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PREFACGE

This book examines the hardware and software features of the MCS-51 family of micro-
controllers. The intended audience is college or university students of electronics or
computer technology, electrical or computer engineering, or practicing technicians or
engineers interested in learning about microcontrotlers

The means to effectively fulfill that audience’s informational needs were tested
and refined in the development of this book. In its prototype form, The 8051 Microcon-
troller has been the basis of a fifth semester course for college students in computer en-
gineering. As detailed in Chapter 10, students build an 8051 single-board computer as
part of this course. That computer, in turn, has been used as the target system for a final,
sixth semester “project”™ course in which students design, implement, and document a
“product” controlled by the 8051 microcontroller and incorporating original software
and hardware.

Since the 8051—like all microcontrollers—contains a high degree of functional-
ity, the book emphasizes architecture and programming rather than electrical details.
The software topics are delivered in the context of Intel’s assembler (ASM51) and
linker/locator (RLS1).

It is my view that courses on microprocessors or microcontrollers are inherently
more difficult to deliver than courses in, for example, digital systems, because a linear
sequence of topics is hard to devise. The very first program that is demonstrated to stu-
dents brings with it significant assumptions, such as a knowledge of the CPU’s program-
ming model and addressing modes, the distinction between an address and the content of
an address, and so on. For this reason, a course based on this book should not attempt to
follow strictly the sequence presented. Chapter 1 is a good starting point, however. It
serves as a general inttoduction to microcontrollers, with particular emphasis on the dis-
tinctions between microcontrollers and microprocessors. =

Chapter 2 introduces the hardware architecture of the 8051 microcontroller, and its
counterparts that form the MCS-51 family. Concise examples are presented using short
sequences of instructions. Instructors should be prepared at this point to introduce, in
parallel, topics from Chapters 3 and 7 and Appendices A and C to support the requisite
software knowledge in these examples. Appendix A is particularly valuable, since it con-
tains in a single figure the entire 8051 instruction set.

Chapter 3 introduces the instruction set, beginning with definitions of the 8051°s
addressing modes. The instruction set has convenient categories of instructions (data
transfer, branch, etc.) which facilitate a step-wise presentation. Numerous brief exam-
ples demonstrate each addressing mode and each type of instruction.

Chapters 4, 5, and 6 progress through the 8051’s on-chip features, beginning with
the timers, advancing to the serial port (which requires a timer as a baud rate generator),
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EFACE

and concluding with interrupts. The examples in these chapters are longer and more
complex than those presented earlier. Instructors are wise not to rush into these chapters:
it is essential that students gain solid understanding of the 8051°s hardware architecture
and instruction set before advancing to these topics.

Many of the topics in Chapter 7 will be covered, by necessity, in progressing
through the first six chapters. Nevertheless, this chapter is perhaps the most important
for developing in students the potential to undertake large-scale projects. Advanced top-
ics such as assemble-time expression evaluation, modular programming, linking and lo-
cating, and macro programining will be a significant challenge for many students. At this
point the importance of hands-on experience cannot be over-emphasized. Students
should be encouraged to experiment by entering the examples in the chapter into the
computer and observing the output and error messages provided by ASM51, RL51, and
the object-to-hex conversion utility (OH).

Some advanced topics relating to programming methods, style, and the develop-
ment environment are presented in Chapters 8 and 9. These chapters address larger,
more conceptual topics important in professional development environments,

Chapter 10 presents several design examples incorporating selected hardware with
supporting software. The software is fully annotated and is the real focus in these exam-
ples. The second edition includes two additional interfaces; a digital-to~-analog output in-
terface using an MC1408 8-bit DAC, and an analog-to-digital input interface using an
ADC0804 8-bit ADC. One of the designs in Chapter 10 is the SBC-51—the 8051 single-
board computer. The SBC-51 can form the basis of a course on the 8051 microcontroller.
A short mopitor program is included (see Appendix G) which is sufficient to get “up and
running.” A development environment also requires a host computer which doubles as a
dumb terminal for controlling the SBC-51 after programs have been downloaded for ex-
ecution.

Many dozens of students have wire-wrapped prototype versions of the SBC-51
during the years that I have taught 8051-based courses to computer engineering students.
Shortly after the release of the first edition of this text, URDA, Inc. (Pittsburgh, Pennsyl-
vania) began manufacturing and marketing a PC-board version of the SBC-51. This has
proven to be a cost-effective solution to implementing a complete lecture-plus-lab pack-
age for teaching the 8051 microcontroller to technology students. Contact URDA at
1-800-338-0517 for more information.

Finally, each chapter contains questions further exploring the concepts presented.
This new edition includes 128 end-of-chapter questions—almost double the number in
the first edition. A solutions manual is available to instructors from the publisher.

The book makes extensive use of, and builds on, Intel’s literature on the MCS-51
devices. In particular, Appendix C contains the definitions of all 8051 instructions and
Appendix E contains the 8051 data sheet. Intel's cooperation is gratefully acknowl-
edged. I also thank the following persons who reviewed the manuscript and offered in-
valuable comments, criticism, and suggestions: Antony Alumkal, Austin Community
College; Omer Farook, Purdue University—Calumet; David Jones, Lenoir Community
College; Roy Seigel, DeVry Institute; and Chandra Sekhar, Purdue University—
Calumet.

1. Scott MacKenzie
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INTRODUCTION TO
MICROCONTROLLERS

1.1 INTRODUCTION

Although computers have only been with us for a few decades, their impact has been
profound, rivaling that of the telephone, automobile, or television. Their presence is felt
by us all, whether computer programmers or recipients of monthly bills printed by a
large computer system and delivered by mail. Our notion of computers usually catego-
rizes them as “data processors,” performing numeric operations with inexhaustible com-
petence.

We confront computers of a vastly different breed in a more subtle context per-
forming tasks in a quiet, efficient, and even humble manner, their presence often unno-
ticed. As a central component in many industrial and consumer products, we find com-
puters at the supermarket inside cash registers and scales; at home in ovens, washing
machines, alarm clocks, and thermostats; at play in toys, VCRs, stereo equipment, and
musical instruments; at the office in typewriters and photocopiers; and in industrial
equipment such as drill presses and phototypesetters. In these settings computers are per-
forming “control” functions by interfacing with the “real world” to turn devices on and
off and to monitor conditions. Microcontrollers (as opposed to microcomputers or mi-
croprocessors) are often found in applications such as these.

It’s hard to imagine the present world of electronic tools and toys without the mi-
croprocessor. Yet this single-chip wonder has barely reached its twentieth birthday. In
1971 Intel Corporation introduced the 8080, the first successful microprocessor. Shortly
thereafter, Motorola, RCA, and then MOS Technology and Zilog introduced similar de-
vices: the 6800, 1801, 6502, and Z80, respectively. Alone these integrated circuits (1Cs)
were rather helpless (and they remain so); but as part of a single-board computer (SBC)
they became the central component in useful products for learning about and designing
with microprocessors. These SBCs, of which the D2 by Motorola, KIM-1 by MOS Tech-
nology, and SDK-85 by Intel are the most memorable, quickly found their way into de-
sign labs at colleges, universities, and electronics companies.

A device similar to the microprocessor is the microcontroller. In 1976 Intel intro-
duced the 8748, the first device in the MCS-48™ family of microcontrollers. Within a
single integrated circuit containing over 17,000 transistors, the 8748 delivered a CPU,
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1K byte of EPROM, 64 bytes of RAM, 27 1/O pins, and an 8-bit timer. This IC, and other
MCS-48™ devices that followed, soon became an industry standard in control-oriented
applications. Replacement of electromechanical components in products such as wash-
ing machines and traffic light controllers was a popular application initially, and remains
so. Other products where microcontrollers can be found include automobiles, industrial
equipment, consumer entertainment products, and computer peripherals. (Owners of an
IBM PC need only look inside the keyboard for an example of a microcontroller in a
minimum-component design.)

The power, size, and complexity of microcontrollers advanced an order of magni-
tude in 1980 with Intel’s announcement of the 8051, the first device in the MCS-51™
family of microcontrollers. In comparison to the 8048, this device contains over 60,000
transistors, 4K bytes ROM, 128 bytes of RAM, 32 I/O lines, a serial port, and two 16-bit
timers—a remarkable amount of circuity for a single IC (see Figure 1-1). New members
have been added to the MCS-51™ family, and today varjations exist virtually doubling
these specifications. Siemens Corporation, a second source for MCS-51™ components,
offers the SAB80515, an enhanced 8051 in a 68-pin package with six 8-bit I/O ports, 13
interrupt sources, and an 8-bit A/D converter with 8 input channels. The 8051 family is
well established as one of the most versatile and powerful of the 8-bit microcontrollers,
its position as a leading microcontroller entrenched for years to come.

This book is about the MCS-51™ family of microcontrollers. The following chap-
ters introduce the hardware and software architecture of the MCS-51™ family, and
demonstrate through numerous design examples how this family of devices can partici-
pate in electronic designs with a minimum of additional components.

In the following sections, through a brief introduction to computer architecture, we
shall develop a working vocabulary of the many acronyms and buzz words that prevail

FIGURE 1-1
The 8051 microcontroller. (a) An 8051 die. (b) An 8751 EPROM. (Courtesy Intel Corp.
Copyright 1991.)



INTRGDUCTION TO MICROCONTROLLERS

(and often confound) in this field. Since many terms have vague and overlapping defini-
tions subject to the prejudices of large corporations and the whims of various authors,
our treatment is practical rather than academic. Each term is presented in its most com-
mon setting with a straightforward explanation.

1.2 TERMINOLOGY

To begin, a computer is defined by two key traits: (1) the ability to be programmed to
operate on data without human intervention, and (2) the ability to store and retrieve data.
More generally, a computer system also includes the peripheral devices for communi-
cating with humans, as well as programs that process data. The equipment is hardware,
the programs are software. Let’s begin with computer hardware by examining Figure
1-2.

The absence of detail in the figure is deliberate, making it representative of all
sizes of computers. As shown, a computer system contains a central processing unit
(CPU) connected to random access memory (RAM) and read-only memory (ROM)
via the address bus, data bus, and control bus. Interface circuits connect the system
buses to peripheral devices. Let’s discuss each of these in detail.

1.3 THE CENTRAL PROCESSING UNIT

The CPU, as the “brain” of the computer system, administers all activity in the system
and performs all operations on data. Most of the CPU’s mystique is undeserved, since it
is just a collection of logic circuits that continuously performs two operations: fetching

i
CPU /
B2 (’
olbus (6) T T
Interface circuitry
RAM ROM
Peripheral
devices
FIGURE 1-2

Block diagram of a microcomputer system



FIGURE 1-3

The central processing unit CPU

(CPU)

ER1

instructions and executing instructions. The CPU has the ability to understand and exe-
cute instructions based on a set of binary codes, each representing a simple operation.
These instructions are usually arithmetic (add, subtract, multiply, divide), logic (AND,
OR, NOT, etc.), data movement, or branch operations, and are represented by a set of bi-
nary codes called the instruction set.

Figure 1-3 is an extremely simplified view of the inside of a CPU. It shows a set of
registers for the temporary storage of information, an arithmetic and logic unit (ALU)
for performing operations on this information, an instruction decode and control unit
that determines the operation to perform and sets in motion the necessary actions to per-
form it, and two additional registers. The instruction register (IR) holds the binary code
for each instruction as it is executed, and the program counter (PC) holds the memory
address of the next instruction to be executed.

Fetching an instruction from the system RAM is one of the most fundamental op-
erations performed by the CPU. It involves the following steps: (a) the contents of the
program counter are placed on the address bus, (b) a READ control signal is activated,
(c) data (the instruction opcode) are read from RAM and placed on the data bus, (d) the
opcode is latched into the CPU’s internal instruction register, and (e) the program
counter is incremented to prepare for the next fetch from memory. Figure 1-4 illustrates
the flow of information for an instruction fetch.

The execution stage involves decoding (or deciphering) the opcode and generating
control signals to gate internal registers in and out of the ALU and to signal the ALU to
perform the specified operation. Due to the wide variety of possible operations, this ex-
planation is somewhat limited in scope. It applies to a simple operation such as “incre-

Instruction Program
register (IR) counter (PC)

—— 1 ]

Registers

Instruction
decode and
control unit

Arithmetic
and logic
unit
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FIGURE 14
Bus activity for an opcode fetch cycle

ment register.” More complex instructions require more steps, such as reading a second
and third byte as data for the operation.

A series of instructions combined to perform a meaningful task is called a pro-
gram, or software, and herein is the real mystique. The degree to which tasks are effi-
ciently and correctly carried out is determined for the most part by the quality of soft-
ware, not by the sophistication of the CPU. Programs, then, “drive” the CPU, and in
doing so they occasionally go amiss, mimicking the frailties of their authors. Phrases
such as “The computer made a mistake” are misguided. Although equipment break-
downs are inevitable, mistakes in results are usually a sign of poor programs or operator
error.

1.4 SEMICONDUCTOR MEMORY: RAM AND ROM

Programs and data are stored in memory. The variations of computer memory are so
vast, their accompanying terms so plentiful, and technology breakthroughs so frequent,
that extensive and continual study is required to keep abreast of the latest developments.
The memory devices directly accessible by the CPU consist of semiconductor ICs (inte-
grated circuits) called RAM and ROM. There are two features that distinguish RAM and
ROM: first, RAM is read/write memory while ROM is read-only memory; and second,
RAM is volatile (the contents are lost when power is removed), while ROM is non-
volatile.

Most computer systems have a disk drive and a small amount of ROM, just enough
to hold the short, frequently used software routines that perform input/output operations.
User programs and data are stored on disk and are loaded into RAM for execution. With
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the continual drop in the per-byte cost of RAM, small computer systems often contain
millions of bytes of RAM.

1.5 THE BUSES: ADDRESS, DATA, AND CONTROL

A bus is a collection of wires carrying information with a common purpose. Access to
the circuitry around the CPU is provided by three buses: the address bus, data bus, and
control bus. For each read or write operation, the CPU specifies the location of the data
(or instruction) by placing an address on the address bus, and then activates a signal on
the control bus indicating whether the operation is a read or write. Read operations re-
trieve a byte of data from memory at the location specified and place it on the data bus.
The CPU reads the data and places it in one of its internal registers. For a write opera-
tion, the CPU outputs data on the data bus. Because of the control signal, memory recog-
nizes the operation as a write cycle and stores the data in the location specified.

Most small computers have 16 or 20 address lines. Given n address lines, each
with the possibility of being high (1) or low (0), 27 locations can be accessed. A 16-bit
address bus, therefore, can access 216 = 65,536 locations, and a 20-bit address can access
220 = 1,048,576 locations. The abbreviation K (for kilo) stands for 29 = 1024, therefore
16 bits can address 26 X 210 = 64K locations, while 20 bits can address 1024K (or | Meg)
locations.

The data bus carries information between the CPU and memory or between the
CPU and I/0 devices. Extensive research effort has been expended in determining the
sort of activities that consume a computer’s valuable execution time. Evidently comput-
ers spend up to two-thirds of their time simply moving data. Since the majority of move
operations are between a CPU register and external RAM or ROM, the number of lines
(the width) of the data bus is important for overall performance. This limitation-by-
width is a bottleneck: There may be vast amounts of memory on the system, and the CPU
may possess tremendous computational power, but access to the data—data movement
between the memory and CPU via the data bus—is bottlenecked by the width of the data
bus.

This trait is so important that it is common to add a prefix indicating the extent of
this bottleneck. The phrase “16-bit computer” refers to a computer with 16 lines on its
data bus. Most computers fit the 4-bit, 8-bit, 16-bit, or 32-bit classification, with overall
computing power increasing as the width of the data bus increases. '

Note that the data bus, as shown in Figure 1-2, is bidirectional and the address bus
is unidirectional. Address information is always supplied by the CPU (as indicated by
the arrow in Figure [-2), yet data may travel in either direction depending on whether a
read or write opération is intended.! Note also that the term “data” is used in a general
sense: the “information” that travels on the data bus may be the instructions of a pro-
gram, an address appended to an instruction, or the data used by the program.

The control bus is a hodgepodge of signals, each having a specific role in the or-
derly control of system activity. As a rule, control signals are timing signals supplied by
the CPU to synchronize the movement of information on the address and data busgs. Al-

1 Address information is sometimes also provided by direct memory access (DMA) circuitry (in addition to the
CPU).
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though there are usually three signals, such as CLOCK, READ, and WRITE, for basic
data movement between the CPU and memory, the names and operation of these signals
are highly dependent on the specific CPU. The manufacturer’s data sheets must be con-
sulted for details.

1.6 INPUT/OUTPUT DEVICES

1/0 devices, or “computer peripherals,” provide the path for communication between the
computer system and the “real world.” Without these, computer systems would be rather
introverted machines, of little use to the people who use them. Three classes of 1/0 de-
vices are mass storage, human interface, and control/monitor.

1.6.1 Mass Storage Devices

Like semiconductor RAMs and ROMs, mass storage devices are players in the arena of
memory technology—constantly growing, ever improving. As the name suggests, they
hold large quantities of information (programs or data) that cannot fit into the computer’s
relatively small RAM or “main” memory. This information must be loaded into main
memory before the CPU accesses it. Classified according to ease of access, mass storage
devices are either online or archival. Online storage, usually on magnetic disk, is avail-
able to the CPU without human intervention upon the request of a program, and archival
storage holds data that are rarely needed and require manual loading onto the system.
Archival storage is usually on magnetic tapes or disks, although optical discs, such as
CD-ROM or WORM technology, are now emerging and may alter the notion of archival
storage due to their reliability, high capacity, and low cost.?

1.6.2 Human Interface Devices

The union of man and machine is realized by a multitude of human interface devices, the
most common being the video display terminal (VDT) and printer. Although printers are
strictly output devices that generate hardcopy output, VDTs are really two devices, since
they contain a keyboard for input and a CRT (cathode-ray tube) for output. An entire
field of engineering, called “ergonomics” or “human factors,” has evolved from the ne-
cessity to design these peripheral devices with humans in mind, the goal being the safe,
comfortable, and efficient mating of the characteristics of people with the machines they
use. Indeed, there are more companies that manufacture this class of peripheral device
than companies that manufacture computers. For most computer systems, there are at
least three of these devices: a keyboard, CRT, and printer. Other human interface devices
include the joystick, light pen, mouse, microphone, or loudspeaker.

1.6.3 Control/Monitor Devices

By way of control/monitor devices (and some meticulously designed interface electron-
ics and software), computers can perform a myriad of control-oriented tasks, and per-

2CD-ROM” stands for compact-disc read-only memory. “WORM?” stands for write-once read-mostly. A CD-
ROM contains 550 Mbytes of storage. enough 10 store the entire 32 volumes of the Encyclopedia Britannica.
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form them unceasingly, without fatigue, far beyond the capabilities of humans. Applica-
tions such as temperature control of a building, home security, elevator control, home
appliance control, and even welding parts of an automobile, are all made possible using
these devices.

Control devices are outputs, or actuators, that can affect the world around them
when supplied with a voltage or current (e.g., motors and relays). Monitoring devices are
inputs, or sensors, that are stimulated by heat, light, pressure, motion, etc., and convert
this to a voltage or current read by the computer (e.g., phototransistors, thermistors, and
switches). The interface circuitry converts the voltage or current to binary data, or vice
versa, and through software an orderly relationship between inputs and outputs is estab-
lished. The hardware and software interfacing of these devices to microcontrollers is one
of the main themes in this book.

1.7 PROGRAMS: BIG AND SMALL

The preceding discussion has focused on computer systems hardware with only a
passing mention of the programs, or software, that make them work. The relative empha-
sis placed on hardware versus software has shifted dramatically in recent years.
Whereas the early days of computing witnessed the materials, manufacturing, and
maintenance costs of computer hardware far surpassing the software costs, today,
with mass-produced LSI (large-scale integrated) chips, hardware costs are less domi-
nant. It is the labor-intensive job of writing, documenting, maintaining, updating, and
distributing software that constitutes the bulk of the expense in automating a process us-
ing computers.

Let’s examine the different types of software. Figure 1-5 illustrates three levels of
software between the user and the hardware of a computer system: the application soft-
ware, the operating system, and the input/output subroutines.

FIGURE 1-5
Levels of software Applications

software
(user interface)

Operating
system
(command language, utilities)

Input/output
subroutines
(access to hardware)

Hardware
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At the lowest level, the input/output subroutines directly manipulate the hardware
of the system, reading characters from the keyboard, writing characters to the CRT, read-
ing blocks of information from the disk, and so on. Since these subroutines are so inti-
mately linked to the hardware, they are written by the hardware designers and are (usu-
ally) stored in ROM. (They are the BIOS—basic input/output system—on the IBM PC,
for example.) '

To provide close access to the system hardware for programmers, explicit entry
and exit conditions are defined for the input/output subroutines. One only needs to ini-
tialize values in CPU registers and call the subroutine; the action is carried out with re-
sults returned in CPU registers or left in system RAM.

As well as a full complement of input/output subroutines, the ROM contains a
start-up program that executes when the system is powered up or reset manually by the
operator. The nonvolatile nature of ROM is essential here since this program must exist
upon power-up. “Housekeeping™ chores, such as checking for options, initializing mem-
ory, performing diagnostic checks, etc., are all performed by the start-up program. Last,
but not least, a bootstrap loader routine reads the first track (a small program) from the
disk into RAM and passes control to it. This program then loads the RAM-resident por-
tion of the operating system (a large program) from the disk and passes control to it, thus
completing the start-up of the system. There is a saying that “the system has pulled itself
up by its own bootstraps.”

The operating system is a large collection of programs that come with the com-
puter system and provide the mechanism to access, manage, and effectively utilize the
computer’s resources. These abilities exist through the operating system’s command
language and utility programs, which in turn facilitate the development of applications
software. If the applications software is well designed, the user interacts with the com-
puter with little or no knowledge of the operating system. Providing an effective, mean-
ingful, and safe user interface is one of the prime objectives in the design of applications
software.

1.8 MICROS, MINIS, AND MAINFRAMES

Using this as a starting point, we classity computers by their size and power as micro-
compuiers, minicomputers, or mainframe computers. A key trait of microcomputers is
the size and packaging of the CPU: It is contained within a single integrated circuit-—a
microprocessor. On the other hand, minicomputers and mainframe computers, as well
as being more complex in every architectural detail, have CPUs consisting of multiple
ICs, ranging from several 1Cs (minicomputers) to several circuit boards of ICs (main-
frames). This is necessary to achieve the high speeds and computational power of larger
computers.

Typical microcomputers such as the IBM PC, Apple Macintosh, and Commodore
Amiga incorporate a microprocessor as their CPU. The RAM, ROM, and interface cir-
cuits require many ICs, with the component count often increasing with computing
power. Interface circuits vary considerably in complexity depending on the /O devices.
Driving the loudspeaker contained in most microcomputers, for example, requires only a
couple of logic gates. The disk interface, however, usually involves many ICs, some in
LSI packages.
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Another feature separating micros from minis and mainframes is that microcom-
puters are single-user, single-task systems—they interact with one user, and they exe-
cute one program at a time. Minis and mainframes, on the other hand, are multiuser, mul-
titasking systems—they can accommodate many users and programs simultaneously.
Actually, the simultaneous execution of programs is an ilfusion resulting from “time
slicing” CPU resources. (Multiprocessing systems, however, use multiple CPUs to exe-
cute tasks simultaneously.)

1.9 MICROPROCESSORS VS. MICROCONTROLLERS

It was pointed out above that microprocessors are single-chip CPUs used in microcom-
puters. How, then, do microcontrollers differ from microprocessors? This question can
be addressed from three perspectives: hardware architecture, applications, and in-
struction set features.

1.9.1 Hardware Architecture

To highlight the difference between microcontrollers and microprocessors, Figure 1-2 is
redrawn showing more detail (see Figure 1-6).

Whereas a microprocessor is a single-chip CPU, a microcontroller contains, in a
single IC, a CPU and much of the remaining circuitry of a complete microcomputer sys-
tem. The components within the dotted line in Figure 1-6 are an integral part of most mi-
crocontroller ICs. As well as the CPU, microcontrollers include RAM, ROM, a serial in-
terface, a parallel interface, timer, and interrupt scheduling circuitry—all within the
same IC. Of course, the amount of on-chip RAM does not approach that of even a mod-
est microcomputer system; but, as we shall learn, this is not a limitation, since microcon-
trollers are intended for vastly different applications.

An important feature of microcontrollers is the built-in interrupt system. As con-
trol-oriented devices, microcontrollers are often called upon to respond to external stim-
uli (interrupts) in real time. They must perform fast context switching, suspending one
process while exccuting another in response to an “event.” The opening of a microwave
oven’s door is an example of an event that might cause an interrupt in a microcontroller-
based product. Of course, most microprocessors can also implement powerful interrupt
schemes, but external components are usually required. A microcontroller’s on-chip cir-
cuitry includes ali the interrupt handling circuitry necessary.

1.9.2 Applications

Microprocessors are most commonly used as the CPU in microcomputer systems. This is
what they are designed for, and this is where their strengths lie. Microcontrollers, how-
ever, are found in small, minimum-component designs performing control-oriented
activities. These designs were often implemented in the past using dozens or even hun-
dreds of digital 1Cs. A microcontroller can aid in reducing the overall component count.
All that is required is a microcontroller, a small number of support components, and a
control program in ROM. Microcontrollers are suited to “control” of I/O devices in de-
signs requiring a minimum component count, whereas microprocessors are suited to
“processing” information in computer systems.
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FIGURE 1-6
Detailed block diagram of a microcomputer system

1.9.3 Instruction Set Features

Due to the differences in applications, microcontrollers have somewhat different re-
quirements for their instruction sets than microprocessors. Microprocessor instruction
sets are “processing intensive,” implying they have powerful addressing modes with in-
structions catering to operations on large volumes of data. Their instructions operate on
nibbles, bytes, words, or even double words.? Addressing modes provide access to large
arrays of data, using address pointers and offsets. Auto-increment and auto-decrement
modes simplify stepping through arrays on byte, word, or double-word boundaries. Priv-
ileged instructions cannot execute within the user program. The list goes on.
Microcontrollers, on the other hand, have instruction sets catering to the contro} of
inputs and outputs. The interface to many inputs and outputs uses a single bit. For exam-
ple, a motor may be turned on and off by a solenoid energized by a 1-bit output port.

3The most common interpretation of these terms is 4 bits = | nibble, 8 bits = | byte, 16 bits = | word, and 32
bits = 1 double word.
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Microcontrollers have instructions to set and clear individual bits and perform other bit-
oriented operations such as logically ANDing, ORing, or EXORing bits, jumping if a
bit is set or clear, and so on. This powerful feature is rarely present in microprocessors,
which are usually designed to operate on bytes or larger units of data.

In the control and monitoring of devices (perhaps with a 1-bit interface), micro-
controllers have built-in circuitry and instructions for input/output operations, event tim-
ing, and enabling and setting priority levels for interrupts caused by external stimuli.
Microprocessors often require additional circuitry (serial interface ICs, interrupt con-
trollers, timers, etc.) to perform similar operations. Nevertheless, the sheer processing
capability of a microcontroller never approaches that of a microprocessor (all else being
equal), since a great deal of the IC’s “real estate” is consumed by the on-chip func-
tions—at the expense of processing power, of course.

Since the on-chip real estate is at a premium in microcontrollers, the instructions
must be extremely compact, with the majority implemented in a single byte. A design
criterion is often that the control program must fit into the on-chip ROM, since the addi-
tion of even one external ROM adds too much cost to the final product. A tight encoding
scheme for the instruction set is essential. This is rarely a feature of microprocessors;
their powerful addressing modes bring with them a less-than-compact encoding of in-
structions.

1.10 NEW CONCEPTS

Microcontrollers, like other products considered in retrospect to be a breakthrough, have
arrived out of two complementary forces: market need and new technology. The new
technology is just that mentioned above: semiconductors with more transistors in less
space, mass produced at a lower cost. The market need is the industrial and consumer ap-
petite for more sophisticated tools and toys.* This encompasses a lot of territory. The
most illustrative, perhaps, is the automobile dashboard. Witness the transformation
of the car’s “control center” over the past decade—made possible by the microcontroller
and other technological developments. Once, drivers were content to know their speed;
today they may find a display of fuel economy and estimated time of arrival. Once it was
sufficient to know if a seatbelt was unfastened while starting the car; today, we are “told”
which seatbelt is the culprit. {f a door is ajar, we are again duly informed by the spoken
word. (Perhaps the seatbelt is stuck in the door.)

This brings to mind a necessary comment. Microprocessors (and in this sense mi-
crocontrollers) have been dubbed “solutions looking for a problem.” It seems they have
proven so effective at reducing the complexity of circuitry in (consumer) products, that
manufacturers are often too eager to include superfluous features simply because they
are easy to design into the product. The result often lacks eloquence—a show-stopper
initially, but an annoyance finally. The most stark example of this bells-and-whistles ap-
proach occurs in the recent appearance of products that talk. Whether automobiles, toys,
or toasters, they are usually examples of tackiness and overdesign—1980s art deco, per-
haps. Rest assured that once the dust has settled and the novelty has diminished, only the
subtle and appropriate will remain.

4t is sometimes argued that “market nced™ is really “market want.” sparred on by the self-propelled growth of
technology.
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Microcontrollers are specialized. They are not used in computers per se, but in in-
dustrial and consumer products. Users of such products are quite often unaware of the
existence of microcontrollers: to them, the internal components are but an inconsequen-
tial detail of design. As examples, consider microwave ovens, programmable thermo-
stats, electronic scales, and even cars. The electronics within each of these products typ-
ically incorporates a microcontroller interfacing to push buttons, switches, lights, and
alarms on a front panel; yet user operation mimics that of the electromechanical prede-
cessors, with the exception of some added features. The microcontroller is invisible to
the user.

Unlike computer systems, which are defined by their ability to be programmed and
then reprogrammed, ‘microcontrollers are permanently programmed for one task. This
comparison results in a stark architectural difference between the two. Computer sys-
tems have a high RAM-to-ROM ratio, with user programs executing in a relatively large
RAM space and hardware interfacing routines executing in a small ROM space. Micro-
controllers, on the other hand, have a high ROM-to-RAM ratio. The control program,
perhaps relatively large, is stored in ROM, while RAM is used only for temporary stor-
age. Since the control program is stored permanently in ROM, it has been dubbed firm-
ware. In degrees of “firmness,” it lies somewhere between software—the programs in
RAM that are lost when power is removed—and hardware—the physical circuits. The
difference between software and hardware is somewhat analogous to the difference be-
tween a page of paper (hardware) and words written on a page (software). Consider
firmware as a standard form letter, designed and printed for a single purpose.

1.11 GAINS AND LOSSES: A DESIGN EXAMPLE

The tasks performed by microcontrollers are not new. What is new is that designs are im-
plemented with fewer components than before. Designs previously requiring tens or
even hundreds of ICs are implemented today with only a handful of components, includ-
ing a microcontroller. The reduced component count, a direct result of the microcon-
troller’s programmability and high degree of integration, usually translates into shorter
development time, lower manufacturing cost, lower power consumption, and higher reli-
ability. Logic operations that require several ICs can often be implemented within the
microcontroller, with the addition of a control program.

One tradeoff is speed. Microcontroller-based solutions are never as fast as the dis-
crete counterparts. Situations requiring extremely fast response to events (a minority of
applications) are poorly handled by microcontrollers. As an example, consider in Figure
1-7 the somewhat trivial implementation of the NAND operation using an 8051 micro-
controller.

FIGURE 1-7
Microcontrolier implementa-
tion of a simple logic opera-
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[t is not at all obvious that a microcontroller could be used for such an operation,
but it can. The software must perform the operations shown in the flowchart in Figure
1-8. The 8051 assembly language program for this logic operation is shown below.

LOOP: MoV C,pP1.4 ;READ P1.4 BIT INTO CARRY FLAG
ANL C,Pl.5 ;AND WITH P1.5
ANL C,Pl.6 ;AND WITH Pl.6
CPL C ; CONVERT TO “NAND” RESULT
MOV P1.7,C ;SEND TO P1.7 OUTPUT BIT
SJIMP LOOP ; REPEAT

If this program executes on an 8051 microcontroiler, indeed the 3-input NAND
function is realized. (It could be verified with a voltmeter or oscilloscope.) The propa-
gation delay from an input transition to the correct output level is quite long, at least in
comparison to the equivalent TTL (transistor-transistor logic) circuit. Depending on
when the input changed relative to the program sensing the change, the delay is from 3 to
17 microseconds. (This assumes standard 8051 operation using a 12 MHz crystal.) The
equivalent TTL propagation delay is on the order of 10 nanoseconds—about three orders
of magnitude less. Obviously, there is no contest when comparing the speed of micro-
controllers with TTL implementations of the same function.

In many applications, particularly those with human operation, whether the delays
are measured in nanoseconds, microseconds, or milliseconds is inconsequential. (When

FIGURE 1-8
@ Flowchart for logic gate pro-
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the oil pressure drops in your car, do you need to be informed within microseconds?)
The logic gate example illustrates that microcontrollers can implement logic operations.
Furthermore, as designs become complex, the advantages of the microcontroller-based
design begin to take hold. The reduced component count has advantages, as mentioned
earlier; but, also, the operations in the control program make it possible to introduce
changes in design by modifying only the software. This has minimal impact on the man-
ufacturing cycle.

This concludes our introduction to microcontrollers. In the next chapter, we begin

our examination of the MCS-51™ family of devices.

PROBLEMS

1.

12.

13.

16.

17.

What was the first widely used microprocessor? In what year was it introduced and
by what company?

. Two of the smaller microprocessor companies in the 1970s were MOS Technology

and Zilog. Name the microprocessor that each of these companies introduced.

. What year was the 8051 microcontroller introduced? What was the predecessor to

the 8051 and in what year was it introduced?

. Name the two types of semiconductor memory discussed in this chapter. Which type

retains its contents when powered-oft? What is the common term that describes this
property?

. Which register in a CPU always contains an address? What address is contained in

this register?

. During an opcode fetch, what is the information on the address and data buses?

What is the direction of information flow on these buses during an opcode fetch?

. How many bytes of data can be addressed by a computer system with an 18-bit ad-

dress bus and an 8-bit data bus?

. What is the usual meaning of *“16-bits™ in the phrase ““16-bit computer™?
. What is the difference between online storage and archival storage?

10.
1.

What type of technology is used for archival storage besides magnetic tape and disk?
With regard to computing systems, what is the goal of the field of engineering
known as “human factors™?

Consider the following human interface devices: a joystick, a light pen, a mouse, a
microphone, and a loudspeaker. Which are input devices? Which are output devices?
Of the three levels of software presented in this chapter, which is the lowest level?
What is the purpose of this level of software?

. What is the difference between an actvator and a sensor? Give an example of each.
15.

What is firmware? Comparing a microcontroller-based system to a microprocessor-
based system, which is more likely to rely on firmware? Why?

What is an important feature of a microcontroller’s instruction set that distinguishes
it from a microprocessor?

Name five products not mentioned in this chapter that are likely to use a microcon-
troller.

15
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2.1 MCS-512 FAMILY OVERVIEW

The MCS-51 is a family of microcontroller ICs developed, manufactured, and mar-
keted by Intel Corporation. Other IC manufacturers, such as Siemens, Advanced Micro
Devices, Fujitsu, and Philips are licensed “second source™ suppliers of devices in the
MCS-51® family. Each microcontroller in the family boasts a complement of features
suited to a particular design setting.

In this chapter the hardware architecture of the MCS-51%® family is introduced. In-
tel’s data sheet for the entry-level devices (e.g., the 8051AH) is found in Appendix E.
This appendix should be consuited for further details, for example, on electrical proper-
ties of these devices.

Many of the hardware features are illustrated with short sequences of instructions.
Brief descriptions are provided with each example, but complete details of the instruc-
tion set are deferred to Chapter 3. See also Appendix A for a summary of the 8051 in-
struction set or Appendix C for definitions of each 8051 instruction.

The generic MCS-51® IC is the 8051, the first device in the family offered com-
mercially. Its features are summarized below.

0 4K bytes ROM (factory mask programmed)
0 128 bytes RAM

O Four 8-bit I/O (Input/Output) ports

O Two 16-bit timers

O Serial interface

0 64K external code memory space

O 64K external data memory space

O Boolean processor (operates on single bits)
0 210 bit-addressable locations

0 4 ps multiply/divide

17
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TABLE 2-1

ATER 2

Comparison of MCS-51®ICs

PART ON-CHIP ON-CHIP
NUMBER CODE MEMORY DATA MEMORY TIMERS

8051 4K ROM 128 bytes 2
8031 oK 128 bytes 2
8751 4K EPROM 128 bytes 2
8052 8K ROM 256 bytes 3
8032 0K 256 bytes 3
8752 8K EPROM 256 bytes 3

Other members of the MCS-51® family offer different combinations of on-chip
ROM or EPROM, on-chip RAM, or a third timer. Each of the MCS-51® ICs is also of-
fered in a low-power CMOS version (see Table 2—1).
The term “8051” loosely refers to the MCS-51® family of microcontrollers. When
discussion centers on an enhancement to the basic 8051 device, the specific part number
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is used. The features mentioned above are shown in the block diagram in Figure 2-1.
(See also Appendix D.)

2.2 ONCE AROUND THE PINS

This section introduces the 8051 hardware architecture from an external perspective—

the pinouts (see Figure 2-2). A brief description of the function of each pin follows.

FIGURE 2-2
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TABLE 2-2

Alternate pin functions for

port pins

CHAPTER 2

As evident in Figure 2-2, 32 of the 8051’s 40 pins function as 1/O port lines. How-
ever, 24 of these lines are dual-purpose (26 on the 8032/8052). Each can operate as 1/0,
or as a control line or part of the address or data bus.

Designs requiring a minimum of external memory or other external components
use these ports for general purpose I/O. The eight lines in each port can be treated as a
unit in interfacing to parallel devices such as printers, digital-to-analog converters, and
so on. Or, each line can operate independently in interfacing to single-bit devices such as
switches, LEDs, transistors, solenoids, motors, and loudspeakers.

2.21 Port0

Port 0 is a dual-purpose port on pins 32-39 of the 8051 IC. In minimum-component de-
signs, it is used as a general purpose [/O port. For larger designs with external memory, it
becomes a multiplexed address and data bus. (See 2.6 External Memory.)

2.2.2 Port1

Port 1 is a dedicated [/O port on pins 1-8. The pins, designated as P1.0, P1.1, P1.2, etc.,
are available for interfacing to external devices as required. No alternate functions are
assigned for Port | pins; thus they are used solely for interfacing to external devices. Ex-
ceptions are the 8032/8052 ICs, which use P1.0 and P1.1 either as /O lines or as external
inputs to the third timer.

2.2.3 Port2

Port 2 (pins 21-28) is a dual-purpose port serving as general purpose 1/0, or as the high-
byte of the address bus for designs with external code memory or more than 256 bytes of
external data memory. (See 2.6 External Memory.)

2.2.4 Port3

Port 3 is a dual-purpose port on pins 10-17. As well as general-purpose 1/0, these pins
are multifunctional, with each having an alternate purpose related to special features of
the 8051. The alternate purpose of the Port 3 and Port | pins is summarized in Table 2-2.

BIT
BIT NAME ADDRESS ALTERNATE FUNCTION

P3.0 RXD BOH Receive data for serial port

P3.1 TXD B1H Transmit data for serial port

P3.2  INTO B2H External interrupt 0

P33  INTT B3H External interrupt 1

P3.4 TO B4H Timer/counter 0 external input
P3.5 T B5H Timer/counter 1 external input
P3.6 WR B6H External data memory write strobe
P3.7 RD B7H External data memory read strobe
P1.0 T2 90H Timer/counter 2 external input

P1.1 T2EX 91H Timer/counter 2 capture/reload
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2.2.5 PSEN (Program Store Enable)

The 8051 has four dedicated bus control signals. Program Store Enable (PSEN) is an
output signal on pin 29. It is a control signal that enables external program (code) mem-
ory. It usually connects to an EPROM’s Output Enable (OE) pin to permit reading of
program bytes. '

The PSEN signal pulses low during the fetch stage of an instruction. The binary
codes of a program (opcodes) are read from EPROM, travel across the data bus, and are
latched into the 8051’s instruction register for decoding. When executing a program
from internal ROM (8051/8052), PSEN remains in the inactive (high) state.

2.2.6 ALE (Address Latch Enable)

The ALE output signal on pin 30 will be familiar to anyone who has worked with Intel’s
8085, 8088, or 8086 microprocessors. The 8051 similarly uses ALE for demultiplexing
the address and data bus. When Port 0 is used in its alternate mode—as the data bus and
the low-byte of the address bus—ALE is the signal that latches the address into an exter-
nal register during the first half of a memory cycle. This done, the Port O lines are then
available for data input or output during the second half of the memory cycle, when the
data transfer takes place. (See 2.6 External Memory.)

The ALE signal pulses at a rate of I/6th the on-chip oscillator frequency and can be
used as a general-purpose clock for the rest of the system. If the 8051 is clocked from a
12 MHz crystal, the ALE signal oscillates at 2 MHz. The only exception is during the
MOVX instruction, when one ALE pulse is missed. (See Figure 2-10.) This pin is also
used for the programming input pulse for EPROM versions of the 8051.

2.2.7 EA (External Access)

The EA input signal on pin 31 is generally tied high (+5 V) or low (ground). If high, the
8051/8052 executes programs from internal ROM when executing in the lower 4K/8K of
memory. If low, programs execute from external memory only (and PSEN pulses low
accordingly). EA must be tied low for 8031/8032 1Cs, since there is no on-chip program
memory. If EA is tied low on an 8051/8052, internal ROM is disabled and programs ex-
ecute from external EPROM. The EPROM versions of the 8051 also use the EA line for
the +21 volt supply (V) for programming the internal EPROM.

2.2.8 RST (Reset)

The RST input on pin 9 is the master resct for the 8051. When this signal is brought high
for at least two machine cycles, the 8051 internal registers are loaded with appropriate
values for an orderly system start-up. (See 2.8 Reset Operation.)

2.2.9 On-chip Oscillator Inputs

As shown in Figure 2-2, the 8051 features an on-chip oscillator that is typically driven
by a crystal connected to pins 18 and 19. Stabilizing capacitors are also required as
shown. The nominal crystal frequency is 12 MHz for most ICs in the MCS-51™ family,
although the 80C31BH-1 can operate with crystal frequencies up to 16 MHz. The on-

21



22

CHAPTER 2

chip oscillator needn’t be driven by a crystal. As shown in Figure 2-3, a TTL clock
source can be connected to XTAL1 and XTAL2.

2.2.10 Power Connections

The 8051 operates from a single +5 volt supply. The V.. connection is on pin 40, and the
V¢ (ground) connection is on pin 20.

2.3 1/0 PORT STRUCTURE

The internal circuitry for the port pins is shown in abbreviated form in Figure 2—4. Writ-
ing to a port pin loads data into a port latch that drives a field-effect transistor connected
to the port pin. The drive capability is 4 low-power Schottky TTL loads for Ports 1, 2,
and 3; and 8 LS loads for Port 0. (See Appendix E for more details.) Note that the pull-up
resistor is absent on Port O (except when functioning as the external address/data bus).
An external pull-up resistor may be needed, depending on the input characteristics of the
device driven.

There is both a “read latch” and “read pin” capability. Instructions that require a
read-modify-write operation (e.g., CPL P1.5) read the latch to avoid misinterpreting the
voltage level in the event the pin is heavily loaded (e.g., when driving the base of a tran-
sistor). Instructions that input a port bit (e.g., MOV C,P1.5) read the pin. The port latch
must contain a 1, in this case, otherwise the FET driver is ON and puils the output low. A
system reset sets all port latches, so port pins may be used as inputs without explicitly
setting the port latches. If, however, a port latch is cleared (e.g., CLR P1.5), then it can-
not function subsequently as an input unless the latch is set first (e.g., SETB P1.5).

Figure 24 does not show the circuitry for the alternate functions for Ports 0, 2, and
3. When the alternate function is in effect, the output drivers are switched to an internal
address (Port 2), address/data (Port 0), or control (Port 3) signal, as appropriate.

2.4 MEMORY ORGANIZATION

Most microprocessors implement a shared memory space for data and programs. This is
reasonable, since programs are usually stored on a disk and loaded into RAM for execu-
tion; thus both the data and programs reside in the system RAM. Microcontrollers, on
the other hand, are rarely used as the CPU in “computer systems.” Instead, they are em-
ployed as the central component in control-oriented designs. There is limited memory,

FIGURE 2-3
Driving the 8051 froma TTL 8051
oscillator
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Circuitry for I/O ports

and there is no disk drive or disk operating system. The control program must reside in
ROM.

For this reason, the 8051 implements a separate memory space for programs (code)
and data. As shown in Table 2-1, both the code and data may be internal; however, both
expand using external components to a maximum of 64K code memory and 64K data
memory.

The internal memory consists of on-chip ROM (8051/8052 only) and on-chip data
RAM. The on-chip RAM contains a rich arrangement of general-purpose storage, bit-
addressable storage, register banks, and special function registers.

Two notable features are: (a) the registers and input/output ports are memory-
mapped and accessible like any other memory location, and (b) the stack resides within
the internal RAM, rather than in external RAM as typical of microprocessors.

Figure 2-5 summarizes the memory spaces for the ROM-less 8031 device without
showing any detail of the on-chip data memory. (8032/8052 enhancements are summa-
rized later.)

Figure 2-6 gives the details of the on-chip data memory. As shown, the internal
memory space is divided between register banks (0OH-1FH), bit-addressable RAM
(20H-2FH), general-purpose RAM (30H-7FH), and special function registers
(80H-FFH). Each of these sections of internal memory is discussed below.

2.4.1 General Purpose RAM

Although Figure 2-6 shows 80 bytes of general purpose RAM from addresses 30H to
7FH, the bottom 32 bytes from O0H to 2FH can be used similarly (although these loca-
tions have other purposes as discussed below).

Any location in the general-purpose RAM can be accessed freely using the direct
or indirect addressing modes. For example, to read the contents of internal RAM address
SFH into the accumnulator, the following instruction could be used:

MOV A, 5FH
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This instruction moves a byte of data using direct addressing to specify the “source loca-
tion” (i.e., address 5FH). The destination for the data is implicitly specified in the in-
struction opcode as the A accumulator. (Note: Addressing modes are discussed in detail
in Chapter 3.)

Internal RAM can also be accessed using indirect addressing through RO or R1.
For example, the following two instructions perform the same operation as the single in-
struction above:

MOV RO, #5FH
MOV A, @RO

The first instruction uses immediate addressing to move the value SFH into register RO,
and the second instruction uses indirect addressing to move the data “pointed at by R0”
into the accumulator.

