Using the z-transform, derive the closed-form expression of the impulse
response of the cascade system consisting of systems governed by the given
difference equations with input x(n) and output y(n). List the first four values of
the impulse response of the cascade system.

* 9.25.1 y(n) = 2x(n)−x(n−1)+ 1
4y(n−1) and y(n) = 3x(n)+x(n−

1) − 1
3y(n − 1).

9.25.2 y(n) = x(n) + x(n − 1) − 2
3y(n − 1) and y(n) = 2x(n) − x(n −

1) − 1
5y(n − 1).

9.25.3 y(n) = x(n)+2x(n−1)+ 1
3y(n−1) and y(n) = 3x(n)+2x(n−

1) + 1
2y(n − 1).

9.26 Using the z-transform, derive the closed-form expression of the impulse
response of the combined system, connected in parallel, consisting of systems
governed by the given difference equations with input x(n) and output y(n). List
the first four values of the impulse response of the parallel system.

9.26.1 y(n) = 2x(n)−x(n−1)+ 1
4y(n−1) and y(n) = 3x(n)+x(n−

1) − 1
3y(n − 1).

9.26.2 y(n) = x(n) + x(n − 1) − 2
3y(n − 1) and y(n) = 2x(n) − x(n −

1) − 1
5y(n − 1).

* 9.26.3 y(n) = x(n)+2x(n−1)+ 1
3y(n−1) and y(n) = 3x(n)+2x(n−

1) + 1
2y(n − 1).



Chapter 10
The Laplace Transform

The generalization of the Fourier transform for continuous signals, by including
sinusoids with exponentially varying amplitudes in the set of basis signals, is called
the Laplace transform. This generalization makes the transform analysis applicable
to a larger class of signals and systems. In Sect. 10.1, we develop the Laplace
transform starting from the definition of the Fourier transform. In Sect. 10.2, the
properties of the Laplace transform are described. In Sect. 10.3, the inverse Laplace
transform is derived. Typical applications of the Laplace transform are presented in
Sect. 10.4.

10.1 The Laplace Transform

We assume, in this chapter, that all the signals are causal, that is, x(t) = 0, t < 0,
unless otherwise specified. This leads to the one-sided or unilateral version of
the Laplace transform, which is mostly used for practical system analysis. If a
signal x(t)u(t) is not Fourier transformable, then its exponentially weighted version,
x(t)e−σ t , may be Fourier transformable for the positive real quantity σ > 0. If
x(t)u(t) is Fourier transformable, x(t)e−σ t may still be transformable for some
values of σ < 0. The Fourier transform of this signal is

∫ ∞

0
(x(t)e−σ t )e−jωtdt

By combining the exponential factors, we get

X(σ + jω) =
∫ ∞

0
x(t)e−(σ+jω)t dt (10.1)
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This equation can be interpreted as the generalized Fourier transform of the
signal x(t) using exponentials with complex exponents or sinusoids with varying
amplitudes as the basis signals. Therefore, a signal may be decomposed in terms of
constant amplitude sinusoids or exponentially decaying sinusoids or exponentially
growing sinusoids or an infinite combination of these types of sinusoids. By
substituting s = σ + jω, we get the defining equation of the Laplace transform
of x(t) as

X(s) =
∫ ∞

0−
x(t)e−st dt

Note that the lower limit is assumed, in this book, to be 0−, where t = 0− is the
instant immediately before t = 0. This implies that a jump discontinuity or an
impulse component of the function x(t) at t = 0 is included in the integral. In
addition, this lower limit enables the use of the initial conditions at t = 0− directly.
In practical applications, we are more likely to know the initial conditions before
the input signal is applied, rather than after.

While X(jω) is the FT of x(t), X(s) = X(σ + jω) is the FT of x(t)e−σ t for all
values of σ for which

∫∞
0− |x(t)e−σ t |dt < ∞. If the value zero is included in these

values of σ , then X(jω) can be obtained from X(s) by the substitution s = jω.
The Laplace transform of x(t), X(s), exists for Re(s) > σ0 if |x(t)| ≤ Meσ0t for
some constants M and σ0. For example, the signal et2 has no Laplace transform. In
essence, the Laplace transform of a signal, whether it is converging or not, is the
FT of all its versions, obtained by multiplying it with a real exponential of the form
e−σ t , so that the modified signal is guaranteed to converge.

The advantages of the Laplace transform include the pictorial description of the
behavior of the system obtained by the use of the complex frequency; the ability to
analyze unstable systems or systems with exponentially growing inputs; automatic
inclusion of the initial conditions of the system in finding the output; and easier
manipulation of the expressions involving the variable s rather than jω.

Example 10.1 Find the Laplace transform of the unit-impulse signal, δ(t).

Solution Using the Laplace transform definition, we get

X(s) =
∫ ∞

0−
δ(t)e−st dt = 1, for all s and δ(t) ⇐⇒ 1, for all s

This transform pair can also be obtained by applying a limit process to any function
that degenerates into an impulse and its transform.

The exponential signal, e−atu(t), is fundamental to the study of linear continuous
systems, as it is more convenient to express the natural response of systems in that
form.



10.1 The Laplace Transform 333

Example 10.2 Find the Laplace transform of the real exponential signal, x(t) =
e−atu(t). Deduce the Laplace transform of the unit step signal, x(t) = u(t).

Solution Using the Laplace transform definition, we get

X(s) =
∫ ∞

0−
e−atu(t)e−st dt =

∫ ∞

0−
e−at e−st dt

=
∫ ∞

0−
e−(s+a)t dt = −e−(s+a)t

s + a

∣∣∣∣∣
∞

0−
= 1

s + a
−e−(s+a)t

s + a

∣∣∣∣∣
t=∞

For the integral to converge, limt→∞ e−(s+a)t must be equal to zero. This implies
that the real part of (s+a) is greater than zero and, hence, the convergence condition
is Re(s) > −a. This condition describes a region in the s-plane (a complex plane
used for displaying the Laplace transform) that lies to the right of the vertical line
characterized by the equation Re(s) = −a. Note that the Fourier transform of
e−atu(t) does not exist for negative values of a, whereas the Laplace transform
exists for all values of a as long as Re(s) > −a. Therefore, we get the Laplace
transform pair

e−atu(t) ⇐⇒ 1

s + a
, Re(s) > −a

This transform pair remains the same for complex-valued a with the convergence
condition, Re(s) > Re(−a).

With a = 0, we get the transform pair

u(t) ⇐⇒ 1

s
, Re(s) > 0

The region, consisting the set of all values of s in the s-plane for which
the defining integral of the Laplace transform converges, is called the region of
convergence (ROC). For the signal in Example 10.2, the region to the right of the
vertical line at Re(s) = Re(−a) is the ROC.

The frequency content of a signal is usually displayed by the locations of zeros
and poles and the magnitude of its Laplace transform. Figure 10.1a shows the pole-
zero plot, and Fig. 10.1b shows the magnitude of the Laplace transform, X(s) =
1

s+2 , of the signal e−2t u(t). When s = −2, |X(s)| = ∞. This point marked by the
symbol × in Fig. 10.1a is called a pole of X(s) (the peak in Fig. 10.1b). Except for a
constant factor, the Laplace transform of a signal can be reconstructed from its pole-
zero plot. For all values of s in the ROC (the region to the right of the dotted vertical
line at Re(s) = −2 shown in Fig. 10.1a), X(s) exists and is a valid representation of
the signal. In general, the ROC of a Laplace transform is the region in the s-plane
that is to the right of the vertical line passing through the rightmost pole location. If
the ROC includes the imaginary axis, Re(s) = 0, in the s-plane (as in Fig. 10.1a),
then the FT can be obtained from the Laplace transform by replacing s with jω.
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Fig. 10.1 (a) The pole-zero plot of the Laplace transform, 1
s+2 , of the signal, e−2t u(t); (b) the

magnitude of the Laplace transform

Example 10.3 Find the Laplace transform of the signal ejω0t u(t). Deduce the
Laplace transform of cos(ω0t)u(t).

Solution Using the transform of e−atu(t) with a = −jω0, we get

ejω0t u(t) ⇐⇒ 1

s − jω0
, Re(s − jω0) = Re(s) > 0

Using the fact that 2 cos(ω0t) = (ejω0t + e−jω0t ), we get

2X(s) = 1

s − jω0
+ 1

s + jω0
, Re(s) > 0

cos(ω0t)u(t) ⇐⇒ s

s2 + ω2
0

, Re(s) > 0

Figure 10.2a shows the pole-zero plot, and Fig. 10.2b shows the magnitude of the
Laplace transform, s

s2+( π
4 )

2 , of the signal cos(
π
4 t)u(t). When s = ±j π

4 , |X(s)| =
∞. These points marked by the symbol × in Fig. 10.2a are the poles of X(s) (the
peaks in Fig. 10.2b). When s = 0, X(s) = 0. This point marked by the symbol o in
Fig. 10.2a is the zero of X(s) (the valley in Fig. 10.2b).

Note that any periodic signal defined over the entire time domain,−∞ < t < ∞,
has a FT but no Laplace transform. However, a causal periodic signal (identically
zero for t < 0) has a Laplace transform exclusively of simple poles on the imaginary
axis.
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2 , of the signal, cos( π
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(b) the magnitude of the Laplace transform

10.1.1 Relationship Between the Laplace Transform and the
z-Transform

A relationship between the FT of a sampled signal and the DTFT of the correspond-
ing discrete signal was derived in Chap. 8. Now, we derive a similar relationship
between the Laplace transform and the z-transform. The sampled version of a signal
x(t)u(t) is xs(t) = ∑∞

n=0 x(n)δ(t − n), with a sampling interval of 1 second. As
the Laplace transform of δ(t − n) is e−sn and due to the linearity property of the
Laplace transform, the Laplace transform of the sampled signal xs(t) is given by

Xs(s) =
∞∑

n=0

x(n)e−sn

With z = es , this equation becomes

Xs(s) =
∞∑

n=0

x(n)z−n

The right-hand side of this equation is the z-transform of x(n).
For example, let x(t) = e−2t u(t). Then, the corresponding discrete signal is

x(n) = e−2nu(n) with its z-transform z
z−e−2 . Now, the Laplace transform of the

sampled version of x(t), xs(t) = ∑∞
n=0 e−2nδ(t − n), is es

es−e−2 , which is obtained
from z

z−e−2 by the substitution z = es .
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10.2 Properties of the Laplace Transform

Properties present the frequency-domain effect of time-domain characteristics and
operations on signals and vice versa. In addition, they are used to find new transform
pairs more easily.

10.2.1 Linearity

The Laplace transform of a linear combination of signals is the same linear
combination of their individual Laplace transforms. If x(t) ⇐⇒ X(s) and y(t) ⇐⇒
Y (s), then ax(t)+by(t) ⇐⇒ aX(s)+bY (s), where a and b are arbitrary constants.
This property is due to the linearity of the defining integral of the Laplace transform.
We use this property often to decompose a time-domain function in finding its
Laplace transform (as in Example 10.3) and to decompose a transform in order
to find its inverse.

10.2.2 Time Shifting

If x(t)u(t) ⇐⇒ X(s), then

x(t − t0)u(t − t0), t0 ≥ 0 ⇐⇒ e−st0X(s)

Now, e−st0 = e−(σ+jω)t0 = e−σ t0e−jωt0 . The term e−jωt0 is the linear shift of the
phase of sinusoids, as in the case of the Fourier analysis. Due to the fact that the basis
functions are sinusoids with varying amplitudes, we need another factor e−σ t0 to set
the amplitude of the sinusoids appropriately so that the reconstructed waveform is
the exact time-shifted version of x(t).

Consider the waveform x(t)u(t) = e−0.1t u(t) and its shifted version
e−0.1(t−8)u(t − 8). The Laplace transforms of the two functions are, respectively,

1
s+0.1 and e−8s

s+0.1 .
This property holds only for causal signals and for right shift only. Remember

that the transform of the shifted signal is expressed in terms of that of the original
signal, which is assumed to be zero for t < 0. For finding the transform of signals
such as x(t − t0)u(t) and x(t)u(t − t0), express the signal so that the arguments
of the signal and the unit-step signal are the same, and then apply the property. Of
course, the transform can also be computed using the defining integral.
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10.2.3 Frequency Shifting

If x(t)u(t) ⇐⇒ X(s), then

es0t x(t)u(t) ⇐⇒ X(s − s0)

Multiplying the signal x(t) by the exponential es0t amounts to changing the complex
frequency of its spectral components by s0. Therefore, the spectrum X(s) is shifted
in the s-plane by the amount s0.

Consider finding the transform of the signal e2t u(t). This signal can be consid-
ered as the unit step, u(t), multiplied by the exponential with s0 = 2. Therefore,
according to this property, the transform of e2t u(t) is the transform of u(t), which
is 1

s
, with the substitution s = s − 2, that is, 1

s−2 .

10.2.4 Time Differentiation

The time-differentiation property is used to express the transform of the derivative,
d x(t)

dt
, of a signal x(t) in terms of its transform X(s). If x(t) ⇐⇒ X(s), then

d x(t)

dt
⇐⇒ sX(s) − x(0−)

From the definition, the Laplace transform of the derivative of x(t) is given by

∫ ∞

0−
d x(t)

dt
e−st dt

= x(t)e−st |∞0− + s

∫ ∞

0−
x(t)e−st dt

= −x(0−) + sX(s)

We used the integration by parts property of integration. Note that, as t → ∞,
x(t)e−st → 0 in the ROC of X(s) for all values of s.

As the signal, in the frequency domain, is expressed in terms of exponentials est

and the derivative of the exponential is sest , the differentiation of a signal in time
domain corresponds to multiplication of its transform by the frequency variable s, in
addition to a constant term due to the initial value of the signal at t = 0−. The point
is that two signals x(t) and x(t)u(t) have the same unilateral Laplace transform.
However, the Laplace transforms of their derivatives will be different if x(t) and
x(t)u(t) have different values of discontinuity at t = 0. The derivative of x(t) with
a different value of x(0−) differs, from that of x(t)u(t), only at t = 0. sX(s) is the
derivative of x(t)u(t), that is, the derivative of x(t) with x(0−) = 0.
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Fig. 10.3 (a) Signal x(t) with step discontinuities and (b) its derivative

For example,

e−atu(t) ⇐⇒ 1

s + a
, Re(s) > −a

Then,

d (e−atu(t))

dt
= δ(t) − ae−atu(t) ⇐⇒ 1 −

(
a

s + a

)
= s

s + a

and

d (e−at )

dt
= −a(e−at ) ⇐⇒ sX(s) − x(0−) = s

s + a
− 1 = − a

s + a

A signal x(t), with step discontinuities, for example, at t = 0 of height (x(0+)−
x(0−)) and at t = t1 > 0 of height (x(t+1 ) − x(t−1 )) can be expressed as

x(t) = xc(t) + (x(0+) − x(0−))u(t) + (x(t+1 ) − x(t−1 ))u(t − t1),

where xc(t) is x(t) with the discontinuities removed and x(t+1 ) and x(t−1 ) are,
respectively, the right- and left-hand limits of x(t) at t = t1. The derivative of x(t)

is given by the generalized function theory as

d x(t)

dt
= d xc(t)

dt
+ (x(0+) − x(0−))δ(t) + (x(t+1 ) − x(t−1 ))δ(t − t1),

where d xc(t)
dt

is the ordinary derivative of xc(t) at all t except at t = 0 and t = t1.

The Laplace transform of d x(t)
dt

is given by

sXc(s) + (x(0+) − x(0−)) + (x(t+1 ) − x(t−1 ))e−st1 = sX(s) − x(0−)
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Consider the signal, shown in Fig. 10.3a, from t = 0−

x(t) = e−t (u(t) − u(t − 1)) + 2t (u(t − 1) − u(t − 2))

+ cos

(
π

2
t

)
u(t − 2)

= xc(t) + 1.6321u(t − 1) − 5u(t − 2),

and its derivative

d x(t)

dt
= −e−t (u(t) − u(t − 1)) + 2(u(t − 1) − u(t − 2))

−
(

π

2

)
sin

(
π

2
t

)
u(t − 2)

+ 1.6321δ(t − 1) − 5δ(t − 2),

shown in Fig. 10.3b. The continuous part is shown by a line, and the impulse
components are shown by triangles. The transform of dx(t)

dt
is

− 1

s + 1
+ e−1e−s

s + 1
+ 2e−s

s
− 2e−2s

s
+ ( π

2 )2e−2s

s2 + ( π
2 )2

+1.6321e−s −5e−2s = sX(s)−x(0−)

The term − sin(π
2 t)u(t − 2) can be rewritten as sin(π

2 (t − 2))u(t − 2), and then the
time-shifting theorem can be applied to find its transform.

Note that e−1 = 1/e ≈ 0.3679 and tu(t − 1) = u(t) + (t − 1)u(t − 1). The
transform of x(t) is

X(s) = 1

s + 1
− e−1e−s

s + 1
+ 2e−s

s2
− 2e−2s

s2
− se−2s

s2 + (π
2 )2

+ 2
e−s

s
− 4

e−2s

s

Remember that the value of x(t) for t < 0 is ignored in computing the unilateral
Laplace transform. The term cos(π

2 t)u(t − 2) can be rewritten as − cos(π
2 (t −

2))u(t − 2), and then the time-shifting theorem can be applied to find its transform.
The initial value is x(0−) = 1. Now,

sX(s)−x(0−) = s

s + 1
− se−1e−s

s + 1
+ 2e−s

s
− 2e−2s

s
− s2e−2s

s2 + (π
2 )2

+2e−s −4e−2s −1

This property can be extended, by repeated application, to find the transform of
higher-order derivatives. For example,

d

dt

(
d x(t)

dt

)
= d2x(t)

dt2
⇐⇒

s(sX(s) − x(0−)) − d x(t)

dt
|t=0− = s2X(s) − sx(0−) − d x(t)

dt
|t=0−
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One common application of this property is in the modeling of system com-
ponents such as an inductor. The relationship between the current i(t) through an
inductor of value L henries and the voltage v(t) across it is v(t) = L

di(t)
dt

. Assuming
the initial value of current in the inductor is i(0−), using this property, we get the
Laplace transform of the voltage across the inductor as V (s) = L(sI (s) − i(0−)).

The application of time-differentiation and linearity properties reduces a differ-
ential equation into an algebraic equation, which can be easily solved. Consider
solving the differential equation dy(t)

dt
+ 1

2y(t) = 0, with the initial condition

y(0−) = 3. The solution using time-domain method (Chap. 4) is y(t) = 3e− 1
2 t u(t).

Taking the transform of the differential equation, we get sY (s) − 3 + 1
2Y (s) = 0.

Solving for Y (s), Y (s) = 3
s+ 1

2
. Finding the inverse transform, we get the same

solution.

10.2.5 Integration

If x(t) ⇐⇒ X(s), then

∫ t

0−
x(τ) dτ ⇐⇒ 1

s
X(s)

As the signal, in the frequency domain, is expressed in terms of exponentials est

and the integral of the exponential is est

s
, the integration of a signal in time domain

corresponds to a division of its transform by the frequency variable s. From another
point of view, the product 1

s
X(s) corresponds to the convolution of x(t) and u(t)

in the time domain, which, of course, is equivalent to the integral of x(t) from 0
to t . For example, the transform of the unit-step signal, which is the integral of the
unit-impulse function with X(s) = 1, is 1

s
. Similarly, tu(t) ⇐⇒ 1

s2
.

Consider the function sin(t)u(t) with its transform 1
s2+1

. Using this property,

∫ t

0−
sin(τ )dτ ⇐⇒ 1

s(s2 + 1)

Finding the inverse transform, we get (1 − cos(t))u(t), which can be verified to be
the time-domain integral of the sine function.

As the definite integral
∫ 0−
−∞ x(τ) dτ is a constant,

∫ t

−∞
x(τ) dτ =

∫ 0−

−∞
x(τ) dτ +

∫ t

0−
x(τ) dτ ⇐⇒ 1

s

∫ 0−

−∞
x(τ) dτ + 1

s
X(s)

One common application of this property is in the modeling of system com-
ponents such as a capacitor. The relationship between the current i(t) through a



10.2 Properties of the Laplace Transform 341

capacitor of value C farads and the voltage v(t) across it is v(t) = 1
C

∫ t

0− i(τ )dτ +
v(0−), where v(0−) is the initial voltage across the capacitor. Using this property,
we get the Laplace transform of the voltage across the capacitor as V (s) =
I (s)
sC

+ v(0−)
s

.

10.2.6 Time Scaling

If x(t)u(t) ⇐⇒ X(s), then

x(at)u(at) ⇐⇒ 1

a
X
( s

a

)
, a > 0

The Laplace transform of x(at)u(at), from the definition, is

∫ ∞

0−
x(at)u(at)e−st dt

Substituting at = τ , we get t = τ
a
and dt = dτ

a
. Note that u(at) = u(t), a > 0.

With these changes, the transform becomes

1

a

∫ ∞

0−
x(τ)e− s

a
τ dτ = 1

a
X
( s

a

)

Compression (expansion) of a signal in the time domain, by changing t to at , results
in the expansion (compression) of its spectrum with the change s to s

a
, in addition

to scaling by 1
a
(to take into account of the change in energy).

Consider the transform pair

e−2t sin(t)u(t) ⇐⇒ 1

s2 + 4s + 5
= 1

(s + 2 − j)(s + 2 + j)

The two poles are located at −2 + j1 and −2 − j1. With a = 2, we get

e−4t sin(2t)u(2t) ⇐⇒ 1

2

1(
s
2

)2 + 4
(

s
2

)+ 5
= 2

(s + 4 − j2)(s + 4 + j2)

The two poles are located at −4 + j2 and −4 − j2.

10.2.7 Convolution in Time

If x(t)u(t) ⇐⇒ X(s) and h(t)u(t) ⇐⇒ H(s), then
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y(t) = x(t)u(t) ∗ h(t)u(t) =
∫ ∞

0
x(τ)h(t − τ)dτ ⇐⇒ X(s)H(s)

The FT of x(t)e−σ t is the Laplace transform X(s) of x(t). The convolution of
x(t)e−σ t and h(t)e−σ t corresponds to X(s)H(s) in the frequency domain. The
inverse FT of X(s)H(s), therefore, is the convolution of x(t)e−σ t and h(t)e−σ t

given by

∫ ∞

0
x(τ)e−στ h(t −τ)e−σ(t−τ)dτ = e−σ t

∫ ∞

0
x(τ)h(t −τ)dτ = e−σ t (x(t)∗h(t))

As finding the inverse Laplace transform is the same as finding the inverse FT in
addition to multiplying the signal by eσ t , as will be seen later, we get the convolution
of x(t) and h(t) by finding the inverse Laplace transform of X(s)H(s).

Consider the convolution of e2t u(t) and e−2t u(t). The inverse of the product of
their transforms,

1

(s − 2)(s + 2)
= 1

4

(
1

(s − 2)
− 1

(s + 2)

)
,

is the convolution output 1
4 (e

2t − e−2t )u(t).

10.2.8 Multiplication by t

If x(t)u(t) ⇐⇒ X(s), then

tx(t)u(t) ⇐⇒ −dX(s)

ds

Differentiating the defining expression for −X(s) with respect to s, we get

−dX(s)

ds
= − d

ds

(∫ ∞

0−
x(t)u(t)e−st dt

)
=
∫ ∞

0−
tx(t)e−st dt

In general,

tnx(t)u(t) ⇐⇒ (−1)n
dnX(s)

dsn
, n = 0, 1, 2, . . .

For example, tδ(t) = 0 ⇐⇒ − d(1)
ds

= 0. Another example is tu(t) ⇐⇒ − d( 1
s
)

ds

= 1
s2
.
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10.2.9 Initial Value

If only the initial and final values of a function x(t) are required, these values can
be found directly, from X(s), using the following properties rather than finding the
function x(t) by inverting X(s).

If x(t) ⇐⇒ X(s) and the degree of the numerator polynomial of X(s) is less
than that of the denominator polynomial, then

x(0+) = lim
s→∞ sX(s)

As s → ∞, the value of any term with a higher-order denominator tends to zero,
and

lim
s→∞ sX(s) = lim

s→∞

(
sA1

s − s1
+ sA2

s − s2
+ · · · + sAN

s − sN

)
= A1 + A2 + · · · + AN

The inverse transform of X(s), as t → 0, is

x(t) = A1e
s1t + A2e

s2t + · · · + ANesN t

The right-hand limit of x(t), as t → 0, is

x(0+) = A1 + A2 + · · · + AN = lim
s→∞ sX(s)

Similarly,

d x(t)

dt
|t=0+ = lim

s→∞(s2X(s) − sx(0−))

10.2.10 Final Value

If x(t) ⇐⇒ X(s) and the ROC of sX(s) includes the jω axis, then

lim
t→∞ x(t) = lim

s→0
sX(s)

As t → ∞, the value x(∞), if it is nonzero, is solely due to the scaled unit-step
component of x(t). Multiplying X(s) by s and setting s = 0 is just finding the
partial fraction coefficient of the unit-step component of x(t).

The initial and final values from the transform

1

s(s + 2)
= 0.5

s
− 0.5

s + 1
⇐⇒ (0.5 − 0.5e−t )u(t)
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are

x(0+) = lim
s→∞

1

s + 2
= 0 and lim

t→∞ x(t) = lim
s→0

1

s + 2
= 1

2

The result is obvious from the time-domain response.

10.2.11 Transform of Semiperiodic Functions

Consider the function x(t)u(t) that is periodic of period T for t ≥ 0, that is, x(t +
T ) = x(t), t ≥ 0. Let x1(t) = x(t)u(t) − x(t − T )u(t − T ) ⇐⇒ X1(s). x1(t) is
equal to x(t)u(t) over its first period and is zero elsewhere. Then,

x(t)u(t) = x1(t) + x1(t − T ) + · · · + x1(t − nT ) + · · ·

Using the time-shifting property, the transform of x(t)u(t) is

X(s) = X1(s)(1 + e−sT + · · · + e−nsT + · · · ) = X1(s)

1 − e−sT

Let us find the transform of a semiperiodic square wave, the first period of which is
defined as

x1(t) =
{
1 for 0 < t < 2
0 for 2 < t < 4

As x1(t) = (u(t) − u(t − 2)), X1(s) = (1−e−2s )
s

. From the property,

X(s) = 1

(1 − e−4s)

(1 − e−2s)

s
= 1

s(1 + e−2s)

10.3 The Inverse Laplace Transform

Consider the transform pair x(t)u(t) ⇐⇒ 1
s−4 , Re(s) > 4. Multiplying x(t)u(t)

by e−5t u(t) gives x(t)e−5t u(t) ⇐⇒ 1
(s+5)−4 = 1

s+1 , Re(s) > −1, due to the
frequency-shifting property. Now, the ROC includes the jω axis in the s-plane. Let
us substitute s = jω in 1

s+1 to get 1
jω+1 . The inverse FT of this transform is the

signal e−t u(t) = x(t)e−5t u(t). Now, multiplying both sides by e5t u(t) gives the
original time-domain signal x(t)u(t) = e4t u(t). This way of finding the inverse
Laplace transform gives us a clear understanding of how the Laplace transform is
the generalized version of the FT.
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The inverse FT of X(σ + jω), defined in (Eq. 10.1), is given as

x(t)e−σ t = 1

2π

∫ ∞

−∞
X(σ + jω)ejωtdω

Multiplying both sides by eσ t , we get

x(t) = 1

2π

∫ ∞

−∞
X(σ + jω)e(σ+jω)t dω

The complex frequency (σ + jω) can be replaced by a complex variable s = (σ +
jω) with the limits of the integral changed to σ − jω and σ + jω. As ds = jdω,
we get the inverse Laplace transform of X(s) as

x(t) = 1

2πj

∫ σ+j∞

σ−j∞
X(s)est ds,

where σ is any real value that lies in the ROC of X(s). Note that the integral
converges to the value zero for t < 0 and to the mid-point value at any discontinuity
of x(t). This equation is not often used for finding the inverse transform, as it
requires integration in the complex plane. The partial fraction method, which is
essentially the same as that was described in Chap. 9, is commonly used. The
difference is that the partial fraction terms are of the form k

s−p
in contrast to kz

z−p
,

as shown in the following examples.

