
Contents in Detail
1. Cover Page
2. Title Page
3. Copyright Page
4. About Sparkfun Electronics
5. About the Authors
6. About the Technical Reviewer
7. A Note from Brian
8. A Note from Derek
9. Contents

10. Contents in Detail
11. Introduction

1. What is this Book About?
2. Why Arduino?
3. How is this Book Different from Others?
4. Materials
5. Required Tools
6. Required Computer
7. What’s in this Book?
8. Online Resources
9. Spread the Word: Sharing Your Work

12. Electronics Primer
1. Electricity, Conductivity, and Basic Terms

1. What Is Electricity?
2. Types of Electricity
3. What Is a Circuit?
4. Ohm’s Law
5. Visualizing Electricity as Water in a Pipe

2. Schematics, Circuit Blueprints, and Wiring Diagrams
3. Prototyping Circuits
4. Discrete Components vs. Breakout Boards
5. Analog vs. Digital
6. What Is A Microcontroller?

13. Project 1: Getting Started with Arduino

1. Materials to Gather
2. About the Arduino

1. An Accessible Hardware Platform
2. About the SparkFun RedBoard

3. Installing the Arduino IDE and Drivers
1. Installing on Windows
2. Installing on OS X
3. Installing on Linux

4. A Brief IDE Tour
5. Changing the Default Preferences
6. Test Drive: Plugging in the Arduino for the First Time

1. Choosing Your Board in the IDE
2. Selecting the Communication Port

7. An Arduino “Hello, World!”
8. Basic Arduino Troubleshooting
9. Anatomy of an Arduino Sketch

1. Key Sketch Elements
2. The setup() Function
3. The loop() Function
4. Your First Piece of Hardware

10. Going Further
1. Hack
2. Modify

11. Saving Your Sketch
14. Project 2: A Stoplight for Your House

1. Materials to Gather
1. Electronic Parts
2. Other Materials and Tools

2. New Component: The Resistor
3. Build the Stoplight Prototype

1. Connect the Red LED to the Breadboard
2. Add Power to the Breadboard
3. Add the Yellow and Green LEDs

4. Program the Stoplight
1. Confirm Your IDE Settings
2. Create Placeholders for Pin Numbers
3. Write the setup() Function

4. Write the loop() Function
5. Upload the Sketch
6. Make the Stoplight Portable

5. Build the Stoplight Enclosure
1. Cardboard Construction
2. Make the Stoplight Lenses
3. Make the Shades
4. Mount the LEDs and Arduino

6. Going Further
1. Hack
2. Modify

15. Project 3: The Nine-Pixel Animation Machine
1. Materials to Gather

1. Electronic Parts
2. Other Materials and Tools

2. Build the Nine-Pixel Animation Machine Prototype
3. Program the Nine-Pixel Animation Machine

1. What Are Custom Functions?
2. Design Your Artwork
3. The Test Sketch

4. Build the Nine-Pixel Animation Machine Enclosure
1. Cardboard Construction
2. Connect the Electronics

5. Create an Led Animation
1. Plan the Animation Sequence
2. Write Custom Functions
3. Tweak Your loop() Function

6. Going Further
1. Hack
2. Modify

16. Project 4: Reaction Timer
1. Materials to Gather

1. Electronic Parts
2. Other Materials and Tools

2. New Component: The Push Button
1. How Push Buttons Work
2. Using Resistors with Push Buttons

3. Build the Reaction Timer Prototype
4. Program the Reaction Timer

1. Write the setup() Function
2. Write the loop() Function
3. Test the Reaction Timer Sketch
4. Play Again?
5. Add a Game Element
6. Upload the Complete Code for the Reaction Timer

5. Build the Reaction Timer Enclosure
1. Cut Out the Cardboard
2. Assemble the Electronics
3. Spice Up Your Game Enclosure

6. Going Further
1. Hack
2. Modify

17. Project 5: A Color-Mixing Night-Light
1. Materials to Gather

1. Electronic Parts
2. Other Materials and Tools

2. New Components
1. The RGB LED
2. The Photoresistor

3. Build the Night-Light Prototype
1. Wire the Voltage Divider
2. Wire the RGB LED

4. Test the Night-Light with Basic Color Mixing
5. Program the Night-Light

1. Prepare to Check the Light Level
2. Control the Night-Light Based on the Light Level
3. Prevent False Alarms
4. Recalibrate the Night-Light

6. Create More Colors with Analogwrite()
1. Create Analog Signals with PWM
2. Mix Colors with analogWrite()
3. Find RGB Values with Color Picker
4. The Custom-Color Night-Light Code

7. Build the Night-Light Enclosure

1. Cardstock Construction
2. Put the Electronics Inside
3. Let It Glow!

8. Going Further
1. Hack
2. Modify

18. Project 6: Balance Beam
1. Materials to Gather

1. Electronic Parts
2. Other Materials and Tools

2. New Components
1. The Potentiometer
2. The Servo Motor

3. Build the Balance Beam Prototype
4. Program the Balance Beam

1. Test the Servo
2. Complete the Balance Beam Sketch

5. Build the Balance Beam
1. Cut Out the Parts
2. Build the Beam
3. Build the Base and Attach the Servo
4. Final Assembly

6. Going Further
1. Hack
2. Modify

19. Project 7: Tiny Desktop Greenhouse
1. Materials to Gather

1. Electronic Parts
2. Other Materials and Tools

2. New Components
1. TMP36 Temperature Sensor
2. Standard Hobby Motor
3. NPN Transistor

3. Taking a Systems Approach
4. Build the Temperature Monitor

1. Measure Temperature with the TMP36
2. Connect the Temperature Sensor

3. Program the Temperature Sensor
5. Build the Servo Motor Autovent
6. Program the Autovent
7. Build the Fan Motor

1. Program the Fan Motor
2. Isolate the Motor Effect

8. Build the Tiny Desktop Greenhouse Enclosure
1. Add the Autovent Window Servo
2. Create the Paper Clip Linkage
3. Add the Roof
4. Build the Fan-Motor Box
5. Connect It Up

9. Going Further
1. Hack
2. Modify

20. Project 8: Drawbot, The Robotic Artist
1. Materials to Gather

1. Electronic Parts
2. Other Materials and Tools

2. New Components
1. The H-Bridge Motor Driver Integrated Circuit
2. Geared Hobby Motor

3. Build the Drawbot Prototype
4. Program the Drawbot

1. Create a Custom Function
2. Clean Up the Code

5. Wire the Second Motor
6. Drive Both Motors
7. Build the Drawbot Chassis

1. Test and Troubleshoot
2. Turn and Make Patterns: A Robot Square Dance

8. Going Further
1. Hack
2. Modify
3. Bonus

21. Project 9: Drag Race Timer
1. Materials to Gather

1. Electronic Parts
2. Other Materials and Tools

2. New Component: The 16 × 2 Character LCD
3. Drag Race Timer Operation
4. Build the LCD Circuit

1. Power the LCD
2. Control the Contrast
3. Connect the Data and Control Wiring
4. Test the LCD

5. Add the Rest of the Electronics
6. Program the Drag Race Timer
7. A Quick Test
8. Build the Drag Race Track

1. Build the Starting Tower
2. Assemble the Starting Gate
3. Build Your Own Track
4. Add the Photoresistor
5. Test and Troubleshoot

9. Going Further
1. Hack
2. Modify

22. Project 10: Tiny Electric Piano
1. Materials to Gather

1. Electronic Parts
2. Other Materials and Tools

2. New Components
1. The SoftPot Membrane Potentiometer
2. The Piezo Buzzer

3. Build the Circuit
4. Program the Tiny Electric Piano

1. Test the Buzzer
2. Create Specific Notes
3. Generate Sound with the SoftPot
4. Play a Song

5. Build the Piano
6. Going Further

1. Hack

2. Modify
3. Bonus Project: Binary Trumpet

23. Appendix: More Electronics Know-How
1. Measuring Electricity with a Multimeter

1. Parts of a Multimeter
2. Measuring Continuity
3. Measuring Resistance
4. Measuring Voltage
5. Measuring Current

2. How to Solder
1. Heating the Iron
2. Perfecting Your Soldering Technique
3. Cleaning the Iron
4. Soldering Tips

3. Additional Soldering Tools
1. Third Hand
2. Flux Pen
3. Solder Wick
4. Solder Vacuum

4. Resistors and Bands
24. Afterword

1. Additional Resources
2. Acknowledgments

25. Resources

1. iii
2. iv
3. v
4. vi
5. vii
6. viii
7. ix
8. x
9. xi

10. xii
11. xiii
12. xiv

13. xv
14. xvi
15. xvii
16. xviii
17. xix
18. xx
19. xxi
20. xxii
21. xxiii
22. xxiv
23. 1
24. 2
25. 3
26. 4
27. 5
28. 6
29. 7
30. 8
31. 9
32. 10
33. 11
34. 12
35. 13
36. 14
37. 15
38. 16
39. 17
40. 18
41. 19
42. 20
43. 21
44. 22
45. 23
46. 24
47. 25
48. 26
49. 27

50. 28
51. 29
52. 30
53. 31
54. 32
55. 33
56. 34
57. 35
58. 36
59. 37
60. 38
61. 39
62. 40
63. 41
64. 42
65. 43
66. 44
67. 45
68. 46
69. 47
70. 48
71. 49
72. 50
73. 51
74. 52
75. 53
76. 54
77. 55
78. 56
79. 57
80. 58
81. 59
82. 60
83. 61
84. 62
85. 63
86. 64

87. 65
88. 66
89. 67
90. 68
91. 69
92. 70
93. 71
94. 72
95. 73
96. 74
97. 75
98. 76
99. 77

100. 78
101. 79
102. 80
103. 81
104. 82
105. 83
106. 84
107. 85
108. 86
109. 87
110. 88
111. 89
112. 90
113. 91
114. 92
115. 93
116. 94
117. 95
118. 96
119. 97
120. 98
121. 99
122. 100
123. 101

124. 102
125. 103
126. 104
127. 105
128. 106
129. 107
130. 108
131. 109
132. 110
133. 111
134. 112
135. 113
136. 114
137. 115
138. 116
139. 117
140. 118
141. 119
142. 120
143. 121
144. 122
145. 123
146. 124
147. 125
148. 126
149. 127
150. 128
151. 129
152. 130
153. 131
154. 132
155. 133
156. 134
157. 135
158. 136
159. 137
160. 138

161. 139
162. 140
163. 141
164. 142
165. 143
166. 144
167. 145
168. 146
169. 147
170. 148
171. 149
172. 150
173. 151
174. 152
175. 153
176. 154
177. 155
178. 156
179. 157
180. 158
181. 159
182. 160
183. 161
184. 162
185. 163
186. 164
187. 165
188. 166
189. 167
190. 168
191. 169
192. 170
193. 171
194. 172
195. 173
196. 174
197. 175

198. 176
199. 177
200. 178
201. 179
202. 180
203. 181
204. 182
205. 183
206. 184
207. 185
208. 186
209. 187
210. 188
211. 189
212. 190
213. 191
214. 192
215. 193
216. 194
217. 195
218. 196
219. 197
220. 198
221. 199
222. 200
223. 201
224. 202
225. 203
226. 204
227. 205
228. 206
229. 207
230. 208
231. 209
232. 210
233. 211
234. 212

235. 213
236. 214
237. 215
238. 216
239. 217
240. 218
241. 219
242. 220
243. 221
244. 222
245. 223
246. 224
247. 225
248. 226
249. 227
250. 228
251. 229
252. 230
253. 231
254. 232
255. 233
256. 234
257. 235
258. 236
259. 237
260. 238
261. 239
262. 240
263. 241
264. 242
265. 243
266. 244
267. 245
268. 246
269. 247
270. 248
271. 249

272. 250
273. 251
274. 252
275. 253
276. 254
277. 255
278. 256
279. 257
280. 258
281. 259
282. 260
283. 261
284. 262
285. 263
286. 264
287. 265
288. 266
289. 267
290. 268
291. 269
292. 270
293. 271
294. 272
295. 273
296. 274
297. 275
298. 276
299. 277
300. 278
301. 279
302. 280
303. 281
304. 282
305. 283
306. 284
307. 285
308. 286

309. 287
310. 288
311. 289
312. 290
313. 291
314. 292
315. 293
316. 294
317. 295
318. 296
319. 297
320. 298
321. 299
322. 300
323. 301
324. 302
325. 303
326. 304
327. 305
328. 306
329. 307
330. 308
331. 309
332. 310
333. 311
334. 312
335. 313

THE ARDUINO INDENTOR’S
GUIDE
LEARN ELECTRONICS BY MAKING 10 AWESOME PROJECTS

BRIAN HUANG

DEREK RUNBERG

SAN FRANCISCO

THE ARDUINO INVENTOR’S GUIDE. Copyright © 2017 by SparkFun
Electronics.

All rights reserved. No part of this work may be reproduced or transmitted in
any form or by any means, electronic or mechanical, including photocopying,
recording, or by any information storage or retrieval system, without the prior
written permission of the copyright owner and the publisher.

ISBN-10: 1-59327-652-4
ISBN-13: 978-1-59327-652-2

Publisher: William Pollock
Production Editors: Alison Law and Riley Hoffman
Cover Illustration: Brian Cook
Interior Design: Beth Middleworth
Photographer: Juan Peña
Illustrations: Pete Holm

Developmental Editors: Jennifer Griffith-Delgado and Liz Chadwick
Technical Reviewer: Daniel Hienzsch
Copyeditor: Rachel Monaghan
Compositors: Susan Glinert Stevens and Riley Hoffman
Proofreader: Lisa Devoto Farrell

The following image is reproduced with permission: Figure 8-1 © Richard
Hall.
Circuit diagrams and schematics were created using Fritzing
(http://fritzing.org/).

For information on distribution, translations, or bulk sales, please contact No
Starch Press, Inc. directly:

No Starch Press, Inc.
245 8th Street, San Francisco, CA 94103
phone: 1.415.863.9900; info@nostarch.com
www.nostarch.com

Library of Congress Cataloging-in-Publication Data

Names: Huang, Brian, author. | Runberg, Derek, author.

Title: The Arduino inventor's guide: learn electronics by making 10 awesome

 projects / Brian Huang and Derek Runberg.

Description: San Francisco : No Starch Press, Inc., [2017]

Identifiers: LCCN 2017005801 (print) | LCCN 2017023025 (ebook) | ISBN

 9781593278397 (epub) | ISBN 159327839X (epub) | ISBN 9781593278403
(mobi)

 | ISBN 1593278403 (mobi) | ISBN 9781593276522 (pbk.) | ISBN
1593276524

 (pbk.)

http://fritzing.org/
mailto:info@nostarch.com
http://www.nostarch.com

Subjects: LCSH: Arduino (Programmable controller) | Electronics--Amateurs'

 manuals.

Classification: LCC TJ223.P76 (ebook) | LCC TJ223.P76 R86 2017 (print) |
DDC

 006.2/2--dc23

LC record available at https://lccn.loc.gov/2017005801

No Starch Press and the No Starch Press logo are registered trademarks of No
Starch Press, Inc. Other product and company names mentioned herein may
be the trademarks of their respective owners. Rather than use a trademark
symbol with every occurrence of a trademarked name, we are using the
names only in an editorial fashion and to the benefit of the trademark owner,
with no intention of infringement of the trademark.

The information in this book is distributed on an “As Is” basis, without
warranty. While every precaution has been taken in the preparation of this
work, neither the authors nor No Starch Press, Inc. shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to
be caused directly or indirectly by the information contained in it.

TO LINDSAY DIAMOND, FOR YOUR AMAZING LEADERSHIP AND
GUIDANCE; TO THE ENTIRE TEAM AT SPARKFUN; AND TO ALL
THE FUTURE TINKERERS AND INVENTORS WE INSPIRE!

https://lccn.loc.gov/2017005801

About Sparkfun Electronics
SparkFun is an online retailer that produces and sells the widgets and parts
that end up in a lot of maker projects, prototypes, and even the International
Space Station. Nathan Seidle started the company after blowing a circuit
board in 2003, while he was an undergraduate at the University of Colorado
Boulder. At the time, circuit boards were really hard to get; you had to fax
your credit card to another country and hope that you got your hardware in
six to eight weeks. Nathan felt he could do better, and he did. SparkFun. com
was born, and it now sells over 3,000 different parts of all shapes and sizes
for your digital electronic needs. From a basic Arduino to GPS modules, you
can find them and all of the documentation you need to get up and running at
SparkFun.

SparkFun’s Department of Education develops curricula and runs
professional development programs for educators of all kinds. The
department is at the forefront of a number of computer science and maker
initiatives that are making headway in the classroom. You can learn more
about SparkFun and the Department of Education at
https://www.sparkfun.com/ and http://www.sparkfuneducation.com/.

https://www.sparkfun.com/
http://www.sparkfuneducation.com/

About the Authors
Brian Huang and Derek Runberg were both teachers at one point. Brian was a
high school physics teacher with an affinity for robots, and Derek was a
middle school technology teacher obsessed with pushing the limits of middle
school students. They’ve taken very different paths to get where they are
now, including how they learned programming and electronics, their teaching
philosophies, and their viewpoints on how students learn, so they are a bit of
an odd couple. They hope that this book will serve you well as you set off on
your adventure into the world of inventing.

About the Technical Reviewer
Daniel Hienzsch is the founder of Rheingold Heavy, which delivers
educational content and materials to electronics enthusiasts and students. He
previously worked in IT for 20 years, including 10 years as the IT director for
an investment bank. Dan is passionate about education, and Rheingold Heavy
is his effort to provide the maker community with materials he wished he had
when he was first getting started in electronics and technology. He is also a
certified scuba instructor.

A Note from Brian
Although I am a formally trained engineer (I went to school to study
electrical engineering), my education focused a lot on theory, simulations,
and modeling, and I was never taught how to solder, machine, or really build
things. After graduating from college, I worked as an engineer during the
week, and found myself volunteering at the Science Museum of Minnesota
on the weekends. It was at the museum where I discovered my love of
teaching. I was given the opportunity to inspire children to be curious, ask
questions, and wonder about the world. My experiences in the museum set
me on a course to change careers, pursue a master’s in education, and become
a high school physics teacher.

Derek and I complement each other’s experience and background. This book
is a culmination of both of our experiences in teaching and in learning how
best to use Arduino in the classroom. As Derek puts it, the Arduino is simply
another material that we use in our projects. The faculty and students at
NYU’s Integrated Telecommunications Program (ITP) have long known this.
The way you interact with electronics changes immediately when you enclose
or cover them. Even something as simple as using a ping-pong ball to diffuse
an LED immediately affects your interaction with the project. The way the
light diffuses and blends through materials teases your emotions in a way that
you wouldn’t get with just an LED in a breadboard.

We’ve put a lot of thought into how to make learning electronics and
programming accessible for anyone. We hope that these projects will help to
unleash your inner inventor!

A Note from Derek
Unlike Brian, I have no formal background in electronics or computer
programming; I am completely self-taught. I learned Arduino so that I could
give my students access to a technology they could control and build with. I
was a middle school technology teacher asked to dream up a shop class for
the 21st century. Electronics was part of that vision, and over a three-year
process, Arduino (and, later, the Processing language) took center stage in
my classroom. I learned electronics and programming so that I could teach it
in my class.

Many of these projects come directly from my classroom experience teaching
Arduino. My students learned computer science and electronics out of
necessity, in order to develop their ideas rather than have a teacher telling
them “because you need to.” I hope that my contribution to this book honors
my students and puts electronics and programming into a format that sparks
your imagination.

Contents
Introduction

Electronics Primer

Project 1: Getting Started with Arduino

Project 2: A Stoplight for Your House

Project 3: The Nine-Pixel Animation Machine

Project 4: Reaction Timer

Project 5: A Color-Mixing Night-Light

Project 6: Balance Beam

Project 7: Tiny Desktop Greenhouse

Project 8: Drawbot, The Robotic Artist

Project 9: Drag Race Timer

Project 10: Tiny Electric Piano

Appendix: More Electronics Know-How

Afterword

Contents in Detail
Introduction

What is This Book About?

Why Arduino?

How is This Book Different from Others?

Materials

Required Tools

Required Computer

What’s in This Book?

Online Resources

Spread the Word: Sharing Your Work

Electronics Primer

Electricity, Conductivity, and Basic Terms

What Is Electricity?

Types of Electricity

What Is a Circuit?

Ohm’s Law

Visualizing Electricity as Water in a Pipe

Schematics, Circuit Blueprints, and Wiring Diagrams

Prototyping Circuits

Discrete Components vs. Breakout Boards

Analog vs. Digital

What Is A Microcontroller?

Project 1
Getting Started with Arduino

Materials to Gather

About the Arduino

An Accessible Hardware Platform

About the SparkFun RedBoard

Installing the Arduino IDE and Drivers

Installing on Windows

Installing on OS X

Installing on Linux

A Brief IDE Tour

Changing the Default Preferences

Test Drive: Plugging in the Arduino for the First Time

Choosing Your Board in the IDE

Selecting the Communication Port

An Arduino “Hello, World!”

Basic Arduino Troubleshooting

Anatomy of an Arduino Sketch

Key Sketch Elements

The setup() Function

The loop() Function

Your First Piece of Hardware

Going Further

Hack

Modify

Saving Your Sketch

Project 2
A Stoplight for Your House

Materials to Gather

Electronic Parts

Other Materials and Tools

New Component: The Resistor

Build the Stoplight Prototype

Connect the Red LED to the Breadboard

Add Power to the Breadboard

Add the Yellow and Green LEDs

Program the Stoplight

Confirm Your IDE Settings

Create Placeholders for Pin Numbers

Write the setup() Function

Write the loop() Function

Upload the Sketch

Make the Stoplight Portable

Build the Stoplight Enclosure

Cardboard Construction

Make the Stoplight Lenses

Make the Shades

Mount the LEDs and Arduino

Going Further

Hack

Modify

Project 3
The Nine-Pixel Animation Machine

Materials to Gather

Electronic Parts

Other Materials and Tools

Build the Nine-Pixel Animation Machine Prototype

Program the Nine-Pixel Animation Machine

What Are Custom Functions?

Design Your Artwork

The Test Sketch

Build the Nine-Pixel Animation Machine Enclosure

Cardboard Construction

Connect the Electronics

Create an Led Animation

Plan the Animation Sequence

Write Custom Functions

Tweak Your loop() Function

Going Further

Hack

Modify

Project 4
Reaction Timer

Materials to Gather

Electronic Parts

Other Materials and Tools

New Component: The Push Button

How Push Buttons Work

Using Resistors with Push Buttons

Build the Reaction Timer Prototype

Program the Reaction Timer

Write the setup() Function

Write the loop() Function

Test the Reaction Timer Sketch

Play Again?

Add a Game Element

Upload the Complete Code for the Reaction Timer

Build the Reaction Timer Enclosure

Cut Out the Cardboard

Assemble the Electronics

Spice Up Your Game Enclosure

Going Further

Hack

Modify

Project 5
A Color-Mixing Night-Light

Materials to Gather

Electronic Parts

Other Materials and Tools

New Components

The RGB LED

The Photoresistor

Build the Night-Light Prototype

Wire the Voltage Divider

Wire the RGB LED

Test the Night-Light with Basic Color Mixing

Program the Night-Light

Prepare to Check the Light Level

Control the Night-Light Based on the Light Level

Prevent False Alarms

Recalibrate the Night-Light

Create More Colors with Analogwrite()

Create Analog Signals with PWM

Mix Colors with analogWrite()

Find RGB Values with Color Picker

The Custom-Color Night-Light Code

Build the Night-Light Enclosure

Cardstock Construction

Put the Electronics Inside

Let It Glow!

Going Further

Hack

Modify

Project 6
Balance Beam

Materials to Gather

Electronic Parts

Other Materials and Tools

New Components

The Potentiometer

The Servo Motor

Build the Balance Beam Prototype

Program the Balance Beam

Test the Servo

Complete the Balance Beam Sketch

Build the Balance Beam

Cut Out the Parts

Build the Beam

Build the Base and Attach the Servo

Final Assembly

Going Further

Hack

Modify

Project 7
Tiny Desktop Greenhouse

Materials to Gather

Electronic Parts

Other Materials and Tools

New Components

TMP36 Temperature Sensor

Standard Hobby Motor

NPN Transistor

Taking a Systems Approach

Build the Temperature Monitor

Measure Temperature with the TMP36

Connect the Temperature Sensor

Program the Temperature Sensor

Build the Servo Motor Autovent

Program the Autovent

Build the Fan Motor

Program the Fan Motor

Isolate the Motor Effect

Build the Tiny Desktop Greenhouse Enclosure

Add the Autovent Window Servo

Create the Paper Clip Linkage

Add the Roof

Build the Fan-Motor Box

Connect It Up

Going Further

Hack

Modify

Project 8
Drawbot, The Robotic Artist

Materials to Gather

Electronic Parts

Other Materials and Tools

New Components

The H-Bridge Motor Driver Integrated Circuit

Geared Hobby Motor

Build the Drawbot Prototype

Program the Drawbot

Create a Custom Function

Clean Up the Code

Wire the Second Motor

Drive Both Motors

Build the Drawbot Chassis

Test and Troubleshoot

Turn and Make Patterns: A Robot Square Dance

Going Further

Hack

Modify

Bonus

Project 9
Drag Race Timer

Materials to Gather

Electronic Parts

Other Materials and Tools

New Component: The 16 × 2 Character LCD

Drag Race Timer Operation

Build the LCD Circuit

Power the LCD

Control the Contrast

Connect the Data and Control Wiring

Test the LCD

Add the Rest of the Electronics

Program the Drag Race Timer

A Quick Test

Build the Drag Race Track

Build the Starting Tower

Assemble the Starting Gate

Build Your Own Track

Add the Photoresistor

Test and Troubleshoot

Going Further

Hack

Modify

Project 10
Tiny Electric Piano

Materials to Gather

Electronic Parts

Other Materials and Tools

New Components

The SoftPot Membrane Potentiometer

The Piezo Buzzer

Build the Circuit

Program the Tiny Electric Piano

Test the Buzzer

Create Specific Notes

Generate Sound with the SoftPot

Play a Song

Build the Piano

Going Further

Hack

Modify

Bonus Project: Binary Trumpet

Appendix
More Electronics Know-How

Measuring Electricity with a Multimeter

Parts of a Multimeter

Measuring Continuity

Measuring Resistance

Measuring Voltage

Measuring Current

How to Solder

Heating the Iron

Perfecting Your Soldering Technique

Cleaning the Iron

Soldering Tips

Additional Soldering Tools

Third Hand

Flux Pen

Solder Wick

Solder Vacuum

Resistors and Bands

Afterword

Additional Resources

Acknowledgments

Introduction
Welcome to The Arduino Inventor’s Guide! This book will get you started
working with electronics, programming, and making cool things. Anyone can
be an inventor, and this guide will walk you through a series of projects that
combine common materials with the powerful Arduino to help inspire you to
start making your own inventions.

WHAT IS THIS BOOK ABOUT?

At the heart of this book is the Arduino (https://www.arduino.cc/), an open
source microcontroller board that you can program to control LEDs, measure
temperature, react to light, interface to GPS satellites, and do much more.
Arduino is also the name of the programming language and development
environment that we will use throughout this book.

Arduino is the ultimate tool for makers looking to add control to their
projects. A quick search online for “Arduino projects” returns millions of
hits. There are thousands of projects and ideas available on sites like
Instructables, hackster.io, and YouTube. That shows just how many makers
out there are using Arduino.

At SparkFun Electronics, we encourage people to experiment, play, and
tinker with common household items by altering and integrating electronics
components. This is sometimes known as hacking. This book will teach you
some core electronics and coding skills, and we hope it will inspire you to
build something new and unique with materials you find around your house.

WHY ARDUINO?

There are dozens of different microcontrollers and development platforms out
there, so why are we creating another set of projects for Arduino?

The answer lies in the simple fact that Arduino was not originally created for

https://www.arduino.cc/

makers, engineers, or hobbyists but for design students in Ivrea, Italy, as a
learning platform to help them make their projects function without needing
years of electrical engineering courses or tons of math and theory. It was
designed to shorten the time from “nothing” to “awesome!”—that is, from
idea to physical product—for nontechnical people.

Arduino did its job so well that the maker community and hobbyists picked
up the platform and ran with it. This is due to a number of factors—low price,
good documentation, open source hardware— but we think the core reason
Arduino is so popular is that it is easy to learn on. Arduino is a gateway for
anyone into making, inventing, and prototyping projects. The projects in this
book are designed for someone who wants to learn and is driven by the initial
spirit of Arduino: to bring an idea to fruition.

HOW IS THIS BOOK DIFFERENT FROM OTHERS?

A lot of programming books read like reference manuals, jumping right away
into coding or electrical concepts before providing context, and collecting
dust on your bookshelf until you need to look up a command or concept
you’ve forgotten.

This book is not like that. It aims to teach new concepts through fun,
interesting, and practical projects. The projects progress in complexity and
difficulty incrementally from Project 1 to Project 10, and they will help
answer the age-old questions: Why am I learning this? Why is it important?
And why should I care?

We assume you’re reading this book because you’re eager to learn something
new or looking for materials to share with others. Whether you’re an
interested novice, a teacher, a librarian, or a parent, this book is a hands-on
guide for people who want to learn and is not meant as a reference manual to
sit on your bookshelf.

You don’t need any experience with electronics or programming to get
started with Arduino. We assume you know nothing at the start and that you
may be a little apprehensive about diving in. That’s okay! This book
progresses steadily from introductory material to more complicated and

challenging projects.

We also know that there are plenty of people out there with experience
looking for something new—maybe a new spin on an old topic, such as a
fresh look at blinking LEDs. Many of these projects can be used as starting
points for you to hack and develop further or build out of better materials for
a more polished and durable finish. In the end, this book is for someone who
is proactive—a problem solver who jumps in with both feet.

We encourage you to build the projects as you go, learning by doing. These
projects have been carefully designed to introduce both the tools and skills
for programming and circuit building, as well as fabricating using cardboard,
scraps, and other household items. The fun of learning is in playing out the
entire process, and that is what this book offers.

MATERIALS

The electronics components used throughout this book are based around our
flagship product, the SparkFun Inventor’s Kit (KIT-13969), and are also
readily available individually from a number of sources online. We’ve also
used a few parts that aren’t in the Inventor’s Kit, and these additional parts
are available as a single kit as well
(https://www.sparkfun.com/NoStarchArduino/).

If you already have an electronics starter kit or want to buy the components
separately rather than getting the Inventor’s Kit, you can find the full Bill of
Materials (BOM) for the book in Tables 1 and 2. We’ve included individual
lists of materials at the beginning of each project as well.

We’ll also be using many basic building materials like cardboard, cardstock,
construction paper, drinking straws, and paper plates to build the enclosures
for the projects. As you start working with electronics and integrating them
with common materials, you’ll find yourself looking at everyday household
items in a new way.

TABLE 1: SparkFun Inventor’s Kit parts used in the book

https://www.sparkfun.com/NoStarchArduino/

QTY PART NUMBER DESCRIPTION

1 DEV-13975 SparkFun RedBoard (or other Arduino-
compatible board)

1 CAB-11301 USB Mini-B cable

1 PRT-12002 Solderless breadboard

1 PRT-11026 Male-to-male jumper wires (qty 30)

1 COM-12062 Assorted color LEDs (qty 20)

1 COM-09264 RGB LED (common cathode)

1 COM-11508 10 kΩ resistors (qty 20)

1 COM-11507 330 Ω resistors (qty 20)

2 COM-10302 or COM-
09190 Push buttons

1 COM-08588 Diode

1 COM-09806 10 kΩ potentiometer

1 COM-13689 NPN transistor - 2N2222 or BC337

1 SEN-09088 Photoresistor

1 SEN-10988 TMP36 temperature sensor

1 SEN-08680 50 mm SoftPot membrane potentiometer

1 COM-07950 Piezo buzzer

1 LCD-00709 16 × 2 character LCD

1 ROB-09065 Submicro size servo motor

1 ROB-11696 Hobby motor

TABLE 2: Additional parts used in the book (not included in the SparkFun
Inventor’s Kit)

QTY PART NUMBER DESCRIPTION

1 PRT-12043 Mini breadboard

1 PRT-13870 Short 4-inch male-to-male jumper wires (qty 30)

2 PRT-09140 Male-to-female jumper wires (qty 10)

1 COM-12062 Assorted color LEDs (qty 20) (additional LEDs)

1 SEN-09088 Photoresistor (additional)

1 PRT-09835 4 AA battery holder

4 PRT-09100 AA battery

1 ROB-13845 TB6612FNG H-bridge motor driver

1 ROB-13302 Geared hobby motors (qty 2)

1 ROB-13259 Rubber wheel fit for the geared hobby motor (qty 2)

1 COM-00102 Mini slide switch

REQUIRED TOOLS

The only tools you’ll need for these projects are a pair of scissors, a craft
knife, and a hot glue gun. However, don’t feel limited to these tools. If you
have a laser cutter available to you, use it. If you are itching to 3D-print a
project, feel free. Our designs are made with paper craft and cardboard in
mind, but they can be combined with any fabrication technique you want.

You shouldn’t have to spend any money on the materials for this book if you
don’t want to. In fact, there are probably a few projects you could use the
book itself as a material for. If you do, that’s awesome! As former teachers,

we are familiar with working with very small budgets, and our focus is
always on the most cost-effective building materials, such as cardboard,
paper, wood, and recycled plastics and metals.

Most of the projects in this book are designed to be built as prototypes that
can be easily taken apart and reused. However, if you really like a project and
want to make it permanent, check out the appendix to see how to solder your
project. The tools for soldering and electronics prototyping are relatively
inexpensive, and you can buy them from SparkFun
(https://www.sparkfun.com/) or any hardware store near you.

REQUIRED COMPUTER

Finally, you’ll program the Arduino using a computer and a specific set of
software tools. Just about any average computer can handle the Arduino
software. If you have a PC running Windows, you’ll need to be running
Windows XP, Vista, 7, 8/8.1, 10, or newer. For Mac users, currently the latest
version of Arduino is compatible with OS X 10.7 Lion or newer. If you’re
running a fairly standard version of Linux, odds are there is a version of
Arduino available.

As of this writing, iOS and Android devices are supported only through beta-
release software packages still under testing and development. You’re
welcome to try these, but they may not work, and if they do, they may not be
reliable.

For Windows, Mac, or Linux users, we’ll walk you through the process of
setting up your computer in the first project.

WHAT’S IN THIS BOOK?

This book includes 10 hands-on projects, as well as a primer on electronics
and an appendix that covers soldering and other handy tips. The projects start
with a simple blinking LED and gradually incorporate different electrical
components, programming concepts, and layers of construction sophistication
as the projects progress. Each project has separate sections on wiring,

https://www.sparkfun.com/

programming, and construction so that you can focus on individual aspects.
We wrap up each project with a “Going Further” section that gives you ideas
for hacking and modifying the project. Remember, we want you to use these
projects as launching points for your own inventions, not as end goals.

• Electronics Primer Before jumping into the projects, we present the
foundations of electricity and electronics and introduce key concepts used
throughout the book.