2.4.2 Bit-addressable RAM

The 8051 contains 210 bit-addressable locations, of which 128 are at byte addresses 20H
through 2FH, and the rest are in the special function registers (discussed below).

The idea of individually accessing bits through software is a powerful feature of
most microcontrotlers. Bits can be set, cleared, ANDed, ORed, etc., with a single in-
struction. Most microprocessors require a read-modify-write sequence of instructions to
achieve the same effect. Furthermore, the 8051 I/O ports are bit-addressable, simplifying
the software interface to single-bit inputs and outputs.

There are 128 general-purpose bit-addressable locations at byte addresses 20H
through 2FH (8 bits/byte X 16 bytes = 128 bits). These addresses are accessed as bytes
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RAM
30
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Summary of the 8051 on-chip data memory

Byte
address

FF
FO

EO

DO

B8

BO

A8

AQ

99
98

90

8D
8C
8B
8A
89
88
87

83
82
81
80

Bit address

v7[k6]rs[ra]E3[F2]F1[Fo

E7[E6[E5[E4[E3[E2[E! [EO

D7[D6]Ds[D4[p3|D2] - Do

- [ -]~ [BclsB[BA]BI]BS

B7[B6[B5[B4[B3[B2[B1]BO

AF] - [ - [ac]aBpaalag]as

a7jas]as[aa[as]az]ai]ao

not bit addressable

9F[oe]oDloc[oB[9A]99]98

97[96[05]94]93]92]91]90

not bit addressable

not bit addressable

not bit addressable

not bit addressable

not bit addressable

8F[8E[8D[sC]3B[sA[89]88

not bit addressable

not bit addressable

not bit addressable

not bit addressable

87[&a]8s[84[83[82]81]80

ACC

PSW

P2

SBUF
SCON

P1

TH1
THO
TLI
TLO
TMOD
TCON
PCON

DPH
DPL
Sp
PO

SPECIAL FUNCTION REGISTERS

.or as bits, depending on the instruction. For example, to set bit 67H, the following in-
struction could be used:

SETB 67H

Referring to Figure 2—-6, note that “bit address 67H” is the most-significant bit at
“byte address 2CH.” The instruction above has no effect on the other bits at this address.
Most microprocessors would perform the same operation as follows:
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MOV A, 2CH ;READ ENTIRE BYTE
ORL A, #10000000B ; SET MOST-SIGNIFICANT BIT
MOV 2CH,A ;WRITE BACK ENTIRE BYTE

2.4.3 Register Banks

The bottom 32 locations of internal memory contain the register banks. The 8051 in-
struction set supports 8 registers, RO through R7, and by default (after a system reset)
these registers are at addresses Q0H-G7H. The following instruction, then, reads the con-
tents of address O5H into the accumulator:

MOV A,RS5

This instruction is a 1-byte instruction using register addressing. Of course, the same op-
eration could be performed in a 2-byte instruction using the direct address as byte 2:

MOV A, 05H

Instructions using registers RO to R7 are shorter and faster than the equivalent in-
structions using direct addressing. Data values used frequently should use one of these
registers.

The active register bank may be altered by changing the register bank select bits in
the program status word (discussed below). Assuming, then, that register bank 3 is ac-
tive, the following instruction writes the contents of the accumulator into location 18H:

MOV RO,A

The idea of “register banks” permits fast and effective “context switching,”
whereby separate sections of software use a private set of registers independent of other
sections of software.

2.5 SPECIAL FUNCTION REGISTERS

Interna) registers on most microprocessors are accessed implicitly by the instruction set.
For example, “INCA” on the 6809 microprocessor increments the contents of the A ac-
cumulator. The operation is specified implicitly within the instruction opcode. Similar
access to registers is also used on the 8051 microcontrolier. In fact, the 8051 instruction
“INC A” performs the same operation.

The 8051 internal registers are configured as part of the on-chip RAM; therefore,
each register also has an address.! This is reasonable for the 8051, since it has so many
registers. As well as R0 to R7, there are 21 special function registers (SFRs) at the top of
internal RAM, from addresses 80H to FFH. (See Figure 2-6 and Appendix D.) Note that
most of the 128 addresses from 80H to FFH are not defined. Only 21 SFR addresses are
defined (26 on the 8032/8052).

Although the accumalator (A) may be accessed implicitly as shown previously,
most SFRs are accessed using direct addressing. Note in Figure 2—6 that some SFRs are

IThe program counter and the instruction register are exceptions. Since these registers are rarely manipulated
directiy, nothing is gained by placing them in the on-chip RAM.
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both bit-addressable and byte-addressable. Designers should be careful when accessing
bits versus bytes. For example, the instruction:

SETB 0EOH

sets bit 0 in the accumulator, leaving the other bits unchanged. The trick is to recognize
that EOH is both the byte address of the entire accumulator and the bit address of the
least-significant bit in the accumulator. Since the SETB instruction operates on bits (not
bytes), only the addressed bit is affected. Notice that the addressable bits within the
SFRs have the five high-order address bits matching those of the SFR. For example, Port
1 is at byte address 90H or 10010000B. The bits within Port 1 have addresses 90H to
97H, or 10010xxxB.

The PSW is discussed in detail in the following section. The other SFRs are briefly
introduced following the PSW, with detailed discussions deferred to later chapters.

2.5.1 Program Status Word

The program status word (PSW) at address DOH contains status bits as summarized in
Table 2-3. Each of the PSW bits is examined below.

2.5.1.1 Carry Flag

The carry flag (CY) is dual-purpose. It is used in the traditional way for arithmetic oper-
ations: set if there is a carry out of bit 7 during an add, or set if there is a borrow into bit
7 during a subtract. For example, if the accumulator contains FFH, then the instruction

ADD A, #1

leaves the accumulator equal to OOH and sets the carry flag in the PSW.

The carry flag is also the “Boolean accumulator,” serving as a 1-bit register for
Boolean instructions operating on bits. For example, the following instruction ANDs bit
25H with the carry flag and places the result back in the carry flag:

ANL C,25H
TABLE 2-3
PSW (program status word) register summary
BIT
BIT SYMBOL ADDRESS DESCRIPTION
PSW.7 cY D7H Carry flag
PSW.6 AC D6H Auxiliary carry flag
PSW.5 FO D5H Flag 0
PSW.4 RS1 D4H Register bank select 1
PSW.3 RSO D3H Register bank select 0

00 = bank 0; addresses 00H-07H
01 = bank 1; addresses 08H-OFH
10 = bank 2; addresses 10H-17H
11 = bank 3; addresses 18H-1FH

PSwW.2 ov D2H Overflow flag
PSW.1 — D1H Reserved
PSW.0 P DOH Even parity flag
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2.5.1.2 Auxiliary Carry Flag

When adding binary-coded-decimal (BCD) values, the auxiliary carry flag (AC) is set if
a carry was generated out of bit 3 into bit 4 or if the result in the lower nibble is in the
range OAH-0OFH. If the values added are BCD, then the add instruction must be followed
by DA A (decimal adjust accumulator) to bring results greater than 9 back into range.

2513 Flagd

Flag 0 (FO) is a general-purpose flag bit available for user applications.

2.5.1.4 BRegister Bank Select Bits

The register bank select bits (RSO and RS 1) determine the active register bank. They are
cleared after a system reset and are changed by software as needed. For example, the fol-
lowing three instructions enable register bank 3 and then move the contents of R7 (byte
address 1FH) to the accumulator:

SETB RS1
SETB RSO
MOV A, R7

When the above program is assembled, the correct bit addresses are substituted for the
symbols “RS1" and “RS0.” Thus, the instruction SETB RS1 is the same as SETB 0D4H.

2.5.1.5 Overflow Flag

The overflow flag (OV) is set after an addition or subtraction operation if there was an
arithmetic overflow. When signed numbers are added or subtracted, software can exam-
ine this bit to determine if the result is in the proper range. When unsigned numbers are
added, the OV bit can be ignored. Results greater than +127 or less than —128 will set
the OV bit. For example, the following addition causes an overflow and sets the OV bit
in the PSW:

Hex: oF Decimal: 15
+7F +127
8E 142

As a signed number, 8EH represents — 116, which is clearly not the correct result of 142;
therefore, the OV bit is set.

2.5.1.6 Parity Bit

The parity bit (P) is automatically set or cleared each machine cycle to establish even
parity with the accumulator. The number of 1-bits in the accumulator plus the P bit is al-
ways even. If, for example, the accumulator contains 10101101B, P will contain 1 (es-
tablishing a total of 6 1-bits; i.e., an even number of [s). The parity bit is most commonly
used in conjunction with serial port routines to include a parity bit before transmission or
to check for parity after reception.

2.5.2 B Register

The B register at address FOH is used along with the accumulator for multiply and divide
operations. The MUL AB instruction mulitipties the 8-bit unsigned values in A and B and
leaves the 16-bit result in A (low-byte) and B (high-byte). The DIV AB instruction di-
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vides A by B leaving the integer result in A and the remainder in B. The B register can
also be treated as a general-purpose scratch-pad register. It is bit-addressable through bit
addresses FOH to F7H.

2.5.3 Stack Pointer

The stack pointer (SP) is an 8-bit register at address 81 H. It contains the address of the
data item currently on the top of the stack. Stack operations include “pushing” data on
the stack and “popping” data off the stack. Pushing on the stack increments the SP before
writing data, and popping from the stack reads data and then decrements the SP. The
8051 stack is kept in internal RAM and is limited to addresses accessible by indirect ad-
dressing. These are the first 128 bytes on the 8031/8051 or the full 256 bytes of on-chip
RAM on the 8032/8052.

To reinitialize the SP with the stack beginning at 60H, the following instruction is
used:

MOV SP, #5FH

On the 8031/8051 this would limit the stack to 32 bytes, since the uppermost address of
on-chip RAM is 7FH. The value 5FH is used, since the SP increments to 60H before the
first push operation.

Designers may choose not to reinitialize the stack pointer and let it retain its de-
fault value upon system reset. The reset value of 07H maintains compatibility with the
8051’s predecessor, the 8048, and results in the first stack write storing data in location
O8H. If the application software does not reinitialize the SP, then register bank 1 (and
perhaps 2 and 3) is not available, since this area of internal RAM is the stack.

The stack is accessed explicitly by the PUSH and POP instructions to temporarily
store and retrieve data, or implicitly by the subroutine call (ACALL, LCALL) and return
(RET, RETI) instructions to save and restore the program counter.

2.5.4 Data Pointer

The data pointer (DPTR). used to access external code or data memory, is a 16-bit regis-
ter at addresses 82H (DPL, low-byte) and 83H (DPH, high-byte). The following three in-
structions write 55H into external RAM location 1000H:

MOV A, #55H
MOV DPTR, #1000H
MOVX @DPTR, A

The first instruction uses immediate addressing to load the data constant 55H into the ac-
cumulator. The second instruction also uses immediate addressing, this time to load the
16-bit address constant 1000H into the data pointer. The third instruction uses indirect
addressing to move the value in A (55H) to the external RAM location whose address is
in the DPTR (1000H).

2.5.5 Port Registers

The 8051 1/O ports consist of Port ) at address 80H. Port 1 at address 90H, Port 2 at ad-
dress AOH, and Port 3 at address BOH. Ports 0, 2, and 3 may not be available for /O if
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external memory is used or if some of the 8051 special features are used (interrupts, se-
rial port, etc.). Nevertheless, P1.2 to P1.7 are always available as general purpose 1/0
lines.

All ports are bit-addressable. This provides powerful interfacing possibilities. If a
motor is connected through a solenoid and transistor driver to Port 1 bit 7, for example, it
could be turned on and off using a single 8051 instruction:

SETB P1.7
might turn the motor on, and
CLR P1.7

might turn it off.

The instructions above use the dot operator to address a bit within a bit-address-
able byte location. The assembler performs the necessary conversion; thus, the following
two instructions are the same:

CLR P1.7
CLR 97H

The use of predefined assembler symbols (e.g., P1) is discussed in detail in Chapter 7.

As another example, consider the interface to a device with a status bit called
BUSY, which is set when the device is busy and clear when it is ready. If BUSY con-
nects to, say, Port 1 bit 5, the following loop could be used to wait for the device to be-
come ready:

WAIT: JB P1.5,WAIT

This instruction means “if the bit P1.5 is set, jump to the label WAIT.” In other words
“Jjump back and check it again.”

2.5.6 Timer Registers

The 8051 contains two 16-bit timer/counters for timing intervals or counting events.
Timer 0 is at addresses 8AH (TLO, low-byte) and 8CH (THO, high-byte), and Timer 1 is
at addresses 8BH (TL1, low-byte) and 8DH (THI, high-byte). Timer operation is set by
the timer mode register (TMOD) at address 89H and the timer control register (TCON)
at address 88H. Only TCON is bit-addressable. The timers are discussed in detail in
Chapter 4.

2.5.7 Serial Port Registers

The 8051 contains an on-chip serial port for communicating with serial devices such
as terminals or modems, or for interfaces with other ICs with a serial interface (A/D
converters, shift registers, nonvolatile RAMs, etc.). One register, the serial data buffer
(SBUF) at address 99H, holds both the transmit data and receive data. Writing to SBUF
loads data for transmission; reading SBUF accesses received data. Various modes of op-
eration are programmable through the bit-addressable serial port control register
(SCON) at address 98H. Serial port operation is discussed in detail in Chapter 5.
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2.5.8 Interrupt Registers

The 8051 has a 5-source, 2-priority level interrupt structure. Interrupts are disabled after
a system reset and then enabled by writing to the interrupt enable register (1E) at address
A8H. The priority level is set through the interrupt priority register (IP) at address B8H.
Both registers are bit-addressuble. Interrupts are discussed in detail in Chapter 6.

2.5.9 Power Control Register

The power control register (PCON) at address 87H contains miscellaneous control bits.
These are summarized in Table 2—4.

The SMOD bit doubles the serial port baud rate when in Modes 1, 2, or 3. (See
Chapter 5.) PCON bits 6, 5, and 4 are undefined. Bits 3 and 2 are general-purpose flag
bits available for user applications.

The power control bits, power down (PD) and idle (IDL), were originally available
in all MCS-51® family ICs but are now implemented only in the CMOS versions.
PCON is not bit-addressable.

2.5.9.1 Idle Mode
An instruction that sets the IDL bit will be the last instruction executed before entering
idle mode. In idle mode the internal clock signal is gated off to the CPU, but not to the
interrupt, timer, and serial port functions. The CPU status is preserved and all register
contents are maintained. Port pins also retain their logic levels. ALE and PSEN are held
high.

Idle mode is terminated by any enabled interrupt or by a system reset. Either con-
dition clears the IDL bit.

2.5.9.2 Power Down Mode

An instruction that sets the PD bit will be the last instruction executed before entering
power down mode. In power down mode, (1) the on-chip oscillator is stopped, (2) all

TABLE 24

PCON register summary

BIT SYMBOL DESCRIPTION

7 SMOD Double-baud rate bit; when set, baud rate is doubled in
serial port modes 1, 2, or 3

6 — Undefined

5 — Undefined

4 — Undefined

3 GF1 General purpose flag bit 1

2 GFO0 General purpose flag bit 0

1 PD Power down; set to activate power down mode; only exit
is reset

0" iDL Idle mode; set to activate idle mode; only exit is an

interrupt or system reset

“Only implemented in CMOS versions
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functions are stopped, (3) all on-chip RAM contents are retained, (4) port pins retain
their logic levels, and (5) ALE and PSEN are held low. The only exit is a system reset.

During power down mode, V_.can be as low as 2V. Care should be taken not to
fower V. until after power down mode is entered, and to restore V. to 5V at least 10
oscillator cycles before the RST pin goes low again (upon leaving power down mode).

2.6 EXTERNAL MEMORY

[t is important that microcontrollers have expansion capabilities beyond the on-chip re-
sources to avoid a potential design bottleneck. If any resources must be expanded (mem-
ory, 1/O, etc.), then the capability must exist. The MCS-51® architecture provides this in
the form of a 64K external code memory space and a 64K external data memory space.
Extra ROM and RAM can be added as needed. Peripheral interface 1Cs can also be
added to expand the I/O capability. These become part of the external data memory
space using memory-mapped 1/O.

When external memory is used, Port 0 is unavailable as an 1/O port. It becomes a
multiplexed address (A0-A7) and data (DO-D7) bus, with ALE latching the Jow-byte of
the address at the beginning of each external memory cycle. Port 2 is usually (but not al-
ways) employed for the high-byte of the address bus.

Before discussing the specific details of multiplexing the address and data buses,
the general idea is presented in Figure 2-7. A nonmultiplexed arrangement uses 16 dedi-
cated address lines and eight dedicated data lines, for a total of 24 pins. The multiplexed
arrangement combines eight lines for the data bus and the low-byte of the address bus,

(low-byte) and data bus
AD-A1S Address

DO-D7 Data

FIGURE 2-7
Multiplexing the address bus “ Memory cycle

%%i

(a) Nonmultiplexed (24 pins}

Memory cycie

|

Addiess

Address x Data

(b) Multipiexed (16 pins)

AB-ALlS

!

oy

ADO-AD7

F<
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with another eight lines for the high-byte of the address bus—a total of 16 pins. The sav-
ings in pins allows other functions to be offered in a 40-pin DIP (dual inline package).

Here's how the multiplexed arrangement works: duriag the first half of each mem-
ory cycle, the low-byte of the address is provided on Port O and is latched using ALE. A
74HC373 (or equivalent) latch holds the low-byte of the address stable for the duration
of the memory cycle. During the second half of the memory cycle, Port 0 is used as the
data bus, and data are read or written depending on the operation.

2.6.1 Accessing External Code Memory

External code memory is read-only memory enabled by the PSEN signal. When an ex-
ternal EPROM is used, both Ports 0 and 2 are unavailable as general purpose 1/O ports.
The hardware connections for external EPROM memory are shown in Figure 2-8.

An 8051 machine cycle is 12 oscillator periods. If the on-chip oscillator is driven
by a 12 MHz crystal, a machine cycle is 1 ps in duration. During a typical machine cy-
cle, ALE pulses twice and 2 bytes are read from program memory. (If the current in-
struction is a 1-byte instruction, the second byte is discarded.) The timing for this opera-
tion, known as an opcode fetch, is shown in Figure 2-9.

2.6.2 Accessing External Data Memory

External data memory is read/write memory enabled by the RD and WR—the alternate
pin functions for P3.7 and P3.6. The only access to external data memory is with the

Port 0 K- b g DO-D7
8051 EPROM
74HC373
EA
D Q AO-A7
ALE G
Port 2 AB-ALS
PSEN O OE
FIGURE 2-8

Accessing external code memory
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Read timing for external code memory

MOVX instruction, using either the 16-bit data pointer (DPTR), R0, or R1 as the address
register.

RAMs may be interfaced to the 8051 the same way as EPROM:s except the RD line
connects to the RAM’s output enable (OE) line and WR connects to the RAM’s write
(W) line. The connections for the address and data bus are the same as for EPROMs. Us-
ing Ports 0 and 2 as above, up to 64K bytes of external data RAM can be connected to
the 8051.

A timing diagram for a read operation to external data memory is shown in Figure
2-10 for the MOVX A,@DPTR instruction. Notice that both an ALE pulse and a PSEN
pulse are skipped in lieu of a pulse on the RD line to enable the RAM.2

The timing for a write cycle (MOVX @DPTR,A) is much the same except the WR
line pulses low and data are outputted on Port 0. (RD remains high.)

Port 2 is relieved of its alternate function (of supplying the high-byte of the ad-
dress) in minimum component systems, which use no external code memory and only a

Af MOVX instructions (and external RAM) are never used, then ALE pulses consistently at 1/6th the crystal
frequency.
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small amount of external data memory. Eight-bit addresses can access external data
memory for small page-oriented memory configurations. If more than one 256-byte page
of RAM is used, then a few bits from Port 2 (or some other port) can select a page. For
example, a 1K byte RAM (i.e., four 256-byte pages) can be interfaced to the 8051 as
shown in Figure 2—-11.

Port 2 bits 0 and 1 must be initialized to select a page, and then a MOV X instruc-
tion is used to read or write data within that page. For example, assuming P2.0 = P2.1 =
0, the following instructions could be used to read the contents of external RAM address
0050H into the accumulator:

MOV RO, #50H
MOVX A, @RO

In order to read the last address in this RAM, 03FFH, the two page select bits must be
set. The following instruction sequence could be used:

SETB P2.0
SETB P2.1

MOV RO, #0FFH
MOVX A, @RO
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Port 0 - B DO-D7
8051 RAM
74HC373 (1K byte)
]
D Q ’ AOQ-A7
ALE G
P2.0 A8
P21 A9
RD OE
WR w
PSEN NC N cs
FIGURE 2-11

Interface to 1K RAM

A feature of this design is that Port 2 bits 2 to 7 are not needed as address bits, as they
would be if the DPTR was the address register. P2.2 to P2.7 are available for 1/O pur-
poses.

2.6.3 Address Decoding

If multiple EPROMs and/or RAMs are interfaced to an 8051, address decoding is re-
quired. The decoding is similar to that required for most microprocessors. For example,
if 8K byte EPROMs or RAMs are used, then the address bus must be decoded to select
memory ICs on 8K boundaries: 0000H-1FFFH, 2000H-3FFFH, and so on.

Typically, a decoder IC such as the 74HC138 is used with its outputs connected to
the chip select (CS ) inputs on the memory ICs. This is illustrated in Figure 2-12 for a
system with multiple 2764 8K EPROMs and 6264 8K RAMs. Remember, due to the sep-
arate enable lines (PSEN for code memory, RD and WR for data memory), the 8051 can
accommodate up to 64K each of EPROM and RAM.

2.6.4 Overlapping the External Code and Data Spaces

Since code memory is read-only, an awkward situation arises during the development of
8051 software. How is software “written into” a target system for debugging if it can
only be executed from the “read-only” code space? A common trick is to overlap the ex-
ternal code and data memory spaces. Since PSEN is used to read code memory and RD is
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FIGURE 2-12
Address decoding

used to read data memory, a RAM can occupy code and data memory space by connect-
ing its OE line to the logical AND (negative-input NOR) of PSEN and RD. The circuit
shown in Figure 2-13 allows the RAM IC to be written as data memory, and read as data
or code memory. Thus a program can be loaded into the RAM (by writing to it as data

memory) and executed (by accessing it as code memory).

2.7 8032/8052 ENHANCEMENTS

The 8032/8052 ICs (and the CMOS and/or EPROM versions) offer two enhancements to
the 8031/8051 ICs. First, there is an additional 128 bytes of on-chip RAM from ad-
dresses 80H to FFH. So as not to conflict with the SFRs (which have the same ad-
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FIGURE 2-13
Overlapping the externa)
code and data spaces RAM

dresses), the additional 1/8K of RAM is only accessible using indirect addressing. An
instruction such as

MOV A, OFOH

moves the contents of the B register to the accumulator on all MCS-51® [Cs. The in-
struction sequence

MOV RO, #0FOH
MOV A, @RO

reads into the accumulator the contents of internal address FOH on the 8032/8052
ICs, but is undefined on the 8031/8051 ICs. The internal memory organization of the
8032/8052 ICs is summarized in Figure 2-14.

The second 8032/8052 enhancement is an additional 16-bit timer, Timer 2, which
is programmed through five additional special function registers. These are summarized
in Table 2-5. See Chapter 4 for more details.

2.8 RESET OPERATION

The 8051 is reset by holding RST high for at least two machine cycles and then returning
it low. RST may be manually activated using a switch, or may be activated upon power-

FIGURE 2-14 FFH, -~ ~"7°=-°~7°7 FFH
8032/52 memory spaces 1
] .
Accessible Accessible
U |
lpzp;r i by indirect by direct
b ) addressing addressing
ytes
] only only
1
[
80H 80H
TFH
Accessible Special
Lower by direct function
128 and indirect registers
bytes addressing
00H
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TABLE 2-5

REGISTER ADDRESS DESCRIPTION BIT-ADDRESSABLE Timer 2 registers

T2CON C8H Control Yes
RCAP2L CAH Low-byte capture No
RCAP2H CBH High-byte capture - No
TL2 CCH Timer 2 low-byte No
TH2 CDH Timer 2 high-byte No

up using an R-C (resistor-capacitor) network. Figure 215 illustrates two circuits for im-
plementing system reset.

The state of all the 8051 registers after a system reset is summarized in Table 2-6.
The most important of these registers, perhaps, is the program counter, which is loaded
with 0000H. When RST returns low, program execution always begins at the first loca-
tion in code memory: address 0000H. The content of on-chip RAM is not affected by a
reset operation.

2.9 SUMMARY

This chapter has summarized the 8051 hardware architecture. Before developing useful
applications, though, we must understand the 8051 instruction set. The next chapter fo-

5V SV FIGURE 2-15
Two circuits for system reset.
_|_+ (a) Manual Reset (b) Power-
100 10 uF on Reset
Q Reset L

RST

(a) Manual reset

+5V
_l:

10 uF

RST

8.2K

(b) Power-on reset I ‘ Q g (06
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TABLE 2-6

Register values after system

reset

CHAP

REGISTER(S) CONTENTS
Program counter 0000H
Accumulator 00H

B register 00H

PSW O0H

sp 07H

DPTR 0000H
Ports 0-3 FFH

IP (8031/8051) XXX000008
1P (8032/805R2) XX0000008B
{E (8031/8051) 0XX00000B
1E (8032/8052) 0X0000008
Timer registers 00H

SCON 00H

SBUF 00H

PCON (HMOS) OXXXXXXXB
PCON (CMOS) 0XXX00008B

cuses on the 8051 instructions and addressing modes. The discussions of the timer, serial
port, and interrupt SFRs were deliberately sparse in this chapter, since dedicated chap-
ters follow that examine these in detail.

PROBLEMS

I.
2.

Name four manufacturers of the 8051 microcontroller, besides Intel.

Which device in the MCS-51™ family would probably be used for a product that
will be manufactured in large quantities with a large on-chip program?

. What instruction could be used to set the least-significant bit at byte address 25H?
. What instruction sequence could be used to place the logical OR of the bits at bit ad-

dresses 00H and O1H into bit address 02H?

. What bit addresses are set to one as a result of the following instructions?

MOV RO, #26H
MOV (@RO, #7AH

. What 1-byte instruction has the same effect as the following 2-byte instruction?

MOV OEOH, #55H

. [Hustrate an instruction sequence to store the value OABH in external RAM at ad-

dress 9A00H.

. How many special function registers are defined on the 8052?
. What is the value of the 8051°s stack pointer immediately after a system reset?
. What instruction could be used to initialize the 8031 SP to create a 64-byte stack at

the top of internal RAM?
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1.

12.

20.

21.

22.

23.

24.

25.
26.

A certain subroutine makes extensive use of registers RO-R7. Hlustrate how this
subroutine could switch the active register bank to bank 3 upon entry, and restore
the previously active register bank upon exit.

The 80C31BH-1 can operate using a 16 MHz crystal connected to its XTAL1 and
XTAL2 inputs. If MOVX instructions are not used, what is the frequency of the sig-
nal on ALE?

. If an 8051 is operating from a 4 MHz crystal, what is the duration of a machine cycle?
. If an 8051 is operating from a 10 MHz crystal, what is the frequency of the wave-

form on ALE? Assume the software is not accessing external RAM.

. What is the duty cycle of ALE? Assume that software is not accessing external

RAM. (Note: Duty cycle is defined as the proportion of time a pulse waveform is
high.)

. Section 2.8 states that the 8051 is reset if the RST pin is held high for a minimum of

two machine cycles. (Note: As stated in the 8051°s DC Characteristics in Appendix
E, a “high” on RST is 2.5 volts minimum.)

(a) If an 8051 is operating from an 8 MHz crystal, what is the minimum length of
time for RST to be high to achieve a system reset?

(b) Figure 2--15a shows an RC circuit for a manual reset. While the reset button is
depressed, RST = 5 volts and the system is held in a reset state. How long after the
reset button is released will the 8051 remain in a reset state?

. How many low-power Schottky loads can be driven by the port line P1.7 on pin 87
. Name the 8051 control bus signals used to select external EPROMs and external

RAMs.

. What is the bit address of the most-significant bit af byte address 25H in the 8051°s

internal data memory?

What instruction sets the least-significant bit of the accumulator without affecting
the other 7 bits?

Assuming the following instruction has just executed,
MOV A, #55H

what is the state of the P bit in the program status word?

What instruction sequence could be used to copy the contents of R7 to external
RAM location 100H?

Assume the first instruction executed following a system reset is a subroutine call.
At what addresses in internal RAM is the program counter saved before branching
to the subroutine?

What is the difference between the 8051 s idle mode and power-down mode?

What instruction could be used to force the 8051 into power-down mode?

Iustrate how two 32K-byte static RAMs could be interfaced to the 8051 so that
they occupy the full 64K external data space.
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3.1 INTRODUCTION

Just as sentences are made of words, programs are made of instructions. When programs
are constructed from logical, well-thought-out sequences of instructions, fast, efficient,
and even elegant programs result. Unique to each family of computers is its instruction
set, a repertoire of primitive operations such as “add,” “move,” or “jump.” This chapter
introduces the MCS-51™ jnstruction set through an examination of addressing modes
and examples from typical programming situations. Appendix A contains a summary
chart of all the 8051 instructions. Appendix C provides a detailed description of each in-
struction. These appendices should be consulted for subsequent reference.

Programming techniques are not discussed, nor is the operation of the assembler
program used to convert assembly language programs (mnemonics, labels, etc.) into ma-
chine language programs (binary codes). These topics are the subject of Chapter 7.

The MCS-51™ instruction set is optimized for 8-bit control applications. It pro-
vides a variety of fast, compact addressing modes for accessing the internal RAM to fa-
cilitate operations on small data structures. The instruction set offers extensive support
for 1-bit variables, allowing direct bit manipulation in control and logic systems that re-
quire Boolean processing.

As typical of 8-bit processors, 8051 instructions have 8-bit opcodes. This provides
a possibility of 28 = 256 instructions. Of these, 255 are implemented and 1 is undefined.
As well as the opcode, some instructions have one or two additional bytes for data or ad-
dresses. In all, there are 139 |-byte instructions, 92 2-byte instructions, and 24 3-byte in-
structions. The Opcode Map in Appendix B shows, for each opcode, the mnemonic, the
number of bytes in the instruction, and the number of machine cycles to execute the in-
struction.

3.2 ADDRESSING MODES

When instructions operate on data, the question arises: “Where’s the data?” The answer
to this question lies in the 8051°s “addressing modes.” There are several possible ad-
dressing modes and there are several possible answers to the question, such as “in byte 2
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of the instruction,” “in register R4,” “in direct address 35H.,” or perhaps “in external data
memory at the address contained in the data pointer.”

Addressing modes are an integral part of each computer’s instruction set. They al-
low specifying the source or destination of data in different ways depending on the pro-
gramming situation. In this section, we’ll examine all the 8051 addressing modes and
give examples of each. There are eight modes available:

O Register
0 Direct

O Indirect

0 Immediate
O Relative
0O Absolute
O Long

0 Indexed

3.2.1 Register Addressing

The 8051 programmer has access to 8 “working registers,” numbered RO through R7. In-
structions using register addressing are encoded using the three least-significant bits of
the instruction opcode to indicate 1 register within this logical address space. Thus, a
function code and operand address can be combined to form a short (1-byte) instruction.
(See Figure 3-1a.)

The 8051 assembly language indicates register addressing with the symbol Rn
where n is from 0 to 7. For example, to add the contents of Register 7 to the accumulator,
the following instruction is used

ADD A,R7

and the opcode is 00101 111B. The upper five bits, 00101, indicate the instruction, and
the lower three bits, 111, the register. Convince yourself that this is the correct opcode
by looking up this instruction in Appendix C.

There are four “banks” of working registers, but only one is active at a time. Phys-
ically, the register banks occupy the first 32 bytes of on-chip data RAM (addresses
00H-1FH) with PSW bits 4 and 3 determining the active bank. A hardware reset enables
bank 0, but a different bank is selected by modifying PSW bits 4 and 3 accordingly. For
example, the instruction

MOV PSW,#00011000B

activates register bank 3 by setting the register bank select bits (RS1 and RS0) in PSW
bit positions 4 and 3.

Some instructions are specific to a certain register, such as the accumulator, data
pointer, etc., so address bits are not needed. The opcode itself indicates the register.
These “register-specific” instructions refer to the accumulator as “A,” the data pointer as
“DPTR,” the program counter as “PC,” the carry flag as “C,” and the accumulator-B reg-
ister pair as “AB.” For example,
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T

(a) Register addressing (e.g., ADD A, R5)

T T
L Opcode 7_] Direct address
o

(b) Direct addressing (e.g., ADD A, direct)

[ o []

(c) Indirect addressing (e.g., ADD A, @RO}

- T T ) T
L Opcode ] [ lmmedlate data J
N SIS S R S

(d) Immediate addressmg (e.g.. ADD A, #55H)

T T T LEE B T T T
Opcode ’ Relauve offset —,
L

(e) Relative addressing (e.g., SIMP <dest>)

L s S
l Opcode Ln

T T

ADDRY ﬁr..l[:vy.-rrl
Opcode ADDR7-ADDRO
APDR8 | |, ™7 R
(f) Absolute addressing (e.g., AIMP <dest>)

— T T T T T T T
I Opcode ADDR15-ADDR3 ADDR7-ADDRO
e P R R

(g) Long addressing (e.g., LIMP <dest>)

Base register Offset Effective address

[ PCloropR) ]+ [ ACC |- ]

(h) Indexed addressing (e.g., MOVC A, @A + PC)

FIGURE 3-1

8051 Addressing modes. (a) Register addressing (b) Direct addressing (c) Indirect ad-
dressing (d) Immediate addressing (e) Relative addressing (f) Absolute addressing (g)
Long addressing (h) Indexed addressing.

INC DPTR
isa i—byte instruction that adds 1 to the 16-bit data pointer. Consult Appendix C to deter-
mine the opcode for this instruction.

3.2.2 Direct Addressing

Direct addressing can access any on-chip variable or hardware register. An addi-
tional byte is appended to the opcode specifying the location to be used. (See Figure
3-1b.)
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Depending on the high-order bit of the direct address, one of two on-chip memory
spaces is selected. When bit 7 = 0, the direct address is between 0 and 127 (00H-7FH)
and the 128 low-order on-chip RAM locations are referenced. All I/O ports and special
function, control, or status registers, however, are assigned addresses between 128 and
255 (80H-FFH). When the direct address byte is between these limits (bit 7 = 1), the cor-
responding special function register is accessed. For example, Ports 0 and 1 are assigned
direct addresses 80H and 90H, respectively. It is not necessary to know the addresses of
these registers; the assembler allows for and understands the mnemonic abbreviations
(“PO” for Port 0, “TMOD?” for timer mode register, etc.). As an example of direct ad-
dressing, the instruction

MOV P1l,A

transfers the contents of the accumulator to Port |. The direct address of Port 1 (90H) is
determined by the assembler and inserted as byte 2 of the instruction. The source of the
data, the accumulator, is specified implicitly in the opcode. Using Appendix C as a refer-
ence, the complete encoding of this instruction is

10001001 - 1st byte (opcode)
10010000 -~ 2nd byte (address of P1l)

3.2.3 Indirect Addressing

How is a variable identified if its address is determined, computed, or modified while a
program is running? This situation arises when manipulating sequential memory loca-
tions, indexed entries within tables in RAM, multiple-precision numbers, or character
strings. Register or direct addressing cannot be used, since they require operand ad-
dresses to be known at assemble-time.

The 8051 solution is indirect addressing. RO and R1 may operate as “pointer” reg-
isters—their contents indicating an address in RAM where data are written or read. The
least-significant bit of the instruction opcode determines which register (RO or R1) is
used as the pointer. (See Figure 3-Ic.)

In 8051 assembly language, indirect addressing is represented by a commercial
“at” sign (@) preceding RO or R1. As an example, if R! contains 40H and internal mem-
ory address 40H contains 55H, the instruction

MOV A, @R1

moves 55H into the accumulator.

Indirect addressing is essential when stepping through sequential memory loca-
tions. For example, the following instruction sequence clears internal RAM from address
60H to 7FH:

MOV RO, #60H
LOOP: MOV @RO, #0

INC RO

CJINE RO, #80H, LOOP

{continue)



INSTRUCTION SET SUMMARY

The first instruction initializes RO with the starting address of the block of memory; the
second instruction uses indirect addressing to move O0H to the location pointed at by RO;
the third instruction increments the pointer (RO) to the next address; and the last instruc-
tion tests the pointer to see if the end of the block has been reached. The test uses 80H,
rather than 7FH, because the increment occurs after the indirect move. This ensures the
final location (7FH) is written to before terminating.

3.2.4 Immediate Addressing

When a source operand is a constant rather than a variable (i.e., the instruction uses a
value known at assemble-time), then the constant can be incorporated into the instruc-
tion as a byte of “immediate” data. An additional instruction byte contains the value.
(See Figure 3-1d.)

In assembly language, immediate operands are preceded by a number sign (#). The
operand may be a numeric constant, a symbolic variable, or an arithmetic expression us-
ing constants, symbols, and operators. The assembler computes the value and substitutes
the immediate data into the instruction. For example, the instruction

MOV A, #12

loads the value 12 (OCH) into the accumulator. (It is assumed the constant “12” is in dec-
imal notation, since it is not followed by “H.”)

With one exception, all instructions using immediate addressing use an 8-bit data
constant for the immediate data. When initializing the data pointer, a 16-bit constant is
required. For example,

MOV DPTR, #8000H

is a 3-byte instruction that loads the 16-bit constant 8000H into the data pointer.

3.2.5 Relative Addressing

Relative addressing is used only with certain jump instructions. A relative address (or
offset) is an 8-bit signed value, which is added to the program counter to form the ad-
dress of the next instruction executed. Since an 8-bit signed offset is used, the range for
jumping is —128 to +127 locations. The relative offset is appended to the instruction as
an additional byte. (See Figure 3-le.)

Prior to the addition, the program counter is incremented to the address following
the jump instruction; thus, the new address is relative to the next instruction, not the ad-
dress of the jump instruction. (See Figure 3-2.)

Normally, this detail is of no concern to the programmer, since jump destinations
are usually specified as labels and the assembler determines the relative offset accord-
ingly. For example, if the label THERE represents an instruction at location 1040H, and
the instruction ’

SJMP THERE

is in memory at locations 1000H and 1001H, the assembler will assign a relative offset
of 3EH as byte 2 of the instruction (1002H +3EH = 1040H).
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0t0A 2043
0109 2042
2041 -1
0108 204 ke 2 } SIMP 2038H
o107 5 Relative offset 040 80 -
0106 4 from address 203F -3
0105 3 0102H is "5" 203E -4
0104 2 203D -5
0103 | 203C -6
0102 203B -7 . it
Relative offset
otol % SIMP 0107H 2034 -8 from address
0100 80 2039 -9 2042H is "—10"
O00FF 2038 ~10 or F6H
Code Code
memory memory
(a) Short jump ahead in memory (b) Short jump back in memory
FIGURE 3-2

Calculating the offset for relative addressing. (a) Short jump ahead in memory. (b) Short
jump back in memory.

Relative addressing offers the advantage of providing position-independent code
(since “absolute” addresses are not used), but the disadvantage that the jump destinations
are limited in range.

3.2.6 Absolute Addressing

Absolute addressing is used only with the ACALL and AJMP instructions. These 2-byte
instructions allow branching within the current 2K page of code memory by providing
the 11 least-significant bits of the destination address in the opcode (A10-A8) and byte 2
of the instruction (A7-AO0). (See Figure 3-1f.)

The upper five bits of the destination address are the current upper five bits in the
program counter, so the instruction following the branch instruction and the destination
for the branch instruction must be within the same 2K page, since A15-Al1 do not
change. (See Figure 3-3.) For example, if the label THERE represents an instruction at
address OF46H, and the instruction

AJMP THERE
is in memory locations 0900H and 0901H, the assembler will encode the instruction as

11100001 - 1st byte (Al(-A8 + opcode]
01000110 - 2nd byte (A7-A0)

The underlined bits are the low-order 11 bits of the destination address, OF46H =
0000111101000110B. The upper 5 bits in the program counter will not change when this
instruction executes. Note that both the AJMP instruction and the destination are within
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the 2K page bounded by 0800H and OFFFH (see Figure 3-3), and therefore have the up-
per five address bits in common.

Absolute addressing offers the advantage of short (2-byte) instructions, but has the
disadvantages of limiting the range for the destination and providing position-dependent
code.

3.2.7 Long Addressing

Long addressing is used only with the LCALL and LIMP instructions. These 3-byte in-
structions include a full 16-bit destination address as bytes 2 and 3 of the instruction.
(See Figure 3—1g.) The advantage is that the full 64K code space may be used, but
the disadvantage is that the instructions are three bytes long and position-dependent.
Position-dependence is a disadvantage because the program cannot execute at different
addresses. If, for example, a program begins at 2000H and an instruction such as LIMP
2040H appears, then the program cannot be moved to, say, 4000H. The LIMP instruc-
tion would still jump to 2040H. which is not the correct location after the program has
been moved.

3.2.8 Indexed Addressing

Indexed addressing uses a base register (either the program counter or the data pointer)
and an offset (the accumulator) in forming the effective address for a JMP or MOVC
instruction. (See Figure 3—1h.) Jump tables or look-up tables are easily created using
indexed addressing. Examples are provided in Appendix C for the MOVC A,
@ A+<base-reg> and JMP @ A+DPTR instructions.

FFFF
2K page 3!
F800

32 X2K =64K

-
=1y

L 1800 [‘ITFJ?E['U‘FI’THT‘I_
Within any 2K VIEF

page, only 2K page 2

the lower |1 1000 - T~
bits change OFFF 5 bits determine 11 bits determine the
2K page | the 2K page address within a 2K page
0800
O7FF 2K page 0 (b) The upper 5 bits in the program counter
0000 pag remain the same. The lower bits are replaced

by the bits supplied in the instruction.
(a) 64K memory map divided into 32 2K pages

FIGURE 3-3
Instruction encoding for absolute addressing. (a) Memory map showing 2K pages (b)
Within any 2K page, the upper 5 address bits are the same.
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3.3 INSTRUCTION TYPES
The 805! instructions are divided among five functional groups:

0 Arithmetic
0 Logical
0O Data transfer
0 Boolean variable
0 Program branching
Appendix A provides a quick reference chart showing all the 8051 instructions by
functional grouping. Once you are familiar with the instruction set, this chart should

prove a handy and quick source of reference. We continue by examining instructions in
each functional grouping from Appendix A.

3.3.1 Arithmetic Instructions

The arithmetic instructions are grouped together in Appendix A. Since four addressing
modes are possible, the ADD A instruction can be written in different ways:

ADD A,7FH (direct addressing)

ADD A, @RO (indirect addressing)

ADD A,R7 (register addressing)
({

ADD A, #35H immediate addressing)

All arithmetic instructions execute in 1 machine cycle except the INC DPTR in-
struction (2 machine cycles) and the MUL AB and DIV AB instructions (4 machine cy-
cles). (Note that one machine cycle takes | s if the 8051 is operating from a 12 MHz
clock)

The 8051 provides powerful addressing of its internal memory space. Any location
can be incremented or decremented using direct addressing without going through the
accumulator. For example, if internal RAM location 7FH contains 40H, then the in-
struction

INC 7FH

increments this value, leaving 41H in location 7FH.

One of the INC instructions operates on the 16-bit data pointer. Since the data
pointer generates 16-bit addresses for external memory, incrementing it in one operation
is a useful feature. Unfortunately a decrement data pointer instruction is not provided
and requires a sequence of instructions such as the following:

DEC DPL ; DECREMENT LOW-BYTE OF DPTR

MOV R7,DPL ;MOVE TO R7

CJNE R7, #0FFH, SKIP ; IF UNDERFLOW TO FF

DEC DPH ; DECREMENT HIGH-BYTE TOO
SKIP: {continue)

The high- and low-bytes of the DPTR must be decremented separately; however, the high-
byte (DPH) is only decremented if the low-byte (DPL) underflows from 00OH to FFH.
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The MUL AB instruction multiplies the accumulator by the data in the B register
and puts the 16-bit prodiict into the concatenated B (high-byte) and accumulator (low-
byte) registers. DIV AB divides the accumulator by the data in the B register, leaving the
8-bit quotient in the accumulator and the 8-bit remainder in the B register. For example,
if A contains 25 (19H) and B contains 6 (06H), the instruction

DIV AB

divides the contents of A by the contents of B. The A accumulator is left with the value 4
and the B accumulator is left with the yalue 1. (25 + 6 = 4 with a remainder of 1.)

For BCD (binary-coded decimal) arithmetic, ADD and ADDC must be followed
by a DA A (decimal adjust) operation to ensure the result is in range for BCD. Note that
DA A will not convert a binary number to BCD; it produces a meaningful result only as
the second step in the addition of 2 BCD bytes. For example, if A contains the BCD
value 59 (59H), then the instruction sequence

ADD A, #1
DA A

first adds 1 to A, leaving the result SAH, then adjusts the result to the correct BCD value
of 60 (60H). (59 +1 = 60.)
3.3.2 Logical Instructions

The 8051 logical instructions (see Appendix A) perfbrm Boolean operations (AND, OR,
Exclusive OR, and NOT}) on bytes of data on a bit-by-bit basis. If the accumulator con-
tains 00110101B, then the following AND logical instruction

ANL A, #01010011B

leaves the accumulator holding 00010001B. This is illustrated below.

01010011 (itmediate data)
AND 00110101 (original value of A)
00010001 (result in A)

Since the addressing modes for the logical instructions are the same as those for
arithmetic instructions, the AND logical instruction can take several forms:

ANL A,55H (direct addressing)

ANL A,@RO (indirect addressing)
ANL A,R6 (register addressing)
ANL A, #33H (immediate addressing)

All logical instructions using the accumulator as one of the operands execute in
one machine cycle. The others take two machine cycles.

Logical operations can be performed on any byte in the internal data memory
space without going through the accumulator. The “XRL direct,#data” instruction offers
a quick and easy way to invert port bits, as in

XRL P1, #0FFH
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This instruction performs a read-modify-write operation. The eight bits at Port | are
read; then each bit read is exclusive ORed with the corresponding bit in the immediate
data. Since the eight bits of immediate data are all 1s, the effect is to complement each
bit read (e.g., A @1 = A). The result is written back to Port 1.

The rotate instructions (RL A and RR A) shift the accumulator one bit to the left or
right. For a left rotation, the MSB rolls into the LSB position. For a right rotation, the
LSB rolls into the MSB position. The RLC A and RRC A variations are 9-bit rotates us-
ing the accurulator and the carry flag in the PSW._If, for example, the carry flag contains
1 and A contains O0H, then the instruction

RRC A

leaves the carry flag clear and A equal to 80H. The carry flag rotates into ACC.7 and
ACC.0 rotates into the carry flag.