10.3.1 Inverse Laplace Transform by Partial Fraction
Expansion

In the transform method of system analysis, we find the forward transform of
signals, do the required processing in the transform domain, and find the inverse
transform to get the time-domain version of the processed signal. Most of the
Laplace transforms of practical interest are rational functions (a ratio of two
polynomials in s). The denominator polynomial can be factored into a product of
first- or second-order terms. This type of Laplace transforms can be expressed as
the sum of partial fractions with each denominator forming a factor. The inverse
Laplace transforms of the individual fractions can be easily found from a short table
of transform pairs, such as those of δ(t), u(t), tu(t), t2u(t), e−atu(t), and te−atu(t),
shown in Table B.11. The sum of the individual inverses is the inverse of the given
Laplace transform.

Two rational functions are added by converting them to a common denominator,
add and then simplify. For example, the sum of the two rational functions is
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X(s) = 2

(s + 2)
+ 3

(s + 3)
= 2(s + 3) + 3(s + 2)

(s + 3)(s + 2)
= (5s + 12)

(s2 + 5s + 6)

Usually, we are given X(s) to be inverted in the form on the right. The task is to
find an equivalent expression like that on the left. The numerator polynomial of the
rightmost expression is of order 1, whereas that of the denominator is of order 2.
Partial fraction expansion of a rational function expresses it as a sum of appropriate
fractions with the coefficient of each fraction to be found.

Example 10.4 Find the zero-state response of the system governed by the differen-
tial equation

dy

dt
+ 3y(t) = dx

dt
+ 2x(t)

with the input x(t) = u(t), the unit-step function.

Solution The Laplace transforms of the terms of the differential equation are

x(t) ↔ 1

s
,

dx

dt
↔ 1 y(t) ↔ Y (s),

dy

dt
↔ sY (s)

Substituting the corresponding transform for each term in the differential equation
and solving for Y (s), we get

Y (s) = s + 2

s(s + 3)
= A

s
+ B

(s + 3)

A = (s + 2)

(s + 3)

∣∣∣∣
s=0

= 2/3, B = (s + 2)

s

∣∣∣∣
s=−3

= 1/3

Y (s) = 2/3

s
+ 1/3

(s + 3)

Taking the inverse Laplace transform, we get the complete response.

y(t) = ((2/3) + (1/3)e−3t )u(t)

The steady-state response is ((2/3)u(t), and the transient response is ((1/3)e−3t )u(t).
Letting t = 0, y(0) = 1. Letting t → ∞, y(∞) = 2/3. From the initial and final
value properties also, we get

lim
s→∞ s

2/3

s
+ s

1/3

(s + 3)
= 1, lim

s→0
s
2/3

s
+ s

1/3

(s + 3)
= 2/3
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Rational Function with the Same Order of Numerator and Denominator
Partial fraction expansion is applicable, only if the degree of the numerator
polynomial is less than that of the denominator. In practical system analysis, we
encounter only rational functions with the degree of the numerator polynomial less
than or equal that of the denominator. In the case the degrees are equal, we divide
the numerator polynomial by the denominator polynomial once to get a constant
plus a proper function.

Example 10.5 Find the inverse of

X(s) = s + 1

s + 3

Solution

X(s) = s + 1

(s + 3)
= 1 − 2

(s + 3)

Taking the inverse Laplace transform, we get the complete response.

x(t) = δ(t) − 2e−3t u(t)

Example 10.6 Find the zero-state response of the system governed by the differen-
tial equation

d2y

dt2
+ dy

dt
+ 2y = x,

using the Laplace transform, with the input x(t) = e−t u(t).

Solution The Laplace transforms of the terms of the differential equation are

x(t) ↔ 1

(s + 1)
, y(t) ↔ Y (s),

dy

dt
↔ sY (s),

d2y

dt2
↔ s2Y (s)

Substituting the corresponding transform for each term in the differential equation
and solving for Y (s), we get

Y (s) = 1

(s2 + s + 2)(s + 1)
= 0.5

(s + 1)
+ −0.2500 + j0.0945

(s + 0.5000 − j1.3229)

+ −0.2500 + j0.0945

(s + 0.5000 + j1.3229)
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Suppose the two complex conjugate roots are

−a + jb and − a − jb

and the corresponding partial fraction coefficients are

Rejθ and Re−jθ

Then, the corresponding inverse transformation is

2Re−at cos(bt + θ)

Taking the inverse Laplace transform, we get the complete response.

y(t) = (0.5e−t + 0.5345e−0.5t cos(1.3229t − 2.7802))u(t)

Multiple-Order Poles
Each repeated linear factor (s + a)m contributes a sum of the form

Am

(s + a)m
+ Am−1

(s + a)m−1 + · · · + A1

(s + a)

Example 10.7 Find the zero-state response of the system governed by the differen-
tial equation

d3y

dt3
+ 6

d2y

dt2
+ 12

dy

dt
+ 8y = d2x

dt2
+ dx

dt
+ 2x,

using the Laplace transform, with the input x(t) = e−t u(t).

Solution The Laplace transforms of the terms of the differential equation are

x(t) ↔ 1

(s + 1)
,

dx

dt
↔ s

(s + 1)
,

d2x

dt2
↔ s2

(s + 1)

y(t) ↔ Y (s),
dy

dt
↔ sY (s),

d2y

dt2
↔ s2Y (s)

Substituting the corresponding transform for each term in the differential equation
and solving for Y (s), we get

Y (s) = s2 + s + 2

(s3 + 6s2 + 12s + 8)(s + 1)
= A

(s + 2)
+ B

(s + 2)2
+ C

(s + 2)3
+ D

(s + 1)
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D = s2 + s + 2

(s3 + 6s2 + 12s + 8)

∣∣∣∣
s=−1

= 2

C = s2 + s + 2

(s + 1)

∣∣∣∣
s=−2

= −4

With C and D known, to find A, one method is to multiply both sides by s and let
s → ∞. That is,

lim
s→∞ s

s2 + s + 2

(s3 + 6s2 + 12s + 8)(s + 1)
= lim

s→∞
As

(s + 2)
+ Bs

(s + 2)2
+ Cs

(s + 2)3
+ Ds

(s + 1)

We get 0 = 2 + A or A = −2. To find B, we replace s by a value other than the
roots. Let s = 0, and we get

0 + 0 + 2

(0 + 0 + 0 + 8)(0 + 1)
= −2

(0 + 2)
+ B

(0 + 2)2
+ −4

(0 + 2)3
+ 2

(0 + 1)
or B = −1

Now,

Y (s) = s2 + s + 2

(s3 + 6s2 + 12s + 8)(s + 1)
= −2

(s + 2)
+ −1

(s + 2)2
+ −4

(s + 2)3
+ 2

(s + 1)

Taking the inverse Laplace transform, we get the complete response.

y(t) = (2e−t − 2e−2t − te−2t − 2t2e−2t )u(t)

Example 10.8 Find the inverse of

X(s) = 1

(s2 + 4)2

Solution First, let us find the inverse using properties.

sin(2t)u(t) ↔ 2

(s2 + 4)

Applying frequency-differentiating property, we get

t sin(2t) ↔ 4s

(s2 + 4)2
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Now,

1

(s2 + 4)2
=
(

4s

(s2 + 4)2

)(
1

4s

)

Using the convolution property, the inverse is

1

4
∗ t sin(2t) = 1

4

∫ t

0
τ sin(2τ)dτ = 1

16
(sin(2t) − 2t cos(2t)) u(t)

By partial fraction, we get

X(s) = 1

(s2 + 4)2
= j0.0312

s + j2
+ −j0.0312

s − j2
+ −0.0625

(s + j2)2
+ −0.0625

(s − j2)2

= (1/8)

(s2 + 4)
− (1/8)(s2 − 4)

(s2 + 4)2

Taking the inverse, we get the same result.

10.4 Applications of the Laplace Transform

10.4.1 Transfer Function and the System Response

Consider the second-order differential equation of a causal LTI continuous system
relating the input x(t) and the output y(t),

d2y(t)

dt2
+ a1

dy(t)

dt
+ a0y(t) = b2

d2x(t)

dt2
+ b1

dx(t)

dt
+ b0x(t).

Taking the Laplace transform of both sides, we get, assuming initial conditions are
all zero,

(s2 + a1s + a0)Y (s) = (b2s
2 + b1s + b0)X(s)

The transfer function H(s), which is the ratio of the transforms of the output and
the input signals with the initial conditions zero, is obtained as

H(s) = Y (s)

X(s)
= b2s

2 + b1s + b0

s2 + a1s + a0
=

∑2
l=0 bls

l

s2 +∑1
l=0 alsl
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In general,

H(s) = Y (s)

X(s)
= bMsM + bM−1s

M−1 + · · · + b1s + b0

sN + aN−1sN−1 + · · · + a1s + a0

If the input to the system is the unit-impulse signal, then its transform is one, and
H(s) = Y (s). That is, the transform of the impulse response is the transfer function
of the system. For stable systems, the frequency response H(jω) is obtained from
H(s) by replacing s by jω.

10.4.2 Characterization of a System by Its Poles and Zeros

The numerator and denominator polynomials of the transfer function can be factored
to get

H(s) = K
(s − z1)(s − z2) · · · (s − zM)

(s − p1)(s − p2) · · · (s − pN)
= K

∏M
l=1(s − zl)∏N
l=1(s − pl)

,

where K is a constant. As the coefficients of the polynomials of H(s) are real
for practical systems, the zeros and poles are real-valued, or they always occur as
complex conjugate pairs.

The pole-zero plot of the transfer function H(s) of a system is a pictorial
description of its characteristics, such as speed of response, frequency selectivity,
and stability. Poles located farther from the imaginary axis in the left half of the s-
plane result in a fast-responding system with its transient response decaying rapidly.
On the other hand, poles located close to the imaginary axis in the left half of the s-
plane result in a sluggish system. Complex conjugate poles located in the left half of
the s-plane result in an oscillatory transient response that decays with time. Complex
conjugate poles located on the imaginary axis result in a steady oscillatory transient
response. Poles located on the positive real axis in the left half of the s-plane result in
exponentially decaying transient response. The frequency components of an input
signal with frequencies close to a zero will be suppressed, while those close to a
pole will be readily transmitted. Poles located symmetrically about the negative real
axis in the left half of the s-plane and close to the imaginary axis in the passband
result in a lowpass system that more readily transmits low-frequency signals than
high-frequency signals. Zeros placed in the stopband further enhance the lowpass
character of the frequency response. For example, pole-zero plots of some lowpass
filters are shown in Figs. 10.1 and 10.20. The stability of a system can also be
determined from its pole-zero plot, as presented later.

Example 10.9 Find the zero-input, zero-state, transient, steady-state, and complete
responses of the system governed by the differential equation
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d2y(t)

dt2
+ 4

dy(t)

dt
+ 4y(t) = d2x(t)

dt2
+ dx(t)

dt
+ 2x(t)

with the initial conditions y(0−) = 2 and d y(t)
dt

|t=0− = 3 and the input x(t) = u(t),
the unit-step function.

Solution The Laplace transforms of the terms of the differential equation are

x(t) ⇐⇒ 1

s
,

dx(t)

dt
⇐⇒ 1,

d2x(t)

dt2
⇐⇒ s

y(t) ⇐⇒ Y (s),
dy(t)

dt
⇐⇒ sY (s) − 2

d2y(t)

dt2
⇐⇒ s2Y (s) − 2s − 3

Substituting the corresponding transform for each term in the differential equation
and solving for Y (s), we get

Y (s) = s2 + s + 2

s(s2 + 4s + 4)
+ 2s + 11

s2 + 4s + 4

The first term on the right-hand side is H(s)X(s) and corresponds to the zero-state
response. The second term is due to the initial conditions and corresponds to the
zero-input response. Expanding into partial fractions, we get

Y (s) = 0.5

s
+ 0.5

(s + 2)
− 2

(s + 2)2
+ 2

(s + 2)
+ 7

(s + 2)2

Taking the inverse Laplace transform, we get the complete response.

y(t) = (

zero−state︷ ︸︸ ︷
0.5 + 0.5e−2t − 2te−2t +

zero−input︷ ︸︸ ︷
2e−2t + 7te−2t )u(t)

= (0.5 + 2.5e−2t + 5te−2t )u(t)

The steady-state response is 0.5u(t), and the transient response is (2.5e−2t +
5te−2t )u(t). The initial and final values of y(t) are 3 and 0.5, respectively. These
values can be verified by applying the initial and final value properties to Y (s).
We can also verify that the initial conditions at t = 0− are satisfied by the zero-
input component of the response. The zero-input, zero-state, and total responses
are shown, respectively, in Fig. 10.4a,b, and c. Figure 10.5 shows the simulation
diagram of the transfer function with initial conditions producing the total response.
The top half of the diagram produces the zero-state response to the unit-step input.
The zero-input response is produced by the bottom half. The summer unit adds the
two responses to produce the total response.
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Fig. 10.4 The response of the system for unit-step signal: (a) zero-input response; (b) zero-state
response; (c) total response

Fig. 10.5 The simulation
diagram of the transfer
function with initial
conditions

10.4.3 Unit-Step Response and Transient-Response
Specifications

In practice, the order of the control system is very high. But, for implementation
advantages, they are usually decomposed into first- and second-order systems.
Therefore, the analysis of first- and second-order systems is necessary for under-
standing the analysis and design of higher-order systems. The impulse response of
stable systems does not have the steady-state component. Consequently, the unit-
step signal is widely used as the test signal to analyze and design control systems.

Consider the open-loop transfer function of a second-order system with unity
feedback in standard form.

G(s) = Y (s)

E(s)
= ω2

n

s2 + 2ζωns
,

where ζ is the damping ratio and ωn is the undamped natural frequency in rad/sec.
The corresponding closed-loop transfer function is

H(s) = Y (s)

X(s)
= ω2

n

s2 + 2ζωns + ω2
n
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Fig. 10.6 (a) Unit-step response; (b) unit-step response with various damping ratios ζ

This is just a second-order Laplace transfer function, but the coefficients are
expressed in terms of important system parameters. This form is called the standard
form of the second-order transfer function.

Substituting the specific values ζ = 0.6 and ωn = 3 rad/sec, we get

H(s) = 9

s2 + 3.6s + 9

Multiplying by the unit-step function u(t) ↔ 1/s, decomposing into partial fraction,
and taking the inverse Laplace transform, we get the unit-step response as

y(t) = 1 + 1.25e−1.8t cos(2.4t + 2.4981)

The unit-impulse response is obtained by differentiating the unit-step response.
Figure 10.6a shows the unit-step response of the second-order transfer function. The
characteristic figures are shown in the figure. As both the transient and steady-state
responses are critical for control systems, these specifications are quite important.
In most systems, typically, the damping ratio is between 0.4 and 0.8 to avoid
excessive overshoot and sluggish response. Note that maximum overshoot and rise
time conflict each other.

Figure 10.6b shows the unit-step response of the second-order transfer function

H(s) = 1

(s2 + 2ζ s + 1)

with ωn = 1 rad/sec and various values of ζ . The unit-step response is usually
measured with zero initial conditions, which makes it easy to compare with those of
other systems.

The response is of three types. If ζ = 1, both the roots are real and the same
(critically damped). If ζ < 1, the roots are complex conjugates (underdamped)
with negative real parts. If ζ > 1, both the roots are real (overdamped). For the
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underdamped case 0 < ζ < 1, the unit-step response is given as

y(t) =
(
1 + e−ζωnt√

(1 − ζ 2)
cos(ωn

√
(1 − ζ 2)t +

(
cos−1(ζ ) + π

2

)
)

)
u(t)

The damped frequency is ωd = ωn

√
1 − ζ 2 and usually less than ωn. Substituting

ζ = 0.6 and ωn = 3 rad/sec in the general expression given above, we get the
specific response for y(t) shown in Fig. 6.3a. The damped frequency is 2.4 rad/sec,
as can be seen from the expression for y(t). The two roots of the underdamped (ζ <

1) second-order transfer function in standard form, using the quadratic formula, are

−ζωn ± jωn

√
1 − ζ 2 = −α ± jωd

with α = ζωn and ωd = ωn

√
1 − ζ 2. The response becomes more oscillatory for

lower values of ζ . For the overdamped case, the roots are

−ζωn ± ωn

√
ζ 2 − 1

For the critically damped case ζ = 1, the roots are −ωn. For ζ ≥ 1, the response
never exceeds its final value. For the undamped case ζ = 0, the roots are ±jωn. In
this case, the response is a steady sinusoid. In the expression for unit-step response,
α appears in the exponential term. Therefore, it controls the rise or decay of the
response.

The maximum overshoot is

Mp = e
− πζ√

1−ζ2

and it occurs at

tp = π

ωn

√
1 − ζ 2

The maximum overshoot of the response y(t) is defined as the difference between
the maximum value of y(t) and the steady-state value limt→∞ y(t). The peak time
tp is the time at which the first peak of the response occurs. For example, the value
is 0.0948 at t = 1.313 sec. (or 9.48%) as shown in the figure.

The settling time ts is defined as the time required for the response to be within
certain percentage of its final value, typically 2%. The settling time ts has to satisfy
the condition

e−ζωnts < 0.02
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That is,

eζωnts = 1

0.02
= 50 or ts = loge(50)

ζωn

= 3.9120

ζωn

∼= 4

ζωn

= 4τ,

where τ is the time constant. Consider only the exponential part of the unit-step
response

1.25e−1.8t u(t) = 1.25e− t
0.5556 u(t)

At t = 0.0.5556, the response becomes

1.25e−1u(t) = 1.25(0.3679) = 0.4599

That is, the value of the exponential decreases to 0.3679 of its initial value in
one time constant τ = 0.5556 s. In four time constants, the value decreases to
0.36794 = 0.0183 which is less than 2% of its initial value. We approximated this
to 2% to define the settling time. The system with a smaller time constant is faster
that responds quickly to the input.

The delay time td is the time required for the response to reach 50% of its final
value for the first time. The rise time is the time required for the response to rise
from 10% to 90% (usually used for overdamped systems) or 0% to 100% (usually
used for underdamped systems) of its final value.

Damping Ratio and Damping Factor
For the case of critical damping with ζ = 1, the magnitude of the real part of the
roots of the characteristics of the equation of the system is the same, ωn, with the
imaginary part zero. The factor ζωn, called the damping factor, actually controls the
damping of the system. Then, ζ can be considered as the damping ratio

ζ = ζωn

ωn

= actual damping factor

damping factor at critical damping

10.4.4 System Stability

The zero-input response of a system depends solely on the locations of its poles. A
system is considered stable if its zero-input response due to finite initial conditions
converges, marginally stable if its zero-input response tends to a constant value or
oscillates with a constant amplitude, and unstable if its zero-input response diverges.
Commonly used marginally stable systems are oscillators, which produce a bounded
zero-input response. The response corresponding to each pole p of a system is of
the form eat , where a is the location of the pole in the s-plane. If the real part of
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Fig. 10.7 The poles of some transfer functions H(s) and the corresponding impulse responses
h(t). The imaginary axis is shown by a dashed line. (a) H(s) = 1

s2+1
= 1

(s+j)(s−j)
and H(s) = 1

s
;

(b) h(t) = sin(t)u(t) and (c) h(t) = u(t); (d) H(s) = 1
(s+0.5)2+1

= 1
(s+0.5+j)(s+0.5−j)

and

H(s) = 1
s+2 ; (e) h(t) = e−0.5t sin(t)u(t) and (f) h(t) = e−2t u(t); (g) H(s) = 1

(s−0.5)2+1
=

1
(s−0.5+j)(s−0.5−j)

and H(s) = 1
s2
; (h) h(t) = e0.5t sin(t)u(t) and (i) h(t) = tu(t); (j) H(s) =

1
(s2+1)2

= 1
(s+j)2(s−j)2

and H(s) = 1
s−2 ; (k) h(t) = 0.5(sin(t) − t cos(t))u(t) and (l) h(t) =

e2t u(t)

a is less than zero, then eat tends to zero as t tends to ∞. If the real part of a is
greater than zero, then eat tends to ∞ as t tends to ∞. If the real part of a is equal
to zero, then eat remains bounded as t tends to ∞. However, the response tends to
infinity, for poles of order more than 1 lying on the imaginary axis of the s-plane, as
the expression for the response includes a factor that is a function of t . Poles of any
order lying to the left of the imaginary axis of the s-plane do not cause instability.
Figure 10.7 shows pole locations of some transfer functions and the corresponding
impulse responses. Therefore, we conclude that, in terms of the locations of the
poles of a system:
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• All the poles, of any order, of a stable system must lie to the left of the imaginary
axis of the s-plane. That is, the ROC of H(s) must include the imaginary axis.

• Any pole lying to the right of the imaginary axis or any pole of order more than
1 lying on the imaginary axis makes a system unstable.

• A system is marginally stable if it has no poles to the right of the imaginary axis
and has poles of order 1 on the imaginary axis.

If all the poles of a system lie to the left of the imaginary axis of the s-plane, the
bounded-input bounded-output stability condition (Chap. 4) is satisfied. However,
the converse is not necessarily true, since the impulse response is an external
description of a system and may not include all its poles. The bounded-input
bounded-output stability condition is not satisfied by a marginally stable system.

10.4.5 Realization of Systems

Most of the transfer functions of practical continuous and discrete systems are
rational functions of two polynomials, the difference being that the independent
variable is s in H(s) and it is z in H(z). For example,

H(s) = b2s
2 + b1s + b0

s2 + a1s + a0
and H(z) = b2z

2 + b1z + b0

z2 + a1z + a0

We realized discrete systems using multipliers, adders, and delay units, in Chap. 9.
By comparison of the corresponding difference and differential equations, we find
that the only difference is that integrators are required in realizing continuous
systems instead of delay units. Therefore, the realization of continuous-time systems
is the same as that for discrete systems, described in Chap. 9, except that delay
units are replaced by integrators. Figure 10.8 shows the realization of a second-
order continuous system. Integrators with feedback are used to simulate differential
equations.

10.4.6 Frequency-Domain Representation of Circuits

By replacing each element in a circuit, along with their initial conditions, by the
corresponding frequency-domain representation, we can analyze the circuit in a
way similar to a resistor network. This procedure is quite effective for circuits with
nonzero initial conditions compared with writing the differential equation and then
finding the Laplace transform.

In time-domain representation, a capacitor with initial voltage v(0−) is modeled
as an uncharged capacitor in series with a voltage source v(0−)u(t). The voltage-
current relationship of a capacitor is
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Fig. 10.8 The realization of
a second-order continuous
system

v(t) = 1

C

∫ t

−∞
i(τ )dτ = 1

C

∫ 0−

−∞
i(τ )dτ + 1

C

∫ t

0−
i(τ )dτ = v(0−)+ 1

C

∫ t

0−
i(τ )dτ

Taking the Laplace transform, the voltage across the capacitor is given as

V (s) = I (s)

sC
+ v(0−)

s

The capacitor is modeled as an impedance 1
sC

in series with an ideal voltage source
v(0−)

s
. By taking the factor 1

sC
out, an alternate representation is obtained as

V (s) = 1

sC

(
I (s) + Cv(0−)

)

The voltage across the capacitor is due to the current (I (s) + Cv(0−)) flowing
through it. This representation, in the time domain, implies an uncharged capacitor
in parallel with an impulsive current source Cv(0−)δ(t).

In time-domain representation, an inductor with initial current i(0−) is modeled
as an inductor, with no initial current, in series with an impulsive voltage source
Li(0−)δ(t). The voltage-current relationship of an inductor is

v(t) = L
di(t)

dt

Taking the Laplace transform, the voltage across the inductor is given as

V (s) = L(sI (s) − i(0−))
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Fig. 10.9 A RCL circuit

Fig. 10.10 The Laplace
transform representation of
the circuit in Fig. 10.5

The inductor is modeled as an impedance sL in series with an ideal voltage source
−Li(0−). By taking the factor sL out, an alternate representation is obtained as

V (s) = sL

(
I (s) − i(0−)

s

)

The voltage across the inductor is due to the current (I (s) − i(0−)
s

) flowing through
it.

Example 10.10 Find the current in the circuit, shown in Fig. 10.9, with the initial
current through the inductor i(0−) = 3 amperes and the initial voltage across
capacitor v(0−) = 2 volts and the input x(t) = 3u(t) volts.

Solution The Laplace transform representation of the circuit in Fig. 10.5 is shown
in Fig. 10.10.

The sum of the voltages in the circuit is

3

s
+ 6 − 2

s
= 6s + 1

s

The circuit impedance is

5

3
+ 2s + 1

3s
= 6s2 + 5s + 1

3s

Dividing the voltage by the impedance, we get the current in the circuit as

I (s) = 6s + 1

s

3s

6s2 + 5s + 1
= (3s + 1

2 )

s2 + 5
6 s + 1

6
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Fig. 10.11 The physical simulation diagram of the series circuit

Fig. 10.12 The current
through the series circuit

Expanding into partial fractions, we get

I (s) = 6

s + 1
2

− 3

s + 1
3

Finding the inverse Laplace transform, we get the current in the circuit as

i(t) = (6e− 1
2 t − 3e− 1

3 t )u(t)

The physical simulation diagram of the series circuit is shown in Fig. 10.11. The
current through the series circuit is shown in Fig. 10.12. The horizontal axis is time
and the vertical axis is current. The initial current is 3 ampere and the final current
tends to zero.
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Fig. 10.13 Two systems
connected in a feedback
configuration

10.4.7 Feedback Systems

Consider the two systems connected in a feedback configuration, shown in
Fig. 10.13. The feedback signal R(s) can be expressed as R(s) = F(s)Y (s),
where F(s) is the feedback transfer function of the system and Y (s) is the output.
Now, the error signal E(s) is

E(s) = X(s) − R(s) = X(s) − F(s)Y (s)

The output Y (s) is expressed as

Y (s) = G(s)E(s) = G(s)(X(s) − F(s)Y (s))

where G(s) is the forward transfer function of the system. Therefore, the transfer
function of the feedback system is given as

H(s) = Y (s)

X(s)
= G(s)

1 + G(s)F (s)

If G(s) is very large, the transfer function of the feedback system approximates to
the inverse of the feedback transfer function of the system.

H(s) = Y (s)

X(s)
≈ 1

F(s)

10.4.8 Bode Diagram

The frequency response of systems, in two different formats, play an important
in the analysis of feedback control systems. They are called Bode and Nyquist
plots. The loop transfer function of the system, shown in Fig. 10.13, is G(s)F (s).
The frequency response is obtained as G(jω)F (jω) by replacing s by jω. The
frequency response can be easily obtained using an oscillator to provide sinusoidal
input of frequencies of interest, applying the sinusoids to the system and measuring
the change in the magnitude and phase of the input sinusoids. A large loop gain
improves the performance of a system. However, it could also lead to instability of
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Fig. 10.14 Bode plot of H(s) = 10
(s+1) showing gain and phase margins

the system. Bode diagram is one of the methods to test the relative stability of a
system.

Using decibels for the magnitude and logarithmic scales for the frequency, the
plots of the magnitude and phase responses to sinusoidal inputs are known as Bode
plots. These plots can be constructed easily using the asymptotic behavior of the
responses and are used widely in practical feedback system analysis. Figure 10.14a
and b shows, respectively, the magnitude and phase response of the Bode plot of
the loop transfer function H(s) = 10

(s+1) . It is a frequency response plot with
the magnitude represented in decibels and phase represented in degrees with a
logarithmic frequency scale. The frequency 1 rad/sec is called the corner frequency
at which the slope of the plot changes from approximately 0 dB to −20 db/decade.

The phase crossover frequency is the frequency at which the phase of H(jω)

is −180 degrees. The gain margin is defined as −20 log 10|H(jω)| at the phase
crossover frequency. When the phase never crosses −180 degrees, as in this
example, the gain margin is defined as ∞. The gain crossover frequency is the
frequency at which the gain of H(jω) is 0 dB. The phase margin is defined as
180 + � |H(jω)| at the gain crossover frequency. For example, gain crossover
frequency occurs at 9.95 rad/sec, and the phase margin is 180 − 84.3 = 95.7
degrees. For minimum-phase systems with all the poles and zeros of the transfer
function lying in the left half of the s-plane, both the measures have to be positive
for a stable system.

10.4.9 The Nyquist Plot

The Nyquist or polar plot is a plot of the magnitude and phase response of the
transfer function H(jω) in polar coordinates, as the frequency ω varies from −∞
to ∞. The result is that we get a single plot, rather than two plots as in the Bode
plot. Figure 10.15 shows the Nyquist plot of the loop transfer function 1

(s+1) . Each
point on the Nyquist plot is the tip of a vector with some magnitude and phase value
at a particular frequency ω.