• Project 1: Getting Started with Arduino Covers installing software and
gives you a foundation in building and programming circuits by walking you
through a project that lights up an LED.

• Project 2: A Stoplight for Your House Explores using a breadboard and
controlling multiple components at once to build a three-LED stoplight.

• Project 3: The Nine-Pixel Animation Machine Extends the stoplight to
nine LEDs in a 3 × 3 matrix and teaches you about custom functions in
Arduino.

• Project 4: Reaction Timer Walks you through using a button and an LED
to make a game that tests your reaction times.

• Project 5: A Color-Mixing Night-Light Explores using a voltage divider
and a light sensor to detect a room’s light level and automatically turn a
multicolored LED on or off depending on how dark it is.

• Project 6: Balance Beam Introduces the servo motor and how to control it
with an external device to make a balance beam desk game.

• Project 7: Tiny Desktop Greenhouse Teaches you how to make a
greenhouse that senses temperature and automatically turns a fan on and
opens an air vent when it’s too hot. This project introduces concepts like
controlling a motor with a transistor.

• Project 8: Drawbot, the Robotic Artist Explores simple tabletop robotics
using an H-bridge motor controller. You’ll build a simple robot that you can
program to draw a picture for you.

• Project 9: Drag Race Timer Shows you how to build a racetrack for toy
cars that records their speeds. You’ll use the servo motor, light sensor, and
LCD to build a race timer. This project is a Christmas morning dream!

• Project 10: Tiny Electric Piano Teaches you how to make music with
your Arduino, using a soft potentiometer as a small keyboard. This project
explores the piezo buzzer and how to use the tone() function. Time to get
your piano man on!

• Appendix: More Electronics Know-How Includes handy tips for using a
multimeter, soldering, and reading the color bands on resistors.

ONLINE RESOURCES

All the resources you’ll need for these projects are available for you to
download, reference, use, and modify. The resources include all the example
code shown and discussed in the book, the cutting templates for the final
builds, and code to get you started with hacking and modifying your projects
to experiment further.

You’ll find all of these resources in a single ZIP file that you can download
from https://www.nostarch.com/arduinoinventor/. If you get stuck or
something doesn’t seem to work, you can always reference these files as a
guide and a fallback.

SPREAD THE WORD: SHARING YOUR WORK

SparkFun is a hardware and electronics company with a strong focus on
being open source—it is one of the core tenets the company was founded on.
When we build projects, we love to share our ideas, code, and design files
with our community so that you can leverage our knowledge base to use in
your next project. As you build up your projects, we encourage you to share
what you’re doing, too. Show a friend, or post it online. There are many
different places that we’d love to see your work!

Use social media like Twitter, Instagram, or Facebook to tell us about what

https://www.nostarch.com/arduinoinventor/

you’re making. Tag us @sparkfunedu and @nostarch. We also have an
online project gallery called InventorSpace at https://invent.sparkfun.com/. If
you have an idea or a project that you want to show off, post it there. We
hope this book provides you with some inspiration to start something
amazing!

Finally, you can also email us with your projects, photos, or general
comments and questions at ArduinoInventorsGuide@sparkfun.com. We’ll
occasionally pick some great photos and projects to highlight on our blog.
Who knows, we might end up asking to use one of your projects in our next
book!

https://invent.sparkfun.com/
mailto:ArduinoInventorsGuide@sparkfun.com

Electronics Primer
This chapter provides a broad overview of electronics to readers who have
little to no experience with electronics and electricity. If you’re already
comfortable with some of the topics in this chapter, you can treat it like a
choose your own adventure book and skip to subjects you want to learn more
about or even move directly on to Project 1.

If you’re new to electronics or just want a refresher, we suggest reading this
chapter in full. While it’s not a complete guide to electronics (there are whole
books, classes, and degrees on the subject), this chapter is a handy reference
designed to arm you with basic concepts and vocabulary. If you’re looking
for more in-depth information on electricity, electronics, and circuits, please
see the recommended reading list at the end of this chapter.

ELECTRICITY, CONDUCTIVITY, AND BASIC
TERMS

Electricity is an odd beast. In a lot of ways it’s predictable, but it can be a
little sneaky at times. If you look up electricity in the dictionary, you’ll
probably find the definition sheds little light on what it is, how it works, or,
most importantly, how you can use it. Let’s start with the basics.

What Is Electricity?

To understand electricity, you first need to understand the structure of an
atom. Atoms are the building blocks of everything around you. An atom is
made up of protons, neutrons, and electrons. The electrons have a negative
charge, and the protons have a positive charge. A typical atom has the same
number of electrons as protons and therefore is neutral in charge. Electricity
is a form of energy that involves the movement or storage of charges; it is the
phenomenon that occurs when we push or force charges to move in a
prescribed manner or a defined path. If you’ve ever seen a lightning storm,
you’ve seen evidence of the transfer of charges between the clouds and the

ground. These charges are transferred through the air molecules of our
atmosphere, lighting up the sky as they move. The movement and transfer of
charges is called current. Current is measured in units called amperes (A) or
milliamperes (mA).

NOTE

Conventionally, we refer to current as the movement of a positive charge.
Though technically the electron is the part of the atom that can be moved, it
is still common to refer to current as the movement from positive to negative.

Except for lightning, arc welding, and the odd static shock, we don’t
normally see electricity directly. Even the bright light we see in lightning is
merely the air molecules changing form as charges move through them.

Charges move when there is an electrical force that acts on them and a path
for the charges to move along. That electrical force is created by an electrical
potential difference, or what we commonly call voltage. Voltage is what
ultimately causes charges to move, and it’s measured in volts (V). For a
reference, typical batteries range in voltage from about 1.5 V to 12 V. A 12 V
battery will cause charges to move faster than a 1.5 V battery.

Types of Electricity

In general, electricity can be broken down into two basic types: direct current
(DC) and alternating current (AC). AC is the kind of electricity in the power
lines outside your house and in your wall outlets. AC electricity is great for
power generation (for example, power plants), transmitting power over long
distances (like from the power plant to your home), and driving large devices
(like motors and heaters). We don’t use AC electricity for most of our
household electronics, however. Most small appliances and household
electronics that plug into the wall outlet require DC electricity and use a
transformer to convert from AC to DC. Further details on AC and DC are
beyond the scope of this book, but the projects you build here will focus on
DC electricity.

What Is a Circuit?

Even with the electrical forces pushing them, charges need a path to follow
from a point of higher potential to a point of lower potential. The path by
which charges move from the positive (+) side of a battery (high potential) to
the negative (–) side of the battery (low potential) is called a circuit. A circuit
consists of a closed path from the positive terminal to the negative terminal
through a device such as a light-emitting diode (LED), resistor, light, or
motor. Figure 1 shows a simple circuit containing an LED, a battery, and a
resistor. Notice that the shape of the circuit loosely resembles a loop or a
circle, hence the name circuit.

FIGURE 1: A basic DC circuit

In order for charges to move, the path must be made out of a material that is
conductive. Conductivity is not an absolute measure but more of a
continuum. While some materials are generally considered conductors and
nonconductors, most materials occupy a range of values for conductivity. In
other words, some materials allow charges to move more freely than others.
Think of driving a car on different surfaces. On the smoothly paved
interstate, you can go much faster than if you were off-roading or driving
down dirt roads. Different roads allow for different speeds the same way that
different materials allow for more or less conductivity. We use the term
resistance to describe how much a material slows down the movement of
charges.

Ohm’s Law

As you may already have guessed, there is a relationship between current,
voltage, and resistance. This relationship is commonly called Ohm’s Law,
and it is represented mathematically as follows:

V = I × R

In this equation, V represents the voltage, I represents the current, and R is the
resistance. (Don’t let this bit of math scare you: this is one of only about three
equations you’ll see in this book.)

Visualizing Electricity as Water in a Pipe

To understand what’s going on in a circuit, it’s useful to think of electricity
like water moving through pipes. Imagine water flowing through a garden
hose. When you turn on the valve, water starts to flow through the hose to the
other end, as shown in Figure 2.

FIGURE 2: Water and electricity model

The water molecules moving in the hose represent the flow of charges
(current). If we turn the water valve up or down, we can change the water
pressure in the hose. The water pressure in the hose is similar to the voltage
in a circuit. If you increase the water pressure, the flow also increases. This is
the same with circuits: if you increase the voltage, the current also increases.
The final part of the analogy is in the hose itself. If we put a kink in the hose
or restrict its diameter, we create resistance. The increase in resistance slows
down the flow (lowers the current).

This model works pretty well to describe the flow of electricity, but you don’t
want to set up this whole system of hoses, valves, and pipes to just let water
run out onto the ground (unless your goal is to water the lawn). You want to
do something with it; you want it to do work. In terms of circuits, we use
devices that change electricity into other forms of useful energy, such as
illuminating a light, rotating a motor, or sounding a buzzer. A device that
converts electrical energy to other forms of energy is called a load. Thomas
Edison discovered that he could convert electrical energy into light energy
with the light bulb; you will do that and a whole lot more throughout this
book.

SCHEMATICS, CIRCUIT BLUEPRINTS, AND
WIRING DIAGRAMS

While pictures are nice, it’s not efficient to meticulously draw out every
component to show how a circuit is wired up. Throughout the book, you will
see schematics like the one in Figure 3 as well as illustrations to help you
with your circuits.

FIGURE 3: This simple schematic shows a battery, an LED, and a resistor.

Schematics are simplified drawings of circuits. We sometimes also call these
wiring diagrams or circuit blueprints. A schematic shows what is connected
to what and which components to use in building the circuit. We will use the
IEEE (Institute of Electrical and Electronics Engineers) US standard for
drawing circuits in this book. The schematic in Figure 3 actually represents
the same circuit as the illustration in Figure 1. The straight lines represent

wires, and each component has its own unique symbol. Figure 4 shows some
common schematic symbols you’ll see in this book.

FIGURE 4: Some standard IEEE schematic symbols

The IEEE schematic symbol format is internationally recognized and used to
communicate and share circuit drawings across the world. It’s intended to
quickly represent components using very simple lines and drawings.

PROTOTYPING CIRCUITS

As you work through the projects in this book, you will build and test a
variety of designs. As you build a circuit, you may also want to rearrange
parts, swap things around, or add new components. This process is called
prototyping. You can prototype electronics in a way that is similar to building
with wooden blocks or LEGO bricks by using a solderless breadboard like
the one shown in Figure 5.

FIGURE 5: A translucent solderless breadboard with horizontal rows and
vertical power rails

A solderless breadboard is a plastic rectangle with a lot of holes in it. These
holes are spaced on a 0.100-inch grid and sized so that the majority of
electronic components fit snugly in them. Underneath the holes are small
clips made out of a soft conductive metal, as shown in Figure 6.

FIGURE 6: The innards of a solderless breadboard (left) and a close-up of
the metal clip inside (right)

Wires that are plugged into holes on the same row are connected together
electrically by these metal clips. It’s like twisting the wires together without
the twisting part. Notice that the clips only span the width of five holes.
There is a center “ditch” that divides the two halves of the breadboard, and
the clips on the right side are not connected to the clips on the left side.

NOTE

Hold the breadboard so that it is tall and skinny (portrait orientation) and the
letters at the top are right side up. We’ll refer to the horizontal groupings of
five holes as rows and the vertical sections on the sides of the breadboard as
columns, assuming this orientation.

Breadboards come in a number of shapes and sizes, but most will still have
vertical columns on the outer edges of the board. These columns are called
power rails or power buses, and each has a single continuous clip that is
connected from top to bottom, as in Figure 7. Breadboards also often have +
and – labels to indicate where to plug in your power connection, with
matching red and blue color coding.

FIGURE 7: Underside of a breadboard, showing both horizontal rows and
vertical power rails

You can see a solderless breadboard in action in Figure 8, which shows a
prototype design of a circuit with eight LEDs.

FIGURE 8: Circuit on a breadboard

In this book, you’ll build circuits with solderless breadboards so that if you
make a mistake, you can easily change or fix it, and if you want to explore
something further, you can quickly add to the circuit. When you start making
bigger and more complex circuits, we suggest that you have multiple
breadboards around so that you can build circuits in chunks. This allows you
to build and test each part of your project incrementally without having to
rework, troubleshoot, or take an entire project apart when something doesn’t
work.

DISCRETE COMPONENTS VS. BREAKOUT
BOARDS

We mentioned components earlier and want to touch on them briefly here.
There are hundreds, if not thousands, of different electrical components in the
world. When we say components, we are talking about discrete components
—the most rudimentary parts you can buy. For example, the resistor,
capacitor, and LED in Figure 9 are discrete components.

On the other hand, a breakout board is an assembly of components prewired
together onto a single board made to be breadboard friendly. Breakout boards

help speed up the prototyping process. You can see a good example of one in
Figure 10.

FIGURE 9: Resistors (left), capacitors (center), and LEDs (right) are
examples of discrete components.

FIGURE 10: A single, tiny accelerometer (left) and its breakout board
(right). Notice the plated-through holes on the left side of the breakout board.

Figure 10 compares a complex component—an integrated accelerometer
sensor package (P/N ADXL345 from Analog Devices)—and the breakout
board SparkFun produces for it. The chip measures a mere 5 × 3 mm! It has
tiny metal connection pins that serve a similar purpose to the long metal legs
you see on discrete components. They’re just so small that connecting wires
directly to them is nearly impossible. Breakout boards route these small
connection points to plated-through holes on the edge of the board, spaced
exactly 0.100 inch apart so that the holes on the board line up with the holes
on a solderless breadboard. Each hole is metal plated so that you can solder
wires directly to it. Or, if you want to use it with a breadboard, you can also

solder on male headers as shown in Figure 11. (Don’t worry if you’ve never
soldered before; see the instructions in “How to Solder” on page 302.)

Notice that the holes are each labeled with a silkscreen so you know how to
connect the sensor. Breakout boards have these so you can use them
immediately on a breadboard without the hours of researching and building
you’d have to do to use the bare component on its own.

FIGURE 11: ADXL345 breakout board with headers

ANALOG VS. DIGITAL

With the concepts of circuits, components, voltage, current, and resistance
defined, we can now talk about two different approaches to electronics:
analog and digital. These approaches are not mutually exclusive, and you
can’t really understand the circuits you build without understanding both
concepts.

Analog deals with values that vary within a set range. Think of the dimmer
switch in some dining rooms; that is analog. Analog values can be on, off,
and anything in between. Digital values, on the other hand, have only two

states: on or off.

Digital electronics tend to include a microcontroller or microprocessor that is
programmed to turn things on and off in response to conditions, whereas
analog circuits tend to use components to vary the current, voltage, and
resistance of a circuit to achieve the same result.

There are advantages and disadvantages to both ways of thinking, but you
can’t solely use one and not the other. For example, you couldn’t read the
temperature using a microcontroller without using a number of analog
components as well.

WHAT IS A MICROCONTROLLER?

A microcontroller is a small computer that you can program by uploading a
program or set of instructions. Microcontrollers are used to automate simple
tasks, like controlling the temperature of your house or watering your lawn
when it’s dry.

The projects in this book use the SparkFun RedBoard microcontroller board,
which is 100% compatible with the Arduino Uno. Both are pictured in Figure
12.

FIGURE 12: The SparkFun RedBoard (left) and the Arduino Uno (right)
microcontroller boards

In an average day, you probably use 15 to 20 microcontrollers and you don’t
even know it. They are in your coffee maker, alarm clock, and microwave.
Your car alone has anywhere from 5 to 10 of them that control the braking,
stereo, and ignition systems. Our world practically runs on microcontrollers.
This book will help you learn how to harness that fact to take back a bit of
control over your world.

NOTE

You will learn more about the Arduino, how to program it, and what its
capabilities are as you build the projects. For now, just know that a
microcontroller is a programmable brain that makes electronics easier for
anyone to build and prototype ideas that automate the world around them.

We hope that this short primer has given you a little background and a
preview of what the rest of this book will cover. We’re excited that you’ve
decided to embark on this adventure with us. Now, let’s get to building our
first project!

ADDITIONAL RESOURCES ON BASIC ELECTRICITY AND
ELECTRONICS

If you’re eager to learn about electricity and electronics in more detail, we
highly recommend you check out the following books:

• Basic Electricity by the Bureau of Naval Personnel (Dover Publications,
1970)

• Arduino Workshop by John Boxall (No Starch Press, 2013)

• Getting Started in Electronics by Forrest M. Mims III (Master Publishing,
2003)

• Practical Electronics for Inventors, 4th edition by Paul Scherz and Simon
Monk (McGraw-Hill Education, 2016)

1 Getting Started with Arduino
This project covers everything you need to get your Arduino up and running!
We’ll introduce the hardware, show you how to install the programming
environment, and help you make sure everything works by loading a simple
program. At the end, you should have your own blinking light and the
excitement to move on. Let’s go!

MATERIALS TO GATHER

You’ll need the following hardware (shown in Figure 1-1) to complete this
project:

• One SparkFun RedBoard (DEV-13975), Arduino Uno (DEV-11021), or any
other Arduino-compatible board

• One USB Mini-B cable (CAB-11301 or your board’s USB cable)

• One LED (COM-09590, or COM-12062 for a pack of 20)

FIGURE 1-1: Required components

ABOUT THE ARDUINO

An Arduino (pronounced är·də’wēn·ō or “arr-dween-oh!”) is a small
programmable device that can add smarts to nonintelligent things. You can
use an Arduino to run robots, create LED art, and even act as a handheld
gaming console. In this section, we’ll go into more detail on what the
Arduino is and how it can change the way you think about the world around
you.

An Accessible Hardware Platform

An Arduino is like a small computer. You can program it using very simple
instructions, and you can power it with just a few AA batteries. What makes
an Arduino really different from a regular computer is that it uses a
microcontroller, rather than a CPU, to process information and take action.
This small chip acts as the brains of your project, and it can receive input
from sensors (like light detectors, temperature sensors, or buttons) and output
signals to control LEDs, motors, buzzers, and more. An Arduino board like

the one in Figure 1-2 has all of the supporting components and circuitry to
make a micro-controller work.

FIGURE 1-2: The Arduino Uno is an open source, programmable
electronics platform for hobbyists.

The programming language used for the Arduino is essentially a version of
C/C++. The programming environment is the Arduino IDE (integrated
development environment). The team that developed it bundled it with many
prewritten functions and libraries to simplify the process of writing code to
interface with hardware. For example, these libraries take the multiple lines
of code required to turn on an LED and simplify them into a single
instruction!

About the SparkFun RedBoard

There are many officially Arduino-branded boards, but since the platform is
open source (meaning the source hardware design and software are available
for anyone to look at and modify), there are also many Arduino derivatives,
clones, and compatible boards. The board designs are all licensed under a
Creative Commons Attribution Share-Alike license, and the Arduino FAQ
(https://www.arduino.cc/en/Main/FAQ) states that anyone is “free to use and
adapt [these designs] for your own needs without asking permission or

https://www.arduino.cc/en/Main/FAQ

paying a fee.” Derivative boards work with the same programming
environment as an official Arduino, but often the hardware has been tweaked
or modified in some way.

The SparkFun RedBoard, pictured in Figure 1-3, is an Arduino-compatible
derivative board. It is based on the Arduino Uno design but has a more stable
USB interface and uses a USB mini connector instead of the Type-A
connector. Otherwise, it is exactly the same as the Uno, with the same size
and shape.

FIGURE 1-3: The Arduino-compatible SparkFun RedBoard. Notice how its
shape matches up with the Arduino Uno in Figure 1-2.

The RedBoard is the go-to Arduino board here at SparkFun and has a few
key components that you’ll need to know in order to navigate the first few
chapters of this book. We have labeled each term for you in Figure 1-3.

ATmega328 microcontroller The square black chip in the middle of the
board. It is the brain of the Arduino.

Header pins The tiny metal legs on the microcontroller, which let you read
input and send output. They are accessible through the four sets of black
headers on either side of the Arduino. They are numbered and labeled for
specific uses. The pins you’ll care about most are those labeled Digital (0–

13), Analog In (A0–A5), and Power.

Mini-USB port This is how you send code to and communicate with the
Arduino. You can also power your board using the USB port for most
applications in this book. If an external power supply is needed, we’ll be sure
to point it out.

Power LED This LED is an indicator to show that the Arduino is powered
on. If you ever have a short circuit on your board or a bad power connection,
this indicator will not turn on.

TX/RX LEDs These LEDs blink when data, such as code or numbers, is
being passed back and forth between your Arduino and your laptop.

Onboard LED 13 A debug light. If you’re plugging your Arduino in for the
first time, LED 13 should blink once per second. It’s connected to pin 13 on
the Arduino.

External power jack A barrel jack port next to the USB port. The Arduino
takes 5 V of power, though you can safely supply the Arduino a voltage
between 7 and 15 V without damaging your board. A chip on the Arduino
scales this input voltage down to 5 V for the electronics and circuitry to work
properly.

Like all Arduino-compatible boards, you’ll program the RedBoard with the
Arduino IDE.

INSTALLING THE ARDUINO IDE AND DRIVERS

You should install the Arduino IDE before plugging your RedBoard into the
USB port for the first time. To install the Arduino IDE, go to
http://www.arduino.cc/download/. Select the appropriate version for your
computer’s operating system, and click the link to download (Figure 1-4).
You’ll be asked whether you’d like to make a contribution; the development
and maintenance of the Arduino IDE rely on the help and contributions of the
community that uses it.

http://www.arduino.cc/download/

NOTE

If you’ve already plugged in your board, that’s not a problem—you may just
need to restart your computer after the installation is complete for the drivers
to work properly.

FIGURE 1-4: You can use the online IDE or download the latest version for
your operating system.

Even if you already have the IDE installed, we recommend downloading and
installing the latest version. The Arduino IDE is continuously being updated
and improved, and it’s best to have the newest release. The examples in this
book use IDE versions 1.8.1 and later.

NOTE

If you like to be on the bleeding edge of software, the Arduino Downloads
page also provides nightly builds that preview the next release. For this book,

however, we recommend using the latest stable release.

The Arduino website also provides an online platform called Arduino Create,
which includes a web-based code editor. It allows you to program your
device through your web browser and share and view projects with others
online. As of the writing of this book, it is supported only on Windows and
OS X.

Whether you choose to use Arduino Create or the downloaded IDE, follow
the directions online to run the installation process.

Installing on Windows

If you’re working on a Windows PC, we recommend downloading the
Windows Installer version of Arduino. Download this file, open it, and click
Run. This will bring up the Installation Options dialog (Figure 1-5).

FIGURE 1-5: Installation Options dialog for Arduino. Make sure that USB
drivers are selected!

Check the Install Arduino software box along with the other options, or
you’ll have to install the drivers separately. Then, tell the installer where
you’d like to install Arduino (we recommend accepting the default directory),
and click Install.

Once you begin the installation process, have a snack or a cup of coffee,
because it could take a few minutes to complete. Depending on your version
of Windows, you might again be asked if you want to install drivers and if
Arduino LLC is trusted, as pictured in Figure 1-6.

FIGURE 1-6: In Arduino we trust!

If you don’t want to see prompts like this again, check the box that says you
trust Arduino. Either way, click Install to install the USB drivers. That’s it!
Arduino typically installs a shortcut on your desktop. Double-click that now
to run the Arduino IDE.

Installing on OS X

If you’re using a Mac, download the Arduino IDE option for OS X, and
follow the directions in this section.

Installing the IDE

After the download is complete, hover your cursor over your Downloads
folder, and click Open in Finder as shown in Figure 1-7.

FIGURE 1-7: After downloading, the program will be in the Downloads
folder. Click Open in Finder to move it into the Applications folder.

Then, simply click and drag the Arduino program file into the Applications
folder, as shown in Figure 1-8. In most cases, you won’t need to install
anything else, and you should be able to open the Arduino IDE as you would
any other program.

FIGURE 1-8: Click and drag the Arduino file into the Applications folder on
the left.

Installing the FTDI Driver Manually on OS X

If you’re using a standard Arduino Uno board, the drivers should be
preinstalled and work out of the box. If you’re using the SparkFun RedBoard,
there’s one extra step needed to manually install a driver. The SparkFun
RedBoard uses a USB chip from Future Technology Devices International
(FTDI) to communicate with your computer. You need to manually install
the FTDI driver for this chip. First, navigate to http://www.sparkfun.com/ftdi/.
This will take you to our tutorial on installing FTDI drivers (see Figure 1-9).

Click the link for Mac OS X. This will direct you to options for a driver to

http://www.sparkfun.com/ftdi/

install based on the version of OS X running on your computer. There is one
option if you have Mac OS X 10.3 (Panther) to 10.8 (Mountain Lion) and
another option if you have Mac OS X 10.9 (Mavericks) or greater.

FIGURE 1-9: SparkFun FTDI Installation Guide

Download the appropriate driver and double-click it to start the installation
process. You should be greeted with the familiar Mac software install
window. Select your hard drive once it is found, and click OK. Continue
through the installation process, and when the progress bar fills up (as in
Figure 1-10), the drivers should be installed.

FIGURE 1-10: Installation of the FTDI drivers on OS X

That’s it! Now, double-click the Arduino icon in your Applications folder to
run the IDE. If you’ve already opened the IDE before installing the FTDI
drivers, you’ll need to fully exit and close out of the Arduino IDE and restart
it for your serial ports to show up correctly.

NOTE

If you encounter an error after driver installation, check out solutions at
https://www.sparkfun.com/macdriver/.

Installing on Linux

Arduino is available for Linux users, too. Download the correct Linux file for
your system; it comes in 32- and 64-bit flavors. Then, uncompress the file
using xz-utils or another file compression utility. If you want to use the latest
version of Arduino in Linux, you may need to install some other dependency
programs as well. Go to http://playground.arduino.cc/Learning/Linux/ for
distribution-specific information on this.

For most distributions of Linux (including Ubuntu, Debian, and Fedora), you
should be able to use the apt-get package manager to install Arduino from the
command line. Open a terminal and enter the following command:

sudo apt-get install arduino

Once the process is complete, open the Arduino program you just installed.

https://www.sparkfun.com/macdriver/
http://playground.arduino.cc/Learning/Linux/

Arduino uses Java to run the IDE and must be run out of an XWindows or
comparable window user interface environment.

NOTE

Depending on the package manager for your distribution of Linux, the
version you install this way may not be the latest version currently hosted on
the Arduino site.

A BRIEF IDE TOUR

The IDE is a place for you to write instructions for your Arduino and test
them out. These instructions form a program, or in Arduino terminology, a
sketch. The IDE allows you to upload your sketch to your Arduino and
control things in the physical world.

If you haven’t done so already, open your newly installed Arduino program.
After a splash screen, you should see the IDE, which looks something like
Figure 1-11.

FIGURE 1-11: The Arduino IDE

You can use the menu bar (which consists of File, Edit, Sketch, Tools, and
Help menus) ➊ to open or save files, upload your code to the Arduino,
modify settings, and so on. You should also see a set of graphic buttons ➋.
In order from left to right, these are Verify/ Compile, Upload, New, Open,
and Save. We will explore those menus and buttons throughout this book.
The majority of the IDE is whitespace ➌; this is where you’ll write your
code. Underneath the code area is the alert bar ➍, and below it you’ll find
the console ➎; these report statuses, alerts, and errors. For example, if there’s
a typo in your sketch (called a syntax error), the IDE will show you the error
there. If you try typing your name in the code window and click the check
mark (Verify/Compile) button, the Arduino IDE will think for a bit and then
show an error in the alert bar, highlight your name, and give you more
information in the console about the error, as you can see in Figure 1-12.

FIGURE 1-12: A typical error message and readout in the Arduino IDE

CHANGING THE DEFAULT PREFERENCES

Arduino is a fully open and configurable programming environment. There
are a few minor things we like to tweak in the preferences to make it easier to
write code, debug, and make cool stuff. Select File ▸ Preferences to view
and change the general settings of the Arduino IDE. You should see a
window similar to Figure 1-13.

We suggest adjusting the editor font size so it’s comfortable for you to read.
We also like to check Display line numbers and uncheck Save when
verifying or uploading. Line numbers will help you navigate around your
code easier, and unchecking the auto-saving feature will allow you to quickly
test code without having to save it each time. Arduino is completely open, so
if you want to, you can also click the preferences.txt file and adjust many
other features.

FIGURE 1-13: Arduino Preferences window

TEST DRIVE: PLUGGING IN THE ARDUINO FOR
THE FIRST TIME

When you have the Arduino IDE and drivers fully installed, connect your
Arduino board to the USB port of your computer using the appropriate cable.
The power LED should turn on, and if your board is completely new, you
should see an LED, labeled 13, blinking as in Figure 1-14. Your computer is
powering the Arduino board through the USB cable, and it’s running code
that was installed at the factory. Unlike a computer, an Arduino can only
store and run a single sketch at a time. The standard test sketch loaded onto
an Arduino is a simple LED blink. With your board plugged in, you’ll set up
the IDE so that you can write your own sketch.

NOTE

If you plugged in your board before installing the IDE and drivers, you may
need to restart your computer.

FIGURE 1-14: The LED labeled 13 blinks when you power a new board.

Choosing Your Board in the IDE

Depending on your computer or operating system, it may take a little bit for
the computer to identify the new hardware you just plugged in and associate
it with the drivers you installed. After your computer recognizes the new
device, click Tools and mouse over the Board option, as in Figure 1-15.

FIGURE 1-15: The Board selection list in the Tools menu

A list of pre-supported Arduino boards should appear. If you’re using a
standard Arduino Uno or the SparkFun RedBoard, select the option
Arduino/Genuino Uno. If you end up using a board other than an Uno or
RedBoard in the future, select the correct Arduino based on your board’s
documentation—this book assumes that you’re using the Uno or an Uno
derivative.

Selecting the Communication Port

Each device that’s plugged into your computer has a unique communication
port identifier. You need to configure the IDE so that it knows which port
your Arduino is connected to. To do this, first select Tools ▸ Port to see the
communication port options for your device. You’ll see different options
depending on your operating system.

On Windows

If you’re using a Windows PC, you may see COM3, COM4, or another
numbered COM port, as shown in Figure 1-16. Select this option. If no
options show up, see “Basic Arduino Troubleshooting” on page 27.

FIGURE 1-16: Selecting the communication port on Windows

On OS X and Linux

On Mac or Linux machines, the communication port should be listed as
/dev/cu.usbserial-A<xxxx>, where the <xxxx> is a string of random
characters unique to your Arduino. Select this option. You may see more than
one port listed, as in Figure 1-17, but only the one with this unique ID string
will map to your Arduino. If no options show up, see “Basic Arduino
Troubleshooting” on page 27.

FIGURE 1-17: Selecting the communication port on OS X

AN ARDUINO “HELLO, WORLD!”

“Hello, world!” is the classic first program that many beginning programmers
write. In most other programming languages, this program displays Hello,
world! to the screen. Because the Arduino doesn’t have a screen, its version
of “Hello, world!” is a blinking LED.

For your first sketch, we’ll show you how to use an example that comes with
the Arduino IDE. With your board connected to your computer, click the File
drop-down menu and select Examples ▸ 01.Basics ▸ Blink as shown in
Figure 1-18 to open a sketch called Blink.

A new IDE window containing the Blink sketch should open. In this window,
click Sketch ▸ Upload or click the Upload icon. The IDE will turn this
relatively human-readable code into 1s and 0s that the Arduino understands
(a process called compiling) and then upload the sketch to your board.

FIGURE 1-18: Finding the Blink sketch

After you click Upload, watch the alert area for status messages. It should say
Compiling sketch… and show a progress bar. After the compiling is
complete, your computer will start to upload the sketch to your Arduino. The
RX (receive) and TX (transmit) LEDs on your Arduino board should blink
rapidly, indicating that the sketch is being transmitted to the Arduino board.

The TX light blinks because you’re transmitting something to the Arduino,
and the RX light blinks because as the Arduino receives the sketch, it
responds to your computer to confirm receipt. When the upload process is
done, the status area on the IDE should say Upload complete, and the LED
labeled 13 on your board should blink, as in Figure 1-19.

FIGURE 1-19: Turning on LED 13

If you get any error messages, your Arduino might not be talking to your
computer. Read the next section, “Basic Arduino Troubleshooting,” for some
common problems to look out for, and then try uploading the sketch again.

BASIC ARDUINO TROUBLESHOOTING

The Arduino, like any other programmable piece of electronics, is
temperamental at times. Here are a few troubleshooting tips for when you
have trouble programming your Arduino.

1. Make sure that your Arduino is plugged into your USB cable and that the

cable is plugged into your computer all the way. It’s easy to have the cable
only partially plugged into the board. You can also try unplugging it and
plugging it back in.

2. Always confirm the board selected in the Board menu is the board plugged
into your computer. For our examples, we will have Arduino/Genuino Uno
selected.

3. Confirm that the correct communication port is selected in the Tools ▸ Port
menu; it should have a checkmark or dot next to it. If you’re not sure which
port goes with your Arduino, unplug your USB cable from your computer,
refresh the communication port listing, and watch to see which port
disappears.

4. Make sure you didn’t accidentally type some stray characters into your
example sketch. The code will not compile if there are any extra characters.

5. On Windows, check your computer’s Device Manager. Make sure that
there isn’t an exclamation mark next to the device. If there is, you need to
reinstall the drivers manually.

6. If you’re still getting error messages, reinstall the drivers for your board.
We have additional instructions available at www.sparkfun.com/ftdi/.

These six tips are solutions to common speed bumps for anyone new to
Arduino, so start here. If none of these suggestions solves the issue, just stay
calm, be patient, and remember that you’re not the first one to have a
problem. If you get completely stuck, look for solutions on the official
Arduino forum at http://forum.arduino.cc/.

ANATOMY OF AN ARDUINO SKETCH

In this section, we’ll walk you through the Blink sketch that you uploaded to
the Arduino in ‘An Arduino “Hello, World!”’ on page 25. First, Listing 1-1
gives the sketch itself, in all its blinky glory.

LISTING 1-1: The Blink example sketch

http://www.sparkfun.com/ftdi/
http://forum.arduino.cc/

➊ /*
 Blink
 Turns an LED on for one second, then off for one second,
 repeatedly.

 Most Arduinos have an onboard LED you can control. On the
 UNO, MEGA, and ZERO, it is attached to digital pin 13;
 on the MKR1000 it's on pin 6. LED_BUILTIN is set to the
 correct LED pin independent of which board is used.

 If you want to know which pin the onboard LED is connected
 to on your Arduino model, check the Technical Specs of
 your board at https://www.arduino.cc/en/Main/Products

 This example code is in the public domain.

 modified 8 May 2014
 by Scott Fitzgerald

 modified 2 Sep 2016
 by Arturo Guadalupi

 modified 8 Sep 2016
 by Colby Newman
 */

 //the setup function runs once when you press reset or
 //power the board
➋ void setup() {
 //initialize digital pin LED_BUILTIN as an output
 pinMode(LED_BUILTIN, OUTPUT);
 }

 //the loop function runs over and over again forever
➌ void loop() {
 digitalWrite(LED_BUILTIN, HIGH); //turn the LED on

 //(voltage level is HIGH)
 delay(1000); //wait for a second
 digitalWrite(LED_BUILTIN, LOW); //turn the LED off
 //(voltage level is LOW)
 delay(1000); //wait for a second
 }

When writing sketches in Arduino, you need to be very specific with the
words, punctuation, and capitalization you use. These elements are part of a
programming language’s syntax. For the IDE to compile your sketch
properly, you must use words that it recognizes. These are called keywords,
and you’ll notice them when they change to a different color, such as orange,
teal, or green. Now, let’s look at some of the features used in this first sketch
in detail.