The SWAP A instruction exchanges the high and low nibbles within the accumula-
tor. This is a useful operation in BCD manipulations. For example, if the accumulator
contains a binary number that is known to be less than 100, it is quickly converted to
BCD as follows:

MOV B, #10
DIV AB
SWAP A

ADD A,B

Dividing the number by 10 in the first two instructions leaves the tens digit in the low
nibble of the accumulator, and the ones digit in the B register. The SWAP and ADD in-
structions move the tens digit to the high nibble of the accumulator, and the ones digit to
the low nibble.

3.3.3 Data Transfer Instructions
3.3.3.1 Internal RAM

The instructions that move data within the internal memory spaces (see Appendix A) ex-
ecute in either one or two machine cycles. The instruction format

MOV <destination>, <source>

atlows data to be transferred between any two internal RAM or SFR locations with-
out going through the accumulator. Remember, the upper 128 bytes of data RAM
(8032/8052) are accessed only by indirect addressing, and the SFRs are accessed only by
direct addressing.

A feature of the MCS-51"™ architecture differing from most microprocessors is
that the stack resides in on-chip RAM and grows upward in memory, toward higher
memory addresses. The PUSH instruction first increments the stack pointer (SP), then
copies the byte into the stack. PUSH and POP use direct addressing to identify the byte
being saved or restored, but the stack itself is accessed by indirect addressing using the
SP register. This means the stack can use the upper 128 bytes of internal memory on the
8032/8052.



INSTRUCTION SET SUMMARY

The upper 128 bytes of internal memory are not implemented in the 8031/8051 de-
vices. With these devices, if the SP is advanced above 7FH (127), the PUSHed bytes are
lost and the POPed bytes are indeterminate.

Data transfer instructions include a 16-bit MOV to initialize the data pointer
(DPTR) for look-up tables in program memory, or for 16-bit external data memory ac-
cesses.

The instruction format

XCH A, <source>

causes the accumulator and the addressed byte to exchange data. An exchange “digit” in-
struction of the form

XCHD A, @Ri

is similar, but only the low-order nibbles are exchanged. For example, if A contains F3H,
R1 contains 40H, and internal RAM address 40H contains 5BH, then the instruction

XCHD A, @R1
leaves A containing FBH and internal RAM location 40H containing 53H.
3.3.3.2 External RAM

The data transfer instructions that move data between internal and external memory use
indirect addressing. The indirect address is specified using a 1-byte address (@Ri, where
Ri is either RO or R1 of the selected register bank), or a 2-byte address (@ DPTR). The
disadvantage in using 16-bit addresses is that all 8 bits of Port 2 are used as the high-byte
of the address bus. This precludes the use of Port 2 as an'I/O port. On the other hand, 8-
bit addresses allow access to a few Kbytes of RAM, without sacrificing all of Port 2. (See
Chapter 2, “Accessing External Data Memory.”)

All data transfer instructions that operate on external memory execute in 2 ma-
chine cycles and use the accumulator as either the source or destination operand.

The read and write strobes to external RAM (RD and WR) are activated only dur-
ing the execution of a MOVX instruction. Normally, these signals are inactive (high),
and if external data memory is not used, they are available as dedicated /O lines.

3.3.3.3 Look-Up Tables
Two data transfer instructions are available for reading look-up tables in program mem-
ory. Since they access program memory, the look-up tables can only be read, not up-
dated. The mnemonic is MOVC for “move constant.” MOVC uses either the program
counter or the data pointer as the base register and the accumulator as the offset.

The instruction

MOVC A, @A+DPTR

can accommodate a table of 256 entries, numbered 0 through 255. The number of the de-
sired entry is loaded into the accumulator and the data pointer is initialized to the begin-
ning of the table. The instruction

MOVC A, @A+PC
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works the same way, except the program counter is used as the base address, and the
table is accessed through a subroutine. First, the number of the desired entry is loaded
into the accumulator, then the subroutine is called. The setup and call sequence would be
coded as follows:

MOV A, ENTRY_NUMBER
CALL LOOK_UP

LOOK_UP: INC A

MOVC A, @A+PC
RET
TABLE: DB data,data,data,data,

The table immediately follows the RET instruction in program memory. The INC
instruction is needed because the PC points to the RET instruction when MOVC exe-
cutes. Incrementing the accumulator will effectively bypass the RET instruction when
the table look-up takes place.

3.3.4 Boolean Instructions

The 8051 processor contains a complete Boolean processor for single-bit operations.
The internal RAM contains 128 addressable bits, and the SFR space supports up to 128
other addressable bits. All port lines are bit-addressable, and each can be treated as a sep-
arate single-bit port. The instructions that access these bits are not only conditional
branches, but also a complete repertoire of move, set, clear, complement, OR, and AND
instructions. Such bit operations—one of the most powerful features of the MCS-51™
family of microcontrollers—are not easily obtained in other architectures with byte-
oriented operations.

The available Boolean instructions are shown in Appendix A. All bit accesses use
direct addressing with bit addresses 0OH-7FH in the lower 128 locations, and bit ad-
dresses 80H-FFH in the SFR space. Those in the lower 128 locations at byte addresses
20H-2FH are numbered sequentially from bit O of address 20H (bit 00H) to bit 7 of ad-
dress 2FH (bit 7FH).

Bits may be set or cleared in a single instruction. Single-bit control is common for
many 1/O devices, including output to relays, motors, solenoids, status LEDs, buzzers,
alarms, loudspeakers, or input from a variety of switches or status indicators. If an alarm
is connected to Port 1 bit 7, for example, it might be turned on by setting the port bit,

SETB P1.7
and turned off by clearing the port bit
CLR P1.7

The assembler will do the necessary conversion of the symbol “P1.7” into the correct bit

address, 97H.
Note how easily an internal flag can be moved to a port pin:
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MOV C,FLAG
MOV P1.0,C

In this example, FLAG is the name of any addressable bit in the lower 128 locations or
the SFR space. An 1/O line (the LSB of Port 1, in this case) is set or cleared depending on
whether the flag bitis 1 or 0. ‘

The carry bit in the program status word (PSW) is used as the single-bit accumula-
tor of the Boolean processor. Bit instructions that refer to the carry bit as “C” assemble
as carry-specific instructions (e.g., CLR C). The carry bit also has a direct address, since
it resides in the PSW register, which is bit-addressable. Like other bit-addressable SFRs,
the PSW bits have predefined mnemonics that the assembler will accept in lieu of the bit
address. The carry flag mnemonic is “CY,” which is defined as bit address OD7H. Con-
sider the following two instructions:

CLR C
CLR CY

Both have the same effect; however, the former is a 1-byte instruction, while the latter is
a 2-byte instruction. In the latter case, the second byte is the direct address of the
specified bit—the carry flag.

Note that the Boolean instructions include ANL (AND logical) and ORL (OR log-
ical) operations, but not the XRL (exclusive OR logical) operation. An XRL operation is
simple to implement. Suppose, for example, it is required to form the exclusive OR of
two bits, BIT1 and BIT2, and leave the result in the carry flag. The instructions are
shown below.

MOV C,BIT1
JNB BIT2,SKIP
CPL C

SKIP: (continue)

First, BIT1 is moved to the carry flag. If BIT2 = 0. then C contains the correct result; that
is, BITL @ BIT2 = BIT1 if BIT2 = 0. If BIT2 = 1, C contains the complement of the cor-
rect result. Complementing C completes the operation.

3.3.4.1 BitTesting
The code in the example above uses the JNB instruction, one of a series of bit-test in-
structions that jump if the addressed bit is set (JC, IB, JBC) or if the addressed bit is not
set (JNC, JNB). In the above case, if BIT2 = 0 the CPL instruction is skipped. JBC (jump
if bit set then clear bit) executes the jump if the addressed bit is set, and also clears the
bit; thus, a flag can be tested and cleared in a single instruction.

All PSW bits are directly addressable, so the parity bit or the general purpose flags,
for example, are also available for bit-test instructions.

3.3.5 Program Branching Instructions

As evident in Appendix A, there are numerous instructions to control the flow of pro-
grams, including those that call and return from subroutines or branch conditionally or
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unconditionally. These possibilities are enhanced further by the three addressing modes
for the program branching instructions.

There are three variations of the JMP instruction: SIMP, LIMP, and AJMP (using
relative, long, and absolute addressing, respectively). Intel’s assembler (ASMS51) allows
the use of the generic JIMP mnemonic if the programmer does not care which variation is
encoded. Assemblers from other companies may not offer this feature. The generic IMP
assembles to AJMP if the destination contains no forward reference and is within the
same 2K page (as the instruction following the AJMP). Otherwise, it assembles to
LIMP. The generic CALL instruction (see below) works the same way.

The SJMP instruction specifies the destination address as a relative offset, as
shown in the earlier discussion on addressing modes. Since the instruction is two bytes
long (an opcode plus a relative offset), the jump distance is limited to —i28 to +127
bytes relative to the address following the SIMP.

The LIMP instruction specifies the destination address as a 16-bit constant. Since
the instruction is three bytes long (an opcode plus two address bytes), the destination ad-
dress can be anywhere in the 64K program memory space.

The AIMP instruction specifies the destination address as an 11-bit constant.
As with SIMP, this instruction is two bytes fong, but the encoding is different. The op-
code contains 3 of the 11 address bits, and byte 2 holds the low-order eight bits of the
destination address. When the instruction is executed, these 11 bits replace the low-order
{1 bits in the PC, and the high-order five bits in the PC stay the same. The destination,
therefore, must be within the same 2K block as the instruction following the AJIMP.
Since there is 64K of code memory space, there are 32 such blocks, each beginning at
a 2K address boundary (0000H, 0800H, 100GH, 1800H, etc., up to FEOOH; see Figure
3-3).

In all cases the programmer specifies the destination address to the assembler in
the usual way—as a label or as a 16-bit constant. The assembler will put the destination
address into the correct format for the given instruction. If the format required by the in-
struction will not support the distance to the specified destination address, a “destination
out of range” message is given.

3.3.5.1 Jump Tables

The JMP @A+DPTR instruction supports case-dependent jumps for jump tables. The
destination address is computed at execution time as the sum of the 16-bit DPTR register
and the accumulator. Typically, the DPTR is loaded with the address of a jump table, and
the accumulator acts as an index. If, for example, five “cases” are desired, a value from 0
through 4 is loaded into the accumulator and a jump to the appropriate case is performed
as follows:

MOV DPTR, #JUMP_TABLE
MOV A, INDEX_NUMBER
RL A

JMP @A+DPTR

The RL A instruction above converts the index number (0 through 4) to an even number
in the range 0 through 8, because each entry in the jump table is a 2-byte address:
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JUMP_TABLE: AJMP CASEO
AJMP CASEL
AJMP CASE2
AJMP CASE3

3.3.5.2 Subroutines and Interrupts

There are two variations of the CALL instruction: ACALL and LCALL, using absolute
and long addressing, respectively. As with JMP, the generic CALL mnemonic may
be used with Intel’s assembler if the programmer does not care which way the address
is encoded. Either instruction pushes the contents of the program counter on the
stack and loads the program counter with the address specified in the instruction.
Note that the PC will contain the address of the instruction following the CALL in-
struction when it gets pushed on the stack. The PC is pushed on the stack low-byte first,
high-byte second. The bytes are popped from the stack in the reverse order. For example,
if an LCALL instruction is in code memory at locations 1000H-1002H and the SP
contains 20H, then LCALL (a) pushes the return address (1003H) on the internal stack,
placing 03H in 21H and 10H in 22H; (b) leaves the SP containing 22H; and (¢) jumps to
the subroutine by loading the PC with the address contained in bytes 2 and 3 of the
instruction.

The LCALL and ACALL instructions have the same restrictions on the destination
address as the LIMP and AJMP instructions just discussed.

Subroutines should end with a RET instruction, which returns execution to the in-
struction following the CALL. There is nothing magical about the way the RET instruc-
tion gets back to the main program. It simply “pops” the last two bytes off the stack and
places them in the program counter. It is a cardinal rule of programming with subrou-
tines that they should always be entered with a CALL instruction, and they should al-
ways be left with a RET instruction. Jumping in or out of a subroutine any other way
usually fouls up the stack and causes the program to crash.

RETI is used to return from an interrupt service routine (ISR). The only difference
between RET and RETI is that RETI signals the interrupt control system that the inter-
rupt in progress is done. If there is no interrupt pending at the time RETI is executed,
then RETI is functionally identical to RET. Interrupts and the RETI instruction are dis-
cussed in more detail in Chapter 6.

3.3.5.3 Conditional Jumps

The 8051 offers a variety of conditional jump instructions. All of these specify the desti-
nation address using relative addressing and so are limited to a jump distance of —128 to
+127 bytes from the instruction following the conditional jump instruction. Note, how-
ever, that the user specifies the destination address the same way as with the other jumps,
as a label or 16-bit constant. The assembler does the rest.

There is no 0-bit in the PSW. The JZ and JNZ instructions test the accumulator
data for that condition.

The DINZ instruction (decrement and jump if not zero) is for loop control. To exe-
cute a loop N times, load a counter byte with N and terminate the loop with a DINZ to the
beginning of the loop, as shown below for N =10.
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MOV  R7, #10
LOOP: (begin loop)

(end loop)
DJNZ R7,LOOP
{continue)

The CINE instruction (compare and jump if not equal) is also used for loop con-
trol. Two bytes are specified in the operand field of the instruction and the jump is exe-
cuted only if the two bytes are not equal. If, for example, a character has just been read
into the accumulator from the serial port and it is desired to jump to an instruction
identified by the label TERMINATE if the character is CONTROL-C (03H), then the
following instructions could be used:

CJINE A, #03H, SKIP
SJMP TERMINATE
SKIP: {continue)

Since the jump occurs only if A ¥ CONTROL-C, a skip is used to bypass the terminat-
ing jump instruction except when the desired code is read.

Another application of this instruction is in “greater than” or “less than” compar-
isons. The two bytes in the operand field are taken as unsigned integers. If the first is less
than the second, the carry flag is set. If the first is greater than or equal to the second, the
carry flag is cleared. For example, if it is desired to jump to BIG if the value in the accu-
mulator is greater than or equal to 20H, the following instructions could be used:

CJINE A, #20H, $+3
JNC BIG

The jump destination for CINE is specified as “$+3.” The dollar sign ($) is a spe-
cial assembler symbol representing the address of the current instruction. Since CINE is
a 3-byte instruction, “$+3” is the address of the next instruction, JNC. In other words, the
CJNE instruction follows through to the JNC instruction regardless of the result of the
compare. The sole purpose of the compare is to set or clear the carry flag. The JNC in-
struction decides whether or not the jump takes place. This example is one instance in
which the 8051 approach to a common programming situation is more awkward than
with most microprocessors; however, as we shall see in Chapter 7, the use of macros al-
lows powerful instruction sequences, such as the example above, to be constructed and
executed using a single mnemonic.

PROBLEMS
{. What is the hexadecimal opcode for the following instruction?
INC DPTR
2. What is the hexadecimal opcode for the following instruction?

DEC R6
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. What instruction is represented by the opcode SDH?
. What instruction is represented by the opcode FFH?
. List all the 8051°s 3-byte instructions with an opcode ending in 5H.

. INlustrate how the contents of internal address SOH could be transferred to the accu-

mulator, using indirect addressing.

. What opcode is undefined on the 80517

8. The following is an 8051 instruction:

10.

11.

12.

13.

MOV SOH, #0FFH

a) What is the opcode for this instruction?

b) How many bytes long in this instruction?

c¢) Explain the purpose of each byte of this instruction.

d) How many machine cycles are required to execute this instruction?

e) If an 8051 is operating from a 16 MHz crystal, how long does this instruction take
to execute?

. What is the relative offset for the instruction

SJMP AHEAD
if the instruction is in locations 0400H and 0401H, and the label AHEAD represents
the instruction at address 04 1FH?

What is the relative offset for the instruction
SJMP BACK

if the instruction is in locations AO50H and AO51H, and the label BACK represents
the instruction at address 9FEOH?

Assume the instruction
AJMP AHEAD

is in code memory at addresses 2FFOH and 2FF1H, and the label AHEAD corre-
sponds to an instruction at address 2F96H. What are the hexadecimal machine-lan-
guage bytes for this instruction?

At a certain point in a program, it is desired to jump to the label EXIT if the ac-
cumulator equals the carriage return ASCII code. What instruction(s) would be
used?

The instruction
SJIMP BACK

is in code memory at address 0100H and 0101H and the label BACK corresponds to
an instruction at address 00AEH. What are the hexadecimal machine-language bytes
for this instruction?
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21.
22.
. For part (a) above, what is the worst-case propagation delay time from an input tran-

24,

25.

26.
27.

28.

TER3

. What does the following instruction do?

SETB OD7H

What is a better way to perform the same operation? Why?

. What is the difference between the following two instructions?

INC A
INC ACC

. What are the machine-language bytes for the instruction

LJMP ONWARD

if the Jabel ONW ARD represents the instruction at address AOF6H?

. Assume accumulator A contains SAH. What is the result in accumulator A after the

following instruction executes?

XRL A, #0FFH

. Assume the PSW contains QCOH and accumulator A contains 50H just before the

following instruction executes:
RLC A

What is the content of accumulator A after this instruction executes?

. What instruction sequence could be used to create a 5 s low-going pulse on P1.7?

Assume P1.7 is high initially and the 8051 is operating from a 12 MHz crystal.
Write a program to create an 83.3 kHz square wave on P1.0. (Assume 12 MHz oper-
ation.)

Write a program to generate a 4 s active-high pulse on P1.7 every 200 ps.

Write programs to implement the logic operations shown in Figure 3-4.

sition to an output transition?
What is the content of accumulator A after the following instruction sequence exe-
cutes?

MOV A, #7FH

MOV 50H, #29H

MOV RO, #50H
XCHD A, @RO

What are the machine-language bytes for the following instruction?

SETB P2.6
What instruction sequence could be used to copy Flag 0 in the PSW to the port pin
P1.5?
Under what circumstances will Intel’s assembler (ASM51) convert a generic JMP
instruction to LIMP?

The 8051 internal memory is initialized as follows immediately prior to the execu-
tion of a RET instruction:
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Internal
Address Contents SFRs Contents
0B 9A SP 0B
0a 78 PC 0200
09 56 A . 55
08 34
07 12

What is the content of the PC after the RET instruction executes?

29. An 8051 subroutine is shown below:

SUB:
LOOP :

MOV RO, #20H
MOV @RO, #0
INC RO

CJNE RO, #80H, LOOP

RET

a) What does this subroutine do?

b) In how many machine cycles does each instruction execute?

¢) How many bytes long is cach instruction?

d) Convert the subroutine to machine language.

e) How long does this subroutine take to execute? (Assume 12 MHz operation.)

P14

P15

Pl.6

(a)
PL.4
P15
P1.6
(c)

FIGURE 34
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Logic gate programming problems. (a) 3-input NOR (b) 8-input NAND (c) 3-gate logic op-
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FIGURE 3-5
Interface to a DIP switch and 7-segment LED

30. A 4-bit DIP switch and a common-anode 7-segment LED are connected to an 8051
as shown in Figure 3-5. Write a program that continually reads a 4-bit code from the
DIP switch and updates the LEDs to display the appropriate hexadecimal character.
For example, if the code 1100B is read, the hexadecimal character “C” should ap-
pear; thus, segments a through g respectively should be ON, OFF, OFF, ON, ON,
ON, and OFF. Note that setting an 805 port pin to “{” turns the corresponding seg-

ment “ON.” (See Figure 3-5.)
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4.1 INTRODUCTION

In this chapter we examine the 8051°s on-chip timers. We begin with a simplified view
of timers as they are commonly used with microprocessors or microcontrollers.

A timer is a series of divide-by-two flip-flops that receive an input signal as a
clocking source. The clock is applied to the first flip-flop, which divides the clock fre-
quency by 2. The output of the first flip-flop clocks the second flip-flop, which also di-
vides by 2, and so on. Since each successive stage divides by 2, a timer with n stages di-
vides the input clock frequency by 27. The output of the last stage clocks a timer
overflow flip-flop, or flag, which is tested by software or generates an interrupt. The bi-
nary value in the timer flip-flops can be thought of as a “count™ of the number of clock
pulses (or “events”) since the timer was started. A 16-bit timer, for example, would
count from 0000H to FFFFH. The overflow flag is set on the FFFFH-to-0000H overflow
of the count.

The operation of a simple timer is illustrated in Figure 4-1 for a 3-bit timer. Each
stage is shown as a type-D negative-edge-triggered flip-flop operating in divide-by-two
mode (i.e., the Q output connects to the D input). The flag flip-flop is simply a type-D
latch, set by the last stage in the timer. It is evident in the timing diagram in Figure 4-1b
that the first stage (Q,) toggles at 1/2 the clock frequency, the second stage at 1/4 the
clock frequency, and so on. The count is shown in decimal, and is easily verified by ex-
amining the state of the three flip-flops. For example, the count “4” occurs when Q, = 1,
Q,=0,and Q;=0 (4,,=100,)).

Timers are used in virtually all control-oriented applications, and the 8051 timers
are no exception. There are two 16-bit timers each with four modes of operation. A third
16-bit timer with three modes of operation is added on the 8052. The timers are used for
(a) interval timing, (b) event counting, or (c) baud rate generation for the built-in serial
port. Each is a 16-bit timer, therefore the 16th or last stage divides the input clock fre-
quency by 216 = 65,536.

In interval timing applications, a timer is programmed to overflow at a regular in-
terval and set the timer overflow flag. The flag is used to synchronize the program to per-
form an action such as checking the state of inputs or sending data to outputs. Other ap-
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A 3-bit timer. (a) Schematic (b) Timing diagram.

plications can use the regular clocking of the timer to measure the elapsed time between
two conditions (e.g., pulse width measurements).

Event counting is used to determine the number of occurrences of an event, rather
than to measure the elapsed time between events. An “event” is any external stimulus
that provides a 1-to-0 transition to a pin on the 8051 IC. The timers can also provide the
baud rate clock for the 8051°s internal serial port.

The 8051 timers are accessed using six special function registers. (See Table 4-1.)
An additional 5 SFRs provide access to the third timer in the 8052.

4.2 TIMER MODE REGISTER (TMOD)

The TMOD register contains two groups of four bits that set the operating mode for
Timer 0 and Timer 1. (See Table 4-2 and Table 4-3.)

TMOD is not bit-addressable, nor does it need to be. Generally, it is loaded once
by software at the beginning of a program to initialize the timer mode. Thereafter, the
timer can be stopped, started, and so on by accessing the other timer SFRs.
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TABLE 4-1
Timer special function registers
TIMER SFR PURPOSE ADDRESS BIT-ADDRESSABLE
TCON Control 88H Yes
TMOD Mode 89H No
TLO Timer O low-byte 8AH No
TL1 Timer 1 low-byte 8BH No
THO Timer O high-byte 8CH No
TH1 Timer 1 high-byte 8DH No
T2CON* Timer 2 control C8H Yes
RCAP2L* Timer 2 low-byte capture CAH No
RCAP2H* Timer 2 high-byte capture CBH No
TL2* Timer 2 low-byte CCH No
TH2* Timer 2 high-byte CDH No
*8032/8052 only
TABLE 4-2
TMOD (timer mode) register summary
BIT NAME TIMER DESCRIPTION
7 GATE 1 Gate bit. When set, timer only runs while
INT1 is high
6 CT 1 Counter/timer select bit.
1 = event counter
0 = interval timer
5 M1 1 Mode bit 1 (see Table 4-3)
4 MO 1 Mode bit 0 (see Table 4-3)
3 GATE 0 Timer 0 gate bit
2 c7 0 Timer 0 counter/timer select bit
1 M1 0 Timer 0 M1 bit
0 MO 0 Timer 0 MO bit
TABLE 4-3
Timer modes
M1 MO MODE DESCRIPTION
a 0 0 13-bit timer mode (8048 mode}
0 1 1 16-bit timer mode
1 0 2 8-bit auto-reload mode
1 1 3 Split timer mode:

Timer 0: TLO is an 8-bit timer controlled by timer 0 mode
bits; THO, the same except controlled by timer 1
mode bits

Timer 1: stopped
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4.3 TIMER CONTROL REGISTER (TCON)

The TCON register contains status and control bits for Timer 0 and Timer 1 (see Table
4-4). The upper four bits in TCON (TCON.4-TCON.7) are used to turn the timers on
and off (TR0, TR1), or to signal a timer overflow (TF0, TF1). These bits are used exten-
sively in the examples in this chapter.

The lower four bits in TCON (TCON.O-TCON.3) have nothing to do with the
timers. They are used to detect and initiate external interrupts. Discussion of these bits is
deferred until Chapter 6, when interrupts are discussed.

4.4 TIMER MODES AND THE OVERFLOW FLAG

Each timer is discussed below. Since there are two timers on the 8051, the notation “x” is
used to imply either Timer 0 or Timer 1; thus, “THx” means either TH1 or THO depend-
ing on the timer.

The arrangement of timer registers TLx and THx and the timer overflow flags TFx
is shown in Figure 4-2 for each mode.

4.4.1 13-Bit Timer Mode (Mode 0)

Mode 0 is a 13-bit timer mode that provides compatibility with the 8051’s predecessor,
the 8048. It is not generally used in new designs. (See Figure 4-2a.) The timer high-byte
(THx) is cascaded with the five least-significant bits of the timer low-byte (TLx) to form
a 13-bit timer. The upper three bits of TLx are not used.

TABLE 4-4
TCON (timer control) register summary
BIT
BIT SYMBOL  ADDRESS DESCRIPTION

TCON.7 TF1 8FH Timer 1 overfiow flag. Set by hardware upon
overflow; cleared by software, or by
hardware when processor vectors to
interrupt service routine

TCON.6 TR1 8EH Timer 1 run control bit. Set/cleared by software
to turn timer on/off

TCON.5 TFO 8DH Timer 0 overflow flag

TCON.4 TRO 8CH Timer O run control bit

TCON.3 1E1 8BH External interrupt 1 edge flag. Set by hardware

when a talling edge is detected on INT 1;
cleared by software, or by hardware when
CPU vectors to interrupt service routine

TCON.2 ™ 8AH External interrupt 1 type flag. Set/cleared by
software for falling-edge/low-level activated
external interrupt

TCON.1 IEO 89H External interrupt 0 edge fiag

TCON.0 ITO 88H External interrupt O type flag
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4.4.2 16-Bit Timer Mode (Mode 1)

Mode 1 is a 16-bit timer mode and is the same as mode 0, except the timer is operating as
a full 16-bit timer. The clock is applied to the combined high and low timer registers
(TLx/THx). As clock pulses are received, the timer counts up: 0000H, 0001H, 0002H,
etc. An overflow occurs on the FFFFH-t0-0000H transition of the count and sets the
timer overflow flag. The timer continues to count. The overflow flag is the TFx bit in
TCON that is read or written by software. (See Figure 4-2b.)

The most-significant bit (MSB) of the value in the timer registers is THx bit 7, and
the least-significant bit (LSB) is TLx bit 0. The LSB toggles at the input clock frequency

FIGURE 4-2

Timer modes. (a) Mode 0 (b)
Mode 1 (c) Mode 2 (d) Mode
3.

67



68

CHAPTER 4

divided by 2, while the MSB toggles at the input clock frequency divided by 65,536 (i.e..
216), The timer registers (TLx/THx) may be read or written at any time by software.

4.4.3 8-Bit Auto-Reload Mode (Mode 2)

Mode 2 is 8-bit auto-reload mode. The timer low-byte (TLx) operates as an 8-bit timer
while the timer high-byte (THx) holds a reload value. When the count overflows from
FFH to O0H, not only is the timer flag set, but the value in THx is loaded into TLx;
counting continues from this value up to the next FFH-to-00H transition, and so on. This
mode is convenient, since timer overflows occur at specific, periodic intervals once
TMOD and THx are initialized. (See Figure 4-2c.)

4.4.4 Split Timer Mode (Mode 3)

Mode 3 is the split timer mode and is different for each timer, Timer 0 in mode 3 is split
into two 8-bit timers. TLO and THO act as separate timers with overflows setting the TFO
and TF1 bits respectively.

Timer 1 is stopped in mode 3, but can be started by switching it into one of the
other modes. The only limitation is that the usual Timer | overflow flag, TF1, is not af-
fected by Timer 1 overflows, since it is connected to THO.

Mode 3 essentially provides an extra 8-bit timer: The 8051 appears to have a third
timer. When Timer 0 is in mode 3, Timer | can be turned on and off by switching it out
of and into its own mode 3. It can still be used by the serial port as a baud rate generator,
or it can be used in any way not requiring interrupts (since it is no longer connected to
TF1).

4.5 CLOCKING SOURCES

Figure 4-2 does not show how the timers are clocked. There are two possible clock
sources, selected by writing to the counter/timer (C/T ) bit in TMOD when the timer is
initialized. One clocking source is used for interval timing, the other for event counting,

4.5.1 Interval Timing

If C/T =0, continuous timer operation is selected and the timer is clocked from the on-
chip oscillator. A divide-by-12 stage is added to reduce the clocking frequency to a value
reasonable for most applications.

When continuous timer operation is selected, the timer is used for interval timing.
The timer registers (TLx/THx) increment at a rate of 1/12th the frequency of the on-chip
oscillator; thus, a 12 MHz crystal would yield a clock rate of 1 MHz. Timer overflows
occur after a fixed number of clocks, depending on the initial value loaded into the timer
registers, TLx/THx.

4.5.2 Event Counting

If C/T = 1, the timer is clocked from an external source. In tost applications, this exter-
nal source supplies the timer with a pulse upon the occurrence of an “event”—the timer
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Clocking source

is event counting, The number of events is determined in software by reading the timer
registers TLx/THx, since the 16-bit value in these registers increments for each event.

The external clock source comes by way of the alternate functions of the Port 3
pins. Port 3 bit 4 (P3.4) serves as the external clocking input for Timer 0 and is known as
“T0” in this context. P3.5, or “T1,” is the clocking input for Timer 1. (See Figure 4-3.)

In counter applications, the timer registers are incremented in response to a 1-to-0
transition at the external input, Tx. The external input is sampled during SSP2 of every
machine cycle; thus, when the input shows a high in one cycle and a low in the next, the
count is incremented. The new value appears in the timer registers during S3P1 of the
cycle following the one in which the transition is detected. Since it takes two machine
cycles {2 ps) to recognize a 1-t0-0 transition, the maximum external frequency is 500
kHz (assuming 12 MHz operation).

4.6 STARTING, STOPPING, AND CONTROLLING THE TIMERS

Figure 4-2 illustrates the various configurations for the timer registers, TLx and THXx,
and the timer overflow flags, TFx. The two possibilities for clocking the timers are
shown in Figure 4-3. We now demonstrate how to start, stop, and contro} the timers.

The simplest method for starting and stopping the timers is with the run control bit,
TRx, in TCON. TRx is clear after a system reset; thus, the timers are disabled (stopped)
by default. TRx is set by software to start the timers. (See Figure 4-4.)

Since TRx is in the bit-addressable register TCON, it is easy to start and stop the
timers within a program. For example, Timer 0 is started by

SETB TRO
and stopped by
CLR TRO

The assembler will perform the necessary symbolic conversion from “TRQ” to the cor-
rect bit address. SETB TRO is exactly the same as SETB 8CH.
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Another method for controlling the timers is with the GATE bit in TMOD and the
external input INTx . Setting GATE = 1 allows the timer to be controlled by INTx . This
is useful for pulse width measurements as follows. Assume INTO is low but pulses high
for a period of time to be measured. Initialize Timer O for mode 2, 16-bit timer mode,
with TLO/THO = 0000H, GATE = 1, and TRO = |. When INTO goes high, the timer is
“gated on” and is clocked at a rate of 1| MHz. When INTO goes low, the timer is “gated
off ” and the duration of the pulse in microseconds is the count in TLO/THO. (INTO can
be programmed to generate an interrupt when it returns low.)

To complete the picture, Figure 4-5 illustrates Timer | operating in mode 1 as a
16-bit timer. As well as the timer registers TL1/TH1 and the overflow flag TF1, the dia-
gram shows the possibilities for the clocking source and for starting, stopping, and con-
trolling the timer.

12 MHz _Cjﬁ—
=

8051
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TI

(16 bits)
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1 = Down

TR}

Gate

INTT __|
(P3.3)

FIGURE 4-5
Timer 1 operating in mode 1
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4.7 INITIALIZING AND ACCESSING TIMER REGISTERS

The timers are usually initialized once at the beginning of a program to set the correct
operating mode. Thereafter, within the body of a program, the timers are started,
stopped, flag bits tested and cleared, timer registers read or updated, and so on, as re-
quired in the application.

TMOD is the first register initialized, since it sets the mode of operation. For ex-
ample, the following instruction initializes Timer ] as a 16-bit timer (mode 1) clocked by
the on-chip oscillator (interval timing):

MOV TMOD, #00010000B

The effect of this instruction is to set M1 = 0 and MO = 1 for mode 1, leave C/T =0 and
GATE = 0 for internal clocking, and clear the Timer 0 mode bits. (See Table 4-2.) Of
course, the timer does not actually begin timing until its run control bit, TR1, is set.

If an initial count is necessary, the timer registers TL1/THI1 must also be initial-
ized. Remembering that the timers count up and set the overflow flag on an FFFFH-to-
0000H transition, a 100 ps interval could be timed by initializing TLI/THI to 100
counts less than 0000H. The correct value is — 100 or FF9CH. The following instruc-
tions do the job:

MOV TL1, #9CH
MOV THI1, #0FFH

The timer is then started by sctting the run control bit as follows:
SETB TR1

The overflow flag is automatically set 100 s later. Software can sit in a “wait loop” for
100 ps using a conditional branch instruction that returns to itself as long as the overflow
flag is not set:

WAIT: JNB TF1l,WAIT

When the timer overflows, it is necessary to stop the timer and clear the overflow flag in
software:

CLR TR1
CLR TF1

4.7.1 Reading a Timer “On the Fly”

In some applications, it is necessary to read the value in the timer registers “on the fly.”
There is a potential problem that is simple to guard against in software. Since two timer
registers must be read, a “phase error” may occur if the low-byte overflows into the high-
byte between the two read operations. A value may be read that never existed. The solu-
tion is to read the high-byte first, then the low-byte, and then read the high-byte again. If
the high-byte has changed, repeat the read operations. The instructions below read the
contents of the timer registers TL1/TH1 into registers R6/R7, correctly dealing with this
problem.

Ia
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AGATIN: MOV A, TH1
MOV R6,TL1
CJINE A, TH1, AGAIN
MOV R7,A

4.8 SHORT INTERVALS AND LONG INTERVALS

What is the range of intervals that can be timed? This issue is examined assuming the
8051 is operating from a 12 MHz crystal. The on-chip oscillator is divided by 12 and
clocks the timers at a rate of | MHz.

The shortest possible interval is limited, not by the timer clock frequency, but by
software. Presumably, something must occur at regular intervals, and it is the duration of
instructions that limit this for very short intervals. The shortest instruction on the 8051 is
one machine cycle or one microsecond. Table 4-5 summarizes the techniques for creat-
ing intervals of various lengths. (Operation from a 12 MHz crystal is assumed.)

TABLE 4-5

Example 4~-1: Pulse Wave Generation

Write a program that creates a periodic waveform on P1.0 with as high a frequency as
possible. What are the frequency and duty cycle of the waveform?

Very short intervals (i.e., high frequencies) can be programmed without using the
timers. Here's the program:

8100 5 ORG 8100H

8100 D290 6 LOOP: SETB P1.0 ;one machine cycle

8102 C290 7 CLR P1.0 ;one machine cycle

8104 BOFA 8 SJMP LOOP ;two machine cycles
9 END

This program creates a pulse waveform on P1.0 with a period of 4 ps: high-time =
1 s, low-time = 3ps. The frequency is 250 kHz and the duty cycle is 25%. (See Figure
4-6.)

[t might appear at first that the instructions in Figure 4-6 are misplaced, but they’re
not. The SETB P1.0 instruction, for example, does not actually set the port bit until the
end of the instruction, during S6P2.

The period of the output signal can be lengthened somewhat by inserting NOP (no
operation) instructions into the loop. Each NOP adds 1 s to the period of the output sig-

MAXIMUM INTERVAL

Techniques for programming  IN MICROSECONDS TECHNIQUE

timed intervals (12 MHz oper-

ation)

=10 Software tuning

256 8-bit timer with auto-reload
65536 16-bit timer

No limit 16-bit timer plus software loops
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FIGURE 4-6
Waveform for example
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—-)' l(—— One machine cycle (1 ps)

nal. For example, adding two NOP instructions after SETB P1.0 would make the output
a square wave with a period of 6 ps and a frequency of 166.7 kHz. Beyond a point, how-
ever, “software tuning” is cumbersome and a timer is the best choice for delays.

Moderate length intervals are easily obtained using 8-bit auto-reload mode, mode
2. Since the timed interval is set by an 8-bit count, the longest possible interval before
overflow is 28 = 256 us.

Example 4-2: 10 kHz Square Wave

Write a program using Timer O to create a 10 kHz square wave on P1.0.

A 10 kHz square wave requires a high-time of 50 ps and a low-time of 50 ps.
Since this interval is less than 256 ps, timer mode 2 ¢an be used. An overflow every
50 ps requires a THO reload value of 50 counts less than O0H, or —50. Here’s the pro-
gram:

8100 6 ORG 8100H
8100 758902 7 MOV TMOD, #02H ;8-bit auto-reload mode
8103 758CCE 8 MOV THO, #-50 ;=50 reload value in THO
8106 D28C 9 SETB TRO ;start timer
8108 308DFD 10 LOOP: JNB TF0, LOOP ;wait for overflow
810B C28D 11 CLR TFO ;clear timer overflow flag
810D B2%0 12 CPL P1.0 ;toggle port bit
810F B80F7 13 SJMp LOOP ;repeat

14 END

This program uses a complement bit instruction (CPL) rather than the SETB and
CLR bit instructions in the previous example. Between each complement operation, a
delay of 1/2 the desired period (50 ps) is programmed using Timer O in 8-bit auto-reload
mode. The reload value may be specified using decimal notation as —50, rather than us-
ing hexadecimal notation. The assembler performs the necessary conversion. Note that
the timer overflow flag (TFQ) must be explicitly cleared by software after each overflow.

Timed intervals longer than 256 ws must use 16-bit timer mode, mode 1. The
longest delay is 216 = 65,536 ps or about 0.066 seconds. The inconvenience of mode I is
that the timer registers must be reinitialized after each overflow, whereas reloading is au-
tomatic in mode 2.
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Example 4-3: 1 kHz Square Wave
Write a program using Timer 0 to create a | kHz square wave on P1.0.
A 1 kHz square wave requires a high-time of 500 ps and a Jow-time of 500 ps.

Since this interval is longer than 256 ps, mode 2 cannot be used. Full 16-bit timer mode,
mode 1, is required. The main difference in the software is that the timer registers, TLO
and THO, are reinitialized after each overflow.

8100 6 ORG 8100H

8100 758901 7 MOV TMOD, #01H ;16-bit timer mode

8103 758CFE 8 LOOP: MOV THO, #0FEH ;=500 (high byte)

8106 758A0C 9 MOV TLO, #0CH ;-500 (low byte)

8109 D28C 10 SETR TRO ;start timexr

810B 308DFD 11 WAIT: JNB TFO,WAIT ;wait for overflow

810E C28C 12 CLR TRO ;stop timer

8110 C28D 13 CLR TF0 ;clear timer overflow flag

8112 B290 14 CPL P1.0 ; toggle port bit

8114 80ED 15 SIMP LOOP ;repeat

16 END

There is a slight error in the output frequency in the program above. This results
from the extra instructions inserted after the timer overflow to reinitialize the timer. If
exactly 1 kHz is required, the reJoad value for registers TLO/THO must be adjusted some-
what. Such errors do not occur in auto-reload mode, since the timer is never stopped—it
overflows at a consistent rate set by the reload value in THO.

Intervals longer than 0.066 seconds can be achieved by cascading Timer 0 and
Timer | through software, but this ties up both timers. A more practical approach uses
one of the timers in 16-bit mode with a software loop counting overflows. The desired
operation is performed every n overflows.

Example 4-4: Buzzer Interface

A buzzer is connected to P1.7 and a debounced switch is connected to P1.6. (See Figure
4-7.) Write a program that reads the logic level provided by the switch and sounds the
buzzer for ! second for each 1-to-0 transition detected.

The buzzer in Figure 4-7 is a piezo ceramic transducer that vibrates when stimu-
lated with a DC voltage. A typical example is the Projects Unlimited Al-430 that gener-
ates a tone of about 3 kHz at 5 volts DC. An inverter is used as a driver since the AI-430
draws 7 mA of current. As indicated in the 8051’s DC Characteristics in Appendix E,
Port 1 pins can sink a maximum of 1.6 mA. The Al-430 costs a few dollars.

Creating software delays is one of the most common programming tasks given to
students of microprocessors. The usual method of decrementing a count within a loop is
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Buzzer example
not necessary on the 8051, since it has built-in timers. A 1-second delay subroutine using
Timer 0 is shown in this example.
A 1-10-0 transition on P1.6 is detected by waiting for a | (JNB P1.6,LLOOP) and
then waiting for a 0 (JB P1.6,WAIT). Here's the program:
0064 6 HUNDRED EQU 100 ;100 x 10000 us = 1 sec.
2710 7 COUNT EQU 10000
8100 8 ORG 8100H
8100 758901 9 MOV TMOD, #01H ;use timer 0 in mode 1
8103 3096FD 10 LOOP: JNB P1.6,LOOP ;wait for 1 input
8106 2096FD 11 WAIT: JB P1.6,WAIT ;wait for 0 input
8109 D297 12 SETB Pl1.7 ;turn buzzer on
810B 128112 13 CALL DELAY ;wait 1 second
810E €297 14 CLR P1.7 ;turn buzzer off
8110 80F1 15 SJIMP LOOP
16 ; '
8112 TF64 17 DELAY : MoV R7, #HUNDRED
8114 758C27 18 AGAIN: MOV THO, #HIGH COUNT
8117 758a10 19 MOV TLO, #LOW COUNT
811A D28C 20 SETB TRO
811C 308DFD 21 WAIT2: JNB TFQ,WAIT2
811F C28D 22 CLR TFO
8121 c28C 23 CLR TRO
8123 DFEF 24 DJNZ R7,AGAIN
8125 22 25 RET
26 END

There are two situations not handled in the example above. First, if the input tog-
gles during the one second that the buzzer is sounding, the transition is not detected,
since the software is busy in the delay routine. Second, if the input toggles very
quickly—in less than a microsecond—the transition may be missed altogether by the
JNB and IB instructions. Problem 5 at the end of this chapter deals with the first situa-
tion. The second can only be handled using an interrupt input to “latch” a status flag
when a 1-to-0 transition occurs. This is discussed in Chapter 6.
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4.9 8052 TIMER 2

The third timer added on the 8052 IC is a powerful addition to the two just discussed. As
shown earlier in Table 4-1, five extra special function registers are added to accommo-
date Timer 2. These include the timer registers, TL2 and TH2, the timer control register.
T2CON, and the capture registers, RCAP2L and RCAP2H.

The mode for Timer 2 is set by its control register, T2CON. (See Table 4-6.) Like
Timers 0 and 1, Timer 2 can operate as an interval timer or event counter. The clocking
source is provided internally by the on-chip oscillator, or externally by T2, the alternate
function of Port 1 bit 0 (P1.0) on the 8052 IC. The C/T2 bit in T2CON selects between
the internal and externaf clock, just as the C/T bits do in TCON for Timers 0 and 1. Re-
gardless of the clocking source, there are three modes of operation: auto-reload, capture,
and baud rate generator.

TABLE 4-6
T2CON (Timer 2 control) register summary
BIT
BIT SYMBOL ADDRESS DESCRIPTION
T2CON.7 TF2 CFH Timer 2 overflow flag. (Not set when TCLK
orRCLK = 1))
T2CON.6 EXF2 CEH Timer 2 external flag. Set when either a

capture or reload is caused by 1-to-0
transition on T2EX and EXEN2 = 1,
when timer interrupts are enabled,
EXF2 = 1 causes CPU to vector to
service routine; cleared by software

T2CON.5 RCLK CDH Timer 2 receiver clock. When set, Timer 2
provides serial port receive baud rate;
Timer 1 provides transmit baud rate

T2CON.4 TCLK CCH Timer 2 transmit clock. When set, Timer 2
provides transmitter baud rate; Timer 1
provides receiver baud rate

T2CON.3 EXEN2 CBH Timer 2 external enable. When set,
capture or reload occurs on 1-to-0
transition of T2EX

T2CON.2 TR2 CAH Timer 2 run control bit. Set/cleared by
software to turn Timer 2 on/off.

T2CON.1 Cc/T2 C9H Timer 2 counter/interval timer select bit.

1 = event counter
0 = interval timer

T2CON.O CP/RL2C C8H Timer 2 capture/reload flag. When set,
capture occurs on 1-to-0 transition of
T2EX if EXEN2 = 1; when clear, auto
reload occurs on timer overflow or
T2EX transition if EXEN2 = 1; if RCLK
or TCLK = 1, this bit is ignored
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4.9.1 Auto-Reload Mode

The capture/reload bit in T2CON selects between the first two modes. When CPRL2 =
0, Timer 2 is in auto-reload mode with TL2/TH2 as the timer registers, and RCAP2L and
RCAP2H holding the reload value. Unlike the reload mode for Timers 0 and 1, Timer 2
is always a full 16-bit timer, cven in auto-reload mode.

Reload occurs on an FFFFH-10-0000H transition in TL2/TH2 and sets the Timer 2
flag, TF2. This condition is determined by software or is programmed to generate an in-
terrupt. Either way, TF2 must be cleared by software before it is set again.

Optionally, by setting EXEN2 in T2CON, a reload also occurs on the 1-to-0 transi-
tion of the signal applied to pin T2EX, which is the alternate pin function for P1.1 on the
8052 IC. A 1-to-0 transition on T2EX also sets a new flag bit in Timer 2, EXF2. As with
TF2, EXF2 is tested by software or generates an interrupt. EXF2 must be cleared by soft-
ware. Timer 2 in auto-reload mode is shown in Figure 4-8.