Information about the stability from the Nyquist plot of G(s)F (s) is obtained by
observing its behavior about the critical point at (−1 + j0). The plot never crosses
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Fig. 10.15 Nyquist plot of
10

(s+1)
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Fig. 10.16 Realization of a
scalar multiplier unit using
operational amplifier

the negative real axis, and, consequently, the gain margin is ∞. The unit circle is
shown in dashed line. The unit circle intersects the plot at the point marked by a
cross. The angle between the origin and this point is −84.3 degrees. Therefore, the
phase margin is 180 − 84.3 = 95.7 degrees, as obtained from the Bode plot.

10.4.9.1 Operational Amplifier Circuits

The frequency-domain representation of a scalar multiplier unit using operational
amplifier is shown in Fig. 10.16. Operational amplifier circuits, shown in Fig. 10.16
with a triangular symbol, are very large gain (of the order of 106) amplifiers with
almost infinite input impedance and zero output impedance. There are two input
terminals, indicated by the symbols + and − (called, respectively, the noninverting
and inverting input terminals), and one output terminal. The output voltage is
specified as v0 = A(v+−v−). As the gainA is very large, the voltage at the inverting
terminal, in Fig. 10.16, is very small and can be considered as virtual ground.
Further, the large input impedance makes the input terminal current negligible.
Therefore, the currents in the forward and feedback paths must be almost equal
and

X(s)

R1
≈ −Y (s)

R2
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Fig. 10.17 Realization of an
integrator unit using
operational amplifier

The transfer function of the circuit is, therefore,

H(s) = Y (s)

X(s)
≈ −R2

R1

In general, the elements in the circuit can be impedances, and the transfer function
is expressed as

H(s) = Y (s)

X(s)
≈ −Z2(s)

Z1(s)

The transfer function of the integrator circuit, shown in Fig. 10.17, is

H(s) = −Z2(s)

Z1(s)
= − 1

sRC

This is an ideal integrator with gain − 1
RC

. Let x(t) = u(t), the unit-step signal.
Then, X(s) = 1

s
and Y (s) = − 1

RCs
1
s

= − 1
RCs2

. The inverse transform of Y (s)

is y(t) = − 1
RC

tu(t), as the integral of unit step is the unit ramp. Compare this

response with that of a passive RC network, y(t) = (1 − e− t
RC )u(t) ≈ 1

RC
tu(t).

Due to the large gain of the amplifier and the feedback, we get an ideal response. In
addition, the amplifier, due to its large input impedance, does not load the source of
the input signal much and can feed several circuits at the output.

The output Y (s) of the summer, shown in Fig. 10.18, is given as

Y (s) = −
(

Rf

R1
X1(s) + Rf

R2
X2(s)

)

Remembering that the basic elements of a continuous system are scalar multipli-
ers, integrators, and summers, we can build any system, however complex it may
be, using the three operational amplifier circuits described.



366 10 The Laplace Transform

Fig. 10.18 Realization of a
summer unit using
operational amplifier

Fig. 10.19 The
representation of a
resistor-capacitor filter circuit
in the frequency domain

10.4.10 Analog Filters

We present, in this subsection, an example of the design of lowpass filters. The
rectangle, shown in Fig. 10.21 by dashed line, is the magnitude of the frequency
response of an ideal analog lowpass filter. As the ideal filter is practically unrealiz-
able, actual filters approximate the ideal filters to a desirable accuracy. While there
are several types of filters with different characteristics, we describe the commonly
used Butterworth filter.

10.4.10.1 Butterworth Filters

While active filters and digital filters are more commonly used, the word filter
instantaneously reminds us the resistor-capacitor lowpass filter circuit shown in
Fig. 10.19. The impedance, 1

sC
, of the capacitor is small at higher frequencies

compared with that at lower frequencies. Therefore, the voltage across it is com-
posed of high-frequency components with smaller amplitudes than low-frequency
components compared with those of the input voltage. The reverse is the case for
the voltage across the resistor. For example, there is no steady-state current with
DC input (frequency = 0), and, therefore, all the input voltage appears across the
capacitor.

In the Laplace transform model of the RC circuit, the input voltage is X(s). The
circuit impedance is R + 1

sC
. Therefore, the current in the circuit is X(s)

R+ 1
sC

. The

output voltage Y (s) across the capacitor is

Y (s) =
(

X(s)

R + 1
sC

)(
1

sC

)
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Therefore, the transfer function is

H(s) = Y (s)

X(s)
= 1

1 + sRC

Letting s = jω, we get the frequency response of the filter as

H(jω) = 1

1 + jωRC

Let the cutoff frequency of the filter be ωc = 1
RC

= 1 radian/second. Then,

H(jω) = 1

1 + j ω
ωc

= 1

1 + jω
and |H(jω)| = 1√

1 + ω2

The filter circuit is a first-order system and a first-order lowpass Butterworth filter.
For a Butterworth filter of order N , the magnitude of the frequency response, with
ωc = 1, is

|H(jω)| = 1√
1 + ω(2N)

The filter with ωc = 1 is called the normalized filter. From the transfer function of
this filter, we can find the transfer function of other types of filters, such as highpass,
with arbitrary cutoff frequencies using appropriate frequency transformations.

To find the transfer function of the normalized Butterworth filter, we substitute
ω = s

j
in the expression for the squared magnitude of the frequency response and

get

|H(jω)|2 = H(jω)H(−jω) = H(s)H(−s) = 1

1 + ω(2N)
= 1

1 +
(

s
j

)(2N)

The poles of H(s)H(−s) are obtained by solving the equation

s2N = −(j)2N = ejπ(2n−1)(ej π
2 )(2N) = ejπ(2n−1+N),

where n is an integer. Note that ejπ(2n−1) = −1 for an integral n and ej π
2 = j . As

the transfer function H(s) is to represent a stable system, all its poles must lie in the
left half of the s-plane. Therefore, the poles pn of H(s), which are the N roots (of
the 2N th roots of −(j)2N ) with negative real parts, are specified as

pn = e
jπ
2N (2n+N−1), n = 1, 2, . . . , N

The transfer function is given by
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Fig. 10.20 Pole locations of
(a) second- and (b)
third-order normalized
lowpass Butterworth analog
filters
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Fig. 10.21 (a) The magnitude of the frequency response of the first- and second-order normalized
lowpass Butterworth analog filters; (b) the passbands are shown in an expanded scale

H(s) = 1∏N
n=1(s − pn)

For N = 1, the pole is p1 = e
jπ
2(1) (2(1)+1−1) = ejπ = −1. The transfer function is

specified as

H(s) = 1

(s + 1)

The pole locations of the filter for N = 2 and N = 3 are shown in Fig. 10.20. The
symmetrically located poles are equally spaced around the left half of the unit circle.
There is a pole on the real axis for N odd.

Consider the magnitude of the frequency response of normalized Butterworth
lowpass filters shown in Fig. 10.21. As the frequency response is an even function
of ω, the figure shows the response for the positive half of the frequency range
only. In both the passband and the stopband, the gain is monotonically decreasing.
The asymptotic falloff rate, beyond the 3-dB frequency, is −6N dB per octave (as
the frequency is doubled) or −20N dB per decade (as the frequency becomes ten
times) approximately, where N is the order of the filter. Normalized filters of any
order have the −3 dB (−10 log10(2) to be more precise) or 1√

2
response point at

the same frequency, ω3dB = 1 radian/second. A higher-order filter approximates
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the ideal response, shown by the dashed line, more closely compared with a lower-
order filter.

10.5 Summary

• In this chapter, the theory of the one-sided Laplace transform, its properties, and
some of its applications have been described. As practical systems are causal, the
one-sided Laplace transform is mostly used in practice.

• The Laplace transform is a generalization of the Fourier transform. The basis
waveforms include sinusoids with varying amplitudes or exponentials with
complex exponents. The larger set of basis waveforms makes this transform
suitable for the analysis of a larger class of signals and systems.

• The Laplace transform corresponding to a signal is a surface, since it is a function
of two variables (the real and imaginary parts of the complex frequency). The
Laplace transform of a signal along with its ROC uniquely represents the signal
in the frequency domain. The spectral values along any straight line in the ROC
can be used to reconstruct the corresponding time-domain signal.

• The inverse Laplace transform is defined by an integral in the complex plane.
However, the partial fraction method, along with a short list of Laplace transform
pairs, is adequate for most practical purposes to find the inverse Laplace
transform.

• The Laplace transform is essential for the design and transient and stability
analysis of continuous LTI systems. The Laplace transform of the impulse
response of a system, the transfer function, is a frequency-domain model of the
system.

Exercises

10.1 Find the Laplace transform of the unit-impulse signal, δ(t), by applying a
limiting process to the rectangular pulse, defined as

x(t) =
{ 1

2a for − a < t < a

0 otherwise
, a > 0,

and its transform, as a tends to zero.

10.2 Find the Laplace transform of the function x(t) using the time-shifting
property and the transforms of u(t), tu(t), and t2u(t).

10.2.1 x(t) = u(t − 5) .
10.2.2 x(t) = 2, 0 ≤ t ≤ 4, and x(t) = 0 otherwise.
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10.2.3 x(t) = 4, 1 ≤ t ≤ 3, and x(t) = 0 otherwise.
*10.2.4 x(t) = tu(t − 2).
10.2.5 x(t) = (t − 3)u(t).
10.2.6 x(t) = 2t2u(t − 2).

10.3 Find the Laplace transform of the function x(t) using the frequency-shifting
property.

10.3.1 x(t) = e−2t cos(3t)u(t) .
10.3.2 x(t) = e−3t sin(2t)u(t).

10.4 Find the derivative dx(t)
dt

of x(t). Verify that the Laplace transform of dx(t)
dt

is
sX(s) − x(0−).

10.4.1 x(t) = cos(2t).
10.4.2 x(t) = cos(3t)u(t).
10.4.3 x(t) = u(t) − u(t − 1).
10.4.4 x(t) = 3t (u(t − 2) − u(t − 4)).
10.4.5

x(t) =
⎧⎨
⎩

(t − 1) for t < 1
2 for 1 < t < 3
cos(π

3 t) for t > 3

10.4.6

x(t) =
⎧⎨
⎩
2et for t < 0
3 sin(t) for 0 < t < π

2
4u(t − π

2 ) for t > π
2

10.5 Given the Laplace transform X(s) of x(t), find the transform of x(at) using
the scaling property. Find the location of the poles and zeros of the two transforms.
Find x(t) and x(at).

10.5.1 X(s) = s+4
s2+5s+6

and a = 1
2 .

*10.5.2 X(s) = s−1
s2+3s+2

and a = 2.

10.5.3 X(s) = s−2
s2+1

and a = 3.

10.6 Using the Laplace transform, find the convolution, y(t) = x(t) ∗ h(t), of the
functions x(t) and h(t) .

10.6.1 x(t) = e−2t u(t) and h(t) = u(t).
10.6.2 x(t) = u(t) and h(t) = u(t).
10.6.3 x(t) = e3t u(t) and h(t) = e−4t u(t).
10.6.4 x(t) = e−2t u(t) and x(t) = e−2t u(t).
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*10.6.5 x(t) = te−t u(t) and h(t) = e−t u(t).
10.6.6 x(t) = 2u(t − 2) and h(t) = 3u(t − 3).
10.6.7 x(t) = 2e−(t−2)u(t − 2) and h(t) = 5u(t).

10.7 Find the Laplace transform of the function x(t) using the multiplication by t

property.

10.7.1 x(t) = 4t cos(2t)u(t) .
10.7.2 x(t) = 5t sin(3t)u(t) .

10.8 Find the initial and final values of the function x(t) corresponding to the
transform X(s), using the initial and final value properties.

10.8.1 X(s) = s+2
(s+3) .

10.8.2 X(s) = 2
s+3 .

10.8.3 X(s) = 2
s2+1

.

*10.8.4 X(s) = 3s2+3s+2
s(s2+3s+2)

.

10.8.5 X(s) = s+2
s(s−2) .

10.8.6 X(s) = s+1
(s−1) .

10.9 Find the Laplace transform of the semiperiodic signal x(t)u(t), the first period
of which is defined as follows.

10.9.1

x1(t) =
{

1 for 0 < t < 2
−1 for 2 < t < 4

10.9.2

x1(t) = t for 0 < t < 5

*10.9.3

x1(t) =
{

t for 0 < t < 2
4 − t for 2 < t < 4

10.9.4

x1(t) = sin(ωt) for 0 < t < π
ω
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10.10 Find the inverse Laplace transform of X(s) using the inverse FT.

10.10.1 x(t)u(t) ⇐⇒ X(s) = 1
s2
.

10.10.2 x(t)u(t) ⇐⇒ X(s) = 1
s−2 .

10.10.3 x(t)u(t) ⇐⇒ X(s) = 1
s+2 .

10.11 Find the inverse Laplace transform of

X(s) = s

(s2 + 3s + 2)

10.12 Find the inverse Laplace transform of

X(s) = 3s2 + 2s + 3

(s2 + 5s + 6)

10.13 Find the inverse Laplace transform of

X(s) = 2s + 4

(s2 + 1)

10.14 Find the inverse Laplace transform of

X(s) = s + 3

(s3 + 4s2 + 5s + 2)

* 10.15 Find the inverse Laplace transform of

X(s) = s + 2

(s3 + s2)

10.16 Find the inverse Laplace transform of

X(s) = s + 2e−3s

(s + 2)(s + 3)

10.17 Find the inverse Laplace transform of

X(s) = se−s

(s + 1)(s + 3)
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10.18 Using the Laplace transform, derive the closed-form expression for the
impulse response h(t) of the system, with input x(t) and output y(t), governed by
the given differential equation.

10.18.1 d2y(t)

dt2
+ 6 dy(t)

dt
+ 8y(t) = dx(t)

dt
+ x(t).

10.18.2 d2y(t)

dt2
+ 3 dy(t)

dt
+ 2y(t) = x(t).

*10.18.3 d2y(t)

dt2
− 4 dy(t)

dt
+ 3y(t) = x(t).

10.19 Using the Laplace transform, find the zero-input, zero-state, transient,
steady-state, and complete responses of the system governed by the differential
equation

d2y(t)

dt2
+ 6

dy(t)

dt
+ 8y(t) = 2

dx(t)

dt
+ 3x(t)

with the initial conditions y(0−) = 2 and d y(t)
dt

|t=0− = 3 and the input x(t) = u(t),
the unit-step function. Find the initial and final values of the complete and zero-state
responses.

* 10.20 Using the Laplace transform, find the zero-input, zero-state, transient,
steady-state, and complete responses of the system governed by the differential
equation

d2y(t)

dt2
+ 2

dy(t)

dt
+ y(t) = x(t)

with the initial conditions y(0−) = 3 and d y(t)
dt

|t=0− = −2 and the input x(t) =
e−2t u(t). Find the initial and final values of the complete and zero-state responses.

10.21 Using the Laplace transform, find the zero-input, zero-state, transient,
steady-state, and complete responses of the system governed by the differential
equation

d2y(t)

dt2
+ 5

dy(t)

dt
+ 6y(t) = x(t)

with the initial conditions y(0−) = −1 and d y(t)
dt

|t=0− = −2 and the input x(t) =
tu(t). Find the initial and final values of the complete and zero-state responses.

10.22 Using the Laplace transform, find the zero-input, zero-state, transient,
steady-state, and complete responses of the system governed by the differential
equation
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d2y(t)

dt2
+ 7

dy(t)

dt
+ 12y(t) = x(t)

with the initial conditions y(0−) = 2 and d y(t)
dt

|t=0− = −3 and the input x(t) =
2 cos( 2π4 t − π

6 )u(t). Find the initial and final values of the complete and zero-state
responses.

10.23 Given the differential equation of a system and the input signal x(t), find the
steady-state response of the system.

* 10.23.1 dy(t)
dt

+ 0.5y(t) = x(t) and x(t) = 3 cos(0.5t − π
3 )u(t).

10.23.2 dy(t)
dt

+ y(t) = 2x(t) and x(t) = 2 sin(t + π
4 )u(t).

10.23.3 dy(t)
dt

+ y(t) = x(t) and x(t) = 3ej (
√
3 t− π

6 )u(t).

10.24 Using the Laplace transform, derive the closed-form expression of the
impulse response of the cascade system consisting of systems, with input x(t) and
output y(t), governed by the given differential equations.

10.24.1 dy(t)
dt

+2y(t) = dx(t)
dt

+x(t) and dy(t)
dt

+3y(t) = 2 dx(t)
dt

+3x(t).

* 10.24.2 dy(t)
dt

− y(t) = x(t) and dy(t)
dt

= x(t).

10.24.3 dy(t)
dt

+3y(t) = 2 dx(t)
dt

−x(t) and dy(t)
dt

+2y(t) = 3 dx(t)
dt

+2x(t).

10.25 Using the Laplace transform, derive the closed-form expression of the
impulse response of the combined system, connected in parallel, consisting of
systems, with input x(t) and output y(t), governed by the given differential
equations.

10.25.1 dy(t)
dt

+2y(t) = dx(t)
dt

+x(t) and dy(t)
dt

+3y(t) = 2 dx(t)
dt

+3x(t).

10.25.2 dy(t)
dt

− y(t) = x(t) and dy(t)
dt

= x(t).

* 10.25.3 dy(t)
dt

+3y(t) = 2 dx(t)
dt

−x(t) and dy(t)
dt

+2y(t) = 3 dx(t)
dt

+2x(t).

10.26 Using the Laplace transform representation of the circuit elements, find the
current in the series resistor-inductor circuit, with R = 2 ohms, L = 3 henries,
and the initial current through the inductor i(0−) = 4 amperes, excited by the input
voltage x(t) = 10u(t) volts.

10.27 Using the Laplace transform representation of the circuit elements, find the
current in the series resistor-inductor circuit, with R = 3Ω and L = 4 H. Assume
zero initial current. The input voltage x(t) = 10δ(t) V.

10.28 Using the Laplace transform representation of the circuit elements, find the
voltage across the capacitor in the series resistor-capacitor circuit, withR = 2 ohms,
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C = 1 farad, and the initial voltage across capacitor v(0−) = 1 volts, excited by the
input voltage x(t) = e−t u(t) volts.

* 10.29 Using the Laplace transform representation of the circuit elements, find the
voltage across the capacitor in the series resistor-capacitor circuit, withR = 4Ω and
C = 2 F. Assume zero initial conditions. The input voltage is x(t) = δ(t) V.

10.30 Find the response of a differentiator to unit-step input signal:

(i) if the circuit is realized using resistor R and capacitor C and
(ii) if the circuit is realized using resistor R and capacitor C and an operational

amplifier.

10.31 Find the transfer function H(s) of fourth- and fifth-order Butterworth
normalized lowpass filters.



Chapter 11
State-Space Analysis of Discrete Systems

So far, we studied three types of modeling of systems, the difference equation
model, the convolution-summation model, and the transfer function model. Using
these models, we concentrated on finding the output of a system corresponding to an
input. However, in any system, there are internal variables. For example, the values
of currents and voltages at various parts of a circuit are internal variables. The values
of these variables are of interest in the analysis and design of systems. These values
could indicate whether the components of a system work in their linear range and
within their power ratings. Therefore, we need a model that also explicitly includes
the internal description of systems. This type of model, which is a generalization of
the other models of systems, is called the state-space model. In addition, it is easier
to extend this model to the analysis of multi-input and multi-output, nonlinear, and
time-varying systems.

In Sect. 11.1, we study the state-space model of some common realizations of
systems. The time-domain and frequency-domain solutions of the state equations
are presented, respectively, in Sects. 11.2 and 11.3. The linear transformation of
state vector to obtain different realizations of systems is described in Sect. 11.4.

11.1 The State-Space Model

Consider the state-space model, shown in Fig. 11.1, of a second-order discrete
system characterized by the difference equation

y(n) + a1y(n − 1) + a0y(n − 2) = b2x(n) + b1x(n − 1) + b0x(n − 2)

In addition to the input x(n) and the output y(n), we have shown two internal
variables (called state variables), q1(n) and q2(n), of the system. State variables
are a minimal set of variables (N for a N th-order system) of a system so that a
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Fig. 11.1 A state-space
model of the canonical form I
of a second-order discrete
system

knowledge of the values of these variables (the state of the system) at n = k and
those of the input for n ≥ k will enable the determination of the values of the state
variables for all n > k and the output for all n ≥ k. An infinite number of different
sets, each of N state variables, are possible for a particular N th-order system.

From Fig. 11.1, we can write down the following state equations defining the
state variables q1(n) and q2(n).

q1(n + 1) = −a1q1(n) − a0q2(n) + x(n)

q2(n + 1) = q1(n)

The (n + 1)th sample value of each state variable is expressed in terms of the
nth sample value of all the state variables and the input. This form of the first-
order difference equation is called the standard form. A second-order difference
equation characterizing the system, shown in Fig. 11.1, has been decomposed into
a set of two simultaneous first-order difference equations. These two equations may
be combined into a first-order vector-matrix difference equation.

Selecting state variables as the output of the delay elements is a natural choice,
since a delay element is characterized by a first-order difference equation. With
that choice, we can write down a state equation at the input of each delay element.
However, the state variables need not correspond to quantities that are physically
observable in a system. In the state-space model of a system, in general, a N th-
order difference equation characterizing a system is decomposed into a set of N

simultaneous first-order difference equations of a standard form. With a set of N

simultaneous difference equations, we can solve for N unknowns. These are the N

internal variables, called the state variables, of the system. The output is expressed
as a linear combination of the state variables and the input. The concepts of impulse
response, convolution, and transform analysis are all equally applicable to the state-
space model. The difference is that, as the system is modeled using matrix and
vector quantities, the system analysis involves matrix and vector quantities. One
of the advantages of the state-space model is the easier modeling of systems with
multiple inputs and outputs. For simplicity, we describe systems with single input
and single output only. The output y(n) of the system, shown in Fig. 11.1, is given
by
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Fig. 11.2 Block diagram
representation of the
state-space model of a
N th-order system, with single
input and single output

y(n) = −b2a1q1(n) − b2a0q2(n)

+ b1q1(n) + b0q2(n) + b2x(n)

The output equation is an algebraic (not a difference) equation. We can write the
state and output equations, using vectors and matrices, as

[
q1(n + 1)
q2(n + 1)

]
=
[−a1 −a0

1 0

] [
q1(n)

q2(n)

]
+
[
1
0

]
x(n)

y(n) = [
b1 − b2a1 b0 − b2a0

] [q1(n)

q2(n)

]
+ b2x(n)

Let us define the state vector q(n) as

q(n) =
[

q1(n)

q2(n)

]

Then, with

A =
[−a1 −a0

1 0

]
, B =

[
1
0

]
, C = [

b1 − b2a1 b0 − b2a0
]
, D = b2,

the general state-space model description is given as

q(n + 1) = Aq(n) + Bx(n)

y(n) = Cq(n) + Dx(n)

Block diagram representation of the state-space model of a N th-order system, with
single input and single output, is shown in Fig. 11.2.

Parallel lines terminating with an arrowhead indicate that the signal is a vector
quantity.

Example 11.1 Derive the state-space model of the system governed by the differ-
ence equation
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Fig. 11.3 A state-space
model of the canonical form
II of a second-order discrete
system

y(n) − 2y(n − 1) + 3y(n − 2) = 2x(n) − 3x(n − 1) + 4x(n − 2)

Assign the state variables as shown in Fig. 11.1.

Solution With

A =
[−a1 −a0

1 0

]
=
[
2 −3
1 0

]
, B =

[
1
0

]
,

C = [
b1 − b2a1 b0 − b2a0

] = [
1 −2

]
, D = b2 = 2,

the state-space model of the system is

q(n + 1) =
[

q1(n + 1)
q2(n + 1)

]
=
[
2 −3
1 0

] [
q1(n)

q2(n)

]
+
[
1
0

]
x(n)

y(n) = [
1 −2

] [ q1(n)

q2(n)

]
+ 2x(n)

�
While there are several realizations of a system, some realizations are more

commonly used. The realization, shown in Fig. 11.1, is called canonical form I.
There is a dual realization that can be derived by using the transpose operation of
a matrix. This realization, shown in Fig. 11.3, is called canonical form II and is
characterized by the matrices defined, in terms of those of canonical form I, as

A = AT ,B = CT ,C = BT ,D = D,

The state-space model of the canonical form II of the system in Example 11.1 is

q(n + 1) =
[

q1(n + 1)
q2(n + 1)

]
=
[

2 1
−3 0

] [
q1(n)

q2(n)

]
+
[

1
−2

]
x(n)

y(n) = [
1 0
] [q1(n)

q2(n)

]
+ 2x(n)
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11.1.1 Parallel Realization

Consider a system characterized by the transfer function

H(z) = z3 + z2 − z + 1

(z + 1)(z2 + 2z + 3)

The transfer function can be expanded into partial fractions as

H(z) = 1 + 1

(z + 1)
+ −3z − 5

(z2 + 2z + 3)

The state-space model, shown in Fig. 11.4 using canonical form I, is

q(n + 1) =
⎡
⎣ q1(n + 1)

q2(n + 1)
q3(n + 1)

⎤
⎦ =

⎡
⎣−1 0 0

0 −2 −3
0 1 0

⎤
⎦
⎡
⎣ q1(n)

q2(n)

q3(n)

⎤
⎦+

⎡
⎣1
1
0

⎤
⎦ x(n)

y(n) = [
1 −3 −5

]⎡⎣ q1(n)

q2(n)

q3(n)

⎤
⎦+ x(n)

Fig. 11.4 A state-space
model of the parallel
realization of a third-order
discrete system, using
canonical form I
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Consider the transfer function with a repeated pole

H(z) = 2z3 − z2 + 3z − 1

(z + 1)(z + 2)2

The transfer function can be expanded into partial fractions as

H(z) = 2 + −7

(z + 1)
+ −4

(z + 2)
+ 27

(z + 2)2

= 2 + −7

(z + 1)
+ 1

(z + 2)

(
−4 + 27

(z + 2)

)

The state-space model, shown in Fig. 11.5 using canonical form I, is

q(n + 1) =
⎡
⎣ q1(n + 1)

q2(n + 1)
q3(n + 1)

⎤
⎦ =

⎡
⎣−1 0 0

0 −2 0
0 1 −2

⎤
⎦
⎡
⎣ q1(n)

q2(n)

q3(n)

⎤
⎦+

⎡
⎣1
1
0

⎤
⎦ x(n)

y(n) = [−7 −4 27
]⎡⎣ q1(n)

q2(n)

q3(n)

⎤
⎦+ 2x(n)

11.1.2 Cascade Realization

Consider the transfer function

H(z) = (4z + 1)(z2 + 3z + 2)

(z + 1)(z2 + 2z + 3)

In cascade form, several realizations are possible depending on the grouping of the
numerators and denominators and the order of the sections in the cascade. Let us
assume that the first and second sections, respectively, have the transfer functions

H1(z) = (4z + 1)

(z + 1)
and H2(z) = (z2 + 3z + 2)

(z2 + 2z + 3)

The state-space model, shown in Fig. 11.6 using canonical form I, is

q(n + 1) =
⎡
⎣ q1(n + 1)

q2(n + 1)
q3(n + 1)

⎤
⎦ =

⎡
⎣−1 0 0

−3 −2 −3
0 1 0

⎤
⎦
⎡
⎣ q1(n)

q2(n)

q3(n)

⎤
⎦+

⎡
⎣1
4
0

⎤
⎦ x(n)
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Fig. 11.5 A state-space
model of the parallel
realization of a third-order
discrete system with a
repeated pole, using
canonical form I

Fig. 11.6 A state-space model of the cascade realization of a third-order discrete system, using
canonical form I

y(n) = [−3 1 −1
]⎡⎣ q1(n)

q2(n)

q3(n)

⎤
⎦+ 4x(n)
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11.2 Time-Domain Solution of the State Equation

11.2.1 Iterative Solution

The system response can be found iteratively as in the case of the difference equation
model.

Example 11.2 Find the outputs y(0), y(1), and y(2) of the system, described by
the state-space model given in Example 11.1, iteratively with the initial conditions
y(−1) = 2 and y(−2) = 3 and the input u(n), the unit-step function.