Key Sketch Elements

At the top of the sketch, you declare a new global namespace ➊. This is a
space that describes what the sketch does and often includes other
information such as variable initializations and library statements. Nearly
every sketch will include a namespace. This sketch’s namespace has
comments written to help human readers understand what the sketch does. In
the Arduino IDE, comments are gray. Every comment either starts with the
characters // or is bounded by the symbols /* and */ if the comment is longer
than a few lines. Notice that not all comments come between lines of code;
some appear on the same line as the code they clarify. This doesn’t affect the
sketch, because comments are ignored by the IDE. Unlike with code, you can
write anything you want in the comments using regular words, spelling, or
punctuation.

The skeleton of any sketch consists of two main function definitions, setup()
➋ and loop() ➌. A function is simply a way of grouping multiple
instructions or lines of code together. Each function has a data type, a name,
and a group of instructions. The word before the function indicates the type
of data the function will return. Both setup() and loop() have the type void
because they do not return any values.

The name of every function includes a set of parentheses. These parentheses
are where you pass parameters to the function. Parameters are values that a
function needs to do its job. Neither setup() nor loop() needs parameters, but
you’ll use some functions in later projects that do need them. Finally, the
lines of code that make up the function are grouped by an opening curly
bracket, {, and closing curly bracket, }.

The setup() and loop() functions are required for every Arduino sketch; when
the Arduino is turned on for the first time or is reset, the setup() code runs
once and only once, and loop() code repeats continuously over and over. It’s
like baking cookies: instructions in setup() get out all of your tools and
ingredients, and loop() bakes batches over and over until you turn off the
oven (that is, the Arduino).

Now, let’s figure out what each line of code in setup() and loop() is actually
doing.

The setup() Function

First, let’s take a closer look at the Blink sketch’s setup() function; see
Listing 1-2.

LISTING 1-2: The setup() code for our Blink example

void setup() {
 //initialize digital pin LED_BUILTIN as an output
 pinMode(LED_BUILTIN, OUTPUT);
}

The only line of code inside the setup() function is a call to the pinMode()
function. Pins 0–13 on the Arduino are considered general-purpose
input/output (GPIO) pins. They can be used as either inputs or outputs, and
pinMode() allows you to tell the Arduino how you plan to use a digital pin.
You do this by passing two parameters. The first is the pin number, and it can
range from 0 to 13. The second parameter is the pin configuration.

For the pin reference, the Blink sketch uses a system constant called
LED_BUILTIN to specify that you’re using the default LED on the device.

On most Arduino devices, this is the same as pin 13. Notice that the value is
in all caps and colored dark teal. This color indicates that LED_BUILTIN is a
special keyword with a predefined value used in the IDE.

The second parameter defines the pin configuration as an OUTPUT. Notice
that the keyword OUTPUT is also dark teal because it is another constant
used in Arduino. There are a few other choices here, which we’ll cover in
detail in Projects 4 and 9, but for now just note that Blink sets the pin as an
OUTPUT for the LED.

If you were to describe this line of code as a sentence, it would say, “Tell pin
13 to output from the Arduino.”

NOTE

The pinMode() function follows a capitalization convention called camel
case. In camel case, the first letter is lowercase, and any later letters that
start words are capitalized.

The very last character in the pinMode() call is a semicolon (;), which marks
the end of a line of code. When you start writing your own sketches, always
end a finished line of code with a semicolon. If you forget one, don’t worry;
nearly everyone who’s ever programmed forgets a semicolon eventually, so
the Arduino IDE will show a handy warning to help you figure out where to
put the missing punctuation.

WHERE’S THE MAIN() FUNCTION?

If you know a bit of programming or are familiar with C or C++, you might
wonder where the main() function is in Arduino sketches. When you click
Verify/Compile or Upload, Arduino actually pulls together a lot of other files
behind the scenes—including a file called main.cpp. Dig around the Arduino
program folder, and you can find all the nitty-gritty details of what’s going
on. Remember, it’s open source!

Here’s a snippet of code from the main.cpp file:

 int main(void)

 {
 init();
 initVariant();
 #if defined(USBCON)
 USBDevice.attach();
 #endif
➊ setup();
 for (;;)
 {
➋ loop();
 if (serialEventRun) serialEventRun();
 }
 return 0;
 }

See where the setup() function is called at ➊? And notice that the loop()
function ➋ is inside a forever loop; Arduino implements a forever loop using
an empty for(;;). That’s how it runs continuously.

The loop() Function

Now let’s look again at the loop() function, which executes each instruction
from top to bottom and repeats itself forever. See Listing 1-3.

LISTING 1-3: The loop() code for the Blink sketch

void loop() {
 digitalWrite(LED_BUILTIN, HIGH); //turn the LED on
 //(voltage level is HIGH)
 delay(1000); //wait for a second
 digitalWrite(LED_BUILTIN, LOW); //turn the LED off
 //(voltage level is LOW)
 delay(1000); //wait for a second
}

The digitalWrite() function allows you to turn the Arduino pins on or off; this
is called controlling a pin’s state. This function also uses two parameters. The

first indicates the pin you want to control; in this case, we’re using the system
constant LED_BUILTIN again. The second parameter is the state you want
the pin to be in. To turn the light on, the Blink sketch passes in HIGH. To
turn the light off, it passes in LOW.

The second instruction is delay(), which delays your sketch by the number of
milliseconds you pass as its parameter. The Arduino Uno and derivative
boards like the SparkFun RedBoard execute 16 million instructions per
second; that’s really fast! It’s so fast, in fact, that without a delay, you’d
never notice a change in the LED. The delay lets us control how long the
LED stays on. In the example, delay(1000) instructs the Arduino to delay for
1,000 ms before executing the next command.

The next two lines of code are similar to the first two; they simply instruct the
Arduino to turn the LED off and delay another 1,000 ms. After the last line,
the loop() function repeats from the top and turns the LED back on.

HACK THE (HELLO) WORLD

One of the best ways to learn from example code is by changing what it does.
Try decreasing the delays to 500. Click Upload. How did the blink change?
What if you pass delay() the number 5 instead? This is a 5 ms blink! Can you
see it? What is the fastest blink rate that you can see?

Your First Piece of Hardware

With the LED on your board working and blinking away, the next step is to
add your first piece of hardware: an external LED. As we mentioned, the pins
on the Arduino are used for hooking up inputs and outputs to the
microcontroller, and we can demonstrate that simply with an LED. Grab an
LED and take a close look at it. It will look something like Figure 1-20.

You’ll notice that the LED has a short leg and a long leg. If you look really
closely, you’ll also see that the edge of the LED bulb has a flat surface on the
same side as the short leg. These help you identify the polarity of the legs;
the LED’s long leg is the positive leg, and the short leg on the side of the flat
bulb surface is the negative, or ground, leg.

FIGURE 1-20: An LED showing the long and short legs

Remember that LED_BUILTIN refers to pin 13 on the Arduino. So, adding
your LED to the Arduino is as simple as plugging the long leg of the LED
into pin 13 and the short leg of the LED into the GND (ground) pin right next
to pin 13. Insert the LED now, with your board powered. If you plug it in
correctly, as shown in Figure 1-21, the LED will start blinking. If the LED
doesn’t blink, you probably have it plugged in backward. Not to worry: pull it
out and flip it around.

FIGURE 1-21: An LED added to pin 13 the quick and dirty way

GOING FURTHER

Each project in this book will have a “Going Further” section, which
describes ways to take the concepts you learned in that project to the next
level. These sections will include advice on using the existing project,

hacking the code, and modifying the project physically.

Hack

For this project, we suggest you try to create some nifty blink patterns. First,
copy and paste the four lines in the loop() function so that it repeats and you
end up with eight lines of code. This gives you two blink sequences and more
code to work with. You can create patterns by modifying the delay times to
control when the LED lights. For example, we made a pattern that looks like
a heartbeat; our modified Blink sketch is shown in Listing 1-4.

LISTING 1-4: Example code of a heartbeat pattern

void setup() {
 pinMode(LED_BUILTIN, OUTPUT);
}

void loop() {
 digitalWrite(LED_BUILTIN, HIGH);
 delay(200);
 digitalWrite(LED_BUILTIN, LOW);
 delay(200);
 digitalWrite(LED_BUILTIN, HIGH);
 delay(200);
 digitalWrite(LED_BUILTIN, LOW);
 delay(800);
}

For a real challenge, try programming your Arduino to flash the letters of
your name in Morse code with a series of short (dot) and long (dash) blinks.
Figure 1-22 shows a Morse code cheat sheet to help you figure out the blink
patterns. The classic message that most people start with is S-O-S, or . . . - - -
. . . (dot dot dot, dash dash dash, dot dot dot).

FIGURE 1-22: Basic Morse code chart

Modify

A blinking light is a powerful thing! With your newfound superpower, you
can physically add LEDs to a lot of things around the house. A Halloween
costume is always a great place for some blinky bling. You could solder the
LED legs to some wire to make the connections longer so it’s easy to hide the
Arduino somewhere more comfortable for the wearer (like in a pocket). We
took a Halloween spider we got from the local grocery store and hacked it
with some creepy red eyes that blink (see Figure 1-23).

Another good fit for blinking and controlling LEDs is in scale modeling.
Adding working LEDs to car headlights, buildings, or streetlights is always a
great way to create the illusion of reality in any scale model or scene, as
shown in Figure 1-24.

FIGURE 1-23: A blinky scary spider

FIGURE 1-24: A scale model with Arduino-controlled lights

SAVING YOUR SKETCH

Every project looks more stylish with a few blinking LEDs, so we suggest
you keep your remixed Blink sketch handy so you can reuse parts of it in

future builds. Save your sketch, and be sure to name it something descriptive
that’ll remind you what it is. Your filename should not contain any spaces; if
it does, Arduino will replace the spaces with underscore (_) characters. By
default, when you save your sketches, Arduino will save them to the Arduino
sketchbook folder, usually found in the Documents folder on your computer.
You can choose to save them elsewhere, but it’s often a good idea to have all
your sketches in one place.

When you’re ready to level up your blinking skills, head to Project 2, where
we’ll show you how to build your very own Arduino-powered stoplight.

2 A Stoplight for Your House
In your first big step toward world domination through embedded electronics,
you set up the Arduino IDE and blinked an LED. That’s huge, but with an
Arduino, no project needs to stop at just one LED. This project will show you
how to expand your first LED sketch to display a blinking pattern on three
LEDs. Your mission, should you choose to accept it, is to build and program
a stoplight for a busy hallway in your house (see Figure 2-1).

FIGURE 2-1: The completed Stoplight project

MATERIALS TO GATHER

The materials in this project are all pretty simple. All of the electronic parts
are standard in the SparkFun Inventor’s Kit, except for the ones marked with
an asterisk (*). If you’re using your own kit or piecing together parts
yourself, see the following parts list. Figure 2-2 shows all of the parts used in

this project.

Electronic Parts

• One SparkFun RedBoard (DEV-13975), Arduino Uno (DEV-11021), or any
other Arduino-compatible board

• One USB Mini-B cable (CAB-11301 or your board’s USB cable; not
shown)

• One solderless breadboard (PRT-12002)

• One red LED, one yellow LED, and one green LED (COM-12062)

• Three 330 Ω resistors (COM-08377, or COM-11507 for a pack of 20)

• Male-to-male jumper wires (PRT-11026)

• Male-to-female jumper wires (PRT-09140*)

• (Optional) One 4 AA battery holder (PRT-09835*; not shown)

FIGURE 2-2: Components for the Stoplight

Other Materials and Tools

If you want to build an enclosure like the one in Figure 2-1 or follow the
suggestions in “Going Further” on page 64, you’ll also need the following
supplies, shown in Figures 2-3 and 2-4:

• Pencil

• Craft knife

• Metal ruler

• Pliers

• Wire stripper

• Glue (hot glue gun or craft glue)

• (Optional) Drill and a 3/16-inch drill bit

• (Optional) Soldering iron

• (Optional) Solder

• (Optional) Helping hands (not shown)

• Cardboard (about 12 inches square) or a cardboard box

• Two ping-pong balls

• Enclosure template (see Figure 2-15 on page 55)

NOTE

Good, clean cardboard will be worth its weight in gold in these projects. We
suggest picking up cardboard sheets from a craft or art supply store.

FIGURE 2-3: Recommended tools

FIGURE 2-4: Recommended building materials

NEW COMPONENT: THE RESISTOR

Although you used an LED on its own in Project 1, in most cases it’s best to
use a resistor to protect the LED from too much current. Resistors like the
ones in Figure 2-5 are everywhere. They are indispensable when you’re
building circuits, and you’ll need them to complete this project, too.

FIGURE 2-5: Resistors up close and personal

If you think of electricity like the flow of water through a pipe, a resistor is
analogous to a point where the pipe size narrows, reducing the water flow. (If
you’re curious, see “Visualizing Electricity as Water in a Pipe” on page 4,
which describes this metaphor in detail.) Resistors control or limit the flow of
current.

Resistance is measured in ohms (typically shortened to Ω, the Greek symbol
omega), and the colored bands on resistors represent their resistance. You’ll
find a resistor color band decoder in “Resistors and Bands” on page 308;
however, in this book, you only need to be able to identify two different
values of resistors: 330 Ω and 10 kΩ. The bands on a 330 Ω resistor are
orange, orange, and brown (see Figure 2-5), while on a 10 kΩ resistor they’re
brown, black, and orange. There is also a fourth band on a resistor, and its
color indicates the resistor’s tolerance. A resistor’s value will be accurate
within a certain tolerance: silver means the resistor has a 5 percent tolerance,
while gold indicates a 10 percent tolerance. The projects in this book aren’t
sensitive enough for the tolerance level to make a difference, though, so we’ll
just refer to the resistors by their assumed value, which will work for either
tolerance band.

Some components, like LEDs, can be damaged if the current flowing to them

is too high, and resistors can protect those components by reducing the
current. Having a resistor in line with an LED to limit the current to a safe
level is a good precaution so your LED doesn’t burn out—or, in the worst
case, pop! (Yes, they can literally pop.) From here on, we’ll use current-
limiting resistors in all projects.

WHY THE STOPLIGHT USES 330 Ω RESISTORS

An average red LED has a maximum current rating of about 20 mA, as listed
on its datasheet. In order to protect it, you need to add a resistor to keep the
current below this limit. But how do you know to use a 330 Ω resistor?

The output pins on the Arduino provide 5 V when they are turned on.
Depending on the color, each LED needs a slightly different amount of
voltage to turn on, typically in the range of 2.0 to 3.5 V. A red LED turns on
at about 2 V, and that leaves 3 V remaining. The 3 V will be dissipated across
a resistor or anything else that is in line in the circuit. It’s generally good
practice to limit the current going through an LED to about half the
maximum, so for the red LED with a maximum current rating of 20 mA, you
get 10 mA. You can calculate the resistor needed for 3 V and 10 mA with
Ohm’s law (remember 10 mA = 0.01 A):

But 300 Ω isn’t a standard resistor value. The closest standard resistor value
is 330 Ω, and usually the nearest standard resistor is good enough. This
should ensure that the LED lasts for a very, very long time. Since the resistor
will be dictating the current, this is a current-limiting resistor.

If you have different resistors available, you could use a different value
resistor and see what happens. Bigger resistors will make the current smaller,
and smaller resistors will make the current bigger. What happens if you use
the 10 kΩ resistor instead?

BUILD THE STOPLIGHT PROTOTYPE

Now it’s time to build the circuit. First, take a look at the schematic shown in
Figure 2-6. You’ll build this on a breadboard, as shown in Figure 2-7.

FIGURE 2-6: Schematic diagram for the Stoplight project

The schematic illustrates how each component is connected electrically. Pin
13, pin 12, and pin 11 on the Arduino will each be used to control an
individual LED on the Stoplight circuit. As you can see in the schematic,
each LED is connected to an individual resistor, and each resistor is
connected to GND (ground). Next, let’s look at the wiring.

FIGURE 2-7: Connecting a red LED to a breadboard with a current-limiting
resistor

Connect the Red LED to the Breadboard

Now you’ll start to translate the schematic into an actual circuit. In the first
project, you blinked an LED built into the Arduino board. This LED was
internally wired to pin 13 on the Arduino. Because you’ll be using three
discrete LEDs, you need to wire these up yourself. Take out your breadboard,
and, following the schematic in Figure 2-6 or the illustrated diagram in
Figure 2-7, connect pin 13 to the positive (long) leg of the LED.

NOTE

For a refresher on how breadboards work, see “Prototyping Circuits” on
page 6.

To wire this on the breadboard, we suggest that you first position your
Arduino and breadboard as shown in Figure 2-7. (This will be the standard
layout throughout the book.) Then, find a red LED and a 330 Ω resistor. Bend

the resistor legs as shown in Figure 2-8 so that the resistor is easier to insert
into the breadboard. We suggest using wire cutters to trim both resistor legs
by about half their length to make the resistor easier to work with. Resistors
aren’t polarized like LEDs, so you don’t have to keep track of which leg is
positive or negative.

FIGURE 2-8: Bending a resistor

Figure 2-9 shows a diagram of a typical breadboard. Most breadboards have
labeled columns and numbered rows as references. Using these reference
points, insert the LED into your breadboard as shown in Figure 2-7. The
long, positive leg (anode) should be in column E, row 1 (E1) on the
breadboard, and the short, negative leg (cathode) should be in column E, row
2 (E2). Now, find a 330 Ω (orange-orange-brown) resistor. Insert one leg of
the resistor into any hole in row 2 of the breadboard to connect the resistor to
the short leg of the LED. In our diagram, we insert this leg of the resistor into
A2 on the breadboard. On all standard breadboards, for each row, columns
A–E are connected, and columns F–J are connected. Now, insert the other leg
of the resistor into the breadboard’s negative power rail, which is the column
marked with a blue or black line and a – (minus) symbol.

FIGURE 2-9: A breadboard has numbered rows and columns labeled with
letters.

Add Power to the Breadboard

Grab two male-to-male jumper wires. We suggest using black for ground
(GND) and red for power, and that’s the convention we’ll follow throughout
this book.

Connect the black wire from the GND pin on the Arduino to the negative
power rail on the breadboard. There are three pins labeled GND on the
Arduino. You can use any of these. The power for each LED will actually
come from the digital pins. Since pin 13 will power the red LED, connect a
wire from pin 13 on the Arduino to A1 on the breadboard.

Plug your Arduino board into your computer using a USB cable, and the
“Hello, world!” sketch from Project 1 should run, causing your LED to blink.
In fact, both the LED on the breadboard and the LED on the Arduino should
be blinking, because they’re both wired into pin 13.

If the breadboard LED doesn’t blink but the Arduino one does, double-check
your wiring and the orientation of the LED. Make sure that the shorter leg is
in the second row of the breadboard, connected to the resistor, and that the
resistor is connected to GND through the negative power rail. After you get
the red LED blinking, disconnect the Arduino from the computer so that you
can safely build the rest of the circuit. It’s best practice to disconnect the
board while building your circuit.

Add the Yellow and Green LEDs

Now, connect the yellow LED to pin 12 on the Arduino and the green LED to
pin 11; you can follow the same basic instructions you followed for the red
LED, but use different pairs of rows for each new LED, as in the final wiring
diagram in Figure 2-10.

FIGURE 2-10: The final Stoplight circuit, using pins 11, 12, and 13

Each LED should have its own resistor wired to the ground rail, just like the
schematic from Figure 2-6. Notice, too, that we gave each LED a little space
on the breadboard so that we could have room to plug in wires without
messing up other parts of the circuit. Although we suggested a specific way
to plug in this circuit, remember that you can use any part of the breadboard
—so long as the two wires you’re trying to connect are in the same row.
Once you’re done, your circuit should resemble Figure 2-11.

FIGURE 2-11: The completed Stoplight circuit, including the Arduino,
LEDs, and resistors

To mimic a real stoplight, this project needs a way to turn on each light for a
certain amount of time and then switch to the next one. Fortunately, an
Arduino sketch can use all kinds of instructions, including timing commands,
to control a circuit.

PROGRAM THE STOPLIGHT

Now, plug your Arduino back into your computer. It’s time to get
programming! Open the Arduino IDE to start a new sketch.

Confirm Your IDE Settings

When writing any sketch, you should always start with a little housekeeping.
First, check that the Board type and Port are properly set. Click Tools ▸
Board now. If you’re using the SparkFun RedBoard or a standard Arduino
Uno, select Arduino/Genuino Uno. Then, click Tools ▸ Port. In Windows,
your Arduino should be set to the highest numbered COM port. On OS X or
Linux, the port should be listed as /dev/cu.usbserial-A<xxxx>, where <xxxx>

is a string of random characters unique to your Arduino.

Create Placeholders for Pin Numbers

With your IDE settings confirmed, you’re ready to create the sketch. As
discussed in “Anatomy of an Arduino Sketch” on page 27, a basic Arduino
sketch consists of two parts: the setup() function and the loop() function. That
simplified description is true for most simple sketches, but more complex
sketches have many different parts. One new part that the Stoplight sketch
uses is the global namespace, which is the part of your sketch above the
setup() function and completely outside of any function. In this space, you
can define certain names (variables) as placeholders for values, and these
values will then be available for all parts of your sketch to use. Arduino
sketches can work with several types of values.

Data That Sketches Understand

The Arduino language includes a number of possible data types for values,
and there are a few you’ll run into often when writing sketches. The
following list isn’t exhaustive, but it touches on the big ones and shows how
their names appear in code:

Integer (int) A whole number that ranges from –32,768 to 32,767

Float (float) A number that has a decimal point and ranges from –
3.4028235E+38 to 3.4028235E+38

Byte (byte) A number that ranges from 0 to 255

Character (char) A single letter, denoted by a set of single quotes, such as
‘a’

String (String) A series of characters, denoted by a set of double quotes, such
as "hello"

Boolean (Boolean) A value of either true or false, which maps to 1 or 0 in the
sketch and HIGH or LOW in terms of pin output

Arduino sketches require you to specify the data type of a variable when you
define it. Let’s look at how that works.

Values That Can Change

Most values you’ll create to use in your sketches will be variables. Think of a
variable as a placeholder for a piece of data. That data can be a number, a
letter, or even a whole sentence.

Before you can use a variable, you have to define it, which includes giving it
a name, declaring its data type, and initializing it with a value. It’s a good
habit to give a variable a value at the moment you define it, which looks
something like this:

➊int ➋val = ➌10;

This variable definition has three parts: the data type ➊, the name of the
variable ➋, and the variable’s value ➌. At the end of this line, notice that
there is a semicolon—this denotes the end of a statement or instruction. The
semicolon is very important, and forgetting it is often the root cause of many
compiler errors or bugs in code, so be careful to remember it!

When choosing a variable name, you can use any unbroken set of characters,
including letters and numbers. There is one caveat here: variables cannot start
with a number or consist of any special characters. We suggest making
variable names as descriptive as possible, while keeping them short. It’s a
chance for you to be a little creative with abbreviating words and
descriptions. In this example, we chose to name the variable val (short for
value), and 10 is the variable’s initialized value, or the value assigned to a
variable to start with. You don’t need to initialize a variable when you define
it, but doing both at the same time is helpful and a good practice.

For this project, you’ll create three variables to store pin numbers for the
three LEDs the Arduino will control. It’s a lot easier to work with a variable
that describes an LED color than it is to try to remember which LED is
connected to which pin!

Start a new sketch, and add the code in Listing 2-1 to the global namespace

of your sketch.

LISTING 2-1: Variables that represent pin numbers

byte redPin = 13;
byte ylwPin = 12;
byte grnPin = 11;

Again, these three variables store the pin numbers for the three LEDs. On the
Arduino, pin numbers are limited to whole numbers between 0 and 13, so we
use the byte data type. We can use byte because we know that the pin number
will be less than 255. Notice that each variable’s name describes what it
contains: redPin is for the red LED pin, ylwPin is the yellow LED pin, and
grnPin is the green LED pin. And, just as Figure 2-10 shows, the red pin is
pin 13, yellow is pin 12, and green is pin 11. Now, anytime you use a pin
number in your sketch, you can use the descriptive variable name instead.

NOTE

For legibility, we camel-cased the variable names by capitalizing the p in pin.
Camel-casing is a coding convention that allows you to separate words in a
variable without using spaces.

Write the setup() Function

To continue writing the Stoplight sketch, add the setup() function in Listing
2-2.

LISTING 2-2: setup() code for the Stoplight

void setup()
{
 //red LED
 pinMode(redPin➊, OUTPUT➋);
 //yellow LED
 pinMode(ylwPin, OUTPUT);
 //green LED
 pinMode(grnPin, OUTPUT);

}

Just like the “Hello, world!” sketch in Project 1 (see “The setup() Function”
on page 30), this sketch configures the digital pins of the Arduino in setup()
with the pinMode() function.

This project uses three different digital pins, so the sketch has three separate
pinMode() functions. Each function call includes a pin number as its variable
➊ (redPin, ylwPin, and grnPin) and the constant OUTPUT ➋. It uses
OUTPUT because this sketch controls LEDs, which are output devices. We’ll
introduce INPUT devices in Project 4.

Write the loop() Function

Next comes the loop() function. Normal stoplights cycle from red to green to
yellow and then back to red, so this project does, too. Copy the code from
Listing 2-3 into the loop() portion of your sketch.

LISTING 2-3: loop() code for the Stoplight

void loop()
{
 //red on
 digitalWrite(redPin, HIGH);
 digitalWrite(ylwPin, LOW);
 digitalWrite(grnPin, LOW);
 delay(2000);

 //green on
 digitalWrite(redPin, LOW);
 digitalWrite(ylwPin, LOW);
 digitalWrite(grnPin, HIGH);
 delay(1500);

 //yellow on
 digitalWrite(redPin, LOW);
 digitalWrite(ylwPin, HIGH);

 digitalWrite(grnPin, LOW);
 delay(500);
}

The Stoplight will have only one light on at a time, to avoid confusing your
hallway traffic and causing chaos. To maintain order, each time an LED is
turned on, the other LEDs should be turned off. For example, if you wanted
the red light to be on, you’d call the function digitalWrite(redPin, HIGH),
followed by digitalWrite(ylwPin, LOW) and digitalWrite(grnPin, LOW). The
first call writes HIGH to turn on the red LED on redPin (pin 13), and the
other two calls write LOW to ylwPin and grnPin (pins 12 and 11) to turn off
the yellow and green LEDs. Because the Arduino runs at 16 MHz (roughly
one instruction per 16 millionth of a second), the time between these
commands is on the order of a few microseconds. These three commands run
so fast that you can assume they all happen at the same time. Finally, notice
the function delay(2000). This function pauses the sketch and keeps the red
light on for 2,000 ms, or 2 seconds, before executing the next set of
instructions.

The code for the yellow and green LEDs repeats the same concept, setting the
corresponding pin to HIGH and the others to LOW and delaying for different
lengths of time. For your own Stoplight, try changing the delay times to
something a little more realistic for your hallway’s traffic. Remember that the
value you pass to the delay() function is the amount of time you want the
LED to stay on in milliseconds.

Upload the Sketch

After you’ve typed in all of the code, double-check that it looks like the code
in Listing 2-4, save your sketch, and upload it to your Arduino by clicking
Sketch ▸ Upload or pressing CTRL-U. If the IDE gives you any errors,
double-check your code to make sure that it matches the example code
exactly. Your instructions should have the same spelling, capitalization, and
punctuation, and don’t forget the semicolon at the end of each instruction.

When everything works, your LEDs should turn on and off in a cycle that is
similar to a real stoplight—starting with a red light, followed by a green light,

and then a short yellow light before returning to the top of the loop() function
and going back to red. Your sketch should continue to run this way
indefinitely while the Arduino is powered.

LISTING 2-4: Complete code for the Stoplight

byte redPin = 13;
byte ylwPin = 12;
byte grnPin = 11;

void setup()
{
 pinMode(redPin, OUTPUT);
 pinMode(ylwPin, OUTPUT);
 pinMode(grnPin, OUTPUT);
}
void loop()
{
 //red on
 digitalWrite(redPin, HIGH);
 digitalWrite(ylwPin, LOW);
 digitalWrite(grnPin, LOW);
 delay(2000);

 //green on
 digitalWrite(redPin, LOW);
 digitalWrite(ylwPin, LOW);
 digitalWrite(grnPin, HIGH);
 delay(1500);

 //yellow on
 digitalWrite(redPin, LOW);
 digitalWrite(ylwPin, HIGH);
 digitalWrite(grnPin, LOW);
 delay(500);
}

Make the Stoplight Portable

When your Arduino is connected to your computer, it’s receiving power
through the USB port. But what if you want to move your project or show it
around? You’ll need to add a portable power source—namely, a battery pack.
The Arduino board has a barrel jack power port for plugging battery packs
into, as well as an on-board voltage regulator that will accept any voltages
from about 6 V to 18 V. There are many different battery adapters available,
but we like using a 4 AA battery adapter for a lot of our projects, as shown in
Figure 2-12.

FIGURE 2-12: A 4 AA battery pack with a barrel jack adapter

Unplug the USB cable from your computer, insert four AA batteries into your
battery pack, and plug your portable battery pack into your Arduino, as
shown in Figure 2-13. If your batteries are charged, you can move your
project around or embed it directly into a model stoplight!

FIGURE 2-13: Making the Stoplight portable by adding a battery pack

Now you’ll level up this project. In the next section, we’ll show you how to
turn these LEDs into a model stoplight that you can mount in high-traffic
areas of your house.

BUILD THE STOPLIGHT ENCLOSURE

Once your Arduino isn’t tethered to a computer, you can build any
electronics project into a more permanent enclosure. The circuit on your
breadboard is great, but you probably have to use your imagination to picture
it as a stoplight. For maximum effect, the Stoplight just needs a good housing
and lenses that will make the lights visible from a distance. The enclosure is
optional if all you want to do is prototype, but we hope you’ll try it out.

For this project, we’ll show you how to build a more realistic-looking
stoplight with some cardboard or cardstock, but you can use any material that
you happen to have lying around. Be creative! Our example, shown in Figure
2-14, is made from some cardboard, ping-pong balls, and a bit of crafting
skill.

FIGURE 2-14: An enclosure made from cardboard and ping-pong balls

You can either build a stoplight on your own using this project only as an
inspiration or, if you want to reproduce this project exactly as you see it here,
download the ZIP file of templates and sketches at
https://www.nostarch.com/arduinoinventor/. Each project in this book
includes templates that you can print, trace, and hand-cut the old-fashioned
way with a craft knife and a metal ruler.

NOTE

If you’re lucky enough to have access to a cutting machine like a Cricut, a
Silhouette Cameo, or a laser cutter, these files should easily translate to
those tools, too.

Extract the Project 2 files from the ZIP file, and print the Stoplight template
PDF at full size if you’d like a cutting guide. With your templates in hand,
collect the other items listed in “Other Materials and Tools” on page 39 and
start building.

https://www.nostarch.com/arduinoinventor/

Cardboard Construction

First, cut out the templates, shown in Figure 2-15. In our template, the
housing body is a single piece of cardboard that is meant to be cut out,
scored, and folded.

Trace the template onto your cardboard, and make careful note of the dashed
lines, perhaps by drawing them on your cardboard in a different color. You’ll
score the cardboard along those lines to bend it, so whatever you do, don’t
cut along them yet.

FIGURE 2-15: Enclosure template for the Stoplight (not full size)

Once you have everything traced, cut out the stoplight pieces along the solid
lines using a craft knife and a metal ruler, as shown in Figure 2-16. If you’ve
never used a craft knife before, be sure to read “Using Craft Knives Safely”

on page 56. Score the cardboard for the housing along each dotted line, on
the exterior side of the cardboard. When scoring cardboard, you take a couple
of shallow passes with the craft knife (don’t cut all the way through). Don’t
score the shades yet.

FIGURE 2-16: Scoring along the template with a craft knife and metal ruler

USING CRAFT KNIVES SAFELY

You’ll use craft knives a lot in this book, so it’s important to know how to
safely use them. Just like any tool, when used incorrectly, craft knives like
the one here can cause injury.

Here are a few tips for using craft knives safely:

• Always pull the blade when slicing through sheet materials. Pushing or
forcing the blade in any other direction raises the potential for slipping or
breaking the blade.

• Be patient. Don’t try to cut through the entire thickness of the material in a
single pass. Make multiple passes with medium pressure. This will save your
blade and also produce a cleaner finished product in the end.

• Use a straightedge made of metal, such as a metal ruler. If you use a
wooden or plastic ruler as a straightedge, you run a higher chance of your
blade catching the straightedge, rebounding off the material, and ultimately
moving toward your hand.

• Keep your fingers out of the way. This may seem obvious, but accidents
happen.

• If your knife starts to roll off your desk, let it fall, and just pick it up off the
floor. If you reach for it and catch it before it falls, you run the risk of
stabbing yourself in the hand. Ouch!

• Finally, use sharp, new, and intact blades. If a blade breaks, replace it. If a
blade is dull, replace it. Cutting through paper and cardboard dulls blades

very quickly. Keep a supply of extra blades around, and if it’s starting to get
hard to cut, replace the blade.

Once you have cut out your cardboard enclosure, add the mounting holes for
the three LEDs; these should be at the little solid-lined circles inside the big
dashed circles. One easy option is to carefully press a sharp pencil through
the cardboard to make the holes. For cleaner holes, however, we suggest
using a 3/16-inch drill bit and power drill to make holes in the cardboard, as
in Figure 2-17. The LEDs are about 5 mm (about 0.197 inches) in diameter.
You want the hole to be a nice, tight fit. So, a 3/16-inch hole (0.1875 inches)
is perfect for making the fit snug for the LED.

Be careful when completing this step, and make sure to watch where your
fingers and hands are relative to the drill bit. You don’t want to drill into
yourself! You can also use the drill bit without the drill and manually spin it
through the cardboard if you don’t have a drill or aren’t comfortable using
one.

FIGURE 2-17: Drilling holes for the LEDs

Once you have the holes drilled, remove the three LEDs from your
breadboard and insert them through the back side of the cardboard, as shown
in Figure 2-18. Remember that standard traffic lights are usually ordered red,
yellow, and green from the top to the bottom. Pay attention to where the
LEDs connect on the board, because we’re going to reconnect them at the
end.

FIGURE 2-18: All three LEDs pressed into the cardboard

Next, bend the cardboard along the scored lines, as shown in Figure 2-19.
Bend the vertical sides ➊ toward the interior, and then do the same with the
top and bottom sides ➋ and the tabs ➌. (The sides and tabs are labeled in
Figure 2-15.)

FIGURE 2-19: Prefolding the scored cardboard to form an enclosure for the
Stoplight

Position the tabs ➌ inside the vertical sides ➊, and glue them in place as
shown in Figure 2-20. You can use hot glue, tape, or craft glue—we prefer
hot glue because it’s easy to work with, sets quickly, and has a pretty strong
bond.