4.9.2 Capture Mode

When CP/RL2 = I, capture mode is selected. Timer 2 operates as a 16-bit timer and sets
the TF2 bit upon an FFFFH-t0-0000H transition of the value in TL2/TH2. The state of
TF2 is tested by software or generates an interrupt.
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Timer 2 in 16-bit auto-reload mode
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Timer 2 in 16-bit capture mode

To enable the capture feature, the EXEN2 bit in T2CON must be set. If EXEN2 =
1, a 1-to-0 transition on T2EX (P1.1) “captures” the value in timer registers TL2/TH2 by
clocking it into registers RCAP2L and RCAP2H. The EXF2 flag in T2CON is also set
and, as stated above, is tested by software or generates an interrupt. Timer 2 in capture
mode is shown in Figure 4-9.

4.10 BAUD RATE GENERATION

Another use of the timers is to provide the baud rate clock for the on-chip serial port.
This comes by way of Timer | on the 8051 1C or Timer 1 and/or Timer 2 on the 8052 IC.
Baud rate generation is discussed in Chapter 3.

4.11 SUMMARY

This chapter has introduced the 8051 and 8052 timers. The software solutions for the ex-
amples presented here feature one common but rather limiting trait. They consume alt of
the CPU's execution time. The programs execute in wait loops, waiting for a timer
overflow. This is fine for learning purposes, but for practical control-oriented applica-
tions using microcontrollers, the CPU must perform other duties and respond to external
events, such as an operator entering a parameter from a keyboard. In the chapter on inter-
rupts, we shall demonstrate how to use the timers in an “interrupt-driven” environment.
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Timing for modified buzzer example

The timer overflow flags are not tested in a software loop, but generate an interrupt. An-
other program temporarily interrupts the main program while an action is performed that
affects the timer interrupt (perhaps toggling a port bit). Through interrupts, the illusion
of doing several things simultaneously is created.

PROBLEMS

Write an 8051 program that creates a square wave on P1.5 with a frequency of 100
kHz. (Hint: Don’t use the timers.)

. What is the effect of the following instruction?

SETB 8EH

. What is the effect of the following instruction?

MOV TMOD, #11010101B

. Consider the three-instruction program shown in Example 4-1. What is the fre-

quency and duty cycle of the waveform created on P1.0 for a 16 MHz 80517

. Rewrite the solution to Example 4-4 to include a “restart” mode. If a 1-to-0 transi-

tion occurs while the buzzer is sounding, restart the timing loop to continue the buzz
for another second. This is illustrated in Figure 4-10.

. Write an 8051 program to generate a 12 kHz square wave on P1.2 using Timer 0.
. Design a “turnstile” application using Timer | to determine when the 10,000th per-

son has entered a fairground. Assume (a) a turnstile sensor connects to T1 and gen-
erates a pulse each time the turnstile is rotated, and (b) a light is connected to P1.7
that is on when P1.7 = 1, and off otherwise. Count “events” at T1 and turn on the
light at P1.7 when the 10,000th person enters the fairground. (See Figure 4-11.)

. The international tuning standard for musical instruments is “A above middle C” at

a frequency of 440 Hz. Write an 8051 program to generate this tuning frequency and
sound a 440 Hz tone on a loudspeaker connected to P1.1. (See Figure 4--12.) Due to
rounding of the values placed in TL1/THI, there is a slight error in the output fre-
quency. What is the exact output frequency and what is the percentage error? What
value of crystal would yield exactly 440 Hz with the program you have written?
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9. Write an 8051 program to generate a 500 Hz signal on P1.0 using Timer 0. The
waveform should have a 30% duty cycle (duty cycle = high-time + period).

10. The circuit shown in Figure 4-13 will provide an extremely accurate 60 Hz signal to
T2 by tapping the secondary of a power supply transformer. Initialize Timer 2 such
that it is clocked by T2 and overflows once per second. Upon each overflow, update
a time-of-day value stored in the 8052’s internal memory at locations S50H (hours),
51H (minutes), and 52H (seconds).

More timer examples and problems are found in Chapter 6.
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5.1 INTRODUCTION

The 8051 includes an on-chip serial port that can operate in several modes over a wide
range of frequencies. The essential function of the serial port is to perform parallel-to-
serial conversion for output data, and serial-to-parallel conversion for input data.

Hardware access to the serial port is through the TXD and RXD pins introduced in
Chapter 2. These pins are the alternate functions for two Port 3 bits, P3.1 on pin 11
(TXD) and P3.0 on pin 10 (RXD).

The serial port features full duplex operation (simultaneous transmission and re-
ception), and receive buffering allowing one character to be received and held in a
buffer while a second character is received. If the CPU reads the first character before the
second is fully received, data are not lost.

Two special function registers provide software access to the serial port, SBUF
and SCON. The serial port buffer (SBUF) at address 99H is really two buffers. Writing
to SBUF loads data to be transmitted, and reading SBUF accesses received data. These
are two separate and distinct registers, the transmit write-only register, and the receive
read-only register. (See Figure 5-1.)

The serial port control register (SCON) at address 98H is a bit-addressable register
containing status bits and control bits. Control bits set the operating mode for the serial
port, and status bits indicate the end of a character transmission or reception. The status
bits are tested in software or programmed to cause an interrupt.

The serial port frequency of operation, or baud rate, can be fixed (derived from
the 8051 on-chip oscillator) or variable. If a variable baud rate is used, Timer | supplies
the baud rate clock and must be programmed accordingly. (On the 8032/8052, Timer 2
can be programmed to supply the baud rate clock.)

5.2 SERIAL PORT CONTROL REGISTER

The mode of operation of the 8051 serial port is set by writing to the serial port mode
register (SCON) at address 99H. (See Table 5-1 and Table 5-2.)

81



82 URAPTER §
TXD RXD
(P3.1) (P3.0)
D
SBUF A
CLK (write-only) Q Shift register
|——> CLK
Baud rate Baud rate
clock clock
(transmit) (receive)
SBUF
(read-only)
S T 8051 Internal bus {
| — Bl
FIGURE 5-1

Serial port block diagram

Before using the serial port, SCON is initialized for the correct mode, and so on.
For example, the following instruction

MOV SCON,#01010010B

initializes the serial port for mode 1 (SM0O/SM1 = 0/1), enables the receiver (REN = 1),
and sets the transmit interrupt flag (T1 = 1) to indicate the transmitter is ready for opera-
tion.

5.3 MODES OF OPERATION

The 8051 serial port has four modes of operation, selectable by writing Is or Os into the
SMO and SM1 bits in SCON. Three of the modes enable asynchronous communications,
with each character received or transmitted framed by a start bit and a stop bit. Readers
familiar with the operation of a typical RS232C serial port on a microcomputer will find
these modes familiar territory. In the fourth mode, the serial port operates as a simple
shift register. Each mode is summarized below.

5.3.1 8-Bit Shift Register (Mode 0)

Mode 0, selected by writing Os into bits SM1 and SMO of SCON, puts the serial port into
8-bit shift register mode. Serial data enter and exit through RXD, and TXD outputs the
shift clock. Eight bits are transmitted or received with the least-significant (LSB) first.



SERIAL PORT OPERATION

TABLE 5-1
SCON (serial port control} register summary
BIT SYMBOL ADDRESS DESCRIPTION

SCON.7 SMO 9FH Serial port mode bit 0 (see Table 5-2)

SCON.6 SMt 9EH Serial port mode bit 1 {see Table 5-2)

SCON.5 SM2 9DH Serial port mode bit 2. Enables multiprocessor
communications in modes 2 & 3; R will not
be activated if received 9th bitis 0

SCON.4 REN 9CH Receiver enable. Must be set to receive
characters

SCON.3 TB8 9BH Transmit bit 8. 9th bit transmitted in modes
and 3; set/cleared by software

SCON.2 RB8 9AH Receive bit 8. 9th bit received

SCON.1 TI 99%H Transmit interrupt flag. Set at end of character
transmission; cleared by software

SCON.0 RI 98H Receive interrupt flag. Set at end of character

reception; cleared by software

The baud rate is fixed at 1/12th the on-chip oscillator frequency. The terms “RXD” and
“TXD” are misleading in this mode. The RXD line is used for both data input and output,
and the TXD line serves as the clock.

Transmission is initiated by any instruction that writes data to SBUF. Data are
shifted out on the RXD line (P3.0) with clock pulses sent out the TXD line (P3.1). Each
transmitted bit is valid on the RXD pin for one machine cycle. During each machine cy-
cle, the clock signal goes low on S3P! and returns high on S6P1. The timing for output
data is shown in Figure 5-2.

Reception is initiated when the receiver enable bit (REN) is 1 and the receive inter-
rupt bit (RI) is 0. The general rule is to set REN at the beginning of a program to initial-
ize the serial port, and then clear RI to begin a data input operation. When Rl is cleared,
clock pulses are written out the TXD line, beginning the following machine cycle, and
data are clocked in the RXD line. Obviously, it is up to the attached circuitry to provide
data on the RXD line as synchronized by the clock signal on TXD. The clocking of data
into the serial port occurs on the positive edge of TXD. (See Figure 5-3.)

One possible application of shift register mode is to expand the output capability
of the 8051. A serial-to-parallel shift register IC can be connected to the 8051 TXD and
RXD lines to provide an extra eight output lines. (See Figure 5-4.) Additional shift reg-
isters may be cascaded to the first for further expansion.

TABLE 5-2
Serial port modes
SMO0 SM1 MODE DESCRIPTION BAUD RATE
0 0 0 Shift register Fixed (oscillator frequency + 12)
0 1 1 8-bit UART Variable (set by timer)
1 0 2 9-bit UART Fixed (oscillator frequency = 12 or = 64)
1 1 3 9-bit UART Variable (set by timer)
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Serial port transmit timing for mode 0

5.3.2 8-Bit UART with Variable Baud Rate (Mode 1)

In mode 1 the 8051 serial port operates as an 8-bit UART with variable baud rate. A
UART, or “universal asynchronous receiver/transmitter,” is a device that receives and
transmits serial data with each data character preceded by a start bit (low} and followed
by a stop bit (high). A parity bit is sometimes inserted between the last data bit and the
stop bit. The essential operation of a UART is parallel-to-serial conversion of output
data and serial-to-parallel conversion of input data.

In mode 1, 10 bits are transmitted on TXD or received on RXD. These consist of a
start bit (always 0), eight data bits (LSB first), and a stop bit (always 1). For a receive op-
eration, the stop bit goes into RB8 in SCON. In the 8051, the baud rate is set by the
Timer 1 overflow rate; the 8052 baud rate is set by the overflow rate of Timer 1 or Timer
2, or a combination of the two (one for transmit, the other for receive).
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Clocking and synchronizing the serial port shift registers in modes 1, 2, and 3 is es-
tablished by a 4-bit divide-by- 16 counter, the output of which is the baud rate clock. (See
Figure 5-5.) The input to this counter is selected through software, as discussed later.

Transmission is initiated by writing to SBUF, but does not actually start until the
next rollover of the divide-by-16 counter supplying the serial port baud rate. Shifted data
are outputted on the TXD line beginning with the start bit, followed by the eight data
bits, then the stop bit. The period for each bit is the reciprocal of the baud rate as pro-
grammed in the timer. The transmit interrupt flag (T1) is set as soon as the stop bit ap-
pears on TXD. (See Figure 5-6.)

Reception is initiated by a 1-10-0 transition on RXD. The divide-by-16 counter is
immediately reset to align the counts with the incoming bit stream (the next bit arrives
on the next divide-by-16 rollover, and so on). The incoming bit stream is sampled in the
middle of the 16 counts.

The receiver includes “false start bit detection” by requiring a 0 state eight counts
after the first 1-t0-0 transition. If this does not occur, it is assumed that the receiver was

8 Extsa outputs FIGURE 5-4
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triggered by noise rather than by a valid character. The receiver is reset and returns to the
idle state, looking for the next 1-to-0 transition.

Assuming a valid start bit was detected, character reception continues. The start bit
is skipped and eight data bits are clocked into the serial port shift register. When all eight
bits have been clocked in, the following occur:

1. The ninth bit (the stop bit) is clocked into RB8 in SCON,
2. SBUF is loaded with the eight data bits, and

3. The receiver interrupt flag (R1} is set.

These only occur, however, if the following conditions exist:
1. RI=0, and

2. SM2 =1 and the received stop bit=1, or SM2 =0.

The requirement that R1 = 0 ensures that software has read the previous character
(and cleared RI). The second condition sounds complicated, but applies only in multi-

processor communications mode (see below). It implies, “do not set RI in multiprocessor
communications mode when the ninth data bit is 0.”

5.3.3 9-Bit UART with Fixed Baud Rate (Mode 2)

When SM1 = | and SMO = 0, the serial port operates in mode 2 as a 9-bit UART with a
fixed baud rate. Eleven bits are transmitted or received: a start bit, eight data bits, a pro-

1
l I Baud rate
I |

Stop

Start bit

1
\\* /oo X b1 D2 D3 X b4 X ps X D6 X D7 ]

Transmit interrupt

(ready for more data)

FIGURE 5-6
Setting the serial port Tl flag
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grammable ninth data bit, and a stop bit. On transmission, the ninth bit is whatever has
been put in TB8 in SCON (perhaps a parity bit). On reception, the ninth bit received is
placed in RB8. The baud rate in mode 2 is either 1/32nd or 1/64th the on-chip oscillator
frequency. (See 5.6 Serial Port Baud Rates.)

5.3.4 9-Bit UART with Variable Baud Rate (Mode 3)

Mode 3, 9-bit UART with variable baud rate, is the same as mode 2 except the baud rate
is programmable and provided by the timer. In fact, modes 1, 2, and 3 are very similar.
The differences lie in the baud rates (fixed in mode 2, variable in modes 1 and 3) and in
the number of data bits (eight in mode 1, nine in modes 2 and 3).

5.4 INITIALIZATION AND ACCESSING SERIAL PORT REGISTERS
5.4.1 Receiver Enable

The receiver enable bit (REN) in SCON must be set by software to enable the reception
of characters. This is usually done at the beginning of a program when the serial port,
timers, etc., are initialized. This can be done in two ways. The instruction

SETB REN
explicitly sets REN, or the instruction
MOV SCON, #xxx1xxxxXB

sets REN and sets or clears the other bits in SCON, as required. (The x’s must be 1s or Os
to set the mode of operation.)

5.4.2 The 9th Data Bit

The ninth data bit transmitted in modes 2 and 3 must be loaded into TB8 by software.
The ninth data bit received is placed in RB8. Software may or may not require a ninth
data bit, depending on the specifications of the serial device with which communications
is established. (The ninth data bit also plays an important role in multiprocessor commu-
nications. See below.)

5.4.3 Adding a Parity Bit

A common use for the ninth data bit is to add parity to a character. As discussed in Chap-
ter 2, the P bit in the program status word (PSW) is set or cleared every machine cycle to
establish even parity with the eight bits in the accumulator. If, for example, communica-
tions requires eight data bits plus even parity, the following instructions could be used to
transmit the eight bits in the accumulator with even parity added in the ninth bit:

MOV C,P ; PUT EVEN PARITY BIT IN TB8
MOV TBS8,C ; THIS BECOMES THE 9TH DATA BIT
MOV SBUF, A ; MOVE 8 BITS FROM ACC TO SBUF
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If odd parity is required, then the instructions must be modified as follows:

MOV C,P ; PUT EVEN PARITY BIT IN C FLAG
CPL C ; CONVERT TO ODD PARITY
MOV TBS,C

MOV SBUF,A

Of course, the use of parity is not limited to modes 2 and 3. In mode 1, the eight
data bits transmitted can consist of seven data bits plus a parity bit. In order to transmit a
7-bit ASCII code with even parity in bit 8, the following instructions could be used:

CLR ACC.7 ; ENSURE MSB IS CLEAR
; EVEN PARITY IS IN P
MOV C,P ; COPY TO C
MOV ACC.7.C ; PUT EVEN PARITY INTO MSB
MOV SBUF,A ; SEND CHARACTER

7 DATA BITS PLUS EVEN PARITY

H

5.4.4 Interrupt Flags

The receive and transmit interrupt flags (RI and TI) in SCON play an important role in 8051
serial communications. Both bits are set by hardware, but must be cleared by software.

Typically, Rl is set at the end of character reception and indicates “receive buffer
full.” This condition is tested in software or programmed to cause an interrupt. (Inter-
rupts are discussed in Chapter 6.) If software wishes to input a character from the device
connected to the serial port (perhaps a video display terminal), it must wait until Rl is
set, then clear RI and read the character from SBUF. This is shown below.

WAIT: JNB RI,WAIT ; CHECK RI UNTIL SET
CLR RI ; CLEAR RI
MOV A, SBUF ; READ CHARACTER

TI is set at the end of character transmission and indicates “transmit buffer empty.”
If software wishes to send a character to the device connected to the serial port, it must
first check that the serial port is ready. In other words, if a previous character was sent,
wait until transmission is finished before sending the next character. The following in-
structions transmit the character in the accumulator:

WAIT: JNB TI,WAIT ;CHECK TI UNTIL SET
CLR TI ;CLEAR TI
MOV SBUF,A ; SEND CHARACTER

The receive and transmit instruction sequences above are usually part of standard
input character and output character subroutines. These are described in more detail in
Example 5-2 and Example 5-3.

5.5 MULTIPROCESSOR COMMUNICATIONS

Modes 2 and 3 have a special provision for multiprocessor communications. In these
modes, nine data bits are received and the ninth bit goes into RB8. The port can be pro-
grammed so that when the stop bit is received, the serial port interrupt is activated only if
RB8 = 1. This feature is enabled by setting the SM2 bit in SCON. An application of this
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Multiprocessor communication

is in a networking environment using multiple 8051s in a master/slave arrangement, as
shown in Figure 5-7.

When the master processor wants to transmit a block of data to one of several
slaves, it first sends out an address byte that identifies the target slave. An address byte
differs from a data byte in that the ninth bit is 1 in an address byte and 0 in a data byte.
An address byte, however, interrupts all slaves, so that each can examine the received
byte to test if it is being addressed. The addressed slave will clear its SM2 bit and prepare
to receive the data bytes that follow. The slaves that weren’t addressed leave their SM2
bits set and go about their business, ignoring the incoming data bytes. They will be inter-
rupted again when the next address byte is transmitted by the master processor. Special
schemes can be devised so that once a master/slave link is established, the slave can also
transmit to the master. The trick is not to use the ninth data bit after a link has been es-
tablished (otherwise other slaves may be inadvertently selected).

SM2 has no effect in mode 0, and in mode 1 it can be used to check the validity of
the stop bit. In mode 1 reception, if SM2 = 1, the receive interrupt will not be activated
unless a valid stop bit is received.

5.6 SERIAL PORT BAUD RATES

As evident in Table 5-2, the baud rate is fixed in modes 0 and 2. In mode 0 it is always the
on-chip oscillator frequency divided by 12. Usually a crystal drives the 8051°s on-chip os-
cillator, but another clock source can be used as well. (See Chapter 2.) Assuming a nominal
oscillator frequency of 12 MHz, the mode 0 baud rate is 1 MHz. (See Figure 5~8a.)

By defauit following a system reset, the mode 2 baud rate is the oscillator fre-
quency divided by 64. The baud rate is also affected by a bit in the power control regis-
ter, PCON. Bit 7 of PCON is the SMOD bit. Setting SMOD has the effect of doubling
the baud rate in modes 1, 2, and 3. In mode 2, the baud rate can be doubled from a default
value of 1/64th the oscillator frequency (SMOD = 0), to 1/32nd the oscillator frequency
(SMOD = 1). (See Figure 5-8b.)
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Since PCON is not bit-addressable, setting SMOD without altering the other
PCON bits requires a “read-modify-write” operation. The following instructions set
SMOD:

MOV A, PCON ;GET CURRENT VALUE OF PCON
SETB ACC.7 ;SET BIT 7 (SMOD}
MOV  PCON, A ;WRITE VALUE BACK TO PCON

The 8051 baud rates in modes 1 and 3 are determined by the Timer 1 overflow rate.
Since the timer operates at a relatively high frequency, the overflow is further divided by
32 (16 if SMOD = 1) before providing the baud rate clock to the serial port. The 8052
baud rate in modes 1 and 3 is determined by the Timer | or Timer 2 overflow rates, or
both.

5.6.1 Using Timer 1 as the Baud Rate Clock

Considering only an 8051 for the moment, the usual technique for baud rate generation is
to initialize TMOD for 8-bit auto-reload mode (timer mode 2) and put the correct reload
value in TH1 to yield the proper overflow rate for the baud rate. TMOD is initialized as
follows:
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MOV  TMOD, #0010xxxxB

The x’s are 1s or Os as needed for Timer 0.

This is not the only possibility. Very low baud rates can be achieved by using 16-
bit mode, timer mode 2 with TMOD = 0001xxxxB. There is a slight software overhead,
however, since the THI/TLI registers must be reinitialized after each overflow. This
would be performed in an interrupt service routine. Another option is to clock Timer |
externally using T1 (P3.5). Regardless, the baud rate is the Timer 1 overflow rate divided
by 32 (or divided by 16, if SMOD = 1),

The formula for determining the baud rate in modes 1 and 3, therefore, is

BAUD RATE = TIMER 1 OVERFLOW RATE + 32
For example, 1200 baud operation requires an overflow rate calculated as follows:

1200 = TIMER 1 OVERFLOW RATE =+ 32
TIMER 1 OVERFLOW RATE = 38.4 kHz

If a 12 MHz crystal drives the on-chip oscillator. Timer 1 is clocked at a rate of 1
MHz or 1000 kHz. Since the timer must overflow at a rate of 38.4 kHz and the timer is
clocked at a rate of 1000 kHz, an overflow is required every 1000 + 38.4 = 26.04 clocks.
(Round to 26.) Since the timer counts up and overflows on the FFH-to-00H transition
of the count, 26 counts less than 0 is the required reload value for TH1. The correct value
is —26. The easiest way to put the reload value into TH1 is

MOV TH1, #-26

The assembler will perform the necessary conversion. In this case —26 is converted to
OE6H; thus, the instruction above is identical to

MOV TH1, #0E6H

Due to rounding, there is a slight error in the resulting baud rate. Generally, a 5%
error is tolerable using asynchronous (start/stop) communications. Exact baud rates are
possible using an 11.059 MHz crystal. Table 5-3 summarizes the TH! reload values for
the most common baud rates, using a 12.000 MHz or 11.059 MHz crystal.

TABLE 5-3
Baud rate summary
CRYSTAL TH1 ACTUAL

BAUD RATE FREQUENCY SMOD RELOAD VALUE BAUDRATE ERROR
9600 12.000 MHz 1 -7 (F9H) 8923 7%
2400 12.000 MHz 0 —13 (F3H) 2404 0.16%
1200 12.000 MHz 0 ~26 (E6H) 1202 0.16%

19200 11.059 MHz 1 -3 (FDH) 19200 0

9600 11.059 MHz 0 —3 (FDH) 9600 1}
2400 11.059 MHz 0 —12 (F4H) 2400 0
1200 11.059 MHz 0 —24 (E8H) 1200 0
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Example 5-1: Initializing the Serial Port
Write an instruction sequence to initialize the serial port to operate as an 8-bit UART at
2400 baud. Use Timer | to provide the baud rate clock.
For this example, four registers must be initialized: SMOD, TMOD, TCON, and
TH1. The required values are summarized below.
SMO SM1 SM2 REN TB8 RB8 TI RI
SCON: 0 1 0 1 0 0 1 Q
GTE C/T M1 MO GTE c/T M1 MO
TMOD : 0 0 1 0 0 0 0 0
TF1 TR1 TFO TRO IE1 IT1 IEO ITO
TCON: 0 1 0 0 0 0 0 0
THL1: 1 1 1 1 0 0 1 1
Setting SMO/SMI = (/1 puts the serial port into 8-bit UART mode. REN = 1 enables the
serial port to receive characters. Setting T1 = | allows transmission of the first character
by indicating that the transmit buffer is empty. For TMOD, setting M1/MO = 1/0 puts
Timer | into 8-bit auto-reload mode. Setting TR1 = | in TCON turns on Timer 1. The
other bits are shown as Os, since they control features or modes not used in this example.
The required THI1 value is that which provides overflows at the rate of 2400 X
32 =76.8 kHz. Assuming the 8051 is clocked from a 12 MHz crystal, Timer 1 is clocked
at a rate of 1 MHz or 1000 kHz, and the number of clocks for each overflow is 1000 +
76.8 = 13.02. (Round to 13.) The reload value is — 13 or OF3H.
The initialization instruction sequence is shown below.
Example 5-1: 8051 Serial Port Example (initialize the serial port)
8100 5 ORG 8100H
8100 759852 6 INIT: MOV SCON, #52H ;serial port, mode 1
8103 758920 7 MoV TMOD, #20H ;timer 1, mode 2
8106 758DF3 8 MOV TH1, #-13 ;reload count for 2400 baud
8109 D28E 9 SETB TR1 ;start timer 1
10 END

Example 5-2: Qutput Character Subroutine

Write a subroutine called OUTCHR to transmit the 7-bit ASCII code in the accumulator
out the 8051 serial port, with odd parity added as the 8th bit. Return from the subroutine
with the accumulator intact, i.e., containing the same value as before the subroutine was
called.
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This example and the next illustrate two of the most common subroutines on mi-
crocomputer systems with an attached RS232 terminal: output character (OUTCHR) and
input character (INCHAR).

8100 S ORG 8100H
8100 A2D0 6 OUTCHR: MOV c,p ;put parity bit in C flag
8102 B3 7 CPL C ;change to odd parity
8103 92E7 8 MOV ACC.7,C ;add to character code
8105 3099FD 9 AGAIN: JNB TI,AGAIN ;Tx empty? no: check again
8108 €299 10 CLR TI ;yes: clear flag and
810A F599 11 MOV SBUF,A ; send character
810C C2E7 12 CLR ACC.7 ;strip off parity bit and
810E 22 13 RET ; return

14 END

The first three instructions place odd parity in the accumulator bit 7. Since the P bit
in the PSW establishes even parity with the accumulator, it is complemented before be-
ing placed in ACC.7. The JNB instruction creates a “wait loop,” repeatedly testing the
transmit interrupt flag (T1) untit it is set. When T1 is set (because the previous character
transmission is finished), it is cleared and then the character in the accumulator is writ-
ten into the serial port buffer (SBUF). Transmission begins on the next rollover of the
divide-by-16 counter that clocks the serial port. (See Figure 5-5.) Finally, ACC.7 is
cleared so that the return value is the same as the 7-bit code passed to the subroutine.

The OUTCHR subroutine is a building block and is of little use by itself. At a
“higher level,” this subroutine is called to transmit a single character or a string of char-
acters. For example, the following instructions transmit the ASCII code for the letter “Z”
to the serial device attached to the 8051°s serial port:

MOV A,#'Z’
CALL OUTCHR
(continue)

As a natural extension to this idea, Problem 1 at the end of this chapter uses OUTCHR as
a building block in an OUTSTR (output string) subroutine that transmits a sequence of
ASCII codes (terminated by a NULL byte, O0H) to the serial device attached to the
8051’s serial port.
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Example 5-3: Input Character Subroutine

Write a subroutine called INCHAR to input a character from the 8051’s serial port and
return with the 7-bit ASCII code in the accumulator. Expect odd parity in the eighth bit
received and set the carry flag if there is a parity error.

8100 5 ORG 8100H

8100 3098FD 6 INCHAR: JNB RI,$ ;wait for character
8103 €298 7 CLR RI ;clear flag

8105 E599 8 MOV A, SBUF ;read char into A
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8107 A2D0 9 MOV C,P ; for odd parity in A,
10 H P should be set
8109 B3 11 CPL [o] ;complementing correctly
12 ; indicates if "error*
810A C2E7 13 CLR ACC.7 ;strip off parity
810C 22 14 RET
15 END

This subroutine begins by waiting for the receive interrupt flag (RI) to be set, indi-
cating that a character is waiting in SBUF to be read. When R1 is set, the JNB instruction
falls through to the next instruction. Rl is cleared and the code in SBUF is read into the
accumulator. The P bit in the PSW establishes even parity with the accumulator, so it
should be set if the accumulator, on its own, correctly contains odd parity in bit 7. Mov-
ing the P bit into the carry flag leaves CY = 0 if there is no error. On the other hand, if the
accumulator contains a parity error, then CY = I, correctly indicating “parity error.” Fi-
nally, ACC.7 is cleared to ensure that only a 7-bit code is returned to the calling pro-
gram.

5.7 SUMMARY

This chapter has presented the major details required to program the 8051 serial port. A
passing mention has been made in this chapter and in the last chapter of the use of inter-
rupts. Indeed, advanced applications using the 8051 timers or serial ports generally re-
quire input/output operations to be synchronized by interrupts. This is the topic of the
next chapter.

PROBLEMS

The following problems are typical of the software routines for interfacing terminals (or
other serial devices) to a microcomputer. Assume the 8051 serial port is initialized in 8-
bit UART mode and the baud rate is provided by Timer 1.

I. Write a subroutine called OUTSTR that sends a null-terminated string of ASCII
codes to the device (perhaps a VDT) connected to the 8051 serial port. Assume the
string of ASCII codes is in external code memory and the calling program puts the
address of the string in the data pointer before calling OUTSTR. A null-terminated
string is a series of ASCII bytes terminated with a O0OH byte.

2. Write a subroutine called INLINE that inputs a line of ASCIl codes from the device
connected to the 8051 serial port and places it in internal data memory beginning at
address 50H. Assume the line is terminated with a carriage return code. Place the car-
riage return code in the line buffer along with the other codes, and then terminate the
line buffer with a null byte (00H).

3. Write a program that continually sends the alphabet (lowercase) to the device at-
tached to the 8051 serial port. Use the OUTCHR subroutine written earlier.

4. Assuming the availability of the OUTCHR subroutine, write a program that continu-
ally sends the displayable ASCII set (codes 20H to 7EH) to the device attached to the
8051 serial port.
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6.

. Modify the solution to the above problem to suspend and resume output to the screen

using XOFF and XON codes entered on the keyboard. All other codes received
should be ignored. (Note: XOFF = CONTROL-S = 13H, XON = CONTROL-Q =
11H) ,

Assume the availability of the INCHAR and OUTCHR subroutines and write a pro-
gram that inputs characters from the keyboard and echoes them back to the screen,
converting lowercase characters to uppercase.

. Assume the availability of the INCHAR and OUTCHR subroutines and write a pro-

gram that inputs characters from the device attached to the 8051 serial port and
echoes them back substituting period (.) for any control characters (ASCII codes 00H
to 1FH, and 7FH).

. Assume the availability of the OUTCHR subroutine and write a program that clears

the screen on the VDT attached to the 8051 serial port and then sends your name to
the VDT 10 times on 10 separate lines. The clear screen function on VDTs is accom-
plished by transmitting a CONTROL-Z on many terminals or <ESC> [ 2 J on termi-
nals that support ANSI (American National Standards Institute) escape sequences.
Use either method in your solution.

. Figure 54 illustrates a technique for expanding the output capability of the 8051. As-

suming such a configuration, write a program that initializes the 8051 serial port for
shift register mode and then maps the contents of internal memory location 20H to the
eight extra outputs, 10 times per second.
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6.1 INTRODUCTION

An interrupt is the occurrence of a condition—an event—that causes a temporary sus-
pension of a program while the condition is serviced by another program. Interrupts play
an important role in the design and implementation of microcontroller applications.
They allow a system to respond asynchronously to an event and deal with the event
while another program is executing. An interrupt-driven system gives the illusion of
doing many things simultaneously. Of course, the CPU cannot execute more than one in-
struction at a time; but it can temporarily suspend execution of one program, execute an-
other, then return to the first program. In a way, this is like a subroutine. The CPU exe-
cutes another program-—the subroutine—and then returns to the original program. The
difference is that in an interrupt-driven system, the interruption is a response to an
“event” that occurs asynchronously with the main program. 1t is not known when the
main program will be interrupted.

The program that deals with an interrupt is called an interrupt service routine
(ISR) or interrupt handler. The ISR executes in response to the interrupt and generally
performs an input or output operation to a device. When an interrupt occurs, the main
program temporarily suspends execution and branches to the ISR; the ISR executes, per-
forms the operation, and terminates with a “return from interrupt” instruction; the main
program continues where it left off. It is common to refer to the main program as execut-
ing at base-level and the ISRs as executing at interrupt-level. The terms foreground
(base-level) and background (interrupt-level) are also used. This brief view of inter-
rupts is depicted in Figure 61, showing (a) the execution of a program without inter-
rupts and (b) execution at base-level with occasional interrupts and ISRs executing at
interrupt-level.

A typical example of interrupts is manual input using a keyboard. Consider an ap-
plication for a microwave oven. The main program (foreground) might control a mi-
crowave power element for cooking; yet, while cooking, the system must respond to
manual input on the oven’s door, such as a request to shorten or lengthen the cooking
time. When the user depresses a key. an interrupt is generated (a signal goes from high to
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Retumn from interrupt instruction
(b) Program exccution with interrupts
FIGURE 6-1

Program execution with and without interrupts. (a) Without interrupts (b) With interrupts.

low, perhaps) and the main program is interrupted. The ISR takes over in the back-
ground, reads the keyboard code(s) and changes the cooking conditions accordingly, and
finishes by passing control back to the main program. The main program carries on
where it left off. The important point in this example is that manual input occurs “asyn-
chronously;” that is, it occurs at intervals not predictable or controlled by the software
running in the system. This is an interrupt.

6.2 8051 INTERRUPT ORGANIZATION

There are five interrupt sources on the 8051: two external interrupts, two timer inter-
rupts, and a serial port interrupt. The 8052 adds a sixth interrupt source from the extra
timer. All interrupts are disabled after a system reset and are enabled individually by
software.

In the event of two or more simultaneous interrupts or an interrupt occurring while
another interrupt is being serviced, there is both a polling sequence and a two-level pri-
ority scheme to schedule the interrupts. The polling sequence is fixed but the interrupt
priority is programmable.

Let's begin by examining ways to enable and disable interrupts.

6.2.1 Enabling and Disabling Interrupts

Each of the interrupt sources is individually enabled or disabled through the bit-address-
able special function register 1E (interrupt enable) at address 0A8H. As well as individ-
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ual enable bits for each interrupt source, there is a global enable/disable bit that is
cleared to disable all interrupts or set to turn on interrupts. (See Table 6-1.)

Two bits must be set to enable any interrupt: the individual enable bit and the
global enable bit. For example. timer | interrupts are enabled as follows:

SETB ET1 ;ENAELE Timer 1 INTERRUPT
SETB EA ;SET GLOBAL ENABLE BIT

This could also be coded as
MOV IE,#10001000B

Although these two approaches have exactly the same effect following a system reset,
the effect is different if IE is written “on-the-fly,” in the middle of a program. The first
approach has no effect on the other five bits in the IE register, whereas the second ap-
proach explicitly clears the other bits. It is fine to initialize IE with a “move byte” in-
struction at the beginning of a program (i.e., following a power-up or system reset), but
enabling and disabling interrupts on-the-fly within a program should use “set bit” and
“clear bit” instructions to avoid side effects with other bits in the IE register.

6.2.2 Interrupt Priority

Each interrupt source is individually programmed to one of two priority levels through
the bit-addressable special function register [P (interrupt priority) at address OB8H. (See
Table 6-2.)

IP is cleared after a system reset to place all interrupts at the lower priority level by
default. The idea of “priorities’ allows an ISR to be interrupted by an interrupt if the new
interrupt is of higher priority than the interrupt currently being serviced. This is straight-
forward on the 8051, since there are only two priority levels. If a low-priority ISR is ex-
ecuting when a high-priority interrupt occurs, the ISR is interrupted. A high-priority ISR
cannot be interrupted.

The main program, executing at base level and not associated with any interrupt,
can always be interrupted regardless of the priority of the interrupt. If two interrupts of
different priorities occur simultaneously, the higher priority interrupt will be serviced
first.

BIT DESCRIPTION TABLE 6-1

BIT SYMBOL ADDRESS (1 = ENABLE, 0 = DISABLE) register summary

IE.7 EA AFH Giobal enable/disable

IE.6 - AEH Undefined

IE.5 ET2 ADH Enable Timer 2 Interrupt (8052)
IE.4 ES ACH Enable serial port interrupt

IE.3 ET1 ABH Enable Timer 1 interrupt

IE.2 EX1 AAH Enable external 1 interrupt

IE.A ETO ASH Enable Timer @ interrupt

IE.O EXO0 A8H Enable external 0 interrupt

|E (interrupt enable)
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TABLE 6-2
IP (interrupt priority) register summary
BIT DESCRIPTION
BIT SYMBOL ADDRESS (1 = HIGHER LEVEL, 0 = LOWER LEVEL)
IP.7 - - Undefined
IP.6 - - Undefined
IP.5 PT2 0BDH Priority for Timer 2 interrupt (8052)
IP.4 PS 0BCH Priority for serial port interrupt
IP.3 PT1 0BBH Priority for Timer 1 interrupt
1P.2 PX1 OBAH Priority for external 1 interrupt
1P.1 PTO 0BgH Priority for Timer 0 interrupt
IP.0 PXo0 0B8H Priority for external 0 interrupt

6.2.3. Polling Sequence

If two interrupts of the same priority occur simultaneously, a fixed polling sequence de-
termines which is serviced first. The polling sequence is external 0, Timer 0, external 1,
Timer 1, serial port, Timer 2.

Figure 6-2 illustrates the five interrupt sources, the individual and global enable
mechanism, the polling sequence, and the priority fevels. The state of all interrupt
sources is available through the respective flag bits in the SFRs. Of course, if any inter-
rupt is disabled, an interrupt does not occur, but software can still test the interrupt flag.
The timer and serial port examples in the previous two chapters used the interrupt flags
extensively without actually using interrupts.

A serial port interrupt results from the logical OR of a receive interrupt (R1) or a
transmit interrupt (TI). Likewise, Timer 2 interrupts are generated by a timer overflow
(TF2) or by the external input flag (EXF2). The flag bits that generate interrupts are sum-
marized in Table 6-3.

6.3 PROCESSING INTERRUPTS

When an interrupt occurs and is accepted by the CPU, the main program is interrupted.
The following actions occur:
O The current instruction completes execution
a The PC is saved on the stack
0 The current interrupt status is saved internally
0 Interrupts are blocked at the level of the interrupt
0 The PC is loaded with the vector address of the ISR
0 The ISR executes
The ISR executes and takes action in response to the interrupt. The ISR finishes
with a RETI (return from interrupt) instruction. This retrieves the old value of the PC

from the stack and restores the old interrupt status. Execution of the main program con-
tinues where it left off.



Wdnuam
plichavg

ouanbas
Surjjod
1dnasug

adnusin
Koud
Mo

dnuaug
Awuoud
LEHTE

2imonJis 1dnuisiul LGOS JO MBIAIBAQ
-9 34NDI3

axg

j a1qeus
« Teqoln
) I ,li:ﬁoac_
el & |
- f" 0 | -
— et mr—<
I
|
I
- Py [
<« *_ . o | o Il
< « * o oo o
]
1
1
- Py !
« & a !
< e * e o0 o
i
}
| A
> < ° ! H 0
> « I
< M/o e oo o E 11 qﬁ\c’ LLNI
i
I
< *___ o
< . \"\Olo\c
I
_ A
: Lo
« o o
< . L —o _» oI oLt 1\0’ OLNI
128181 g1 1381321 91 OA

101



102

TABLE 6-3
Interrupt flag bits

TABLE 64

Interrupt vectors

uAPTER 6

INTERRUPT FLAG SFR REGISTER AND BIT POSITION
External 0 IEQ TCON.1
External 1 IE1 TCON.3
Timer 1 TF1 TCON.7
Timer 0 TFO TCON.5
Serial port T1 SCON.1
Serial port RI SCON.0
Timer 2 TF2 T2CON.7 (8052)
Timer 2 EXF2 T2CON.6 (8052)

6.3.1 [Interrupt Vectors

When an interrupt is accepted, the value loaded into the PC is called the interrupt vec-
tor. It is the address of the start of the ISR for the interrupting source. The interrupt vec-
tors are given in Table 6-—4.

The system reset vector (RST at address 0000H) is included in this table, since, in
this sense, it is like an interrupt: it interrupts the main program and loads the PC with a
new value.

When “vectoring to an interrupt,” the flag that caused the interrupt is automatically
cleared by hardware. The exceptions are RI and TI for serial port interrupts, and TF2 and
EXF?2 for Timer 2 interrupts. Since there are two possible sources for each of these inter-
rupts, it is not practical for the CPU to clear the interrupt flag. These bits must be tested
in the ISR to determine the source of the interrupt, and then the interrupting flag is
cleared by software. Usually a branch occurs to the appropriate action, depending on the
source of the interrupt.

Since the interrupt vectors are at the bottom of code memory, the first instruction
of the main program is often a jump above this area of memory, such as LIMP 0030H.

6.4 PROGRAM DESIGN USING INTERRUPTS

The examples in Chapter 3 and Chapter 4 did not use interrupts but made extensive use
of “wait loops™ to test the timer overflow flags (TFO, TF1, or TF2) or the serial port
transmit and receive flags (TT or RI). The problem in this approach is that the CPU’s
valuable execution time is fully consumed waiting for flags to be set. This is inappropri-

INTERRUPT FLAG VECTOR ADDRESS
System reset RST 0000H
External 0 IEQ 0003H
Timer 0 TFO 000BH
External 1 IE1 0013H
Timer 1 TF1 001BH
Serial port Rior Tl 0023H

Timer 2 TF2 or EXF2 002BH
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ate for control-oriented applications where a microcontroller must interact with many in-
put and output devices simultaneously.

In this section, examples are developed to demonstrate practical methods for im-
plementing software for control-oriented applications. The key ingredient is the inter-
rupt. Although the examples are not necessarily bigger, they are more complex, and in
recognition of this, we proceed one step at a time. The reader is advised to follow the ex-
amples slowly and to examine the software meticulously. Some of the most difficult
bugs in system designs often involve interrupts. The details must be understood thor-
oughly.

Since we are using interrupts, the examples will be complete and self-contained.
Each program starts at address 0000H with the assumption that it begins execution fol-
lowing a system reset. The idea is that eventually these programs develop into full-
fledged applications that reside in ROM or EPROM.

The suggested framework for a self-contained program using interrupts is shown
below.

ORG 0000H ;RESET ENTRY POINT
LJMP MAIN
;i ISR ENTRY POINTS

ORG 0030H ;MAIN PROGRAM ENTRY POINT
MAIN: . ;MAIN PROGRAM BEGINS

The first instruction jumps to address 0030H, just above the vector locations where
the ISRs begin, as given in Table 6-4. As shown in Figure 6-3, the main program begins
at address 0030H.

External code FIGURE 6-3
memory Memory organization when
FFFF using interrupts

Main program

0030

002F
Reset and
interrupt
entry points

0000 LIMP main
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C. . .ER6

6.4.1 Small Interrupt Service Routines

Interrupt service routines must begin near the bottom of code memory at the addresses
shown in Table 6-4. Although there are only eight bytes between each interrupt entry
point, this is often enough memory to perform the desired operation and return from the
ISR to the main program.

if only one interrupt source was used, say Timer 0, then the following framework
could be used:

ORG 00Q0H ;RESET

LJMP MAIN

ORG 0O00BH ;Timer 0 ENTRY POINT
TOLSR: . ;Timer 0 ISR BEGINS

RETI ; RETURN TO MAIN PROGRAM
MAIN: . ;MAIN PROGRAM

If more interrupts are used, care must be taken to ensure they start at the correct location
(see Table 6-4) and do not overrun the next ISR. Since only one interrupt is used in the
example above, the main program can begin immediately after the RETI instruction.

6.4.2 Large Interrupt Service Routines

If an ISR is longer than eight bytes, it tnay be necessary to move it elsewhere in code
memory or it may trespass on the entry point for the next interrupt. Typically, the ISR
begins with a jump to another area of code memory where the ISR can stretch out. Con-
sidering only Timer 0 for the moment, the following framework could be used:

ORG 000O0H ;RESET ENTRY POINT
LJMP MAIN
ORG QQO0BH ;Timer O ENTRY PQINT
LJIJMP TOISR
ORG 0030H ;ABOVE INTERRUPT VECTORS
MATN:
TOISR:

;Timer 0 ISR

RETT ;RETURN TO MAIN PROGRAM

To keep it simple, our programs will only do one thing ai a time initially. The main or
foreground program initializes the timer, serial port, and interrupt registers as appropri-
ate, and then does nothing. The work is done totally in the ISR. After the initialize in-
structions, the main program consists of the following instruction:

HERE: SIMP HERE

When an interrupt occurs, the main program is interrupted temporarily while the
ISR executes. The RET1 instruction at the end of the ISR returns control to the main pro-
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gram, and it continues doing nothing. This is not as farfetched as one might think. In
many control-oriented applications, the bulk of the work is in fact done in the interrupt
service routines.
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Example 6-1 A Square Wave Using Timer Interrupts

Write a program using Timer 0 and interrupts to create a 10 kHz square wave on P1.0.

Timer interrupts occur when the timer registers (TLx/THx) overflow and set the
overflow flag (TFx). This example appears in Chapter 4 without using interrupts (see ex-
ample). The bulk of the program is the same except it is now organized into the frame-
work for interrupts. Here's the program:

0000 5 ORG 0 ;reset entry point

0000 020030 6 LJMP MAIN ;jump above interrupt vectors
000B 7 ORG 000BH ;Timer 0 interrupt vector
000B B290 8 TOISR: CPL P1.0 ;toggle port bit

000D 32 9 RETI

0030 10 ORG 0030H ;Main program entry point
0030 758902 11 MAIN: MOV TMOD, #02H jtimer 0, mode 2

0033 758CCE 12 MOV THO, #-50 ;50 us delay

0036 D28C 13 SETB TRO ;start timer

0038 75A882 14 MOV 1E, #82H ;jenable timer 0 interrupt
003B 80FE 15 SJMp S : ;do nothing

16 END

This is a complete program, which could be burned into EPROM and installed in an
8051 single-board computer for execution. Immediately after reset, the program counter
is loaded with 0000H. The first instruction executed is LJMP MAIN, which branches
over the timer ISR to address 0030H in code memory. The next three instructions (lines
11-13) initialize Timer O for 8-bit auto-reload mode with overflows every 50 ps. The
MOV IE.#82H instruction enables Timer 0 interrupts, so each overflow of the timer gen-
erates an interrupt. Of course, the tirst overflow will not occur for 50 s, so the main pro-
gram falls through to the “do-nothing™ loop. Each 50 ws an interrupt occurs; the main
program is interrupted and the Timer O ISR executes. The ISR simply complements the
port bit and returns to the main program where the do-nothing loop executes for another
50 ps.

Note that the timer flag, TF0, is not explicitly cleared by software. When interrupts
are enabled, TFQ is automatically cleared by hardware when the CPU vectors to the in-
terrupt.