Solution The input is x(−2) = 0, x(−1) = 0, x(0) = 1, x(1) = 1, and
x(2) = 1. We need the initial state vector values q1(0) and q2(0) to start the
iteration. Therefore, we have to derive these values from the initial output conditions
y(−1) = 2 and y(−2) = 3. Using the state equations, we get

q1(−1) = 2q1(−2) − 3q2(−2)

q2(−1) = q1(−2)

Using the output equations, we get

y(−2) = q1(−2) − 2q2(−2) = 3

y(−1) = q1(−1) − 2q2(−1) = 2

Solving these equations, we find q1(−1) = 16
3 and q2(−1) = 5

3 . Now,

q1(0) = 2

(
16

3

)
− 3

(
5

3

)
= 17

3

q2(0) = q1(−1) = 16

3

At n = 0, we get

y(0) = [
1 −2

] [ 17
3
16
3

]
+ 2 = −3

q(1) =
[

q1(1)
q2(1)

]
=
[
2 −3
1 0

] [ 17
3
16
3

]
+
[
1
0

]
1 =

[− 11
3
17
3

]

At n = 1, we get

y(1) = [
1 −2

] [− 11
3
17
3

]
+ 2 = −13
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q(2) =
[

q1(2)
q2(2)

]
=
[
2 −3
1 0

] [− 11
3
17
3

]
+
[
1
0

]
1 =

[− 70
3

− 11
3

]

At n = 2, we get

y(2) = [
1 −2

] [− 70
3

− 11
3

]
+ 2 = −14 �

11.2.2 Closed-Form Solution

In the state-space model also, the convolution-summation gives the zero-state
response of a system in the time domain. Substituting n = 0 in the state equation,
we get

q(1) = Aq(0) + Bx(0)

Similarly, for n = 1 and n = 2, we get

q(2) = Aq(1) + Bx(1)

= A(Aq(0) + Bx(0)) + Bx(1)

= A2q(0) + ABx(0) + Bx(1)

q(3) = Aq(2) + Bx(2)

= A(A2q(0) + ABx(0) + Bx(1)) + Bx(2)

= A3q(0) + A2Bx(0) + ABx(1) + Bx(2)

Proceeding in this way, we get the general expression for the state vector as

q(n) = Anq(0) + An−1Bx(0) + An−2Bx(1) + · · · + Bx(n − 1)

=
qzi (n)︷ ︸︸ ︷

Anq(0) +

qzs (n)︷ ︸︸ ︷
n−1∑
m=0

An−1−mBx(m), n = 1, 2, 3, . . .

The first and the second expressions on the right-hand side are, respectively,
the zero-input and zero-state components of the state vector q(n). The second
expression is the convolution-summation An−1u(n − 1) ∗ Bx(n). Convolution
of two matrices is similar to multiplication operation of two matrices with the
multiplication of the elements replaced by the convolution of the elements. Once we
know the state vector, we get the output of the system using the output equation as
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y(n) = Cq(n) + Dx(n)

=
yzi (n)︷ ︸︸ ︷

CAnq(0) +

yzs (n)︷ ︸︸ ︷
n−1∑
m=0

CAn−1−mBx(m) + Dx(n), n = 1, 2, 3, . . .

The term CAnq(0) is the zero-input component, and the other two terms constitute
the zero-state component of the system response y(n). The zero-input response
of the system depends solely on the matrix An. This matrix is called the state
transition or fundamental matrix of the system. This matrix, for a N th-order system,
is evaluated, using the Cayley-Hamilton theorem, as

An = c0I + c1A + c2A
2 + · · · + cN−1A

(N−1)

where

⎡
⎢⎢⎣

c0

c1

· · ·
cN−1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
1 λ1 λ21 · · · λN−1

1
1 λ2 λ22 · · · λN−1

2
· · ·

1 λN λ2N · · · λN−1
N

⎤
⎥⎥⎦

−1⎡
⎢⎢⎣

λn
1

λn
2

· · ·
λn

N

⎤
⎥⎥⎦

and λ1, λ2, . . . , λN are the N distinct characteristic values of A. The characteristic
equation of the matrix A is det(zI − A) = 0, where the abbreviation det stands for
determinant and I is the identity matrix of the same size of that of A. The expanded
form of det(zI − A) is a polynomial in z called the characteristic polynomial of A.
The roots, which are the solutions of the characteristic equation, of this polynomial
are the characteristic values of A.

For a value λr repeated m times, the first row corresponding to that value will
remain the same as for a distinct value and the m − 1 successive rows will be
successive derivatives of the first row with respect to λr . For example, with the
first value of a fourth-order system repeating two times, we get

⎡
⎢⎢⎣

c0

c1

c2

c3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
1 λ1 λ21 λ31
0 1 2λ1 3λ21
1 λ2 λ22 λ32
1 λ3 λ23 λ33

⎤
⎥⎥⎦

−1⎡
⎢⎢⎣

λn
1

nλn−1
1
λn
2

λn
3

⎤
⎥⎥⎦

Example 11.3 Derive the characteristic polynomial, and determine the characteris-
tic roots of the system with the state-space model as given in Example 11.1.
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Solution

A =
[
2 −3
1 0

]
, (zI − A) = z

[
1 0
0 1

]
−
[
2 −3
1 0

]
=
[

z − 2 3
−1 z

]

The characteristic polynomial of the system, given by the determinant of this matrix,
is

z2 − 2z + 3

The characteristic roots, which are the roots of this polynomial, are

λ1 = 1 + j
√
2 and λ2 = 1 − j

√
2 �

Example 11.4 Find a closed-form expression for the output y(n) of the system,
described by the state-space model given in Example 11.1, using the time-domain
method, with the initial conditions y(−1) = 2 and y(−2) = 3 and the input u(n),
the unit-step function.

Solution The initial state vector was determined, from the given initial output
conditions, in Example 11.2 as

q1(0) = 17

3
, q2(0) = 16

3

The characteristic values, as determined in Example 11.3, are

λ1 = 1 + j
√
2 and λ2 = 1 − j

√
2

The transition matrix is given by

An = c0I + c1A

= c0

[
1 0
0 1

]
+ c1

[
2 −3
1 0

]
=
[

c0 + 2c1 −3c1
c1 c0

]

where

[
c0

c1

]
=
[
1 λ1

1 λ2

]−1 [
λn
1

λn
2

]

= j

2
√
2

[
1 − j

√
2 −1 − j

√
2

−1 1

] [
(1 + j

√
2)n

(1 − j
√
2)n

]

= j

2
√
2

[
(1 − j

√
2)(1 + j

√
2)n + (−1 − j

√
2)(1 − j

√
2)n

−(1 + j
√
2)n + (1 − j

√
2)n

]
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An = j

2
√
2

[
−(1 + j

√
2)(n+1) + (1 − j

√
2)(n+1) 3(1 + j

√
2)n − 3(1 − j

√
2)n

−(1 + j
√
2)n + (1 − j

√
2)n 3(1 + j

√
2)(n−1) − 3(1 − j

√
2)(n−1)

]

As a check on An, verify that An = I with n = 0 and An = A with n = 1.
The zero-input component of the state vector is

qzi (n) = Anq(0) = j

6
√
2

[
(31 − j17

√
2)(1 + j

√
2)n − (31 + j17

√
2)(1 − j

√
2)n

(−1 − j16
√
2)(1 + j

√
2)n + (1 − j16

√
2)(1 − j

√
2)n

]

Using the fact that the sum a complex number and its conjugate is twice the real part
of either of the numbers, we get

qzi(n) =
[

17
3 (

√
3)n cos(tan−1(

√
2)n) − 31

3
√
2
(
√
3)n sin(tan−1(

√
2)n))

16
3 (

√
3)n cos(tan−1(

√
2)n) + 1

3
√
2
(
√
3)n sin(tan−1(

√
2)n))

]

The zero-input response yzi(n) is given by

CAnq(0) = [
1 −2

] [ 17
3 (

√
3)n cos(tan−1(

√
2)n) − 31

3
√
2
(
√
3)n sin(tan−1(

√
2)n))

16
3 (

√
3)n cos(tan−1(

√
2)n) + 1

3
√
2
(
√
3)n sin(tan−1(

√
2)n))

]

= (−5(
√
3)n cos(tan−1(

√
2)n) − 11√

2
(
√
3)n sin(tan−1(

√
2)n))u(n)

The first four values of the zero-input response yzi(n) are

yzi(0) = −5, yzi(1) = −16, yzi(2) = −17, yzi(3) = 14

The zero-state component of the state vector is

qzs(n) =
n−1∑
m=0

An−1−mBx(m)

The convolution-summation, An−1u(n − 1) ∗ Bx(n), can be evaluated, using the
shift theorem of convolution (Chap. 4), by evaluating Anu(n)∗Bx(n) first and then
replacing n by n − 1.

Bx(n) =
[
1
0

]
u(n) =

[
u(n)

0

]

An ∗ Bx(n) = j

2
√
2

[
(−(1 + j

√
2)(n+1) + (1 − j

√
2)(n+1)) ∗ u(n)

(−(1 + j
√
2)n + (1 − j

√
2)n) ∗ u(n)

]
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Since the first operand of the convolutions is the sum of two complex conjugate
expressions and the convolution of p(n) and u(n) is equivalent to the sum of the
first n + 1 values of p(n), we get

An ∗ Bx(n)

=
⎡
⎣ 2 Re

{(
− 1

2 − j

2
√
2

)∑n
m=0(1 + j

√
2)m

}
2 Re

{(
− j

2
√
2

)∑n
m=0(1 + j

√
2)m

}
⎤
⎦

=

⎡
⎢⎢⎣
2 Re

{(
1
2 − j

2
√
2

)(
1−(1+j

√
2)n+1

1−(1+j
√
2)

)}

2 Re
{(

− j

2
√
2

)(
1−(1+j

√
2)n+1

1−(1+j
√
2)

)}
⎤
⎥⎥⎦

=
[

1
2 − 1

2 (
√
3)(n+1) cos(tan−1(

√
2)(n + 1)) + 1√

2
(
√
3)(n+1) sin(tan−1(

√
2)(n + 1))

1
2 − 1

2 (
√
3)(n+1) cos(tan−1(

√
2)(n + 1))

]

Replacing n = n − 1, we get

qzs(n) = An−1 ∗ Bx(n)

=
[

1
2 − 1

2 (
√
3)n cos(tan−1(

√
2)n) + 1√

2
(
√
3)n sin(tan−1(

√
2)n)

1
2 − 1

2 (
√
3)n cos(tan−1(

√
2))

]

The zero-state response is given by multiplying the state vector with the C vector
and adding the input signal as

yzs(n) =
[
1 −2

] [ 1
2 − 1

2 (
√
3)n cos(tan−1(

√
2)n) + 1√

2
(
√
3)n sin(tan−1(

√
2)n)

1
2 − 1

2 (
√
3)n cos(tan−1(

√
2))

]
u(n − 1)

+ 2u(n)

=
(

− 1

2
+ 1

2
(
√
3)n cos(tan−1(

√
2)n) + 1√

2
(
√
3)n sin(tan−1(

√
2)n)

)
u(n − 1) + 2u(n)

=
(
1.5 + 1

2
(
√
3)n cos(tan−1(

√
2)n) + 1√

2
(
√
3)n sin(tan−1(

√
2)n)

)
u(n)

The first four values of the zero-state response yzs(n) are

yzs(0) = 2, yzs(1) = 3, yzs(2) = 3, yzs(3) = 0

Adding the zero-input and the zero-state components, we get the total response
of the system as
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Fig. 11.7 The simulation
diagram of the state-space
model
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Fig. 11.8 Various components of the response of the system in Example 11.4

y(n) = 1.5 − 4.5(
√
3)n cos(tan−1(

√
2)n)

− 10√
2
(
√
3)n sin(tan−1(

√
2)n), n = 0, 1, 2, . . .

The first four values of the total response y(n) are

y(0) = −3, y(1) = −13, y(2) = −14, y(3) = 14 �
Figure 11.7 shows the simulation diagram of the state-space model, with initial

conditions, producing the total response. The input is the samples of the discrete
unit-step signal, which has to be loaded into the simin block by executing the given
input program. The initial values of the state variables are set in the simulation block.
Various components of the response of the system in Example 11.4 are shown in
Fig. 11.8.

11.2.3 The Impulse Response

The impulse response, h(n), is the output of an initially relaxed system with the
input x(n) = δ(n) and is given by

h(n) =
n−1∑
m=0

CAn−1−mBx(m) + Dx(n) = CAn−1Bu(n − 1) + Dδ(n)

Example 11.5 Find the closed-form expression for the impulse response of the
system, described by the state-space model given in Example 11.1, using the time-
domain method.
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Solution The impulse response is given by

h(n) = CAn−1Bu(n − 1) + Dδ(n)

= [
1 −2

] j

2
√
2

[
(−(1 + j

√
2)n + (1 − j

√
2)n)

(−(1 + j
√
2)(n−1) + (1 − j

√
2)(n−1))

]
+ 2δ(n)

= 1

−j2
√
2

[
(1 − j

√
2)(1 + j

√
2)n−1 + (−1 − j

√
2)(1 − j

√
2)n−1

]
+ 2δ(n)

= 2δ(n) +
(

(
√
3)n−1 cos((tan−1(

√
2))(n − 1))

− 1√
2
(
√
3)n−1 sin((tan−1(

√
2))(n − 1))

)
u(n − 1), n = 0, 1, 2, . . .

The first four values of the impulse response h(n) are

h(0) = 2, h(1) = 1, h(2) = 0, h(3) = −3 �
To get the impulse response by simulation, we set the initial conditions zero and the
discrete impulse input.

11.3 Frequency-Domain Solution of the State Equation

The z-transform of a vector function, such as q(n), is defined to be the vector
function Q(z), where the elements are the transforms of the corresponding elements
of q(n). Taking the z-transform of the state equation, we get

zQ(z) − zq(0) = AQ(z) + BX(z)

We have used the left shift property of the z-transform, and q(0) is the initial state
vector. Solving for Q(z), we get

Q(z) =
Qzi (z)︷ ︸︸ ︷

(zI − A)−1zq(0)+
Qzs (z)︷ ︸︸ ︷

(zI − A)−1BX(z)

The inverse z-transforms of the first and the second expressions on the right-hand
side yield, respectively, the zero-input and zero-state components of the state vector
q(n). Taking the z-transform of the output equation, we get

Y (z) = CQ(z) + DX(z)
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Now, substituting for Q(z), we get

Y (z) =
Yzi (z)︷ ︸︸ ︷

Cz(zI − A)−1q(0) +
Yzs(z)︷ ︸︸ ︷

(C(zI − A)−1B + D)X(z)

The inverse z-transforms of the first and the second expressions on the right-hand
side yield, respectively, the zero-input and zero-state components of the system
response y(n). The inverse z-transform of (z(zI − A)−1), by correspondence with
the equation for state vector in time domain, is An, the transition or fundamental
matrix of the system. With the system initial conditions zero, the transfer function
is given by

H(z) = Y (z)

X(z)
= (C(zI − A)−1B + D)

Example 11.6 Find a closed-form expression for the output y(n) of the system,
described by the state-space model given in Example 11.1, using the frequency-
domain method, with the initial conditions y(−1) = 2 and y(−2) = 3 and the input
u(n), the unit-step function.

Solution The initial state vector

q(0) =
[ 17

3
16
3

]

is derived in Example 11.2 from the given initial output conditions.

(zI − A) =
[

z − 2 3
−1 z

]
and (zI − A)−1 =

[
z

z2−2z+3
− 3

z2−2z+3
1

z2−2z+3
z−2

z2−2z+3

]

As a check on (zI − A)−1, we use the initial value theorem of the z-transform to
verify that

lim
z→∞ z(zI − A)−1 = I = A0

The transform of the zero-input component of the state vector is

Qzi(z) = z(zI − A)−1q(0)

= z

[
z

z2−2z+3
− 3

z2−2z+3
1

z2−2z+3
z−2

z2−2z+3

][ 17
3
16
3

]
= z

3

[
17z−48

z2−2z+3
16z−15

z2−2z+3

]

=
⎡
⎢⎣

( 176 +j 31
6
√
2
)z

z−1−j
√
2

+ ( 176 −j 31
6
√
2
)z

z−1+j
√
2

( 83−j 1
6
√
2
)z

z−1−j
√
2

+ ( 83+j 1
6
√
2
)z

z−1+j
√
2

⎤
⎥⎦
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Finding the inverse z-transform and simplifying, we get the zero-input component
of the state vector as

qzi(n) =
[

17
3 (

√
3)n cos(tan−1(

√
2)n) − 31

3
√
2
(
√
3)n sin(tan−1(

√
2)n))

16
3 (

√
3)n cos(tan−1(

√
2)n) + 1

3
√
2
(
√
3)n sin(tan−1(

√
2)n))

]
u(n)

The transform of the zero-state component of the state vector is

Qzs(z) = z(zI − A)−1BX(z)

=
[

z
z2−2z+3

− 3
z2−2z+3

1
z2−2z+3

z−2
z2−2z+3

][
z

z−1
0

]
= z

[
z

(z−1)(z2−2z+3)
1

(z−1)(z2−2z+3)

]

=
⎡
⎣

( 12 )z

z−1 − 1
4 (1+j

√
2)z

z−1−j
√
2

− 1
4 (1−j

√
2)z

z−1+j
√
2

( 12 )z

z−1 − 1
4 z

z−1−j
√
2

− 1
4 z

z−1+j
√
2

⎤
⎦

Finding the inverse z-transform and simplifying, we get the zero-state component
of the state vector as

qzs(n) =
[

1
2 − 1

2 (
√
3)n cos(tan−1(

√
2)n) + 1√

2
(
√
3)n sin(tan−1(

√
2)n)

1
2 − 1

2 (
√
3)n cos(tan−1(

√
2))

]
u(n)

Using the output equation, the output can be computed as given in Example 11.4.

�
Example 11.7 Find a closed-form expression for the impulse response of the
system, described by the state-space model given in Example 11.1, using the
frequency-domain method.

Solution The transfer function of a system is given by

H(z) = (C(zI − A)−1B + D)

H(z) = [
1 −2

] [ z
z2−2z+3

− 3
z2−2z+3

1
z2−2z+3

z−2
z2−2z+3

][
1
0

]
+ 2 = z − 2

(z2 − 2z + 3)
+ 2

Expanding into partial fractions, we get

H(z) = 2 +
0.5 + j 1

2
√
2

z − 1 − j
√
2

+
0.5 − j 1

2
√
2

z − 1 + j
√
2
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Finding the inverse z-transform and simplifying, we get

h(n) = 2δ(n) + ((
√
3)n−1 cos((tan−1(

√
2))(n − 1))

− 1√
2
(
√
3)n−1 sin((tan−1(

√
2))(n − 1)))u(n − 1), n = 0, 1, 2, . . . �

Example 11.8 Find the zero-input, zero-state, transient, steady-state, and complete
responses of the system governed by the difference equation

y(n) = 2x(n) − x(n − 1) + 3x(n − 2) + 9

20
y(n − 1) − 1

20
y(n − 2)

with the initial conditions y(−1) = 3 and y(−2) = 2 and the input x(n) = u(n),
the unit-step function.

Solution The corresponding state-space model is

A =
[
0.4500 −0.0500
1.0000 0

]
, B =

[
1
0

]
,

C = [−0.1000 2.9000
]
, D = 2

We need the initial state vector values q1(0) and q2(0) to start the iteration.
Therefore, we have to derive these values from the initial output conditions y(−1) =
3 and y(−2) = 2. Using the state equations, we get

q1(−1) = 0.45q1(−2) − 0.05q2(−2)

q2(−1) = q1(−2)

Using the output equations, we get

y(−2) = −0.1q1(−2) + 2.9q2(−2) = 2

y(−1) = −0.1q1(−1) + 2.9q2(−1) = 3

Solving these equations, we find q1(−1) = 0.4360 and q2(−1) = 1.0495. Now,

q1(0) = 0.45(0.4360) − 1.0495(0.05) = 0.1437

q2(0) = q1(−1) = 0.4360
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The initial state vector is

q(0) =
[
0.1437
0.4360

]

(zI − A) =
[

z − 0.45 0.05

−1 z

]
and (zI − A)−1 =

[
z

z2−0.45z+0.05
− 0.05

z2−0.45z+0.05
1

z2−0.45z+0.05
z−0.45

z2−0.45z+0.05

]

As a check on (zI − A)−1, we use the initial value theorem of the z-transform to
verify that

lim
z→∞ z(zI − A)−1 = I = A0

The transform of the zero-input component of the state vector is

Qzi(z) = z(zI − A)−1q(0)

= z

[
z

z2−0.45z+0.05
− 0.05

z2−0.45z+0.05
1

z2−0.45z+0.05
z−0.45

z2−0.45z+0.05

][
0.1437
0.4360

]

= z

[
0.1437z−0.0218
z2−0.45z+0.05
0.4360z−0.0525
z2−0.45z+0.05

]

Yzi(z) = [−0.1 2.9
]
z

[
0.1437z−0.0218
z2−0.45z+0.05
0.4360z−0.0525
z2−0.45z+0.05

]
= z

1.25z − 0.1500

z2 − 0.45z + 0.05
,

which is the same as that obtained in Chap. 9 Example 9.11.
The transform of the zero-state component of the state vector is

Qzs(z) = (zI − A)−1BX(z)

=
[

z
z2−0.45z+0.05

− 0.05
z2−0.45z+0.05

1
z2−0.45z+0.05

z−0.45
z2−0.45z+0.05

][
z

z−1
0

]
= z

[
z

(z−1)(z2−0.45z+0.05)
1

(z−1)(z2−0.45z+0.05)

]

Yzs(z) = C(zI − A)−1BX(z) = z
[−0.1 2.9

] [ z
(z−1)(z2−0.45z+0.05)

1
(z−1)(z2−0.45z+0.05)

]

= z
−0.1z + 2.9

(z − 1)(z2 − 0.45z + 0.05)
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Adding the direct input component, we get

Yzs(z) = z

( −0.1z + 2.9

z3 − 1.45z2 + 0.5z − 0.05
+ 2

z − 1

)
= z

2z2 − z + 3

z3 − 1.45z2 + 0.5z − 0.05
,

which is the same as that obtained in Chap. 9 Example 9.11. �

11.4 Linear Transformation of State Vectors

For a specific input-output relationship of a system, the system can have different
internal structures. By a linear transformation of a state vector, we can obtain
another vector implying different internal structure of the system. Let us find the
state-space model of a system with state vector q using another state vector q such
that q = Pq and q = P −1q, where P is the N ×N transformation matrix and P −1

exists. With the new state vector, the state equation can be written as

P −1q(n + 1) = AP −1q(n) + Bx(n)

Premultiplying by P , we get

q(n + 1) = PAP −1q(n) + PBx(n)

With A = PAP −1 and B = PB, the state equation can be written as

q(n + 1) = Aq(n) + Bx(n)

With C = CP −1, the output equation can be written as

y(n) = Cq(n) + Dx(n)

Some properties of A and A matrices can be used to check the computation of A.
The determinants of A and A are equal. The determinants of (zI −A) and (zI −A)

are the same. The traces (sum of the diagonal elements) of A and A are equal.

Example 11.9 Derive the state-space model of the system in Example 11.1 with the
new state vector that is related to old state vector as

q1(n) = 2q1(n) + q2(n)

q2(n) = q1(n) − q2(n)

Verify that the transfer function remains the same using either state-space model.
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Fig. 11.9 The state-space
model of a second-order
discrete system with the new
state vector

Solution

P =
[
2 1
1 −1

]
, P −1 =

[ 1
3

1
3

1
3 − 2

3

]

A = PAP −1 =
[
2 1
1 −1

] [
2 −3
1 0

] [ 1
3

1
3

1
3 − 2

3

]
=
[− 1

3
17
3

− 2
3

7
3

]

B = PB =
[
2 1
1 −1

] [
1
0

]
=
[
2
1

]

C = CP −1 = [
1 −2

] [ 1
3

1
3

1
3 − 2

3

]
= [− 1

3
5
3

]

The state-space model of a second-order discrete system with the new state vector
is shown in Fig. 11.9. The transfer function, computed using the new state-space
model, is

H(z) =
[
−1

3

5

3

] [
z + 1

3 − 17
3

2
3 z − 7

3

]−1 [
2
1

]
+ 2 = z − 2

(z2 − 2z + 3)
+ 2,

which is the same as that obtained in Example 11.7.

�
Diagonalization, controllability, and observability are similar to continuous state-

space systems as presented in the next chapter.
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11.5 Summary

• In this chapter, state-space analysis of discrete systems has been presented.
• State-space model of a system is a generalization of input-output models, such

as the transfer function.
• State-space model, in addition to the input and the output, includes N internal

variables, called state variables, of a N th-order system. All the outputs of the
system are expressed in terms of the state variables and the input.

• A system, characterized by a N th-order difference equation, is characterized, in
the state-space model, by a set of N simultaneous first-order difference equations
and a set of output equations.

• Solution of the N first-order difference equations yields the values of the N

state variables. The output is expressed in terms of these values and the input.
Solution of the state equations can be obtained by time-domain or frequency-
domain methods.

• The state-space model of a system can be derived from its difference equation,
transfer function, or realization diagram.

• The state-space model is not unique, since there are infinite realizations of a
system with the same input-output relationship.

• Since it is an internal description of the system, by using linear transformation
of the state vector, we can obtain another realization of the system, although of
the same input-output relationship, with different characteristics, such as amount
of quantization noise, number of components required, sensitivity to parameter
variations, etc.

• State-space models can be easily extended to the analysis of time-varying and
nonlinear systems and systems with multiple inputs and multiple outputs.

Exercises

11.1 Given the difference equation governing a second-order system, with input
x(n) and output y(n), (a) find the state-space model of the system realized as shown
in Fig. 11.1, and (b) find the state-space model of the system realized as shown in
Fig. 11.3. Find the first four values of the impulse response of the system, iteratively,
using both the state-space models, and verify that they are equal.

11.1.1 y(n) − 5y(n − 1) + 3y(n − 2) = −6x(n) + 4x(n − 1) − 2x(n − 2)
11.1.2 y(n) + 5y(n − 1) + 4y(n − 2) = 5x(n) − 2x(n − 1) − 6x(n − 2)
11.1.3 y(n) + 3y(n − 1) + 2y(n − 2) = 4x(n) − 5x(n − 1) + 6x(n − 2)

11.2 Given the difference equation governing a second-order system, (a) find the
state-space model of the system realized as shown in Fig. 11.1, and (b) find the state-
space model of the system realized as shown in Fig. 11.3. Find the outputs y(0),
y(1), and y(2) of the system for the input x(n), iteratively, using both the state-
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space models, and verify that they are equal. The initial conditions of the system are
y(−1) = 1 and y(−2) = 2.

11.2.1 y(n)− 5
4y(n− 1)+ 3

8y(n− 2) = 3x(n)− 4x(n− 1)− 2x(n− 2), x(n) =(
1
2

)n

u(n).

11.2.2 y(n)+2y(n−1)+4y(n−2) = 4x(n)−2x(n−1)−6x(n−2), x(n) = u(n).
11.2.3 y(n) − y(n − 1) + 2y(n − 2) = 2x(n) − 3x(n − 1) + 2x(n − 2), x(n) =

(−1)n u(n).

11.3 Given the difference equation governing a second-order system, with input
x(n) and output y(n), find the state-space model of the system realized as shown in
Fig. 11.1. Derive the closed-form expression of the impulse response of the system
using the time-domain state-space method. Give the first four values of the impulse
response.

* 11.3.1 y(n) + y(n − 1) + 2
9y(n − 2) = x(n) − 3x(n − 1) + 2x(n − 2).

11.3.2 y(n) − y(n − 1) + y(n − 2) = 2x(n) + 3x(n − 1) + 4x(n − 2).
11.3.3 y(n) + 3y(n − 1) + 2y(n − 2) = 3x(n) − 4x(n − 1) + 2x(n − 2).

11.4 Given the difference equation governing a second-order system, find the state-
space model of the system realized as shown in Fig. 11.1. Derive the closed-form
expression of the zero-input and zero-state components of the state vector, the zero-
input and zero-state components of the response, and the total response of the
system, using the time-domain state-space method, for the input x(n). Give the first
four values of the zero-input, zero-state, and total responses. The initial conditions
of the system are y(−1) = −1 and y(−2) = 2.

11.4.1 y(n)+ 5
6y(n−1)+ 1

6y(n−2) = 4x(n)+2x(n−1)−x(n−2), x(n) =(
1
2

)n

u(n).

* 11.4.2 y(n)+y(n−1)+ 1
4y(n−2) = 2x(n)−x(n−1)+x(n−2), x(n) = u(n).

11.4.3 y(n)+3y(n−1)+2y(n−2) = −2x(n)−x(n−1)+3x(n−2), x(n) =
cos( 2π4 n)u(n).