Repeat this for the top and bottom corners. You should end up with a shallow
rectangular box with an open back.

FIGURE 2-20: Folding and gluing the cardboard housing

Make the Stoplight Lenses

The Stoplight’s lenses are made from ping-pong balls cut in half, but you can
use anything that’s moderately translucent.

If you’re using ping-pong balls or something similar, carefully cut two balls
in half. When doing this, place the ball against a cutting mat or thick piece of
cardboard and hold it firmly at the sides with your fingertips. Carefully push
the knife blade down toward the mat and into the ping-pong ball (making
sure the blade isn’t pointing at you or your hand) to make an incision as
shown in Figure 2-21. Rotate the ping-pong ball and repeat until you’ve cut
all the way through. Make sure to keep your fingers away from the blade, and
always cut on a cutting mat or a piece of cardboard.

FIGURE 2-21: Safely cutting a ping-pong ball

Once you have three ping-pong ball halves (you’ll have four; one’s an extra
to use in future projects or as a small hat for your favorite stuffed animal),
secure them with a dab of hot glue as shown in Figure 2-22.

FIGURE 2-22: The enclosure with ping-pong balls as lenses

Make the Shades

Finally, add the shades to the Stoplight. For a nice curve, make a number of
parallel scores, about 1/8 inch apart, as shown in Figure 2-23. There are
example score lines in the template, so you can follow those. After making all
of your scores, bend each shade into a curve, as shown in Figure 2-24.

FIGURE 2-23: Scoring a shade

FIGURE 2-24: Bending the shade into a curve

Once you have the shades bent and shaped to your liking, fit them into the
housing just above each lens, as shown in Figure 2-25, and then glue them in
place. If you’re going for a more finished or realistic look, you can spray
paint the housing black. Make sure you either remove the lenses or cover
them with masking tape first so that they don’t get coated in spray paint.

FIGURE 2-25: Fitting a shade into the housing

Mount the LEDs and Arduino

All you have left to do is to connect the LEDs from the new enclosure to your
Arduino. First, use two male-to-female jumper wires (SparkFun PRT-09385)
to extend each of the LEDs. You’ll need a total of six of these jumper wires.
Simply plug each LED leg into the female end of the jumper wire. To keep
things organized, we like to use black wires for the negative (shorter) leg and
colored wires for the positive (longer) leg, as shown in Figure 2-26.

FIGURE 2-26: Attaching jumper wires to the LEDs

With the jumper wires connected to the LEDs, plug the male end into the
breadboard in the same place where the LED came out, as shown in Figure 2-
27. Again, pay attention to which LED goes where. If you don’t remember,
consult the original diagram in Figure 2-10.

FIGURE 2-27: Inserting the male end of each jumper wire into the
breadboard

Check to make sure your connections work by plugging in the Arduino to
your computer or to a battery pack. If one of the lights isn’t working, try
jiggling the connections or double-checking that the wires are plugged into
the correct row on the breadboard.

You can either leave the Arduino and breadboard outside the Stoplight
housing or tack them inside the housing with glue or double-sided tape.
Whatever you decide, when you’re done, power up your Stoplight, and go
find a busy hallway intersection in need of traffic safety.

Figure 2-28 shows the finished Stoplight in all its glory.

FIGURE 2-28: Finished Stoplight project

GOING FURTHER

The concepts you saw while building the Stoplight, such as timing the control
of output (LEDs), can be applied to a number of different uses in your house
and life. Here are a couple of suggestions for adapting the Stoplight.

Hack

The basic concept of a stoplight is all about timing. When else would a timer
be useful? What about changing the code to help you time frying an egg?
You could rework the Stoplight so that the red LED is lit while the egg is still
in a state of “iffy” or “rare” doneness, the yellow LED lights when it’s almost
cooked the way you like it, and then the green LED lights when the egg is
done.

We can’t give you the timing, as we probably have different preferences for
how we like our eggs cooked. There are also a number of variables that will
affect the timing, like the temperature, the type of pan, and the size of the
egg. You’ll have to figure that all out on your own.

In the code, you’d need to work with pretty big numbers for the delay, since
it’s measured in milliseconds. To set a delay in minutes, all you need is a
little multiplication. Remember that 1,000 ms equals 1 second; multiply by
60, and you’ll find that 60,000 ms equals 60 seconds, or 1 minute. For a delay
of 3 minutes, you can multiply 3 by 60,000 directly in the delay() function,
like this:

delay(60,000 * 3);

You may be wondering how long you can set the delay() function for. The
data type that delay() receives is an unsigned long, which is any number that
falls in the range of 0 to 4,294,967,295. So the maximum delay is 1,193 hours
or so. Pretty cool! Knowing this, is there anything else you’d want to time
with the delay() function?

Modify

If you’re looking to make this project more permanent and sturdy, you can
solder wires to the LEDs instead of using the male-to-female jumpers. If
you’ve never soldered before, turn to “How to Solder” on page 302 for some
soldering instructions before you start. You’ll need to snip the end off of a
male-to-male jumper wire, strip the insulation back about 1/2 inch using wire
strippers, and then solder the stripped end to each leg of a trimmed LED, as
shown in Figure 2-29. Notice that we twisted the wire around the leg of the
LED to hold it securely while soldering. After soldering, the connection will

be more durable, and you’ll be able to use the LEDs for other projects since
the other end is still a male jumper.

FIGURE 2-29: Soldering a cut jumper wire to an LED

Though this project looks impressive, the programming and hardware are
pretty simple. As you read about sensors and logic over the next few
chapters, we encourage you to think back to this project and brainstorm ways
you can elaborate on it with what you learn.

3 The Nine-Pixel Animation Machine
We use monitors every day, on our phones, computers, tablets, and TVs. The
displays on most present-day monitors are composed of millions of pixels,
short for picture elements. Pixels are tiny points that the computer can light
up in different colors; all the pixels together make up the text, images, and
videos on the screen.

In this project, you’re going to build a simple monitor using LEDs. You’ll
expand on your work with blinking LEDs and learn to use custom functions
in Arduino. Finally, you’ll learn how to display secret characters on your
very own Nine-Pixel Animation Machine. You can see ours in Figure 3-1.

FIGURE 3-1: A completed Nine-Pixel Animation Machine

You can use the Nine-Pixel Animation Machine to show letters and numbers,
draw basic geometric shapes, and make plenty of other fun pixel art.

MATERIALS TO GATHER

For this project, you’ll need a few more electronic components than you used
in Project 2, specifically more LEDs. This project is simpler in terms of
enclosure construction, however. The materials you’ll need are shown in
Figures 3-2 and 3-3.

NOTE

In our project all the LEDs are the same color so the patterns are easier to
see, but if you don’t have nine LEDs of the same color, you can mix them up.

Electronic Parts

• One SparkFun RedBoard (DEV-13975), Arduino Uno (DEV-11021), or any
other Arduino-compatible board

• One USB Mini-B cable (CAB-11301 or your board’s USB cable; not
shown)

• One solderless breadboard (PRT-12002)

• Nine LEDs, preferably of the same color (COM-10049 for a pack of 20 red
and yellow LEDs)

• Nine 330 Ω resistors (COM-11507 for a pack of 20)

• Male-to-male jumper wires (PRT-11026)

• Male-to-female jumper wires (PRT-09140*)

• (Optional) One 4 AA battery holder (PRT-09835*; not shown)

NOTE

The parts marked with an asterisk (*) do not come with the standard
SparkFun Inventor’s Kit but are available in the separate add-on kit.

FIGURE 3-2: Components for the Nine-Pixel Animation Machine

Other Materials and Tools

• Pencil

• Craft knife

• Metal ruler

• Wire cutters

• Glue (hot glue gun or craft glue)

• Graph paper (not shown)

• (Optional) Drill and a 3/16-inch drill bit

• (Optional) Soldering iron

• (Optional) Solder

• (Optional) Helping hands (not shown)

• Cardboard sheet (roughly 8 × 11 inches, or 20.5 × 30 cm; not shown)

• Enclosure template (see Figure 3-13 on page 83)

FIGURE 3-3: Recommended tools

BUILD THE NINE-PIXEL ANIMATION MACHINE
PROTOTYPE

This simple pixel art display will teach you to manage lots of wires in one
circuit, which is important as your circuits grow larger. First, you’ll use the
breadboard to make sure the circuit works, test a sketch, and get comfortable
with all of the jumper wires. (We’ll show you how to transfer the LEDs to a
display housing in “Cardboard Construction” on page 83.) Notice that the

circuit diagram in Figure 3-4 looks a lot like Figure 2-6 on page 43. That’s
because this project uses the same LED circuit, but instead of just three
LEDs, it uses nine LEDs, each of which is independently controlled by a pin
on the Arduino.

FIGURE 3-4: Schematic diagram for the Nine-Pixel Animation Machine

In this section, you’ll use the breadboard to connect all nine LEDs to pins on
the Arduino. With your components and jumper wires in hand, build the
circuit in Figure 3-5 on your breadboard. If you want to practice building
smaller LED circuits first, flip back to “Connect the Red LED to the
Breadboard” on page 44 for a refresher.

FIGURE 3-5: Nine LEDs connected to the Arduino, with the pin 13 LED at
the top and the pin 5 LED at the bottom

Wiring up nine LEDs can make for a cluttered breadboard. To keep your
breadboard organized, connect the ground rail (–) on the left side of your
breadboard to the GND pin on the Arduino first. That’s the black wire in
Figure 3-5. Then, connect your first LED’s negative leg (the shorter one) to
this ground rail through a 330 Ω resistor. In Figure 3-5, the long leg of the
LED is in row 1, and the shorter leg is in row 2. Finally, connect the long leg
of the LED to pin 13 with a jumper wire from pin 13 of the Arduino to row 1
of the breadboard. Connect the other eight LEDs to pins 12 through 5 in the
same way. And remember: the LED’s short leg is its negative leg. As you’re
building this circuit, make sure that the shorter leg of each LED is connected
to the ground rail of the breadboard through a resistor. When you’re done,
your circuit should resemble the circuit in Figure 3-6.

FIGURE 3-6: Final prototype circuit of nine LEDs connected to the
Arduino, with the pin 13 LED at the top and the pin 5 LED at the bottom

Once you’ve wired the nine LEDs, open the Arduino IDE and plug the
Arduino into your computer with the USB cable. If you uploaded a sketch to
the Arduino in a previous project, you might see the LEDs light up as it runs
the last sketch you uploaded. Now let’s take a look at how you’ll code up all
nine of these LEDs.

PROGRAM THE NINE-PIXEL ANIMATION
MACHINE

In previous projects, it’s been simple enough to use a bunch of digitalWrite()
functions and delay() functions to control LEDs. But with nine LEDs, you’d
have a really messy loop() function! Instead, you can write your own custom
function to blink a single LED, and then use this function to control all the
LEDs.

What Are Custom Functions?

The Arduino language has 60 or so built-in (or predefined) functions that
make it easier for you to interact with hardware using simple, single-line

instructions. The digitalWrite() and delay() functions are two examples.
Behind the scenes, the digitalWrite() function consists of more than 20 lines
of code. Most of that code is complex, but the digitalWrite() function is easy
to understand.

Even when you understand a big sketch, typing 20 or more lines of code each
time you want to turn an LED on or off is tedious and error prone. Arduino’s
built-in functions cover common tasks, but when you need to do something
specific to your sketch, you’ll want to write custom functions. Custom
functions allow you to easily reuse code in other sketches, and they’ll make
your loop() functions easier to read.

Write a Custom Function

You can use custom functions to teach the Arduino new commands. Your
first test function will blink an LED on and then off again, using a modified
version of the code in Listing 3-1.

LISTING 3-1: A simple sketch that blinks an LED

void setup()
{
 pinMode(13, OUTPUT);
}

void loop()
{
 digitalWrite(13, HIGH);
 delay(1000);
 digitalWrite(13, LOW);
 delay(1000);
}

This code should look similar to the Blink example from Project 1 (Listing 1-
1 on page 28). However, here we are using pin 13 explicitly instead of using
the LED_BUILTIN system constant. This code turns the LED on, waits for a
second, turns the LED off again, and then waits for another second before

repeating. You’ll need to do this a lot in later projects, so we’ll show you how
to put this code in a custom blink() function. To make your custom function
as useful as possible, you’ll write it in a way that allows you to use any pin
for any delay time.

First, open a new sketch, copy the code from Listing 3-1 into it, and save it.
Then, define the blink() function below your setup() and loop() functions, as
shown in Listing 3-2.

LISTING 3-2: A skeleton for a custom blink() function

➊void ➋blink(➌int pinNumber, int delayTime)
{
 //custom function code goes here
}

This is just the skeleton of the function. Function definitions always specify
the data type that the function will return first ➊. The blink() function asks
the Arduino to perform a task without expecting any data back, so, just like
the setup() and loop() functions, its data type is void.

Next comes the function’s name ➋, which in this case is blink. You can
name Arduino functions almost anything you want, but they can’t start with a
number or include any spaces or special characters. Also, to make sure the
function’s purpose is clear when you’re reading over your sketch, we
recommend using a name that’s descriptive and easy to remember.

After naming the function, define any parameters the function needs to work
in parentheses ➌. To make blink() as reusable as possible, provide a pin
number and a delay time as parameters. These allow you to specify which
LED to blink and for how long. Each of the blink() function’s parameters is
an int. Notice that defining parameters is similar to declaring variables.
That’s because parameters are basically variables that can only be used inside
the function.

Finally, a custom function has its own set of curly brackets, which enclose all
of the code you want a call to the function to represent. For the blink()
function, this is the set of digitalWrite() and delay() functions from Listing 3-

1, as shown in Listing 3-3. Add the code inside the curly brackets to your
blink() function now.

LISTING 3-3: Custom blink() function

void blink(int pinNumber, int delayTime)
{
 digitalWrite(pinNumber, HIGH);
 delay(delayTime);
 digitalWrite(pinNumber, LOW);
 delay(delayTime);
}

Notice that in the digitalWrite() and delay() function calls, the blink()
function replaces the pin number 13 and the delay of 1000 ms with the
pinNumber and delayTime parameters, respectively.

Use a Custom Function

Now you can use your custom function in place of the code in your loop()
function, as in Listing 3-4.

LISTING 3-4: Complete sketch using the new custom blink() function

void setup()
{
 pinMode(13, OUTPUT);
}

void loop()
{
 blink(13, 1000);
}

void blink(int pinNumber, int delayTime)
{
 digitalWrite(pinNumber, HIGH);

 delay(delayTime);
 digitalWrite(pinNumber, LOW);
 delay(delayTime);
}

The modified loop() function calls the blink() function and passes it the pin
number of the LED to blink (13) and the amount of time the light should stay
on or off, in milliseconds (we suggest using 1000, for 1 second). That’s it!
Doesn’t this code look a lot cleaner and clearer?

Upload this sketch to your Arduino, and the LED on pin 13 should blink.
Congratulations! You just “taught” the Arduino what blink() means, and you
condensed four lines of code into a single instruction.

But custom functions are just one key to this project. You’ll also want to plan
some nine-pixel patterns ahead of time to make them easier to program, so
let’s do that now.

TRY IT OUT: PLAY WITH PATTERNS

Before you finish the Nine-Pixel Animation Machine, spend some quality
time with your more powerful blink() sketch. For example, change your
loop() function as follows:

void loop()
{
 blink(13, 100); //short 100 ms blink on pin 13
 blink(13, 2000); //longer 2000 ms blink on pin 13
}

This makes the LED blink for 100 ms, followed by a longer blink of 2,000
ms. Try blinking the other LEDs to create your own patterns and sequences!

Design Your Artwork

Grab colored pencils and graph paper, and put on your artist’s hat! You’re
going to make some pixel art to display on the Nine-Pixel Animation
Machine.

Start by drawing several 3 × 3 grids, or print out a copy of the template
shown in Figure 3-7, which you’ll find in this book’s resource files. These
drawings don’t have to be perfect; you’re just sketching out a few ideas.

FIGURE 3-7: Blank grid planning template

We numbered the pixels with 13 in the upper-left corner and 5 in the lower-
right corner. These numbers correspond to the LED pin numbers on the
Arduino; this is how you’ll control the LEDs in the Nine-Pixel Animation
Machine. When your canvas is ready, get creative: fill in the pixels to make
your own patterns. Figure 3-8 shows some examples that we came up with
during a department meeting . . . don’t tell our boss!

FIGURE 3-8: Some pixel pattern examples

When you show these patterns and shapes in sequence, you can create
animations! First, we’ll teach you to program two simple shapes, and then
we’ll tackle a complete animation.

The Test Sketch

Create a new sketch in the Arduino IDE, and add the setup() and loop()
functions in Listing 3-5.

LISTING 3-5: setup() function for the Nine-Pixel Animation Machine

//LED array is set up in this arrangement:
// 13 ---- 12 ---- 11
// 10 ---- 9 ----- 8
// 7 ---- 6 ----- 5

void setup()
{
 pinMode(13, OUTPUT);
 pinMode(12, OUTPUT);
 pinMode(11, OUTPUT);
 pinMode(10, OUTPUT);
 pinMode(9, OUTPUT);
 pinMode(8, OUTPUT);
 pinMode(7, OUTPUT);
 pinMode(6, OUTPUT);
 pinMode(5, OUTPUT);
}

void loop()
{
}

NOTE

We also suggest adding a comment with a diagram of the LED placement.
Describing the circuit you’re writing code for in the sketch will help others

re-create it and will remind you of the structure you’re working with as you
develop your code.

This project uses nine LEDs on nine digital GPIO pins (13 through 5), so this
setup() function has nine pinMode() functions. They’re all set as OUTPUT
since they’re controlling LEDs.

Write a Function to Draw an X

With the pinMode() functions in place, look at the shapes you drew by hand
and pay attention to the numbers; they’ll help you write your custom
function. Figure 3-9 shows an example to test with—a simple X pattern.

FIGURE 3-9: A nine-pixel X

The X pattern in Figure 3-9 translates to the set of digitalWrite() functions in
Listing 3-6.

LISTING 3-6: Code for displaying an X on the nine LEDs

digitalWrite(13, HIGH);
digitalWrite(12, LOW);
digitalWrite(11, HIGH);

digitalWrite(10, LOW);
digitalWrite(9, HIGH);
digitalWrite(8, LOW);

digitalWrite(7, HIGH);
digitalWrite(6, LOW);
digitalWrite(5, HIGH);

These digitalWrite() function calls turn on only the LEDs on the grid’s
diagonals and turn off the rest. But drawing a single X takes nine lines of
code! Instead of writing all of this out by hand every time, you can create a
custom function to execute all of these calls with just one line of code.

Below the curly brackets of the loop() function, create a custom function
named xChar() with the code in Listing 3-7.

LISTING 3-7: The xChar() custom function

void xChar()
{
 digitalWrite(13, HIGH);
 digitalWrite(12, LOW);
 digitalWrite(11, HIGH);

 digitalWrite(10, LOW);
 digitalWrite(9, HIGH);
 digitalWrite(8, LOW);

 digitalWrite(7, HIGH);
 digitalWrite(6, LOW);
 digitalWrite(5, HIGH);
}

We named this custom function xChar() because it displays an X character.
This function won’t return anything, so its data type is void. Since the
digitalWrite() calls from Listing 3-6 are inside this single custom function,
you can keep your loop() code simple. Call the function xChar() inside your

existing loop(), as shown in Listing 3-8.

LISTING 3-8: loop() function with xChar() function call

void loop()
{
 xChar();
}

This is a small step, but it’s very important. If you forget to actually call your
custom function, its code will never run, and you’ll never display your X.

Upload this sketch to your Arduino now. Your LEDs are still in a vertical line
rather than a grid, but your sketch can still help you test that you’ve got
everything wired and coded correctly. Instead of an X, you should see every
other LED turn on, starting at the top, as shown in Figure 3-10. If the LEDs
don’t light up as expected, double-check your wiring against the diagram in
Figure 3-5 on page 71, and check your digitalWrite() functions to make sure
they’re all correct as well.

When you can see the right pattern, read on to create a second character.

FIGURE 3-10: Prototype and correct sequence for an X

Write a Function to Draw an O

Next, you’ll create an O like the one in Figure 3-11 to go with the X.

FIGURE 3-11: A nine-pixel O

Pro tip: you can work smarter rather than harder here. Copy the entire
xChar() function, paste the copy after the last curly bracket in xChar(),
change its name to oChar(), and tweak it to look like Listing 3-9.

LISTING 3-9: The oChar() custom function

void oChar()
{
 digitalWrite(13, HIGH);
 digitalWrite(12, HIGH);
 digitalWrite(11, HIGH);

 digitalWrite(10, HIGH);
 digitalWrite(9, LOW);
 digitalWrite(8, HIGH);

 digitalWrite(7, HIGH);
 digitalWrite(6, HIGH);
 digitalWrite(5, HIGH);
}

The only difference between xChar() and oChar() is which LEDs are turned
on and which are turned off. Whereas xChar() turns on alternating LEDs,
oChar() turns on every LED except the center one.

TRY IT OUT: WRITE A CUSTOM FUNCTION FOR YOUR OWN
IMAGE

We showed you how to write functions to draw an X and an O, but we’re sure
you have your own lovely pixel art images in mind. Create a function that
will blink out the patterns you made, and hang on to it for when you’re done
building the Nine-Pixel Animation Machine.

Display the X and the O

The goal now is to show an X character for a bit, then show an O character,
and finally go back to the X. To show each character for a set time, you can

add the oChar() function to your existing loop and slow the loop down with
delay() calls. Update your sketch so that it looks like Listing 3-10.

LISTING 3-10: The loop() looks similar to the one in the Blink sketch but
uses xChar() and oChar() instead of digitalWrite().

//LED array is set up in this arrangement:
// 13 ---- 12 ---- 11
// 10 ---- 9 ----- 8
// 7 ---- 6 ----- 5

void setup()
{
 pinMode(13, OUTPUT);
 pinMode(12, OUTPUT);
 pinMode(11, OUTPUT);
 pinMode(10, OUTPUT);
 pinMode(9, OUTPUT);
 pinMode(8, OUTPUT);
 pinMode(7, OUTPUT);
 pinMode(6, OUTPUT);
 pinMode(5, OUTPUT);
}

void loop()
{
 //blink between x and o characters
 xChar();
 delay(500);
 oChar();
 delay(500);
}

void xChar()
{
 digitalWrite(13, HIGH);
 digitalWrite(12, LOW);

 digitalWrite(11, HIGH);

 digitalWrite(10, LOW);
 digitalWrite(9, HIGH);
 digitalWrite(8, LOW);

 digitalWrite(7, HIGH);
 digitalWrite(6, LOW);
 digitalWrite(5, HIGH);
}

void oChar()
{
 digitalWrite(13, HIGH);
 digitalWrite(12, HIGH);
 digitalWrite(11, HIGH);

 digitalWrite(10, HIGH);
 digitalWrite(9, LOW);
 digitalWrite(8, HIGH);

 digitalWrite(7, HIGH);
 digitalWrite(6, HIGH);
 digitalWrite(5, HIGH);
}

This loop displays an X for 500 ms and then switches to an O for 500 ms.
Upload the updated sketch to your Arduino, and run it to see how it works.
Every LED except the middle one lights up when oChar() is called. Figure 3-
12 shows what you’ll see as the LEDs blink.

FIGURE 3-12: Switching between two patterns

Save your sketch now, because you’ll build on it later. But as long as the
LEDs in this circuit are on the breadboard, they won’t display any

recognizable picture. So next, we’ll show you how to make the display to see
the Nine-Pixel Animation Machine in all its tiny glory.

BUILD THE NINE-PIXEL ANIMATION MACHINE
ENCLOSURE

The enclosure for this project is simply a cardboard display with holes for
LEDs. There’s wiring to do as well, but once that’s done, you’ll be able to
make all kinds of pixel art.

Cardboard Construction

Find a sheet of cardboard that is clean and free of creases and bends. Our
designs are based around cardboard about 1/8 inch thick, but you can use any
similar board or panel materials. Some materials will be easier to cut than
others, so pick yours based on the tools you have.

Cut Out the Parts

Open the template shown in Figure 3-13 in this book’s resource files
(https://www.nostarch.com/arduinoinventor/) and trace it onto your
cardboard. Try to line your templates up with the edge of the cardboard to
make cutting easier.

FIGURE 3-13: Enclosure template for the Nine-Pixel Animation Machine
(not full size)

https://www.nostarch.com/arduinoinventor/

Once you’ve traced your pieces, cut them out. We highly recommend using a
sharp craft knife and a metal ruler to get clean edges for your project.
Remember craft knife safety: always pull (don’t push) the blade, and make
multiple passes rather than digging in deeply on your first go.

After cutting your cardboard parts, make the LED holes in the front piece.
You can drill them as shown in Figure 3-14, punch them with a hole punch,
or even poke them out with a pencil. Just be sure to have a free LED on hand
to test the size of each hole for a snug fit. If the holes are a little too large and
you don’t mind making the LEDs a permanent feature of the project, you can
hot glue them in.

FIGURE 3-14: Drilling holes for LEDs. Use caution when drilling or ask an
adult for help.

You should have four pieces cut out, as shown in Figure 3-15. The base has
the big hole in the middle; use its center piece to cut out two triangles to use
as support braces. These triangles have tabs that fit into slots connecting the
bottom piece to the front. Before assembling the parts, however, add labels so
that you can keep your LEDs straight when you wire up your circuit.

FIGURE 3-15: Cardboard pieces for the enclosure

Label the LED Holes

Flip the front cardboard piece over, and number the LEDs so you have a
connection guide. Start with pin 13 in the top right and count down as you go
left, as shown in Figure 3-16. You should finish with 5 in the lower-left
corner.

FIGURE 3-16: Labeling the back side of the LED grid

Add the LEDs

With the cardboard flat, insert the nine LEDs through from the back side.
You can reuse the LEDs from your breadboard prototype or grab new ones.
As you insert the LEDs, keep them aligned with the long leg on the right side
to make things easier when you start wiring them to the Arduino again. You
want the LEDs to fit snugly, as shown in Figure 3-17. If the hole is too big,
you can add a dab of hot glue to secure it (but, again, keep in mind that you
won’t be able to reuse the LEDs afterward).

FIGURE 3-17: Inserting the LEDs

Assemble the Parts

Now, gather the four pieces of cardboard to be assembled. You’ll probably
need craft glue or a hot glue gun to secure all of the pieces together.

First, glue one of the triangles to the base to support the front plate, as shown
in Figure 3-18. See Figure 3-19 for the orientation of the support triangles.
Repeat this process for the other triangle piece. Give the glue some time to
dry before moving on.

FIGURE 3-18: Adding support triangles to the base

With the support triangles in place, glue the front to the base. The front
should fit snugly onto the tabs of the support triangles and sit on top of the
base cardboard, as shown in Figure 3-19. For extra strength, you may also
want to add hot glue along the inside edges where the front plate connects to
the base and support triangles.

FIGURE 3-19: Adding the final piece of the project—the front

With the cardboard construction part of this project done, it’s time to wire the
circuit.

Connect the Electronics

There are a lot of wires in this project, so we’ll take it one step at a time.
You’ll reuse the breadboard prototype circuit you built earlier in this chapter
and simply use jumper wires to connect the nine LEDs to the Arduino.

There are two ways to approach this part of the project: the nonpermanent
way, which uses male-to-female jumper wires, and the permanent way, which
involves soldering. We’ll cover the nonpermanent approach, but if you do
want to solder the LEDs to jumper wires, refer to “How to Solder” on page
302 for a brief lesson before you attempt that.

If the LED legs are too long, you can snip them before attaching the jumper
wires, but pay attention to which leg is positive (the long leg) and which is
negative. Leave the positive leg a little longer so that you can still tell which
leg is which; you could also draw a dot on the back of the box. Be sure to
wear eye protection, too—when you’re trimming the legs, the little wire
pieces can fly up in the air and toward your eyes!

Connect the female end of each jumper wire to one of the nine LEDs on the
front plate. To keep things organized, use black wires to designate the
negative side, and connect these to the shorter leg of the LED, as shown in
Figure 3-20. You can use any color for the positive side of each LED.

FIGURE 3-20: Connecting the LEDs with male-to-female jumper wires

Once all nine LEDs are connected to male-to-female wires, connect the other
end of each jumper wire to the breadboard, following the pin labels on the
back side of your project. If you left the LEDs in the breadboard, remove
those first, and simply plug the jumper wires into them as shown in Figure 3-
21.

FIGURE 3-21: Nine LEDs connected to the breadboard with male-to-female
jumper wires

Each wire connected to the negative leg of an LED (each black wire)
connects to a resistor that is connected to the ground rail. Each positive wire
connects to the Arduino pin written on the back of your LED array.

Once you’ve added all nine LEDs to the front of your display and completed
your wiring, plug your Arduino into your computer with a USB cable. If
everything is wired correctly, your display will show an alternating X and O
pattern. If you have a battery pack, you can connect it as shown in Figure 3-
22.

If the test images don’t show properly, double-check that the LEDs are
plugged into the correct Arduino pins. When you see the correct patterns,
take a moment to bask in the glory of your new pixel art display, but don’t
stop here! When you’re ready, try making a more complicated animation.

FIGURE 3-22: The final display with cycling X and O characters

CREATE AN LED ANIMATION

Your monitor can display any image you can draw on a 3×3 grid. An
animation is just a series of images shown sequentially, so if you show a
bunch of 3×3 images in a row, you’ll have a pixel art animation. We’ll show
you how to design and display a spinning line.

Plan the Animation Sequence

Let’s begin by translating a spinning line into a series of images. We started
with a vertical line and rotated it around the display in four separate images,
as shown in Figure 3-23.

FIGURE 3-23: Image progression of a spinning line

Save your program from Listing 3-10, and then create a new sketch. Add the
setup() and loop() functions in Listing 3-11.

LISTING 3-11: The setup() code for all nine LEDs

void setup()
{
 pinMode(13, OUTPUT);
 pinMode(12, OUTPUT);
 pinMode(11, OUTPUT);
 pinMode(10, OUTPUT);
 pinMode(9, OUTPUT);
 pinMode(8, OUTPUT);
 pinMode(7, OUTPUT);
 pinMode(6, OUTPUT);
 pinMode(5, OUTPUT);
}

void loop()
{
 //animation function call will go here
}

//custom functions to show frames will go here

Since you’re using the same LEDs you were in the X and O sketch, you can
just copy the code from there into your new sketch.

Write Custom Functions

Now, create a custom function for each image of your animation. This
animation has four frames, so you’ll need four functions. Add the functions
in Listing 3-12 to your sketch, after the closing bracket in the loop() function.

LISTING 3-12: Custom functions to draw a spinning line

➊ void verticalLine()
 {
 digitalWrite(13, LOW);
 digitalWrite(12, HIGH);
 digitalWrite(11, LOW);

 digitalWrite(10, LOW);
 digitalWrite(9, HIGH);
 digitalWrite(8, LOW);

 digitalWrite(7, LOW);
 digitalWrite(6, HIGH);
 digitalWrite(5, LOW);
 }

➋ void topLeftDiagonal()
 {
 digitalWrite(13, HIGH);
 digitalWrite(12, LOW);
 digitalWrite(11, LOW);

 digitalWrite(10, LOW);
 digitalWrite(9, HIGH);
 digitalWrite(8, LOW);

 digitalWrite(7, LOW);
 digitalWrite(6, LOW);
 digitalWrite(5, HIGH);
 }

➌ void horizontalLine()

 {
 digitalWrite(13, LOW);
 digitalWrite(12, LOW);
 digitalWrite(11, LOW);

 digitalWrite(10, HIGH);
 digitalWrite(9, HIGH);
 digitalWrite(8, HIGH);

 digitalWrite(7, LOW);
 digitalWrite(6, LOW);
 digitalWrite(5, LOW);
 }

➍ void topRightDiagonal()
 {
 digitalWrite(13, LOW);
 digitalWrite(12, LOW);
 digitalWrite(11, HIGH);

 digitalWrite(10, LOW);
 digitalWrite(9, HIGH);
 digitalWrite(8, LOW);

 digitalWrite(7, HIGH);
 digitalWrite(6, LOW);
 digitalWrite(5, LOW);
 }

The verticalLine() function ➊ shows the first image in Figure 3-23, the
topLeftDiagonal() function ➋ shows the second image, the horizontalLine()
function ➌ shows the third, and the topRightDiagonal() function ➍ shows
the last. As with your previous custom function, these custom functions have
the void data type, since they won’t return a value.

Custom functions can call other custom functions, too, so let’s call the four
line functions inside a single spinningLine() function. Add the following code

to your sketch, after the closing bracket in the topRightDiagonal() function.

void spinningLine(int delayTime)
{
 verticalLine();
 delay(delayTime);

 topLeftDiagonal();
 delay(delayTime);

 horizontalLine();
 delay(delayTime);

 topRightDiagonal();
 delay(delayTime);
}

This code shows a vertical line, a diagonal line, a horizontal line, and another
diagonal line, with a delay after each line. Now, all you have to do is call
spinningLine() inside the loop() function.

NOTE

You’ll find a complete listing of this code in the resource files at
https://nostarch.com/arduinoinventor/.

Tweak Your loop() Function

Add a call to your custom function inside your loop() function, as in Listing
3-13. Remember that you still need to have all of those pinMode() commands
in your setup() function.

LISTING 3-13: Completed loop() function with the new custom function
call spinningLine(200);

void loop()
{
 spinningLine(200);

https://nostarch.com/arduinoinventor/

}

Once you add the function and pass it a delay time parameter (the code uses
200), upload your sketch to your Arduino. You’ll see a rotating line on your
display. With this knowledge of sequencing LEDs and custom functions, you
can make your own nine-pixel animation!

GOING FURTHER

Custom functions will be useful when you want to reuse code later or
organize your code. To take this project further, try designing more elaborate
animations; you could even come up with your own alphabet and use your
monitor to display a secret message.

Hack

To take this project further, start by creating more elaborate animations. As
you work through the next few projects, look for ways to incorporate your
monitor—for example, maybe you could use a sensor to control an animation
speed or display a sensor value in some interesting ways. Download a blank
design template at https://www.nostarch.com/arduinoinventor/.

Modify

You’ve learned how to control a number of electronic components by using
digital pins and custom functions. Try replacing your individual LEDs with
different components. We suggest a seven-segment display, as shown in
Figure 3-24.

FIGURE 3-24: A single seven-segment display

https://www.nostarch.com/arduinoinventor/

Each segment is an LED that you can control. There are seven individual
segments (plus the decimal points), as shown in Figure 3-25, and by turning
specific segments on and off, you can make numbers and most letters of the
English language.

FIGURE 3-25: Illustration of the seven individual segments and the decimal
point with a corresponding wiring diagram

You can control one of these displays the same way you control the Nine-
Pixel Animation Machine: just create custom functions for each number. For
a challenge, create a single function that lets you pass a number to display to
it.