Incidentally, the return address in the main program is the location of the SIMP in-
struction. This address gets pushed on the 8051’ internal stack prior to vectoring to each
interrupt, and gets popped from the stack when the RETI instruction executes at the
end of the ISR. Since the SP was not initialized, it defaults to its reset value of 07H. The
push operation leaves the return address in internal RAM locations 08H (PC, ) and 09H
(PC,).
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020030

02003F

020042

758912

758CB9
D28C
D28F
75A88A
80FE

B297
32
C28E
7S8DFC
758B18
D2BE
B296
32

Example 6-2;: Two Square Waves Using Interrupts

Write a program using interrupts to simultaneously create 7 kHz and 500 Hz square
waves on P1.7 and P1.6.

The hardware configuration with the timings for the desired waveforms is shown
in Figure 6-4.

This combination of outputs would be extremely difficult to generate on a non-in-
terrupt-driven system. Timer 0, providing synchronization for the 7 kHz signal, operates
in mode 2, as in the previous example: and timer 1. providing synchronization for the
500 Hy. signal, operates in mode 1, 16-bit timer mode. Since 500 Hz requires a high-time
of 1 ms and low-time of | ms, mode 2 cannot be used. (Recall that 256 ps is the max-
imum timed interval in mode 2 when the 8051 is operating at 12 MHz.) Here's the
program:

5 ORG 0
6 LJMP MAIN
7 ORG 000BH ;Timer 0 vector address
8 LIMP TOISR
9 ORG 001BH ;Timer 1 vector address
10 LJMP T1ISR
11 ORG 0030H
12 MAIN: MOV TMOD, #12H ;Timer 1 = mode 1
13 ;Timer 0 = mode 2
14 MOV THO, #-71 ;7 kHz using timer 0
15 SETB TRO
16 SETB TF1 jforce timer 1 interrupt
17 MOV 1E, #8AH ;enable both timer intrrpts
18 SJIMP $
19 ;
20 TOISR: CPL P1.7
21 RETI
22 T1ISR: CLR TR1
23 MoV TH1, #HIGH(~1000) ;1 ms high time &
24 MOV TL1, #LOW(-1000) ; low time
25 SETB TR1
26 CPL Pl.6
27 RETI
28 END

Again, the framework is for a complete program that could be installed in EPROM
or ROM on an 8051-based product. The main program and the ISRs are located above
the vector locations for the system reset and interrupts. Both waveforms are created by
“CPL bit” instructions; however, the timed intervals necessitate a slightly different ap-
proach for cach.

Since the TLI/THI registers must be reloaded after each overflow (i.e., after each
interrupt), Timer [ ISR (a) stops the timer, (b) reloads TL1/THI1, (¢) starts the timer, then
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8051 fe=71 s -]

PIT b— 5 I . 7kHz

P16 3 l 500 Hz

FIGURE 64
Waveform example

(d) complements the port bit. Note also that TLI/THI are not initialized at the beginning
of the main program, unlike THO. Since TLI/THI must be reinitialized after each
overflow, TF1 is set in the main program by software to “force” an initial interrupt as
soon as interrupts are turned on. This eftectively gets the 500 Hz waveform started.

The Timer O ISR, as in the previous example, stmply complements the port bit and
returns to the main program. SJIMP § is used in the main program as the abbreviated form
of HERE: SIMP HERE. The two forms are functionally equivalent. (See “Special As-
sembler Symbols” in Chapter 7.)

6.5 SERIAL PORT INTERRUPTS

Serial port interrupts occur when either the transmit interrupt flag (T1) or the receive in-
terrupt flag (RI) is set. A transmit interrupt occurs when transmission of the previous
character written to SBUF has finished. A receive interrupt occurs when a character has
been completely received and is waiting in SBUF to be read.

Serial port interrupts are slightly different from timer interrupts. The flag that
causes a serial port interrupt is not cleared by hardware when the CPU vectors to the in-
terrupt. The reason is that there are two sources for a serial port interrupt, TI or RI. The
source of the interrupt must be determined in the ISR and the interrupting flag cleared by
software. Recall that with timer interrupts the interrupting flag is cleared by hardware
when the processor vectors to the ISR.
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Example 6-3: Character Output Using Interrupts

Write a program using interrupls to continually transmit the ASCII code set (excluding
control codes) to a terminal attached to the 80517 serial port.
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0000
0000
0023
0023
0030
0030
0033
0036
0038

003B
003D
0040

0042
0045
0047
0049
004A
004cC

020030
020042

758920
758DE6
D28E

759842

7420
75A890
80FE

B47F02
7420
F599
04
c299
32

Ch... (cRB

There are 128 7-bit codes in the ASCII chart. (See Appendix F.) These consist of
95 graphic codes (20H to 7EH) and 33 control codes (00H to 1FH, and 7FH). The pro-
gram shown below is self-contained and executable from EPROM or ROM immediately
after a system reset.

5 ORG 0
6 LJMP MAIN
7 ORG 0023H ;serial port interrupt entry
8 LJIMP SPISR
S ORG 0030H
10 MAIN: MOV TMOD, #20H ;Timer 1, mode 2
11 MoV TH1, #-26 ;12000 baud reload value
12 SETB TR1 ;start timer
13 MoV SCON, #42H ;mode 1, set TI to force 1st
14 ; interrupt; send 1lst char.
15 MoV A, #20H ;send ASCII space first
16 MOV IE, #90H ;enable serial port interrupt
17 SJIMP S ;do nothing
18 H
19 SPISR: CJINE A,#7FH,SKIP ;if finished ASCII set,
20 MoV A, #20H i reset to SPACE
21 SKIP: Mov SBUF,A ;send char. to serial port
22 INC A ;increment ASCII code
23 CLR TI ;clear interrupt flag
24 RETI
25 END

After jumping to MAIN at code address 0030H, the first three instructions initial-
ize Timer 1 to provide a 1200 baud clock to the serial port (lines 10-12). MOV
SCON #42H initializes the serial port for mode 1 (8-bit UART) and sets the Tl flag to
force an interrupt as soon as interrupts are enabled. Then, the first ASCII graphic code
(20H) is loaded into A and serial port interrupts are enabled. Finally, the main body of
the program enters a do-nothing loop (SIMP §$).

The serial port interrupt service routine does all the work once the main program
sets up initial conditions. The first two instructions check the accumulator, and if the
ASCI code has reached 7FH (i.e., the last code transmitted was 7EH), reset the accumu-
lator to 20H (lines 19-20). Then, the ASCII code is sent to the serial port buffer (MOV
SBUF,A), the code is incremented (INC A). the transmit interrupt flag is cleared (CLR
TI), and the ISR is terminated (RETI). Control returns to the main program and SIMP $
executes until Tl is set at the end of the next character transmission.

If we compare the CPU’s speed to the rate of character transmission, we see that
SIMP $ executes for a very large percentage of the titme for this program. What is this
percentage? At 1200 baud, each bit transmitted takes 1/1200 = 0.833 ms. Eight data bits
plus a start and stop bit, therefore, take 8.33 ms or 8333 ws. The worst-case execution
time for the SPISR is found by totaling the number of cycles for each instruction and
multiplying by 1 us (assuming 12 MHz operation). This turns out to be 8 ps. So, of the
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8333 ps for each character transmission, only 8 s are for the interrupt service routine.
The SIMP § instruction executes about 8325 + 8333 X 100 = 99.90% of the time. Since
interrupts are used, the SIMP $ instruction could be replaced with other instructions per-
forming other tasks required in the application. Interrupts would still occur every 8.33
ms. and characters would still be transmitted out the serial port as they are in the above
program.

6.6 EXTERNAL INTERRUPTS

External interrupts occur as a result of a low-level or negative edge on the INTO or
INTT pin on the 8051 1C. These are the alternate functions for Port 3 bits P3.2 (pin 12)
and P3.3 (pin 13) respectively.

The flags that actually generate these interrupts are bits IEQ and IE1 in TCON.
When an external interrupt is generated, the flag that generated it is cleared by hardware
when vectoring to the ISR only if the interrupt was transition-activated. If the interrupt
was level-activated, then the external requesting source controls the level of the request
flag, rather than the on-chip hardware.

The choice of low-level-activated interrupts versus negative-edge-activated inter-
rupts is programmable through the ITO and IT1 bits in TCON. For example, if ITl =0,
external interrupt 1 is triggered by a detected low at the INTT pin. If IT] =1, external in-
terrupt 1 is edge-triggered. In this mode. if successive samples of the INTT pin show a
high in one cycle and a low in the next. the interrupt request flag IE1 in TCON is set.
Flag bit IE1 then requests the interrupt.

Since the external interrupt pins are sampled once each machine cycle, an input
should be held for at least 12 oscillator periods to ensure proper sampling. If the exter-
nal interrupt is transition-activated, the external source must hold the request pin high
for at least | cycle, and then hold it low for at least | more cycle to ensure the transi-
tion is detected. IEO and IE1 are automatically cleared when the CPU vectors to the in-
terrupt,

If the external interrupt is level-activated, the external source must hold the request
active until the requested interrupt is actually generated. Then it must deactivate the re-
quest before the interrupt service routine is completed, or another interrupt will be gener-
ated. Usually, an action taken in the ISR causes the requesting source to return the inter-
rupting signal to the inactive state.
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Example 6-4: Furnace Controlier

Using interrupts, design an 8051 furnace controller that keeps a building at 20°C *1°C.

The ftollowing interface is assumed for this example. The furnace ON/OFF sole-
noid is connected to P1.7 such that

P1.7 = 1 for solenoid engaged (furnace ON}
P1.7 = 0 for solenoid disengaged (furnace OFF)
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Temperature sensors are connected to INTO and INTI and provide HOT and COLD
signals, respectively, such that

HOT = 0 if T » 21%C
CoLD = 0 if T < 19%C

The program should turn on the furnace for T < 19°C and turn it off for T > 21°C. The
hardware configuration and a timing diagram are shown in Figure 6-5.

5 ORG 0
020030 6 LJMP MAIN
7 ;EXT 0 vector at 0003H
Cc297 8 EX0ISR: CLR Pl1.7 ;turn furnace off
32 9 RETI
10 ORG 0013H
D297 11 EX1ISR: SETB P1.7 ;turn furnace on
32 12 RETI
13 ORG 30H
75A885 14 MAIN: Mov IE, $85H ;enable external interrupts
D288 15 SETB ITO ;negative edge triggered
D28A 16 SETB Tl
D297 17 SETB Pl1.7 ;turn furnace off
20B202 18 JB P3.2, SK1IP ;if T > 21 degrees,
c297 19 CLR P1.7 ; turn furnace off
80FE 20 SKIP: SJMP $ ;do nothing
21 END

The first three instructions in the main program (lines 14-16) turn on external in-
terrupts and make both INTO and INTT negative-edge triggered. Since the current state
of the HOT (P3.3) and COLD (P3.3) inputs is not known, the next three instructions
(lines 17-19) are required to turn the furnace ON or OFF, as appropriate. First, the fur-
nace is turned ON (SETB P1.7), and then the HOT input is sampled (JB P3.2,SKIP). If
HOT is high, then T < 21°C, so the next instruction is skipped and the furnace is left ON.
If, however, HOT is low, then T > 21°C. In this case the jump does not take place. The
next instruction turns the furnace OFF (CLR P1.7) before entering the do-nothing loop.

Once everything is set up properly in the main program, little remains to be done.
Each time the temperature rises above 21°C or falls below 19°C, an interrupt occurs. The
ISRs simply turn the furnace ON (SETB P1.7) or OFF (CLR P1.7), as appropriate, and
return to the main program.

Note that an ORG 0003H statement is not necessary immediately before the
EXOISR label. Since the LIMP MAIN instruction is three bytes long, EXOISR is certain
to start at 0003H, the correct entry point for external O interrupts.

Example 6-5: Intrusion Warning System

Design an intrusion warning system using interrupts that sounds a 400 Hz tone for | sec-
ond (using a loudspeaker connected to P1.7) whenever a door sensor connected INTO
makes a high-to-low transition.
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P1.7 }——————> Furnace on

COLD ————— 1 INTI

FIGURE 6-5
Furnace example. (a) Hardware connections (b) Timing.

The solution to this example uses three interrupts: external O (door sensor), Timer
0 (400 Hz tone), and Timer | (1 second timeout). The hardware configuration and tim-
ings are shown in Figure 6-6.

0000 5 ORG 0

0000 020030 6 LJMP MAIN ;3-byte instruction

0003 02003A 7 LJMP EX0ISR ;EXT 0 vector address
000B 8 ORG C00BH ;Timer 0 vector

000B 020045 9 LJMP TOISR

001B 10 ORG 001BH ;Timer 1 vector

001B 020059 11 LJIJMP T1ISR

0030 12 ORG 0030H

0030 D288 13 MAIN: SETB IT0 ;negative edge activated

0032 758911 14 MoV TMOD, #11H ;16-bit timer mode
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15 MoV 1E, #81H ;enable EXT 0 only

i6 SJIMP S ;now relax

17 ;

18 EXOISR: MOV R7, #20 ;20 x 5000 us = 1 second
19 SETB TFO0 ;force timer 0 interrupt
20 SETB TF1 ;force timer 1 interrupt
21 SETB ETO :begin tone for 1 second
22 SETB ET1 ;enable timer interrupts
23 RETT stimer ints will do the work
24 ;

25 TOISR: CLR TRD ;stop timer

26 DJINZ R7, SKIP ;if not 20th time, exit
27 CLR ETO ;if 20th, disable tone
28 CLR ET1 ;disable itself

29 LJMP EXIT

30 SKIP: MOV THO, #HIGH(-50000) ;0.05 sec. delay
31 MOV TLO, #LOW(-~50000)

32 SETB TRO

33 EXIT: RETI

34 H

35 T1ISR: CLR TR1

36 MoV TH1, #HIGH(-1250) ;count for 400 Hz
37 MOV TL1, #LOW{~1250)

38 CPL Pl1.7 ;music maestro!

39 SETB TR1

40 RETI

41 END

This is our largest program thus far. Five distinct sections are the interrupt vector
locations, the main program, and the three interrupt service routines. All vector locations
contain LIMP instructions to the respective routines. The main program, starting at code
address 0030H, contains only four instructions. SETB ITO configures the door-sensing
interrupt input as negative-edge triggered. MOV TMOD.#11H contigures both timers
for mode 1. 16-bit timer mode. Only the external 0 interrupt ¢s enabled initially (MOV
IE,#81H), so a “door open” condition is needed before any interrupt is accepted. Finally,
SIMP $ puts the main program in a do-nothing loop.

When a door-open condition is sensed (by a high-to-low transition of INTO ), an
external O interrupt is generated. EXOISR begins by putting the constant 20 in R7 (see
below), then sets the overflow flags for both timers to force timer interrupts to occur.
Timer interrupts will only occur, however, if the respective bits are enabled in the IE reg-
ister. The next two instructions (SETB ETO0 and SETB ET1) enable timer interrupts. Fi-
nally, EXO{SR terminates with a RET1 to the main program.

Timer O creates the 1 second timeout, and Timer 1 creates the 400 Hz tone. After
EXOISR returns to the main program, timer interrupts are immediately generated (and
accepted after one execution of SIMP $). Because of the fixed polling sequence (see Fig-
ure 6-2), the Timer O interrupt is serviced first. A 1 second timeout is created by pro-
gramming 20 repetitions of a 50,000 ps timeout. R7 serves as the counter. Nineteen
times out of 20, TOISR operates as follows. First, Timer 0 is turned off and R7 is decre-
mented. Then, THO/TLO is reloaded with —50000, the timer is turned back on and the in-
terrupt is terminated. On the 20th Timer 0 interrupt, R7 is decremented to O (1 second
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FIGURE 6-6

Loudspeaker interface using interrupts. (a) Hardware connections (b) Timing.

has efapsed). Both timer interrupts are disabled (CLR, ETO, CLR ET1) and the intecrupt
is terminated. No further timer interrupts will be generated until the next “door-open”
condition is sensed.

The 400 Hz tone is programmed using Timer | interrupts. 400 Hz requires a period
of 1/400 = 2,500 ps, or 1,250 ps high-time and 1,250 ps low-time. Each timer 1 ISR
simply puts —1250 in THI/TL1. complements the port bit driving the loudspeaker. then
terminates.

6.7 INTERRUPT TIMINGS

Interrupts are sampled and latched on S5P2 of each machine cycle. (See Figure 6-7.)
They are polled on the next machine cycle and if an interrupt condition exists, it is ac-
cepted if (a) no other interrupt of equal or higher priority is in progress, (b) the polling
cycle is the last cycle in an instruction, and (c) the current instruction is not a RETI or
any access to IE or IP. During the next two cycles, the processor pushes the PC on the
stack and loads the PC with the interrupt vector address. The ISR begins.

The stipulation that the current instruction is not RETI ensures that at least one in-
struction executes after each interrupt service routine. The timing is shown in Figure 6-8.
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The time between an interrupt condition occurring and the ISR beginning is called
interrupt latency. Interrupt latency is critical in many control applications. With a 12
MHz crystal, the interrupt latency can be as short as 3.25 s on the 8051. An 8051 sys-
tem that uses one high-priority interrupt will have a worst-case interrupt latency of 9.25
s (assuming the high-priority interrupt is always enabled). This occurs if the interrupt
condition happens just before the RETI of a level 0 ISR that is followed by a multiply in-
struction (see Figure 6-9).

6.8 SUMMARY

This chapter has presented the major details required to embark on the design of inter-
rupt-driven systems with the 8051 microcontroller. Readers are advised to begin pro-
gramming with interrupts in increments. The examples in this chapter serve as a good
first contact with 8051 interrupts.

8051 single-board computers usually contain a monitor program in EPROM resid-
ing at the bottom of code memory. If interrupts are not used in the monitor program, the
vector locations probably contain LIMP instructions to an area of CODE RAM where

Cycle 1 Cycle 2* Cycle 3 Cycle 4 Cycle §
/ S—— ——— —
Interrupts Interrupt accepted ISR
I
::nr;lg‘tis polled (PC pushed on stack) begins

*Must be last machine cycle of instruction

FIGURE 6-8
Polling of interrupts
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Interrupt latency

user applications are loaded for execution and debugging. The manufacturer’s literature
will provide the addresses for programmers to use as entry points for interrupt service
routines. Alternatively, users can simply “look” in the interrupt vector locations using
the monitor program’s commands for examining code memory locations. The content of
code memory address 0003H, for example, will contain the opcode of the first instruc-
tion to execute for an external 0 interrupt. If this is an LIMP opcode (22H; see Appendix
B), then the next two addresses (0003H and 0004H) contain the address of the ISR, and
SO on.

Alternately, users can develop self-contained interrupt applications, as shown in
the examples. The object bytes can be burned into EPROM and installed in the target
system at code address 0000H. When the system is powered up or reset, the application
begins execution without the need of a monitor program for loading and starting the ap-
plication.

PROBLEMS

1. Modify Example 1 to shut off interrupts and terminate if any key is hit on the ter-
minal.

. Create a 1 kHz square wave on P1.7 using interrupts.
. Create a 7 kHz pulse wave with a 30% duty cycle on P1.6 using interrupts.
. Combine Example 6-1 and Example 6-3 (earlier in the chapter) into one program.

. Modify Example 6-3 to send one character per second. (Hint: use a timer and output
the character in the timer ISR.)

ok W N






ASSEMBLY LANGUAGE
PROGRAMMING

7.1 INTRODUCTION

This chapter introduces assembly language programming for the 8051 microcontroller.
Assembly language is a computer language lying between the extremes of machine lan-
guage and high-level language. Typical high-level languages like Pascal or C use words
and statements that are easily understood by humans, although still a long way from
“natural” language. Machine language is the binary language of computers. A machine
language program is a series of binary bytes representing instructions the computer can
execute, '

Assembly language replaces the binary codes of machine language with easy to re-
member “mnemonics” that facilitate programming. For example, an addition instruction
in machine language might be represented by the code “101{00{1.” It might be repre-
sented in assembly language by the mnemonic “ADD.” Programming with mnemonics
is obviously preferable to programming with binary codes.

Of course, this is not the whole story. Instructions operate on data, and the location
of the data is specified by various “addressing modes™ embedded in the binary code of
the machine language instruction. So. there may be several variations of the ADD in-
struction depending on what is added. The rules for specifying these variations are cen-
tral to the theme of assembly language programming.

An assembly language program is not executable by a computer. Once written. the
program must undergo translation to machine language. In the example above, the
mnemonic “ADD” must be translated to the binary code “10110011.” Depending on
the complexity of the programming environment, this translation may involve one or
more steps before an executable machine language program results. As a minimum, a
program called an “assembler” is required to translate the instruction mnemonics to ma-
chine language binary codes. A further step may require a “linker” to combine portions
of programs from separate files and to set the address in memory at which the program
may execute. We begin with a few definitions.

An assembly language program is a program written using labels, mnemonics,
and so on, in which each statement corresponds to a machine instruction. Assembly lan-
guage programs, often called source code or symbolic code, cannot be executed by a
computer.
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A machine language program is a program containing binary codes that repre-
sent instructions to a computer. Machine language programs, often called object code,
are executable by a computer.

An assembler is a program that translates an assembly language program into a
machine language program. The machine language program (object code) may be in
“absolute” form or in “relocatable” form. In the latter case, “linking” is required to set
the absolute address for execution.

A linker is a program that combines relocatable object programs (modules) and
produces an absolute object program that is executable by a computer. A linker is some-
times called a “linker/locator” to reflect its separate functions of combining relocatable
modules (linking) and setting the address for execution (locating).

A segment is a unit of code or data memory. A segment may be relocatable or ab-
solute. A relocatable segment has a name, type, and other attributes that allow the linker
to combine it with other partial segments, if required, and to correctly locate the seg-
ment. An absolute segment has no name and cannot be combined with other segments.

A module contains one or more segments or partial segments. A module has a
name assigned by the user. The module definitions determine the scope of local symbols.
An object file contains one or more modules. A module may be thought of as a “file” in
many instances.

A program consists of a single absolute module, merging all absolute and relocat-
able segments from all input modules. A program contains only the binary codes for in-
structions (with addresses and data constants) that are understood by a computer,

7.2 ASSEMBLER OPERATION

There are many assembler programs and other support programs available to facilitate
the development of applications for the 8051 microcontroller. Intel’s original MCS-
51™family assembler, ASM51, is the standard to which the others are compared. In this
chapter, we focus on assembly language programming as undertaken using the most
common features of ASMS51. Although many features are standardized, some may not be
implemented in assemblers from other companies.

ASMS51 is a powerful assembler with all the bells and whistles. It is available on
Intel development systems and on the IBM PC family of microcomputers. Since these
“host” computers contain a CPU chip other than the 8051, ASM51 is called a cross as-
sembler. An 8051 source program may be written on the host computer (using any text
editor) and may be assembled to an object file and listing file (using ASMS51), but the
program may not be executed. Since the host system’s CPU chip is not an 8051, it does
not understand the binary instructions in the object file. Execution on the host computer
requires either hardware emulation or software simulation of the target CPU. A third
possibility is to download the object program to an 8051-based target system for execu-
tion. Hardware emulation, software simulation, downloading, and other development
techniques are discussed in Chapter 9.

ASMS351 is invoked from the system prompt by

ASM51 source_file [assembler_ controls]

The source file is assembled and any assembler controls specified take effect. (Assem-
bler controls, which are optional, are discussed later in this chapter.) The assembler re-
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O Utility program
D User file

ceives a source file as input (e.g., PROGRAM.SRC) and generates an object file (PRO-
GRAM.OBJ) and listing file (PROGRAM.LST) as output. This is illustrated in Figure
7-1.

FIGURE 7-1
PROGRAM. OBJ Assembling a source
program

PROGRAM. LST

Since most assemblers scan the source program twice in performing the translation
to machine language, they are described as two-pass assemblers. The assembler uses a
location counter as the address of instructions and the values for labels. The action of
each pass is described below.

7.2.1 Pass One

During the first pass, the source file is scanned line-by-line and a symbol table is built.
The location counter defaults to 0 or is set by the ORG (set origin) directive. As the file is
scanned, the location counter is incremented by the length of each instruction. Define
data directives (DB or DW) increment the location counter by the number of bytes
defined. Reserve memory directives (DS) increment the location counter by the number
of bytes reserved.

Each time a label is found at the beginning of a line, it is placed in the symbol table
along with the current value of the location counter. Symbols that are defined using
equate directives (EQU) are placed in the symbol table along with the “equated” value.
The symbol table is saved and then used during pass two.

7.2.2 Pass Two

During pass two, the object and listing files are created. Mnemonics are converted to op-
codes and placed in the output files. Operands are evaluated and placed after the instruc-
tion opcodes. Where symbols appear in the operand field, their values are retrieved from
the symbol table (created during pass one) and used in calculating the correct data or ad-
dresses for the instructions.

Since two passes are performed, the source program may use “forward refer-
ences,” that is, use a symbol before it is defined. This would occur, for example, when
branching ahead in a program.

The object file, if it is absolute, contains only the binary bytes (0OH-FFH of the
machine language program. A relocatable object file will also contain a symbol table and
other information required for linking and locating. The listing file contains ASCII text
codes (20H-7EH) for both the source program and the hexadecimal bytes in the machine
language program.
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A good demonstration of the distinction between an object file and a listing file is
to display each on the host computer’s CRT display (using, for example, the TYPE com-
mand on MS-DOS systems). The listing file clearly displays, with each line of output
containing an address, opcode, and perhaps data, followed by the program statement
from the source file. The listing file displays properly because it contains only ASCH
text codes. Displaying the object file is a problem, however. The output will appear as
“garbage,” since the object file contains binary codes of an 8051 machine language pro-
gram, rather than ASCII text codes.

A sketch of a two-pass assembler is shown in Figure 7-2 written in a pseudo com-
puter language (similar to Pascal or C) to enhance readability.

7.3 ASSEMBLY LANGUAGE PROGRAM FORMAT

Assembly language programs contain the following:

O Machine instructions
0 Assembler directives
O Assembler controls
o Comments

Machine instructions are the familiar mnemonics of executable instructions (e.g.,
ANL). Assembler directives are instructions to the assembler program that define pro-
gram structure, symbols, data, constants, and so on (e.g., ORG). Assembler controls set
assembler modes and direct assembly flow (e.g., $TITLE). Comments enhance the read-
ability of programs by explaining the purpose and operation of instruction sequences.

Those lines containing machine instructions or assembler directives must be writ-
ten following specific rules understood by the assembler. Each line is divided into
“fields” separated by space or tab characters. The general format for each line is as fol-
lows:

(label:] mnemonic [operand] [,operand][. . .][;comment]

Only the mnemonic field is mandatory. Many assemblers require the label field, if pres-
ent, to begin on the left in column 1, and subsequent fields to be separated by space or tab
characters. With ASMS51, the label field needn’t begin in column ! and the mnemonic
field needn’t be on the same line as the label field. The operand field must, however, be-
gin on the same line as the mnemonic field. The fields are described below.

7.3.1 Label Field

A label represents the address of the instruction (or data) that follows. When branching
to this instruction, this label is used in the operand field of the branch or jump instruction
(e.g., SIMP SKIP).

Whereas the term “label” always represents an address, the term “symbol” is more
general. Labels are one type of symbol and are identified by the requirement that they
must terminate with a colon (). Symbols are assigned values or attributes using direc-
tives such as EQU, SEGMENT, BIT, DATA, etc. Symbols may be addresses, data con-



ASM(input_file) /* assemble source program in input_file */
BEGIN
/* pass 1: build the symbol table */

[le = 0) /* lc = location counter; default to 0 */
{mnemonic = nutl) :
[open input_file)
WHILE Imnemonic 1= end] DO BEGIN
[get line from input_file]
[scan line and get label/symbol and mnemonicl
IF [label) THEN fenter "label = lc" into symbol tablel
CASE {mnemonic] OF
null, comment, END:
{do nothing]
ORG: [lc = operand]
EQU: [enter "symbol = operand" into symbol table]
DB: [increment le by number of bytes defined)
DW: [increment {c by twice the number of words defined}
DS: [lec = lc + operand]

1_byte_instruction: ([lc = l¢c + 1]
2_byte_instruction: [lc = tc + 2]
3_byte_instruction: ({lc = lc + 3]

END
/* pass 2: create the object program */

trewind input_file pointer]
[lc = 01
[mnemonic = null]
[open output_file)
WHILE [mnemonic != end] DO BEGIN
[get line from input_filel
[scan line and determine mnemonic op code and value(s) of operand(s)]

/* Note: If symbols are used in operand field,

*  their values are looked-up in the symbol table
* created during pass one.

*/

CASE [mnemonic] OF
null, comment, EQU, END:
[do nothing}
ORG: [lc = operand)
DB: [put bytes into object_file and increment ic by # of bytes]
DW:  [put words into object_file and inc lc by twice # of words]
0S: [lc = lc + operand)
1_byte_instruction:  [put opcode into output_filel
2_byte_instruction:  [put opcode into output_file]l
fput low-byte of operand into output_filel
3 byte_instruction: [put opcode into output_file)
[put high-byte of operand into output_filel
[put low-byte of operand into output_filel
END
[close input_filel
[close output_filel

END

FIGURE 7-2
Pseudo code sketch of a two-pass assembler
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stants, names of segments, or other constructs conceived by the programmer. Symbols
do not terminate with a coton. In the example below, PAR is a symbol and START is a
label (which is a type of symbol).

PAR EQU 500 ;“PAR” IS5 A SYMBOL WHICH
; REPRESENTS THE VALUE 500
START: MOV A, #0FFH ; “START” 1S A LABEL WHICH

; REPRESENTS THE ADDRESS OF
; THE MOV INSTRUCTION

A symbol (or label) must begin with a letter, question mark, or underscore (_);
must be followed by letters, digits, “?”, or “_"; and can contain up to 3! characters.!
Symbols may use upper- or lower-case characters, but they are treated the same. Re-
served words (mnemonics, eperators, predefined symbols, and directives) may not be
used.

7.3.2 Mnemonic Field

Instruction mnemonics or assembler directives go in the mnemonic field, which follows
the label field. Examples of instruction mnemonics are ADD, MOV, DIV, or INC. Ex-
amples of assembler directives are ORG, EQU, or DB. Assembler directives are de-
scribed fater in this chapter.

7.3.3 Operand Field

The operand field follows the mnemonic field. This field contains the address or data
used by the instruction. A label may be used to represent the address of the data, or a
symbol may be used to represent a data constant. The possibilities for the operand field
are largely dependent on the operation. Some operations have no operand (e.g., the RET
instruction), while others allow for multiple operands separated by commas. Indeed, the
possibilities for the operand field are numerous, and we shall elaborate on these at
length. But first, the comment field.

"

7.3.4 CGomment Field

Remarks to clarify the program go in the comment field at the end of each line. Com-
ments must begin with a semicolon (;). Entire lines may be comment lines by beginning
them with a semicolon. Subroutines and large sections of a program generally begin with
a comment block—several lines of comments that explain the general properties of the
section of software that follows.

7.3.5 Special Assembler Symhols

Special assembler symbols are used for the register-specific addressing modes. These in-
clude A, RO through R7, DPTR, PC, C, and AB. As well, a dollar sign ($) can be used to
refer to the current value of the location counter. Some examples follow.

Yrhe reader is reminded that the reles specified in this chapter apply to lntel's ASMS1. Other assemblers may
have different requirements.
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SETB C
INC DPTR
JNB TI,S$

The last instruction above makes effective use of ASMS51’s location counter to avoid us-
ing a label. It could also be written as

HERE: JNB TI1,HERE

7.3.6 Indirect Address

For certain instructions, the operand field may specify a register that contains the address
of the data. The commercial “at” sign (@) indicates address indirection and may only be
used with RO, R1, the DPTR, or the PC, depending on the instruction. For example,

ADD A,@RO
MOVC A, @A+PC

The first instruction above retrieves a byte of data from internal RAM at the address
specified in RO. The second instruction retrieves a byte of data from external code mem-
ory at the address formed by adding the contents of the accumulator to the program
counter. Note that the value of the program counter, when the add takes place, is the ad-
dress of the instruction following MOVC. For both instructions above, the value re-
trieved is placed into the accumulator.

7.3.7 Immediate Data

Instructions using immediate addressing provide data in the operand field that become
part of the instruction. Immediate data are preceded with a pound sign (#). For example,

CONSTANT EQU 100
MOV A, #0FEH
ORL 40H, #CONSTANT

All immediate data operations (except MOV DPTR #data) require eight bits of data. The
immediate data are evaluated as a 16-bit constant and then the low-byte is used. All bits
in the high-byte must be the same (00H or FFH) or the error message “value will not fit
in a byte” is generated. For example, the following instructions are syntactically correct:

MOV A, #0FFOOH
MOV A, #00FFH

But the following two instructions generate error messages:

MOV A, #0FE0OH
MOV A, #01FFH

If using signed decimal notation, constants from —256 to +256 may be used. For
example, the following two instructions are equivalent (and syntactically correct):

MOV A, #-256
MOV A, #0FFO00H

Both instructions above put 00H into accumulator A.
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7.3.8 Data Address

Many instructions access memory locations using direct addressing and require an on-
chip data memory address (O0OH to 7FH) or an SFR address (80H to OFFH) in the
operand field. Predefined symbols may be used for the SFR addresses. For example,

MOV A, 45H
MOV A, SBUF ;SAME AS MOV A, 99H

7.3.9 Bit Address

One of the most powerful features of the 8051 is the ability to access individual bits
without the need for masking operations on bytes. Instructions accessing bit-addressable
locations must provide a bit address in internal data memory (O0OH to 7FH) or a bit ad-
dress in the SFRs (80H to OFFH).

There are three ways to specity a bit address in an instruction: (a) explicitly by giv-
ing the address, (b) using the dot operator between the byte address and the bit position,
and (c) using a predefined assembler symbol. Some examples follow.

SETB OE7H ;EXPLICIT BIT ADDRESS

SETB ACC.7 ;DOT OPERATOR (SAME AS ABOVE)
JNB TI,$ ;“TI” IS A PRE-DEFINED SYMBOL
JNB 99H,S$ ; (SAME AS ABOVE)

7.3.10 Code Address

A code address is used in the operand field for jump instructions. including relative
jumps (SIMP and conditional jumps). absolute jumps and calls (ACALL, AIMP), and
long jumps and calls (LIMP, LCALL).

The code address is usually given in the form of a label. For example,

HERE:

SJMP HERE

ASMS1 will determine the correct code address and insert into the instruction the correct
8-bit signed offset, 11-bit page address, or 16-bit long address, as appropriate.

7.3.11 Generic Jumps and Calls

ASMS|1 allows programmers to use a generic JMP or CALL mnemonic. “JMP” can be
used instead of SIMP, AJMP, or LIMP; and “CALL” can be used instead of ACALL or
LCALL. The assembler converts the generic mnemonic to a “real” instruction following
a few simple rules. The generic mnemonic converts to the short form (for JMP only) if
no forward references are used and the jump destination is within — 128 locations, or to
the absolute form if no forward references are used and the instruction following the
JMP or CALL instruction is in the same 2K block as the destination instruction. If short
or absolute forms cannot be used, the conversion is to the long form.
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MCS-51 MACRO ASSEMBLER  GENERIC FIGURE 7-3

Use of the generic JMP

DOS 3.31 (03B-N) MCS-51 MACRO ASSEMBLER, V2.2 mnemonic
OBJECT MODULE PLACED IN GENERIC.08J
ASSEMBLER INVOKED 8Y: C:\ASMS1\ASM51._EXE GENERIC.SRC EP

Loc 08J LINE  SOURCE
1234 1 0RG 12344
1234 04 2 START: INC A
1235 80FD 3 P START ;ASSEMBLES AS SJMP
12¢C 4 ORG START + 200
12FC 4134 5 P START ;ASSEMBLES AS AJMP
12FE 021301 6 P FINISH ;ASSEMBLES AS LJNP
1301 04 7 FINISH: INC A
8 END
The conversion is not necessarily the best programming choice. For example, if

branching ahead a few instructions, the generic JMP will always convert to LIMP even
though an SJMP is probably better. Consider the assembled instruction sequence in Fig-
ure 7-3 using three generic jumps. The first jump (line 3) assembles as SIMP because
the destination is before the jump (i.c., no forward reference) and the offset is less
than —128. The ORG directive in line 4 creates a gap of 200 locations between the label
START and the second jump. so the conversion on line 5 is to AJMP because the offset
is too great for SIMP. Note also that the address fotlowing the second jump (12FCH) and
the address of START (1234H) are within the same 2K page, which, for this instruction
sequence, is bounded by 1000H and ' 7FFH. This criterion must be met for absolute ad-
dressing. The third jump assembles as LIMP because the destination (FINISH) is not yet
defined when the jump is assembled (i.e.. a forward reference is used). The reader can
verify that the conversion is as stated by examining the object ficld for cach jump in-
struction. Verify the hexadecimal codes with those found in Appendix C for SIMP,
AJMP, and LIMP.

7.4 ASSEMBLE-TIME EXPRESSION EVALUATION

Values and constants in the operand field may be expressed three ways: (a) explicitly
(e.g., OEFH), (b) with a predetined symbol (e.g., ACC), or (¢) with an expression (e.g.. 2
+ 3). The use of expressions provides a powerful technique for making assembly lan-
guage programs more readable and more flexible. When an expression is used. the as-
sembler calculates a value and inserts it into the instruction.

All expression calculations are performed using 16-bit arithmetic; however, either
8 or 16 bits are inserted into the instruction as needed. For example, the following two
instructions are the same:

MOV DPTR, #04FFH + 3
MOV DPTR, #0502H ;ENTIRE 16~BIT RESULT USED

If the same expression is used in a “MOV A #data” instruction, however, the error mes-
sage “value will not fit in a byte” is generated by ASMS51. An overview of the rules for
evaluating expressions follows.
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7.4.1 Number Bases

The base for numeric constants is indicated in the usual way for Intel microprocessors.
Constants must be followed with “B” for binary, “O” or “Q” for octal, “D” or nothing
for decimal, or “H” for hexadecimal. For example, the following instructions are the
same:

MOV A, #15
MOV A, #1111B
MOV A, #0FH
MOV A, #17Q
MOV A, #15D

Note that a digit must be the first character for hexadecimal constants in order to differ-
entiate them from labels (i.e., “OASH” not “ASH™).

7.4.2 Character Strings

Strings using one or two characters may be used as operands in expressions. The ASCII
codes are converted to the binary equivalent by the assembler. Character constants are
enclosed in single quotes (*). Some examples follow.

CJINE A, #°Q’,AGAIN

SUBB A, #'0"' ;CONVERT ASCII DIGIT TO
; BINARY DIGIT

MOV DPTR, #'AB’

MOV DPTR, #4142H ; SAME AS ABOVE

7.4.3 Arithmetic Operators

The arithmetic operators are

+ addition

- subtraction

* multiplication
/ division

MOD modulo (remainder after division)
For example, the following two instructions are the same:

MOV A, #10 + 10H
MOV A, #1AH

The following two instructions are also the same:

MOV A, #25 MOD 7
MOV A, #4

Since the MOD operator could be confused with a symbol, it must be separated from its
operands by at least one space or tab character, or the operands must be enclosed in
parentheses. The same applies for the other operators composed of letters.
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7.4.4 Logical Operators
The logical operators are

OR logical OR

AND logical AND

XOR logical Exclusive OR
NOT logical NOT (complement)

The operation is applied on the corresponding bits in each operand. The operator must be
separated from the operands by space or tab characters. For example, the following two
instructions are the same:

MOV A, #'9’ AND OFH
MOV A, #9

The NOT operator only takes one operand. The following three MOV instructions are
the same:
THREE EQU 3
MINUS_THREE EQU -3
MOV A, #(NOT THREE) + 1
MOV A, #MINUS_THREE
MOV  A,#11111101B

7.4.5 Special Operators

The special operators are

SHR shift right
SHL shift left
HIGH high-byte
LOW low-byte

() evaluate first
For example, the following two instructions are the same:

MOV A, #8 SHL 1
MOV A, #10H

The following two instructions are also the same:

MOV A, #HIGH 1234H
MOV A, #12H

7.4.6 Relational Operators

When a relational operator is used between two operands, the result is always false
(0000H) or true (FFFFH). The operators are

EQ = equals
NE <> not equals
LT < less than

LE <= less than or equal to
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GT > greater than
GE >= greater than or equal to

Note that for each operator, two forms are acceptable (e.g., “EQ” or “="). In the follow-
ing examples, all relational tests are “true”:

MOV A,#5 = 5.
MOV A, #5 NE 4
MOV A, ¥'X’ LT ‘2
MOV A, #'X' >= ‘X’
MOV A,#$ > 0
MOV A,#100 GE 50

So, the assembled instructions are all equal to
MOV A, #0FFH

Even though expressions evaluate to 16-bit results (i.e., OFFFFH), in the examples above
only the low-order eight bits are used, since the instruction is a move byte operation. The
result is not considered too big in this case, because as signed numbers the 16-bit value
FFFFH and the 8-bit value FFH are the same (—1).

7.4.7 Expression Examples

The following are examples of expressions and the values that result:

Expression Result
‘B’ — ‘A’ 0001H
8/3 0002H
155 MOD 2 0001H
4 * 4 0010H
8 AND 7 0000H
NOT 1 FFFEH
‘A’ SHL 8 4100H
LOW 65535 O00FFH
(8 + 1) * 2 0012H
5 EQ 4 0000H
‘A’ LT ‘B’ FFFFH
3 <=3 FFFFH

A practical example that illustrates a common operation for timer initialization follows:
Put ~500 into Timer 1 registers TH1 and TL1. Using the HIGH and LOW operators, a
good approach is

VALUE EQU -500
MOV TH1,#HIGH VALUE
MOV TL1,#LOW VALUE
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The assembler converts —500 to the corresponding 16-bit value (FEOCH); then the
HIGH and LOW operators extract the high (FEH) and low (OCH) bytes, as appropriate
for each MOV instruction.

7.4.8 Operator Precedence
The precedence of expression operators from highest to lowest is

0

HIGH LOW

* / MOD SHL SHR

+ -

EQ NE LT LE GT GE = <> < <= > >=
NOT

AND

OR XOR

When operators of the same precedence are used, they are evaluated left-to-right. Exam-
ples:

Expression Value
HIGH ('A’ SHL 8) 0041H
HIGH ‘A’ SHL 8 0000H
NOT ‘A’ —1 FFBFH
‘A’ OR ‘A’ SHL 8 4141H

7.5 ASSEMBLER DIRECTIVES

Assembler directives are instructions to the assembler program. They are nof assembly
language instructions executable by the target microprocessor. However, they are placed
in the mnemonic field of the program. With the exception of DB and DW, they have no
direct effect on the contents of memory.

ASMS51 provides several categories of directives:
0 Assembler state control (ORG, END, USING)
0 Symbol definition (SEGMENT, EQU, SET, DATA, IDATA, XDATA, BIT, CODE)
O Storage initialization/reservation (DS, DBIT, DB, DW)
0 Program linkage (PUBLIC, EXTRN, NAME)
0 Segment selection (RSEG, CSEG, DSEG, ISEG, BSEG, XSEG)

Each assembler directive is preseated below, ordered by category.

7.5.1 Assembler State Control

7.5.1.1 ORG (Set Origin)
The format for the ORG (set origin) directive is

ORG expression
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The ORG directive alters the location counter to set a new program origin for statements
that follow. A label is not permitted. Two examples follow.

ORG 100H ; SET LOCATION COUNTER TO 100H
ORG ($ + 1000H) AND OFQO00H ;SET TO NEXT 4K BOUNDARY

The ORG directive can be used in any segment type. If the current segment is absolute,
the value will be an absolute address in the current segment. If a relocatable segment is
active, the value of the ORG expression is treated as an offset from the base address of
the current instance of the segment.
7.5.1.2 END
The format for the END directive is

END
END should be the last statement in the source file. No label is permitted and nothing be-
yond the END statement is processed by the assembler.
7.5.1.3 USING
The format for the USING directive is

USING expression

This directive informs ASM51 of the currently active register bank. Subsequent uses of
the predefined symbolic register addresses ARO to AR7 will convert to the appropriate
direct address for the active register bank. Consider the following sequence:

USING 3
PUSH AR7
USING 1
PUSH AR7

The first push above assembles to PUSH IFH (R7 in bank 3), whereas the second push
assembles to PUSH OFH (R7 in bank 1).

Note that USING does not actoally switch register banks; it only informs ASM51
of the active bank. Executing 8051 instructions is the only way to switch register banks.
This is illustrated by modifying the example above as follows:

MOV PSW, #00011000B ; SELECT REGISTER BANK 3
USING 3

PUSH AR7 ;ASSEMBLE TO PUSH 1FH
MOV PSW, #00001000B ; SELECT REGISTER BANK 1
USING 1

PUSH AR7 ;ASSEMBLE TO PUSH OFH

7.5.2 Symbol Definition

The symbol definition directives create symbols that represent segments, registers, num-
bers, and addresses. None of these directives may be preceded by a label. Symbols
defined by these directives may not have been previously defined and may not be
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redefined by any means. The SET directive is the only exception. Symbol definition di-
rectives are described below.

7.5.2.1 Segment
The format for the SEGMENT directive is shown below.

symbol SEGMENT segment_type

The symbol is the name of a relocatable segment. In the use of segments, ASM51 is
more complex than conventional assemblers, which generally support only “code” and
“data” segment types. However, ASM51 defines additional segment types to accommo-
date the diverse memory spaces in the 8051. The following are the defined 8051 segment
types (memory spaces):

00 CODE (the code segment)

1 XDATA (the external data space)

0 DATA (the internal data space accessible by direct addressing, 00H-7FH)

O IDATA (the entire internal data space accessible by indirect addressing, 00H-7FH,
00H-FFH on the 8052)

m BIT (the bit space; overlapping byte locations 20H-2FH of the internal data space)
For example, the statement
EPROM SEGMENT  CODE

declares the symbol EPROM to be a SEGMENT of type CODE. Note that this statement
simply declares what EPROM is. To actually begin using this segment, the RSEG direc-
tive is used (see below).