11.5 Given the difference equation governing a second-order system, with input
x(n) and output y(n), find the state-space model of the system realized as shown in
Fig. 11.1. Derive the closed-form expression of the impulse response of the system
using the frequency-domain state-space method. Give the first four values of the
impulse response.

11.5.1 y(n) + y(n − 1) + 2
9y(n − 2) = x(n) − 2x(n − 1) − 2x(n − 2).

11.5.2 y(n) − 3
4y(n − 1) + 1

8y(n − 2) = 3x(n) − 2x(n − 1) + x(n − 2).
* 11.5.3 y(n) + 2

3y(n − 1) + 1
9y(n − 2) = 2x(n) + x(n − 1) + x(n − 2).

11.5.4 y(n) + √
2y(n − 1) + y(n − 2) = x(n − 1).
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11.6 Given the difference equation governing a second-order system, find the state-
space model of the system realized as shown in Fig. 11.1. Derive the closed-form
expression of the zero-input and zero-state components of the state vector, the zero-
input and zero-state components of the response, and the total response of the
system, using the frequency-domain state-space method, for the given input x(n)

and the initial conditions y(−1) and y(−2). Give the first four values of the zero-
input, zero-state, and total responses.

11.6.1 y(n) − 5
6y(n − 1) + 1

6y(n − 2) = x(n − 1), x(n) = sin( 2π4 n)u(n),

y(−1) = 0 and y(−2) = 0.
* 11.6.2 y(n) + y(n − 1) + 1

4y(n − 2) = x(n) + x(n − 1) + x(n − 2), x(n) =
( 13 )

nu(n), y(−1) = 1 and y(−2) = 1.
11.6.3 y(n) + y(n − 1) + y(n − 2) = x(n) − 2x(n − 1) + x(n − 2), x(n) =

u(n), y(−1) = 2 and y(−2) = 1.

11.7 The state-space model of a system is given. Derive another state-space model
of the system using the given transformation matrix P . Verify that the transfer
function remains the same using either state-space model. Further verify that (i)
the traces and determinants of matrices A and A are equal and (ii) the determinants
of (zI − A) and (zI − A) are the same.

11.7.1

A =
[
1 2
1 3

]
, B =

[
1
2

]
, C = [

2 2
]
, D = 1, P =

[
1 1
1 −1

]

11.7.2

A =
[
3 −1
2 3

]
, B =

[
1
2

]
, C = [−2 1

]
, D = 3, P =

[
2 3
1 1

]

11.7.3

A =
[
2 −1
2 1

]
, B =

[
1

−1

]
, C = [

2 3
]
, D = 3, P =

[
0 1
1 0

]



Chapter 12
State-Space Analysis of Continuous
Systems

The state-space analysis of continuous systems is similar to that of discrete
systems. The realization diagrams are the same with the delay elements replaced
by integrators. Therefore, we concentrate, in this chapter, on time-domain and
frequency-domain solutions of the state equation. Further, diagonalization, con-
trollability, and observability, which are similar to that of the discrete systems, are
presented in detail. The state-space model is presented in Sect. 12.1. Time-domain
and frequency-domain solutions of the state equation are presented, respectively, in
Sects. 12.2 and 12.3. The linear transformation of state vectors to obtain different
realizations of systems is described in Sect. 12.4. The topics of diagonaliza-
tion, similarity transformation, controllability, and observability are addressed in
Sects. 12.5–12.8.

12.1 The State-Space Model

Consider the state-space model, shown in Fig. 12.1, of a second-order continuous
system, characterized by the differential equation

ÿ(t) + a1ẏ(t) + a0y(t) = b2ẍ(t) + b1ẋ(t) + b0x(t)

(In this chapter, a dot over a variable indicates its first derivative and two dots

indicates its second derivative. For example, ẏ(t) = dy(t)
dt

and ÿ(t) = d2y(t)

dt2
.) In

addition to the input x(t) and the output y(t), we have shown two internal variables
(called the state variables), q1(t) and q2(t), of the system. State variables are a
minimal set of variables (N for a N th-order system) of a system so that a knowledge
of the values of these variables (the state of the system) at t = t0 and those of the
input for t ≥ t0 will enable the determination of the values of the state variables for
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Fig. 12.1 A state-space
model of the canonical form I
of a second-order continuous
system

t > t0 and the output for t ≥ t0. An infinite number of different sets, each of N state
variables, are possible for a particular N th-order system.

From Fig. 12.1, we can write down the following state equations defining the
state variables q1(t) and q2(t).

q̇1(t) = −a1q1(t) − a0q2(t) + x(t)

q̇2(t) = q1(t)

The first derivative of each state variable is expressed in terms of all the state
variables and the input. No derivatives of either the state variables or the input
is permitted, on the right-hand side, to have the equation in a standard form. A
second-order differential equation characterizing the system, shown in Fig. 12.1, has
been decomposed into a set of two simultaneous first-order differential equations.
These two equations may be combined into a first-order vector-matrix differential
equation.

Selecting state variables as the output of the integrators is a natural choice, since
an integrator is characterized by a first-order differential equation. With that choice,
we can write down a state equation at the input of each integrator. However, the
state variables need not correspond to quantities that are physically observable in
a system. In the state-space model of a system, in general, a N th-order differential
equation characterizing a system is decomposed into a set of N simultaneous first-
order differential equations of a standard form. With a set of N simultaneous
differential equations, we can solve for N unknowns. These are the N internal
variables, called the state variables, of the system. The output is expressed as a
linear combination of the state variables and the input. The concepts of impulse
response, convolution, and transform analysis are all equally applicable to the state-
space model. The difference is that, as the system is modeled using matrix and
vector quantities, the system analysis involves matrix and vector quantities. One of
the advantages of the state-space model is the easier extension to multiple inputs
and outputs. For simplicity, we describe systems with single input and single output
only. The output y(t) of the system, shown in Fig. 12.1, is given by



12.1 The State-Space Model 403

Fig. 12.2 Block diagram
representation of the
state-space model of a
N th-order continuous system,
with single input and single
output

y(t) = −b2a1q1(t) − b2a0q2(t)

+ b1q1(t) + b0q2(t) + b2x(t)

The output equation is an algebraic (not a differential) equation. We can write the
state and output equations, using vectors and matrices, as

[
q̇1(t)

q̇2(t)

]
=
[−a1 −a0

1 0

] [
q1(t)

q2(t)

]
+
[
1
0

]
x(t)

y(t) = [
b1 − b2a1 b0 − b2a0

] [q1(t)

q2(t)

]
+ b2x(t)

Let us define the state vector q(t) as

q(t) =
[

q1(t)

q2(t)

]

Then, with

A =
[−a1 −a0

1 0

]
, B =

[
1
0

]
,

C = [
b1 − b2a1 b0 − b2a0

]
, D = b2,

the general state-space model description for continuous systems is given as

q̇(t) = Aq(t) + Bx(t)

y(t) = Cq(t) + Dx(t)

The block diagram representation of the state-space model of a N th-order continu-
ous system, with single input and single output, is shown in Fig. 12.2. Parallel lines
terminating with an arrowhead indicate that the signal is a vector quantity.
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Fig. 12.3 A RLC circuit

Example 12.1 Consider the RLC circuit analyzed in Example 10.5, shown in
Fig. 12.3. It is a series circuit with a resistor of 5

3 ohms, an inductance of 2 henries,
and a capacitor of 3 farads. The initial current through the inductor is 3 amperes,
and the initial voltage across the capacitor is 2 volts. This circuit is excited with a
voltage source of 3u(t) volts. Assuming the capacitor voltage as the output of the
circuit, find a state-space model of the circuit.

Solution The first step in finding the model is to write down the equations
governing the circuit using the circuit theorems and the input-output behavior of
the components. Let the current through the circuit be i(t), the voltage across the
capacitor be vc(t), the input voltage be x(t), and the output voltage be y(t). The
sum of the voltages across the components of the circuit must be equal to the input
voltage. Therefore, we get

2i̇(t) + 5

3
i(t) + vc(t) = x(t)

The current in the circuit is given by i(t) = 3v̇c(t). The next step is to select the
minimum set of state variables required. Let the current through the inductor, i(t),
be the first state variable q1(t). Let the capacitor voltage, vc(t), be the second state
variable q2(t). The next step is to substitute the state variables for the variables in
the circuit differential equations. After substituting, these equations are rearranged
such that only the first derivatives of the state variables appear on the left side and
no derivatives appear on the right side. For this example, we get

q̇1(t) = −5

6
q1(t) − 1

2
q2(t) + 1

2
x(t)

q̇2(t) = 1

3
q1(t)

These are the state equations of the circuit. The output equation of the circuit is
y(t) = vc(t) = q2(t). Using matrices, we get the state-space model as

q̇(t) =
[

q̇1(t)

q̇2(t)

]
=
[− 5

6 − 1
2

1
3 0

] [
q1(t)

q2(t)

]
+
[ 1

2
0

]
x(t)

y(t) = [
0 1
] [q1(t)

q2(t)

]
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Fig. 12.4 State-space model
of the RCL circuit shown in
Fig. 12.3

Therefore,

A =
[− 5

6 − 1
2

1
3 0

]
, B =

[ 1
2
0

]
,C = [

0 1
]
, D = 0

The state-space model of the RCL circuit is shown in Fig. 12.4. It is similar to that
shown in Fig. 12.1, except that there is a multiplier with coefficient 1

3 between the
two integrators. �

12.2 Time-Domain Solution of the State Equation

We have to find the solution to the state equation. For this purpose, we need the
exponential of a matrix eAt and its derivative. Similar to the infinite series defining
an exponential of a scalar,

eAt = I + At + A2 t2

2! + A3 t3

3! + · · ·

This series is absolutely and uniformly convergent for all values of t . Therefore, it
can be differentiated or integrated term by term.

d(eAt )

dt
= A + A2t + A3 t2

2! + A4 t3

3! + · · · = AeAt = eAtA

By premultiplying both sides of state equation by e−At , we get

e−At q̇(t) = e−AtAq(t) + e−AtBx(t)
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By shifting the first term on the right side to the left, we get

e−At q̇(t) − e−AtAq(t) = e−AtBx(t)

Since

d(e−Atq(t))

dt
= e−At q̇(t) − e−AtAq(t),

we can write the previous equation as

d(e−Atq(t))

dt
= e−AtBx(t)

Integrating both sides of this equation from 0− to t , we get

e−Atq(t)|t0− =
∫ t

0−
e−AτBx(τ)dτ

Applying the limit and then premultiplying both sides by eAt , we get

q(t) =
qzi (t)︷ ︸︸ ︷

eAtq(0−)+

qzs (t)︷ ︸︸ ︷∫ t

0−
eA(t−τ)Bx(τ)dτ

The first and the second expressions on the right-hand side are, respectively, the
zero-input and zero-state components of the state vector q(t). Note that the part of
the expression

∫ t

0−
eA(t−τ)Bx(τ)dτ

is the convolution of the matrices eAt and Bx(t), eAt ∗ Bx(t). Convolution of
matrices is the same as the multiplication of two matrices, except that the product
of two elements is replaced by their convolution. If the initial state vector values are
given at t = t−0 , rather than at t = 0−, the state equation is modified as

q(t) = eA(t−t0)q(t−0 ) +
∫ t

t−0
eA(t−τ)Bx(τ)dτ

The matrix eAt is called the state-transition matrix or the fundamental matrix of the
system.

Once we know the state vector, we get the output of the system using the output
equation as
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y(t) = C

(
eAtq(0−) +

∫ t

0−
eA(t−τ)Bx(τ)dτ

)
+ Dx(t)

=
yzi (t)︷ ︸︸ ︷

CeAtq(0−)+

yzs (t)︷ ︸︸ ︷
C

∫ t

0−
eA(t−τ)Bx(τ)dτ + Dx(t)

The first expression on the right-hand side is the zero-input component of the system
response y(t), and the other two expressions yield the zero-state component. The
zero-input response of the system depends solely on the state-transition matrix
eAt . This matrix, for a N th-order system, is evaluated, using the Cayley-Hamilton
theorem, as

eAt = c0I + c1A + c2A
2 + · · · + cN−1A

(N−1)

where

⎡
⎢⎢⎣

c0

c1

· · ·
cN−1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
1 λ1 λ21 · · · λN−1

1
1 λ2 λ22 · · · λN−1

2
· · ·

1 λN λ2N · · · λN−1
N

⎤
⎥⎥⎦

−1⎡
⎢⎢⎣

eλ1t

eλ2t

· · ·
eλN t

⎤
⎥⎥⎦

and λ1, λ2, . . . , λN are the N distinct characteristic roots of A. For a root λr

repeated m times, the first row corresponding to that root will remain the same as
for a distinct root, and the m − 1 successive rows will be successive derivatives of
the first row with respect to λr . For example, with the first root of a fourth-order
system repeating two times, we get

⎡
⎢⎢⎣

c0

c1

c2

c3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
1 λ1 λ21 λ31
0 1 2λ1 3λ21
1 λ2 λ22 λ32
1 λ3 λ23 λ33

⎤
⎥⎥⎦

−1⎡
⎢⎢⎣

eλ1t

teλ1t

eλ2t

eλ3t

⎤
⎥⎥⎦

Example 12.2 Find a closed-form expression for the output y(t) of the system,
described by the differential equation

ÿ(t) + 4ẏ(t) + 4y(t) = ẍ(t) + ẋ(t) + 2x(t)

using the time-domain method, with the initial conditions y(0−) = 2 and ẏ(0−) = 3
and the input u(t), the unit-step function. Assume canonical form I realization of the
system as shown in Fig. 12.1.



408 12 State-Space Analysis of Continuous Systems

Solution

A =
[−4 −4

1 0

]
, B =

[
1
0

]
,C = [−3 −2

]
, D = 1

The initial state vector has to be found from the given initial output conditions
using the state and output equations. From the state equation, we get

q̇1(0
−) = −4q1(0

−) − 4q2(0
−)

q̇2(0
−) = q1(0

−)

Note that the input x(t) is zero at t = 0−. From the output equation, we get

−3q̇1(0
−) − 2q̇2(0

−) = 3

−3q1(0
−) − 2q2(0

−) = 2

Solving these equations, we get the initial state vector as

q1(0
−) = −15

8
, q2(0

−) = 29

16

The characteristic polynomial of a system is given by the determinant of the matrix
(sI − A), where I is the identity matrix of the same size as A. While we can write
down the characteristic polynomial from the differential equation, we just show how
it can be found using the matrix A. For this example,

(sI − A) = s

[
1 0
0 1

]
−
[−4 −4

1 0

]
=
[

s + 4 4
−1 s

]

The characteristic polynomial of the system, given by the determinant of this matrix,
is

s2 + 4s + 4

With each of the infinite different realizations of a system, we get the A matrix with
different values. However, as the system is the same, its characteristic polynomial,
given by the determinant of (sI − A), will be the same for any valid A. The
characteristic roots, which are the roots of this polynomial, are λ1 = −2 and
λ2 = −2. The transition matrix is given by

eAt = c0I + c1A

where
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[
c0

c1

]
=
[
1 λ1

0 1

]−1 [
eλ1t

teλ1t

]
=
[
1 2
0 1

] [
e−2t

te−2t

]

=
[

e−2t + 2te−2t

te−2t

]

eAt = c0

[
1 0
0 1

]
+ c1

[−4 −4
1 0

]
=
[

c0 − 4c1 −4c1
c1 c0

]

=
[

e−2t − 2te−2t −4te−2t

te−2t e−2t + 2te−2t

]

Since q(t) = eAtq(0), with t = 0, we get q(0) = eA0q(0). That is, I = eA0. This
result, which can be used to check the state-transition matrix, is also obvious from
the infinite series for eAt .

The state vector q(t) can be computed as follows.

q(t) =
[

e−2t − 2te−2t −4te−2t

te−2t e−2t + 2te−2t

] [− 15
8
29
16

]

+
[

e−2t − 2te−2t −4te−2t

te−2t e−2t + 2te−2t

]
∗
([

1
0

]
u(t)

)

=
[

e−2t − 2te−2t −4te−2t

te−2t e−2t + 2te−2t

] [− 15
8
29
16

]

+
[ ∫ t

0 (e−2τ − 2τe−2τ )dτ∫ t

0 (τe−2τ )dτ

]

=
[− 15

8 e−2t − 7
2 te

−2t

29
16e

−2t + 7
4 te

−2t

]
+
[

te−2t

− 1
4e

−2t − 1
2 te

−2t + 1
4

]

=
[ − 15

8 e−2t − 5
2 te

−2t

1
4 + 25

16e
−2t + 5

4 te
−2t

]

The output y(t) can be computed using the output equation. The zero-input
component of the output is given by

yzi(t) = [−3 −2
] [− 15

8 e−2t − 7
2 te

−2t

29
16e

−2t + 7
4 te

−2t

]

= 2e−2t + 7te−2t
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Fig. 12.5 The simulation
diagram of the transfer
function

The zero-state component of the output is given by

yzs(t) = [−3 −2
] [ te−2t

− 1
4e

−2t − 1
2 te

−2t + 1
4

]
+ 1

= 0.5 + 0.5e−2t − 2te−2t

The total response of the system is the sum of the zero-input and zero-state
components of the response and is given as

y(t) = (0.5 + 2.5e−2t + 5te−2t )u(t) �
The simulation diagram of the state-space model, shown in Fig. 12.5, produces

the total output. The input is the unit-step signal. The initial values of the state
variables are set in the simulation block.

Example 12.3 Find the closed-form expression for the impulse response of the
system, described by the state-space model given in Example 12.2, using the time-
domain method.

Solution

CeAt = [−3 −2
] [ c0 − 4c1 −4c1

c1 c0

]

= [−3c0 + 10c1 −2c0 + 12c1
]

Since the convolution output of a function with the unit impulse is itself and the
vector B is a constant, the impulse response is given by

h(t) = CeAtB + Dδ(t) = −3c0 + 10c1 + δ(t)

h(t) = (δ(t) − 3e−2t + 4te−2t )u(t) �
This result can also be obtained by differentiating the zero-state response of the
previous example, as the unit-impulse response is the derivative of the unit-step
response.
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12.3 Frequency-Domain Solution of the State Equation

The Laplace transform of a vector function, such as q(t), is defined to be the vector
function Q(s), where the elements are the transforms of the corresponding elements
of q(t). Taking the Laplace transform of the state equation, we get

sQ(s) − q(0−) = AQ(s) + BX(s)

We have used the time-differentiation property of the Laplace transform, and q(0−)

is the initial state vector. Since IQ(s) = Q(s), where I is the identity matrix of the
same size as the matrix A, and collecting the terms involving Q(s), we get

(sI − A)Q(s) = q(0−) + BX(s)

The inclusion of the identity matrix is necessary to combine the terms involving
Q(s). Premultiplying both sides by (sI − A)−1, which is the inverse of (sI − A),
we get

Q(s) =
qzi (s)︷ ︸︸ ︷

(sI − A)−1q(0−)+
qzs (s)︷ ︸︸ ︷

(sI − A)−1BX(s)

The inverse Laplace transforms of the first and the second expressions on the right-
hand side are, respectively, the zero-input and zero-state components of the state
vector q(t). Taking the Laplace transform of the output equation, we get

Y (s) = CQ(s) + DX(s)

Substituting for Q(s), we get

Y (s) =
yzi (s)︷ ︸︸ ︷

C(sI − A)−1q(0−)+
yzs (s)︷ ︸︸ ︷

(C(sI − A)−1B + D)X(s)

The inverse Laplace transforms of the first and the second expressions on the right-
hand side are, respectively, the zero-input and zero-state components of the system
response y(t). Comparing with the expression for Q(t), we find that the inverse
Laplace transform of ((sI − A)−1) is eAt , the transition or fundamental matrix of
the system. With the system initial conditions zero, the transfer function is given by

H(s) = Y (s)

X(s)
= (C(sI − A)−1B + D)

Example 12.4 Solve the problem of Example 12.2 using the frequency-domain
method.
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Solution The initial state vector is

q(0−) =
[− 15

8
29
16

]

as derived in Example 12.2 from the given initial output conditions.

(sI − A) = s

[
1 0
0 1

]
−
[−4 −4

1 0

]
=
[

s + 4 4
−1 s

]

(sI − A)−1 = 1

s2 + 4s + 4

[
s −4
1 s + 4

]
=
[

s
s2+4s+4

−4
s2+4s+4

1
s2+4s+4

s+4
s2+4s+4

]

We used the fact that I = eA0 to check the computation of eAt . In the frequency
domain, the corresponding check, using the initial value theorem of the Laplace
transform, is lims→∞ s(sI − A)−1 = I .

The zero-input component of the state vector is

qzi(s) = (sI − A)−1q(0−) =
[

s
s2+4s+4

−4
s2+4s+4

1
s2+4s+4

s+4
s2+4s+4

][− 15
8
29
16

]

=
⎡
⎣ − 15

8 s− 29
4

s2+4s+4
29
16 s+ 43

8
s2+4s+4

⎤
⎦ =

⎡
⎣− 7

2
(s+2)2

− 15
8

s+2
7
4

(s+2)2
+ 29

16
s+2

⎤
⎦

Taking the inverse Laplace transform, we get

qzi(t) =
[− 15

8 e−2t − 7
2 te

−2t

29
16e

−2t + 7
4 te

−2t

]

The zero-state component of the state vector is

qzs(s) = (sI − A)−1BX(s) =
[

s
s2+4s+4

−4
s2+4s+4

1
s2+4s+4

s+4
s2+4s+4

][
1
0

]
1

s

=
[

1
s2+4s+4

1
s(s2+4s+4)

]
=
⎡
⎣

1
(s+2)2
1
4
s

− 1
2

(s+2)2
− 1

4
s+2

⎤
⎦

Taking the inverse Laplace transform, we get

qzs(t) =
[

te−2t

1
4 − 1

4e
−2t − 1

2 te
−2t

]
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Using the output equation, the output can be computed as given in Example 12.2. �

Example 12.5 Find the closed-form expression for the impulse response of the
system, described by the state-space model given in Example 12.2, using the
frequency-domain method.

Solution The transfer function is given by

H(s) = Y (s)

X(s)
= (C(sI − A)−1B + D)

H(s) = [−3 −2
] [ s

s2+4s+4
−4

s2+4s+4
1

s2+4s+4
s+4

s2+4s+4

][
1
0

]
+ 1

= −3s − 2

(s2 + 4s + 4)
+ 1 = 1 − 3

s + 2
+ 4

(s + 2)2

Finding the inverse Laplace transform, we get

h(t) = (δ(t) − 3e−2t + 4te−2t )u(t) �

12.4 Linear Transformation of State Vectors

In common with discrete systems, for a specific input-output relationship of a
continuous system, the system can have different internal structures. By a linear
transformation of a state vector, we can obtain another vector implying different
internal structure of the system. Let us find the state-space model of a system with
state vector q using another state vector q such that q = Pq and q = P −1q, where
P is the N × N transformation matrix and P −1 exists. With the new state vector,
the state equation can be written as

P −1 ˙q(t) = AP −1q(t) + Bx(t)

Premultiplying by P , we get

˙q(t) = PAP −1q(t) + PBx(t)

With A = PAP −1 and B = PB, the state equation can be written as

˙q(t) = Aq(t) + Bx(t)
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With C = CP −1, the output equation can be written as

y(t) = Cq(t) + Dx(t)

Some properties of A and A matrices can be used to check the computation of A.
The determinants of A and A are equal. The determinants of (sI −A) and (sI −A)

are the same. The traces (sum of the diagonal elements) of A and A are equal.

Example 12.6 Derive the state-space model of the system in Example 12.1 with the
new state vector that is related to old state vector as

q1(t) = q1(t) + 2q2(t)

q2(t) = −3q1(t) + 4q2(t)

Verify that the transfer function remains the same using either state-space model.

Solution

P =
[

1 2
−3 4

]
, P −1 =

[ 4
10 − 2

10
3
10

1
10

]

A = PAP −1 =
[

1 2
−3 4

] [− 5
6 − 1

2
1
3 0

] [ 4
10 − 2

10
3
10

1
10

]
=
[− 13

60 − 1
60

119
60 − 37

60

]

B = PB =
[

1 2
−3 4

] [ 1
2
0

]
=
[ 1

2
− 3

2

]

C = CP −1 = [
0 1
] [ 4

10 − 2
10

3
10

1
10

]
= [

3
10

1
10

]

The state-space model of a second-order continuous system with the new state
vector is shown in Fig. 12.6. This realization requires more components than that
shown in Fig. 12.4. However, it must be noted that, while the minimum number of
components is of great importance, there are other criteria, such as less coefficient
sensitivity, that could decide which of the realizations of a system is suitable for a
particular application.

The transfer function, using the new state-space model, is computed as follows.

(sI − A) = s

[
1 0
0 1

]
−
[− 13

60 − 1
60

119
60 − 37

60

]
=
[

s + 13
60

1
60

− 119
60 s + 37

60

]
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Fig. 12.6 The state-space
model of a second-order
continuous system with the
new state vector

(sI − A)−1 = 1

s2 + 5
6 s + 1

6

[
s + 37

60 − 1
60

119
60 s + 13

60

]
=
⎡
⎢⎣

s+ 37
60

s2+ 5
6 s+ 1

6

− 1
60

s2+ 5
6 s+ 1

6
119
60

s2+ 5
6 s+ 1

6

s+ 13
60

s2+ 5
6 s+ 1

6

⎤
⎥⎦

H(s) =
[
3

10

1

10

]⎡⎢⎣
s+ 37

60

s2+ 5
6 s+ 1

6

− 1
60

s2+ 5
6 s+ 1

6
119
60

s2+ 5
6 s+ 1

6

s+ 13
60

s2+ 5
6 s+ 1

6

⎤
⎥⎦
[ 1

2
− 3

2

]
=

1
6

(s2 + 5
6 s + 1

6 )

The transfer function, using the old state-space model, is computed as follows.

(sI − A) = s

[
1 0
0 1

]
−
[− 5

6 − 1
2

1
3 0

]
=
[

s + 5
6

1
2

− 1
3 s

]

(sI − A)−1 = 1

s2 + 5
6 s + 1

6

[
s − 1

2
1
3 s + 5

6

]
=
⎡
⎢⎣

s

s2+ 5
6 s+ 1

6

− 1
2

s2+ 5
6 s+ 1

6
1
3

s2+ 5
6 s+ 1

6

s+ 5
6

s2+ 5
6 s+ 1

6

⎤
⎥⎦

H(s) = [0 1]
⎡
⎢⎣

s

s2+ 5
6 s+ 1

6

− 1
2

s2+ 5
6 s+ 1

6
1
3

s2+ 5
6 s+ 1

6

s+ 5
6

s2+ 5
6 s+ 1

6

⎤
⎥⎦
[ 1

2
0

]
=

1
6

(s2 + 5
6 s + 1

6 )
,

which is the same as that obtained above. �



416 12 State-Space Analysis of Continuous Systems

12.5 Diagonalization

The easiest matrix to manipulate is the diagonal matrix. A square matrix whose
elements, except those on the main diagonal, are zero is called a diagonal matrix.
Consider the diagonal matrix, denoted by Λ,

Λ =
[
3 0
0 4

]

Then,

(sI − Λ) = s

[
1 0
0 1

]
−
[
3 0
0 4

]
=
[

s − 3 0
0 s − 4

]

The characteristic polynomial of the system, given by the determinant of this matrix,
is

s2 − 7s + 12 = (s − 3)(s − 4)

Therefore, the eigenvalues of a diagonal matrix are its diagonal elements. A square
matrix possess equivalent diagonal form. Let us find the transformation of a matrix
A so that the resultant matrix is a diagonal one.