4 Reaction Timer
An average human reacts to a visual stimulus, like a light turning on, in about
215 milliseconds. This is the time it takes for a signal you see with your eyes
to travel to your brain and out to your limbs to respond. The reaction timer is
a great project to demonstrate this time delay, and it also makes for a fun
game! How fast are you and your friends?

In this chapter, you’ll learn how to build your own reaction timer using
Arduino. The full project is shown in Figure 4-1. The concept behind it is
simple: the Arduino will turn on an LED, start a timer, and wait until you
press a button. When you see the LED turn on, you press the button as
quickly as you can, and the Arduino will report back to your computer the
time between the light coming on and you pressing the button. The Arduino
has a 16 MHz clock, which means that it can process 16 million instructions
per second! That’s fast, and it makes the Arduino perfect for this project.

FIGURE 4-1: The completed Reaction Timer project

MATERIALS TO GATHER

Like the previous projects in this book, the Reaction Timer uses LEDs,
resistors, wires, and an Arduino. Unlike other projects, this one also includes
a button to make the game interactive, and to make it look spiffy we suggest
a custom cardboard enclosure. Figures 4-2 and 4-3 show the parts and
materials you’ll need for this project.

Electronic Parts

• One SparkFun RedBoard (DEV-13975), Arduino Uno (DEV-11021), or any
other Arduino-compatible board

• One USB Mini-B cable (CAB-11301 or your board’s USB cable)

• One solderless breadboard (PRT-12002)

• One red LED, one blue LED, and one green LED (COM-12062)

• Three 330 Ω resistors (COM-08377, or COM-11507 for a pack of 20)

• One 10 kΩ resistor (COM-08374, or COM-11508 for a pack of 20)

• One push button (COM-10302)

• Male-to-male jumper wires (PRT-11026)

• Male-to-female jumper wires (PRT-09140*)

NOTE

The parts marked with an asterisk (*) do not come with the standard
SparkFun Inventor’s Kit but are available in the separate add-on kit.

FIGURE 4-2: Components and materials for the Reaction Timer

Other Materials and Tools

• Pencil

• Craft knife

• Metal ruler

• Glue (hot glue gun or craft glue)

• (Optional) Drill and 3/16-inch and 5/16-inch drill bits

• (Optional) Wire cutters (not shown)

• Cardboard (about 12 inches square) or a cardboard box

• Enclosure template (see Figure 4-16 on page 115)

• (Optional) Ping-pong ball

FIGURE 4-3: Recommended tools

NEW COMPONENT: THE PUSH BUTTON

This project revolves around two components: an LED and a button. The
button switch is an input to an Arduino pin, which means that the sketch can
react to a change in the voltage on that pin. Inputs like buttons let you create
circuits that people can interact with.

How Push Buttons Work

There are many different kinds of push buttons, but they all work in a similar
manner. A push button is really an electrical switch. Push buttons like the
ones in Figure 4-4 are small, spring-loaded devices that connect two sides
together electrically for as long as you apply pressure, like the keys on your
keyboard. And they’re everywhere—in remote controls, garage door openers,
coffee makers, radios, game controllers, and so much more!

FIGURE 4-4: A variety of push buttons

These nifty input devices are really simple on the inside. Figure 4-5 shows
the schematics for both a push button and a switch.

FIGURE 4-5: Schematic drawings for a push button and a switch

When you flip a switch on, a piece of metal inside closes the gap between
two contacts, like a gate. When you press a push button, metal pushes straight
down to bridge that gap. Find a push button in your supplies for this project
and examine it. Even though the schematic symbol in Figure 4-5 shows only
two contacts, most standard push buttons for breadboards have four legs.
Figure 4-6 shows a more accurate illustration of the contacts inside, along
with how a button like that might look on the breadboard. When you plug one
in, the legs should straddle the ditch in the middle of the breadboard.

FIGURE 4-6: Push button schematic and button correctly placed on a
breadboard with legs straddling the ditch

Push buttons are fantastic inputs in projects, because everyone knows how
they work. Push buttons are also pretty simple to connect in a circuit with an
Arduino. Let’s look at how that works.

Using Resistors with Push Buttons

To use any button as an input to an Arduino, you’ll need to use a pull-up
resistor circuit like the one in Figure 4-7. A pull-up resistor connects to a
power source on one side and to an input component (like a button) on the

other. The part of a circuit that needs to detect input is connected at the
intersection of the resistor and the button.

In the configuration shown in Figure 4-7, the resistor to 5 V pulls the Arduino
pin’s default voltage up to 5 V, which is considered HIGH. When the button
is pushed, a path is created between the Arduino pin and ground, and the
Arduino pin reads a LOW voltage. This works because current always flows
along the path of least resistance: when the button isn’t pressed, the Arduino
pin 10 kΩ resistor is the only path the current can access, but when the button
is pressed, it offers a path with effectively zero resistance.

FIGURE 4-7: Pull-up resistor and push button circuit

BUILD THE REACTION TIMER PROTOTYPE

The Reaction Timer combines an LED circuit similar to the ones in previous
projects with the button circuit from Figure 4-7 to make the supercircuit in
Figure 4-8, which lights an LED and detects button presses.

FIGURE 4-8: Schematic diagram for the Reaction Timer prototype

Take out your breadboard and wire up a single LED and a button, as shown
in Figures 4-9 and 4-10. You’ll use this prototype to test your code before
building the final Reaction Timer.

FIGURE 4-9: Wiring diagram for the Reaction Timer circuit

FIGURE 4-10: Final prototype circuit of the Reaction Timer with a single
button and a single LED

As you connect this circuit, note the two different resistance values: 330 Ω
for the LED and 10 kΩ for the push button. (See “Resistors and Bands” on
page 308 for details on how to determine the value of a resistor from its color
bands.) The resistor on the LED is a current-limiting resistor and should be
tied to ground, while the resistor on the push button is a pull-up resistor
connecting pin 3 to 5 V. But your circuit can’t do anything without the code,
so let’s look at that now.

PROGRAM THE REACTION TIMER

As your sketches and circuits become more complex, you’ll find it helpful to
organize your thoughts by listing each action you want the Arduino to take,
in the order you want it to happen. Some programmers refer to a list like this
as pseudocode. Here’s our pseudocode for the Reaction Timer:

1. Wait a random amount of time before turning on the LED (to prevent
predicting/gaming the Reaction Timer).

2. Turn on the LED.

3. Record the starting time.

4. Start a timer and wait for a button press.

5. When the button is pressed, calculate the reaction time as the timer value
minus the starting time.

6. Report the time back.

Pretty simple, right? Let’s open up Arduino and look at the sketch.

Write the setup() Function

Open a new sketch and type the initialization and the setup() code shown in
Listing 4-1.

LISTING 4-1: setup() and initialization code for the Reaction Timer

➊ unsigned int waitTime; //random wait time before
 //turning on LED
 unsigned int startTime; //zero reference time
 unsigned int reactTime; //calculated reaction time

 void setup()
 {
➋ Serial.begin(9600); //sets up serial
 //communication
 pinMode(13, OUTPUT); //sets pin 13 as an OUTPUT for the
 //stimulus LED
➌ pinMode(3, INPUT); //sets pin 3 as an INPUT for the
 //button
 }

NOTE

The unsigned int data type can hold values from 0 to 65,535 (216 – 1).

First, the namespace defines three unsigned int variables ➊ to store the

waitTime, startTime, and reactTime values.

Next comes the setup() function, which has a new instruction:
Serial.begin(9600) ➋. Make sure to capitalize Serial and leave no spaces
between Serial, the period, and begin. This instruction is a little different
from previous commands because it has a period that divides the object and
the method. An object is a concept used in computer programming that is
similar to a special type of variable that can have different functions or
actions. Here Serial is the name of the object we’re using. The functions that
an object can perform are called methods. The begin() method initializes or
begins serial communication between your Arduino and your computer,
which allows the Arduino to send and receive data through the USB cable.
For this command, the number in the parentheses, 9600, sets the
communication rate to 9,600 bits per second (or baud). The Arduino will use
serial communication to report your reaction time back to your computer. The
Serial object has many other methods, which we’ll introduce throughout this
book, to handle data between the computer and the Arduino.

Finally, you’ll set up your pins. This project uses a single LED on pin 13 to
indicate when to press the button, so you once again use pin 13 as an
OUTPUT using the pinMode() function. Then set pin 3 with the pinMode()
function ➌ using the INPUT keyword. You use INPUT here because
Arduino needs to be able to detect button presses, not output to the button.

Write the loop() Function

Now let’s write the loop() part of the sketch. Enter the code in Listing 4-2
after your setup() function.

LISTING 4-2: The loop() function for the Reaction Timer

 void loop()
 {
 //prints the challenge instructions
➊ Serial.println("When the LED turns on, push the button!");
 Serial.println("Now, watch the LED. Ready?");
➋ waitTime = random(2000, 4000); //random wait time

 //from 2000 to 4000 ms
➌ delay(waitTime); //delay random wait time

 //turn on the LED!
 digitalWrite(13, HIGH);

 startTime = ➍millis(); //set zero time reference
 //loop to wait until button is pressed
➎ while(digitalRead(3) == HIGH)
 {
 }

➏ reactTime = millis() - startTime; //calculation of
 //reaction time
 digitalWrite(13, LOW); //turn off LED!

 //display information to Serial Monitor
➐ Serial.print("Nice job! Your reaction time was ");
➑ Serial.print(reactTime);
➒ Serial.println(" milliseconds");
 delay(1000); //short delay before starting again
 }

First, this code uses the Serial.println() method ➊ to show a message prompt
explaining how to play the game. The println() method sends text to the
computer and adds a newline character to move the cursor down one line.
When this method is called, any text between quotation marks (" ") is
displayed on the Arduino IDE’s Serial Monitor. The Serial Monitor is like a
simple chat window, or terminal, that allows you to send and receive data
between the Arduino and your computer. You can open the Serial Monitor by
clicking the magnifying glass button in the top-right corner of the Arduino
IDE (shown in Figure 4-11), by clicking Tools ▸ Serial Monitor, or by using
the hotkey CTRL-SHIFT-M.

FIGURE 4-11: Opening the Serial Monitor through the Arduino IDE

We’ll look at the Serial Monitor in just a moment.

Generate the Delay Time

To make the Reaction Timer less predictable, the sketch calls the random()
function ➋ to generate a random waitTime. The random() function takes a
minimum value and a maximum value as arguments and returns a
pseudorandom number (a number that appears to be random but isn’t; this is
explained in more detail in “Try It Out: Make waitTime More Random” on
page 109). In this example, the waitTime variable is set to a “random”
number between 2,000 and 4,000 and is passed to delay() ➌ before the LED
turns on. This prevents you and your friends from predicting when to press
the button.

When the LED turns on, a call to the millis() function ➍ captures the starting
time. The millis() function checks the Arduino’s internal timer and returns the
number of milliseconds since the Arduino was turned on or reset. The millis()
function is handy for any Arduino project that involves timing.

Check the Button with a while() Loop

After fetching the start time, the sketch uses a while() loop ➎ to wait for a
button press. In Arduino, as in many other programming languages, a while()
loop runs the code inside its curly brackets as long as the expression between
its parentheses is true. In this case, the expression is

digitalRead(3) == HIGH

The digitalRead() command reads the voltage on the pin specified between
the parentheses and returns a value of HIGH or LOW depending on if it sees
5 V or GND. This call checks the voltage on pin 3. Remember that pull-up
resistor on the push button? The button’s normal state is open, and the pin
defaults to HIGH until you press the button to close the circuit. When you
press the button, pin 3 connects to ground, and the state becomes LOW. The
double equal sign (==) checks equality. (See “Logical Comparison
Operators” on page 106.)

As long as the button isn’t pressed, the expression is true, and the while()
loop should repeat, preventing the sketch from executing any code after.
Notice, however, that there’s no actual code inside the loop. This is referred
to as a holding or blocking loop, and rather than executing any code itself, it
just prevents other code from executing. When the button is pressed, the
expression becomes false, and the sketch proceeds.

Calculate and Display the Reaction Time

Next, the sketch computes the reaction time ➏ by subtracting the startTime
from the current timer value, which is fetched with the millis() command.

As a final step, the LEDs are turned off, and the reactTime value is printed to
the serial communication line. To make the information more readable, the
sketch prints the string "Nice job! Your reaction time was " to the Serial
Monitor using the print() method ➐ of the Serial object. This method sends
the text between the quotation marks and doesn’t move the cursor to a new
line. In fact, it keeps the cursor on the same line so that you can append more
information, like the actual reaction time, which is added at ➑ with
Serial.print(reactTime);. The sentence is finished with a call to the println()
method ➒, which prints the string " milliseconds" and then moves the cursor
to a new line.

LOGICAL COMPARISON OPERATORS

Logical comparison operators perform operations that test one value against
another value. For example, the double equal sign (==) compares two values
to see whether they are equal. A logical operation can return only one of two
values: true, meaning the comparison evaluates correctly, or false, meaning it
doesn’t evaluate correctly. In Arduino, there are many ways to compare two
values, and all of the operators are listed in the following table:

OPERATOR COMPARISON

== Equal to

!= Not equal to

> Greater than

>= Greater than or equal to

< Less than

<= Less than or equal to

For example, if you enter 2 == 4 in the Arduino IDE, it will return false,
because two is not equal to four. However, if you enter 2 <= 4 in the Arduino
IDE, it will return true, because two is less than or equal to four. In sketches,
comparison operators are often used with if() or while() statements to run a
certain block of code based on a certain condition. For example, the while()
loop in Listing 4-2 says, “while digitalRead(3) == HIGH is true, repeat the
holding loop; otherwise, skip to the next bit of code.”

A common bug is to mistakenly use a single equal sign when working with
comparisons. Remember: a single equal sign sets a variable, whereas the
double equal sign compares the two values.

You’ll use comparison operators more and more as you start to evaluate data
your Arduino gathers from various sensors and inputs, and we’ll use some of
them later in this chapter, too.

Notice that every character must be explicitly printed, including any spaces
you want between numbers or characters. You can use the print() and
println() methods, as in this example, to combine, format, or organize text
that you display in the Serial Monitor.

The final line of code in the loop() function is a short delay() function to

pause the sketch before it loops back and starts the Reaction Timer again.

SPECIAL COMMAND CHARACTERS

When printing data or text, you must represent every individual character,
including spaces, and every formatting command in your code. There’s a set
of reserved characters, called escape sequences, to indicate special
formatting. For example, \n moves the cursor to a new line; so,
Serial.print("Hello Arduino!\n"); is equivalent to Serial.println("Hello
Arduino!");.

You can use escape sequences in your print statements to add formatting or
other special characters to your text. The following table lists a handful of
useful escape sequences.

ESCAPE SEQUENCE RESULT

\t Tab

\n New line

\' Single quotation mark

\" Double quotation mark

\xhh ASCII character, where hh is a hexadecimal number

Test the Reaction Timer Sketch

That’s all the code you need to test your Reaction Timer game circuit! Save
your sketch, compile it, and upload it to your Arduino now. To see the data

that your sketch sends on the serial communication line, open the Serial
Monitor window by clicking Tools ▸ Serial Monitor or the magnifying glass
button in the upper-right corner of the IDE.

Notice that the bottom-right corner of the Serial Monitor has a pull-down
menu to control the serial data rate in baud (bits per second), which defaults
to 9,600 baud (see Figure 4-12). This is the same value this sketch uses to
initialize the Serial object, using the Serial.begin(9600) instruction. Always
check that the Serial Monitor speed is the same as the rate set in the sketch
with Serial.begin()—otherwise, you may just get gibberish!

FIGURE 4-12: The Arduino IDE’s Serial Monitor window testing the
Reaction Timer

NOTE

Some components, such as GPS or a serial-enabled LCD screen, will
communicate with the Arduino at different baud rates, so when using a new

part, it’s a good idea to check what rate it uses and set that in the sketch.

You can set the serial data rate to any standard rate from 300 to 250,000
baud, but 9,600 baud is the most common speed. Generally speaking, slower
speeds are more reliable and use less power and fewer resources on the
Arduino, but they also introduce a delay that slows down the loop(). If you
need a really fast response and don’t care much about power usage, you can
use a faster baud rate.

Now, let’s play! Run the sketch and watch your LED closely. When it lights
up, push the button. Your code will print your reaction time, in milliseconds,
to the Serial Monitor, like in Figure 4-12. How fast are you? Go challenge
one of your friends! The average is about 215 ms. How do you measure up?

TRY IT OUT: MAKE WAITTIME MORE RANDOM

In most digital devices like an Arduino, it’s hard to get a truly random
number because the random number is generated through a mathematical
calculation. On an Arduino, each time the random() function is called, the
function bases its calculation on the previous result from random(). Because
the next “random” number is calculated from the previous result, the
sequence of numbers will always be the same.

For example, on our Arduino (and probably yours), the first call to
random(2000, 4000) will always set waitTime to 2807. The second number
generated will always be 3249, the third will be 2073, and so on.

You can make the waitTime value appear more random by calling the
function randomSeed() in your setup() function. This generates a seed value
that tells random() where the pseudorandom sequence should start. When
your Arduino starts running a sketch, the seed defaults to 1, which is why
2807 is always the first number generated by the random(2000, 4000) call.

To make your Reaction Timer behave more randomly, add this line of code
to your setup() routine, just before the closing curly bracket:

randomSeed(analogRead(A5));

This seeds the random-number generator with the current voltage value on
the Arduino’s analog pin A5. We’ll cover analogRead() in more detail in
Chapter 5, but for now, just know that it reads the voltage level on the analog
pin passed to it. Because pin A5 isn’t connected to anything in the Reaction
Timer, the voltage floats, or bounces around somewhat unpredictably.

If you choose to add this line of code, then each time you run your sketch, the
first call to random(2000, 4000) should return a different number. To
confirm, add these two lines of code after the delay(waitTime) call in your
sketch:

Serial.print("waitTime = ");
Serial.println(waitTime);

Now, comment out the randomSeed() call by adding // at the beginning of the
line, run your sketch a few times, and note the initial waitTime values
printed. Uncomment the randomSeed() call and repeat the process. Over time
and a lot of data points, there will still be a pattern, but that’s a topic for
another book—or perhaps for a degree in computer science!

Play Again?

To play again, simply press the Arduino’s reset button—the brass-colored
button near the corner of the board, shown in Figure 4-13. This will restart
your code and let you play again. Watch the LED closely. Are you any
faster?

FIGURE 4-13: Press the reset button to play again.

Add a Game Element

To add a little carnival-game style to this project, you can add a visual speed
indicator to show if you’re faster than a given reaction time. We suggest
starting with the average, 215 ms, as the time to beat. To do this, you’ll need
to add two more LEDs: a green one to indicate that you were faster than the
time set in the code and a red one to say you were slower. Since you already
used pin 13 for the stimulus LED, you’ll connect these two LEDs to pins 11
and 12. Add these to your breadboard as shown in Figures 4-14 and 4-15.

FIGURE 4-14: Circuit diagram with two extra LEDs

FIGURE 4-15: Completed wiring of the new circuit with two extra LEDs

Update the Code for Extra LEDs

Now that you have these two indicator LEDs, you’ll add a few extra lines of
code to your project to turn on the green LED if you’re faster than the time to
beat and the red LED if you’re not.

You’ll need to add a pinMode() command for pins 12 and 11 and set these up
as OUTPUTs to control your new LEDs. The changes to the setup() function
are shown in Listing 4-3 (the existing code is shown in light gray).

LISTING 4-3: The modified setup() function for the Reaction Timer with
the extra speed-indicator LEDs

void setup()
{
 Serial.begin(9600); //sets up serial
 //communication
 pinMode(13, OUTPUT); //sets pin 13 as an OUTPUT for the

 //stimulus LED
 pinMode(12, OUTPUT); //sets pin 12 as an OUTPUT for the
 //green LED
 pinMode(11, OUTPUT); //sets pin 11 as an OUTPUT for the
 //red LED
 pinMode(3, INPUT); //sets pin 3 as an INPUT for the
 //button
}

You simply inserted two extra pinMode() instructions for the two extra LEDs
that you’re going to add.

Control the Flow with if() and else()

Now you’ll need to add a little bit of decision logic into your sketch. In
Arduino programming, an if() statement allows you to control the direction
and flow of a sketch. It tells the code “if this is true, run the code in the
following curly brackets.” The general syntax for the if() statement is shown
in Listing 4-4.

LISTING 4-4: Generic if() statement in Arduino

 if(➊expression) //if expression is true, run the code in
 //the following loop
 {
 ➋
 }
➌ else //otherwise, run the code in this loop instead
 {
 ➍
 }

The expression ➊ is a Boolean expression that is either true or false, like the
ones we discussed earlier in “Logical Comparison Operators” on page 106. If
the expression is true, the sketch will start executing any code between the
curly brackets ➋. If it’s not true, the sketch skips over the curly brackets and
goes to the next statement. Oftentimes, the if() statement is paired with an

else ➌. If the expression is not true, the sketch skips over the first set of curly
brackets ➋ and continues on to the code that is part of the else statement ➍.

For the Reaction Timer game, you’ll use an if() statement to turn on the green
LED if the reaction time is less than or equal to 215 ms and the red LED if
the reaction time is greater than 215 ms. You’ll be able to change this value
to make it harder or easier, but this is a good middling value for now. Listing
4-5 shows the code to do this.

LISTING 4-5: Code snippet of the if() statement for the Reaction Timer
game

➊ if (➋reactTime <= 215)
 {
➌ digitalWrite(12, HIGH); //green LED ON
➍ digitalWrite(11, LOW); //red LED OFF
 }
➎ else
 {
 digitalWrite(12, LOW); //green LED OFF
 digitalWrite(11, HIGH); //red LED ON
 }

You can see at ➊ that the sketch uses the if() statement to perform this logic.
The Boolean expression, reactTime <= 215 ➋, checks whether the value
from reactTime is less than or equal to 215, and if it is, the green LED turns
on ➌. When the green LED turns on, the red LED needs to be off, so you
add one extra instruction ➍ to do that. Finally, you add the else statement ➎
to turn the red LED on if the if() statement evaluates to false.

Upload the Complete Code for the Reaction Timer

The new if() statement should be placed within the loop(), after the code to
turn off the red LED, as shown in Listing 4-6. (The snip indicates where
existing code has been omitted on the page for length.)

LISTING 4-6: Adding the if() statement for the green and red LED game

indicators

--snip--

 //loop to wait until button is pressed
 while(digitalRead(3) == HIGH)
 {
 }

 reactTime = millis() - startTime; //calculation of reaction
 //time

 digitalWrite(13, LOW); //turn off LED!

 if (reactTime <= 215)
 {
 digitalWrite(12, HIGH); //green LED ON
 digitalWrite(11, LOW); //red LED OFF
 }
 else
 {
 digitalWrite(12, LOW); //green LED OFF
 digitalWrite(11, HIGH); //red LED ON
 }

//display information to Serial Monitor
--snip--

After you’ve added the new code, upload the whole sketch to your Arduino.
Open the Serial Monitor and play a game to make sure it all works as
expected. Can you get the green light to turn on? You have to be fast!

GAMING THE GAME: CONTROL THE DIFFICULTY

As with all games, with the Reaction Timer, sometimes you’ll need to adjust
the difficulty level. Since you’re the programmer, you get to control the
game. If 215 ms is too fast or too slow, you can adjust your game threshold
by changing the number in the line if (reactTime <= 215).

Want to make it impossible to beat? Change this value to a low number like
100 ms. Want to be nice and make it easier? Change it to a number like 500
ms. You’re writing the code, so you get to decide the rules of the game!

BUILD THE REACTION TIMER ENCLOSURE

When your prototype works, it’s time to build a more permanent enclosure.
To keep this project as simple as possible, our version of the Reaction Timer
is designed to fit into a small SparkFun box. The top of the box measures 3
7/8 inches × 5 inches, but you can put your game in anything you have lying
around the house—an old cereal box, oatmeal container, or anything else
made of a sturdy cardboard.

We made our Reaction Timer look like an old-school carnival game with a
few fun clip-art drawings we found, but you can make yours look however
you want. Figure 4-16 shows a template for the outside of our box. For this
design, we have a hole for the button, a hole for the stimulus LED, and two
holes for indicator LEDs—one to show that you’re faster than a ninja and the
other to show that you’re as slow as a turtle. You can download the template
with this book’s resources via https://www.nostarch.com/arduinoinventor/ or
just cut holes for the LEDs and buttons anywhere you like on your box.

FIGURE 4-16: Template for the Reaction Timer carnival game cover art
(not full size)

https://www.nostarch.com/arduinoinventor/

Cut Out the Cardboard

If you use our template, print it and then glue or tape it to the front of your
box. Whether you use the template or not, you’ll need to make a total of four
holes in the cardboard for the three LEDs and the button. You can use a craft
knife or a drill to carefully cut out the holes, as shown in Figure 4-17. The
LEDs are 5 mm in diameter, so a 3/16-inch drill bit is a pretty close fit. For
the button hole, we recommend using a 5/16-inch drill bit, if you’re drilling,
or a sharp pencil.

FIGURE 4-17: Cutting out the holes from a cardboard box

Assemble the Electronics

Now that you have the holes cut out of your Reaction Timer box, you need to
add the electronic components. You’re going to move the three LEDs and the
button from the breadboard to the exterior of your new cardboard box so that
players can see them.

Attach the LEDs and Button to the Cardboard

First, press the LEDs through their three holes from the back side of the
cardboard, making sure that each sits snugly. If the holes you cut are too big
and the LEDs are a little loose, simply add a small dab of glue to keep them
in, as in Figure 4-18.

FIGURE 4-18: Moving the LEDs to your project box/ cardboard

Next, add the button. The push buttons that come in the SparkFun Inventor’s
Kit have a cap that pops off. Remove the button cap, insert the button from
the inside of the box, and glue the button onto the cardboard, as in Figure 4-
19. Reattach the button cap on the top side of the cardboard. Players are
going to mash this button as they try to get the best score possible, so use a
lot of glue to make sure it’s secure! When the glue is dry, try the button out.
You need to be able to press the button in all the way, so make sure the cap
doesn’t get caught on any cardboard when you press it down.

FIGURE 4-19: Secure the button in place with a lot of glue.

NOTE

If using hot glue, be cautious when gluing the button to the cardboard. Hot
glue is hot!

Reconnect the Components to the Arduino

Now, use male-to-female jumper wires to connect the LEDs to the
breadboard. Remember that the shorter leg of the LED needs to connect to
ground (GND) in the circuit, and each of the longer legs should connect to its
respective pin on the Arduino, through a 330 Ω resistor. Because the LED
legs are a bit long, you may need to clip them back with wire cutters. A
strategy we often use is to cut the shorter leg just a little shorter so that you
can always tell which leg is the negative leg, as shown in Figure 4-20.

FIGURE 4-20: Cutting back the LED legs. Keep the short leg short!

If you can’t tell which leg is longer, you can also look at the shape of the
plastic lens on the LED. There is typically a flat edge on the side nearest to
the negative leg of the LED. The flat edge is subtle, but if you look closely,
you should be able to see it.

Press the female ends of the male-to-female jumper wires onto the ends of the
LEDs so that they fit snugly, like in Figure 4-21. To keep things organized
and easy to follow, we recommend using a black wire for the negative (short
leg) of the LED.

FIGURE 4-21: Connecting the LED to the jumper wires

Once the jumper wires are connected to all three LEDs, connect the male
ends to the breadboard circuit. The wires for the stimulus LED should go to
E2 and E3, for the green LED to E8 and E9, and for the red LED to E12 and

E13.

Next, reconnect the button to the circuit. The button has four legs, but you
only need to connect to two legs on one side of the button. Connect one male-
to-female wire to one leg and another to the other leg, as in Figure 4-22.
Then, plug one wire into the same breadboard row that connects the 10 kΩ
resistor and Arduino pin 3, and plug the other into GND on the breadboard.
(If you wired up your breadboard prototype just like the diagram in Figure 4-
14, then connect these wires to E20 and E22 on the breadboard.) Because the
button is just a switch, it doesn’t matter which wire you plug into GND.

FIGURE 4-22: Connecting the male-to-female jumper wires to two legs on
one side of the button

With your components in place, plug your Arduino into the computer and
open the Serial Monitor to make sure your circuit still works. You should see
your instruction messages on the Serial Monitor. When the blue LED lights,
press the button as fast as you can. The Serial Monitor should show your
reaction time, and either the red or green LED should turn on, based on how
fast you were.

If your circuit doesn’t seem to be working, check that all of your connections
are secure, and compare your circuit to Figures 4-14 and 4-15 to make sure
the connections are correct.

Spice Up Your Game Enclosure

To finish up, add some bling to your new game. Use your imagination! You
might want to cover your Reaction Timer with your favorite stickers or paint
the box. We love using ping-pong balls in our projects, and since we had a
half left over from Project 2, we decided to glue it on top of the blue LED, as
in Figure 4-23.

FIGURE 4-23: Carnival-themed Reaction Timer game

GOING FURTHER

Next, try combining what you learned in the first three projects with what
you know from this project to make it more interesting—add even more
LEDs, or maybe make the game suitable for two players.

Hack

Add two more LEDs to make a four-LED scale that will show your speed
more accurately. Faster reaction times will light up more LEDs. To do this,
you’ll need the help of a nested if()–else if() control statement. You can stack
your condition statements to tell the code what to do in different conditions,
so if the first logical expression is false, the next one is tested; if that’s also
false, the next is tested; and so on until the final else() statement, which runs
if none of the previous conditions were true. Listing 4-7 shows an example of
this conditional logic. It assumes you’ve added two extra LEDs connected to
pins 10 and 9. Don’t forget the pinMode() commands you’ll have to add to
the setup()!

LISTING 4-7: Snippet of nested if()–else if() statement

➊ if (reactTime <= 215)
 {
 //turn all LEDs on
 digitalWrite(12, HIGH);
 digitalWrite(11, HIGH);
 digitalWrite(10, HIGH);
 digitalWrite(9, HIGH);
 }
➋ else if (reactTime <= 250)
 {
 //turn three LEDs on
 digitalWrite(12, LOW);
 digitalWrite(11, HIGH);
 digitalWrite(10, HIGH);
 digitalWrite(9, HIGH);
 }
➌ else if (reactTime <= 300)
 {
 //turn two LEDs on
 digitalWrite(12, LOW);
 digitalWrite(11, LOW);
 digitalWrite(10, HIGH);

 digitalWrite(9, HIGH);
 }
➍ else
 {
 //turn one LED on
 digitalWrite(12, LOW);
 digitalWrite(11, LOW);
 digitalWrite(10, LOW);
 digitalWrite(9, HIGH);
}

The if() statement at ➊ checks whether the reaction time is less than or equal
to 215 ms and lights up all four LEDs. Then two else if() statements catch
times between 215 ms and 250 ms ➋, lighting up three LEDs, and between
250 ms and 300 ms ➌, lighting up two LEDs. Finally, an else statement ➍
catches all times slower than 300 ms and lights up a single LED.

If you need a little more help with the code, check out our example sketch in
the resources at https://www.nostarch.com/arduinoinventor/.

Modify

One fun way to modify this project would be to make it a two-player game.
You could add a second button and repurpose your LEDs to indicate which
player is faster. In this modification, the green LED will light up if Player 1 is
faster, and the red LED will light up if Player 2 is faster.

First, add a second button. Figure 4-24 shows the additional button at the
bottom of the breadboard. Notice that it’s just a duplication of the pull-up
resistor/button combination circuit that you built for the first button.

FIGURE 4-24: Adding a second button for two-player mode

https://www.nostarch.com/arduinoinventor/

NOTE

If both players hit the buttons at exactly the same time, the game will favor
Player 1 (the green LED). Although this would be a really rare occurrence,
how would you modify the code to light up both LEDs if both buttons are
pressed at the same time?

The complete code for the two-player modification is available, along with
the wiring diagram for the modification, at
https://www.nostarch.com/arduinoinventor/.

Now, go and take your new game out on the town. Are you faster than your
family? Are you faster than your friends? Who is the fastest person you
know?

https://www.nostarch.com/arduinoinventor/

5 A Color-Mixing Night-Light
The wonderful thing about digital electronics and microcontrollers is that
they are smart. They can read sensors and make decisions based on what
those sensors tell them. Sensors are components that collect information
about the environment around them and convert that into something a
microcontroller can understand.

You can use sensors to make projects that react to all sorts of stimuli (like
temperature, sound, and the proximity of an object), but in this project, we’ll
start small with a night-light that reacts to changes in light level, shown in
Figure 5-1.

FIGURE 5-1: Finished Night-Light project

MATERIALS TO GATHER

This project uses a new kind of LED and a photoresistor, a sensor that

changes resistance based on how much light it detects. We encourage you to
be creative and design a custom shade, too, but if you don’t feel up to that
challenge yet, fear not! This book’s resource files include a shade design you
can start with. Figures 5-2 and 5-3 show the parts and equipment you’ll need
for this project.

Electronic Parts

NOTE

The parts marked with an asterisk (*) do not come with the standard
SparkFun Inventor’s Kit but are available in the separate add-on kit.

• One SparkFun RedBoard (DEV-13975), Arduino Uno (DEV-11021), or
another Arduino-compatible board

• One USB Mini-B cable (CAB-11301 or your board’s USB cable; not
shown)

• One solderless breadboard (PRT-12002)

• One mini breadboard (PRT-12043*; not shown)

• One RGB LED, common cathode (COM-09264)

• Three 330 Ω resistors (COM-08377, or COM-11507 for a pack of 20)

• One 10 kΩ resistor (COM-08374, or COM-11508 for a pack of 20)

• One photoresistor (SEN-09088)

• Male-to-male jumper wires (PRT-11026)

• Short 4-inch male-to-male jumper wires (PRT-13870*)

• (Optional) Male-to-female jumper wires (PRT-09140*)

• (Optional) One 4 AA battery holder (PRT-09835*; not shown)

FIGURE 5-2: Components for the Night-Light

Other Materials and Tools

• Craft knife

• Metal ruler

• Glue (hot glue gun or craft glue)

• One sheet of cardstock (not cardboard), about 8.5 × 11 inches

• One sheet of white or translucent vellum, or standard copy paper, about 8.5
× 11 inches

• Enclosure template (see Figure 5-20 on page 144)

FIGURE 5-3: Recommended building materials for the Night-Light

NEW COMPONENTS

You’ll be using two new components in this project: an LED that has three
colors integrated into a single package, and a photoresistor. Let’s take a look
at how these components work.

The RGB LED

If you’ve built any of the other projects in this book, then you already have
experience with regular LEDs. The red, green, blue (RGB) LED shown in
Figure 5-4 works very similarly. This LED is actually three LEDs in one
package: one red, one green, and one blue. Each LED has its own positive (or
anode) leg, but they all share a single negative (or cathode) leg, called the
common cathode.

If you look closely at the LED in Figure 5-4, you’ll notice that the legs are all
different lengths. With regular LEDs, the short leg is the negative leg, but
with the RGB LED, the longest leg is the negative leg. The circuit diagram

for this component is usually drawn like Figure 5-5. Notice that it shows
three separate LEDs connected together, and they each share a single
negative connection.