7.5.2.2 EQU (Equate)
The format for the EQU directive is
symbol EQU expression

The EQU directive assigns a numeric value to a specified symbol name. The symbol must
be a valid symbol name and the expression must conform to the rules described earlier.
The following are examples of the EQU directive:

N27 EQU 27 ;SET N27 TO THE VALUE 27
HERE EQU $ ; SET “HERE” TO THE VALUE
; OF THE LOCATION COUNTER
CR EQU ODH ;SET CR (CARRIAGE RETURN) TO ODH
MESSAGE: DB ‘This is a message’
LENGTH EQU $ - MESSAGE ; “LENGTH” EQUALS LENGTH OF “MESSAGE”

7.5.2.3 Other Symbol Definition Directives

The SET directive is similar to the EQU directive except the symbol may be redefined
later, using another SET directive.
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The DATA, IDATA, XDATA, BIT, and CODE directives assign addresses of the
corresponding segment type to a symbol. These directives are not essential. A similar ef-
tect can be achieved using the EQU directive; however, if used they evoke powerful
type-checking by ASMS51. Consider the following two directives and four instructions:

FLAG1L EQU O0S5H

FLAG2 BIT OS5H
SETB FLAG1
SETB FLAG2

MOV FLAGI1, #0
MOV FLAG2, #0

The use of FLAG2 in the last instruction in this sequence will generate a “‘data segment
address expected” error message from ASMS1. Since FLLAG?2 is defined as a bit address
(using the BIT directive), it can be used in a set bit instruction, but it cannot be used in a
move byte instruction. Hence, the error. Even though FLAGI represents the same value
(05H), it was defined using EQU and does not have an associated address space. This is
not an advantage of EQU, but, rather, a disadvantage. By properly defining address sym-
bols for use in a specific memory space (using the directives BIT, DATA, XDATA, etc.),
the programmer takes advantage of ASMS51’s powerful type-checking and avoids bugs
from the misuse of symbols.

7.5.3 Storage Initialization/Reservation

The storage initialization and reservation directives initialize and reserve space in either
word, byte, or bit units. The space reserved starts at the location indicated by the current
value of the location counter in the currently active segment. These directives may be pre-
ceded by a label. The storage initialization/reservation directives are described below.

7.5.3.1 DS (Define Storage)

The tormat for the DS (define storage) directive is
{label:] DS expression

The DS directive reserves space in byte units. It can be used in any segment type
except BIT. The expression must be a valid assemble-time expression with no forward
references and no relocatable or external references. When a DS statement is encoun-
tered in a program, the location counter of the current segment is incremented by the
value of the expression. The sum of the location counter and the specified expression
should not exceed the limitations of the current address space.

The following statements create a 40-byte buffer in the internal data segment:

DSEG AT 30H ;PUT IN DATA SEGMENT (ABSOLUTE, INTERNAL)
LENGTH EQU 40
BUFFER: DS LENGTH ;40 BYTES RESERVED

The label BUFFER represents the address of the first location of reserved memory. For
this example, the buffer begins at address 30H because “AT 30H” is specified with
DSEG. (See 7.5.5.2 Selecting Absolute Segments.) This buffer could be cleared using
the following instruction sequence:
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MOV R7, #LENGTH
MOV RO, #BUFFER
LOOP: MOV @RO, #0
DJNZ R7, LOOP
(continue)

To create a 1000-byte buffer in external RAM starting at 4000H, the following directives
could be used:

XSTART EQU 4000H
XLENGTH EQU 1000

XSEG AT XSTART
XBUFFER: DS XLENGTH

This buffer could be cleared with the following instruction sequence:

MOV DPTR, #XBUFFER
LOOP: CLR A
MOVX @DPTR, A
INC DPTR
MOV A, DPL
CJINE A, #LOW (XBUFFER + XLENGTH + 1), LOOP
MOV A,DPH
CJINE A, #HIGH (XBUFFER + XLENGTH + 1), LOOP
(continue)

This is an excellent example of a powerful use of ASM31”s operators and assemble-time
expressions. Since an instruction does not exist to compare the data pointer with an im-
mediate value, the operation must be fabricated from available instructions. Two com-
pares are required, one each for the high- and low-bytes of the DPTR. Furthermore, the
compare-and-jump-if-not-equal instruction works only with the accumulator or a regis-
ter, so the data pointer bytes must be moved into the accumulator before the CINE in-
struction. The loop terminates only when the data pointer has reached XBUFFER +
LENGTH + 1. (The “+1" is needed because the data pointer is incremented after the last
MOVX instruction.)

7.5.3.2 DBIT
The format for the DBIT (define bit) directive is,

[label:] DBIT expression

The DBIT directive reserves space in bit units. It can be used only in a BIT segment. The
expression must be a valid assemble-time expression with no forward references. When
the DBIT statement is encountered in a program, the location counter of the current
(BIT) segment is incremented by the value of the expression. Note that in a BIT segment,
the basic unit of the location counter is bits rather than bytes. The following directives
create three flags in an absolute bit segment:

BSEG ;BIT SEGMENT (ABSOLUTE)
KBFLAG: DBIT 1 ; KEYBOARD STATUS
PRFLAG: DBIT 1 ; PRINTER STATUS

DKFLAG: DBIT 1 ;DISK STATUS
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Since an address is not specified with BSEG in the example above, the address of the
flags defined by DBIT could be determined (if one wishes to do o) by examining the
symbol table in the .LST or .M51 files. (See Figure 7-1 and Figure 7-6.) If the defini-
tions above were the first use of BSEG, then KBFLAG would be at bit address O0H (bit 0
of byte address 20H; see Figure 2-6.) If other bits were defined previously using BSEG,
then the definitions above would follow the last bit defined. (See 7.5.5.2. Selecting Ab-
solute Segments.) ’

7.5.3.3 DB (Define Byte)
The format for the DB (define byte) directive is

[label:] DB expression {,expression]([. . . 1}

The DB directive initializes code memory with byte values. Since it is used to actually
place data constants in code memory, a CODE segment must be active. The expression
list is a series of one or more byte values (each of which may be an expression) separated
by commas.

The DB directive permits character strings (enclosed in single quotes) longer than
two characters as long as they are not part of an expression. Each character in the string
is converted to the corresponding ASCII code. If a label is used, it is assigned the address
of the first byte. For example, the following statements

CSEG AT 0100H
SQUARES: DB 0,1,4,9,16,25 ;SQUARES OF NUMBERS 0-5
MESSAGE : DB ‘Login:’,0 ; NULL~TERMINATED CHARACTER STRING

when assembled, result in the following hexadecimal memory assignments for external
code memory:

Address Contents
0100 00
0101 01
0102 04
0103 09
0104 10
0105 19
0106 4ac
0107 6F
0108 67
0109 69
010a 6E
010B 3A

010C 00



ASSEMBLY LANGUAGE PROGRAMMING 135

7.5.3.4 DW (Define Word)
The format for the DW (define word) directive is
[label:] DW expression [, expression] [’. |

The DW directive is the same as the DB directive except two memory locations (16 bits)
are assigned for each data item. For example, the statements

CSEG AT 200H
Dw $,'A’,1234H,2, 'BC’

result in the following hexadecimal memory assignments:

Address Contents
0200 02
0201 00
0202 00
0203 41
0204 12
0205 34
0206 00
0207 02
0208 42
0209 43

7.5.4 Program Linkage

Program linkage directives allow the separately assembled modules (files) to communi-
cate by permitting intermodule references and the naming of modules. In the following
discussion, a “module” can be considered a “file.” (In fact, a module may encompass
more than one file.)

7.5.41 PUBLIC
The format for the PUBLIC (public symbol) directive is
PUBLIC symbol [,symboll){. . . ]

The PUBLIC directive allows the list of specified symbols to be known and used outside
the currently assembled module. A symbol declared PUBLIC must be defined in the cur-
rent module. Declaring it PUBLIC allows it to be referenced in another module. For ex-
ample,

PUBLIC INCHAR, OUTCHR, INLINE, OUTSTR
7.5.4.2 EXTRN
The format for the EXTRN (external symbol) directive is,

EXTRN segment_type (symbol [,symbol]l(. . . 1, . . .}
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The EXTRN directive lists symbols to be referenced in the current module that are
defined in other modules. The list of external symbols must have a segment type associ-
ated with each symbol in the list. (The segment types are CODE, XDATA, DATA,
IDATA, BIT, and NUMBER. NUMBER is a type-less symbol defined by EQU.) The
segment type indicates the way a symbol may be used. The information is important at
link-time to ensure symbols are used properly in different modules.

The PUBLIC and EXTRN directives work together. Consider the two files shown
below, MAIN.SRC and MESSAGES.SRC. The subroutines HELLO and GOOD_BYE
are defined in the module MESSAGES but are made available to other modules using the
PUBLIC directive. The subroutines are called in the module MAIN even though they are
not defined there. The EXTRN directive declares that these symbols are defined in an-
other module.

MAIN.SRC

EXTRN CODE (HELLO, GOOD_BYE)

CALL HELLO

CALL GOOD_BYE
END

MESSAGES. SRC

PUBLIC HELLO,GOOD_BYE

HELLO: (begin subroutine)

RET

GOOD_BYE: {begin subroutine)
RET
END

Neither MAIN.SRC nor MESSAGES.SRC is a complete program; they must be
assembled separately and linked together to form an executable program. During link-
ing, the external references are resolved with correct addresses inserted as the destina-
tion for the CALL instructions.

7.5.4.3 NAME
The format for the NAME directive is

NAME module_name

All the usual rules for symbol names apply to module names. If a name is not provided,
the module takes on the file name (without a drive or subdirectory specifier and without
an extension). In the absence of any use of the NAME directive, a program will contain
one module for each file. The concept of “modules,” therefore. is somewhat cumber-
some, at least for relatively small programming problems. Even programs of moderate
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size (encompassing, for example, several files complete with relocatable segments)
needn’t use the NAME directive and needn’t pay any special attention to the concept of
“modules.” For this reason, it was mentioned in the definition that a module may be con-
sidered a “file,” to simplify learning ASM51. However, for very large programs (several
thousand lines of code, or more), it makes sense to partition the problem into modules,
where, for example, each module may encompass several files containing routines hav-
ing a common purpose.

7.5.5 Segment Selection Directives

When the assembler encounters a segment selection directive, it diverts the following
code or data into the selected segment until another segment is selected by a segment se-
lection directive. The directive may select a previously defined relocatable segment, or
optionally create and select absolute segments.

7.5.5.1 RSEG (Relocatable Segment)
The format for the RSEG (relocatable segment) directive is

RSEG segment _name

where “segment__name” is the name of a relocatable segment previously defined with
the SEGMENT directive. RSEG is a “segment selection” directive that diverts subse-
quent code or data into the named segment until another segment selection directive is
encountered. :

7.5.5.2 Selecting Absolute Segments

RSEG selects a relocatable segment. An “absolute” segment, on the other hand, is se-
lected using one of the following directives:

CSEG [AT address]
DSEG (AT address]
ISEG [AT address)
BSEG [AT address]
XSEG (AT address]

These directives select an absolute segment within the code, internal data, indirect inter-
nal data, bit, or external data address spaces, respectively. If an absolute address is pro-
vided (by indicating “AT address”), the assembler terminates the last absolute address
segment, if any, of the specified segment type and creates a new absolute segment start-
ing at that address. If an absolute address is not specified, the last absolute segment of the
specified type is continued. If no absolute segment of this type was previously selected
and the absolute address is omitted, a new segment is created starting at location 0. For-
ward references are not allowed and start addresses must be absolute.

Each segment has its own location counter, which is always set to 0 initially. The
default segment is an absolute code segment; therefore, the initial state of the assembler
is location 0000H in the absolute code segment. When another segment is chosen for the
first time, the location counter of the former segment retains the last active value. When
that former segment is reselected. the location counter picks up at the last active value.
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Loc oBJ LINE SOURCE
1 ONCHIP SEGMENT DATA ;A RELOCATABLE DATA SEGMENT
2 EPROM SEGMENT CODE ;A RELOCATABLE CODE SEGMENT
3
- 4 BSEG AT 70H ;BEGIN ABSOLUTE BIT SEGMENT
0070 5 FLAGT: DBIT 1
0071 3 FLAG2: DBIT 1
7
8 RSEG ONCHIP  ;BEGIN RELOCATABLE DATA SEGMENT
0000 9 TOTAL; DS 1
0001 10 COUNT : DS 1
0002 1 SUM16: 0s 2
12
---- 13 RSEG EPROM ;BEGIN RELOCATABLE EPROM SEGMEN1
0000 750000 F 14 BEGIN: Mov TOTAL,#0
15 H {continue program)
16 END
FIGURE 74

Defining and initiating absolute and relocatable segments

The ORG directive may be used to change the focation counter within the currently se-
lected segment. Figure 7-4 shows examples of defining and initiating relocatable and ab-
solute segments.

The first two lines in Figure 7-4 declare the symbols ONCHIP and EPROM to be
segments of type DATA (internal data RAM) and CODE respectively. Line 4 begins an
absolute bit segment starting at bit address 70H (bit O of byte address 2EH; see Figure
2-6). Next, FLAGt and FLAG2 are created as labels corresponding to bit-addressable
locations 70H and 71H. RSEG in line 8 begins the relocatable ONCHIP segment for in-
ternal data RAM. TOTAL and COUNT are labels corresponding to byte locations.
SUMI6 is a label corresponding to a word (2-byte) location. The next occurrence of
RSEG in line 13 begins the relocatable EPROM segment for code memory. The label
BEGIN is the address of the first instruction in this instance of the EPROM. Note that it
is not possible to determine the address of the labels TOTAL, COUNT, SUM16, and BE-
GIN from Figure 7-4. Since these fabels occur in relocatable segments, the object file
must be processed by the linker/locator (see 7.7 Linker Operation) with starting ad-
dresses specified for the ONCHIP and EPROM segments. The .MS51 listing file created
by the linker/locator gives the absolute addresses for these labels. FLAGI and FLAG2,
however, always correspond to bit addresses 70H and 71H because they are defined in an
absolute BIT segment.

7.6 ASSEMBLER CONTROLS

Assembler controls establish the format of the listing and object files by regulating the
actions of ASMS51. For the most part, assembler controls affect the look of the listing file,
without having any effect on the program itself. They can be entered on the invocation
line when a program is assembled, or they can be placed in the source file. Assembler
controls appearing in the source file must be preceded with a dollar sign and must begin
in column one.

There are two categories of assembler controls: primary and general. Primary controls
can be placed in the invocation line or at the beginning of the source program. Only other
primary controls may precede a primary control. General controls may be placed anywhere
in the source program. Figure 7--5 shows the assembler controls supported by ASMSI.
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PRIMARY/

NAME GENERAL DEFAULT ABBREV. MEANING

DATE(date) P DATE() DA Places string in header (9 char. max.)

DEBUG P NODEBUG bB Outputs debug symbol information to object file

NODEBUG P NODEBUG NODB Symbol information not placed in cbject file

EJECT [ not applicable EJ Continue Listing on next page

ERRORPRINT(file) 4 NOERRORPRINT EP Designates a file to receive error messages in
addition to the listing file (defaults to
console)

NOERRORPRINT P NOERRORPRINT NOEP Designates that error messages will be printed
in listing file only

GEN G GENONLY GE Generates a full listing of the macro expansion
process including macro calls in the listing
file

GENONLY G GENONLY GO List only the fully expanded source as if all
lines generated by a macro call were already
in the source file

NOGEN [+ GENONLY NOGE List only the original source text in the
listing file

INCLUDE(file) 6 not applicable 1c Designates a file to be included as part of the
program

LisT G LIST L! Print subsequent lines of source code in
listing file

NOLIST G LIST NOLI Do not print subsequent lines of source code in
listing file

MACRO[(mem_percent) P MACRO(50) MR Evaluate and expand all macro calls. Allocate
percentage of free memory for macro
processing

NOMACRO 4 MACRO(50) NOMR Do evaluate macro calls

MOD51 4 NOD51 Mo Recognize the 8051-specific predefined special
registers

NOMOD5 1 P MOD5 1 NOMO Do not recognize the 8051-specific predefined
special registers

OBJECT[(file)) P OBJECT(source.OBJ) OJ Designate file to receive object code

NOOBJECT P OBJECT(source.0BJ) NOOJ Designates that no object file will be created

PAGING P PAGING Pl Designates that listing wilt be broken into
pages and each will have a header

NOPAGING P PAGING NOPI Designates that listing file witl contain no
page breaks

PAGELENGTH(N) P PAGELENGTH(60) PL Sets maximum number of lines in each page of
listing file (range = 10 to 65,536)

PAGEWIDTH(N) 4 PAGEWIDTH(120) PW Sets maximum number of characters in each line
of listing file (range = 72 to 132)

PRINT{(file)) P PRINT(source.LST) PR Designates file to receive source listing

NOPRINT 4 PRINT(source.LST)  NOPR Designates that no listing file witl be created

SAVE G not applicable SA Stores current control setting for LIST and GEN

RESTORE G not applicable RS Restores control setting from SAVE stack

REGISTERBANK(rb,...) P REGISTERBANK(O) RB Indicates one or more banks used in program
module

NOREGISTERBANK P REGISTERBANK(0) NORB Indicates that no banks are used

SYMBOLS 4 SYMBOLS SB Creates a formatted table of all symbols used
in program

NOSYMBOLS P SYMBOLS NOSB No symbol table created

TITLE(string) G TITLEQ) T Places a string in all subsequent page headers
(maximum 60 characters)

WORKFILES(path) 14 same as source WF Designates alternate path for temporary
workfiles

XREF P NOXREF XR Creates a cross reference listing of all
symbols used in program

NOXREF P NOXREF NOXR No cross reference list created

FIGURE 7-5

Assembler controls supported by ASM51
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7.7 LINKER OPERATION

When developing large application programs, it is common to divide tasks into subpro-
grams or modules containing sections of code (usually subroutines) that can be written
separately from the overall program. The term “modular programming™ refers to this
programming strategy. Generally, modules are relocatable. meaning they are not in-
tended for a specific address in the code or data space. A linking and locating program is
needed to combine the modules into one absolute object module that can be executed.

Intel’s RLS1 is a typical linker/locator, It processes a series of relocatable object
modules as input and creates an execulable machine language program (PROGRAM,
perhaps) and a listing file containing a memory map and symbol table (PRO-
GRAM.MS51). This is illustrated in Figure 7-6.

As relocatable modules are combined, all values for external symbols are resolved
with values inserted into the output file. The linker is invoked from the system prompt by

RL51 input_list {TO output_file] [location_controls]

The input_list is a list of relocatable object modules (files) separated by commas.
The output_file is the name of the output absolute object module. If none is supplied, it
defaults to the name of the first input file without any suffix. The location__controls set
start addresses for the named segments.

For example, suppose three modules or files (MAIN.OBJ, MESSAGES.OBJ, and
SUBROUTINES.OBJ) are to be combined into an executable program (EXAMPLE),
and that these modules each contain 2 relocatable segments, one called EPROM of type
CODE, and the other called ONCHIP of type DATA. Suppose further that the code seg-
ment is to be executable at address 4000H and the data segment is to reside starting at ad-
dress 30H (in internal RAM). The following linker invocation could be used:

RL51 MAIN.OBJ,MESSAGES.OBJ, SUBROUTINES.OBJ TO EXAMPLE &
CODE (EPROM(4000H) ) DATA (ONCHIP{30H))

Note that the ampersand character “&" is used as the line continuation character.

If the program begins at the label START, and this is the first instruction in the
MAIN module, then execution begins at address 4000H. If the MAIN module was not
linked first, or if the label START is not at the beginning of MAIN, then the program’s

FIGURE 7-6 o
Linker operation 0B ¥
FILE3.0BJ PROGRAM. ABS
FILE2,0BJ
FILE1.0BY =
RLS51
PROGRAM. M5i
Legend

O Utility program

D User file
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entry point can be determined by examining the symbol table in the listing file EXAM-
PLE.MS5| created by RL51. By default, EXAMPLE.MS51 will contain only the link map.
If a symbol table is desired, then each source program must have used the SDEBUG con-
trol. (See Figure 7-5.)

7.8 ANNOTATED EXAMPLE: LINKING RELOCATABLE
SEGMENTS AND MODULES

Many of the concepts just introduced are now brought together in an annotated example
of a simple 8051 program. The source code is split over two files and uses symbols de-
clared as EXTRN or PUBLIC to allow inter-file communication. Each file is a module—
one named MAIN, the other named SUBROUTINES. The program uses a relocatable
code segment named EPROM and a relocatable internal data segment named ONCHIP.
Working with multiple files, modules, and segments is essential for large programming
projects. A careful examination of the example that follows will strengthen these core
concepts and prepare the reader to embark on practical 8051-based designs.

Our example is a simple input/output program using the 8051’s serial port and a
VDT’s keyboard and CRT display. The program does the following:

O Initialize the serial port (once)

1 Qutput the prompt “Enter a command:™

0 Input a line from the keyboard, echoing each character as it is received
0 Echo back the entire line

I Repeat

Figure 7-7 shows (a) the listing file (ECHO.LST) for the first source file, (b) the
listing file (I0.LST) for the second source file, and (c) the listing file (EXAMPLE.MS1)
created by the linker/locator.

7.8.1 ECHO.LST

Figure 7-7a shows the contents of the file ECHO.LST created by ASMS1 when the
source file (ECHO.SRC) was assembled. The first several lines in the listing file provide
general information on the programming environment. Among other things, the invoca-
tion line is restated in an expanded form showing the path to the files. Note the use of the
assembler control EP (for ERRORPRINT) on the invocation line. This causes error mes-
sages to be sent to the console as well as the listing file. (See Figure 7-5.)

The original source file is shown under the column heading SOURCE, just to the
right of the column LINE. As evident, ECHO.SRC contains 22 lines. Lines 1 to 4 contain
assembler controls. (See Figure 7-5.) $DEBUG in line | instructs ASM51 to place a
symbol table in the object file, ECHO.OBJ. This is necessary for hardware emulation or
for the linker/locator to create a symbol table in its listing file. $TITLE defines a string to
be placed at the top of each page of the listing file. SPAGEWIDTH specifies the maxi-
mum width of each line in the listing file. SNOPAGING prevents page breaks (form
feeds) from being inserted in the listing file. Most assembler controls affect the look of
the output listing file. Some trial-and-error will usually produce the desired output for
printing.
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MCS-51 MACRO .

BLER

“*% ANNOTATED EXAMPLE (MAIN MODULE) *** 03717/

pos 3.31 (038-N) MCS-51 MACRO ASSEMBLER, V2.2
08JECT MODULE PLACED [N ECHO.08
C:\ASMS1\ASM51.EXE ECHO.SRC EP

ASSEMBLER INVOKED BY:

Loc 084

000D

0000 120000
0003 900000
0006 120000
0009 120000
000c 120000
000F 80F2

0011 0D

MMM

0012 456E7465
0016 72206120
001A 636F5D6D
001€ 616E643A

0022 20
0023 00

SYMBOL TABLE LISTING

NAME

CR. ...
EPROM. . .
INIT ., .
IRLINE . .
LooP . . .
MAIN . . .
OUTLINE. .
OUTSTR . .
PROMPT , .

TYPE

NUMB
C SEG
C ADDR
C ADDR
C ADDR
C ADDR
C ADDR
C ADDR
C ADDR

LINE

SOURCE

1 SOEBUG

2 STITLE(™™™ ANNOTATED EXAMPLE (MAIN MODULE) ***)

3 SPAGEWIDTH(98)

4 SNOPAGING

5

é NAME MAIN ;MODULE NAME IS “MAIN"
7 EXTRN CODECINIT,OUTSTR) ;DECLARE EXTERNAL SYMBOLS
8 EXTRN CODE(INLINE,QUTLINE)

9

10 CR EQU ODH ;CARRIAGE RETURN CODE
1 EPROM SEGMENT CODE ;OEFINE SYMBOL “EPROM™
12

13 RSEG EPROM ;BEGIN CODE SEGMENT

14 MAIN: CALL INIT sINITIALIZE SERIAL PORT
15 LOOP: MoV DPTR, #PROMPT ;SEND PROMPT

16 CALL OUTSTR

17 CALL INLINE ;GET A COMMAND LINE AND
18 CALL OUTLINE ; ECHO IT BACK

19 JMP LooP ;REPEAT
20
21 PROMPT: DB CR,’Enter a command: ’,0
22 END
VALUE ATTRIBUTES

000DH A

00244 REL=UNIT

.e=- EXT

---- EXT

0003 R SEG=EPROM

0OOCH R SEG=EPROM

cee- EXT

---- EXT

0011 R SEG=EPROM

REGISTER BANK(S) USED: 0

ASSEMBLY COMPLETE, NO ERRORS FOUND

FIGURE 7-7

Annotated example: linking relocatabte segments and modules. (a) ECHO.LST (b)

I0.LST (c) EXAMPLE.M51.

(a)



MCS-51 MACRO ASSEMBLER *%% ANNOTATED EXAMPLE (SUBROUTINES MODULE) *** 05,17/91 (b,

DOS 3.31 (038-N) MCS-51 MACRO ASSEMBLER, V2.2
OBJECT MODULE PLACED IN 10.0BJ
ASSEMBLER INVOKED BY: C:\ASM51\ASM51.EXE 10.SRC EP

Loc o8B! LINE SOURCE
1 $DEBUG ,
2 STITLE(*** ANNOTATED EXAMPLE (SUBROUTINES MODULE) **¥)
3 SPAGEWIDTH(98)
4 SNOPAGING
5
6 NAME SUBROUT INES MODULE NAME
7 PUBLIC  INIT,OUTCHR, INCHAR ;DECLARE PUBLIC SYMBOLS
8 PUBLIC  INLINE,OUTLINE,OUTSTR
9
10 P driainboeiod el KHERTA KA bchobiobiol
1 ; DEFINE SYMBOLS *
12 ;'h***ﬁt*ﬁ*******l****ﬁ***!ﬁ*i*i***tt**t**'k*i********i*i***********t
000D 13 R £QU ODH ;CARRIAGE RETURN
0028 14 LENGTH EQU 40 ;40-CHARACTER BUFFER
15 EPROM SEGMENT  CODE ;UEPROM® 1S A CODE SEGMENT
16 ONCHIP SEGMENT DATA ;"ONCHIP" IS A DATA SEGMENT
17
18 RSEG EPROM ;BEGIN RELOCATABLE CODE SEGMENT
19
20 PEERRRRRRA R R R kol ol
21 ; INITIALIZE THE SERIAL PORT *
22 it EEA R AR el
0000 759852 23 INIT: MOV SCON,#52H  ;8-BIT UART MODE
0003 758920 2 MoV TMOD,#20H  ;TIMER 1 SUPPLIES BAUD RATE CLOCK
0006 758DF3 25 MOV TH1,#-13 ;2400 BAUD
0009 D28E 26 SETB 1 ;START TIMER
0008 22 27 RET
28
29 prenaw i oottty
30 ; OUTPUT CHARACTER IN ACC (NOTE: VDT MUST CONVERT CR INTO CR/LF) *
31 s WRRWRR * *k fedrdede o ek *
000C 3099FD 32 OUTCHR: JINB T,$ ;WAIT FOR TRANSMIT BUFFER EMPTY
000F €299 33 CLR 11 ;WHEN EMPTY, CLEAR FLAG AND
0011 F599 34 MoV SBUF, A ; SEND CHARACTER
0013 22 35 RET
36
37 ’-********ﬁ******ﬁ********ﬁ*i“**ii*l‘i*'k‘*****ﬁ**i***i***************
38 ; INPUT CHARACTER TO ACC *
39 ;***t'*ﬁ*****ﬁ***ﬁ***ﬁ'ﬁ*i*iﬁii‘*'k*iIﬁti*iii'****i*****ii************
0014 3098FD 40 INCHAR: JNB RI,S ;WAIT FOR RECEIVE BUFFER FULL
0017 €298 41 CLR RI ;WHEN CHAR ARRIVES, CLEAR FLAG &
0019 E599 42 MoV A, SBUF ; INPUT CHAR TO ACC
0018 22 43 RET
44
45 = e T e e v e o e o T e A T A o ok o e o o ke ke ke o o e e e ko ke ok ol ol i e e ok e o e e e ke e o e e e e o
46 ; OUTPUT NULL-TERMINATED STRING *
[‘7 - WRRAN * fedede ke e e de e e e o ok
001C E4 48 OUTSTR: CLR A ;DPTR POINTS TO STRING OF CHAR
001D 93 49 MOVC  A,@A*DPTR  ;GET CHARACTER
001E 6006 50 2 EXIT ;1F NULL BYTE, DONE
0020 120000 F 51 CALL OUTCHR ;OTHERWISE, SEND IT
0023 A3 52 INC DPTR ;POINT TO NEXT CHARACTER
0024 80F6 53 JMP OUTSTR ; AND SEND IT 700
0026 22 54 EXIT: RET
FIGURE 7-7

continued



56 ;ﬁi**'ﬁ*i***‘**“i***t****ﬁ‘ﬁ"‘***ﬁ*'ﬁ**ﬁﬁ*t'***i***i***ﬁ**ﬁ***i‘***ﬁﬁ
57 : INPUT CHARACTERS TO BUFFER »
58 :-**'ﬁ'**ﬁi.**I‘ﬁi****.*ﬁtﬁ"**i*"i*'****‘**i*i****ﬁi"*'i*****“*ﬁ*****.

0027 7800 F 59 INLINE: MOV RO,#BUFFER ;USE RO AS POINTER TO BUFFER

0029 120000 F 60 AGAIN: CALL  INCHAR SGET A CHARACTER

002C 120000 F 61 CALL  OUTCHR } ECHO 1T BACK

002F F6 62 MOV R0, A PUT 1T IN BUFFER

3030 08 63 INC RO $ INCREMENT POINTER TO BUFFER

0031 B4ODFS 84 CJNE A, #CR,AGAIN :1F NOT CR, GET ANOTHER CHAR

0034 7600 65 MoV R0, #0 LPUT NULL BYTE AT END

0036 22 66 RET
67
68 ;*'**‘*******t**i'ﬁi**“i**‘i***.*******t******“*ﬁ*'ﬁ*ﬁ****‘**********
69 ; OUTPUT CONTENTS OF BUFFER *
70 : o 33k Y 3 ok o 9ol o o e 3 sl o ok o sk ok o o S 3k o 9k o o 9 3 o ok 7 o o e T ok o o o 3 o o o o e o oo 3o e o o o g o s o Sk sk Yo

0037 7800  F 71 OUTLINE: MOV RO,#BUFFER ;USE RO AS PGINTER TO BUFFER

0039 E6 72 AGAINZ: MOV A, 2RO GET CHARACTER FROM BUFFER

003A 6006 73 iz EXIT2 S1F NULL BYTE, DONE

003C 120000 F 74 CALL  OUTCHR SOTHERWISE, SEND IT

003F 08 75 INC RO $POINT TO NEXT CHAR IN BUFFER

0040 80F7 76 NP AGAIN2 : AND SEND IT TOO

0042 22 77 EXIT2: RET
78
79 l-***‘.*******'*********t*i****'**iﬁi*"‘*ﬂ***t*ti*i*'*‘*****'ﬁ******
80  : CREATE A BUFFER IN ONCHIP RAM *
81 :v‘****ﬁ***'*‘ﬁ‘*******t*************ﬁ**ﬁ****'******iﬁti*i******'***

82 RSEG  ONCHIP ;BEGIN RELOCATABLE DATA SEGMENT

0000 83 BUFFER: DS LENGTH ALLOCATE INTERNAL RAM AS BUFFER
84 END

SYMBOL TABLE LISTING

NAME TYPE VALUE ATTRIBUTES

AGAIN . . . C ADDR  0029H R SEG=EPROM

AGAIN2. . . C ADDR 00394 R SEG=EPROM

UFFER. . . D ADDR  0O00GH R SEG=ONCHIP

R. - . .. NUMB  000DH A

EPROM . . . C SEG  0043H REL=UNIT

EXIT. . . . CADDR 0026 R SEG=EPROM

EXIT2 . . . C ADDR  0042H R SEG=EPROM

INCHAR. . . C ADDR  O014H R PUB  SEG=EPROM

INIT. . . . CADDR  ODOOH R PUB  SEG=EPROM

INLINE. . . C ADDR 0027H R PUB SEG=EPROM

LENGTH. . . NUMB 00284 A

ONCHIP. . . D SEG  0028H REL=UNIT

OUTCHR. . . C ADDR  OOOCH R PUB  SEG=EPROM

OUTLINE . . C ADDR 0037 R PUB  SEG=EPROM

QUTSTR. . . C ADDR  O0ICH R PUB  SEG=EPROM

RI.L . . .. B ADDR 0098H.0 A

SBUF. . . . D ADDR  OO99H A

SCON. . . . D ADDR 0098H A

SUBROUTINES “me- o

THT . . . . D ADDR 008pH A

Tl. . ... BADR  OO9BH.1 A

TMOD. . . . D ADDR 00894 A

TR1T . . . . B ADDR 0088H.6 A

REGISTER BANK(S) USED: 0
ASSEMBLY COMPLETE, NO ERRORS

FIGURE 7-7
continued

FOUND



DATE : 03/17/91

©

DOS 3.31 (038-N) MCS-51 RELOCATOR AND LINKER V3.0, INVOKED BY:
C:\ASM51\RL51.EXE ECHO.0BJ,10.0BJ TO EXAMPLE CODE(EPROM(B8000H))DATA(ONCHIP(30H

>> ))

INPUT MODULES INCLUDED
ECHO.OBJ(MAIN)
10.0BJ(SUBROUTINES)

LINK MAP FOR EXAMPLE(MAIN)

TYPE BASE LENGTH RELOCATION

REG 0000H 0008H
0008H 00284
DATA 0030H 0028H UNIT

0000H 8000H
CODE 8000H 0067H UNIT

SYMBOL TABLE FOR EXAMPLE(MAIN)

VALUE TYPE NAME
------ MODULE MAIN
N:000DH SYMBOL CR
C:8000H SEGMENT EPROM
C:8003H SYMBOL LooP
€:80004 SYMBOL MAIN
€:80114 SYMBOL PROMPT
------- ENDMOD MAIN
------- MODULE SUBROUTINES
C:804DH SYMBOL AGAIN
C:8050H SYMBOL AGAIN2
D:0030H SYMBOL BUFFER
N:000DH SYMBOL CR
C:8000H SEGMENT EPROM
C:804AH SYMBOL EXIT
C:8066H SYMBOL EXIT2
C:8038H PUBLIC INCHAR
C:8024H PUBLIC INIT
C:804BH PUBLIC INLINE
N:0028H SYMBOL LENGTH
D:0030H SEGMENT ONCHIP
C:8030H PUBLIC OUTCHR
C:805BH PUBLIC OUTLINE
C:8040H PUBLIC OUTSTR
B:0098H SYMBOL RI
D:0099H SYMBOL SBUF
D:0098H SYMBOL SCON
D:0080H SYMBOL TH1
B:0098H.1 SYMBOL Ti
D:0089H SYMBOL TMOD
8:00884.6 SYMBOL TR1
------- ENDMOD SUBROUTINES
FIGURE 7-7

continued
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The NAME assembler directive in line 6 defines the current tile as part of the mod-
ule MAIN. For this example, no further instance of the MAIN module is used; however,
larger projects may include other files also defined as part of the MAIN module. It may
help the reader for the rest of this example to read “file” for the term “module.”

Lines 7 and 8 identify the symbols used in the current module but defined else-
where. Without these EXTRN directives, ASM51 will generate the message “undefined
symbol” on each line in the source program where one of these symbols is used. The
“segment type” must also be defined for each symbol to ensure its proper use. All of the
external symbols defined in this example are of type CODE.

Symbol definitions come next. Line 10 defines the symbol CR as the carriage re-
turn ASCII code ODH. Line 11 defines the symbol EPROM as a segment of type CODE.
Recall that the SEGMENT directive defines only what the symbol is—nothing more,
nothing less.

The RSEG directive in line 13 begins the relocatable segment named EPROM.
Subsequent instructions, data constant definitions, and so on, will be placed in the
EPROM code segment,

The program begins on line 14 at the label MAIN. The first instruction in the pro-
gram is a call to the subroutine INIT, which will initialize the 8051°s serial port. The as-
sembled code under the OBJ column contains the correct opcode (12H for LCALL);
however, bytes 2 and 3 of the instruction (the address of the subroutine) appear as 0000H
followed by the letter “F.” The linker/locator must “fix” this when the program modules
are linked together and addresses are set for the relocatable segments. Note, too, that the
address under the LOC column is also entered as 0000H. Since the EPROM segment is
relocatable, it is not known at assemble-time where the segment will start. All relocat-
able segments will display 0000H as the starting address in the listing file.

The rest of the program instructions are on lines 15 to 19. A prompt message is
sent to the VDT by loading the DPTR with a starting address of the prompt and calling
the subroutine OUTSTR. Since the OUTSTR, INLINE, and QUTLINE subroutines are
not defined in ECHO.SRC, one can only guess at their operation from the name of the
subroutine and the comment lines.

The prompt is a null-terminated ASCII string, which is placed in the EPROM code
segment using the DB (define byte) directive on line 21. Since the prompt bytes are con-
stant (i.e., unchanging) it is correct to place them in code memory (even though they are
data bytes). The prompt begins with a carriage return to ensure it displays on a new line.
(In this example, it is assumed the VDT converts CR to CR/LF.)

All the symbols and labels in ECHO.SRC appear in the symbol table at the bottom
of ECHO.LST. Since the EPROM segment is relocatable and the subroutines are exter-
nal, the VALUE column is not of much use. The value for the symbol EPROM, however,
gives the length of the segment, which in this case is 24H or 36 bytes.

7.8.2 10.LST

Figure 7-7b shows the contents of the file I0.LST—the file containing the input/output
subroutines. This module is named SUBROUTINES in line 6. Lines 7 and 8 declare all
subroutine names as PUBLIC symbols. This makes these symbols available to other
modules. Note that all the subroutines are made public even though only four of them
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were used in the MAIN module. Perhaps, as the program grows, other modules will be
added that may need these subroutines. So. they are all made public.

Lines 13 to 16 define several symbols. Once again, EPROM is used as the name of
the code segment. Another segment is used in this module. ONCHIP is defined in line 17
as an internal data segment. .

The subroutines are each written in turn beginning at line 20. The comment block
beginning each is deliberately brief in this example; however, a more detailed descrip-
tion of a subroutine is usually given. 1Uis useful to provide, for example, entry and exit
conditions for each subroutine.

After the last subroutine, a buffer in internal RAM is created using the ONCHIP
segment. The segment is started using RSEG (line 82), and the buffer is created using the
DS (define storage) directive (line 83). The length of the buffer is assigned to the symbol
LENGTH “equated” at the top of the program (line 14) as 40. The placement in the
source file of the definition of the symbol LENGTH and of the instance of the segment
ONCHIP is largely a matter of taste. Both could also be positioned just before or after
the INLINE subroutine, where they are used.

As with the EPROM segment, ONCHIP is given an initial address of 0000H under
the LOC column at line 83. Again, the actual location of the ONCHIP segment will not
be determined until link-time (see below). The letter “F” appears in numerous locations
in IO.LST. Each line so identified contains an instruction using a symbol whose value
cannot be determined at assemble-time. The zeros placed in the object file at these loca-
tions will be replaced with “absolute” values by the linker/locator.

7.8.3 EXAMPLE.M51

Figure 7-7c shows the contents of the file EXAMPLE.M5]1 created by the linker/locator
program, RL51. The invocation line is repeated near the top of EXAMPLE.MS5I and
should be examined carefully. Here it is again (leaving out the path):

RL51 ECHO.OBJ,I0.OBJ TO EXAMPLE CODE (EPROM (8000H)) &
DATA {(ONCHIP(30H))

Following the command, the object modules are listed separated by commas in the order
they are to be linked. Following the input list, the optional control TO EXAMPLE is
specified providing the name for the absolute object module created by RLS5t. If omitted,
the name of the first file in the input list is used (without any file extension). The listing
file, in this example, automatically takes on the name EXAMPLE.M51. Finally, the lo-
cating controls CODE and DATA specify the names of segments of the associated type
and the absolute address at which the segment is to begin. In this example the EPROM
code segment begins at address 8000H and the ONCHIP data segment begins at byte ad-
dress 30H in the 8051°s internal RAM.

Following the restatement of the invocation line, EXAMPLE.M51 contains a list of
the input modules included by RL5I. In this example only two files (ECHO.OBJ and
10.0BJ) and two modules (MAIN and SUBROUTINES) are listed. If the NAME directive
had not been used in the source files, the module names would be the same as the file names.

The link map appears next. Both the ONCHIP and EPROM segments are iden-
tified, and the starting address and the length (in hexadecimal) are given for each.
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ONCHIP is identified as a data segment starting at address 30H and 28H (40) bytes in
length. EPROM is identified as a code segment starting at address 8000H and 67H (103)
bytes in length,

Finally, EXAMPLE.M51 contains a symbol table. All symbols (including labels)
used in the program are listed, sorted on a moduie-by-module basis. Alf values are “ab-
solute.” Remember that the symbol table in the .M5t1 file can only be created if the $DE-
BUG assembler control is placed at the top of each source file. The INIT subroutine
address (which we noted earlier was absent in ECHO.LST) is identified under the
SUBROUTINES module as 8024H. This address is substituted as the code address in
any object module using the instruction CALL INIT, as noted earlier in the MAIN mod-
ule. Knowing the absolute value of labels is important when debugging. When a bug is
found, often a temporary “patch” can be made by modifying the program bytes and re-
executing the program. If the patch fixes the bug, the appropriate change is made to the
source program.

7.9 MACROS

For the final topic in this chapter, we return to ASM51. The macro processing facility
(MPL) of ASM51 is a “string replacement” facility. Macros allow frequently used sec-
tions of code to be defined once using a simple mnemonic and used anywhere in the pro-
gram by inserting the mnemonic. Programming using macros is a powerful extension of
the techniques described thus far. Macros can be defined anywhere in a source program
and subsequently used like any other instruction. The syntax for a macro definition is

$*DEFINE (call_pattern) (macro_body)

Once detined, the call pattern is like a mnemonic; it may be used tike any assembly
language instruction by placing it in the mnemonic field of a program. Macros are made
distinct from “real” instructions by preceding them with a percent sign, “%.” When the
source program is assembled, everything within the macro-body, on a character-by-char-
acter basis, is substituted for the call-pattern. The mystique of macros is largely un-
founded. They provide a simple means for replacing cumbersome instruction patterns
with primitive, easy-to-remember mnemonics. The substitution, we reiterate, is on a
character-by-character basis—nothing more, nothing less.

For example, if the following macro definition appears at the beginning of a source
file,

%*DEFINE (PUSH_DPTR)

(PUSH DPH
PUSH DPL
)

then the statement
%PUSH_DPTR
will appear in the .LST file as

PUSH DPH
PUSH DPL
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The example above is a typical macro. Since the 8051 stack instructions operate
only on direct addresses, pushing the data pointer requires two PUSH instructions. A
similar macro can be created to POP the data pointer.

There are several distinct advantages in using macros:

O A source program using macros is more readable, since the macro mnemonic is gener-
ally more indicative of the intended operation than the equivalent assembler instruc-
tions.

0 The source program is shorter and requires less typing.
0 Using macros reduces bugs.
O Using macros frees the programmer from dealing with low-level details.

The last two points above are related. Once a macro is written and debugged, it is used
freely without the worry of bugs. In the PUSH__DPTR example above, if PUSH and
POP instructions are used rather than push and pop macros, the programmer may inad-
vertently reverse the order of the pushes or pops. (Was it the high-byte or low-byte that
was pushed first?) This would create a bug. Using macros, however, the details are
worked out once—when the macro is written—and the macro is used freely thereafter,
without the worry of bugs.

Since the replacement is on a character-by-character basis, the macro definition
should be carefully constructed with carriage returns, tabs, etc., to ensure proper align-
ment of the macro statements with the rest of the assembly language program. Some
trial-and-error is required.

There are advanced features of ASM51’s macro-processing facility that allow for
parameter passing, local labels, repeat operations, assembly flow control, and so on.
These are discussed below.

7.9.1 Parameter Passing

A macro with parameters passed from the main program has the following modified for-
mat:

$*DEFINE (macro_name (parameter_list)) (macro_body)
For example, if the following macro is defined,

%$*DEFINE (CMPA# (VALUE))
{CINE A, #$VALUE,$ + 3
)

then the macro call
%$CMPA# (20H)

will expand to the following instruction in the .LST file:
CIJNE A, #20H,$ + 3

Although the 8051 does not have a “compare accumulator” instruction, one is easily cre-
ated using the CJNE instruction with “$+3” (the next instruction) as the destination for
the conditional jump. The CMPA# mnemonic may be easier to remember for many pro-
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grammers. Besides, use of the macro unburdens the programmer from remembering no-
tational details, such as “$+3.”

Let’s develop another example. It would be nice if the 8051 had instructions
such as

JUMP IF ACCUMULATOR GREATER THAN X

JUMP IF ACCUMULATOR GREATER THAN OR EQUAL TO X

JUMP IF ACCUMULATOR LESS THAN X
JUMP IF ACCUMULATOR LESS THAN OR EQUAL TO X

but it does not. These operations can be created using CINE followed by JC or INC,
but the details are tricky. Suppose, for example, it is desired to jump to the label
GREATER__THAN if the accumulator contains an ASCII code greater than “Z” (SAH).
The following instruction sequence would work:

CJINE A, #5BH, $+3
JNC GREATER_THAN

The CINE instruction subtracts SBH (i.e., “Z” + 1) from the content of A and sets or
clears the carry flag accordingly. CINE leaves C = | for accumulator values OOH up to
and including SAH. (Note: SAH — 5BH <0, therefore C = {; but SBH ~5BH =0, there-
fore C = 0.) Jumping to GREATER_THAN on the condition “not carry” correctly
jumps for accumulator values 5BH, 5CH, S5DH, and so on, up to FFH. Once details such
as these are worked out, they can be simplified by inventing an appropriate mnemonic,
defining a macro, and using the macro instead of the corresponding instruction sequence.
Here’s the definition for a “jump if greater than” macro:

%$*DEFINE(JGT (VALUE, LABEL))
(CIJNE A, #¥VALUE+1, $+3 ;JGT
JINC $LABEL
)

To test if the accumulator contains an ASCII code greater than “Z,” as just discussed, the
macro would be called as

8JGT ('Z’ , GREATER_THAN)
ASMS1 would expand this into

CINE A, #5BH, $+3 ;JGT
JNC GREATER_THAN

The JGT macro is an excellent example of a relevant and powerful use of macros. By us-
ing macros, the programmer benefits by using a meaningful mnemonic and avoiding
messy and potentially bug-ridden details.

7.9.2 Local Labels
Local labels may be used within a macro using the following format:

%$*DEFINE (macro_name [ (parameter_list)])
[LOCAL list_of_local_labels] (macro_body)
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For example, the following macro definition

$*DEFINE (DEC_DPTR) LOCAL SKIP
(DEC DPL ; DECREMENT DATA POINTER
MOV A, DPL
CJONE A, #0FFH, $SKIP
DEC DPH
%SKIP: }

would be called as
$DEC_DPTR
and would be expanded by ASMS51 into

DEC DPL ; DECREMENT DATA POINTER
MOV A,DPL
CJINE A, #0FFH, SKIP0O
DEC DPH
SKIPOO:

Note that a local label generally will not conflict with the same label used elsewhere in
the source program, since ASMS51 appends a numeric code to the local label when the
macro is expanded. Furthermore, the next use of the same local label receives the next
numeric code, and so on.