A nonzero vector v is an eigenvector of a N × N matrix A with eigenvalue λ if

Av = λv

A N × N matrix A is diagonalizable if and only if A has N linearly independent
eigenvectors. Assume that A has N independent column eigenvectors

v1, v1, . . . , vN

corresponding to N eigenvalues

λ1, λ2, . . . , λN

Let

P = [v1 : v1 :, . . . , vN ]

and Λ be a diagonal matrix with the ith element on the diagonal λi . Now,

AP = A[v1 : v1 :, . . . , : vN ]
= [Av1 : Av1 :, . . . , : AvN ]
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= [λ1v1 : λ2v1 :, . . . , : λNvN ]
= [v1 : v1 :, . . . , : vN ]Λ = PΛ

Since AP = PΛ,

P −1AP = Λ

Consider the 2 × 2 matrix A,

A =
[
2 3
2 1

]

Then,

(sI − A) = s

[
1 0
0 1

]
−
[
2 3
2 1

]
=
[

s − 2 −3
−2 s − 1

]

The characteristic polynomial of the system, given by the determinant of this matrix,
is

s2 − 3s − 4 = (s + 1)(s − 4)

The roots of this equation are the two eigenvalues {λ1 = −1, λ2 = 4}. For finding
the eigenvectors, we use the equation

(λI − A)v = 0

For λ = −1, we get

[−1 − 2 −3
−2 −1 − 1

] [
v(0)
v(1)

]
= 0

The resulting equations are

−3v(0) − 3v(1) = 0

−2v(0) − 2v(1) = 0

As these equations are dependent, we take one of them and give any nontrivial
solution. For example, {v(0) = 1, v(1) = −1}. For λ = 4, we get

[
4 − 2 −3

−2 4 − 1

] [
v(0)
v(1)

]
= 0
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Similarly, {v(0) = 2, v(1) = 4/3}. Therefore,

P =
[

1 2
−1 4/3

]

The first and second columns are, respectively, the eigenvectors corresponding to
eigenvalues −1 and 4.

P −1AP =
[
0.4 −0.6
0.3 0.3

] [
2 3
2 1

] [
1 2

−1 4/3

]
= Λ =

[−1 0
0 4

]

Consider the 3 × 3 matrix A,

A =
⎡
⎣3 1 2
1 2 3
3 2 1

⎤
⎦

Then,

(sI − A) = s

⎡
⎣1 0 0
0 1 0
0 0 1

⎤
⎦−

⎡
⎣3 1 2
1 2 3
3 2 1

⎤
⎦ =

⎡
⎣ s − 3 −1 −2

−1 s − 2 −3
−3 −2 s − 1

⎤
⎦

The characteristic polynomial of the system, given by the determinant of this matrix,
is

s3 − 6s2 − 2s + 12 = (s − 6)(s − √
2)(s + √

2)

The roots of this equation are the three eigenvalues {λ1 = 6, λ2 = √
2, λ2 = −√

2}.
For finding the eigenvectors, we use the equation

(λI − A)v = 0

For λ = 6, we get

⎡
⎣6 − 3 −1 −2

−1 6 − 2 −3
−3 −2 6 − 1

⎤
⎦
⎡
⎣ v(0)

v(1)
v(2)

⎤
⎦ = 0

Solving, we get {v(0) = 1, v(1) = 1, v(2) = 1}. For λ = √
2, we get

⎡
⎣

√
2 − 3 −1 −2

−1
√
2 − 2 −3

−3 −2
√
2 − 1

⎤
⎦
⎡
⎣ v(0)

v(1)
v(2)

⎤
⎦ = 0
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Solving, we get {v(0) = −0.6631, v(1) = 1, v(2) = 0.0258}. For λ = −√
2, we

get

⎡
⎣−√

2 − 3 −1 −2
−1 −√

2 − 2 −3
−3 −2 −√

2 − 1

⎤
⎦
⎡
⎣ v(0)

v(1)
v(2)

⎤
⎦ = 0

Solving, we get {v(0) = −0.2720, v(1) = −0.7990, v(2) = 1}. Therefore,

P =
⎡
⎣1 −0.6631 −0.2720
1 1 −0.7990
1 0.0258 1

⎤
⎦

The first, second, and third columns are, respectively, the eigenvectors correspond-
ing to eigenvalues 1, 2, and 3.

P −1AP =
⎡
⎣ 0.4118 0.2647 0.3235

−0.7258 0.5132 0.2126
−0.3931 −0.2779 0.6710

⎤
⎦
⎡
⎣3 1 2
1 2 3
3 2 1

⎤
⎦
⎡
⎣1 −0.6631 −0.2720
1 1 −0.7990
1 0.0258 1

⎤
⎦

= Λ =
⎡
⎣6 0 0
0

√
2 0

0 0 −√
2

⎤
⎦

12.6 Similarity Transformation

Transformations are used to simplify the solution of a problem. For example,
Fourier representation reduces convolution to multiplication. Using logarithms,
multiplication is reduced to addition. There are two versions of transformation
commonly used. In Sect. 12.4, the new state variables is related to the original
state variables by the relation q = Pq. In the other version, the relation becomes
q = P −1q. Therefore, by replacing P by P −1, we get the other version from a
given version. Either version yields the same results, if consistently is used.

LetA be a nonsingular square matrix. Then,A andP −1AP are said to be similar,
whereP is a nonsingular matrix of the same size asA. The transformation fromA to
P −1AP is called the similarity transformation. Two similar matrices have the same
eigenvalues and, hence, the same characteristic polynomial. This transformation
produces a similar diagonal matrix to that of A.
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Example 12.7 Find a closed-form expression for the state output q(t) of the system,
described by

A =
[
2 1
3 4

]
, B =

[
1
0

]
,

using the frequency-domain method, with zero initial conditions and the input u(t),
the unit-step function.

Solution

(sI − A) = s

[
1 0
0 1

]
−
[
2 1
3 4

]
=
[

s − 2 −1
−3 s − 4

]

(sI − A)−1 = 1

s2 − 6s + 5

[
s − 4 1

3 s − 2

]
=
[

s−4
s2−6s+5

1
s2−6s+5

3
s2−6s+5

s−2
s2−6s+5

]

The eigenvalues are {1, 5}.
The zero-state component of the state vector is

qzs(s) = (sI − A)−1BX(s) =
[

s−4
s2−6s+5

1
s2−6s+5

3
s2−6s+5

s−2
s2−6s+5

][
1
0

]
1

s

=
[

s−4
s(s2−6s+5)

3
s(s2−6s+5

)

]
=
[ −0.8

s
+ 0.75

s−1 + 0.05
s−5

0.6
s

− 0.75
s−1 + 0.15

s−5

]

Taking the inverse Laplace transform, we get

qzs(t) =
[−0.8 + 0.75et + 0.05e5t

0.6 − 0.75et + 0.15e5t

]
u(t)

Using the similarity transformation method also, the state output can be com-
puted. The state transition matrix associated with the diagonal system matrix Λ is

[
et 0
0 e5t

]
u(t)

P eΛtP −1=
[

1 1
−1 3

] [
et 0
0 e5t

] [
0.75 −0.25
0.25 0.25

]

= eAt =
[

0.75et + 0.25e5t −0.25et + 0.25e5t

−0.75et + 0.75e5t 0.25et + 0.75e5t

]
u(t)
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which is the same as the inverse Laplace transform of

(sI − A)−1 =
[

s−4
s2−6s+5

1
s2−6s+5

3
s2−6s+5

s−2
s2−6s+5

]
�

12.7 Controllability

A system is said to be controllable, if it is possible to control the state of a system
from its initial value to any other value in a finite interval of time. One of the
necessary and sufficient conditions for complete controllability of a system is that
the rank of the matrix

[B | AB | · · · | AN−1B]

be N , where A and B are the system and input matrices, respectively.
Another test for controllability is that P −1B has all nonzero elements, after the

system has been transformed to diagonal form.

Example 12.8 Determine the controllability of the system, described by

A =
[
0 −1
2 3

]
, B =

[
0
1

]

Solution

(sI − A) = s

[
1 0
0 1

]
−
[
0 −1
2 3

]
=
[

s 1
−2 s − 3

]

The characteristic polynomial of the system, given by the determinant of this matrix,
is

s2 − 3s + 2 = (s − 1)(s − 2)

The roots of this equation are the two eigenvalues {λ1 = 1, λ2 = 2}. For finding the
eigenvectors, we use the equation

(λI − A)v = 0

For λ = 1, we get

[
1 1

−2 1 − 3

] [
v(0)
v(1)

]
= 0
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We get

v(0) + v(1) = 0

−2v(0) − 2v(1) = 0

As these equations are dependent, we take one of them and give any nontrivial
solution. For example, {v(0) = 1, v(1) = −1}. For λ = 2, we get

[
2 1

−2 2 − 3

] [
v(0)
v(1)

]
= 0

Similarly, {v(0) = 1, v(1) = −2}. Therefore,

P =
[

1 1
−1 −2

]

The first and second columns are, respectively, the eigenvectors corresponding to
eigenvalues 1 and 2.

P −1AP =
[

2 1
−1 −1

] [
0 −1
2 3

] [
1 1

−1 −2

]
= Λ =

[
1 0
0 2

]

The rank of the matrix

[B | AB] =
[
1 1
0 −1

]

is 2. Therefore, the system is controllable.

P −1B =
[

1
−1

]

has no zero entries, and, therefore, the system is controllable. �
With

B =
[

1
−1

]

the rank of the matrix

[B | AB] =
[

1 1
−1 −1

]
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is 1. Therefore, the system is uncontrollable.

P −1B =
[
1
0

]

has one zero entry, and, therefore, the system is uncontrollable.

12.8 Observability

A system is said to be observable, if it is possible to determine the state of a system
from its outputs in a finite interval of time. One of the necessary and sufficient
conditions for complete observability of a system is that the rank of the matrix

[CT | AT CT | · · · | (A∗)N−1CT ]

is N , where AT and CT are the transposes of the system and output matrices,
respectively. Another test for observability is that CP −1 has all nonzero elements,
after the system has been transformed to diagonal form.

Example 12.9 Determine the observability of the system, described by

A =
[
0 −1
2 3

]
, C = [

1 −1
]

Solution

(sI − A) = s

[
1 0
0 1

]
−
[
0 −1
2 3

]
=
[

s 1
−2 s − 3

]

The characteristic polynomial of the system, given by the determinant of this matrix,
is

s2 − 3s + 2 = (s − 1)(s − 2)

The roots of this equation are the two eigenvalues {λ1 = 1, λ2 = 2}. Therefore, the
transformation matrix from the last example is

P =
[

2 1
−1 1

]

The first and second columns are, respectively, the eigenvectors corresponding to
eigenvalues 2 and 5.
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P −1AP =
[ 1

3 − 1
3

1
3

2
3

] [
3 2
1 4

] [
2 1

−1 1

]
= Λ =

[
2 0
0 5

]

The rank of the matrix

[CT | AT CT ] =
[

1 −2
−1 −4

]

is 2. Therefore, the system is observable.

CP = [
2 3
]

has no zero entries, and, therefore, the system is observable. �
With

C = [
1 1
]
,

the rank of the matrix

[CT | AT CT ] =
[
1 2
1 2

]

is 1. Therefore, the system is unobservable.

CP =
[

0
−1

]

has a zero entry, and, therefore, the system is unobservable.

12.9 Summary

• In this chapter, state-space analysis of continuous systems has been presented.
• State-space model of a system is a generalization of input-output models, such

as the transfer function.
• State-space model, in addition to the input and the output, includes N internal

variables of the system, called state variables, for a N th-order system. All the
outputs of the system are expressed in terms of the state variables and the input.

• A system, characterized by a N th-order differential equation, is characterized,
in the state-space model, by a set of N simultaneous first-order differential
equations and a set of output equations.
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• Solution of the N first-order differential equations yields the values of the state
variables. The output is expressed in terms of these values and the input. Solution
of the state equations can be obtained by time-domain or frequency-domain
methods.

• The state-space model of a system can be derived from its differential equation,
transfer function, or realization diagram.

• The state-space model is not unique, since there are infinite realizations of a
system with the same input-output relationship.

• Since it is an internal description of the system, by using linear transformation of
the state vector, we can obtain another realization of the system, although of the
same input-output relationship, with different characteristics, such as sensitivity
to parameter variations, number of components required, etc.

• State-space models can be easily extended to the analysis of time-varying and
nonlinear systems and systems with multiple inputs and multiple outputs.

Exercises

12.1 Find the zero-input and zero-state components of the output of the circuit,
described in Example 12.1, using the time-domain state-space method. Find the
total output also.

12.2 Consider the series RLC circuit with a resistor of 9 ohms, an inductance of
3 henries, and a capacitor of 1

6 farads. The initial current through the inductor is
2 amperes, and the initial voltage across the capacitor is 3 volts. This circuit is
excited with a voltage source x(t) = 2e−3t u(t) volts. Assuming the current in the
circuit as the output and the current through the inductor, q1, and the voltage across
the capacitor, q2, as the state variables, find the state-space model of the circuit.
Find the zero-input and zero-state components of the output of the circuit using the
frequency-domain state-space method. Find the total output also.

12.3 Consider the series RLC circuit with a resistor of 8 ohms, an inductance of
2 henries, and a capacitor of 1

6 farads. The initial current through the inductor is
4 amperes, and the initial voltage across the capacitor is 3 volts. This circuit is
excited with a voltage source x(t) = 3u(t) volts. Assuming the inductor voltage
as the output and the current through the inductor, q1, and the voltage across the
capacitor, q2, as the state variables, find the state-space model of the circuit. Find
the zero-input and zero-state components of the output of the circuit using the time-
domain state-space method. Find the total output also.

* 12.4 Consider the series RLC circuit with a resistor of 2 ohms, an inductance of 1
henry, and a capacitor of 1 farad. The initial current through the inductor is 0 ampere,
and the initial voltage across the capacitor is 0 volt. This circuit is excited with
a voltage source x(t) = 4e−t u(t) volts. Assuming the voltage across the resistor
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as the output and the current through the inductor, q1, and the voltage across the
capacitor, q2, as the state variables, find the state-space model of the circuit. Find
the output of the circuit using the frequency-domain state-space method.

12.5 Consider the system described by the differential equation

ÿ(t) + 5ẏ(t) + 6y(t) = 2ẍ(t) − 3ẋ(t) + 4x(t)

with the initial conditions y(0−) = 2 and ẏ(0−) = 1 and the input x(t) = 2u(t).
Assign two state variables to the output of each integrator, and assume canonical
form I realization of the system as shown in Fig. 12.1. Find the zero-input and zero-
state components of the output of the system using the time-domain state-space
method. Find the total output also.

* 12.6 Consider the system described by the differential equation

ÿ(t) + 4ẏ(t) + 3y(t) = ẍ(t) − 2ẋ(t) + 3x(t)

with the initial conditions y(0−) = 3 and ẏ(0−) = 1 and the input x(t) =
3e−2t u(t). Assign two state variables to the output of each integrator, and assume
canonical form I realization of the system as shown in Fig. 12.1. Find the zero-
input and zero-state components of the output of the system using the time-domain
state-space method. Find the total output also.

12.7 Consider the system described by the differential equation

ÿ(t) + 5ẏ(t) + 4y(t) = x(t)

with the input x(t) = sin(t + π
3 )u(t). Assign two state variables to the output of

each integrator, and assume canonical form I realization of the system as shown in
Fig. 12.1. Find the zero-state output of the system using the time-domain state-space
method.

12.8 Find the impulse response of the system characterized by the differential
equation, with input x(t) and output y(t),

ÿ(t) + 2ẏ(t) + y(t) = ẍ(t) + ẋ(t) + 2x(t)

using the time-domain state-space method. Assign two state variables to the output
of each integrator, and assume canonical form I realization of the system as shown
in Fig. 12.1.

* 12.9 Find the impulse response of the system characterized by the differential
equation, with input x(t) and output y(t),
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ÿ(t) + 5

6
ẏ(t) + 1

6
y(t) = ẋ(t) + x(t)

using the time-domain state-space method. Assign two state variables to the output
of each integrator, and assume canonical form I realization of the system as shown
in Fig. 12.1.

12.10 Find the impulse response of the system characterized by the differential
equation, with input x(t) and output y(t),

ÿ(t) + 6ẏ(t) + 5y(t) = 2ẍ(t)

using the time-domain state-space method. Assign two state variables to the output
of each integrator, and assume canonical form I realization of the system as shown
in Fig. 12.1.

* 12.11 Consider the system described by the differential equation

ÿ(t) + 3ẏ(t) + 2y(t) = 3ẍ(t) − ẋ(t) + 4x(t)

with the initial conditions y(0−) = 2 and ẏ(0−) = 3 and the input x(t) = 3u(t).
Assign two state variables to the output of each integrator, and assume canonical
form I realization of the system as shown in Fig. 12.1. Find the zero-input and
zero-state components of the output of the system using the frequency-domain state-
space method. Find the total output also.

12.12 Consider the system described by the differential equation

ÿ(t) + 6ẏ(t) + 9y(t) = −2ẍ(t) + ẋ(t) − 3x(t)

with the initial conditions y(0−) = −2 and ẏ(0−) = −3 and the input x(t) =
2e−4t u(t). Assign two state variables to the output of each integrator, and assume
canonical form I realization of the system as shown in Fig. 12.1. Find the zero-input
and zero-state components of the output of the system using the frequency-domain
state-space method. Find the total output also.

12.13 Consider the system described by the differential equation

ÿ(t) + 6ẏ(t) + 8y(t) = x(t)

with the input x(t) = cos(2t − π
6 )u(t). Assign two state variables to the output

of each integrator, and assume canonical form I realization of the system as shown
in Fig. 12.1. Find the zero-state output of the system using the frequency-domain
state-space method.
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12.14 Find the impulse response of the system characterized by the differential
equation, with input x(t) and output y(t),

ÿ(t) + 4ẏ(t) + 3y(t) = 3ẍ(t) − 2ẋ(t) + x(t)

using the frequency-domain state-space method. Assign two state variables to the
output of each integrator, and assume canonical form I realization of the system as
shown in Fig. 12.1.

* 12.15 Find the impulse response of the system characterized by the differential
equation, with input x(t) and output y(t),

ÿ(t) + 2ẏ(t) + y(t) = −2ẍ(t) + 3ẋ(t) − 4x(t)

using the frequency-domain state-space method. Assign two state variables to the
output of each integrator, and assume canonical form I realization of the system as
shown in Fig. 12.1.

12.16 Find the impulse response of the system characterized by the differential
equation, with input x(t) and output y(t),

ÿ(t) + 7ẏ(t) + 12y(t) = −3ẋ(t) + 2x(t)

using the frequency-domain state-space method. Assign two state variables to the
output of each integrator, and assume canonical form I realization of the system as
shown in Fig. 12.1.

12.17 Derive the state-space model of the system in Example 12.1 with the new
state vector q that is related to old state vector q as

q1(t) = q2(t)

q2(t) = q1(t)

Verify that the transfer function remains the same using either state-space model.
Further verify that (i) the traces and determinants of matrices A and A are equal and
(ii) the determinants of (sI − A) and (sI − A) are the same.

12.18 Derive the state-space model of the system in Example 12.1 with the new
state vector q that is related to old state vector q as

q1(t) = q1(t) + q2(t)

q2(t) = q1(t) − q2(t)
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Verify that the transfer function remains the same using either state-space model.
Further verify that (i) the traces and determinants of matrices A and A are equal and
(ii) the determinants of (sI − A) and (sI − A) are the same.

12.19 Derive the state-space model of the system in Example 12.1 with the new
state vector q that is related to old state vector q as

q1(t) = q1(t)

q2(t) = q1(t) + q2(t)

Verify that the transfer function remains the same using either state-space model.
Further verify that (i) the traces and determinants of matrices A and A are equal and
(ii) the determinants of (sI − A) and (sI − A) are the same.



Appendix A
Complex Numbers

The complex number system is an extension of the real number system. A complex
number is an ordered pair of real numbers, a two-element vector. The complex
number z = 2 + j1, called its rectangular form , is shown in Fig. A.1. The two
real numbers a and b are called, respectively, the real and imaginary parts of the
complex number z, and j = √−1 is the imaginary unit. The necessity for complex
numbers is that it is more efficient to represent related entities in the vector form.
For example, at a given frequency, a sinusoid is defined by its amplitude and phase.
In signal analysis, the complex form of representing the amplitude and phase of a
sinusoid is more convenient than by two scalars. In a Cartesian coordinate system,
a point is represented by its distance from a set of perpendicular lines that intersect
at the origin of the system. A Cartesian coordinate system in which the horizontal
and vertical axes represent, respectively, the real and imaginary parts of a complex
number is called a complex plane. Complex numbers z = a + jb and p = c + jd

are equal, if and only if a = c and b = d.
A complex number z = a + jb can be written in its polar or exponential form

Aejθ . The representation of the complex number z = 2 + j1 is
√
5ej26.5651 using

degree measure for the angle, as shown in Fig. A.1. The magnitude A and phase θ

are, respectively,

A =
√

a2 + b2 and θ = tan−1 b

a

The inverse relations are

a = A cos(θ) and b = A sin(θ)

The real number system is a subset of the complex number system. Therefore, all
the operations, if the imaginary parts are zero, reduce to real arithmetic operations.

Addition and Subtraction
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432 A Complex Numbers

Fig. A.1 The complex plane
with some complex numbers

Let the two numbers be z = a + jb and p = c + jd. Then,

q = z ± p = (a ± c) + j (b ± d)

With z = 2 + j3 and p = 1 − j4, q = z + p = 3 − j1 and q = z − p = 1 + j7.

Multiplication
Let the two numbers be z = a + jb and p = c + jd. Then,

q = (z)(p) = (a + jb)(c + jd) = (ac − bd) + j (ad + bc),

where j2 = −1. With z = 2 + j3 and p = 1 − j4, q = (z)(p) = 14 − j5.
In polar form,

q = (z)(p) = (a + jb)(c + jd) = AejθCejφ = ACej(θ+φ)

(2+ j3)(1− j4) = 3.6056ej0.98284.1231e−j1.3258 = 14.8661e−j0.3430 = 14− j5

using radian measure.

Complex Conjugate
The conjugate of a complex number z = a + jb is z∗ = a − jb, obtained by
replacing j by −j . z∗ is the mirror image of z about the real axis in the complex
plane. In polar form, the conjugate of Aejθ is Ae−jθ . Obviously, the product of a
complex number with its conjugate is its magnitude squared, A2. That is,

(z)z∗ = (a + jb)(a − jb) = a2 + b2

z + z∗ = 2a and z − z∗ = j2b
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Division
With z = a + jb and p = c + jd,

q = z

p
= zp∗

pp∗ = zp∗

|p|2 = ac + bd

c2 + d2 + j
bc − ad

c2 + d2

In polar form,

q = z

p
= Aejθ

Cejφ
= A

C
ej(θ−φ)

For example,

(14 − j5)

(2 + j3)
= 14.8661e−j0.3430

3.6056ej0.9828
= 4.1231e−j1.3258 = (1 − j4)

Powers and Roots of Complex Numbers
Since x2 ≥ 0 for all real numbers, the quadratic equation x2 = −1 has no solution
in the real number system. In the complex number system, the two roots are j and
−j , and, in fact, every polynomial equation does have a solution.

zN = (Aejθ )N = AnejNθ

Replacing N by 1/N and adding 2kπ to θ , we get

z
1
N = + N

√
Ae

j(θ+2kπ)
N = + N

√
A

(
cos

(
(θ + 2kπ)

N

)
+ j sin

(
(θ + 2kπ)

N

))
,

k = 0, 1, 2, . . . , N−1

With A = 1 and θ = 0, we get the N th roots of unity, which form the DFT basis
functions.

1
1
N = cos

(
2kπ

N

)
+ j sin

(
2kπ

N

)
, k = 0, 1, 2, . . . , N − 1

For example, with N = 4, we get the roots as {1, j,−1,−j}. Each root raised to
the power of 4 will yield 1. Since the magnitude of the roots is 1, their angles add to
{0, 2π, 4π,−2π}. The complex number with these arguments is 1.



Appendix B
Transform Pairs and Properties

See Tables B.1, B.2, B.3, B.4, B.5, B.6, B.7, B.8, B.9, B.10, B.11, B.12.

Table B.1 DFT pairs

x(n), period = N X(k), period = N

δ(n) 1

1 Nδ(k)

ej ( 2π
N

mn) Nδ(k − m)

cos( 2π
N

mn) N
2 (δ(k − m) + δ(k − (N − m)))

sin( 2π
N

mn) N
2 (−jδ(k − m) + jδ(k − (N − m)))

x(n) =
{

1 for n = 0, 1, . . . , L − 1

0 for n = L,L + 1, . . . , N − 1
e(−j π

N
(L−1)k) sin(

π
N

kL)

sin( π
N

k)
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436 B Transform Pairs and Properties

Table B.2 DFT properties

Property x(n), h(n), period = N X(k),H(k), period = N

Linearity ax(n) + bh(n) aX(k) + bH(k)

Duality 1
N

X(N ∓ n) x(N ± k)

Time shifting x(n ± m) e±j 2π
N

mkX(k)

Frequency shifting e∓j 2π
N

mnx(n) X(k ± m)

Time convolution
∑N−1

m=0 x(m)h(n − m) X(k)H(k)

Frequency convolution x(n)h(n) 1
N

∑N−1
m=0 X(m)H(k − m)

Time expansion
h(mn) =

{
x(n) for n = 0, 1, . . . , N − 1

0 otherwise
H(k) = X(k mod N),

where m is any positive integer k = 0, 1, . . . , mN − 1

Time reversal x(N − n) X(N − k)

Conjugation x∗(N ± n) X∗(N ∓ k)

Parseval’s theorem
∑N−1

n=0 |x(n)|2 1
N

∑N−1
k=0 |X(k)|2

Table B.3 FS pairs x(t), period = T Xcs(k), ω0 = 2π
T{

1 for |t | < a

0 for a < |t | ≤ T
2

sin(kω0a)
kπ∑∞

n=−∞ δ(t − nT ) 1
T

ejk0ω0t δ(k − k0)

cos(k0ω0t) 0.5(δ(k + k0) + δ(k − k0))

sin(k0ω0t) 0.5j (δ(k + k0) − δ(k − k0))

Table B.4 FS properties

Property x(t), h(t), period = T Xcs(k),Hcs(k), ω0 = 2π
T

Linearity ax(t) + bh(t) aXcs(k) + bHcs(k)

Time shifting x(t ± t0) e±jkω0t0Xcs(k)

Frequency shifting x(t)e±jk0ω0t Xcs(k ∓ k0)

Time convolution
∫ T

0 x(τ)h(t − τ)dτ T Xcs(k)Hcs(k)

Frequency convolution x(t)h(t)
∑∞

l=−∞ Xcs(l)Hcs(k − l)

Time scaling x(at), a > 0, Period = T
a

Xcs(k), ω0 = a 2π
T

Time reversal x(−t) Xcs(−k)

Time differentiation dnx(t)
dtn

(jkω0)
n Xcs(k)

Time integration
∫ t

−∞ x(τ)dτ
Xcs (k)
jkω0

, if (Xcs(0) = 0)

Parseval’s theorem 1
T

∫ T

0 |x(t)|2dt
∑∞

k=−∞ |Xcs(k)|2
Conjugate symmetry x(t) real Xcs(k) = X∗

cs (−k)

Even symmetry x(t) real and even Xcs(k) real and even

Odd symmetry x(t) real and odd Xcs(k) imaginary and odd
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Table B.5 DTFT pairs x(n) X(ejω){
1 for − N ≤ n ≤ N

0 otherwise

sin(ω (2N+1)
2 )

sin( ω
2 )

sin(an)
πn

, 0 < a ≤ π

{
1 for |ω| < a

0 for a < |ω| ≤ π

anu(n), |a| < 1 1
1−ae−jω

(n + 1)anu(n), |a| < 1 1
(1−ae−jω)2

a|n|, |a| < 1 1−a2

1−2a cos(ω)+a2

an sin(ω0n)u(n), |a| < 1 (a)e−jω sin(ω0)

1−2(a)e−jω cos(ω0)+(a)2e−j2ω

an cos(ω0n)u(n), |a| < 1 1−(a)e−jω cos(ω0)

1−2(a)e−jω cos(ω0)+(a)2e−j2ω

δ(n) 1
∞∑

k=−∞
δ(n − kN) 2π

N

∞∑
k=−∞

δ(ω − 2π
N

k)

u(n) πδ(ω) + 1
1−e−jω

1 2πδ(ω)

ejω0n 2πδ(ω − ω0)

cos(ω0n) π(δ(ω + ω0) + δ(ω − ω0))

sin(ω0n) jπ(δ(ω + ω0) − δ(ω − ω0))

Table B.6 DTFT properties

Property x(n), h(n) X(ejω),H(ejω)

Linearity ax(n) + bh(n) aX(ejω) + bH(ejω)

Time shifting x(n ± n0) e±jωn0X(ejω)

Frequency shifting x(n)e±jω0n X(ej (ω∓ω0))

Time convolution
∑∞

m=−∞ x(m)h(n − m) X(ejω)H(ejω)