FIGURE 5-4: An RGB LED with a common cathode leg

FIGURE 5-5: Circuit diagram of an RGB LED

To figure out which positive leg is which color for this particular LED, orient
the LED so that it looks like the one shown in Figure 5-5. In this orientation,
the leftmost leg is the red positive leg. The next leg (the longest one) is the
shared negative leg, and the last two legs are the green and blue positive legs,
respectively.

Keeping in mind which positive leg corresponds to which color, you can wire
this LED into a circuit just like you would three separate LEDs. Just connect
the positive leg(s) you want to use to power or to an Arduino output pin
through a current-limiting resistor, and connect the common cathode to
ground.

RGB LEDs are cool because you can use them to create a slew of colors.
Red, green, and blue are the primary colors in the additive color scheme, and
the LED can mix these colors to create light in other colors. (This is different
from the primary pigments—red, blue, and yellow—which, as you might
remember from grade-school art class, mix together in paints to create new
colors.) The additive color wheel in Figure 5-6 shows how primary colors can
combine to create any color in the rainbow.

FIGURE 5-6: The additive color wheel

With your RGB LED, if you turn on the blue LED and the red LED together,
you get magenta light. Combine the red and green LEDs, and you get yellow.
If all the LEDs are on, you get white light. This concept is the foundation for
how an LED TV or monitor works: each pixel on your screen is essentially
an RGB LED.

The Photoresistor

This Night-Light will turn on when it is in a dark room and turn off when the

room is bright. That means the Night-Light needs to determine whether the
room is dark. To do so, it uses a light sensor to monitor the light level of its
surroundings. There are a number of different light sensors available, but we
used the simple photoresistor shown in Figure 5-7. This component is
sometimes also called a light-dependent resistor (LDR) or a photocell. Also,
similar to many other types of sensors, a photoresistor is sometimes referred
to as a variable resistor sensor.

The resistance of the photoresistor in this project varies from about 80 Ω to
around 1,000,000 Ω (1 MΩ) depending on how much light it is exposed to.
The photoresistor has a low resistance when exposed to bright light and a
high resistance when it’s in the dark.

FIGURE 5-7: A photoresistor

To use the photoresistor to measure brightness, you have to place it in a
voltage divider circuit, like the one in Figure 5-8. A voltage divider uses two
resistors wired in series (that is, in line with each other) between a supply
voltage (5 V) and ground to obtain a smaller voltage.

FIGURE 5-8: Voltage divider circuit

The total voltage across these two resistors is 5 V, and the voltages across R1
and R2 depend on the ratio of the two resistors’ resistances. Vout will be some
voltage between 5 V and 0 V, because the voltage is divided between the two
resistors. The relationship between Vout and the resistor values R1 and R2 can
be characterized by the following equation.

We know what you’re thinking: that looks like math! Well, it is, and math is
an important part of electronics, but it doesn’t have to be complicated. We’ll
take things slow to make sure everyone understands it as we go along. This
little equation is especially helpful when you’re dealing with this
photoresistor or any other type of resistive sensor. In the voltage divider
circuit, if you replace R1 with the photoresistor, you get the circuit shown in
Figure 5-9.

FIGURE 5-9: A voltage divider circuit with a photoresistor

The resistance of the photoresistor increases as the light around it gets dim.
Now, look at the voltage divider equation. As resistance R1 increases, the
denominator of the fraction increases, making the entire fraction smaller.
That means Vout gets smaller as it gets darker.

With this circuit, you can accurately read the amount of light on the
photoresistor by connecting Vout to an analog input pin on the left-hand side
of the Arduino (the pins marked with an A). Analog signals are those that can
vary across a range of values. Up to this point, you’ve only used the digital
pins on the right-hand side of the Arduino board. Unlike a push button, which
has only two states, the photoresistor can have a range of values based on the
brightness of light and the voltage divider circuit. This is the difference
between a digital and an analog signal.

That’s all you really need to know to use this voltage divider circuit, but if
you want to practice the calculations, see “Show Me Some Math: Voltage
Dividers” on page 130.

SHOW ME SOME MATH: VOLTAGE DIVIDERS

Using a multimeter, you can measure the resistance of a photoresistor under

different conditions. (For instructions on using a multimeter, see “Measuring
Electricity with a Multimeter” on page 298.) When we shined a bright light
from a flashlight or cell phone on the photoresistor, we measured a resistance
of about 100 Ω. When we covered the photoresistor with our hands, we saw a
resistance of about 200 kΩ. With the fixed resistor (R2) set at 10 kΩ, we’d
expect to see the following values from the voltage divider in those two
situations:

With an input voltage of 5 V, the voltage across the photoresistor varies from
0.24 V to 4.95 V through a range of light levels. We’ll show you how to use
the Arduino to read these voltages in this chapter. Pretty cool, right? Math
works!

BUILD THE NIGHT-LIGHT PROTOTYPE

Let’s put the RGB LED and the voltage divider together to build the Night-
Light circuit. You’ll start by building the voltage divider circuit with the
photoresistor and then add the RGB LED. When you’re done, your
breadboard should look like Figure 5-10. We’ve also included a circuit

diagram in Figure 5-11 for your reference.

FIGURE 5-10: Completed prototype circuit

FIGURE 5-11: Circuit diagram of completed prototype Night-Light circuit

Wire the Voltage Divider

Find your photoresistor (it should look like the one in Figure 5-7) and a 10
kΩ resistor. Recall that a 10 kΩ resistor has brown, black, and orange color
bands, as shown in Figure 5-12. See “Resistors and Bands” on page 308 for
details on how to determine the value of a resistor from its color bands.

FIGURE 5-12: 10 kΩ resistor (brown-black-orange)

With your parts in hand, build the voltage divider circuit as shown in Figure
5-13. It’s good practice to connect both power (5 V) and ground when setting
up the breadboard for building circuits, so do that first. Find the ground rail
(–) and the power rail (+) on the left side of your breadboard. Connect 5 V on
the Arduino to the power rail, and connect GND on the Arduino to the
ground rail.

FIGURE 5-13: Completed voltage divider, using the photoresistor

Next, plug the photoresistor in near the bottom of the breadboard, with each
leg in its own row. Plug one side of the 10 kΩ resistor into the same row as
one of the photoresistor legs (connecting the two together), and plug the other
side of the resistor into a row by itself. Add a wire to connect the 5 V power
rail (+) to the photoresistor leg that isn’t connected to the resistor. Then, add
another wire to connect the ground rail (–) to the resistor leg that’s in a row
by itself.

Finally, connect the photoresistor to the Arduino by running a wire from the
breadboard row that’s shared with both a leg from the resistor and a leg from
the photoresistor to the Arduino analog input pin A0. This wire is often called
the output voltage of the photoresistor, or the signal wire. The analog input
pins, A0–A5, can all be used to measure a range of voltages.

Notice how the breadboard circuit looks a lot like the diagram in Figure 5-9.
This is one of the most basic sensor circuits used in Arduino projects. Many
other analog sensors, like sensors for flex, temperature, and pressure, are
variable resistors, too. To experiment with one of those later, just replace the
photoresistor with that sensor.

Wire the RGB LED

Remember the Stoplight circuit in Project 2? That project had three LEDs.
The RGB LED basically squishes those three LEDs together. The RGB LED
has four legs, and the longest leg is the common cathode (negative) leg. With
your RGB LED oriented as in Figure 5-5, find the red leg. Plug the RGB
LED into the breadboard so that the red leg is at the top and the longest leg is
the second one down, as shown in Figure 5-14.

FIGURE 5-14: Adding the RGB LED to the voltage divider circuit

The two halves of the breadboard are divided by a ditch that separates the
rows. Plug the RGB LED into the right side, starting with the red pin in row
4.

Next, find three 330 Ω resistors; their color bands are orange-orange-brown.
Use the three resistors to bridge the red, green, and blue pins across the ditch
to open rows on the other side, as shown in Figure 5-14. The resistors need to
straddle the ditch so that the two ends of the resistors aren’t shorted together.

Run a wire from the common cathode (negative) leg of the LED to the
ground rail on the left side of the breadboard. Finally, connect the three pins
of the RGB LED to the Arduino by running a wire from pin 11 on the
Arduino to the resistor connected to the red pin on the breadboard, pin 10 on
the Arduino to the resistor for the green pin on the breadboard, and pin 9 on
the Arduino to the resistor for the blue pin on the breadboard. When you’re
done, it should resemble the diagram in Figure 5-14. Notice that the red,
green, and blue wires correspond to the red, green, and blue positive legs on
the LED.

With the RGB LED hooked up, you can control each color like a separate
LED, using pins 9, 10, and 11. Open up the Arduino IDE, and let’s play with
this idea!

TEST THE NIGHT-LIGHT WITH BASIC COLOR
MIXING

You’ll tackle a few new concepts with this project, starting with how to mix
colors using an RGB LED. The RGB LED is really three LEDs in one, and
you need to treat it that way in your code. Create a new sketch, and replace
the default code with the setup() and loop() functions in Listing 5-1.

LISTING 5-1: A simple code example to display cyan on the RGB LED

 void setup()
 {
➊ pinMode(11, OUTPUT); //red
 pinMode(10, OUTPUT); //green
 pinMode(9, OUTPUT); //blue
 }

 void loop()
 {
➋ digitalWrite(11, LOW); //red
➌ digitalWrite(10, HIGH); //green
➍ digitalWrite(9, HIGH); //blue
 }

Each pin that controls the RGB LED needs its own pinMode() function to set
that pin as an OUTPUT ➊. Previous projects used the digitalWrite() function
to turn LEDs on and off with individual pins, and you’re going to do the
same with the RGB LED. Using the color wheel in Figure 5-6, choose from
any of the colors represented. We selected cyan, the combination of green
and blue. To create cyan, you need to turn on the green ➌ and blue ➍ LEDs
using the digitalWrite() function. To make sure that the red LED is off, the
code also needs a third digitalWrite() function ➋.

Upload this sketch to your Arduino, and if the circuit is wired up correctly
and the code is correct, your RGB LED should glow with a soft cyan light. If
it’s a different color or not lighting up at all, check your wiring and the
orientation of the RGB LED.

Notice that even though you’re using the RGB LED to mix colors, your code
is still pretty similar to the code from other LED projects in this book. Each
LED is turned on by a separate digital pin using the pinMode() function.
You’re just controlling the colors by using multiple digitalWrite() functions
at the same time.

TRY IT OUT: MIX MORE COLORS!

Try changing the color of the LED on your own, and this time, incorporate
red into the color. Can you make magenta? What about yellow? What color
do you get when you turn all three colors on? Use the color wheel as a
reference.

PROGRAM THE NIGHT-LIGHT

In the Night-Light circuit, the photoresistor is used as a light sensor. The
photoresistor voltage divider is connected to analog input pin A0. Recall that
the Arduino can be used to measure voltage on any of the analog input pins.
You can have the Arduino read the sensor value from that pin using the
analogRead() function. The analogRead() function reads the voltage applied
to an analog input pin and returns a value between 0 and 1,023, scaled from a
voltage range of 0 V to 5 V. For example, if you applied 2.5 V to A0, the
analogRead(A0) function would return a value of about 512, or roughly half

of 1,023.

As the amount of light hitting the photoresistor changes, its resistance
changes, and because of the voltage divider circuit, the voltage on the analog
input pin changes, too. Let’s see how to code this on the Arduino. To
determine whether the Night-Light should be on or off, you want to read the
voltage from the photoresistor and compare it against a value that indicates
whether the room is dark or bright. You should already have the circuit wired
up, with the RGB LED and the photoresistor hooked up to pin A0. Listing 5-
2 shows the Arduino sketch in its entirety. You can either modify the sketch
you made for Listing 5-1 to match it or just add this code to a brand-new
sketch.

LISTING 5-2: Complete Night-Light code

 int calibrationValue;
 int lightValue;

 void setup()
 {
 pinMode(9, OUTPUT);
 pinMode(10, OUTPUT);
 pinMode(11, OUTPUT);
➊ calibrationValue = analogRead(A0);
 }

 void loop()
 {
➋ lightValue = analogRead(A0);
 if(lightValue < calibrationValue - 50)
 {
 digitalWrite(11, LOW); //red
 digitalWrite(10, HIGH); //green
 digitalWrite(9, HIGH); //blue
 }
➌ else
 {

 digitalWrite(11, LOW); //red
 digitalWrite(10, LOW); //green
 digitalWrite(9, LOW); //blue
 }
 }

Upload this to your Arduino board, and make sure the room you’re in is
brightly lit. When you shade the photoresistor enough with your hand, the
RGB LED should turn on with a cyan color. If it doesn’t work, try cupping
your hands around the photoresistor or covering it with a book or magazine to
make sure that it doesn’t sense any light. Now, if you remove your hand and
expose the photoresistor to light, the RGB LED should return to being off.
Pretty cool! Let’s look at how this works.

Prepare to Check the Light Level

First, the sketch creates the calibrationValue and lightValue global variables
without assigning values to them. Like the code in Listing 5-1, the setup()
function calls pinMode() once for each pin of the RGB LED, setting pins 9,
10, and 11 to OUTPUT. Next, the sketch takes a single initial calibration
reading from the photoresistor ➊ and places it in the calibrationValue
variable. This is the value the sketch will compare future measured light
levels against to decide whether to turn the LED on or not.

Now, jump into the loop() function. The loop() function repeatedly reads the
current light level and stores it in the lightValue ➋ variable. The value of
lightValue will be updated every time the loop() function repeats.

Control the Night-Light Based on the Light Level

With the initial light level stored in the calibrationValue variable and the
current light level stored in the lightValue variable, the Arduino can compare
the two and decide whether to turn the Night-Light on or off. You can tell the
Arduino to do this by using an if() statement, a structure that controls the
flow of code execution in a sketch. It allows the Arduino to make a decision
based on the truth of an expression, a mathematical statement that has one of
only two outcomes: true or false. You can see the basic flow of an if()

statement in Figure 5-15.

FIGURE 5-15: The structural flow of an if() statement

This sketch’s if() statement checks the expression lightValue <
calibrationValue - 50. The < symbol means “less than,” so this statement
reads, “Is lightValue less than calibrationValue minus 50?” If that expression
is true, the sketch enacts the code inside the set of curly brackets just
underneath the if() statement.

As the room gets darker, the voltage coming from the sensor circuit
decreases. This expression checks if lightValue is significantly smaller than
calibrationValue, which is true if the room has gotten darker. If it has, the
sketch sets pins 9 and 10 HIGH and sets pin 11 LOW to turn the Night-Light
on with a cyan color.

When the if() statement is false, the Arduino skips to the code that follows.
This sketch includes an else ➌ statement, which gets executed only after an
if() statement’s expression evaluates to false. Inside the else statement, the

sketch turns off all three pins.

Prevent False Alarms

If the sketch just needs to check whether the light level has changed, why
subtract 50 from the calibrationValue variable in the expression? Checking
lightValue against a number smaller than calibrationValue increases the
tolerance on the sketch. If you were to use the lightValue < calibrationValue
expression, your Night-Light would flicker on and off at the smallest changes
in light (flip back to “Logical Comparison Operators” on page 106 for more
on the < symbol). Subtracting 50 from the calibration value makes sure that
the Night-Light turns on when the light level is more than 50 below the
calibration (initial) measurement.

Recalibrate the Night-Light

One last piece of useful information before you prettify your Night-Light is
how to reset the calibration value to recalibrate for different light levels. The
value of calibrationValue is set in the setup() function, so it runs only once.
When your Arduino is powered, there are two different ways to restart your
sketch. First, you can turn the Arduino off and on again, but that’s kind of
annoying and unsophisticated. The second way is a little more elegant. As
with Project 4, you can simply press the reset button shown in Figure 5-16 to
restart your sketch. It works the same way as the reset button on a computer
or game console. Every time you press that button, the calibration value for
the Night-Light is reset.

FIGURE 5-16: The reset button in all of its clicky glory

Each time you move your project into a new room or lighting situation,
recalibrate your photoresistor by pressing the reset button. When you
recalibrate your photoresistor, make sure that it’s reading the actual lighting
conditions of your room and that you’re not accidentally shadowing it in any
way.

CREATE MORE COLORS WITH ANALOGWRITE()

You’re not restricted to just the colors you’ve seen so far with the RGB LED.
By mixing gradations of those colors, you can make cerulean, orange,
powder pink, or any of the other thousands of combinations. But you can’t
create these colors by just turning the different standard colors on an RGB
LED on and off, so you need a way to turn red on just a bit and add a hint of
blue and green to create, for example, pink.

Create Analog Signals with PWM

To use the LED in this way, you need to use analog values rather than digital
values. In the Electronics Primer, we talked about the difference between
analog and digital (page 10). A digital value can only be on or off, like a
normal light switch. An analog signal has an infinite number of values, so it
works on a scale, like a dimmer switch.

The problem is that the Arduino is a digital device, which means that it can
only turn things on and off. To get it to output a value somewhere between on
and off, you use a technique called pulse width modulation (PWM) to emulate
an analog signal with digital values. The Arduino does this by turning a
digital pin on and off extremely fast and then varying the relative amount of
time the signal is HIGH (on) compared to the amount of time the signal is
LOW (off) to create a signal that appears to be analog. The longer a pin is at a
high value, the greater the analog value of the signal. This is sometimes also
called varying the duty cycle. Figure 5-17 shows some duty cycles with
varying pulse widths; the analog value of the pulse at 75 percent is higher
than the value of the 25 percent duty cycle.

FIGURE 5-17: Duty cycle signals showing different widths of the pulse

That’s great, but not all Arduino pins have the ability to use PWM. On a
standard Arduino, only certain GPIO pins—that is, pins 3, 5, 6, 9, 10, and 11
—are PWM compatible. These pins are noted with a tilde (~) on the board,
highlighted in Figure 5-18.

FIGURE 5-18: PWM pins on the standard RedBoard

Anytime you want to control something with varying values, like the
brightness of an LED, the speed of a motor, or the tone of a buzzer, you’ll
need to use a PWM pin to fake an analog signal. Here, we’ll use it to control
the brightness of each color of the RGB LED in order to mix the colors. For
this project, you have the RGB LED red, green, and blue pins already hooked
up to PWM pins 11, 10, and 9, respectively, so you don’t have to change any
of your wiring, only your code.

Mix Colors with analogWrite()

To utilize these PWM powers, you need to use the analogWrite() function,
which writes a PWM value to a pin. The analogWrite() function accepts two
parameters: the pin number that you want to control and a PWM value to
write, which is always a range from 0 to 255. The value of 0 is completely
off, and 255 is completely on. Let’s write a simple sketch that demonstrates
the analogWrite() function.

 void setup()
 {
➊ pinMode(9, OUTPUT);
 }

 void loop()
 {

➋ analogWrite(9, 2);
 }

First, as with any other pin, you need to specify how you’re going to use the
GPIO pin using the pinMode() function. You pass the pin number, and, since
the LED is an output, you pass OUTPUT as you have in past projects ➊. To
set a PWM value, you use the analogWrite() function to set an analog value
between 0 and 255. In the example, pin 9 (the blue anode of the RGB LED)
is set to an analog value of 2 ➋. Upload this sketch to your Arduino, and you
should have a dim blue colored RGB LED. The analogWrite() value of 2 uses
PWM to turn on this LED for about 0.7 percent or 2/255 of the time. Before
moving on, try changing the PWM value and reuploading a few times to get a
feel for the different values and their intensity.

Now that you have the hang of the analogWrite() function, try using it to mix
colors. Listing 5-3 creates a blink pattern with different, more interesting
colors than those used so far.

LISTING 5-3: Multicolored blink

 void setup()
 {
➊ pinMode(11, OUTPUT); //red
 pinMode(10, OUTPUT); //green
 pinMode(9, OUTPUT); //blue
 }

 void loop()
 {
➋ analogWrite(11, 153); //dark orchid purple
 analogWrite(10, 50);
 analogWrite(9, 204);
 delay(1000);
➌ analogWrite(11, 155); //pale cerulean
 analogWrite(10, 196);
 analogWrite(9, 226);
 delay(1000);
➍ analogWrite(11, 255); //cadmium yellow

 analogWrite(10, 246);
 analogWrite(9, 0);
 delay(1000);
 }

First, add the other two color pins using the pinMode() function ➊. Then,
cycle through three different colors by setting different analog values to the
three pins. This sets the brightness level of each specific color, changing how
much of that color is added to the final mix.

The first color set creates a bluish purple ➋, the second creates a dusty pale
blue ➌, and the final set creates a bright yellow ➍. Play around with
analogWrite() to create different colors.

Find RGB Values with Color Picker

You created some pretty specific colors before, but it can be hard to predict
which RGB values will give you certain colors. An easy way of finding out is
to use a color-picker tool on the web. There are plenty of them out there, but
we recommend https://www.colorpicker.com/. This tool gives you the RGB
values for colors you pick from a palette, as shown in Figure 5-19.

FIGURE 5-19: The color-selector tool from https://www.colorpicker.com/.

https://www.colorpicker.com/
https://www.colorpicker.com/

The three numbers you want to use are labeled R, G, B for the three colors
Red, Green, and Blue. Ignore the top three H, S, B boxes; they refer to
another common method for specifying colors called HSB (hue, saturation,
and brightness). This is a useful technique for many color mixing and graphic
design applications, but it’s not as useful when you have direct control over
the three colors red, green, and blue.

The Custom-Color Night-Light Code

With the RGB knowledge in hand, now you can easily modify your Night-
Light code to include your custom color by replacing your digitalWrite()
function with analogWrite(). Listing 5-4 shows changes to the Night-Light
code, with the color values set to the teal color we selected in Figure 5-19.

LISTING 5-4: Final Night-Light code with analogWrite() instead of
digitalWrite() commands

int calibrationValue;
int lightValue;

void setup()
{

 pinMode(9, OUTPUT);
 pinMode(10, OUTPUT);
 pinMode(11, OUTPUT);
 calibrationValue = analogRead(A0);
}

void loop()
{
 lightValue = analogRead(A0);
 if(lightValue < calibrationValue - 50)
 {
 analogWrite(11, 66); //red
 analogWrite(10, 166); //green
 analogWrite(9, 199); //blue
 }
 else
 {
 analogWrite(11, 0); //red off
 analogWrite(10, 0); //green off
 analogWrite(9, 0); //blue off
 }
}

With that, your Night-Light prototype is done! If you don’t like the teal we
selected, use the color-selector tool to find a color you prefer, update your
analogWrite() functions with its RGB value, and then re-upload your sketch
before moving on. Visit http://99colors.net/color-names/ if you want to
browse through some fun color suggestions.

Now that you have the code working, it’s time to get creative and build the
enclosure and lampshade.

BUILD THE NIGHT-LIGHT ENCLOSURE

We suggest cardstock for this project’s enclosure rather than cardboard (as it
produces cleaner edges and is easier to work with) and a vellum material or
translucent paper for the shade. Let’s get building.

http://99colors.net/color-names/

Cardstock Construction

We’ll show you a basic Night-Light design to get you started, but we
encourage you to get creative by customizing the design later. Or, if you’re
feeling confident, you can design your own Night-Light enclosure from
scratch without using our templates at all.

Cut Out the Parts

This project has two templates: one for the structure of the Night-Light and
one for the shade. The shade can be made from any material similar to printer
paper in thickness, but we’ve found that a fully translucent material like
vellum works best. If you have a printer, you can open the templates in
Figure 5-20 from this book’s resource files and print them directly to your
material to cut out.

FIGURE 5-20: Enclosure templates for the Night-Light (not full size)

Note that the base of the Night-Light enclosure has a square cut out for

access to wires. We also found it convenient to leave one of the four side
panels off so that we could run the wires back to the larger breadboard more
easily. We’ll leave it up to you whether to include that fourth panel.

Once your template pieces are copied onto your cardstock and translucent
material, cut them out. We highly recommend a sharp craft knife and a metal
ruler to get clean edges for your project, as shown in Figure 5-21. Remember
craft-knife safety: always pull the blade (don’t push), and make multiple
passes.

FIGURE 5-21: Cutting out templates from cardstock

Assemble the Parts

Arrange all of your pieces in front of you. You should have six pieces for the
structure and four pieces for the shade material, as shown in Figure 5-22.

FIGURE 5-22: Individual parts cut out and ready for assembly

First, pick up the base (the piece with the center cut out). Hold it flat in front
of you and fold the left and top edges toward you to form a right angle. Fold
the tab on the left edge inward and secure it to the top edge with a small
amount of glue, as shown in Figure 5-23. Repeat this for the other four
corners of the base piece, and then use the same technique to assemble the
top piece.

NOTE

Depending on your card-stock thickness, you may want to lightly score the
fold lines with your craft knife. This will result in sharper, cleaner corners.

FIGURE 5-23: Assembling the base and top pieces

Next, fold each of the four side pieces down the middle lengthwise to form a
nice 90-degree angle. There is a dotted line in the template to guide you.
Once you have the top and base assembled and the sides folded, the six
pieces should look like the ones in Figure 5-24.

FIGURE 5-24: Assembled pieces for the Night-Light enclosure

Finally, take each corner piece and glue it to the base, as shown in Figure 5-
25.

FIGURE 5-25: Glue each corner piece to the base

When you’re finished gluing corners, you should have four standing corner
support structures. We found it easier to glue the shades in place before
gluing the top piece, so just add a small dab of glue on the inside edge of
each support structure, and press the shades into place, as shown in Figure 5-
26. You may want to use only three shades, to allow access for wires.

FIGURE 5-26: Before adding the top piece, glue the shades into place.

When you’ve added all the panels you want, add the top piece. Simply add a
small dab of glue on each corner to secure the top piece in place, as shown in
Figure 5-27.

FIGURE 5-27: Adding the final top piece

Now you should have a completed Night-Light enclosure like the one in
Figure 5-28!

FIGURE 5-28: Final Night-Light enclosure

Put the Electronics Inside

You have a couple of options for transferring the electronics into your new
project: put the breadboard and the Arduino baseplate under the Night-Light,
or move just the LED inside the Night-Light. We took the second approach.

First, unplug your Arduino from the computer, and then move the RGB LED
onto a mini breadboard. The mini breadboard works the same way as its
bigger cousin does; it just lacks power rails and is shorter. Add jumper wires
to the mini breadboard to make the connection from the LED back to your
original circuit, as shown in Figure 5-29. Notice that each of the four legs of
the RGB LED is in a separate row: one for the red leg, one for the ground leg
(the longest), one for green, and one for blue.

FIGURE 5-29: Using the mini breadboard to move the RGB LED inside the
Night-Light

Now, connect the other end of each jumper wire to the breadboard row where
the corresponding RGB LED leg used to be, as in Figure 5-30.

FIGURE 5-30: Connecting the mini breadboard back to the main circuit

If you left one of the sides open, simply run the wires out the back of the
lamp enclosure, like we did in Figure 5-31. Otherwise, carefully place your
shade over the mini breadboard, and either tape your jumper wires to the
table so the shade stays flat or make a couple of notches in the cardboard at
the bottom of the enclosure for the wires to fit through.

FIGURE 5-31: Placing the shade on top of the mini breadboard

Let It Glow!

If you have the external battery pack, you can now put four AA batteries in,
and plug the barrel jack into the Arduino. The board should still be
programmed and running, so just turn off the lights. You should get a nice,
softly glowing night-light, like ours in Figure 5-32.

FIGURE 5-32: Lights out! Our final glowing Night-Light project.

GOING FURTHER

This project used a lot of new skills and knowledge, but it still has a load of
potential for further hacking. There are plenty of things you can do in terms
of both the design and the code as you build your skills with Arduino.

Hack

One great sketch hack would be to have the colors change periodically when
the Night-Light is on. For some hints, look back at your Stoplight project
code. One method would be to add some simple blink code within the if()
statement rather than just digitalWrite() functions and build a color
animation.

You could also try adding different colors for different light readings using
the else if() command rather than just if() or else on its own. The base
structure of this method might look something like Listing 5-5.

LISTING 5-5: Three-stage Night-Light code example

if (lightValue < calibrationValue - 200)

{
 //do if it is completely dark
 digitalWrite(11, HIGH);
 digitalWrite(10, LOW);
}
else if (lightValue < calibrationValue - 50)
{
 //do if it is a little dim
 digitalWrite(11, LOW);
 digitalWrite(10, HIGH);
}
else
{
 //do if it is bright
 digitalWrite(11, LOW);
 digitalWrite(10, LOW);
}

You can see the sketch uses else if() to set categories of light value. You
would then need to set the color for each category.

Modify

The design of your Night-Light is totally up to you, so you can create a whole
new design if you want. There are a number of tools you can use to design an
enclosure and then produce it through automated means, such as laser cutting
with balsa wood, 3D printing with materials like ABS or HIPS plastics, or
even CNC milling, routing, or machining. Computer-controlled
manufacturing will produce superclean and accurate parts that will amount to
a more refined product. We encourage you to explore these possibilities to
create something more permanent and polished. If you don’t have access to
these kinds of tools, try looking into local hacker or maker spaces in your
city. Often they’ll have facilities and tools that you can work with.

We have included a few example templates and ideas of projects that you can
build and adapt at https://www.nostarch.com/arduinoinventor/. Figure 5-33
shows an example of how you can break up the lampshade design with some

https://www.nostarch.com/arduinoinventor/

fun patterns.

FIGURE 5-33: A fun design from our design templates.

6 Balance Beam
In this project, you’ll build a desktop balance beam game using a turn knob
and a servo motor (a small motor capable of making precise movements).
The aim of the game is to roll a ball back and forth along the beam without it
falling off. You’ll do this by using the turn knob to control the position of the
servo. As the servo moves, so will the beam! Ready to get started?

Figure 6-1 shows the finished project. This is a simple mechanism that is
made entirely of cardboard and a few household materials.

FIGURE 6-1: The finished Balance Beam project

MATERIALS TO GATHER

The circuit for this project uses relatively few parts, though we will introduce

two new pieces of hardware: the servo motor and the potentiometer. Take a
look at the electronic parts and other materials you’ll need, shown in Figures
6-2 through 6-4.

Electronic Parts

• One SparkFun RedBoard (DEV-13975), Arduino Uno (DEV-11021), or any
other Arduino-compatible board

• One USB Mini-B cable (CAB-11301 or your board’s USB cable; not
shown)

• One solderless breadboard (PRT-12002)

• One 10 kΩ potentiometer (COM-09806)

• One submicro size servo motor (ROB-09065)

• Male-to-male jumper wires (PRT-11026)

NOTE

All of the parts used in this project are standard in the SparkFun Inventor’s
Kit.

FIGURE 6-2: Components for the Balance Beam

Other Materials and Tools

• Pencil or marker

• Craft knife

• Metal ruler

• Needle-nose pliers

• Wire cutters

• Glue (hot glue gun or craft glue)

• Mini screwdriver

• Scissors (not shown)

• (Optional) Drill and 1/4-inch, 1/8-inch, and 1/16-inch bits

• Two sheets of cardboard (roughly 8.5 × 11 inches in size)

• Balance Beam template (see Figure 6-16 on page 167)

• One bamboo skewer

• One small drinking straw (the bamboo skewer should fit into the straw
loosely)

• One ping-pong ball

• One medium-size paper clip

FIGURE 6-3: Recommended building materials

FIGURE 6-4: Recommended tools

NEW COMPONENTS

In the previous projects, you’ve mostly used your Arduino to control LEDs,
but now it’s time to branch out and explore other components. This project
introduces a new sensor, called a potentiometer, and motors, specifically the
servo motor.

The Potentiometer

In this project, you’ll use a potentiometer to control the movement of the
Balance Beam. A potentiometer is a kind of sensor known as a variable
resistor, which just means it’s a resistor whose value can vary.

A potentiometer generally has three legs or connection points and is
represented by the symbol shown in Figure 6-5.

FIGURE 6-5: Schematic diagram for a potentiometer

Potentiometers come in many shapes and sizes, a few of which are shown in
Figure 6-6. Some look like turn knobs, some are sliders, and others require a
small screwdriver to manipulate. Regardless of their appearance, they all
work in the same way. And they are all around you—at home, you might find
them in the dimmer switch of your dining room light, in the volume knob on
your stereo, or inside devices like DVD players.

FIGURE 6-6: Various shapes and sizes of potentiometers. We’ll be using the
one on the left.

A potentiometer has a fixed resistance between the two opposite legs marked
A and B in Figure 6-7. Potentiometers can come in all sorts of resistance
values, but for this project you’ll use a 10 kΩ potentiometer. As you turn the
knob or move the slider, the third leg of the potentiometer (marked C), called
the wiper, moves up or down the resistor, and the resistance between B and C
changes. It’s this resistance value that’s applied to the circuit.

If you turn the knob clockwise, the wiper moves toward A and the resistance
between C and B increases; if you turn the knob counterclockwise, the wiper
moves toward B and the resistance decreases. Figure 6-7 shows how moving
the wiper affects the resistance.

FIGURE 6-7: Various positions on a potentiometer

If you connect A to 5 V, B to GND, and C to an analog input pin on your
Arduino, this circuit starts to resemble the voltage divider you used in Project
5. As you turn the knob, you can vary the voltage on C between 0 V and 5 V.
This setup is also sometimes called an adjustable voltage divider.

The Servo Motor

A servo motor (or just servo for short) is a special type of motor designed to
rotate an arm (or horn) to a particular angle, which you will determine in
your sketch. Most servo motors have a given range of 180 degrees, though
some can rotate a full 360 degrees; these are called continuous rotation
servos. In this project, you’ll be using a standard 180-degree hobby servo,
shown in Figure 6-8.

FIGURE 6-8: A standard hobby servo

Servo motors are used in thousands of different products, from model cars
and airplanes to the speedometer in your car and the robotic arms that built it.

What’s inside that black box? We opened one up so you don’t have to—see
Figure 6-9.

FIGURE 6-9: The inside of a servo motor

Inside a servo are three main parts: the motor, gear train, and control circuit.
When voltage is applied to the motor, it turns the gear train, which turns the
hub of the servo motor. The rotational position of the hub is controlled by the
control circuit. Part of the gear train is a potentiometer that rotates as the
motor rotates. Remember that a potentiometer is a simple sensor that changes
resistance based on how much it rotates, and when it’s connected up as an
adjustable voltage divider, the voltage varies as the potentiometer rotates. The
control circuit reads both the value in the input signal coming into the servo
(from the Arduino, in this case) and the potentiometer value and compares
them. When the two values are equal, the motor stops and holds its position.

A servo motor relies on PWM, a concept we introduced in “Create More
Colors with analogWrite()” on page 138. To control the position of a servo,
the Arduino sends out a PWM signal that pulses every 20 ms. The width of
the pulse corresponds to a specific rotational position for the servo motor.
Figure 6-10 illustrates this by showing the minimum PWM pulse widths for 0
degrees of a servo, the midpoint of 90 degrees, and the maximum of 180
degrees. Similar to blinking an LED, you can use the Arduino to create a very
short pulse that is on for 1 ms and off for 19 ms to move the servo to an angle
of 0 degrees.