The macro above has a potential “side effect.” The accumulator is used as a tempo-
rary holding place for DPL. If the macro is used within a sectiou of code that uses A for
another purpose, the value in A would be lost. This side effect probably represents a bug
in the program. The macro definition could guard against this by saving A on the stack.
Here’s an alternate definition for the DEC__DPTR macro:

$*DEFINE (DEC_DPTR) LOCAL SKIP
(PUSH ACC
DEC DPL ; DECREMENT DATA POINTER
MOV A, DPL
CJINE A, #0FFH, $SKIP
DEC DPH
%$SKIP: POP ACC
)

7.9.3 Repeat Operations

This is one of several built-in (predefined) macros. The format is
$REPEAT (expression) (text)

For example, to fill a block of memory with 100 NOP instructions,

$REPEAT (100)
(NOP
)
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7.9.4 Control Flow Operations

The conditional assembly of sections of code is provided by ASMS1’s control flow
macro definition. The format is

$1F (expression} THEN (balanced_text)
[ELSE (balanced_text)]FI

For example,

8051 SERIAL I/O DRIVERS
8251 SERIAL I/0 DRIVERS

INTERNAL EQU 1 ;1

now

%IF (INTERNAL) THEN

{INCHAR: . ;8051 DRIVERS
OUTCHR:

; ELSE
(INCHAR: . ;8251 DRIVERS
OUTCHR:

)

In this example, the symbol INTERNAL is given the value | to select 170 subroutines for
the 8051’s serial port, or the value O to select I/O subroutines for an external UART, in
this case the 8251, The IF macro causes ASMS51 to assemble one set of drivers and skip
over the other. Elsewhere in the program, the INCHAR and OUTCHR subroutines are
used without consideration for the particular hardware configuration. As long as the pro-
gram was assembled with the correct value for INTERNAL, the correct subroutine is ex-
ecuted.

PROBLEMS
1. Recast the following instructions with the operand expressed in binary.

MOV A, #255
MOV A, #11Q
MOV A, #1AH
MOV A, #'A’

2. What is wrong with the coding of the following instruction?
ORL 80H, #F0H
3. Identify the error in the following symbols.

?byte.bit
@GO0D_bye
1ST_FLAG
MY__PROGRAM
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4.

1.
12,

NUL
SOH

uUs

DEL

Recast the following instructions with the expression evaluated as a 16-bit hexadec-
imal constant.

MOV DPTIR,#'0’ EQ 48

MOV DPTR, #HIGH ‘AB’

MOV DPTR, #-1

MOV DPTR, #NOT (257 MOD 256)

. What are the “segment types” defined by ASMS51 for the 8051, and what memory

spaces do they represent?

. How could a relocatable segment in external data memory be defined, selected, and

a 100-byte buffer created? (Give the segment the name “OFFCHIP” and give the
buffer the name “XBUFFER.”)

. A certain application requires five status bits (FLAG1 to FLLAGS). How could a 5-bit

buffer be defined in an absolute BIT segment starting at bit address 08H? At what
byte address do these bits reside?

. What are two good reasons for making generous use of the EQU directive in assem-

bly language programs?

. What is the difference between the DB and DW directives?

. What are the memory assignments for the following assembler directives:

ORG OFH

DwW $ SHL 4
DB 65535
DW ‘0

What directive is used to select an absolute code segment?

A file called “ASCII” contains 33 equate directives, | for each control code:

EQU O0O0H ;NULL BYTE

EQU O01H ; START OF HEADER
EQU 1FH ;UNIT SEPARATOR
EQU 7FH ; DELETE

How could these definitions be made known in another file—a source program—
without actually inserting the equates into that file?

. In order for a printout of a listing file to look nice, it is desirable to have each sub-

routine begin at the top of a page. How is this accomplished?

. Write the definition for a macro that could be used to fill a block of external data

memory with a data constant. Pass the starting address, length, and data constant to
the macro as parameters.

. Write the definition for the following macros:

JGE—jump to LABEL if accumulator is greater than or equal to VALUE
JLT—jump to LABEL if accumulator is less than VALUE
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JLE—jump to LABEL if accumulator is less than or equal to VALUE
JOR—jump to LABEL if accumulator is outside the range LOWER and UPPER

. Write the definition for a macro called CINE__DPTR that will jump to LABEL if

the data pointer does not contain VALUE. Define the macro so that the contents of
all registers and memory locations are left intact.



PROGRAM STRUCTURE
AND DESIGN

8.1 INTRODUCTION

What makes one program better than the next? Beyond simple views such as “it
works,” the answer to this question is complex and depends on many factors:
maintenance requirements, computer language, quality of documentation, development
time, program length, execution time, reliability, security, and so on. In this chapter
we introduce the characteristics of good programs and some techniques for develop-
ing good programs. We begin with an introduction to structured programming tech-
niques.

Structured programming is a technique for organizing and coding programs
that reduces complexity, improves clarity, and facilitates debugging and modify-
ing. The idea of properly structuring programs is emphasized in most program-
ming tasks, and we advance the idea here as well. The power of this approach can
be appreciated by considering the following statement: All programs may be
written using only three structures. This seems too good to be true, but it’s not.
“Statements,” “loops,” and “choices” form a complete set of structures, and all pro-
grams can be realized using only these three structures. Program control is passed
through the structures without unconditional branches to other structures. Each struc-
ture has one entry point and one exit point. Typically, a structured program con-
tains a hierarchy of subroutines, each with a single entry point and a single exit
point.!

The purpose of this chapter is to introduce structured programming as applied to
assembly language programming. Although high-level languages (such as Pascal or C)
promote structured programming through their statements (WHILE, FOR, etc.) and no-
tational conventions (indentation), assembly language lacks such inherent properties.
Nevertheless, assembly language programming can benefit tremendously through the
use of structured techniques.

!In high-level languages, programs are composed of functions or procedures.
guag
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TOOLS AND TECHNIQUES FOR
PROGRAM DEVELOPMENT

9.1 INTRODUCTION

In this chapter, the process of developing microcontroller- or microprocessor-based
products is described as it follows a series of steps and utilizes a variety of tools. In pro-
gressing from concept to product, numerous steps are involved and numerous tools are
used. The most common steps and tools are presented as found in typical design scenar-
ios employing the 8051 microcontroller.

Design is a highly creative activity, and in recognition of this we state at the outset
that substantial leeway is required for individuals or development teams. Such autonomy
may be difficult to achieve for very large or safety-critical projects, however. Admit-
tedly, in such environments the management of the process and the validation of the re-
sults must satisfy a higher order. The present chapter addresses the development of re-
latively small-scale products, such as controllers for microwave ovens, automobile
dashboards, computer peripherals, electronic typewriters, or high-fidelity audio equip-
ment.

The steps required and the tools and techniques available are presented and elabo-
rated on, and examples are given. Developing an understanding of the steps is important,
but strict adherence to their sequence is not advocated. It is felt that forcing the develop-
ment process along ordered, isolated activities is usually overstressed and probably
wrong. Later in the chapter we will present an all-in-one development scenario, where
the available resources are known and called upon following the instinct of the designer.
We begin by examining the steps in the development cycle.

9.2 THE DEVELOPMENT CYCLE

Proceeding from concept to product is usually shown in a flow diagram known as the de-
velopment cycle, similar to that shown in Figure 9-1. The reader may notice that there is
nothing particularly “cyclic” about the steps shown. Indeed, the figure shows the ideal
and impossible scenario of “no breakdowns.” Of course, problems arise. Debugging
(finding and fixing problems) is needed at every step in the development cycle with cor-
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The development cycle

rections introduced by reengaging in an earlier activity. Depending on the severity of the
error, the correction may be trivial or, in the extreme, may return the designer to the con-
cept stage. Thus, there is an implied connection in Figure 9—1 from the output of any step
in the development cycle to any earlier step.

The steps along the top path in Figure 9-1 correspond to software development,
while those along the bottom correspond to hardware development. The two paths meet
at a critical and complicated step called “integration and verification,” which leads to ac-
ceptance of the design as a “product.” Not shown are various steps subsequent to accep-
tance of the design. These include, for example, manufacturing, testing, distribution, and
marketing. The dotted line in Figure 9-1 encompasses the steps of primary concern in
this chapter (and book). These will be elaborated in more detail later. But first, we begin
by examining the steps in software development.

9.2.1 Software Development

The steps in the top path in Figure 9-) are discussed in this section, beginning with the
specification of the application software.

Specifying Software. Specifying software is the task of explicitly stating what the soft-
ware will do. This may be approached in several ways. At a superficial level, speci-
fications may first address the user interface; that is, how the user will interact with and
control the system. (What effects will result from and be observed for each action
taken?) If switches, dials, or audio or visual indicators are employed on the prototype
hardware, the explicit purpose and operation of each should be stated.

Formal methods have been devised by computer scientists for specifying software
requirements; however, they are not generally used in the design of microcontroller-
based applications, which are small in comparison to application software destined for
mainframe computers.
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Soltware specifications may also address details ol system operation below the
user level. For example, a controller for a photocopier may monitor internal conditions
necessary for normal or safe operation, such as temperature, current, voltage, or paper
movement. These conditions are largely independent of the user interface, but still must
be accommodated by software.

Specifications can be modularized by system function with entry and exit condi-
tions defined to allow intermodule communication. The techniques described in the pre-
vious chapter for documenting subroutines are a reasonable first step in specifying soft-
ware.

Interrupt-driven systems require careful planning and have unique characteristics
that must be addressed at the specification stage. Activities without time-critical require-
ments may be placed in the foreground loop or in a round-robin sequence for handling by
timed interrupts. Time-critical activities generate high-priority interrupts that take over
the system for immediate handling. Software specifications may emphasize execution
time on such systems. How long does each subroutine or interrupt service routine (ISR)
take to execute? How often is each ISR executed? ISRs that execute asynchronously (in
response to an event) may take over the system at any time. It may be necessary to block
them in some instances or to preempt (interrupt) them in others. Software specifications
for such systems must address priority levels, polling sequences, and the possibility of
dynamically reassigning priority levels or polling sequences within ISRs.

Designing Software. Designing the software is a task designers are likely to jump into
without a lot of planning. There are two common techniques for designing software prior
to coding: flowcharts and pseudo code. These were the topic of Chapter 8.

Editing and Translation. The editing and translation of software occur, at least ini-
tially, in a tight cycle. Errors detected by the assembler are quickly corrected by editing
the source tile and reassembling. Since the assembler has no idea of the purpose of the
program and checks only for “grammatical” errors (e.g., missing commas, undefined in-
structions), the errors detected are syntax errors. They are also called assemble-time
errors.

Preliminary Testing. A run-time error will not appear until the program is executed
by a simulator or in the target system. These errors may be elusive, requiring careful ob-
servation of CPU activity at each stage in the program. A debugger is a system program
that executes a user program for the purpose of finding run-time errors. The debugger in-
cludes features such as executing the program until a certain address (a breakpoint) is
reached, and single-stepping through instructions while displaying CPU registers, status
bits, or input/output ports.

9.2.2 Hardware Development

For the most part, this book has not emphasized hardware development. Since the 8051
is a highly integrated device, we have focused on learning the 8051’s internal architec-
ture and exploiting its on-chip resources through software. The examples presented thus
far have used only simple interfaces to external components.
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Specifying Hardware. Specifying the hardware involves assigning quantitative data to
system functions. For example, a robotic arm project should be specified in terms of
number of articulations, reach, speed, accuracy, torque, power requirements, and so on.
Designers are often required to provide a specification sheet analogous to that accompa-
nying an audio amplifier or VCR. Other hardware specifications include physical size
and weight, CPU speed, amount and type of memory, memory map assighments, /O
ports, optional features, etc.

Designing Hardware. The conventional method of hardware design, employing a pen-
cil and a logic template, is stifl widely used, but may be enhanced through computer-
aided design (CAD) software. Although many CAD tools are for the mechanical or civil
engineering disciplines, some are specifically geared for electronic engineering. The two
most common examples are tools for drawing schematic diagrams and tools for laying
out printed circuit boards (PCBs). Although these programs have a long learning curve,
the results are impressive. Some schematic drawing programs produce files that can be
read by PCB programs to automatically generate a layout.

Building the Prototype. There are pathetically few shortcuts for the labors of prototyp-
ing. Whether breadboarding a simple interface to a bus or port connector on a single-
board computer (SBC), or wire wrapping an entire controller board, the techniques of
prototyping are only developed with a great deal of practice. Large companies with large
budgets may proceed directly to a printed circuit board format, even for the first iteration
of hardware design. Projects undertaken by small companies, students, or hobbyists,
however, are more likely to use the traditional wire wrapping method for prototypes.

Preliminary Testing. The first test of hardware is undertaken in the ubsence of any ap-
plication software. Step-wise testing is important: there’s no point in measuring a clock
signal using an oscilloscope before the presence of power-supply voltages has been
verified. The following sequence may be followed:

O Visual checks
0 Continuity checks
0 DC measurements

11 AC measurements

Visual and continuity checks should occur before power is applied to the board.
Continuity checks using an chmmeter should be conducted from the IC side of the proto-
type, from IC pin to IC pin. This way, the IC pin-to-socket and socket pin-to-wire con-
nection are both verified. ICs should be removed when power is first applied to the pro-
totype. DC voltages should be verified throughout the board with a voltmeter. Finally,
AC measurerents are made with the ICs installed to verify clock signals, and so on.

After verifying the connections, voltages, and clock signals, debugging becomes
pragmatic: Is the prototype functioning as planned? If not, corrective action may take the
designer back to the construction, design, or specification of the hardware.

If the design is a complete system with a CPU, a single wiring error may prevent
the CPU from completing its reset sequence: The first instruction after reset may never
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execute! A powerful debugging trick is to drive the CPU’s reset line with a low fre-
quency square wave (=1 kHz) and observe (with an oscilloscope or logic analyzer) bus
activity immediately following reset.

Functional testing of the board may require application software or a monitor pro-
gram to “work” the board through its motions. It is at this stage that software must assist
in completing the development cycle.

9.3 INTEGRATION AND VERIFICATION

The most difficult stage in the development cycle occurs when hardware mects software.
Some very subtle bugs that eluded simulation (if undertaken) emerge under real-time ex-
ecution. The problem is confounded by the need for a full complement of resources:
hardware such as the PC development system, target system, power supply. cables, and
test equipment; and software such as the monitor program, operating system, terminal
emulation program, and so on.

We shall elaborate on the integration and verification step by first expanding the
area within the dotted line in Figure 9-1. (See Figure 9-2.)

Figure 9-2 shows utility programs and development tools within circles, user files
within squares, and “execution cnvironments™ within double-lined squares. The use of
an editor to create a source file is straightforward. The translation step (from Figure 9-1)
is shown in two stages. An assembler (e.g., ASMS51) converts a source file to an object
file, and a linker/locator (e.g., RL51) combines one or more relocatable object files into a
single absolute object file for execution in a target system or simulator. The assembler
and linker/locator also create listing files.

The most common filename suffixes are shown in parentheses for each file type.
Although any filename and suffix usually can be provided as an argument, assemblers
vary in their choice of default suffixes.

If the program was written originally in a single file following an absolute format,
linking and locating are not necessary. In this case, the alternate path in Figure 9-2
shows the assembler generating an absolute object file.

It is also possible (although not emphasized in this book) that high-level languages,
such as C or PL/M, are used instead of, or in addition to, assembly language. Translation
requires a cross-compiler to generate the relocatable object modules for linking and
locating.

A librarian may also participate, such as Intel’s LIB51. Relocatable object mod-
ules that are general-purpose and useful for many projects (most likely subroutines) may
be stored in “libraries.” RL51 receives the library name as an argument and searches the
library for the code (subroutines) corresponding to previously declared external symbois
that have not been resolved at that point in linking/locating.

9.3.1 Software Simuiation

Five execution environments are shown in Figure 9-2. Preliminary testing (see Figure
9-1) proceeds in the absence of the target system. This is shown in Figure 9-2 as soft-
ware simulation. A simulator is a program that executes on the development system and
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imitates the architecture of the target machine. An 8051 simulator, for example, would
contain a fictitious (or “simulated™) register for cach of the special function registers and
fictitious memory locations corresponding to the 8051's internal and external memory
spaces. Programs are executed in simulation mode with progress presented on the devel-
opment system’s CRT display. Simulators are useful for early testing; however, portions
of the application program that directly manipulate hardware must be integrated with the
target system for testing.

9.3.2 Hardware Emulation

A direct connection between the development system and the target system is possible
through a hardware emulator (or in-circuit emulator). The emulator contains a pro-
cessor that replaces the processor IC in the target system. The emulator processor, how-
ever. is under the direct control of the development system. This allows software to exe-
cute in the environment of the target system without leaving the development system.
Commands are available to single-step the software, exccute to a breakpoint (or the nt
accurrence of a breakpoint), and so on. Furthermore, execution is at full speed, so time-
dependent bugs may surface that eluded debugging under simulation.

The main drawback of hardware emulators is cost. PC-hosted units sell in the
$2,000 to $7,000 (U.S.) range. which is beyond the budget of most hobbyists and
stretches the budgets of most colleges or universities (if equipping an entire laboratory,
for example). Companies supporting professional development environments, however,
will not hesitate to invest in hardware emulators. The benefit in accelerating the product
development process easily justifies the cost. :

8.3.3 Execution from RAM

An effective and simple scenario for testing software in the target system is possible,
even if a hardware emulator is not available. If the target system contains external RAM
configured to overlap the external code space (using the method discussed in Chapter 2;
see 2.6.4., Overlapping the External Code and Data Spaces), then the absolute object
program can be transferred, or “downloaded,” from the development system to the target
system and executed in the target system.

Intel Hexadecimal Fermal. As shown in Figure 9-2, a extra stage of translation is re-
quired to convert the absolute object file to a standard ASCII format for transmission.
Since object files contain binary codes, they cannot be displayed or printed. This weak-
ness is alleviated by splitting each binary byte into two nibbles and converting each nib-
ble to the corresponding hexadecimal ASCII character. For example. the byte 1AH can-
not be transmitted to a printer because in ASCII it represents a control character rather
than a graphic character. However, the bytes 31H and 41H can be transmitted to a printer
becausehey correspond to graphic or displayable ASCII codes. In fact, these two bytes
will print as “1 A.” (See Appendix F.)

One standard for storing machine language programs in a displayable or printable
format is known as “Intel hexadecimal format.” An Intel hex file is a series of lines or
“hex records” containing the following fields:
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Record
mark

l

Record
length (16)

Load
address

CHAPTER 9
Field Bytes Description
Record mark 1 “:# indicates start-of-record
Record length 2 number of data bytes in record
Load address 4 starting address for data bytes
Record type 2 00 = data record; 01 = end record
Data bytes 0-16 data
Checksum 2 sum of all bytes in record + checksum = 0

These fields are shown in the Intel hexadecimal file in Figure 9-3. Conversion programs
are available that receive an absolute object program as input, convert the machine lan-
guage bytes to Intel hexadecimal format, and generate a hex file as output. Intel’s con-
version utility is catled OH.

9.3.4 Execution from EPROM

Once a satisfactory degree of performance is obtained through execution in RAM (or
through in-circuit emulation), the software is burned into EPROM and installed in the
system as firmware. Two types of EPROMs are identified in Figure 9-2 as examples.
The 8751 is the EPROM version of the 8051, and the 2764 is a common, general-pur-
pose EPROM used in many microprocessor- or microcontroller-based products. Systems
designed using an 8751 benefit in that Ports 0 and 2 are available for I/Q, rather than
functioning as the address and data buses. However, 8751s are relatively expensive com-
pared to 2764s ($30 versus $5, for example).

9.3.5 The Factory Mask Process

If a final design is destined for mass production, then a cost-effective alternative to
EPROM is a factory mask ROM, such as the 8051. An 8051 is functionally identical to

Record type
(00 = data)

Data bytes Checksum

l l

(100 080POAFSF67TF0602703E0322CFA920067780C36 )

1000900089001 C6B7TEATCA9200FE10D2AA00477D8 1
:0BOOAGOO8BFA92006F3600C3A00076CB
:0000000 DFF

Record type
(01 =end)

FIGURE 9-3
Intel hexadecimal format
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an 8751; however, code memory cannot be changed on an 8051. The data are perma-
nently entered during the 1C manufacturing cycle using a “mask”—-essentially a photo-
graphic plate that passes or masks (i.e., blocks) light during a stage of manufacturing.
Connections to memory cells in the 8051 are either made or blocked, thus programming
cachcetlasa l or 0.

The choice of using an 8751 versus an 8051 is largely economic. A factory mask
device is considerably cheaper than the EPROM device; however, there is a large setup
fee to produce the mask and initiate a custom manufacturing cycle. A tradeoff point can
be identified to determine the feasibility of each approach. For example, if 8751s sell for
$25 and 8051s sell for $5 plus a $5,000 setup fee, then the break-even point is

25 n 5 n + 5000
20 n 5000
n = 250 units

noil

1

A production run of 250 units or more would justify the use of the 8051 over the 875].

The situation is more complicated when comparing designs using an 8051 versus
an 8031 + 2764, for example. In the latter case, the 8031 + 2764 alternative is much
cheaper than an 8751 with on-chip EPROM, so the tradeoff point occurs at much greater
quantitics. [ an 8031 + 2764 sclls for, say. $7. then the break-cven point is

7n =5n+ 5000
2 n = 5000
n = 2500 units

A production run of 1000 units would not justify use of the 8051——or so it seems. The
use of external EPROM means that Ports 0 and 2 are unavailable for /0. This may be a
critical point that prevents the 8031 + 2764 approach. Even if the loss of on-chip I/O is
not a concern, other factors enter. The 8031 + 2764 approach requires two ICs instead of
one. This complicates manufacturing, testing, maintenance, reliability, procurement, and
a host of other seemingly innocent, but nevertheless real, dimensions of product design.
Furthermore, the 8031 + 2764 design will be physically larger than the 8051 design. If
the final product necessitates a small form factor, then the 8051 may have to be used, re-
gardless of the additional cost.

9.4 COMMANDS AND ENVIRONMENTS

In this section the overall development environment is considered. We present the notion
that at any time the designer is working within an “environment” with commands doing
the work. The central environment is the operating system on the host system, which is
most likely MS-DOS running on a member of the PC family of microcomputers. As sug-
gested in Figure 9-4, some commands return to MS-DOS upon completion, while others
evoke a new environment.

Invoking Commands. Commands are either resident (e.g., DIR) or transient (e.g.,
FORMAT, DISKCOPY). A resident command is in memory at all times, ready for exe-
cution (e.g., DIR). A transient command is an executable disk file that is loaded into
memory for execution (e.g., FORMAT).
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FIGURE 9-4
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Application programs are similar to transient commands in that they exist as an ex-
ccutable disk file and are invoked from the MS-DOS prompt. However, there are still
many possibilities. Commands or applications may be invoked as part of a batch file, by
a function key, or from a menu-driven user interface acting as a front-end for MS-DOS.

If command arguments are necded, there are many possibilities again. Although
arguments are typically entered on the invocation line following the command, some
commands have default values for arguments, or prompt the user for arguments. Unfor-
tunately, there is no standard inechanism, such as the “dialogue box” used in the Mucin-
rosh interface, to retrieve extra information needed for a command or application.

Some applications, such as editors, “take over” the system and bring the user into a
new environment for subsequent activities.
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Environments.  As evident in Figure 9-4, some software tools such as the simulator, in-
circuit emulator, or EPROM programmer cvoke their own environment. Learning the
nuances of each takes time, due to the great variety of techniques for directing the activ-
ities of the environment: cursor keys. function keys, first-letter commands. menu high-
lighting, default paths, and so on. It is often possible 1o switch among environments
while leaving them active. For example, terminal emulators and editors usually allow
switching to DOS momentarily to execute commands. The MS-DOS command EXIT im-
mediately brings the user back the suspended environment.

Methodology. As research in artificial intelligence and cognitive science has discov-
ered, modeling human “problem solving” is a slippery business. Humans appear to ap-
proach the elements of a situation in parallel, simultaneously weighing possible actions
and proceeding by intuition. The methodology suggested here recognizes this human
quality. The steps in the development cycle and the tools and techniques afforded by the
development environment should be clearly understood, but the overall process shoutd
support substantial freedom.

The basic operation of commands is to “translate,” “view,” or “evoke™ (a ncw en-
vironment). The results of translation should be viewed to verify results. We can take the
attitude of not believing the outcome of any translation (assembling, EPROM program-
ming, etc.) and verify everything by viewing results. Tools for viewing are commands
such as DIR (Were the expected output files created?), TYPE (What's in the output
file?), EDIT, PRINT, and so on.

EINrYS

9.5 SUMMARY

The tools and techniques available for designing microcontroller-based products have
been introduced in this chapter. There is no substitute for experience, however. Success
in design requires considerable intuition, a valuable commodity that cannot be delivered
in a textbook. The age-old expression “trial and error” still rings true as the main tech-
nique employed by designers for turning ideas into real products.

PROBLEMS

1. 1f 8751 EPROMs sell for $30 in any quantity and a mask-programmed 8051 sells for
$3 plus a $10,000 setup fee, how many units are necessary to justify use of the 8051
device? What is the savings for projected sales of 3,000 units of the final product if
the 8051 is used instead of the 87517

2. Below is an 8051 program in Intel hex format.

:100800007589117FC07E0S75A88AD28FD28DB0OFEF2
:10081000C28C758C3C758ABODEO87EOSOFBF09025C
:100820007F00D28C32048322FBI0FCOCFCT7AFCADSE
: 0A083000FDOAFDSCFDAG6FDC8FDC831

:00000001FF

(a) What is the starting address of the program?
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(b)What is the length of the program?
(c) What is the last address of the program?

3. The following is a single line from an Intel hex file with an error in the checksum. The
incorrect checksum appears in the last two characters as “00”. What is the correct
checksum?

:100800007589117C007F0575A8FFD28FD28D80FEQQ
4. The contents of an Intel hex file are shown below.

:090100007820765508B880FA2237
:00000001FF

Recreate the original source program that this file represents.
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DESIGN AND INTERFACE EXAMPLES

10.1 INTRODUCTION

Many of the 8051’s hardware and software features are brought together in this chapter
through several design and interface examples. The first is an 8051 single-board com-
puter—the SBC-51—suitable for learning about the 8051 or developing 8051-based
products. The SBC-51 uses a substantial monitor program offering basic commands for
systern operation and user interaction. The monitor program (MONS5I) is described in
detail in Appendix G.

The interface examples are advanced in comparison to those presented in previous
chapters. Each example includes a hardware schematic, a statement of the design objec-
tive, a software listing of a program that achieves the design objective, and a general de-
scription of the operation of the hardware and software. The software listings are exten-
sively commented and should be consulted for specific details.

10.2 THE SBC-51

Several companies offer 8051 single-board computers similar to that described in this
section. Surprisingly, the basic design of an 8051 single-board computer does not vary
substantially among the various products offered. Since many features are “on-chip,” de-
signing an 8051 single-board computer is straightforward. For the most part, only the ba-
sic connections to external memory and the interface to a host computer are required.

A monitor program in EPROM is also required. The most basic system require-
ments, such as examining and changing memory locations or downloading application
programs from a host computer, are needed to get “up and running.” The SBC-51 de-
scribed here works together with a simple monitor program to provide these basic func-
tions.

Figure 10-1 contains the schematic diagram for the SBC-51. The entire design in-
cludes only 10 ICs, yet is powerful and flexible enough to support the development of
sophisticated 8051-based products. Central to the operation of the SBC-51 is a monitor
program that resides in EPROM and communicates with a video display terminal (VDT)
connected to the 8051. The monitor program is described in detail in Appendix G.
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The SBC-51 includes, in addition to the standard 80C31 features, 16K bytes of ex-
ternal EPROM, 8.25K bytes of external RAM, an extra 14-bit timer, and 22 extra in-
put/output lines. The configuration shown in Figure 10-1 includes the following compo-
nents and parts:

D 10 integrated circuits
G 15 capacitors

0 2 resistors

O | crystal

0 1 push-button switch
0 3 connectors
o

13 configuration jumpers

Since external memory is used, Port 0 and Port 2 are unavailable for input/output.
Although Ports | and 3 are partially utilized for special features, some Port 0 and Port 3
lines may be used for input/output purposes, depending on the configuration.

The 80C31 clock source is a 12 MHz crystal connected in the usual way. (See Fig-
ure 2-2.) The RST (reset) line is driven by an R-C network for power-on reset and by a
push-button switch for manual reset. Port O doubles as the data bus (DO to D7) and the
low-byte of the address bus (A0 to A7), as discussed earlier. (See 2.6 External Memory.)
A 74HC373 octal latch is clocked by ALE to hold the low-byte of the address bus for the
duration of a memory cycle. Since the 80C31 does not include on-chip ROM, execution
is from external EPROM, and so EA (external access) is connected to ground through
configuration jumper X2. .

The connection to the host computer or VDT uses a serial RS§232C interface. The
DB25S connector is wired as a DTE (data terminal equipment) with transmit data (TXD)
on pin 2, receive data (RXD) on pin 3, and ground on pin 7. A 1488 RS232 line driver
connects to TXD and a 1489 RS232 line receiver connects to RXD. The default connec-
tion to the 80C31 is through jumpers X9 and X10 with P3.1 as TXD and P3.0 as RXD.
Optionally, through jumpers X 11 and X12, the TXD and RXD functions can be provided
through software using P1.7 and P1.6.

Port 1 lines 3, 4, and 5 are read by the monitor program upon reset to evoke special
features. After reset, however. these lines are available for general-purpose 1/0. If the
printer interface is used, Port 1 lines 0, |, and 2 are the handshake signals. If the printer
interface is not used, these lines are available for general-purpose I/0O.

The 74HC138 decodes the upper three bits on the address bus (A15 to A13) and
generates eight select lines, one for each 8K block of memory. These are called SSKO
(for “select 8K block 0”) through to S8K7. Four ICs are selected by these lines: two
2764 EPROMs, a 6264 RAM, and an 8155 RAM/IO/TIMER.

Two 2764 8K by 8 EPROMs are shown in Figure 10-1. The first (labeled “MONI-
TOR EPROM") is selected by S8KO and resides in the external code space from address
0000H to |FFFH. Since the SBC-51 will begin execution from address 0000H immedi-
ately after a system reset, the monitor program must reside in this IC. The second 2764 is
labeled “USER EPROM"” and is selected by S8K1 for execution at addresses 2000H to
3FFFH. This IC is intended for user applications and is not needed for basic system op-
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eration. Note that both EPROMs are selected only if CE (chip enable; pin 20) is active
(or low) and OE is also active (or low). OE is driven by the 80C31’s PSEN line: thus se-
lection is in the external code space, as expected.

The 6264 8K by 8 RAM IC is selected by S8K4 (if jumper X6 is installed, as
shown), so it resides at addresses 8000H to 9FFFH. The RAM is selected to occupy both
the external data space and the external code space using the method described earljer.
(See Section 2.6.4, Overlapping the External Code and Data Spaces.) This allows user
programs to be loaded (or written) to the RAM as “data memory” and then executed as
“code memory.”

The 8155 RAM/IO/TIMER is a peripheral interface IC that was added to demon-
strate the expansion capabilities of the SBC-51. It is easy to add other peripheral inter-
face ICs in a similar way. The 8155 is selected by S8KO, placing it at the bottom of
memory. No conflict occurs with the monitor EPROM (which also resides at the bottom
of memory, but in the external code space) because the 8155 is further selected for read
and write operations using RD and WR.

The 8155 contains the following features:

0 256 bytes of RAM

0 22 input/output lines

O 14-bit timer

Address line A8 connects to the 8155°s I0/M line (pin 7) and selects the RAM when low
and the I/O lines or timer when high. The I/O lines and timer are accessed from six ad-

dresses, so the total address range of the 8155 is 0000H to 0105H (256 + 6 addresses).
These are summarized below.

Address Purpose
0000H first RAM address

.. Other RAM addresses

00FFH last RAM address

0100H Interval/command register
0101H Port A

0102H Port B

0103H Port C

0104H Low-order 8 bits of timer count
0105H High-order 6 bits of timer count & 2 bits

of timer mode

Although the manufacturer’s data sheet should be consulted for details of the 8155’s op-
eration, configuring the 1/O ports is extremely easy. By default all port lines are inputs
after a system reset; therefore no “initialize” operation is needed to read input devices
connected to the 8155. To read Port A into the accumulator, for example, the following
instruction sequence is used:

MOV DPTR, #0101H ;DPTR points to 8155 Port A
MOVX A, @DPTR ;read Port A into Acc
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To program Port A and Port B as outputs, 1s must first be written into the command reg-
ister bits 0 and 1, respectively. For example, to configure Port B as an output port and
leave Port A and Port C as input, the following instruction sequence is used:

MOV DPTR, #0100H ;8155 command register
MOV A, #00000010B ;Port. B = output
MOVX @DPTR, A ;initialize 8155

Port C is configured as an output by writing 1s to the command register bits 2 and 3. All
three ports would be configured as output as follows:

MOV DPTR, #0100H ;8155 command register
MOV A,#00001111B ;all ports = output
MOVX (@DPTR, A ;initialize 8155

Port A of the 8155 is shown connected to a 20-pin header labeled “Centronics
printer interface.” This interface is for demonstration purposes only. MONS51 includes a
PCHAR (print character) subroutine and directs output to the VDT and a parallel printer
if CONTROL-Z is entered on the keyboard. (See Appendix G.) Of course, Port A can be
used for other purposes if desired.

Power-supply connections are also shown in Figure 10-1. The filter capacitors are
particularly important for the +5 volt supply to avoid glitches due to inductive effects
when digital devices switch. If the SBC-51 is constructed on a prototype board (for ex-
ample, by wire wrapping), these capacitors should be considered critical. Place a 10 wF
electrolytic capacitor where power enters the prototype board, and 0.01 wF ceramic ca-
pacitors beside the socket for each IC, wired between the +5 volt pin and the ground pin.

Since the SBC-51 is small and inexpensive, it is easy to construct a prototype and
gain hands-on experience through the monitor program and the interfacing examples in
this chapter. Wire wrapping is the most practical method of construction. The SBC-51 is
also available assembled and tested on a printed-circuit board (see Figure 10-2).!

This concludes our description of the SBC-51. The following sections contain ex-
amples of interfaces to peripheral devices that have been developed to connect to the
SBC-51 (or a similar 8051 single-board computer).

10.3 HEXADECIMAL KEYPAD INTERFACE

Interfaces to keypads are common for microcontroller-based designs. Keypad input and
LED output are an economical choice for a user interface and are often adequate for
complex applications. Examples include the user interface to microwave ovens or auto-
mated banking machines. Figure 10-3 shows an interface between Port 1 and a hexadec-
imal keypad. The keypad contains 16 keys arranged in four rows and four columns. The
row lines are connected to Port 1 bits 4-7, the column lines to Port 1 bits 0-3.

IThe printed-circuit board version ol the SBC-51 is available from URDA, Inc., 1811 Jancey St., Suite
#200, Pittsburgh, PA, USA, 15206.
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FIGURE 10-2

The printed-circuit board version of the SBC-51. (Courtesy URDA, Inc.)

FIGURE 10-3
Interface to hexadecimal key-
pad
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Design Dbjective

Write a program that continually reads hexadecimal characters from the keypad and
echoes the corresponding ASCII code to the console.

On the surface, this example seems quite simple. The software can be divided into the
following steps:

1. Get a hexadecimal character from the keypad.
2. Convert the hexadecimal code to ASCII.

3. Send the ASCII code to the VDT.

4. Gotostep 1.

In fact, the software solution shown in Figure 104 follows this exact pattern (see lines
16-19). Of course, the work is done in the subroutines. Note that steps 2 and 3 above are
implemented by calling subroutines in MONS5 1. Of course, the code could have been ex-
tracted from MONSI and placed in the listing in Figure 10-4, but that’s wasteful. In-
stead, the MONSI entry points for these subroutines are defined near the top of the list-
ing (in lines 12-13) using the symbols HTOA and OUTCHR, and then the subroutines
are called in the MAIN program loop in the usual way. Incidentally, the entry points for
MONS5I1 subroutines can be found in the symbol table created by RL51 when MONS1
was linked and located. The entry points for HTOA and OUTCHR, for example, are
found in Appendix G. .

The real challenge for this example is writing the subroutines IN_HEX and
GET_KEY. GET_KEY does the work of scanning the row and column lines of the key-
pad to determine if a key is pressed. If no key is pressed, it returns with C = 0. If a key is
pressed, it returns with C = | and the hexadecimal code for the key in the accumulator
bits 0--3.

IN_HEX performs software debouncing. Since the keypad is a series of mechani-
cal switches, contact closure and release include bounce—the rapid but brief make-and-
break of the switch contacts. Debouncing is performed by calling GET_HEX repeatedly
until 50 consecutive calls return with C = 1. Any call to GET_HEX returning with C =0
is interpreted as noise (i.e., bounce) and the counter is reset. After detecting a legitimate
key closure, IN_HEX then waits for 50 consecutive calls to GET_HEX returning with C
= 0. This cnsures a clean key release betore the next call to GET_HEX.

The software in Figure 10-4 works, but it is not particularly elegant. Since inter-
rupts are not used, the program’s utility within a larger application is limited. A reason-
able improvement, therefore, is to redesign the software using interrupts. An interrupt-
driven interface is itlustrated in the next example.

10.4 INTERFACE TO MULTIPLE 7-SEGMENT LEDS

An interface to a 7-segment LED display was presented in a problem at the end of Chap-
ter 3. (See Figure 3-5.) Unfortunately, the interface used seven lines on Port 1, so it rep-
resents a poor allocation of the 8051"s on-chip resources. In this section, we demonstrate
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FIGURE 104
Software for keypad interface
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12
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31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
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48
49
50
51
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54
55
56
57
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60
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63
64

SOURCE

$DEBUG

$NOPAGING
$NOSYMBOLS

;FILE: KEYPAD.SRC

AR KRR R R AR RN R A I AR A A KRR R A IR A IR AR R A R IR AR RS

H KEYPAD INTERFACE EXAMPLE

'
This program reads hexadecimal characters from a M
keypad attached to Port 1 and echos keys pressed M
v’
'

H
H
H
;

to the consgole.
;*tt**ﬁ*t******ﬁﬁ*ktt*******i*ﬁ*i*ifﬂ**tiﬁ***ﬁ*iiﬁ*ttﬁ

HTOA EQU 033CH ;MON51 subroutines (V12)
OUTCHR EQU 01DEH
ORG 8000H
MAIN: CALL IN_HEX :get code from keypad
CALL HTOA ;convert to ASCII
CALL QUTCHR ;echo to console
SIMP MAIN ;repeat

;iﬁ*'*ittttﬁ*iiﬁ*ﬂt***tﬁ*ttﬁtﬁﬁﬁ***nt**t*iﬁﬁ**ﬁw*ittiﬁi
; IN_HEX - input hex code from keypad with debouncing *
H for key press and key release (50 repeat *

i operations for each) *
l.**ik*iﬁ***ﬁ****Q**i****i*i*tﬁﬁi*************iﬂ*i'i**ti

IN_HEX: MOV R3, #50 ;debounce count

BACK: CALL GET_KEY ;key pressed?
JNC IN_HEX ;no: check again
DJINZ R3,BACK ;yes: repeat 50 times
PUSH ACC :save hex code

BACK2: MoV R3,#50 ;wait for key up

BACK3: CALL GET_KEY ;key pressed?
Jc BACK2 ;yes: keep checking
DJINZ R3,BACK3 ;no: repeat 50 times
POP ACC ;recover hex code and
RET ; return

RKEE KA KA AR E R AR R AR RIS R R A KRR KN AR AR AR ERRR NI RIS

; GET_KEY - get keypad status *
H - return with C = 0 if no key pressed *
; - rveturn with ¢ = 1 and hex code in ACC if *
H a key is pressed *

GREKAN AR A kA KRR Rk kA AT R AR Rk kK Rk hk kA kA Ak bk ke F ke k kA Xk

GET_KEY: MOV A, #0FEH ;start with column 0
MoV R6,#4 ;use R6 as counter
TEST: MOV P1,A ;activate colmn line
MOV R7,A ;save ACC
MoV A,P1 ;jread back Port 0
ANL A, #0FOH ;isolate row lines
CJINE A, #0F0H,KEY_HIT ;row line active?
MOV A,R7 ;jno: move to next
RL A H column line
DJINZ R6,TEST
CLR o] ;no key pressed
SJMP EXIT jreturn with ¢ = 0

KEY_HIT: MOV R7.A ;jsave in R6
MOV A, #4 ;prepare to caculate
CLR o] ; column weighting
SUBB A,R6 ;4 - R6 = weighting
MoV R6,A ;save in R6
MOV A,R7 ;irestore scan code
SWAP A ;jput in low nibble
MOV RS, #4 juse R5 as counter
AGAIN: RRC A ;jrotate until 0



DESIGN AND INTERFACE EXAMPLES .
8042 5006 65 JNC DONE ;done when C =
8044 OE 66 INC R6 ;add 4 until active
8045 OE 67 INC R6 ; row found
8046 OE 68 INC Ré
8047 OE 69 INC R6
8048 DDF7 70 DJINZ RS, AGAIN
804a D3 71 DONE : SETB C ;C = 1 (key pressed)
804B EE 72 MOV A,R6 icode in A {(whew!!!)
804cC 22 73 EXIT: RET
T4 END
FIGURE 10-4
continued

an interface to four 7-segment LEDs using only three of the 8051s 1/O lines. This, obvi-
ously, is a much-improved design, particularly if multiple segments must be connected.

Central to the design is the Motorola MC14499 7-segment decoder/driver, which
includes much of the circuitry necessary to drive four displays. The only additional
components are a 0.015 wF timing capacitor, seven 47 £} current-limiting resistors and
four 2N3904 transistors. Figure 10-5 shows the connections between the 80CS51, the
MC 14499, and the four 7-segment LEDs.

203

Design Objective

Assume BCD digits are stored in internal RAM tocations 70H and 7tH. Copy the BCD
digits to the LED display 10 times per second using interrupts.

The software to accomplish the above objective is shown in Figure 10-6. The list-
ing iltustrates a number of concepts discussed earlier. The low-level details of sending
data to the MC14499 are found in the subroutines UPDATE and OUTS8. At a higher
level, this example illustrates the design of interrupt-driven applications with a sig-
nificant amount of foreground and background activity (unlike the examples in Chapter
6, which operated only in the background). The interrupts for this example coexist with
MONSI, which does not itself use interrupts. The monitor program executes in the fore-
ground while the program in Figure 10-6 executes at interrupt-level in the background.
When the program is started (e.g., by entering the MONS51 command GO8000; see Ap-
pendix G), conditions are initialized for the necessary interrupt-initiated updating of the
LED displays, and then control quickly passes back to the monitor program. Monitor
commands can be executed in the usual way; meanwhile, interrupts are occurring in the
background. If, for example. the monitor SET command is used to change internal RAM
locations 70H and 71H. the changes are seen immediately (within 0.1 s) on the 7-seg-
ment LED displays.

Note the overall structure of the program. The following sections appear in order:

0 Assembler controls (lines 1-3)

O Comment block (lines 4-30)

1 Definition of symbols (31-38)

11 Define storage declarations (lines 40-42)

T Jump table for program and interrupt entry points (lines 44-51)
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11 Main section (MAIN; lines 56-69)

0 External interrupt service routine (EXTOISR; lines 74-77)
0 Update LED display subroutine (UPDATE; lines 89-97)
O Output byte subroutine (OUTS: lines 103—113)

17 Code to handle unimplemented interrupts (lines 118-123)

The program is written for execution at address 8000H in the SBC-51"s 6264 RAM
IC. Since interrupts vector through locations at the bottom of memory, the monitor pro-
gram includes a jump table redirecting interrupts to addresses starting at address 8000H.
(See Appendix G.) The program entry point is conveniently 8000H; however, an LIMP
instruction (line 45; see Figure 10-6) passes control to the label MAIN. All the initialize
instructions are contained in lines 56-68. The MAIN section terminates by jumping back
to the monitor program.

10.5 LOUDSPEAKER INTERFACE

Figure 10-7 shows an interface between an 8031 and a loudspeaker. Small loudspeakers,
such as those found in personal computers or children’s toys, can be driven from a single
logic gate, as shown. One side of the loudspeaker’s coil connects to +5 volts, the other to
the output of a 74LS04 logic inverter. The inverter is required because it has a higher
drive capability than the port lines on the 8031.

Design Objective

Write an interrupt-driven program that continually plays an A-major musical scale.

Musical melodies are easy to generate from an 8051 using a simple loudspeaker inter-
face. We begin with some music theory. The frequency for each note in an A-major mu-
sical scale is given in the comment block at the top of the software listing in Figure 10-8
(lines 14-21). The first frequency is 440 Hz (called “A above middle C”), which is the
international reference frequency for musical instruments using the equal-tempered
scale (e.g., the piano). The frequency of all other notes can be determined by multiplying
this frequency by 2712, where n is the number of steps (or “semitones™) to the note being
calculated. The easiest example is A’, one octave, or 12 steps, above A, which has a fre-
quency of 440 X 21212 = 880 Hz. This is the last note in our musical scale. (See Figure
10-8, line 21.) With reference to the bottom note (or “root”) in any major scale, the scale
instepsis 2,4,5,7,9, 11, and 12. For example, the note “E” in Figure 10-8 (line 18) is
seven steps above the root; thus its frequency is 440 X 2712 = 659.26 Hz.

To create a musical scale, two timings are required: the timing from one note to the
next, and the timing for toggling the port bit that drives the loudspeaker. These two tim-
ings are vastly different. To play the melody at a rate of four notes/second, for example,
a timeout (or interrupt) is needed every 250 ms. To create the frequency for the first note
in the scale, a timeout is needed every 1.136 ms. (See Figure 10-8, line 14.)



LOC

00BC
0100
0104
0FAQ
0040
0097
0096
0095

0070
0072

8000 028015
8003 028031
8006 02805D
8009 02805D
800C 02805p
800F 02805D
8012 02805p

8015 900104
8018 74a0
801A FO
801B A3
801C 744F
801E FO
801F 900100
8022 74c0
8024 FO

FIGURE 10-6
Software for MC14499 interface

OO U W N

LINE

SOURCE

$DEBUG

$NOPAGING
$NOSYMBOLS

;FILE: MC14499.SRC

;
i

i
H

i

e R R R e R R )

MC14499 INTERFACE EXAMPLE

This program updates a 4-digit display 10 times per
second using interrupts. The digits are 7-segment
LEDs driven by an MC14499 decoder/driver connected
to P1.5 (-ENABLE}, P1.6 (CLOCK), and P1.7 (DATA
IN). Interrupts are generated by the 8155's TIMER
OUT line connected to -INTO. TIMER OUT oscillates
at 500 Hz and generates an interrupt on each 1-to-0
transition. An interrupt counter is used to update
the display every 50 interrupts, for an update
frequency of 10 Hz.