Frequency convolution x(n)h(n) 1
2π

∫ 2π
0 X(ejv)H(ej (ω−v))dv

Time expansion h(n) H(ejω) = X(ejaω)

h(an) = x(n), a > 0 is a
positive integer

and h(n) = 0 zero otherwise

Time reversal x(−n) X(e−jω)

Conjugation x∗(±n) X∗(e∓jω)

Difference x(n) − x(n − 1) (1 − e−jω)X(ejω)

Summation
∑n

l=−∞ x(l)
X(ejω)

(1−e−jω)
+ πX(ej0)δ(ω)

Frequency differentiation (n)mx(n) (j)m
dmX(ejω)

dωm

Parseval’s theorem
∑∞

n=−∞ |x(n)|2 1
2π

∫ 2π
0 |X(ejω)|2dω

Conjugate symmetry x(n) real X(ejω) = X∗(e−jω)

Even symmetry x(n) real and even X(ejω) real and even

Odd symmetry x(n) real and odd X(ejω) imaginary and odd
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Table B.7 FT pairs

x(t) X(jω)

u(t + a) − u(t − a) 2 sin(ωa)
ω

sin(ω0t)
πt

u(ω + ω0) − u(ω − ω0)

e−atu(t), Re(a) > 0 1
a+jω

te−atu(t), Re(a) > 0 1
(a+jω)2

e−a|t |, Re(a) > 0 2a
a2+ω2

1
a
((t + a)u(t + a) − 2tu(t) + (t − a)u(t − a)) a

(
sin(ω a

2 )

ω a
2

)2
e−at sin(ω0t)u(t), Re(a) > 0 ω0

(a+jω)2+ω2
0

e−at cos(ω0t)u(t), Re(a) > 0 a+jω

(a+jω)2+ω2
0

δ(t) 1∑∞
n=−∞ δ(t − nT ) 2π

T

∑∞
k=−∞ δ(ω − k 2π

T
)

u(t) πδ(ω) + 1
jω

1 2πδ(ω)

ejω0t 2πδ(ω − ω0)

cos(ω0t) π(δ(ω + ω0) + δ(ω − ω0))

sin(ω0t) jπ(δ(ω + ω0) − δ(ω − ω0))

Table B.8 FT properties

Property x(t), h(t) X(jω),H(jω)

Linearity ax(t) + bh(t) aX(jω) + bH(jω)

Duality X(±t) 2πx(∓jω)

Time shifting x(t ± t0) X(jω)e±jωt0

Frequency shifting x(t)e±jω0t X(j (ω ∓ ω0))

Time convolution x(t) ∗ h(t) X(jω)H(jω)

Frequency convolution x(t)h(t) 1
2π (X(jω) ∗ H(jω))

Time scaling x(at), a �= 0 and real 1
|a|X(j ω

a
)

Time reversal x(−t) X(−jω)

Conjugation x∗(±t) X∗(∓jω)

Time differentiation dnx(t)
dtn

(jω)n X(jω)

Time integration
∫ t

−∞ x(τ)dτ
X(jω)

jω
+ πX(j0)δ(ω)

Frequency differentiation tnx(t) (j)n
dnX(jω)

dωn

Parseval’s theorem
∫∞
−∞ |x(t)|2dt 1

2π

∫∞
−∞ |X(jω)|2dω

Autocorrelation x(t) ∗ x(−t) = ∫∞
−∞ x(τ)x(τ − t)dτ |X(jω)|2

Conjugate symmetry x(t) real X(jω) = X∗(−jω)

Even symmetry x(t) real and even X(jω) real and even

Odd symmetry x(t) real and odd X(jω) imaginary and odd
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Table B.9 z-transform pairs x(n) X(z) ROC

δ(n) 1 |z| ≥ 0

δ(n − p), p > 0 z−p |z| > 0

u(n)
z

z−1 |z| > 1

anu(n)
z

z−a |z| > |a|

nanu(n)
az

(z−a)2 |z| > |a|

nu(n)
z

(z−1)2 |z| > |1|

cos(ω0n)u(n)
z(z−cos(ω0))

z2−2z cos(ω0)+1 |z| > 1

sin(ω0n)u(n)
z sin(ω0)

z2−2z cos(ω0)+1 |z| > 1

an cos(ω0n)u(n)
z(z−a cos(ω0))

z2−2az cos(ω0)+a2 |z| > |a|

an sin(ω0n)u(n)
az sin(ω0)

z2−2az cos(ω0)+a2 |z| > |a|

Table B.10 z-transform properties

Property x(n)u(n), h(n)u(n) X(z),H(z)

Linearity ax(n)u(n) + bh(n)u(n) aX(z) + bH(z)

Left shift x(n + m)u(n), m > 0 zmX(z) − zm
∑m−1

n=0 x(n)z−n

Right shift x(n − m)u(n), m > 0 z−mX(z) + z−m
∑m

n=1 x(−n)zn

Multiplication by an anx(n)u(n) X( z
a
)

Time convolution x(n)u(n) ∗ h(n)u(n) X(z)H(z)

Summation
∑n

m=0 x(m) z
z−1X(z)

Multiplication by n nx(n)u(n) −z
dX(z)

dz

Initial value x(0) limz→∞ X(z)

Final value limn→∞ x(n) limz→1((z − 1)X(z))

ROC of (z − 1)X(z)

includes the unit circle
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Table B.11 Laplace
transform pairs x(t) X(s) ROC

δ(t) 1 All s

u(t) 1
s

Re(s) > 0

tnu(t), n = 0, 1, 2, . . . n!
sn+1 Re(s) > 0

e−atu(t) 1
s+a

Re(s) > −a

tne−atu(t), n = 0, 1, 2, . . . n!
(s+a)n+1 Re(s) > −a

cos(ω0t) u(t) s

s2+ω2
0

Re(s) > 0

sin(ω0t) u(t)
ω0

s2+ω2
0

Re(s) > 0

e−at cos(ω0t) u(t) s+a

(s+a)2+ω2
0

Re(s) > −a

e−at sin(ω0t) u(t)
ω0

(s+a)2+ω2
0

Re(s) > −a

t cos(ω0t) u(t)
s2−ω2

0
(s2+ω2

0)
2 Re(s) > 0

t sin(ω0t) u(t)
2ω0s

(s2+ω2
0)

2 Re(s) > 0
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Table B.12 Laplace transform properties

Property x(t)u(t), h(t)u(t) X(s),H(s)

Linearity ax(t) + bh(t) aX(s) + bH(s)

Time shifting x(t − t0)u(t − t0), t0 ≥ 0 X(s)e−st0

Frequency shifting x(t)u(t)es0t X(s − s0)

Time convolution x(t) ∗ h(t) X(s)H(s)

Time scaling x(at), a > 0 and real 1
a
X( s

a
)

Time differentiation dx(t)
dt

sX(s) − x(0−)

Time differentiation d2x(t)

dt2
s2X(s) − sx(0−) − d x(t)

dt
|t=0−

Time integration
∫ t

0− x(τ)dτ
X(s)

s

Time integration
∫ t

−∞ x(τ)dτ
X(s)

s
+ 1

s

∫ 0−
−∞ x(τ)dτ

Frequency differentiation tx(t)u(t) − dX(s)
ds

Frequency differentiation tnx(t)u(t), n = 0, 1, 2, . . . (−1)n dnX(s)
dsn

Initial value x(0+) lims→∞ sX(s), if X(s) is

strictly proper

Final value limt→∞ x(t) lims→0 sX(s), (ROC of sX(s)

includes the jω axis)



Appendix C
Useful Mathematical Formulas

C.1 Trigonometric Identities

Pythagorean Identity

sin2 x + cos2 x = 1

Addition and Subtraction Formulas

sin(x ± y) = sin x cos y ± cos x sin y

cos(x ± y) = cos x cos y ∓ sin x sin y

Double-Angle Formulas

cos 2x = cos2 x − sin2 x = 2 cos2 x − 1 = 1 − 2 sin2 x

sin 2x = 2 sin x cos x

Product Formulas

2 sin x cos y = sin(x − y) + sin(x + y)

2 cos x sin y = − sin(x − y) + sin(x + y)

2 sin x sin y = cos(x − y) − cos(x + y)

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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444 C Useful Mathematical Formulas

2 cos x cos y = cos(x − y) + cos(x + y)

Sum and Difference Formulas

sin x ± sin y = 2 sin
x ± y

2
cos

x ∓ y

2

cos x + cos y = 2 cos
x + y

2
cos

x − y

2

cos x − cos y = −2 sin
x + y

2
sin

x − y

2

Other Formulas

sin(−x) = sin(2π − x) = − sin x

cos(−x) = cos(2π − x) = cos x

sin(π ± x) = ∓ sin x

cos(π ± x) = − cos x

cos

(
π

2
± x

)
= ∓ sin x

sin

(
π

2
± x

)
= cos x

cos

(
3π

2
± x

)
= ± sin x

sin

(
3π

2
± x

)
= − cos x

e±jx = cos x ± j sin x
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cos x = ejx + e−jx

2

sin x = ejx − e−jx

2j

C.2 Series Expansions

ejx = 1 + (jx) + (jx)2

2! + (jx)3

3! + (jx)4

4! + · · · + (jx)r

(r)! + · · ·

cos(x) = 1 − x2

2! + x4

4! − · · · + (−1)r
x2r

(2r)! − · · ·

sin(x) = x − x3

3! + x5

5! − · · · + (−1)r
x2r+1

(2r + 1)! − · · ·

sin−1 x = x + 1

2

x3

3
+ (1)(3)

(2)(4)

x5

5
+ (1)(3)(5)

(2)(4)(6)

x7

7
+ · · · , |x| < 1

cos−1 x = π

2
− sin−1 x, |x| < 1

C.3 Summation Formulas

N−1∑
k=0

(a + kd) = N(2a + (N − 1)d)

2

N−1∑
k=0

ark = a(1 − rN)

1 − r
, r �= 1

∞∑
k=0

rk = 1

1 − r
, |r| < 1
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∞∑
k=0

krk = r

(1 − r)2
, |r| < 1

1 + cos(t) + cos(2t) + · · · + cos(Nt) = 1

2
+ sin(0.5(2N + 1)t)

2 sin(0.5t)

C.4 Indefinite Integrals

∫
udv = uv −

∫
vdu

∫
eatdt = eat

a

∫
teatdt = eat

a2
(at − 1)

∫
ebt sin(at)dt = ebt

a2 + b2
(b sin(at) − a cos(at))

∫
ebt cos(at)dt = ebt

a2 + b2
(b cos(at) + a sin(at))

∫
sin(at)dt = −1

a
cos(at)

∫
cos(at)dt = 1

a
sin(at)

∫
t sin(at)dt = 1

a2
(sin(at) − at cos(at))

∫
t cos(at)dt = 1

a2
(cos(at) + at sin(at))

∫
sin2(at)dt = t

2
− 1

4a
sin(2at)
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∫
cos2(at)dt = t

2
+ 1

4a
sin(2at)

C.5 Differentiation Formulas

d(uv)

dt
= u

dv

dt
+ v

du

dt

d(u
v
)

dt
= v du

dt
− udv

dt

v2

d(xn)

dt
= nxn−1

d(eat )

dt
= aeat

d(sin(at))

dt
= a cos(at)

d(cos(at))

dt
= −a sin(at)

C.6 L’Hôpital’s Rule

If lim
x→a

f (x) = 0 and lim
x→a

g(x) = 0, or

If lim
x→a

f (x) = ∞ and lim
x→a

g(x) = ∞, then

lim
x→a

f (x)

g(x)
= lim

x→a

df (x)
dx

dg(x)
dx

The rule can be applied as many times as necessary.

C.7 Matrix Inversion

A rectangular array of numbers is called a matrix. For example, a N × N matrix A

is given by
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A =

⎡
⎢⎢⎣

a11 a21 · · · aN1

a12 a22 · · · aN2

. . · · · .

a1N a2N · · · aNN

⎤
⎥⎥⎦ ,

where aij are the elements of matrix. The elements may be constants, variables, or
functions. The horizontal lines are the row vectors, and the vertical lines are the
column vectors. A matrix with M rows and N columns is referred to as a M × N

matrix. The subscripts ij in aij refer to the element in the ith row and j th column.
The minimum of the maximum number of linearly independent rows and columns
in a matrix is its rank.

A cofactor Mij of aij is (−1)i+j multiplied by the determinant of (N − 1) ×
(N − 1) matrix obtained by deleting the ith row and the j th column of the N × N

matrix.
The determinant of a 2 × 2 matrix is given by

∣∣∣∣ a11 a12

a21 a22

∣∣∣∣ = a11a22 − a12a21

The determinant D of a 3 × 3 matrix is given by

D =
∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣ = a11

∣∣∣∣ a22 a23

a32 a33

∣∣∣∣− a21

∣∣∣∣ a12 a13

a32 a33

∣∣∣∣+ a31

∣∣∣∣ a12 a13

a22 a23

∣∣∣∣

or

D = a11M11 − a21M21 + a31M31

cofactor Mij check.
The inverse, A−1, of a nonsingular N × N matrix A is defined as

A−1 = 1

detA

⎡
⎢⎢⎣

M11 M21 · · · MN1

M12 M22 · · · MN2

. . · · · .

M1N M2N · · · MNN

⎤
⎥⎥⎦

where Mij is the cofactor of aji in A.
The inverse, A−1, of a 2 × 2 matrix

A =
[

a b

c d

]
is defined as A−1 = 1

ad − bc

[
d −b

−c a

]

provided ad − bc �= 0.



Answers to Selected Exercises

Chapter 1

1.1.2 Energy 100
9 .

1.3.3

xe(n) =

⎧⎪⎨
⎪⎩

(0.4)n

2 for n > 0
1 for n = 0

(0.4)−n

2 for n < 0

xe(−3) = 0.032, xe(−2) = 0.08, xe(−1) = 0.20, xe(0) = 1,

xe(1) = 0.20, xe(2) = 0.08, xe(3) = 0.032

x0(n) =

⎧⎪⎨
⎪⎩

(0.4)n

2 for n > 0
0 for n = 0

− (0.4)−n

2 for n < 0

xo(−3) = −0.032, xo(−2) = −0.08, xo(−1) = −0.20, xo(0) = 0,

xo(1) = 0.20, xo(2) = 0.08, xo(3) = 0.032

x(n) = xe(n) + x0(n)

x(−3) = 0, x(−2) = 0, x(−1) = 0, x(0) = 1.0000, x(1) = 0.4000,

x(2) = 0.16, x(3) = 0.064
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The sum of the values of the even component is 1.624 and that of the signal
is also 1.624.

1.4.2 0
1.6.5 Periodic with period 9.
1.7.6

x(n) = 2
√
3 cos

(
π

6
n

)
+ 2 sin

(
π

6
n

)

3.4641, 4, 3.4641, 2, 0,−2,−3.4641,−4,−3.4641,−2, 0, 2

1.8.3

x(n) = 2
√
3 cos

(
π

6
n − π

6

)

3, 3.4641, 3, 1.7321, 0,−1.7321,−3,−3.4641,−3,−1.7321, 0, 1.7321

1.10.5 x(n) = 5.9544ej ( π
3 n+0.6984).

1.7321 + j1, j2, −1.7321 + j1, −1.7321 − j1,−j2, 1.7321 − j1

2.8284 + j2.8284, −1.0353 + j3.8637, −3.8637 + j1.0353, −2.8284 − j2.8284,

1.0353 − j3.8637, 3.8637 − j1.0353

4.5605 + j3.8284, −1.0353 + j5.8637, −5.5958 + j2.0353, −4.5605 − j3.8284,

1.0353 − j5.8637, 5.5958 − j2.0353

1.11.3 x(n) = (0.5)n.

x(0) = 1, x(1) = 0.5, x(2) = 0.25, x(3) = 0.125, x(4) = 0.0625, x(5) = 0.0313

1.13.4 −3 sin(52π
8 n + π

3 ), 3 sin(112π
8 n − π

3 ), −3 sin(132π
8 n + π

3 ).
1.14.3 11 samples per second.
1.15.5

0,−
√
3

2
,−

√
3

2
, 0,

√
3

2
,

√
3

2
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x(n − 7) = cos

(
2π

6
n + π

6

)

√
3

2
, 0,−

√
3

2
,−

√
3

2
, 0,

√
3

2

1.16.3
√
3

2
,

√
3

2
, 0,−

√
3

2
,−

√
3

2
, 0

x(−n + 1) = cos( 2π6 n − π
6 ) = x(n)

√
3

2
,

√
3

2
, 0,−

√
3

2
,−

√
3

2
, 0

1.17.3

0.5, 1, 0.5,−0.5,−1,−0.5

x(−n + 1) = cos( 2π6 n)

1, 0.5,−0.5,−1,−0.5, 0.5

1.18.8

x(−3) = 0, x(−2) = 0, x(−1) = 0, x(0) = −1,

x(1) = −2, x(2) = −1, x(3) = 1

Shifted and scaled waveform samples

x(−3) = −1, x(−2) = −1, x(−1) = 2, x(0) = −1,

x(1) = −1, x(2) = 0, x(3) = 0

Chapter 2

2.1.9 Energy 4.
2.3.4

xe(t) =
{ 3

2 |t |, |t | < 1
0 otherwise
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xo(t) =
{ 3

2 t, −1 < t < 1
0 otherwise

The integral of the odd component is zero. The integral of the even
component is 1.5 and that of the signal is also 1.5.

2.4.4 3.
2.5.3

−1.2622,−1.4975,−1.5000,−1.5000, and − 1.5000

2.6.3 7.3891.
2.7.2

x(t) ≈
3∑

n=0

cos(
π

6
(n)(1))δq(t − (n)(1))(1)

x(t) ≈
7∑

n=0

cos(
π

6
(n)(0.5))δq(t − (n)(0.5))(0.5)

2.8.3

−6e−3t u(t) + 2δ(t)

2.9.4 0.
2.10.3

x(t) = − 5√
2
cos(2πt) − 5√

2
sin(2πt)

5

8
,
9

8
,
13

8

2.11.4

x(t) = √
2 cos(

2π

6
t − π

4
)

9

4
,
21

4
,
33

4

2.12.3 x(t) = 1.3483 cos( 2π6 t − 2.9699).

1.5,−1.5,−3
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2.8284,−1.0353,−3.8637

−1.3284,−0.4647, 0.8637

2.14.2

1, 2

The shift of x(t) to the right by one second makes the positive peak of the
shifted waveform, sin( 2π6 t − π

6 ), occurs after one second of the occurrence
of that of the given sinusoid.

2.15.2

3

4
,
5

4

2.16.4

10

3
, 10

2.17.5

x(−3) = 0, x(−2) = 0, x(−1) = 0, x(0) = −1.7321,

x(1) = −1.7321, x(2) = 0, x(3) = 1.7321

Shifted waveform

x(−3) = −1.7321, x(−2) = −1.7321, x(−1) = 0, x(0) = 1.7321,

x(1) = 1.7321, x(2) = 0, x(3) = −1.7321

Scaled and shifted waveform

x(−3) = 0, x(−2) = 0, x(−1) = −1.7321, x(0) = 1.7321,

x(1) = 0, x(2) = −1.7321, x(3) = 1.7321
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Chapter 3

3.1.3

h(n) = 3

(
− 1

3

)n

u(n)

h(0) = 3, h(1) = −1, h(2) = 1

3
, h(3) = −1

9
, h(4) = 1

27
, h(5) = − 1

81

3.2.4

h(n) = 3δ(n) + (−1)nu(n), n = 0, 1, 2, . . .

h(0) = 4, h(1) = −1, h(2) = 1, h(3) = −1, h(4) = 1, h(5) = −1

3.3.3 Linear.
3.4.3 Time-invariant.
3.5.3 {y(n), n = −1, 0, 1, 2, 3, 4, 5} = {6, 10, 13, 28, 19, 16, 16}.
3.6.5

y(n) = 0.9(1 − (0.6)n−2)u(n − 3)

y(0) = 0, y(1) = 0, y(2) = 0, y(3) = 0.36, y(4) = 0.576, y(5) = 0.7056

3.10 8.4276 cos( 2π5 n + π
4 − 0.9964).

4.2138ej ( 2π5 n−0.9964).
3.13 The zero-state response is

y(n) = 20

9
+ 4

3
n − 20

9

(
1

4

)n

The zero-input response is

(
1

4

)(n+1)

The complete response is

y(n) = 20

9
+ 4

3
n − 71

36

(
1

4

)n

, n = 0, 1, 2, . . .



Answers to Selected Exercises 455

y(0) = 0.2500, y(1) = 3.0625, y(2) = 4.7656,

y(3) = 6.1914, y(4) = 7.5479, y(5) = 8.8870

The transient response is

−71

36

(
1

4

)n

, n = 0, 1, 2, . . .

The steady-state response is ( 209 + 4
3n)u(n).

3.17.2 (i)

h(n) =
(
25

3

)
δ(n) − 4(

1

5
)n −

(
7

3

)(
− 3

5

)n

The first four values of h(n) are

{2, 0.6,−1, 0.472}

(ii)

h(n) =
(
50

3

)
δ(n) −

(
14

3

)(
− 3

5

)n

− 11

(
1

5

)n

, n = 0, 1, 2, . . .

The first four values of h(n) are

{1, 0.6,−2.12, 0.92}

Chapter 4

4.1.9 Nonlinear.
4.2.4 Time-invariant.
4.3.4

y(t) = tu(t) − 2(t − 3)u(t − 3) + (t − 6)u(t − 6)

y(0) = 0, y(1) = 1, y(2) = 2, y(3) = 3, y(4) = 2, y(5) = 1



456 Answers to Selected Exercises

4.7.2

h(t) = 2δ(t) + 5etu(t)

y(t) = (−3 + 5et )u(t)

4.11 The zero-input response is 3e−t u(t). The zero-state response is (2 sin(t) −
2e−t )u(t). The complete response is

y(t) = (2 sin(t) + e−t )u(t)

The transient response is e−t u(t).
The steady-state response is (2 sin(t))u(t).

4.14 y(t) = 4 sin( 2π6 t − π
6 + 1.5247).

y(t) = 2ej ( 2π6 t+1.5247).

Chapter 5

5.1.3

x(n) = 1

4

(
1 + 8 cos

(
2π

4
n − π

3

)
− 3 cos(πn)

)

5.2.2

{x(0) = 0, x(1) = −3 + √
3, x(2) = 2, x(3) = −3 − √

3}

{X(0) = −4, X(1) = −2 − j2
√
3, X(2) = 8, X(3) = −2 + j2

√
3}

5.3.4

{
x(0) = −2− 3√

2
, x(1) = −6+ 3√

2
, x(2) = −2+ 3√

2
, x(3) = −6− 3√

2

}

5.5.1

{x(0) = 2.25, x(1) = 0.25, x(2) = 0.25, x(3) = −1.75 − j1}

5.6.2

X(k) = {6 − j3,−j1, j11,−2 + j1}
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x(−14) = 2 + j2, x(43) = 1 − j4

X(12) = 6 − j3, X(−7) = −j1

5.9.2

{208, 224, 208, 224}

5.11.3

{−4,−13, 24,−9}

Chapter 6

6.2.4 ω0 = 2.

Xc(0) = 3

8
, Xc(1) = 1

2
, Xc(2) = 1

8

Xp(0) = 3

8
, Xp(1) = 1

2
, θ(1) = 0, Xp(2) = 1

8
, θ(2) = 0

Xcs(0) = 3

8
, Xcs(±1) = 1

4
, Xcs(±2) = 1

16

6.3.5 ω0 = 2π .

Xc(0) = 1, Xc(1) =
√
3

2
, Xs(1) = 1

2
, Xc(3) = √

3, Xs(3) = 1

Xp(0) = 1, Xp(1) = 1, θ(1) = −π

6
, Xp(3) = 2, θ(3) = −π

6

Xcs(0) = 1, Xcs(1) = 1

4
(
√
3 − j1),Xcs(3) = 1

2
(
√
3 − j1),

Xcs(−1) = 1

4
(
√
3 + j1),Xcs(−3) = 1

2
(
√
3 + j1)
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6.4.2 ω0 = 1
63 .

Xc(0) = 2, Xs(14) = −2, Xc(27) = −5

6.9.6 Xcs(0) = 2
π
and Xcs(k) = 2

π(1−4k2)
, k �= 0.

6.11

x(t) = 1

2
− 4

π2

(
cos

π

2
t + 1

9
cos 3

π

2
t + 1

25
cos 5

π

2
t · · ·

)

x(t + 2) = 1

2
+ 4

π2

(
cos

π

2
t + 1

9
cos 3

π

2
t + 1

25
cos 5

π

2
t · · ·

)

3x(t) − 2 = −1

2
− 12

π2

(
cos

π

2
t + 1

9
cos 3

π

2
t + 1

25
cos 5

π

2
t · · ·

)

π2

8
= 1 + 1

9
+ 1

25
+ 1

49
+ · · ·

The DFT approximation of the trigonometric FS coefficients are {Xc(0) =
1
2 , Xc(1) = − 1

2 , Xc(2) = 0}.
The power of the signal is 1

3 .
The power of the signal, up to the third harmonic, is 0.3331.
The power of the signal, up to the fifth harmonic, is 0.3333.

6.15

y(t) = 1√
5
ej (2t+tan−1( −2

1 )) + 1√
10

ej (3t+tan−1( −3
1 ))

Chapter 7

7.2

X(ejω) = sin( 2N+1
2 ω)

sin(ω
2 )

X(ej0) = 11 and X(ejπ ) = −1.
7.4
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X(ejω) = (a)e−jω sin(ω0)

1 − 2(a)e−jω cos(ω0) + (a)2e−j2ω

X(ej0) = 0.7/1.49 and X(ejπ ) = −0.7/1.49.
7.9.5

X(ejω) = 0.36e−j2ω

1 − 0.6e−jω

7.10.2 {X(ej0) = 10( 2π4 )δ(ω),X(ej 2π
4 ) = (2 + j2)( 2π4 )δ(ω − 2π

4 ),X(ej2 2π
4 ) =

2( 2π4 )δ(ω − 22π
4 ),X(ej3 2π

4 ) = (2 − j2)( 2π4 )δ(ω − 32π
4 )}.

7.16.2 2(0.5)nu(n) − (0.25)nu(n).
7.21.1 y(n) = {x(n) ∗ h(n), n = 1, 2, . . . , 6} = {−2, 1,−8,−4,−5,−12}.
7.24.2 1

1−(0.6)ej4ω , −π < ω ≤ π .

7.26.4 Y (ejω) = 1
(1−0.6e−jω)(1−e−jω)

+ 2.5πδ(ω).
7.29 The IDFT values are {1.0082, 0.3024, 0.0907, 0.0272}.

The exact values of x(n) are {x(0) = 1, x(1) = 0.3, x(2) = 0.09, x(3) =
0.027}.

7.31

h(n) =
(
56

5

(
−2

3

)n

− 51

5

(
−1

4

)n)
u(n)

The first four values of the impulse response are 1, −4.9167, 4.3403, −3.1591.
7.35

y(n) = 55

(
1

2

)n

− 90

(
1

3

)n

+ 38

(
1

5

)n

, n = 0, 1, . . .

7.36.2 xH (n) = −0.5 sin(2πn/6).

Chapter 8

8.7

X(jω) = 1

(2 + jω)2
, X(j0) = 1

4

8.14.2

X(jω) =
{
2π for |ω| < 3
0 for |ω| > 3
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8.15.3

X(jω) = sin((ω − ω0)a)

(ω − ω0)
+ sin((ω + ω0)a)

(ω + ω0)

8.16

x(t) =
⎧⎨
⎩

−2 for t < 0
(t − 2) for 0 < t < 4

2 for t > 4

8.18.2

−jπ

2
(δ(ω − ω0) − δ(ω + ω0)) − ω0

(ω2 − ω2
0)

8.20.9

πδ(ω) − 1

jω

8.22.4

X(jω) = −1 + e−jω + e−j2ω − e−j3ω

ω2

8.23.6

Y (jω) = πδ(ω) + 1

jω
− 1

1 + jω

8.24.4

(1 + jω)e−jω − 1

ω2

8.28.3
{
X(0) = −1, X(3) = j3

2
, X(−3) = − j3

2
, X(5) = 1, X(−5) = 1, X(−7) = 6

}

X(jω) = π(−2δ(ω)+j3(δ(ω−3)−δ(ω+3))+2(δ(ω−5)+δ(ω+5))+12δ(ω+7))

8.29.4

Xcs(k) = j

kπ
, k �= 0 and Xcs(0) = 1
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8.31.2

X(jω) = 2

1 + ω2 and Xs(jω) = 1

Ts

∞∑
k=−∞

2

1 + (ω − kωs)2
, ωs = 2π

Ts

X(j0) = 2, Xs(j0) = 200.0017, Ts = 0.01, Xs(j0) = 20.0167, Ts = 0.1,

Xs(j0) = 2.1640, Ts = 1, Xs(j0) = 1.0001, Ts = 10

8.33 The exact values of the FT are X(j0) = 1 and X(jπ) = 4
π2 = 0.4053.

The four samples of the signal are {x(0) = 1, x(1) = 0.5, x(2) = 0, x(3) =
0.5} and the DFT is {X(0) = 2, X(1) = 1, X(2) = 0, X(3) = 1}. As
the sampling interval is 0.5 second, the first two samples of the spectrum
obtained by the DFT are 0.5{2, 1} = {1, 0.5}.