FIGURE 6-10: The PWM duty cycles for the standard range of a servo

To set the angle of a servo motor to 0 degrees, you could use code like the
following:

void setup()
{
 pinMode(9, OUTPUT);
}

void loop()
{
 digitalWrite(9, HIGH);

 delay(1);
 digitalWrite(9, LOW)
 delay(19);
}

This code drives pin 9 HIGH for 1 ms, and then immediately sets the pin
LOW for 19 ms. As soon as the 19 ms are over, it has to drive the pin HIGH
again for 1 ms to maintain the timing cycle. If your code is busy managing
timing like this, you can’t add anything else to it without affecting the timing
of the pulses and control of the servo. Thankfully, the Arduino has a trick to
simplify the way you control the servo motor: using a library. A library is a
file containing extra code that you can use with your sketch to perform
specific tasks or make it easier to use particular parts. The Servo library
handles all of the pulse timing needed to drive the servo motor to a specific
angle.

In this project, you’ll be using the Arduino to move a balance beam based on
the voltage output of a sensor—your potentiometer. The code will use the
voltage reading of the sensor to set the appropriate pulse width length for a
given rotation for the servo, which will determine the angle of the beam.

The good news is that the Arduino, and more specifically the Servo library,
does all of the hard work for you! It is great to understand how the pulse
width controls the position of the servo, but, in the end, the software takes
care of it for you.

BUILD THE BALANCE BEAM PROTOTYPE

Now that you know the theory, you’ll build the circuit for the Balance Beam.
You’ll start by connecting the servo, and then you’ll add a potentiometer;
Figure 6-11 shows the full circuit.

Notice that the servo has a single three-pin female header. To connect this to
your circuit, you’ll need to use male-to-male jumper wires. Take three short
male-to-male jumper wires and connect these to the female pins, as shown in
Figure 6-12. It’s good practice to use the colors that correspond to the servo
wires to make it easier to see which is which: black, red, and white represent

the ground, power, and signal lines, respectively. Now, hook the servo up to
the Arduino.

FIGURE 6-11: Balance Beam prototype circuit

FIGURE 6-12: Adding male-to-male jumper wire extensions to the servo
motor

The circuit connection is pretty simple: connect 5 V and GND from the
Arduino to the power rails on the left side of the breadboard. Connect the
servo’s ground (black) wire to the ground rail on the breadboard and the

power (red) wire to the 5 V rail. Connect the signal wire directly to pin 9 on
the Arduino. A complete diagram is shown in Figure 6-13.

FIGURE 6-13: Servo hooked up to signal, power, and ground

Finally, add the servo horn onto the hub of the servo. Horns are different-
shaped arms for a servo that rotate with the hub to make it easier to use and
attach things to the servo. At this point, select any one of the horns that come
with the servo, and press-fit it onto the hub of the servo, as shown in Figure
6-14. You will add a specific horn later, but for now we just want to make it
easier to see rotation.

FIGURE 6-14: Press-fitting a servo horn from the included options

If the servo starts moving or acting erratically, simply disconnect its black
wire from the ground rail to stop it. It’s good safety practice to keep the black
wire disconnected until you upload code.

Now, wire up the potentiometer. The breadboard has plenty of room, so place
the potentiometer anywhere you like, making sure each leg is in its own row.
Connect the two outside pins to the 5 V and ground rails, with the center pin
connected to analog input pin A0 directly on the Arduino, as shown in Figure
6-15.

FIGURE 6-15: The full Balance Beam circuit

At the moment, you just have a servo connected to a potentiometer. To give
the project its balancing powers, you need to program it.

PROGRAM THE BALANCE BEAM

To use the servo with an Arduino, you need to use the Servo library— which,
as mentioned earlier, is a collection of prewritten code that expands the
commands and capabilities of the code in your sketch. It gives you more
features and functions to work with and simplifies using external hardware
with your Arduino. For example, the Servo library includes code that attaches
the servo to a specific Arduino pin, moves the servo to specific angles, and
even detaches the servo from a pin.

Before you program the full project, you’ll upload a quick test sketch to
check that your servo is working correctly.

Test the Servo

Here’s a simple example sketch for controlling your servo. Start a new sketch
by selecting File ▸ New, and then enter the sketch in Listing 6-1:

LISTING 6-1: A servo “Hello world”

➊ #include<Servo.h>

➋ Servo myServo;
 void setup()
 {
➌ myServo.attach(9);
 }

 void loop()
 {
➍ myServo.write(90);
 }

To use the Servo library, call #include<Servo.h> ➊, which tells the Arduino
to include the Servo.h file containing the Servo library code. This adds the
functions and definitions of the library to the sketch. Notice that this is one of
the rare instances where there isn’t a semicolon at the end of the line. In
Arduino programming, the # symbol indicates that the following code is a
preprocessor directive, a special piece of code that should be executed before
the rest of the sketch. When you compile a sketch, the first thing that runs is
the preprocessor, which searches for any lines that start with a # symbol and
don’t end with the semicolon and runs those lines first. The #include directive
tells the preprocessor to include all of the code in the named file before
compiling the code in your sketch.

You can also use the drop-down menu to add a library by selecting Sketch ▸
Include Library… and then selecting the library you want to use (in this
case, Servo). This will automatically add the #include statement to your
sketch. This option is great if you can’t remember the precise syntax of the
#include command or the library name—for example, when you use a library
for the first time.

The library allows you to create a type of data structure called an object. An
object is simply a container for variables and functions that are predefined.
Functions that are associated with the object are referred to as methods. In
this sketch, the line Servo myServo; creates a new Servo object named
myServo ➋.

You can give an object any name you like, but we recommend using a
descriptive name, like myServo, so it’s recognizable. Now you can use that
name to reference all the servo commands that are available to you in the
Servo library. For example, the method myServo.attach() tells the Arduino
which pin the servo is attached to. If you had multiple servos, each one would
get a unique name so that you could control all of them independently.

As an example, think of a robot arm that moves at the shoulder, elbow, and
wrist, using a servo for each joint. The code for it would create three Servo
objects named shoulderServo, elbowServo, and wristServo so that you could
position each one accurately and at a different orientation from the others.
Each one of those Servo objects would have its own set of methods that you
could use separately.

For the Balance Beam, you’ll use only one servo. The setup of the sketch
tells the Arduino that you have a servo attached to pin 9 with the method
myServo.attach(9) ➌. It then tells the Arduino to move the servo to a
position of 90 degrees via the method myServo.write(90) ➍. The Servo
library converts the angle in degrees of rotation to the appropriate pulse width
behind the scenes. This is built into the write() method.

Now, plug the black wire of your servo into ground and upload your code to
the Arduino, and the servo will rotate to 90 degrees. It’s safe for now to leave
your servo wired up.

NOTE

Although the servo’s full range of motion is 180 degrees, we recommend
keeping the write() value between 10 and 170 degrees, especially for servos
with plastic gears. Overextending a servo’s range can do irreparable
damage.

To move the servo again, just pass another number within the bounds of the
servo’s range of motion (10–170) to the write() method and upload the sketch
again. Play with your servo for a bit, passing in different values.

Okay, so you know how to get the servo to move just once. Now, here’s
some code that really gets it moving. Listing 6-2 moves the control of the

servo into a loop and repeats a motion.

LISTING 6-2: Servo blink sketch

#include<Servo.h>
Servo myServo;
void setup()
{
 myServo.attach(9);
}

void loop()
{
 myServo.write(10);
 delay(1000);
 myServo.write(170);
 delay(1000);
}

This piece of code is a servo version of the blink sketch from Project 1. The
servo moves to 10 degrees, waits for 1 second, moves to 170 degrees, waits
for 1 second, and then repeats. We fondly refer to this as “robot march,”
because when you have 20+ people doing it at once, it sounds like a robot
army marching to take over the world.

Wow! You’re on a roll here. But servos really become interesting when you
can control the servo yourself, without having to reprogram it each time. It’s
time to get the potentiometer involved.

Complete the Balance Beam Sketch

For the final sketch, you’ll program the potentiometer to control the rotation
of the servo. Modify your sketch as shown in Listing 6-3:

LISTING 6-3: Using the map() function to control a servo with a
potentiometer

 #include<Servo.h>

 Servo myServo;
➊ int potVal;
 int anglePosition;
 void setup()
 {
 myServo.attach(9);
 }

 void loop()
 {
 potVal = analogRead(A0);
➋ anglePosition = map(potVal, 0, 1023, 10, 170);
 myServo.write(anglePosition);
 delay(20);
}

This sketch reads the value of the potentiometer, translates it into an angle
value, and then writes that value to the servo. There are some new commands
in here, so we’ll go over it step-by-step.

The top portion of this code looks just like the first two example listings. It
includes the Servo library and creates a Servo object named myServo. It also
declares two global variables ➊ named potVal and anglePosition. These
variables will be used to store the raw value of the potentiometer and a
calculated angle position for the servo, respectively.

In the loop() function, the variable potVal stores the raw analog-to-digital
converter value from the analogRead(A0) function. As you turn the knob on
the potentiometer, the voltage on the wiper pin will vary between 0 V and 5
V. Remember that analogRead() will convert a voltage from 0 V to 5 V to a
number between 0 and 1,023. However, the values 0 to 1,023 aren’t very
useful for controlling the servo. As we mentioned before, the servo needs to
stay between 10 and 170 degrees.

Thankfully, Arduino has a built-in map() function that allows you to take one
range of numbers and find the equivalent value in a different range. The
variable anglePosition stores an angle position that is calculated from potVal
using the map() function ➋. The map() function uses five parameters:

map(input, fromLow, fromHigh, toLow, toHigh). In this example, it maps the
value of potVal from the range of 0 to 1,023 to a new range of 10 to 170.
This is a really nifty function in Arduino that makes scaling and translating
between value ranges super easy!

The sketch also adds a short delay of 20 ms to give the servo enough time to
move before it reads the potentiometer again. A 20 ms delay is the minimum
delay that the servo needs. You may also recall that it’s the time period of the
PWM signal that’s used to control the angle.

Once you have this sketch updated, upload it to your Arduino. Now when
you turn the potentiometer, the servo moves with it. Pretty sweet! Next you’ll
take your newfound superpower and build a balancing game out of it.

BUILD THE BALANCE BEAM

With this cool way to control a servo, we thought it would be fun to create a
desktop game. You’ll create a balance beam that you control using the
potentiometer and servo. A ping-pong ball will roll on the balance beam, and
your goal is to get the ball as close as possible to the ends of the beam
without it falling off.

Cut Out the Parts

Download the template provided at
https://www.nostarch.com/arduinoinventor/ (shown in Figure 6-16), print it
out, and then trace it onto your cardboard. We designed this project to fit on
as small a piece of cardboard as we could.

FIGURE 6-16: Balance Beam frame template (not full size)

https://www.nostarch.com/arduinoinventor/

Using a craft knife, cut all the solid lines along the perimeter of each shape,
as well as the cut-out for the motor mount. Don’t score any of the pieces just
yet; you’ll do that as you go along. Remember to exercise safety when
cutting. Use a metal ruler and a sharp craft knife, as shown in Figure 6-17,
and take your time. Use a drill or a craft knife to make the six different holes
in this design. If you’re using a drill, you’ll need a 1/4-inch drill bit for the
screwdriver access hole, a 1/8-inch drill bit for the axle holes, and a 1/16-inch
drill bit for the armature mount hole and the two motor mount holes.

FIGURE 6-17: Cutting out the frame pieces from the template

Once you’ve finished cutting, you should have six pieces like those shown in
Figure 6-18.

FIGURE 6-18: All cardboard parts cut out

Build the Beam

Take the longest piece, which will be the actual beam, and carefully score the
dotted line that runs along its length. This will allow you to curve the beam
so that it cradles the ball. We designed the template so that the beam is 11
inches long, the length of a standard sheet of 8.5 × 11-inch paper.

Next, prepare the armature mount. This is a small trapezoidal piece about 2
1/4 inches wide by 1 inch tall. You will use this piece to connect the servo
motor to the beam. Score it and bend it into a right angle, as shown in Figure
6-19.

FIGURE 6-19: Preparing the armature mount

Next, cut down the drinking straw so that it’s 1 3/4 inches long, and glue it
down along the center line of the beam, as shown in Figure 6-20.

FIGURE 6-20: Gluing down the straw at the midpoint of the beam

Now, glue down the half of the armature mount without the drilled hole. This

goes just to the left of the drinking straw, as shown in Figure 6-21; make sure
the half with the hole is facing you when the straw is at the right. This is
important so that it fits with the servo mounting arm.

FIGURE 6-21: Gluing the armature mount to the beam

Next, bend the sides of the beam up to form a cradle that will hold the ball, as
shown in Figure 6-22.

FIGURE 6-22: Bending the sides of the beam to form a cradle

Use the smaller trapezoidal pieces to secure the ends of the beam and hold the
beam together to keep the shape of the cradle. We suggest using a hot glue
gun so that the pieces are secure, like in Figure 6-23.

FIGURE 6-23: Gluing the end pieces onto the beam

Next, use the wire cutters to cut down the bamboo skewer to about 3 1/4
inches. We suggest using the blunt end of the skewer. Insert the bamboo
skewer into the drinking straw to form the axle for the balance beam (Figure
6-24).

FIGURE 6-24: Positioning the cut bamboo skewer so that it sticks out
evenly on both sides

Build the Base and Attach the Servo

Now you’ll build the base of the balance beam. Score the sides of the base
pieces, as shown in Figure 6-25, so that you can bend them into shape.

FIGURE 6-25: Scoring the sides of the base pieces

After scoring, bend the sides to form a U shape as shown in Figure 6-26.
Repeat this for both pieces.

FIGURE 6-26: Bending the sides

Before gluing together the base, you’ll mount the servo motor. Remove the
servo motor from the breadboard circuit. There is a small, square cutout in
one of the templates that should match the submicro-sized servo perfectly.
Insert the servo so that the motor is facing inward, as shown in Figure 6-27.

FIGURE 6-27: Inserting the servo motor

Your servo should have come with three small screws, one short and the
other two longer. Use the two longer screws to secure the servo motor in
place, like in Figure 6-28. If you don’t have screws, you can also use a small
amount of hot glue to secure the motor.

FIGURE 6-28: Securing the servo motor in place using the two longer
screws

Now, select a servo horn that’s about 0.5 inches long and single sided. Gently
push this into place on the end of the servo motor, as shown in Figure 6-29.
Once you have it securely on the servo, orient the servo to 0 degrees. Gently
rotate the servo counterclockwise with your fingers until it stops. You’ll hear
the little gears inside the servo turn. Make sure that you move the servo
slowly; the gears are often made of plastic and can break.

FIGURE 6-29: Attaching the single-sided servo horn

With the servo horn rotated as far as it can go counterclockwise, remove the
horn and reposition it so that it is pointed straight up, as shown in Figure 6-
30. This will make it easier to connect the linkage to the beam.

FIGURE 6-30: Servo horn aligned at 0 degrees

Finally, secure the horn in place using the last small screw that comes with

the servo to ensure that the horn does not accidentally pop out. The horn may
turn as you tighten the screw. This is okay—it won’t damage anything, but
you may want to hold the servo horn in place with your fingers when
tightening the screw to keep the horn from rotating. If you lost the screw, it’s
not a big deal; you can leave it out and just reattach the horn if it does slip
out. If you have to reposition the servo arm, you’ll need to remove this screw,
which is why we included a hole on the other side of the base template.

Next, you need a linkage to connect the servo horn to the beam. To make
this, you’ll shape a medium-size paper clip with a pair of needle-nose pliers.
Figure 6-31 shows all the steps of this process.

FIGURE 6-31: The steps to cutting, bending, and shaping the servo linkage

1. Use the pliers to straighten the paper clip out, leaving all but the small
hook on one end.

2. Trim the paper clip down so that it is about 2 inches long from one end to
the other.

3. Bend the straight end of the paper clip away from the hook at about 1 1/2
inches from the hooked end.

4. Add the final bend to create another hook about 3/8 inches deep. When
complete, the servo linkage should be about 1 1/2 inches long (Figure 6-32).
This length is perfect given the geometry of our template. If you’re designing
your own enclosure, you might have to play around with this length a bit to
get the servo horn connected to the beam properly.

FIGURE 6-32: Final bend in the paper clip linkage

Final Assembly

Now for the final assembly! First, glue together the two base pieces. Glue
two of the square tabs together, starting with the side opposite the servo
motor (Figures 6-33 and 6-34). This will give you room to get your hands in
there and connect the servo horn linkage.

FIGURE 6-33: The best way to adhere two pieces together is to use a snake
or S-shaped pattern with the glue.

FIGURE 6-34: Secure the far side of the base first.

With the servo side open, take the original hooked end of the bent paper clip
linkage and hook it through the last hole on the servo horn, as shown in

Figure 6-35.

FIGURE 6-35: Hooking the paper clip through the last hole in the servo horn

FOUR-BAR LINKAGES AND CONNECTING SERVOS TO DO
COOL THINGS

The mechanism used to turn the rotational movement of the servo horn into
the up-and-down movement of the balance beam is called a four-bar linkage.
We designed this template so that the length of the linkage should be about 1
1/2 inches, and it assumes that the servo horn is 1/2 inch long. We used these
measurements to calculate the movements of the servo and beam. If you’re
picturing circles, arcs, pivot points, and a lot of crazy geometry, don’t worry:
we’ve done all the hard stuff already. The following figure shows a four-bar
linkage in action, with the linkage itself and the pivot of the beam
highlighted.

Four-bar linkages are an amazing way of converting the rotation of an object
(like the servo) into a different motion (like the up-and-down motion of the
beam). Engineers and roboticists use these kinds of mechanisms and linkages
all the time to make things move.

Hook the other end of the linkage through the hole in the armature mount, as
shown in Figure 6-36.

FIGURE 6-36: Hooking the other end of the paper clip linkage to the

armature mount

Now, insert the axle through one side of the base, carefully line up the second
side, insert the axle through the matching hole, and glue the tabs at the other
end of the base together (Figures 6-37 and 6-38).

FIGURE 6-37: Mounting the balance beam to the base

FIGURE 6-38: Completed Balance Beam project

Finally, connect the servo motor back to the breadboard circuit (Figure 6-39).
Power up your Arduino, and the servo motor should move into place. Turn
the potentiometer and test to make sure that the linkage and the pivot points
all move as expected. If they don’t, check that everything is still in place and
nothing has fallen out.

As a final step, we suggest an extra rectangular base support piece. The base
should measure about 2 × 3.75 inches. Insert this piece at the base of your
enclosure to add extra support.

FIGURE 6-39: Reconnecting the servo motor to the breadboard circuit

With that, your project is complete! Now, find a ping-pong ball or marble and
test your skills of control and precision. You now have a game to play when
you should be doing something a little more productive. How many times can
you roll the ball back and forth before dropping it? Challenge a friend, and
see who’s better!

GOING FURTHER

This project is a great introduction to the world of servos and libraries in

Arduino. There’s a lot of potential here, so we would like to share some
launching points for you to play with servos.

Hack

Swap out the potentiometer with the light sensor circuit from Project 5.
You’ll have to include a 10 kΩ resistor and adjust the scaling values you use.
Now, move your hand up and down above the light sensor to control the ball.
Go challenge a friend! Are you better with the light sensor or the
potentiometer?

Modify

You can add an “autopilot” mode for your Balance Beam that will balance
the ball on its own. To do this, you’re going to add a switch to your circuit.
As you saw in Project 5, a switch is similar to a push button in that it makes
or breaks a connection in a circuit, but in a switch the connection stays in
place until it is switched again. The switch you’ll use is called a single-pole,
double-throw (SPDT) switch, shown in Figure 6-40. This is a fancy way of
saying there’s a single common pin and two options that it can be connected
to. When the switch is in the leftmost position, it connects the center pin and
the left pin. When the switch is in the rightmost position, it connects the
center pin and the right pin.

FIGURE 6-40: The single-pole, double-throw switch

This switch, when wired correctly, will act as an on-off switch, allowing you
to read whether it is set on 5 V or ground. Place the switch in the breadboard,
making sure each leg gets its own row of holes. We placed ours at the top of

the breadboard in Figure 6-41. As with the potentiometer, connect the two
outer pins of the switch to the 5 V and ground power rails of the breadboard
using two shorter jumper wires. Use a third jumper wire to connect the center
pin of the switch to pin 12 of the Arduino. A complete diagram of this circuit
is shown in Figure 6-41.

FIGURE 6-41: The final circuit with the mode selection switch

The center pin is the signal pin and will read either HIGH or LOW depending
on the position of the switch. You’ll use this paired with some basic logic to
switch between manual control, which uses the potentiometer, and autopilot,
which sets the servo to move back and forth on its own.

From the book’s resources at https://www.nostarch.com/arduinoinventor/,
upload the P6_AutoBalanceBeam.ino sketch to your Arduino. Take a look at
the comments in the sketch to see how it works.

Remember that if the beam’s not centered when you switch autopilot on, the
ball will likely fall off. It may take a few tries, but when you get it, it looks
like magic! Take a look at a video of ours running here:
https://www.nostarch.com/arduinoinventor/.

https://www.nostarch.com/arduinoinventor/
https://www.nostarch.com/arduinoinventor/

7 Tiny Desktop Greenhouse
Greenhouses come in all shapes and sizes, from tiny indoor greenhouses
made from plastic sheeting to large industrial greenhouses that span
thousands of square feet. Not everyone wants a full-size greenhouse, though,
so in this project you’ll build a smaller-scale model that can sit on your desk
(Figure 7-1).

FIGURE 7-1: The Tiny Desktop Greenhouse

In a traditional greenhouse, the panes of transparent glass or plastic allow
light energy in to heat up the interior of the greenhouse, and the greenhouse is
sealed to trap that warm air inside, resulting in an overall increase in
temperature. The danger, of course, is that a greenhouse might become too
hot. To regulate temperature, many greenhouses have fans and autovents that
open windows at the top of the greenhouse to ventilate when it gets too hot.

Your greenhouse will also have an autovent. You’ll build a greenhouse
controller that will monitor the temperature, and if it gets too warm, a

window will open and a fan will turn on.

THE GREENHOUSE EFFECT

Greenhouses are warm enough to grow veggies year round because they’re
able to trap and store energy. Earth’s atmosphere works similar to a
greenhouse. Heat from the sun is radiated by the earth and then reflected and
captured by the atmosphere. This unique property is known as the
greenhouse effect, and it’s responsible for keeping the temperature of our
planet temperate and livable. Without it, the temperature of our planet would
average near 0 degrees Fahrenheit (–18 degrees Celsius)!

Another common example of the greenhouse effect is a car in the middle of
the summer. With the windows closed, the temperature inside the car can rise
20 to 30 degrees higher than the outside temperature. This is why you should
never leave your pets in the car—especially in the summer!

MATERIALS TO GATHER

To lift the autovent, this project uses a servo motor similar to the one you
used for the Balance Beam in Project 6. We’ll also introduce three new parts
in this project: a small DC hobby motor for the fan, a transistor to control the
motor, and a temperature sensor to detect the temperature inside the
greenhouse.

As you gather your parts, you’ll find that the transistor and the temperature
sensor look very similar—they’re both small, threelegged devices that have a
round, black plastic end with a flat edge (see Figure 7-2). To differentiate
between them, tilt the flat edge against a light source, and you should see
some printing; the temperature sensor should have the letters TMP marked on
it. Gather your parts, shown in Figures 7-3 and 7-4, and let’s get started!

FIGURE 7-2: TMP36 temperature sensor (left) and 2N2222 transistor (right)

Electronic Parts

• One SparkFun RedBoard (DEV-13975), Arduino Uno (DEV-11021), or any
other Arduino-compatible board

• One USB Mini-B cable (CAB-11301 or your board’s USB cable)

• One solderless breadboard (PRT-12002)

• One 330 Ω resistor (COM-08377, or COM-11507 for a pack of 20)

• One diode (COM-08588)

• One NPN transistor—2N2222 or BC337 (COM-13689)

• One TMP36 temperature sensor (SEN-10988)

• One hobby motor (ROB-11696)

NOTE

The parts marked with an asterisk (*) do not come with the standard
SparkFun Inventor’s Kit but are available in the separate add-on kit.

• One submicro size servo motor (ROB-09065)

• Male-to-male jumper wires (PRT-11026)

• Male-to-female jumper wires (PRT-09140*)

FIGURE 7-3: Components for the Tiny Desktop Greenhouse

Other Materials and Tools

• Pencil (not shown)

• Craft knife

• Metal ruler

• Ruler

• Needle-nose pliers

• Wire cutters

• Glue (hot glue gun or craft glue)

• Masking tape (not shown)

• Cardboard (approximately one 11 × 17-inch piece or three 8.5 × 11-inch
pieces)

• Enclosure template (see Figure 7-18 on page 208)

• 1 sheet (8.5 × 11 inches) transparency film (not shown)

• 1 medium-size paper clip (not shown)

FIGURE 7-4: Recommended tools and materials

NEW COMPONENTS

First, let’s take a look at the new components, starting with the temperature

sensor.

TMP36 Temperature Sensor

You already know how to measure light levels. With this nifty sensor, you’ll
be able to measure temperature as well. The TMP36 is one of the easiest
temperature sensors to use. The sensor itself is encased in a small plastic shell
shaped like a cylinder with a flat edge, and it has just three pins. (Remember
to tilt the flat edge against the light to identify the letters TMP so you don’t
mix it up with the transistor. If it says 2N2222 or anything else, it’s the wrong
part.)

When properly connected to power, the TMP36 sensor will produce a voltage
that is directly proportional to the temperature it senses. Similar to how you
measured the light level in Project 5 or the position of the potentiometer in
Project 6, you can use analogRead() to measure the voltage on this sensor.
We’ll show you how to convert this voltage to a temperature reading in this
project.

Standard Hobby Motor

To move air through the greenhouse, you’ll build a fan using a small hobby
motor, as shown in Figure 7-5. This is the simplest type of motor available.
When you connect its two wires to a power source, the motor spins, and
when you reverse the connections, the motor spins in the opposite direction.
Unlike the servo motor that you used in Project 6, the hobby motor spins
continuously. The hobby motor works with a voltage between 3V and 6V, so
it’s perfect for Arduino projects.

FIGURE 7-5: Standard DC hobby motor

NPN Transistor

The invention of the transistor made it possible to create all kinds of digital
devices. For example, the microcontroller on the Arduino is actually made up
of millions of transistors. Transistors are part of a family of components
called semiconductors. A semiconductor is a device that sometimes behaves
like a conductor, allowing current to flow, and other times acts like an
insulator, preventing current from flowing.

This project uses the transistor like a switch by boosting the Arduino’s amp
output. The hobby motor uses about 200–300 mA of current, but the Arduino
OUTPUT pins are only capable of sourcing about 40 mA of current. Using a
simple transistor circuit, we’ll show you how to use the low-current Arduino
pin to trigger the transistor to open or close, just like a switch.

TAKING A SYSTEMS APPROACH

For the sake of organization, you’ll build this project as three separate parts,
or subsystems. This technique, known as a systems approach, is used by
engineers to separate a complex project into manageable sections that can
each be built and tested individually. The main components of the three
different parts are the temperature sensor, the servo motor (for the autovent),

and the DC motor (for the fan). A schematic of the three parts is shown in
Figure 7-6, and a wiring diagram of the compiled project is shown in Figure
7-7.

FIGURE 7-6: Schematic diagram of the circuit

FIGURE 7-7: Wiring diagram of the circuit

BUILD THE TEMPERATURE MONITOR

First let’s take a look at the part of the greenhouse control system that will
measure temperature. There are a lot of different temperature sensors out
there. A few common types that you might encounter are thermistors, which
change resistance based on temperature, and thermocouples, which output a
really small voltage (less than 10 mV) and require an amplifier circuit to use.
The TMP36 device is a third type of sensor that simply outputs a voltage
calibrated to be 0.75 V at 25 degrees Celsius. The voltage then varies linearly
based on the temperature of its surroundings. This means that as the
temperature changes the voltage changes accordingly, as shown in Figure 7-
8.

FIGURE 7-8: The linear temperature versus voltage response of the TMP36
sensor

Measure Temperature with the TMP36

The TMP36 is one of the easiest temperature sensors to use. The sensor is
encased in a small plastic shell shaped like a cylinder with a flat edge and has
just three pins.

As we mentioned earlier, the TMP36 looks very similar to the transistor,
which also comes in the SparkFun Inventor’s Kit, so check the flat side of the
component by tilting it at an angle under a light source, and look for the
letters TMP. If it says 2N2222 or anything else, it’s the wrong part.

The TMP36 provides a voltage output directly related to the temperature in
Celsius of its surroundings. Since you already know how to measure voltages
using the analogRead() command, this sensor will be easy to use.

The outer pins are for ground and power connections, and the center pin is
the voltage signal for the sensor. To use the TMP36, simply connect one pin
to 5 V, one pin to ground, and the sensing pin to an Arduino analog pin to
read the temperature. Pay attention to how you connect the sensor. With the
flat edge facing to the left, the top pin should connect to 5 V and the bottom
pin should connect to ground. At 25 degrees Celsius, the sensing pin will
have a voltage reading of 0.750 V (750 mV). As the temperature changes, the
voltage on this pin will change at a rate of 0.010 V (10 mV) per degree
Celsius. Now, this might seem like a lot of math-speak, but we’ll show you

how to use this information to get an actual temperature reading in your code
and convert it to degrees Fahrenheit. But first, let’s wire it up.

Connect the Temperature Sensor

Figure 7-9 shows the temperature monitor circuit wired up on its own. Most
of your components will be on the right side of the breadboard, so connect a
jumper wire from 5 V and GND on the Arduino board directly to the power
rails on the right side of the breadboard. Next, insert the TMP36 sensor into
the lower portion of the breadboard, with the flat side of the sensor facing
left, as shown in Figure 7-9.

FIGURE 7-9: Simplified wiring diagram showing only the temperature
sensor

Next, use two short jumper wires to connect the TMP36 sensor’s top pin to 5
V and lower pin to ground, making sure the flat side is facing left. The
middle pin is the output voltage of the sensor. Run a jumper wire from this
pin to pin A0 on the Arduino board, and that’s it!

Now let’s take a look at a code example to see how to get temperature
readings from this sensor.

Program the Temperature Sensor

The TMP36 sensor produces a voltage output relative to the ambient
temperature. The datasheet for the TMP36 gives a couple of reference points
for converting the voltage reading to a temperature: it shows that the voltage
changes at a rate of 0.010 V per degree Celsius and that at 25 degrees
Celsius, the sensor has a voltage of 0.750 V. Using this information, if you
measure the output voltage from the sensor, you can convert this into a
temperature reading in the code.

You may recall from Project 5 that the analogRead() function reads voltage
as a whole number, with 1023 for an input of 5 V and 0 for 0 V. To make
sense of this, you’ll need to convert that number to a voltage, then convert
that voltage to degrees Celsius, and finally translate that value into
Fahrenheit. To keep the code clean, you’ll first write a custom function to do
the conversion from the raw analogRead() number to volts.

Create a Custom Conversion Function

Listing 7-1 shows an example of a custom function that will convert the raw
analogRead() value and report back an answer that’s been converted to volts.

LISTING 7-1: Custom function volts() to convert from raw analog value to
voltage

➊ float ➋volts(➌int rawValue)
 {
➍ const float AREF = 5.0;
➎ float calculatedVolts;
➏ calculatedVolts = rawValue * AREF / 1023;
➐ return ➑calculatedVolts;
 }

In Project 3, we showed you how to write your own custom functions to

shorten your code and make the loop() easier to read. In those examples, the
data type of the function was always set as void because the function didn’t
report back a value. In this case, you’ll want the function to report back the
conversion of analogRead() to volts, so you’ll have to specify a data type.
Use the data type float ➊, because you’ll want this function to return the
voltage with as many decimal places as possible for accuracy. Name the
function volts ➋, to be as descriptive yet concise as possible, and then define
the parameter(s) ➌ that you pass to this function. In this example, it is the
raw value from analogRead().

The math needed to convert between raw analogRead() and voltage is pretty
straightforward since, as we mentioned earlier, we already know that the
analogRead() function returns 1023 for an input of 5 V and 0 for 0 V. This
means that an analogRead() value of 1023 would be equal to 5 V. The custom
volts() function uses this ratio to convert a raw analogRead() measurement to
a voltage.

NOTE

It’s common practice to use ALL CAPS to designate objects or names that
are constants.

First, declare a variable to use as a reference, named AREF ➍, and use this to
define the reference voltage, which is 5.0 V. Because you’ll want to use it
throughout the code, set it as a constant using the keyword const.

Next, you’ll define a variable to store the result of the conversion, named
calculatedVolts ➎. Notice that the data type for this variable is set as a float
as well. You’ll want to make sure that any math you perform is accurate
beyond whole numbers. To calculate the voltage, simply multiply the
rawCount by the ratio of AREF (5.0 V) to 1,023 ➏.

The return instruction ➐ is a command we haven’t used in the previous
projects. When the sketch gets to the return instruction, it exits the custom
volts() function and returns to the point in the code where it was called.
When you put a value after the return instruction, the function returns and
reports back that value. The return data type must match the data type of the
function. For all the functions we’ve used to this point, we didn’t bother to

include return, because those functions were defined as void data types and
did not report back a value. Here, the return instruction is followed by the
variable calculatedVolts ➑. This tells the sketch to report the value of
calculatedVolts back to the point in the code where it was called.

Note that the return instruction can also be used with functions that have a
void data type to instruct the sketch to leave the function and return. In that
case, return is left blank with no value following it (see Listing 7-2).

LISTING 7-2: A custom function with a void data type and a return
instruction

void blink()
{
 digitalWrite(13, HIGH);
 delay(500);
 digitalWrite(13, LOW);
 delay(500);
 return;
}

Test the Function

Let’s test the new volts() function with an example sketch. Add a few lines in
setup() and loop() to the code from Listing 7-1 to read the voltage on pin A0,
and print it to the Serial Monitor. The complete code example is shown in
Listing 7-3.

LISTING 7-3: Testing the analog-to-volts conversion

//Example sketch – reads analog input from A0 and prints the
//raw analog value and the voltage
int rawSensorValue;
float rawVolts;

void setup()
{

 Serial.begin(9600); //initializes the serial communication
 Serial.print("raw");
 Serial.print("\t"); //tab character
 Serial.print("volts");
 Serial.println(); //new line character
}

void loop()
{
 rawSensorValue = analogRead(A0); //read in sensor value
 rawVolts = volts(rawSensorValue); //convert sensor value
 //to volts
 Serial.print(rawSensorValue); //print raw sensor value
 Serial.print("\t");
 Serial.print(rawVolts); //print raw voltage reading
 Serial.println(); //new line character
}

/***/
float volts(int rawCount)
{
 float AREF = 5.0;
 float calculatedVolts;
 calculatedVolts = rawCount * AREF / 1023;
 return calculatedVolts;
}

Connect your Arduino board to your computer with a USB cable, upload this
example, and then open up the Serial Monitor. You should see text scroll up
the screen like in Figure 7-10. According to this, an analog value of 156 is
equal to a voltage of 0.76. You can check the output voltage with this
calculation: 156 × (5.0 / 1,023) = 0.762 V. It’s always good when the math
works out!