The example illustrates the foreground/background
concept for interrupt-driven systems. Once the
8155 is intitialized and External 0 interrupts are
enabled, the program returns to the monitor program.
MON51 itself does not use interrupts; however, it
executes as usual in the foreground while
interrupts take place in the background. If the
MON51 command SI (set internal memory) is used to
change locations DIGITS or DIGITS+1, then the value
written is immediately seen (within 0.1 s) on the
LED display.

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
P 2 R R R R T e )

MON51 CODE 00BCH ;MON51 (V12) entry
X8155 XDATA 0100H ;8155 address
TIMER XDATA X8155 + 4 stimer registers
COUNT EQU 4000 ;interrupts @ 2000 us
MODE EQU 010000008 ;timer mode bits
DIN BIT P1.7 ;MC14499 interface lines
CLOCK BIT Pl1.6
ENABLE BIT P1.5

DSEG AT 70H ;jabsolute internal segment
DIGITS: DS 2 ; (no conflict with MONS51)
ICOUNT: DS 1

CSEG AT 8000H

LJMP MAIN program entry point

LJIMP EX0ISR ; 8155 interrupt

LJMP TOISR ; Timer 0 interrupt
LJMP EX1ISR ; External 1 interrupt
LJIMP T1ISR ; Timer 1 interrupt
LJMP SPISR ; Serial Port interrupt
LJIMP T2ISR ; Timer 2 interrupt

R R AR R T T R T T

H
i

MAIN PROGRAM BEGINS (INIT 8155 & ENABLE INTERRUPTS) *

P ]

MAIN: MOV DPTR, #TIMER ;initialize 8155 timer
Mov A, #LOW (COUNT)
MOVX @DPTR, A
INC DPTR ;initialize high register
MOV A, #HIGH (COUNT) OR MODE
MOVX GDPTR, A
MOV DPTR, #X8155 ;8155 command register
MOV A, #0COH ;start timer command
MOVX @DPTR, A ;500 Hz square wave



8025
8028
802A
802C
802E

8031
8034
8037
8039

803A
803¢C
803E
8040
8042
8044
8046
8048
804A

804B
804D
804F
8050
8052
8054
8055
8056
8058
805A
805C

805D
805F

FIGURE 10-6

757232
D2AF
D2A8
D288
0200BC

D57205
757232
113a
32

COEO
€295
E570
114B
E571
114B
D295
DOEO
22

c007
7708
33
9297
C296
00
00
D296
DFF5
Do07
22

C2AF
0200BC

continued

65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
30
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124

MOV ICOUNT, #50 ;jinitialize int. counter

SETB EA ;enable interrupts

SETB EX0 ;enable External 0 int.

SETB ITO ;negative-edge triggered

LJMP MON51 ;return to MON51
;i*tﬁi*ﬁ**t*****ﬁtitt*it*it****t**ﬁ***i***tﬁﬁ****tt****
; EXTERNAL 0 INTERRUPT SERVICE ROUTINE *
;*****t'*****ﬁ*ti*ti*ﬁt*ﬂt*********t**i*kt*ﬁ**ﬂi*i*t***
EXOISR: DJNZ ICOUNT, EXIT ;on 50th interrupt,

MOV ICOUNT, #50 ; reset counter and

ACALL UPDATE ; refresh LED display

EXIT: RETI

SRR KA KRR KA KR KRR AR R AR AR IR KRR R R AR R I AR RN A F A A AR KT A K

; UDATE 4-DIGIT LED DISPLAY (EXECUTION TIME = 84 us) *
. *
; ENTER: Four BCD digits in internal memory *
H locations DIGITS and DIGITS+1 (MSD in *
; high nibble of DIGITS) *
; EXIT: MC14499 display updated *
; USES: P1.5, Pl1.6, P1.7 *
H All memory locations and regs intact
;****tﬁ***i*#*****t****k’***it****ikt**i*i'******t*****

UPDATE: PUSH ACC

*

;save Accumulator on stack

CLR ENABLE ;prepare MC14499

MOV A,DIGITS ;get first two digits
ACALL ouUT8 ;send two digits

MOV A,DIGITS + 1 ;get second byte

ACALL ouTs ;send last two digits
SETB ENABLE ;disable MC14499

POP ACC ;restore ACC from stack
RET

GREAA KRR A A I A AR RIIRIKE KRR S A A AN A KA I AR IR A AR AR KA AKX,

; SEND 8 BITS IN ACCUMULATOR TO MC14499 (MSB FIRST) *

RE KRR AR R AR IR R KA RN RN KR AR IRK KRR IR IR IR KRR KA F IR AN * &

USING 0 jassume reg. bank 0 enabled
ouT8: PUSH AR7 ;save R7 on stack
MOV R7, #8 ;use R7 as bit counter
AGAIN: RLC A ;put bit in C flag
MOV DIN,C ;jsend it to MC14499
CLR CLOCK ;3 us low pulse on clock line
NOP ;NOPs needed to stretch pulse
NOP ; (minimum pulse width is
SETB CLOCK ; is 2 us)
DJINZ R7,AGAIN ;repeat until all 8 bits sent
POP AR7 ;restore R7 from stack
RET

PR R e A A e Ll

; UNUSED INTERRUPTS (ERROR; RETURN TO MONITOR PROGRAM) *

AR KKK AR R KA AR R AR IR H AR AR A I AR AR SRR AR AR A AN KR A K KK

TOISR:

EX1ISR:

T1ISR:

SPISR:

T2ISR: CLR EA ;shut off interrupts &
LJMP MONS51 ; return to MONS1
END
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FIGURE 10~7

Interface to a loudspeaker
8031 ﬁ

Loudspeaker

PL7 |

741504

The software in Figure 10-8 initializes both timers for 16-bit timer mode (line 43)
and uses Timer O interrupts for the note changes, and Timer 1 interrupts for the fre-
quency of notes. The reload values for the note frequencies are read from a look-up table
(lines 90-104). Consult the listing in Figure 10-8 for further details.

10.6 NON-VOLATILE RAM INTERFACE

Nonvolatile RAMs (NVRAMs) are semiconductor memories that maintain their con-
tents in the absence of power. NVRAMs incorporate both standard static RAM cells and
electrically erasable programmable ROM (EEPROM) cells. Each bit of the static RAM
is overlaid with a bit of EEPROM. Data can be transferred back and forth between the
two memories.

NVRAMSs occupy an important niche in microprocessor- and microcontroller-
based applications. They are used to store setup data or parameters that are changed oc-
casionally by the user but must be retained when power is lost.

As an example, many VDT designs avoid the use of DIP switches (which are prone
to failure) and use NVRAMS to store setup information such as baud rate, parity on/off,
parity odd/even, and so on. Each time the VDT is turned on, these parameters are re-
called from NVRAM and the system is initialized accordingly. When a parameter is
changed by the user (via the keyboard) the new value is stored in NVRAM.

Modems with an auto-dial feature usually hold phone numbers in internal memory.
These phene numbers are often stored in a NVRAM so they will be retained in the event
of a power outage. Ten phone numbers with seven digits each can be stored in 35 bytes
(by encoding each digit in BCD notation).

The NVRAM used for this interface example is an X2444 manufactured by Xicor,! a
company that specializes in NVRAMs and EEPROMSs. The X2444 contains 256 bits of sta-
tic RAM overlaid by 256 bits of EEPROM. Data can be transferred back and forth between
the two memories either by instructions sent from the processor over the serial interface or
by toggling the external STORE and RECALL inputs. Nonvolatile data are retained in the
EEPROM, while independent data are accessed and updated in the RAM. The X2444 fea-
tures are summarized in the first page of its data sheet, reproduced in Figure 10-9.

In this interface example, the STORE and RECALL lines are not used. The vari-
ous modes of operation are entered by sending the X2444 serial instructions through
8051 port pins.

IXICOR. Inc., 85! Buckeye Court. Milpitas, CA 95035



1 $debug
2 $nopaging
3 $nosymbdls
4 ;FILE: SCALE.SRC
5 '.***t****ﬁ***i***ﬁ*ﬂ’lt***ﬁt'**ti**t*itiﬁiﬁttiﬁﬂ‘k'ﬁ'**'
6 H LOUDSPEAKER INTERFACE EXAMPLE *
7 ; *
8 ; This program plays an A major musical scale using *
9 ; a loudspeaker driven by a inverter through P1.7 *
10 ’-k*t*iﬁ*ﬁ*ﬁ**ﬁki*******i***iﬁ&ltt**itﬁﬁ**tkﬁ**nﬁi"i'ﬁ'
11 ; *
12 ; Note Frequency (Hz) Period (us) Period/2 (us) *
13 P mmem mmmmemmmmmmel mmmmemmmes e *
14 ; A 440.00 2273 1136 *
15 ; B 493.88 2025 1012 *
16 ; c# 554.37 1804 902 *
17 ; D 587.33 1703 851 *
18 ; E 659.26 1517 758 *
19 ; F# 739.99 1351 676 *
20 H G# 830.61 1204 602 *
21 3 Al 880.00 1136 568 *
22 ;ittti't'kit*********t**ﬁ***ﬁtt*t*t'tt*i****"ﬁiﬁ'it***'!‘
00BC 23 MONITOR CODE OOBCH sMON51 (V12) entry point
3CBO 24 COUNT EQU ~50000 ;0.05 seconds per timeout
000s 25 REPEAT EQU S ;5 x 0.05 = 0.25 seconds/note
2
25 ;*'******tti****it**t**ﬁii*it***it***ﬂ**t**ﬁii?tﬁﬁ*'ﬁﬁ'
28 ; Note: X3 not installed on SBC-51, therefore *
29 ; interrupts directed to the following jump table *
30 ; beginning at 8000H *
31 ;***t-A-***iﬂ**t**t****tt*‘(ﬂ******ii*i****tﬁ*i*t*'ﬁﬁﬁ'*ﬁ*
8000 32 ORG  8000H ;RAM entry peoints for...
8000 028015 33 LJMP MAIN ; main program
8003 02806B 34 LJMP EXTOISR ; External 0 interrupt
8006 028025 35 LJMP TOQISR ; Timer 0 interrupt
8009 02806B 36 LJMP EXT1ISR ; External 1 interrupt
800C 02803A 37 LIJMP T1ISR ; Timer 1 interrupt
800F 02806B 38 LJMP SPISR ; Serial Port interrupt
8012 02806B 39 LJMP T2ISK ; Timer 2 interrupt
4
43 ’.**tﬁi-i*t*******ﬁ***t*ii-***ﬁ**tii*ﬂkﬂﬁ****t'kk*ﬁk'ﬁk*!ﬁ
42 ; MAIN PROGRAM BEGINS *
43 :iﬁk**i***iﬁnkt**kﬁ*itk****t'ﬁ*t*i*t*i*i*ﬁit*ti*f‘tﬁw!ﬂﬂ
8015 758911 44 MAIN: MOV TMOD, #11H ;both timers 16-bit mode
8018 7F00 45 MOV R7,%0 ;use R7 as note counter
801A 7E05 46 MOV R6,#REPEAT ;use R6 as timeout counter
801C 75A88A 47 MoV IE, #8AH ;Timer 0 & 1 interrupts on
801F D28F 48 SETB TF1 ;force Timer 1 interrupt
8021 D28D 49 SETB TFO ;force Timer 0 interrupt
8023 8OFE 50 sSIJMP  $ ;2z22222z%Zz time for a nap
5
5; ;’l!’**ﬁ*ﬂtﬁ*t**t*ﬁ*ﬂ*i**lﬂkfit*'i*tiﬁiﬁ'ﬂt*tt*t"!*‘*'."
53 ; TIMER 0 INTERRUPT SERVICE ROUTINE (EVERY 0.05 SEC.) *
54 ;itﬁktﬁi*'*ﬁ*l'ﬁ**tiﬁlttk‘*iﬁiﬁ*wﬁﬁﬁ*'ﬂtt"'*ﬁﬁ'*ti*'.t
8025 C28C 55 TOISR: CLR  TRO ;stop timer
8027 758C3C 56 MOV  THO,#HIGH (COUNT) ;reload
802A 758AB0 57 MOV TLO, #LOW  (COUNT}
802D DEOS 58 DJNZ R6,EXIT ;if not 5th int, exit
802F 7EQ5 59 MOV R6, #REPEAT ;if 5th, reset
8031 OF 60 INC R7 ;increment note
8032 BF0C02 61 CJINE R7,#LENGTH, EXIT ;beyond last note?
8035 7F00 62 MOV R7, %0 ;yes: reset, A=440 Hz
8037 D28C 63 EXIT: SETB TRO ;ino: start timer, go
8039 32 64 RETI ; back to 2z2z2222Z

FIGURE 10-8
Software for loudspeaker interface
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8050 04
8051 83
8052 22
8053 FBI9O
8055 FB90O
8057 FCOC
8059 FC7A
805B FCAD
805D FDOA
805F FD5C
8061 FDA6
8063 FDC8
8065 FDC8
8067 FDC8
8069 FDC8
000C

806B C2AF
806D 0200BC

FIGURE 10-8
continued

APTER 10

108
109
110
111
112
113
114
115

;i****************i*********tt********i*****t*ﬁi*ﬂ*****
; TIMER 1 INTERRUPT SERVICE ROUTINE (PITCH OF NOTES) *
; *
i
; Note: The output frequencies are slightly off due *
; to the length of this ISR. Timer reload values *

*

*

; need adjusting.
;***************************tti*******k**i***ki**ﬂ***ﬁ

T1ISR: CPL P1.7 ;music maestro!
CLR TR1 ;stop timer
MOV A,R7 ;get note counter
RL A ;multiply (2 bytes/note)
CALL GETBYTE ;get high-byte of count
MOV TH1,A ;put in timer high register
MoV A,R7 ;get note counter again
RL A ;align on word boundary
INC A ;past high-byte (whew!)
CALL GETBYTE ;get low-byte of count
MOV TL1l,A ;put in timer low register
SETB TR1 istart timer
RETI ;time for a rest

KRR K KR A AR R A AR R IR Rk A kR R h kR kA kR Ak A Rk h ko Ak h ko h* Nk

; GET A BYTE FROM LOOK-UP OF NOTES IN A MAJOR SCALE *

RRHA AR K A A K R AR AR IR h AR RN R A A A A AR A ARk F ko F AR I AR Kk

GETBYTE: INC A ;table look-up subroutine
MOVC A, @A+PC
RET
TABLE: DwW -1136 ;A
DW -1136 ;A (play again; half note)
Dw -1012 ;B (quarter note, etc.)
DW -902 ;C# - major third
Dw -851 ;D
DW ~-758 ;E -~ perfect fifth
DW -676 ;F#
DW -602 iG#
Dw -568 A’
DW -568 ;A' (play 4 times; whole note)
DW -568
DW -568
LENGTH EQU ($ ~ TABLE) / 2 ;LENGTH = # of notes

R AR A AR I AR A AR KR AR KR I AN K AR A AR KR AR I AR R AN IR XA RN

; UNUSED INTERRUPTS - BACK TO MONITOR PROGRAM (ERROR) *

RALAEEAE S EE LAttt ittt sttt et

EXTOISR:

EXT1ISR:

SPISR:

T2ISR: CLR EA ;shut off interrupts and
LJMP MONITOR ; return to MONS51
END



DESIGN AND INTERFACE EXAMPLES

ior

®
Commercial X2444
256 Bit industrial X2444| 16 x 16 Bit
Nonvolatile Static RAM
FEATURES DESCRIPTION

© |deal for use with Single Chip
Microcomputers
—Static Timing
—Minimum 1/0 Interface
—Serial Port Compatible (COPS™™, 8051)
—Easily Interfaces to Microcontroller Ports
—Minimum Support Circuits

® Software and Hardware Control of
Nonvolatile Functions
—Maximum Store Protection

* TTL Compatible

® 16 x 16 Organization

© Low Power Dissipation
—Active Current: 15 mA Typical
—Store Current: 8 mA Typical
-~Standby Current: 6 mA Typical
—Sieep Current: 5 mA Typical

© 8 Pin Mini-DIP Package

The Xicor X2444 is a serial 256 bit NOVRAM featuring
a static RAM configured 16 x 16, overlaid bit for bit with
a nonvolatile E2PROM array. The X2444 is tabricated
with the same reliable N-channiel floating gate MOS
technology used in all Xicor 5V nonvolatile memories.

The Xicor NOVRAM design allows data to be trans-
ferred between the two memory arrays by means of
software ¢ ds or inputs. A
store operation (RAM data to E2PROM) is completed in
10 ms or less and a recall operation (E2PROM data to
RAM}) is completed in 2.5 us or less.

Xicor NOVRAMSs are designed for unlimited write oper-
ations to RAM, either from the host or recalls from
E2PROM and a minimum 100,000 store operations.
Data retention is specified to be greater than 100
years.

COPS™ ig a trademark of National Semiconductor Corp.

PIN CONFIGURATION

FUNCTIONAL DIAGRAM

[ Jvee
[} STORE
REGALL
[ Jvss
0042-1
PIN NAMES
CE Chip Enable
SK Serial Clock
DI Serial Data In saTRCTION
DO Serial Data Out -
RECALL Recalt
STORE Store I:"‘ -
Vee +5V »
Vss Ground o
May 1987
FIGURE 10-9

Cover page for the X2444 non-volatile RAM data sheet
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FIGURE 10-10
Interface to X2444 non-

volatile RAM

CrnPTER 10

8Os T

§4K7

X2444
DO
Pr.2 Df STORE
Pt CE RECALL
PLO SK

1

The interface to the 8051 is shown in Figure 10-10. Only 3 lines are used:

13 P1.0—S8K (serial clock)
0 PI.[—CE (chip enable)
o P1.2—DI/DO (data input/output)
Instructions are sent to the X2444 by bringing CE high and then clocking an 8-bit

opcode into the X2444 via the SK and DI/DO lines. The following opcodes are required
for this example:

Instruction Opcode Operation
RCL 85H Recall EEPROM data into RAM
WREN 84H Set write enable latch
STORE 81H Store RAM data into EEPROM
WRITE 1AAAAQ011R Write data into RAM address AAAA
READ 1AAAALLLB Read data from RAM address AAAA

Design Objective

Write the following two programs. The first, called SAVE, copies the contents of 8051
internal locations 60H-7FH to the X2444 EEPROM. The second, called RECOVER,
reads previously saved data from the X2444 EEPROM and restores it to locations
60H-7FH.

These are two distinct programs. Typically, the SAVE program is executed whenever
nonvolatile information is changed (for example, by a user altering a configuration pa-
rameter). The RECOVER program is executed each time the system is powered up or re-



1

2

3

4

S

6

7

8

9

10

11

0085 12
0084 13
0081 14
0082 15
0083 16
0087 17
00BC 18
0020 19
0092 20
0091 21
0090 22
23

- 24
0060 25
26

———= 27
8000 1102 28
8002 0200BC 29
8005 1149 30
8007 0200BC 31
32

33

34

35

800A 7860 36
800C C291 37
800E 7485 38
8010 D291 39
8012 1184 40
8014 C291 41
8016 7484 42
8018 D291 43
801A 1184 44
801C C291 45
801E 7F00 46
8020 EF 47
8021 23 48
8022 23 49
8023 23 50
8024 4483 51
8026 D291 52
8028 1184 53
802Aa 7D02 54
802C E6 55
802D 08 56
802E 1184 57
8030 DDFA 58
8032 c291 59
8034 OF 60
8035 BF10E8 61
8038 7481 62
803A D291 63
803C 1184 64

FIGURE 10-11
Software for X2444 interface

$DEBUG -

$NOPAGING

$NOSYMBOLS

;FILE: NVRAM.SRC

’.tttﬁ**ﬁt*ﬁi*ﬁtttt**kl*ﬁ*tﬁﬁtiik*ﬁi'****tiﬁﬁi*iﬂ*ﬁ'ﬂ*‘-ﬁ

; X2444 INTERFACE EXAMPLE *

. *

; Two subroutines are shown below that SAVE or *

; RECOVER data between a X2444 non-volatile RAM and *

; 32 bytes of the 8051's internal RAM. *
*

FRE R R R R AN AR AR A kI RN AN IR IR AR AR AR R IR R AR RN R IR R NI

RECALL EQU 85H :1X2444 recall instruction

WRITE EQU 84H ;X22444 write enable instruction
STORE EQU 81K ;X2444 store instruction

SLEEP EQU 82H ;X2444 sleep istruction

W_DATA EQU 83H :X2444 write data instruction
R_DATA EQU 87H :1X2444 read data instruction

MONS51 EQU 00BCH ;MONS1 entry point (V12)

LENGTH EQU 32 ;32 bytes saved/restored
DIN BIT Pl.2 :X2444 interface lines
ENABLE BIT Pl1.1

CLOCK BIT Pl.0

DSEG AT 60H
NVRAM: DS LENGTH :60H-7FH saved/recovered
CSEG AT 8000H
WX2444: ACALL  SAVE
LJIMP MONS1
RX2444: ACALL RECOVER ;BO0OSH entry point for read
LJIMP MONS1

;B000H entry point for write

IRRHA AR AT IR KK R AR RRRR RN AR AR AT RRA R RK KRR KKK AR LS

; SAVE 8031 RAM LOCATIONS 60H-7FH IN X2444 NVRAM *

R R H R R AR AR Rk AR A KRR RN R A NN A AR AR IR A R RN A AR RN AR

SAVE: MOV RO, #NVRAM ;RO -> locations to save
CLR ENABLE ;disable X2444
MOV A, #RECALL ;recall instruction
SETB ENABLE
ACALL W_BYTE
CLR ENABLE
MoV A, #WRITE ;iwrite enable prepares
SETB ENABLE ; X2444 to be written to
ACALL W_BYTE
CLR ENABLE
MoV R7,#0 ;R7 = X2444 address
AGAIN: MOV A,R7 ;put address in ACC
RL A ;jput in bits 3,4,5,6
RL A
RL A
ORL A, ¥W_DATA ;build write instruction
SETB ENABLE
ACALL W_BYTE
MOV RS, #2
LOOP: MOV A,€@RO iget 8051 data
INC RO ;point to next byte
ACALL W_BYTE ;sent byte to X2444
DJINZ RS, LOOP irepeat (send 2nd byte)
CLR ENABLE
INC R7 ;increment X2444 address

CJINE R7,#16,AGAIN ;if not finished, again

MOV A, #STORE ;if finished, copy to EEPROM
SETB ENABLE
ACALL W_BYTE



803E C291 65 CLR ENABLE

8040 7482 66 Mov A, #SLEEP ;put X2444 to sleep
8042 D291 67 SETB ENABLE
8044 1184 68 ACALL  W_BYTE
8046 C291 69 CLR ENABLE
8048 22 70 RET ; DONE !
71
72 ’.*ﬁ*ﬁ*ﬁi*tiﬂ*it**!ﬁit'lt*ﬁitﬂt**ﬁ**!ﬁ*tﬁtt*tﬁﬁtﬁi'tﬁr’t}i
73 ; RECOVER 8051 RAM LOCATIONS 60H-7FH FROM X2444 NVRAM *
74 I.k*ﬁ*tt*Q*t**tt*iﬁt***ﬁtttiit*ﬁ*iﬁﬁﬁ*ti*ﬁ'tit*t*ﬂ*it'ﬁﬁ'
8049 7860 75 RECOVER: MOV RO, #¥NVRAM
804B C291 16 CLR ENABLE
804D 7485 77 MOV A, #RECALL ;jrecall instruction
804F D291 78 SETB ENABLE
8051 1184 79 ACALL W_BYTE
8053 €291 80 CLR ENABLE
8055 7F00 81 MoV R7, %0 iR7 = X2444 address
8057 EF 82 AGAIN2: MOV A,R7 ;put address in ACC
8058 23 83 RL A ;build read instruction
8059 23 84 RL A
805a 23 85 RL A
8058 4487 86 ORL A, #R_DATA
805D D291 87 SETB ENABLE
805F 1184 88 ACALL W_BYTE ;send read instruction
8061 7D02 89 MOV RS, #2 ; {+ address)
8063 1178 90 LOOP2: ACALL R _BYTE iread byte of data
8065 F6 91 MOV @RO,A ;put in 8051 RAM
8066 08 92 INC RO ;point to next location
8067 DDFA 93 DINZ RS, LOOP2
8069 C291 94 CLR ENABLE
806B OF 95 INC R7 ;increment X2444 address
806C BF10E8 96 CJINE R7,#16, AGAIN2 ;repeat until last
806F 7482 97 MOV A, #SLEEP ;put X2444 to sleep
8071 D291 98 SETB ENABLE
8073 1184 99 ACALL W_BYTE
8075 €291 100 CLR ENABLE
8077 22 101 RET ; DONE!
102
103 ;ti*i’t****it*tii**ik**tt*ﬁ**t'ﬁ*tit****ﬁi*i*k***ﬁ*ﬂ**"i
104 ; READ A BYTE OF DATA FROM X2444 *
105 PR R A T L e e
8078 7E08 106 R_BYTE: MOV RE, #8 ;juse R6 as bit counter
807A A292 107 AGAIN3: MOV ¢, DIN ;put X2444 data bit in C
807C 33 108 RLC A ;build byte in Accumulator
807D D290 109 SETB CLOCK ;toggle clock line (1 us)
807F C290 110 CLR CLOCK
8081 DEF7 111 DJINZ R6,AGAIN3 ;if not last bit, do again
8083 22 112 RET
113
114 ’.****t**'ik**i'ﬁ**i*ﬁ**t**ii**ﬁ**ﬁ**t*Q*t***"***ﬁﬁt*ﬁ'
115 ; WRITE A BYTE OF DATA TO X2444 >
116 ’.*!*ﬁ*hﬁ"*‘*ﬁtﬁ*'tﬁ**i'*tﬁﬁt*ikktﬁﬁtﬁ**th'*kkﬁ*ii'ii'
8084 7E08 117 W_BYTE: MOV R6, #8 ;use R6 as bit counter
8086 33 118 AGAIN4: RLC A ;jput bit to write in C
8087 9292 119 MOV DIN,C ;iput in X2444 DATA IN line
8089 D290 120 SETB CLOCK ;iclock bit into X2444
808B C290 121 CLR CLOCK
808D DEF7 122 DJINZ R6,AGAINd ;if not last bit, do again
808F 22 123 RET
124 END
FIGURE 10-11

continued
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set. For this example, the nonvolatile information is kept in the 8051 internal locations
60H-7FH (presumably for uccess by a control program executing in firmware). The soft-
ware listing is shown in Figure 10-11.

The operations of saving and recovering data involve the following steps:

Write Data into the X2444

. Execute RCL (recall) instruction.

. Execute WREN (set write enable latch) instruction.
. Write data into X2444 RAM.

. Execute STO (store RAM into EEPROM) instruction.

. Execute SLEEP instruction.

vl W N

Read Data From X2444

1. Execute RCL (recall) instruction.
2. Read data from X2444 RAM.
3. Execute SLEEP instruction.

As an example of what the software drivers must do, Figure 10-12 illustrates the
timing diagram to send the RCL instruction to the X2444. Several of the bits are actually
“don’t cares™ (as specified in the data sheet); however, they are shown as Os in the figure.

The timing for the WRITE data and READ data instructions is slightly different.
For these, the 8-bit opcode is followed immediately by 16 bits of data, and chip enable
remains high for all 24 bits. For the read instruction, the eight bits (the opcode) are writ-
ten to the X2444, then 16 data bits are read from the X2444. Separate subroutines are
used for reading eight bits (R_BYTE; lines 106-112) and writing eight bits (W_BYTE;
lines 117-123). For specific details, consult the software listing.

10.7 INPUT/OUTPUT EXPANSION

Our next example illustrates a simple way to increase the number of input lines on the
8051. Three port lines are used to interface to multiple (in this example, 2) 74HC165
parallel-in serial-out shift registers. (See Figure 10-13.) The additional inputs are sam-
pled periodically by pulsing the SHIFT/LOAD line low. The data are then read into the
8051 by reading the DATA IN line and pulsing the CLOCK line. Each pulse on the clock
line shifts the data (“down,” as shown in Figure 10-13), so the next read to DATA IN
reads the next bit, and so on.

FIGURE 10-12
e __| L Timing for the X2444 recall

instruction
DI [1 I

1 X X X X 1 0 1

RCL instruction
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Design Objective

Write a subroutine that copies the state of the 16 inputs in Figure 10-~13 to 8051 internal
RAM locations 25H and 26H.

The software to accomplish this is shown in Figure 10-14. Note that the main program
loop consists of calls to two subroutines: GET_BYTES and DISPLAY_RESULTS (lines
34-35). The latter subroutine is included to illustrate a useful technique for debugging
when resources are limited. DISPLAY_RESULTS (lines 72-83) reads the data from in-
ternal Jocations 25H and 26H and sends each nibble to the console as a hexadecimal
character. This provides a simple visual interface to verify if the program and interface
are working. As input lines are toggled high and low, changes will immediately appear
on the console (if the interface and program are working properly).

The GET_BYTES subroutine (lines 44-58) takes 112 us to execute when two
74HC165s are used and the system operates from a 12 MHz crystal. If the inputs were
sampled, for example, 20 times per second, GET_BYTES would consume 112 + 50,000
=0.2% of the CPU’s execution time. This is minimal; however, increasing the number of
input lines and/or the sampling rate may start to impact overall system performance.
Consult the software listing for further details.

10.8 ANALOG QUTPUT

Interfacing to the real world often requires generating or sensing analog conditions. Gen-
erating and controlling an analog output signal from a microcontroller is easy. This de-
sign example uses two resistors. two capacitors, a potentiometer, an LM301 op amp, and
MC1408L8 8-bit digital-to-analog converter (DAC). Both ICs are inexpensive and read-
ily available. The eight data inputs to the DAC are driven from port 1 on the 8031 (see
Figure 10-15). After building the circuit and connecting it to the SBC-51, it should be
tested using monitor commands. Measure the output voltage at pin 6 of the LM301 (Vo)
while writing different values to port 1 and adjusting the 1K potentiometer. The output
should vary from 0 volts (P1 = 00H) to about 10 volts (P1 = FFH).

Once the circuit is operating correctly, we are ready to have fun with the interface
software. The usual test program is a sawtooth waveform generator that sends a value to
the DAC, increments the value, sends it again, and so on (see question 3 at the end of this
chapter). However, we will embark on a much more ambitious design—a digitally con-
trolled sine wave generator.

Design Objective

Write a program to generate a sine wave using the DAC interface in Figure 10-15. Use a
constant call STEP to set the frequency of the sine wave. Make the program interrupt-
driven with an update rate of 10 kHz.
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$DEBUG
$NOSYMBOLS
$NOPAGING

;FILE: HC165.SRC

PERK R AR R R Rk R R AR KRR A KRN R A RN A F AR KRN AR AR AR e Rk

74HC165 INTERFACE EXAMPLE

*
The subroutine GET_BYTES below reads multiple (in *
this case two) 74HC165 parallel-in serial-out shift *
registers attached to P1.7 (SHIFT/LOAD), Pl.6 *
(CLOCK}, and P1.5 (DATA OUT). The bytes read are *
placed in bit-addressable locations starting at the *
byte address BUFFER. *

*

RREE AR KRR AR R AR AR I AR R A IR N AR IR R R IR R R AN A

CR EQU O0DH

COUNT EQU 2 ;number of 74HC165s

SHIFT BIT P1.7 ;74HC165 SHIFT/LOAD input
; 1 = shift, 0 = load

CLOCK BIT Pl.6 ;TAHC165 CLOCK input

DouT BIT Pl1.5 ; 74HC165 DATA OUT output

OUTSTR CODE 0282H ;subroutines in MONS51(V12)
OUT2HEX CODE 028DH ;output byte as two hex char.
OUTCHR CODE 01DEH

ORG 8000H ;begin code segment at 8000H
SETB CLOCK ;set interface lines initially ir
SETB SHIFT ; case not already

SETB DouT ;DOUT must be set (input)

R AR R AR AR AR AR R AR IR A I AR R A IR AR R I I RN A IR AR NK

; MAIN LOOP (KEPT SMALL FOR THIS EXAMPLE) *

PR e e e I e e ety

CALL SEND_HELLO_MESSAGE ;banner message

REPEAT: CALL GET_BYTES ;jread 74HC165s
CALL DISPLAY_RESULTS :show results
JMP REPEAT ;loop

KA KR IR AR AR AR kRN AR AR AR IR KR I AR AR IRk R R AR AR AR
GET BYTES FROM 74HC165s & PLACE IN INTERNAL RAM *
*

Execution time = 112 microseconds (@ 12 MHz). *

; Execution time for N 74HC165s = 6 + (N x 53) us *

SEEEKRA AR AR R KRR KRR KA KRR AR KA A A I AR RRRE R KRR TR R TR KK

GET_BYTES:

i
i
i
i

MOV R6, #COUNT ;use R6 as byte counter
MOV RO, #BUFFER ;use R0 as pointer to buffer
CLR SHIFT ;load into 74HC165s by
SETB SHIFT ; pulsing SHIFT/LOAD low
AGAIN: MOV R7,#8 ;use R7 as bit counter
LOOP: MOV C,DOUT ;get a bit (put it in C)
RRC A ;put in ACC.0 (LSB 1st)
CLR CLOCK ;pulse CLOCK line {shifts
SETB CLOCK ; bits toward DATA OUT)
DJNZ R7,LOOP ;if not 8th shift, repeat
MOV @RO,A ;if 8th shift, put in buf.
INC RO :increment pointer to buf.
DJINZ R6, AGAIN ;get two bytes
RET

IRAL AR 2 A A A A R e s eI e R A

; SEND HELLO MESSAGE TO CONSOLE (DEBUGGING AID) *
;t*'kﬁ*tt**i*t**t*i**t*k**t****t*f*ﬁﬂ*tk**k***'*ﬁ*i***kt
SEND_HELLO_MESSAGE :

MOV DPTR, #BANNER ;point to hello message

Software for 74HC 165 interface
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802C 120282 65 CALL OUTSTR ;send it to console
802F 22 66 RET
8030 2A2A2A20 &7 BANNER: DB r**% TEST 74HC165 INTERFACE ***',CR.0

8034 54455354
8038 20373448
803C 43313635
8040 20494E54
8044 45524641
8048 4345202A

804C 2A2A
804E 0D
804F 00
68
69 l.ﬁ****ﬁ*ﬁ*i*ﬁ****#*****ﬁit‘ﬁ'ﬂk*****k**ﬁ}tt******t**ﬁ*ﬁ*
70 ; DISPLAY RESULTS ON CONSOLE (DEBUGGING AID) *
71 ;*****t*ﬁﬁ*****t**i’*****ﬁkl*t*it********ﬁ****t*i‘r******
72 DISPLAY_RESULTS: ;display bytes
8050 7825 73 MOV RO, #BUFFER ;RO points to bytes
8052 7E02 74 MoV R6, #COUNT ;R6 is # of bytes read
8054 E6 75 LOOP2: MOV A,@RO ;get byte
8055 08 76 INC RO ;increment pointer
8056 12028D 77 CALL QUTZHEX ;output as 2 hex char.
8059 7420 78 MoV A% ;separate bytes
80SB 1201DE 79 CALL OUTCHR
805E DEF4 80 DJINZ R6, LOOP2 irepeat for each byte
8060 740D 81 MOV A, #CR ;begin a new line
8062 1201DE 82 CALL OUTCHR ;send CR (LF too!)
8065 22 83 RET
84
85 ;**ﬁ*t*********t*t**iﬁ**********kttiﬂ*t**ﬁk***tﬁ**tti**
86 ; CREATE BUFFER IN BIT-ADDRESSABLE INTERNAL RAM
87 l.i'**ﬁ****ﬂ*#*t*ﬁﬁ****ﬁ*'***ﬁ’***ﬁ*ﬁtﬁ*’&ﬁﬁﬁﬁ******iﬁi**
-~ 88 DSEG AT 25H ;on-chip data segment in
0025 89 BUFFER: DS COUNT ; in bit-addressable space
90 END

FIGURE 10-14
continued

Since the number-crunching capabilities of the 8031 are very limited, the only reason-
able approach to this problem is to use a look-up table. We need a table with 8-bit values
corresponding to one period of a sine wave. The values should start around 127, increase
to 255, decrease through 127 to 0, and rise back up to 127, following the pattern of a sine
wave.

A reasonable rendition of a sine wave requires a relatively large table; so the ques-
tion arises, how do we generate the table? Manual methods are impractical. The easiest
approach is to write a program in some other high-level language to create the table and
save the entries in a file. The table is then imported into our 8031 source program and off
we go. Figure 10-16 is a simple C program called table51.c that will do the job for us.
The program generates a 1024-entry sine wave table with values constrained between 0
and 255. The output is written to an output file called sine51.src. Each entry is preceded
with “ DB ” for compatibility with 8031 source code.

The 8031 sine wave program is shown in Figure 10-17. The main loop (lines
36-40) does three things: initialize timer O to interrupt every 100 ws. turn on interrupts,
and sit in an infinite loop. The timer 0 interrupt service routine (lines 41-51) does alf the
work. Every 100 ws a value is read from the look-up table using the DPTR and then writ-
ten to port 1. A constant called STEP is used as the increment through the table. STEP is
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FIGURE 10-15

/**t‘k*iﬁ*i*ki**********t***’(****i***t**t*****i**ki*it/
/* table5l.c - program to generate a sinewave table */
/* */
/* The table consists of 1024 entries between 0 */
/* and 255. Each entry is preceded by " DB * for */
/* inclusion in a 8051 source program. The table */

/* is written to the file sine5l.src */
/*'k**t***********i*i****t***t********t*****t****t****/

$include <stdio.h>
#include <math.h>

#define PI 3.1415927
#define MAX 1024
#define BYTE 255

main ()
{
FILE *fp, *fopen();
double x, y;
fp = fopen("sineSl.src*, "w"};
for(x = 0; x < MAX; ++x) {
y = {{sin{(x 7/ MAX) * (2 * PI}} + 1) / 2} * BYTE:
fprintf(fp,* DB %$3d\n*, (int)y);

}
FIGURE 10-16



1 $debug -
2 $nopaging
3 $nosymbols
4 ;FILE: DAC.SRC
5 ’.tntQﬁi*"ﬁi’Qiitﬂﬁ't*iﬁﬁ*itﬁ'ﬁ‘*ﬂl“titﬁ'*i*ttﬁ*ﬁ**ﬁﬁi*ﬁ
6 H MC1408L8 INTERFACE EXAMPLE *
7 H *
8 ; This program generates a sine wave using a sine *
9 ; wave look-up table and an interface to a MC1408L8 *
10 ; B8-bit digital-to-analog converter. The program is *
11 ; interrupt-driven. *
12 ; *
13 ; Data are read from a 1024-entry sine wave table and *
14 ; sent to the DAC every 100 us. Each value sent is *
15 ; STEP locations past the previous value sent (with *
16 ; wrap around once the end is reached). The period *
17 ; of the sine wave is 100 x (1024 / STEP) us. For *
18 ; example, if STEP is 20H, the sine wave has a period *
19 ; of 100 x (1024 / 32) = 3.2 ms and a frequency of *
20 ; 313 Hz. *
21 ; *
22 ; Note: Initialize STEP in internal location 50H *
23 ; before running the program. *
24 ;**i**t**tit*'*kﬁlfﬁﬁﬁ*ﬁf**ﬁt’*itl*i*"‘ﬁ*t*i**ﬁ*t'*ﬁti
00BC 25 MONITOR CODE 00BCH ;MONS1 entry (V12)
0050 26 STEP DATA 50H ;put STEP in internal RAM

27

8000 28 ORG 8000H ;jstart at 8000H

8000 028015 29 LJMP MAIN ;initialize timer

8003 028037 30 LJMP EXTOISR ;unsused

8006 028022 3 LJMP TOISR ;every 100 usg, update DAC

8009 028037 32 LJIMP EXT1ISR ;unused

800C 028037 33 LJMP T1ISR ;unused

800F 028037 34 LJMP SPISR ;unused

8012 028037 35 LI¥P T2ISR junused

8015 7585902 36 MAIN: MoV TMOD, #02H ;8-bit, auto reload

8018 758C9C 37 MOV THO, #~100 ;100 us delay

801B D28C 38 SETB TRO ;start timer

801D 75A882 39 MOV IE, #82H ;enable timer 0 interrupts

8020 80FE 40 SIMP $ ;main loop does nothing!

8022 E550 41 TOISR: MOV A, STEP ;add STEP to DPTR

8024 2582 42 ADD A,DPL

8026 r582 43 MoV DPL,A

8028 5002 44 JNC SKIP

802a 0583 45 INC DPH

802C 538303 46 SKIP: ANL DPH, #03H ;jwrap around, if necessary

802F 438384 47 ORL DPH, #4IGH{TABLE})

8032 E4 48 CLR A

8033 93 49 MovC A, @A+DPTR ;get entry

8034 F590 50 MoV P1,A ;send it

8036 32 51 RETI
52
53 EXTQISR: ;junused interrupts
54 EXT1ISR:
55 T1ISR:
56 T21ISR:

8037 C2AF 57 SPISR: CLR EA jturn off interrupts and

8039 0200BC 58 LJIMP MONITOR ; return to MONS1
23 ;*i*i-ﬁﬁi'*ﬁii****ii-ﬁ*tﬂ*itttkiii***k*t**ﬁﬁti*i*ﬁt*ﬁﬁi**
61 ; The following is a sine wave look-up table. The *
62 ; table contains 1024 entries and is ORGed to begin *
63 ; at 8400H to allow easy wrap-around of the DPTR *
64 ; once the end of the table is reached. The entries *

FIGURE 10-17
221
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8400
8400
8401
8402
8403
8404

87FB
87FC
87FD
87FE
87FF

F
80
81
81
82

7B
7c
7D
7D
18

. PTER10
65 ; are B-bits each (0 to 255) for output to an 8-bit *
66 ; DAC. The table was generate from a C program and *
67 ; read into this 8051 program. *
68 '«ﬁ*ﬁ***ﬁ**xtﬁﬁ*ﬁ*ﬁiﬂ)vi*ﬁ***iﬁﬁ’t**tﬁtﬁ*iﬁ***ﬂ*wﬁi*ﬁ*ﬁi*k
69 ORG 8400H
70 TABLE: DB 127
71 DB 128
72 DB 1239
73 DB 129
74 DB 130
15 ; Listing turned off after first five entries
76 e e m
77 +1 $NOLIST
1093 ; Listing turned back on for last five entries
1094 DB 123
1095 DB 124
1096 DB 125
1097 DB 125
1098 DB 126
1099 END
FIGURE 10-17
continued

defined in line 26 as a byte in internal RAM. It must be initjialized using a monitor com-
mand. Within each ISR, STEP is added to DPTR to get the address of the next sample.
The table is ORGed at 8400H (line 69) so it starts on an even 1K boundary. If the DPTR
is incremented past 87FFH (the end of the table), it is adjusted to wrap around through
the beginning of the table. Since the table is so big, a SNOLIST assembler directive was
used after the first five entries (line 77) to shut off output to the listing file. A SLIST di-
rective was used in line 1092 (not shown) to turn the listing back on for the last five en-
tries. The frequency of the sine wave is controlled by three parameters: STEP, the size of
the table, and the timer interrupt period, as explained in lines 16-20 of the listing.

10.9 ANALOG INPUT

Our final design example is an analog input channel. The circuit in Figure 10-18 uses
one resistor, onie capacitor, a trimpot, and an ADC0804 analog-to-digital converter
(ADC). The ADCO0804 is an inexpensive ADC (National Semiconductor Corp.) that con-
verts an input voltage to an 8-bit digital word in about 100 ps.

The ADC0804 is controlled by a write input (WR) and an interrupt output (INTR).
A conversion is started by pulsing WR low. When the conversion is complete (100 ps
later), the ADCO0804 asserts INTR, making it low. INTR is de-asserted (high) on the next
1-to-0 transition of WR, that initiates the next conversion. INTR and WR connect to the
8031 lines P}.1 and P1.0, respectively. For this example, we use Port A of the 8155 for
the data transfer, as shown in the figure.

The ADC0804 operates from an internal clock created by the RC network connect-
ing to pins 19 and 4. The analog input voltage is a differential signal applied to the
Vin(+) and Vin(—) inputs on pins 6 and 7. For this example Vin(—) is grounded and
Vin(+) is driven from the center tap of the trimpot. Vin(+) will range from 0 to +5 volts,
as controlled by the trimpot. Consult the data sheet for a detailed description of the oper-
ation of the ADC0804.
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Design Objective

Write a program to continually sense the voltage at the trimpot’s center tap (as converted
by the ADCO0804). Report the result on the console as an ASCII byte.

The program in Figure 10-19 achieves the objective stated above. Since the 8155 ports
default to input upon reset, an initialize sequence is not necessary. Port A is at address
O101H in external memory and is easily read using a MOVX instruction. A conversion is
started by clearing and setting P1.0 (lines 34-35), the ADCO0804’s WR input. Then, the
program sits in a loop waiting for the ADC0804 to finish the conversion and assert INTR
at P1.1 (line 36). The data are read in lines 37 and 38 and then sent to the console using
MONS1’s OUT2HX subroutine (line 39). As the program runs, a byte is displayed on the
console. It will range from 00H to FFH as the trimpot is adjusted.

The program in Figure 10-19 is a rough first approximation of the potential for
analog input. It is possible to replace the trimpot with other analog inputs. Temperature
sensing is achieved using a thermistor—a device with a resistance that varies with tem-
perature. Speech input is possible using a microphone. The ADC80804’s conversion pe-
riod of 100 ps translates into a sampling frequency of 10 kHz. This is sufficient to cap-
ture signals with up to 5 kHz bandwidth, roughly equivalent to a voice-grade telephone
line. Additional circuitry is required to boost the low-level signals provided by typical
microphones to the 0-5 volt range expected by the ADC0804. Additionally, a sample-
and-hold circuit is needed to maintain a constant voltage for the duration of each conver-
sion. We’ll leave it to the reader to explore these possibilities.
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DESIGN AND INTERFACE EXAMPLES

7. In Figure 10-17, the constant STEP was defined as a byte of internal data at location
50H using the following assembler directive:

STEP DATA 50H
This is the correct way to define STEP, however the following would also work:
STEP EQU 50H

In the latter case, type-checking is not performed by ASM51 when the program is assem-
bled. Give an example of an incorrect use of the label STEP that would not generate an
assemble-time error if STEP were defined with EQU, but would generate an error if
STEP were defined properly, using DATA.
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