Chapter 9

9.1.3 X(z) = 2 − 4z−3.
9.2.4 {x(0) = 1, x(1) = 1, x(2) = −1}.
9.3.4

X(z) =
(−2z2 + 3z

(z − 1)2

)

9.4.1 The nonzero values of y(n) are {y(1) = 4, y(3) = −2, y(5) = −16, y(7) =
8}.

9.5.2

X(z) = 2z

(z − 2)2

9.6.2

X(z) = 4z

(z − 4)2

9.7.2 y(n) = (0.5 + 0.5 sin( 2π4 n) − 0.5 cos( 2π4 n))u(n).
9.8.3 x(0) = 2. x(∞) = 16.
9.9.4

X(z) = z(z + 1)

(z2 + 1)



462 Answers to Selected Exercises

9.13

x(n) = (
√
2)n+1 cos

(
3π

4
n − π

4

)
u(n)

x(0) = 1, x(1) = 0, x(2) = −2, x(3) = 4

9.19.2 y(n) = (0.8192)(3) cos( 2π4 n − π
3 − 0.6107)u(n).

9.21

y(n) = −16

21
(−1)n + 325

56

(
3

4

)n

− 23

12

(
1

2

)n

, n = 0, 1, 2, . . .

The first four values of y(n) are

{3.1250, 4.1563, 2.0234, 2.9707}

The zero-input response is

27

8

(
3

4

)n

− 5

4

(
1

2

)n

The zero-state response is

−16

21
(−1)n + 17

7

(
3

4

)n

− 2

3

(
1

2

)n

The transient response is

325

56

(
3

4

)n

− 23

12

(
1

2

)n

The steady-state response is − 16
21 (−1)nu(n).

9.25.1

h(n) = 12δ(n) −
(
6

(
1

4

)n)
u(n)

The first four values of the impulse response are

{6,−1.5,−0.3750,−0.0938}
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9.26.3

h(n) = −10δ(n) +
(
7

(
1

3

)n

+ 7

(
1

2

)n)
u(n)

The first four values of the impulse response are

{4, 5.8333, 2.5278, 1.1343}

Chapter 10

10.2.4

X(s) =
(

e−2s

s2
+ 2e−2s

s

)

10.5.2 The poles of X(s) are located at s = −1 and s = −2. The zero is located
at s = 1. x(t) = (−2e−t + 3e−2t )u(t).
The transform of the scaled signal is

s − 2

(s + 2)(s + 4)

The poles are located at s = −2 and s = −4. The zero is located at s = 2.
x(at) = (−2e−2t + 3e−4t )u(t).

10.6.5

y(t) = 1

2

(
t2e−t

)
u(t)

10.8.4 x(0+) = 3. x(∞) = 1.
10.9.3

X(s) = (1 − e−2s)

s2(1 + e−2s)

10.15

x(t) = (
2t − 1 + e−t

)
u(t)

10.18.3

h(t) = (−0.5et + 0.5e3t )u(t)
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10.20

y(t) = (

zero-state︷ ︸︸ ︷
e−2t + te−t − e−t +

zero-input︷ ︸︸ ︷
te−t + 3e−t )u(t)

= (e−2t + 2te−t + 2e−t )u(t)

The steady-state response is e−2t u(t) and the transient response is (2te−t +
2e−t )u(t). The initial and final values of y(t) are 3 and 0 , respectively. The
initial and final values of the zero-state response are 0 and 0 , respectively.

10.23.1 y(t) = 3
√
2 cos(0.5t − π

3 − π
4 )u(t).

10.24.2

h(t) = (
et − 1

)
u(t)

10.25.3

h(t) = 5δ(t) −
(
7e−3t + 4e−2t

)
u(t)

10.29 v(t) = 1
8e

− 1
8 t u(t).

Chapter 11

11.3.1

h(n) = δ(n)+
(
28

3

(
− 1

3

)n−1

− 40

3

(
− 2

3

)n−1)
u(n−1), n = 0, 1, 2, . . .

h(0) = 1, h(1) = −4, h(2) = 52

9
, h(3) = −44

9

11.4.2 The zero-input component of the state-vector is given by

[− 1
8 (− 1

2 )
n

1
4 (− 1

2 )
n

]

The zero-input response is given by

(
1

2

(
− 1

2

)n)
u(n)

The first four values of the zero-input response y(n) are
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y(0) = 1

2
, y(1) = −1

4
, y(2) = 1

8
, y(3) = − 1

16

The zero-state component of the state-vector is given by

⎡
⎣ 2

3

(
1 − (− 1

2 )
n
)

+
(
− 2

9 + 2
9 (− 1

2 )
n − 2

3n(− 1
2 )

n
)

−2
(
− 2

9 + 2
9 (− 1

2 )
n − 2

3n(− 1
2 )

n
)
⎤
⎦ u(n)

The zero-state response is given by

(
8

9
+ 10

9

(
− 1

2

)n

+ 8

3
n

(
− 1

2

)n)
u(n)

The first four values of the zero-state response y(n) are

y(0) = 2, y(1) = −1, y(2) = 5

2
, y(3) = −1

4

The total response is

y(n) =
(
8

9
+ 29

18

(
− 1

2

)n

+ 8

3
n

(
− 1

2

)n)
u(n), n = 0, 1, 2, . . .

The first four values of the total response y(n) are

y(0) = 5

2
, y(1) = −5

4
, y(2) = 21

8
, y(3) = − 5

16

11.5.3

h(n) =
(
9δ(n) − 7

(
− 1

3
)n + 8n

(
− 1

3
)n
)

u(n), n = 0, 1, 2, . . .

The first four values of the sequence h(n) are

h(0) = 2, h(1) = −1

3
, h(2) = 1, h(3) = −17

27

11.6.2 The zero-input component of the state vector is

q(n) =

⎡
⎢⎢⎢⎣

− 1
4n

(
− 1

2

)n−1

+ 4
3

(
− 1

2

)n

1
2n

(
− 1

2

)n−1

− 5
3

(
− 1

2

)n

⎤
⎥⎥⎥⎦ u(n)
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The zero-input response is given by

(
− 3

4
n

(
− 1

2

)n

− 5

4

(
− 1

2

)n)
u(n)

The first four values of the zero-input response y(n) are

y(0) = −5

4
, y(1) = 1, y(2) = −11

16
, y(3) = 7

16

The zero-state component of the state vector is

q(n) =

⎡
⎢⎢⎢⎣

3
5n(− 1

2 )
n−1 − 12

25

(
− 1

2

)n

+ 12
25

(
1
3

)n

− 6
5n

(
− 1

2

)n−1

− 36
25

(
− 1

2

)n

+ 36
25

(
1
3

)n

⎤
⎥⎥⎥⎦ u(n)

The zero-state response is given by

(
9

5
n

(
− 1

2

)n

− 27

25

(
− 1

2

)n

+ 52

25

(
1

3

)n)
u(n)

The first four values of the zero-state response y(n) are

y(0) = 1, y(1) = 1

3
, y(2) = 31

36
, y(3) = −25

54

The total response is

y(n) = (
21

20
n(−1

2
)n − 233

100
(−1

2
)n + 52

25
(
1

3
)n)u(n), n = 0, 1, 2, . . .

The first four values of the total response y(n) are

y(0) = −1

4
, y(1) = 4

3
, y(2) = 25

144
, y(3) = − 11

432

Chapter 12

12.4

A =
[−2 −1

1 0

]
, B =

[
1
0

]
,C = [

2 0
]
, D = 0
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(−4t2e−t + 8te−t )u(t)

12.6 The zero-input component of the output is given by

5e−t − 2e−3t

The zero-state component of the output is given by

9e−t − 33e−2t + 27e−3t

The total response of the system is

y(t) = (14e−t − 33e−2t + 25e−3t )u(t)

12.9

h(t) = (−3e− 1
2 t + 4e− 1

3 t )u(t)

12.11 The zero-input component of the output is given by

7e−t − 5e−2t

The zero-state component of the output is given by

6 − 24e−t + 27e−2t

The total response of the system is

y(t) = (6 − 17e−t + 22e−2t )u(t)

12.15

h(t) = (−2δ(t) + 7e−t − 9te−t )u(t)
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F
Fourier series (FS), 30, 31, 129, 161–195,
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284, 285, 436, 456
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G
Gibb’s phenomenon, 168–170, 176, 194, 195,

199, 200, 216, 226, 243, 265

H
Hilbert transform, 231–233, 240

I
Impulse, 2, 37, 65, 97, 125, 169, 204, 245, 289,

332, 378, 402
Impulse response, 30, 65, 71–74, 76–80,

84–87, 89–91, 93–95, 97, 100, 101,
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Interpolation, 27, 36, 151–155, 158
Inverse discrete Fourier transform (IDFT), 125,

130–134, 139, 140, 149–152, 157–162,
181, 198, 206, 207, 218–220, 232, 234,
239, 240, 269, 271, 457

Inverse discrete-time Fourier transform
Inverse Fourier series, 175, 177, 181, 261, 280
Inverse Fourier transform, 242, 244, 247, 248,

251, 252, 259, 261, 273–275, 280, 282,
285, 342, 344, 345, 371

L
Laplace transform, 1, 29, 31, 274, 331–375,

411–413, 420, 421, 439, 440
Linear systems, 48, 67, 74–75, 78, 98–99, 102,

178, 187
Linear transformation, 377, 396–398, 401,

413–415, 425

M
Mixed-class of signals, 241, 259–268, 280

O
Observability, 397, 401, 423–424
Odd, 9, 21–23, 33, 49, 55, 56, 60, 141,

144–148, 168, 171–173, 182, 201, 202,
209, 210, 245, 246, 249, 275, 307, 368,
436–438, 450

Orthogonality, 130, 133, 135, 162, 190
Output equation, 379, 384, 385, 391, 393, 394,

396, 398, 403, 404, 408, 409, 411, 413,
414, 424

P
Partial-fraction expansion, 299, 346, 347
Period, 8, 38, 127, 161, 197, 241, 297, 344,

435
Periodicity, 136, 139, 152, 158, 159, 163–165,

181, 197, 201, 215, 217, 263
Poles, 290, 291, 296, 300–302, 305–308,

312–314, 318–320, 322–324, 333, 334,
341, 348–353, 356–358, 363, 367, 368,
370, 382, 383, 461

Power, 1, 3, 10, 19–20, 28, 32, 41, 53–54,
60, 65, 127, 131, 150, 151, 179, 180,
184–191, 194, 195, 216, 217, 253, 297,
305, 377, 433, 456

R
Ramp, 59

S
Sampled signals, 108, 130, 181, 182, 259,

262–266, 268, 285, 335
Sinusoids, 2, 37, 85, 109, 125, 161, 197, 241,

287, 331, 431
Stability, 30, 31, 65, 86–87, 97, 116–117, 305,

306, 318–319, 322, 324, 351, 356–358,
363, 369

State equation, 377, 378, 384–396, 398, 401,
402, 404–413, 425

State-space model, 377–387, 390, 392–394,
396–405, 410, 413–415, 424–426, 428,
429

State-transition matrix, 406, 407, 409, 420
State variables, 377, 378, 380, 390, 398, 401,

402, 404, 419, 424–428
State vector, 377, 379, 384, 385, 387–389,

391–401, 403, 406, 408, 409, 411–415,
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460, 462

Step, 27, 46, 47, 58, 69, 88, 104, 108, 111, 222,
224, 228, 245, 246, 274, 338, 404

Step response, 224
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314–318, 350–351, 384, 386

T
Time reversal, 24–27, 32, 56–58, 60, 140,

174–175, 203, 204, 206, 210, 253, 283,
435–438

Time scaling, 24, 26–28, 39, 47, 56, 58–59,
177–178, 253–254, 283, 341, 436, 438,
440

Time shifting, 24–25, 32, 56–57, 60, 173–174,
206–207, 213, 237, 250, 284, 336, 339,
344, 369, 435–438, 440

Transfer function, 1, 78, 102, 214–215,
220–224, 231, 257–259, 271–275,
303–305, 307–314, 316–320, 322–324,
350–355, 357, 358, 362, 363, 365,
367–369, 375, 377, 381, 382, 392, 393,
396–398, 410, 411, 413–415, 424, 425,
428, 429

Transient response, 68–69, 91, 113–114, 185,
224, 274, 305, 306, 316, 346, 351–356,
453, 454, 460, 462

Z
Zero-input response, 67–72, 93, 94, 102–105,

111–113, 121, 122, 315, 316, 318, 352,
353, 356, 386, 388, 407, 452, 454, 460,
462, 464

Zeros, 62, 142, 200, 211, 220, 244, 290,
305–308, 313, 319, 322, 333, 351–353,
363, 370

Zero-state response, 67–69, 71, 78, 87, 90,
91, 93, 94, 98, 103, 104, 112–113,
117, 119, 121, 122, 223, 224, 240,
273, 274, 286, 315, 316, 346–348, 352,
353, 373, 389, 410, 452, 454, 460,
462–464

Z-transform, 1, 29, 31, 126, 224, 287–329,
335, 391–395, 438, 439


	Preface to the Second Edition
	Preface to the First Edition
	Contents
	Abbreviations
	1 Discrete Signals
	1.1 Introduction
	1.2 Basic Signals
	1.2.1 Unit-Impulse Signal
	1.2.2 Unit-Step Signal
	1.2.3 Unit-Ramp Signal
	1.2.4 Sinusoids and Exponentials
	1.2.4.1 The Polar Form of Sinusoids
	1.2.4.2 The Rectangular Form of Sinusoids
	1.2.4.3 The Sum of Sinusoids of the Same Frequency
	1.2.4.4 Exponentials
	1.2.4.5 The Complex Sinusoids
	1.2.4.6 Exponentially Varying Amplitude Sinusoids
	1.2.4.7 The Sampling Theorem and the Aliasing Effect
	1.2.4.8 Frequency-Sampling Theorem


	1.3 Classification of Signals
	1.3.1 Continuous, Discrete, and Digital Signals
	1.3.2 Periodic and Aperiodic Signals
	1.3.3 Energy and Power Signals
	1.3.4 Even- and Odd-Symmetric Signals
	1.3.5 Causal and Noncausal Signals
	1.3.6 Deterministic and Random Signals

	1.4 Signal Operations
	1.4.1 Time Shifting
	1.4.1.1 Circular Shifting

	1.4.2 Time Reversal
	1.4.2.1 Circular Time Reversal

	1.4.3 Time Scaling
	1.4.4 Zero Padding

	1.5 Numerical Integration
	1.6 The Organization of this Book
	1.7 Summary
	Exercises

	2 Continuous Signals
	2.1 Basic Signals
	2.1.1 The Unit-Step Signal
	2.1.2 The Unit-Impulse Signal
	2.1.2.1 The Impulse Representation of Signals
	2.1.2.2 The Unit-Impulse as the Derivative of the Unit-Step
	2.1.2.3 The Scaling Property of the Impulse

	2.1.3 The Unit-Ramp Signal
	2.1.4 Sinusoids
	2.1.4.1 The Polar Form of Sinusoids
	2.1.4.2 The Rectangular Form of Sinusoids
	2.1.4.3 The Sum of Sinusoids of the Same Frequency
	2.1.4.4 The Complex Sinusoids
	2.1.4.5 Exponentially Varying Amplitude Sinusoids


	2.2 Classification of Signals
	2.2.1 Continuous Signals
	2.2.2 Periodic and Aperiodic Signals
	2.2.3 Energy and Power Signals
	2.2.4 Even- and Odd-Symmetric Signals
	2.2.5 Causal and Noncausal Signals

	2.3 Signal Operations
	2.3.1 Time Shifting
	2.3.2 Time Reversal
	2.3.3 Time Scaling

	2.4 Summary
	Exercises

	3 Time-Domain Analysis of Discrete Systems
	3.1 Difference Equation Model
	3.1.1 System Response
	3.1.1.1 Zero-State Response
	3.1.1.2 Zero-Input Response
	3.1.1.3 Complete Response
	3.1.1.4 Transient and Steady-State Responses
	3.1.1.5 Coding and Simulation
	3.1.1.6 Zero-Input Response by Solving the Difference Equation

	3.1.2 Impulse Response
	3.1.3 Characterization of Systems by Their Responses to Impulse and Unit-Step Signals

	3.2 Classification of Systems
	3.2.1 Linear and Nonlinear Systems
	3.2.2 Time-Invariant and Time-Varying Systems
	3.2.3 Causal and Noncausal Systems
	3.2.4 Instantaneous and Dynamic Systems
	3.2.5 Inverse Systems
	3.2.6 Continuous and Discrete Systems

	3.3 Convolution-Summation Model
	3.3.1 Properties of Convolution-Summation
	3.3.2 The Difference Equation and the Convolution-Summation
	3.3.3 Response to Complex Exponential Input

	3.4 System Stability
	3.5 Realization of Discrete Systems
	3.5.1 Decomposition of Higher-Order Systems
	3.5.2 Feedback Systems

	3.6 Summary
	Exercises

	4 Time-Domain Analysis of Continuous Systems
	4.1 Classification of Systems
	4.1.1 Linear and Nonlinear Systems
	4.1.2 Time-Invariant and Time-Varying Systems
	4.1.3 Causal and Noncausal Systems
	4.1.4 Instantaneous and Dynamic Systems
	4.1.5 Lumped-Parameter and Distributed-Parameter Systems
	4.1.6 Inverse Systems

	4.2 Differential Equation Model
	4.3 Convolution-Integral Model
	4.3.1 Properties of Convolution-Integral
	4.3.2 Convolution of a Function with a Narrow Unit Area Pulse

	4.4 System Response
	4.4.1 Impulse Response
	4.4.2 Response to Unit-Step Input
	4.4.3 Characterization of Systems by Their Responses to Impulse and Unit-Step Signals
	4.4.4 Response to Complex Exponential Input

	4.5 System Stability
	4.6 Realization of Continuous Systems
	4.6.1 Decomposition of Higher-Order Systems
	4.6.2 Feedback Systems

	4.7 Summary
	Exercises

	5 The Discrete Fourier Transform
	5.1 The Time-Domain and the Frequency-Domain
	5.2 The Fourier Analysis
	5.2.1 The Four Versions of Fourier Analysis

	5.3 The Discrete Fourier Transform
	5.3.1 The Approximation of Arbitrary Waveforms with Finite Number of Samples
	5.3.2 The DFT and the IDFT
	5.3.2.1 Center-Zero Format of the DFT and IDFT

	5.3.3 DFT of Some Basic Signals

	5.4 Properties of the Discrete Fourier Transform
	5.4.1 Linearity
	5.4.2 Periodicity
	5.4.3 Circular Time Reversal
	5.4.4 Duality
	5.4.5 Sum and Difference of Sequences
	5.4.6 Upsampling of a Sequence
	5.4.7 Zero Padding the Data
	5.4.8 Circular Shift of a Sequence
	5.4.9 Circular Shift of a Spectrum
	5.4.10 Symmetry
	5.4.11 Circular Convolution of Time-Domain Sequences
	5.4.12 Circular Convolution of Frequency-Domain Sequences
	5.4.13 Parseval's Theorem

	5.5 Applications of the Discrete Fourier Transform
	5.5.1 Computation of the Linear Convolution Using the DFT
	5.5.2 Interpolation and Decimation
	5.5.2.1 Interpolation
	5.5.2.2 Decimation
	5.5.2.3 Interpolation and Decimation

	5.5.3 Image Boundary Representation

	5.6 Summary
	Exercises

	6 Fourier Series
	6.1 Fourier Series
	6.1.1 FS as the Limiting Case of the DFT
	6.1.2 The Compact Trigonometric Form of the FS
	6.1.3 The Trigonometric Form of the FS
	6.1.4 Periodicity of the FS
	6.1.5 Existence of the FS
	6.1.6 Gibbs Phenomenon

	6.2 Properties of the Fourier Series
	6.2.1 Linearity
	6.2.2 Symmetry
	6.2.2.1 Even Symmetry
	6.2.2.2 Odd Symmetry
	6.2.2.3 Half-Wave Symmetry

	6.2.3 Time Shifting
	6.2.4 Frequency Shifting
	6.2.5 Time Reversal
	6.2.6 Convolution in the Time-Domain
	6.2.7 Convolution in the Frequency-Domain
	6.2.8 Duality
	6.2.9 Time Scaling
	6.2.10 Time-Differentiation
	6.2.11 Time-Integration
	6.2.11.1 Rate of Convergence of the Fourier Series

	6.2.12 Parseval's Theorem

	6.3 Approximation of the Fourier Series
	6.3.1 Aliasing Effect

	6.4 Applications of the Fourier Series
	6.4.1 Analysis of Rectified Power Supply

	6.5 Summary
	Exercises

	7 The Discrete-Time Fourier Transform
	7.1 The Discrete-Time Fourier Transform
	7.1.1 The DTFT as the Limiting Case of the DFT
	7.1.2 The Dual Relationship between the DTFT and the FS
	7.1.3 The DTFT of a Discrete Periodic Signal
	7.1.4 Determination of the DFT from the DTFT

	7.2 Properties of the Discrete-Time Fourier Transform
	7.2.1 Linearity
	7.2.2 Time Shifting
	7.2.3 Frequency Shifting
	7.2.4 Convolution in the Time-Domain
	7.2.5 Convolution in the Frequency-Domain
	7.2.6 Symmetry
	7.2.7 Time Reversal
	7.2.8 Time Expansion
	7.2.9 Frequency Differentiation
	7.2.10 Difference
	7.2.11 Summation
	7.2.12 Parseval's Theorem and the Energy Transfer Function

	7.3 Approximation of the Discrete-Time Fourier Transform
	7.3.1 Approximation of the Inverse DTFT by the IDFT

	7.4 Applications of the Discrete-Time Fourier Transform
	7.4.1 Transfer Function and the System Response
	7.4.2 Digital Filter Design Using DTFT
	7.4.2.1 Rectangular Window
	7.4.2.2 Hamming Window

	7.4.3 Digital Differentiator
	7.4.4 Hilbert Transform
	7.4.5 Downsampling

	7.5 Summary
	Exercises

	8 The Fourier Transform
	8.1 The Fourier Transform
	8.1.1 The FT as a Limiting Case of the DTFT
	8.1.2 Existence of the FT

	8.2 Properties of the Fourier Transform
	8.2.1 Linearity
	8.2.2 Duality
	8.2.3 Symmetry
	8.2.4 Time Shifting
	8.2.5 Frequency Shifting
	8.2.6 Convolution in the Time Domain
	8.2.7 Convolution in the Frequency Domain
	8.2.8 Conjugation
	8.2.9 Time Reversal
	8.2.10 Time Scaling
	8.2.11 Time Differentiation
	8.2.12 Time Integration
	8.2.13 Frequency Differentiation
	8.2.14 Parseval's Theorem and the Energy Transfer Function

	8.3 Fourier Transform of Mixed Class of Signals
	8.3.1 The FT of a Continuous Periodic Signal
	8.3.2 Determination of the FS from the FT
	8.3.3 The FT of a Sampled Signal and the Aliasing Effect
	8.3.4 The FT and the DTFT of Sampled Aperiodic Signals
	8.3.5 The FT and the DFT of Sampled Periodic Signals
	8.3.6 Approximation of the Continuous Signal from Its Sampled Version

	8.4 Approximation of the Fourier Transform
	8.5 Applications of the Fourier Transform
	8.5.1 Transfer Function and the System Response
	8.5.2 Ideal Filters and Their Unrealizability
	8.5.3 Modulation and Demodulation
	8.5.3.1 Double Sideband, Suppressed Carrier (DSB-SC), Amplitude Modulation
	8.5.3.2 Double Sideband, with Carrier (DSB-WC), Amplitude Modulation
	8.5.3.3 Pulse Amplitude Modulation (PAM)


	8.6 Summary
	Exercises

	9 The z-Transform
	9.1 Fourier Analysis and the z-Transform
	9.2 The z-Transform
	9.3 Properties of the z-Transform
	9.3.1 Linearity
	9.3.2 Left Shift of a Sequence
	9.3.3 Right Shift of a Sequence
	9.3.4 Convolution
	9.3.5 Multiplication by n
	9.3.6 Multiplication by an
	9.3.7 Summation
	9.3.8 Initial Value
	9.3.9 Final Value
	9.3.10 Transform of Semiperiodic Functions

	9.4 The Inverse z-Transform
	9.4.1 Finding the Inverse z-Transform
	9.4.1.1 The Partial Fraction Method
	9.4.1.2 The Long Division Method


	9.5 Applications of the z-Transform
	9.5.1 Transfer Function
	9.5.2 Characterization of a System by Its Poles and Zeros
	9.5.3 Frequency Response and the Locations of the Poles and Zeros
	9.5.4 Design of Digital Filters
	9.5.4.1 The Bilinear Transformation
	9.5.4.2 Implementation of the Bilinear Transformation

	9.5.5 System Response
	9.5.5.1 Inverse Systems

	9.5.6 System Stability
	9.5.7 Realization of Systems
	9.5.8 Feedback Systems

	9.6 Summary
	Exercises

	10 The Laplace Transform
	10.1 The Laplace Transform
	10.1.1 Relationship Between the Laplace Transform and the z-Transform

	10.2 Properties of the Laplace Transform
	10.2.1 Linearity
	10.2.2 Time Shifting
	10.2.3 Frequency Shifting
	10.2.4 Time Differentiation
	10.2.5 Integration
	10.2.6 Time Scaling
	10.2.7 Convolution in Time
	10.2.8 Multiplication by t
	10.2.9 Initial Value
	10.2.10 Final Value
	10.2.11 Transform of Semiperiodic Functions

	10.3 The Inverse Laplace Transform
	10.3.1 Inverse Laplace Transform by Partial Fraction Expansion

	10.4 Applications of the Laplace Transform
	10.4.1 Transfer Function and the System Response
	10.4.2 Characterization of a System by Its Poles and Zeros
	10.4.3 Unit-Step Response and Transient-Response Specifications
	10.4.4 System Stability
	10.4.5 Realization of Systems
	10.4.6 Frequency-Domain Representation of Circuits
	10.4.7 Feedback Systems
	10.4.8 Bode Diagram
	10.4.9 The Nyquist Plot
	10.4.9.1 Operational Amplifier Circuits

	10.4.10 Analog Filters
	10.4.10.1 Butterworth Filters


	10.5 Summary
	Exercises

	11 State-Space Analysis of Discrete Systems
	11.1 The State-Space Model
	11.1.1 Parallel Realization
	11.1.2 Cascade Realization

	11.2 Time-Domain Solution of the State Equation
	11.2.1 Iterative Solution
	11.2.2 Closed-Form Solution
	11.2.3 The Impulse Response

	11.3 Frequency-Domain Solution of the State Equation
	11.4 Linear Transformation of State Vectors
	11.5 Summary
	Exercises

	12 State-Space Analysis of Continuous Systems
	12.1 The State-Space Model
	12.2 Time-Domain Solution of the State Equation
	12.3 Frequency-Domain Solution of the State Equation
	12.4 Linear Transformation of State Vectors
	12.5 Diagonalization
	12.6 Similarity Transformation
	12.7 Controllability
	12.8 Observability
	12.9 Summary
	Exercises

	A Complex Numbers
	B Transform Pairs and Properties
	C Useful Mathematical Formulas
	C.1 Trigonometric Identities
	C.2 Series Expansions
	C.3 Summation Formulas
	C.4 Indefinite Integrals
	C.5 Differentiation Formulas
	C.6 L'Hôpital's Rule
	C.7 Matrix Inversion

	Answers to Selected Exercises
	Answers to Selected Exercises
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12


	Bibliography
	Index