FIGURE 7-10: Serial Monitor output of raw sensor value and voltage

Without an additional delay() command in the loop(), the Arduino takes a
sensor reading about 80–90 times per second and sends the information back
to the computer. This is why you get a stream of readings rather than a single
reading. If you want to slow down the rate at which the sketch prints the
readings to the screen, simply add a delay(1000); at the end of the loop(), just
after the last Serial.println();. This will slow the loop to a single reading per
second so it’s not streaming as fast. You’ll do that later in the code.

There’s one more step to get the sketch to show the temperature rather than
volts.

Convert Voltage to Temperature

Now you need a formula to convert the volts to temperature. You know that
the voltage the TMP36 outputs varies linearly depending on the temperature
it senses, meaning that as the temperature changes, the voltage changes
proportionately. Therefore, to create a formula, you use the slope-intercept
equation:

y = mx + b

This equation describes a line or, more generally, a relationship between two
variables x and y, where m is the slope of the line describing the rate of
change, and b is the y-intercept, showing where the line intercepts the y-axis.
In this case, the two variables x and y are the voltage and temperature,
respectively, and you’ll use the known variable x (volts) to calculate the
unknown variable y (temperature).

As mentioned, the datasheet for the temperature sensor states that the voltage
changes at a rate of 0.010 V per degree Celsius, or 1 V per 100 degrees
Celsius. This rate is the slope of the line and so becomes m in the equation. If
you plug in the variables, the equation looks like this:

The datasheet for the TMP36 also provides a reference point for mapping
voltage to degrees Celsius: at 25 degrees Celsius, the sensor has a voltage of
0.750 V. Substitute these numbers into the equation to solve for the y-
intercept b:

So now you have values for m and b. Here’s the final equation:

This is a technique that you can apply to any number of sensors that have a
linear relationship with voltage. It’s also a nice reminder that math is
important and useful. But, if none of that made any sense, don’t worry—all

you need to know is that to find the temperature of the sensor, you simply
plug the voltage reading into this equation.

Now, use this equation in the code to convert the rawVolts reading to a
temperature. You’ll work from the example code in Listing 7-3 and add the
new code in Listing 7-4 to show you the temperature reading from the sensor.

LISTING 7-4: Converting from volts to temperature

 //Example sketch – calculates the temperature from the TMP36
 //sensor and prints it to the Serial Monitor
 int rawSensorValue;
 float rawVolts;
➊ float tempC;
 float tempF;

 void setup()
 {
 Serial.begin(9600); //initializes the serial communication
 Serial.print("raw");
 Serial.print("\t"); //tab character
 Serial.print("volts");
➋ Serial.print("\t");
 Serial.print("degC");
 Serial.print("\t");
 Serial.print("degF");
 Serial.println();
 }

 void loop()
 {
 rawSensorValue = analogRead(A0); //read in sensor value
 rawVolts = volts(rawSensorValue); //convert sensor value
 //to volts

➌ tempC = 100 * rawVolts – 50; //convert volts to deg. C
➍ tempF = 1.8 * tempC + 32; //convert deg. C to deg. F

 --snip--
 Serial.print(rawVolts); //print raw voltage reading
➎ Serial.print("\t");
 Serial.print(tempC);
 Serial.print("\t");
 Serial.print(tempF);
 Serial.println(); //new line character
➏ delay(1000);
 }

 /***/
 float volts(int rawCount)
 --snip--

First, add two lines in the global namespace at the top to declare variables to
store the temperature in degrees Celsius (tempC) and in degrees Fahrenheit
(tempF) ➊. Next, add a few lines in the setup() to use appropriate column
headings for the readings printed to the Serial Monitor, separated by a tab
character, which is represented by the control character \t ➋. You can now
use the slope-intercept equation to calculate the temperature in degrees
Celsius ➌. You’ll also add one last line that converts the temperature from
Celsius to Fahrenheit ➍.

And, for some additional feedback, add a few extra lines to Serial.print() to
make sure you print the new variables ➎ to the Serial Monitor. Notice that
the very last Serial.print() line is actually a Serial.println() command that
inserts a newline character and moves the cursor to the next line. This will
make sure each new reading starts on a new line. Finally, add the 1-second
delay ➏ to slow down the loop so that the sensor is sampled only once per
second and you have time to read the text.

Upload the updated code to your Arduino, and open the Serial Monitor. You
should see four columns of data scroll up the screen, as shown in Figure 7-11.
As the new column headings denote, these figures represent raw data,
voltage, temperature in degrees Celsius, and temperature in degrees
Fahrenheit. If you squeeze the temperature sensor with your fingers, you

should notice that the temperature increases. Congratulations, you have a
working temperature monitor, the first big part of this project!

FIGURE 7-11: Serial Monitor displaying temperatures from the TMP36

BUILD THE SERVO MOTOR AUTOVENT

You’ll use a servo motor like the one you used in Project 6 to open and close
a window on the greenhouse. A servo is a simple motor that uses three wires
for the control signal (yellow or white), power (red), and ground (black)
connections, as shown in Figure 7-12.

FIGURE 7-12: Adding the servo motor to the circuit

Most standard servos have a three-pin female connector. Connect three male-
to-male jumper wires to these three pins to extend these connections, as
shown in Figure 7-13. If possible, match the colors of your jumper wires to
the leads on the servo connector. Then, connect the yellow (or white) signal
wire to pin 9 on the Arduino board. Connect the red wire to 5 V and the black
wire to GND on the right side of the breadboard.

FIGURE 7-13: Inserting male-to-male jumper wires to connect the servo to
the breadboard

PROGRAM THE AUTOVENT

Add the servo code shown in Listing 7-5.

LISTING 7-5: Adding in the servo control

➊ #include<Servo.h>
➋ Servo myServo;

 //Example sketch – calculates the temperature from the TMP36
 //sensor and prints it to the Serial Monitor
 int rawSensorValue;
 float rawVolts;
 float tempC;
 float tempF;
➌ int setPoint = 85;
 int returnPoint = 83;

 void setup()
 {
 myServo.attach(➍9, 1000, 2000); //initializes myServo object
 Serial.begin(9600); //initializes the serial communication
 --snip--
 }

 void loop()
 {
 --snip--
 Serial.println(); //new line character

➎ if(tempF > setPoint)
 {
 myServo.write(180);
 }
 else if(tempF < returnPoint)
 {
 myServo.write(0);
 }
 delay(1000);
 }

 /***/
 float volts(int rawCount)
 --snip--

Remember from Project 6 that to use the servo you need to include the Servo

library ➊ and create a servo object named myServo ➋. Next, create two
variables ➌ to define the set points for the control system. These set points
are the temperatures at which the window will automatically open and close.
Notice that setPoint, which opens the window, is 2 degrees higher than
returnPoint, which closes the window, giving you 2 degrees where the
window will not be opening or closing. This control technique, referred to as
hysteresis, is useful for systems where the temperature might fluctuate
slightly and keeps the window from constantly opening and closing at the
smallest temperature variation.

Finally, you need to initialize the servo by telling the Arduino that the servo
is connected to pin 9 ➍. You might notice that this myServo.attach()
command has two extra numbers, rather than the one number you used in
Project 6. To understand why, take a look at “How Servos Really Work” on
page 201.

Finally, for the control logic, you’ll use a nested if()–else if() control
statement. Add the eight lines of code at ➎ just above the delay() to move
the servo to a 180-degree position if the temperature is above 85 degrees
Fahrenheit (the setPoint) and return the servo to the 0-degree position if the
temperature drops below 83 degrees Fahrenheit (the returnPoint). This will
open and close the autovent window.

Upload the updated code from Listing 7-5 to your Arduino, and open the
Serial Monitor. Try it out by pinching the sensor between your fingers or
cupping your hands around the sensor and blowing deeply to warm it above
85 degrees. Watch the Serial Monitor to see the temperature rise. As soon as
it hits 85 degrees, you should hear the servo motor as it moves into position.
Now, let the temperature sensor sit and cool down. As soon as it dips below
the returnPoint, you should hear the servo motor again as it returns to the 0-
degree position. Pretty neat, eh?

Now you’ll build the final component: the fan.

BUILD THE FAN MOTOR

The fan, which will move air around in the greenhouse, is going to spin via a

small DC hobby motor—a standard cylindrical device with two wires and a
center axle that spins when you apply voltage to the leads. The servo motor
you’ve been using so far has gearing inside that allows it to move very
precisely in a tightly defined range of motion. Recall that it has only about
180 degrees of motion. You’ll use a DC motor here, rather than the servo
motor, because you’ll need the fan blade to spin continuously the entire time
you apply power to it. This makes it perfect for a fan function. The DC motor
you’ll use is designed to operate between 3 V and 6 V but draws around 200–
300 mA when it’s spinning. The Arduino OUTPUT pins are capable of
driving only about 40 mA of current, so to provide enough amps for the DC
motor, you’ll build an extra circuit called a transistor amplifier circuit—more
technically known as a common-emitter amplifier.

HOW SERVOS REALLY WORK

Servos are neat devices that move a motor to a specific position based on a
signal from the microcontroller. A standard servo motor has a fixed range of
motion of about 180 degrees.

All servo motors have three wires: a white (or sometimes yellow or orange)
wire for receiving the signal, a red power wire, and a black ground wire. The
signal is a unique pulse sent every 20 ms, or at a rate of 50 Hz. To encode a
position, a microcontroller varies the width of the pulse to indicate the angle
or position that the motor will turn to (see Project 5 for more details on pulse
width modulation). For most standard servo motors, a 1,000-microsecond
(1,000 μs) pulse indicates the 0-degree position, and a 2,000 μs pulse
indicates the full 180-degree position, so a 1,500 μs pulse indicates the
midpoint of the servo, or the 90-degree position.

The Arduino’s Servo.h library maps the pulse widths to the motor positions,
but the library has a slightly different definition for the servo positions and
pulse widths, using a 544 μs pulse for the 0-degree position and a 2,400 μs
pulse for the 180-degree position. This allows the library to work with
extended-range servos, but it is outside the limits of most standard servos. So,
when you use a command like myServo.write(0); the motor receives a 544 μs
pulse and will try moving beyond its own physical limits. If that happens, the
motor will shake, buzz, and heat up because it’s just not able to move to a
position that coincides with a 544 μs pulse.

To counteract this, you can set limits for the servo in the code. As in Project
6, use the command myServo.attach(9); to initialize the servo on pin 9 of the
Arduino. You can also add parameters to set lower and upper pulse width
limits for the motor, with myServo.attach(9, 1000, 2000);. With this
initialization, the command myServo.write(0); will move the motor to its 0-
degree angle position and it won’t shake, buzz, or heat up.

If you want to know more about how servos work, take a look at the tutorial
on SparkFun at https://www.sparkfun.com/tutorials/283/.

A transistor has three legs: the collector (C), base (B), and emitter (E). Any
current that goes into the base is amplified on the collector pin. The base is
like a control for a door that allows current to move from the collector to the
emitter. The more you push on the base, the wider the door opens, and more
current can pass through from the collector to the emitter. The amazing thing
about transistors is that you need apply only a small amount of current at the
base to let a large amount of current flow from the collector to the emitter. If
you provide too much current to the base, you can burn the transistor out, so
in the same way you’ve used resistors to limit the current flowing through
LEDs, you’ll use a 330 Ω resistor in this circuit to limit the current flowing to
the base.

There are many different applications for transistors, such as amplifiers and
other devices, but here you’re just going to use it like a controllable switch.
Even though the Arduino pin can only supply a small amount of current,
when you send a HIGH signal to the base of the transistor, the transistor turns
“on.” This allows current to flow between the collector and the emitter. It
essentially connects these pins together, like closing a switch.

The emitter side of the transistor is connected to the ground rail. Notice that
one side of the motor is connected to the 5 V rail, and the other side of the
motor is connected to the collector of the transistor. When the transistor is
turned “on,” this connects the collector to the emitter of the transistor, closing
the switch between the motor and ground and making it spin. Engineers call
this “operating a transistor between cut-off and saturation mode.” Power for
the motor is coming directly from the power rails. That means you can use
the limited current provided by the Arduino OUTPUT pins to control devices
requiring a much larger current flow.

https://www.sparkfun.com/tutorials/283/

You’ll build the transistor circuit on the top part of the breadboard, as shown
in Figure 7-14.

FIGURE 7-14: Adding the fan-motor transistor control circuit

Find the transistor in your kit. As you can see from Figure 7-15, the transistor
looks a lot like the temperature sensor, though if you look closely you should
see 2N2222 or BC337 on the flat side of the casing. This is an NPN
transistor, and it will act as the motor’s on/off switch that you control with
the Arduino board.

FIGURE 7-15: NPN transistors used in this project—the 2N2222 (left) and
the replacement part BC337 (right)

Hold the transistor so that the flat edge is facing to the left, and insert it into
the top part of the breadboard with the top pin about six rows down, as shown
in Figure 7-14. In this position, the top pin is the collector, the middle is the
base, and the bottom is the emitter (Figure 7-15).

Connect a 330 Ω resistor to the base pin and stretch it across the ditch in the
breadboard, as shown in Figure 7-14. Then, connect the other side of this
resistor to pin 11 on your Arduino so that pin 11 connects to the base pin
through the 330 Ω resistor. This is the low-current control signal from the
Arduino that will switch the transistor on and off. When the transistor is
switched on, current will flow through the motor, and it will spin.

Connect a small jumper wire from the emitter of the transistor (lower pin) to
the ground rail. Lastly, connect one of the wires of the motor to the collector
(top) pin of the transistor. The motor will spin either clockwise or
counterclockwise depending on which wire you use, but in this case it doesn’t
matter which way it spins, so you can choose either motor wire. Connect the
other motor wire to the power rail, and then use a jumper wire to connect the
power rail of the breadboard to 5 V on the Arduino. When a small current
signal is detected on the base pin, the connection between the collector and
the emitter is closed. This connects a path from 5 V through the motor to
GND and completes a circuit path that will cause the motor to spin. Figure 7-
16 shows the circuit for the motor.

FIGURE 7-16: Transistor circuit to drive the motor from an Arduino pin

The last piece in this circuit is a protection diode, sometimes called a fly-back
diode, and it protects the transistor from damage that may be caused by the
motor. Inside a motor are a bunch of coils that create an electromagnet that
pushes and pulls against permanent magnets in the motor—this is what
causes the axle to spin. Coils are a really interesting component used in
electronics. The magnetic field that they create is actually a form of stored
energy, and when the circuit is turned off, this stored energy can rebound and
cause large voltage spikes that will damage the transistor. The fly-back diode
creates a path for this voltage spike to dissipate without going through the
transistor. It’s sometimes also called a snubber circuit.

In order to wire this component in correctly, it is important to note that diodes
are polarized, and the orientation makes a difference. The body of the diode
has a line or band at one end of the body, as shown in Figure 7-17. Make sure
that the side with the band is connected to the positive (5 V) side of the
motor.

FIGURE 7-17: Fly-back diode used in the transistor circuit, with a quarter
for size comparison

Add the diode to the motor, making sure that the side of the diode with the
line is connected to the 5 V motor wire, as shown in the circuit diagram in
Figure 7-16. Connect the other leg of the diode to the other wire of the DC
motor—the one connected to the collector pin of the transistor. This means
that the two legs of the diode share the same connections as the two wires of
the motor. When two devices are wired up like this, we say they’re wired in
parallel.

You should now have a complete circuit that has each of the three subcircuits
in Figure 7-6. You’ll add a few more lines of code to control the motor.

Program the Fan Motor

The code for controlling the motor is very simple, just like the code you used
to turn an LED on and off. Add the code in Listing 7-6 to your current sketch.

LISTING 7-6: Complete Tiny Desktop Greenhouse control code

 #include<Servo.h>
 Servo myServo;
 --snip--

 void setup()
 {
➊ pinMode(11, OUTPUT);
 myServo.attach(9, 1000, 2000);
 Serial.begin(9600); //initializes the serial communication

 --snip--
 }

 void loop()
 {
 --snip--
 Serial.println(); //new line character

 if(tempF > setPoint)
 {
 myServo.write(180);
➋ digitalWrite(11, HIGH); //turn the fan on
 }
 else if(tempF < returnPoint)
 {
 myServo.write(0);
➌ digitalWrite(11, LOW); //turn the fan off
 }
 delay(1000);
 }

 /***/
 float volts(int rawCount)
 {
 const float AREF = 5.0;
 float calculatedVolts;
 calculatedVolts = rawCount * AREF / 1023;
 return calculatedVolts;
 }

There are just a few new lines of code. The first is in the setup(). This sets pin
11, to which the motor is attached via the transistor, as an OUTPUT ➊. Next
is the set of conditional if()–else if() blocks. Here, you add two commands to
turn the motor on ➋ and off ➌. Remember that the motor will really be the
greenhouse fan. With these few extra lines of code, the fan will turn on at the
same time as the window opens, and it will turn off when the window closes.

After you’ve added these lines of code, upload this latest version to your
Arduino. Open the Serial Monitor, and test it again. Try warming up the
temperature sensor by squeezing it between your fingers or using your breath,
and watch what happens. As soon as the temperature readings get to about 85
degrees Fahrenheit, the servo motor should move and the hobby motor
should kick in. You might notice that as soon as the motor turns on, the
temperature readings go all out of whack. There is a lot going on here, but we
have a quick fix for it.

Isolate the Motor Effect

When the motor turns on, the voltage of the Arduino drops down to about
4.1–4.5 V because of the extra current load of the motor. You may see that as
soon as the motor spins up, the temperature readings start changing
sporadically, and the motor may continue to turn on and off several times
before the temperature readings settle down. Earlier we said that when you
use analogRead(), 1023 is equal to 5 V, but that’s only partially true. The full
truth is that 1023 is equal to whatever the voltage from the source is, so if the
source voltage drops to 4.1 V, 1023 is now equal to 4.1 V. This messes up the
Arduino’s ability to take accurate measurements.

To rectify this, add two lines of code at the very beginning of the loop(), right
after the first curly bracket, to tell the Arduino to turn off the motor before
reading the temperature sensor:

digitalWrite(11, LOW); //turn off the motor before
 //reading sensor
delay(1); //short 1 ms delay before
 //reading sensor

Now the Arduino will turn the motor off for exactly 1 ms before reading the
voltage on the temperature sensor. This isolates the voltage drop from the
motor and the analogRead() without adding too much extra code.

After adding these two lines, upload the new sketch to your Arduino, and try
heating up the sensor again. Now it should behave much more predictably.
With the circuits built and the code working smoothly, it’s time to build the

actual greenhouse structure.

BUILD THE TINY DESKTOP GREENHOUSE
ENCLOSURE

We provide a template for the greenhouse enclosure we created using
cardboard, but you could use anything you want. In fact, IKEA sells a great
little greenhouse called the SOCKER that you could easily modify to work
with this project.

For the Tiny Desktop Greenhouse, the finished dimensions are roughly 4.5 ×
4.5 inches for the base and 6 inches at the tallest point. In the resources
available at https://www.nostarch.com/arduinoinventor/, we have two
template options: one is broken out into three sheets of 8.5 × 11-inch
cardboard (shown in Figure 7-18), and the other is on a single sheet of
cardboard measuring 11 × 17 inches.

FIGURE 7-18: Tiny Desktop Greenhouse cardboard enclosure template (not
full size)

https://www.nostarch.com/arduinoinventor/

Carefully cut out the pieces of the template from the cardboard. There are
four unique pieces: the pentagonal side pieces, the front/ back square walls,
the roof window, and the fan-motor holder. Take one square side piece and
one pentagonal front/back piece and lay them side by side, with the
transparency side facing up. Use a narrow strip of masking tape to hold these
two sides together, as shown in Figure 7-19. Repeat this process until you
have all four of the side wall pieces attached, but don’t tape the last two walls
together; leave the enclosure lying flat until you’ve added the windows.

FIGURE 7-19: Use a narrow strip of tape to hold the pieces together.

Now you need to cut six pieces of transparency film to be slightly larger than
the opening in each of the wall pieces and the windows. For the template we
provide, you will need four squares that measure 4.25 × 4.25 inches and two
squares that measure 4.25 × 2.5 inches. You should be able to cut these six
pieces out of a single sheet of transparency film; it’s a good idea to trace
them on first to get the most out of the film. At this point, you only want to
secure the windows for the side walls; you’ll add the roof windows at the
very end. Using a bead of glue or small piece of tape, secure these windows

to the inside of the greenhouse on the same side as the tape, as shown in
Figure 7-20.

FIGURE 7-20: Carefully line up the transparency film window to adhere it
to the cardboard.

Once those transparency panes are in place, run one more piece of tape along
the last exposed edge, and connect it so that you have a square base and a
structure that resembles a small greenhouse, as shown in Figure 7-21. The top
and bottom of the greenhouse should still be open, and it may still feel a little
unstable, but as soon as you add the roof, the entire structure will hold
together.

FIGURE 7-21: Four sides of the greenhouse complete

Add the Autovent Window Servo

On our template, we made a small cutout for the servo motor as close as
possible to the pivot point of the window, to maximize the amount the
window opens when the servo horn moves. Disconnect the servo from your
circuit, and attach a horn to the end of the servo if there isn’t one already
there. We’d recommend using the single-sided horn, because it’s easier to tell
where the servo is pointing. Gently rotate the servo clockwise with your
fingers until it stops to set the motor at the 180-degree position. This is the
position where the horn will be when the window is fully open. Remove and
reposition the servo horn so that it is pointing up in the opposite direction
from the wires that come out of the back of the servo, as shown in Figure 7-
22.

FIGURE 7-22: Servo horn in the 180-degree position— rotated clockwise

Now feed the servo through the hole in the template from the inside of the
greenhouse so that the wires are pointing down and the servo horn is on the
inside pointing up (see Figure 7-23).

FIGURE 7-23: Placing the servo into the greenhouse

The tabs of the servo should sit flush with the cardboard. You can screw in
the servo using the screws that come with it and the two small screw holes in
our template, or use a few dabs of hot glue to secure it in place.

Create the Paper Clip Linkage

As in Project 6, you’ll need a linkage to connect the servo horn to the
window. Take a medium-size paper clip and straighten out all but the small
hook on the end. Now, grab a ruler and add a sharp 90-degree bend about 1
1/8 inches from the small hook end, pointing away from the hook, as shown
in Figure 7-24.

FIGURE 7-24: Bending the paper clip linkage

Add the Roof

The roof piece is a rectangular piece of cardboard. Cut out the windows, and
score the centerline of the roof, as shown in Figure 7-25. The scored edge
will form a hinge for the window flap to open and close.

FIGURE 7-25: The roof piece

Position the greenhouse so that the servo is on the left side. One half of the
roof will be secured down with glue, and the other half will form a window
flap that opens and closes. Using a small bead of hot glue, attach one half of
the roof structure to the greenhouse. Only glue down three edges of the roof
(that is, one half of the six edges) so that there’s still a flap that can open.
Make sure that the side that opens coincides with the side that the servo horn
moves against, as shown in Figure 7-26.

FIGURE 7-26: Gluing in the roof. Be sure to only glue one half of the roof
so that the other side can open.

Hook the paper clip linkage around the last hole in the servo horn, as shown
in Figure 7-27, with the rounded hook attached to the servo. Make sure that
the opposing bend is pointing back toward the servo motor. This will hook
into the frame of the roof piece.

FIGURE 7-27: Servo horn and paper clip linkage

Keeping the window flap open, rotate the paper clip until you can insert it
into the side of the frame through the cardboard itself. If the paper clip isn’t
long enough to reach, you can either rebend it or reposition the servo horn at
an angle rotated slightly higher to extend the reach of the linkage. It may be
helpful to lift the greenhouse structure and reposition the servo horn from
underneath. Once you’ve positioned the servo horn so it will reach, insert the
end of the paper clip into the side of the window frame, as shown in Figure 7-
28.

FIGURE 7-28: Servo arm linkage connected to the window flap

Bend the portion of the paper clip that protrudes from the other side to create
a hook so that the linkage does not fall out (see Figure 7-29), and cut the
remaining end off. Now carefully move the servo back and forth; you should
be able to open and close the lid of your greenhouse!

FIGURE 7-29: Bending the hook in the servo linkage

With the mechanism complete, you can glue or tape the transparency
windows for the top of the greenhouse. A small dab of glue on the four
corners will be just enough to hold the window pane down. The window
panes should go on the outside of the greenhouse roof to allow room for the
linkage to open and close the lid. Next, you’ll build a box to hold the motor
and fan.

Build the Fan-Motor Box

The motor will serve as a fan to move air around when the greenhouse gets
too warm. To prevent the motor from moving as it spins and vibrates, we
designed a small cardboard box to hold it in. The template has a design for a
five-sided box with a small hole to allow the motor wires to come through,
shown in Figure 7-30.

Cut out this template from a piece of cardboard, and carefully score the
dashed lines so that it can fold up into a box. Using either tape or hot glue,
secure the four sides of the box so that it will hold the motor snugly (see
Figure 7-31).

To build a fan blade, you’ll glue a small piece of cardstock onto the end of
the motor. Cut the fan blade so that it is no more than 1.25 inches wide. To
help the fan move more air, fold the edges of the cardstock as shown in
Figure 7-32.

FIGURE 7-30: The fan-motor box

FIGURE 7-31: Completely assembled motor box with the motor inside

FIGURE 7-32: Final fan blade

This will ensure that the fan doesn’t hit the plant or anything else inside the
tiny greenhouse. Using a small dab of hot glue, attach the fan blade to the
motor as shown in Figures 7-33 and 7-34.

FIGURE 7-33: Securing the fan blade to the motor

FIGURE 7-34: Fan-motor assembly complete

Connect It Up

Now you have all of the pieces you need for your Tiny Desktop Greenhouse,
so it’s time to install the electronics. Remove the temperature sensor from the
breadboard, and use three male-to-female jumper wires to extend the
connections of the sensor, as shown in Figure 7-35. Pay attention to which
wires you move, and connect them up again using the extended wires. When
you hold the flat side of the temperature sensor facing you with the pins to
the left, the top pin is power, the middle pin is the signal, and the bottom pin
is ground. We used red, yellow, and black wires to show the power, signal,
and ground connections, respectively.

FIGURE 7-35: Extending the temperature sensor with male-to-female
jumper wires

You’ll need to place the temperature sensor inside the greenhouse. Use a
piece of masking tape to secure the temperature sensor directly to the plant
before sticking it inside your new greenhouse, as shown in Figure 7-36. You
can now feed the wires out under one side of the greenhouse, or you could
also make a small hole to feed the wires through.

FIGURE 7-36: Secure the temperature sensor directly to your plant

Similarly, move the fan-motor assembly so that it sits near the corner of the
greenhouse. The motor wires should be long enough to reach the breadboard
without extensions, but if you need to, you can add extra male-to-female
extension wires to make wiring easier.

Now, you should still have enough room for a small plant to rest comfortably
in this new cozy habitat. It’s time to get your new exotic house plant and put
it inside your brand new greenhouse! To test out how effectively our autovent
system regulated the temperature, we created our own indoor sun with some
really big floodlights to heat the air.

Figure 7-37 shows one of our tests on the Tiny Desktop Greenhouse.

FIGURE 7-37: Testing a Tiny Desktop Greenhouse

GOING FURTHER

There are a lot of opportunities to take this project to the next level.

Hack

At the moment, your greenhouse is pretty darn small. To make space for
more plants, find a large cardboard box like the ones used for copy paper. Cut
some windows in it, line them with transparency film, and move the
electronics into this bigger and better greenhouse. Or, take a look at the
plastic greenhouses they have over at IKEA. Where can you mount the servo
motor so that you can open and close the window on this greenhouse?

Modify

The current set point is 85 degrees Fahrenheit, and although that was a good
temperature for us to test because we could easily increase it with our own
body heat, it’s actually still pretty low for most plants. Look up the ideal

growing temperature for your plant, and modify your code to use this new set
point.

You can also modify how often the greenhouse samples the temperature with
the delay. A delay of 1 second is pretty short. If your temperatures swing at
all, the lid will be opening and closing every few seconds. This can quickly
become annoying. Change this delay to something like 5 minutes, which
would be 30,000 ms.

8 Drawbot, The Robotic Artist
As an homage to the Logo turtle project, in this project we’re going to make a
Drawbot: a robot that you can program to move and draw. Logo was a
programming language created in the late 1960s by Daniel G. Bobrow, Wally
Feurzeig, Seymour Papert, and Cynthia Solomon. It was later adapted to
support a robot with a drawing pen called a turtle (see Figure 8-1).

FIGURE 8-1: An early version of a Logo turtle

Turtles were connected to a computer to receive movement commands in the
Logo language, such as fd 10 to drive forward 10 spaces. As the turtle
moved, it drew with the attached pen. These Logo turtles were an early
educational system designed to teach programming concepts in a visual way.

You’re going to build your own Arduino-controlled turtle, the Drawbot
(Figure 8-2), which was inspired by the work of Seymour Papert and his
team.

FIGURE 8-2: A completed Drawbot

MATERIALS TO GATHER

Your robot will have two wheels, each with a motor that’s controlled by the
Arduino through a new component called an H-bridge. An H-bridge is a
small modular circuit board similar to the transistor circuit you used in the
last project, except that it will enable you to control both the speed and the
direction of the motor. This will give your robot the most flexibility and
control. Gather your parts (shown in Figures 8-3 and 8-4), and let’s get
started!

Electronic Parts

• One SparkFun RedBoard (DEV-13975), Arduino Uno (DEV-11021), or any
other Arduino-compatible board

• One USB Mini-B cable (CAB-11301 or your board’s USB cable)

• One solderless breadboard (PRT-12002)

• Two geared hobby motors (ROB-13302*)

• One TB6612FNG H-bridge motor driver (ROB-09457* unsoldered or
ROB-13845* presoldered)

• Two rubber wheels fit for the geared hobby motors (ROB-13259*)

• Male-to-male jumper wires (PRT-11026)

• Male-to-female jumper wires (PRT-09140*)

• One 4 AA battery holder (PRT-09835*)

NOTE

The parts marked with an asterisk (*) do not come with the standard
SparkFun Inventor’s Kit but are available in the separate add-on kit.

FIGURE 8-3: Components and materials for the Drawbot

Other Materials and Tools

• Pencil

• Craft knife

• Metal ruler

• Glue (hot glue gun or craft glue)

• (Optional) Drill and 3/16-inch drill bit

• (Optional) Soldering iron

• Cardboard (about 12 inches square) or a cardboard box

• Ping-pong ball

• Enclosure template (see Figure 8-12 on page 235)

FIGURE 8-4: Recommended tools

NEW COMPONENTS

You’ll be using two new components in this project: an H-bridge motor
driver and geared hobby motors. Let’s take a look at how these components
work.

The H-Bridge Motor Driver Integrated Circuit

In Project 7, you used a transistor circuit to control a single motor with
Arduino, which allowed you to control the speed of the motor but not the
direction of its spin. In this project, you’ll use a new component called an H-
bridge motor driver that will allow you to control both the speed and
direction of the motor.

The H-bridge motor driver is an integrated circuit (IC) chip, made up of about
a dozen transistors wired together internally inside a small plastic package.
An IC chip is a prewired circuit that has been integrated into a single package
to make building complex projects easier. There are many different ICs out
there; one example is the brain behind the Arduino Uno, the ATMega328
chip. In this case, the H-bridge motor driver IC allows you to control a
motor’s speed and direction of rotation by connecting power and just a few
signal wires to the Arduino.

You might recall from Project 7 that a transistor is simply a switch that can
be controlled electronically. A standard H-bridge motor driver consists of
four or five transistors (or switches) wired up in an H configuration, as shown
in Figure 8-5. (The motor shown in the middle isn’t included in the H-bridge
IC; you’ll add that in.) By controlling which of the four main switches
(labeled A–D) are open or closed, you can control the direction in which the
current flows through the motor. The fifth switch (E) controls the speed of
the motor’s rotation.

FIGURE 8-5: H-bridge circuit for both direction and speed control

Remember that current flows from positive to negative. If you closed
switches A and D, current would flow through the motor from left to right,
turning the motor in one direction. If you instead closed switches B and C,
current would flow through the motor from right to left, causing it to spin in
the opposite direction.

Switch E is pulsed on and off rapidly through PWM (see “Create Analog
Signals with PWM” on page 139). The duty cycle of this PWM signal will
determine how fast the motor spins. On your robot, you’ll have two motors,
each with its own H-bridge circuit, and you’ll attach a wheel to each motor so
you can control its spin speed and direction.

The H-bridge motor driver you’ll use in this project is the Toshiba
TB6612FNG, shown in Figure 8-6. It comes as a breakout board with holes
for pins that are spaced 0.100 inches apart—perfect for inserting into a
breadboard.

FIGURE 8-6: TB6612FNG H-bridge motor driver breakout board (without
pins soldered)

NOTE

The chip also has a standby pin that can be used to put the motor in standby
mode to conserve power, but you won’t need this feature, so you’ll disable it.

The Toshiba TB6612FNG is actually a dual H-bridge IC. This means it has
two full H-bridge circuits built into a little package, allowing you to control
the two motors on your robot with a single board. The H-bridge distinguishes
the two motors as A and B, as you can see on the underside of the board in
Figure 8-6. To control each H-bridge circuit, you use three signal wires: two
for direction and one for speed.

You can buy the board either with or without pins already soldered on, so if
you want to save yourself the trouble of soldering, make sure you get the
presoldered board (ROB-13845). If you have the board without header pins
already soldered on (ROB-09457), it’s not a problem, but you’ll need to
solder male headers onto the pins; for soldering instructions, see “How to
Solder” on page 302. In either case, before you start building this project you
should have a board that looks like Figure 8-7.

FIGURE 8-7: DEV-12211 H-bridge motor driver with headers soldered on

Geared Hobby Motor

The basic hobby motor that we used in Project 7 is great for simple
mechanisms like spinning fans, but it doesn’t offer a lot of torque (rotational
force). In this project, we want to use a motor to move the entire project
around, so we need to use a geared motor—a motor that’s attached to a
gearbox (see Figure 8-8).

FIGURE 8-8: A geared hobby motor consists of a basic motor and a gearbox

A gearbox essentially converts mechanical rotations into torque. This
gearbox has a 48:1 gear reduction, which means 48 rotations of the motor
equal one rotation of the output shaft. This slows down the motor by a factor
of roughly 1/48 and results in a multiplication of the torque by a factor of 48.
Basically, the output speed is slower, but the torque is a lot higher.

BUILD THE DRAWBOT PROTOTYPE

Now, let’s wire this up to see how it all works. You’ll connect just one motor
for now to test the H-bridge motor driver, so you’ll use only one half of the

dual H-bridge board. Figure 8-9 shows how the board and Arduino should be
wired. The board is split horizontally, with the top half controlling Motor A
and the bottom half controlling Motor B, though the power pins are used for
both motors. Connect 5 V and GND from the Arduino to the power rails on
the breadboard, and make sure to add a jumper wire to connect the two 5 V
rails of the breadboard so you can use either rail to give power; this will save
you from crossing too many wires and keep your board neat.

FIGURE 8-9: H-bridge test circuit

Starting from the top left of the H-bridge, connect 5 V to the top two pins,
VM and VCC. VM controls the power for the motors, and VCC controls the
power for the chip. Next, use a jumper wire to connect one of the chip’s GND
pins to the GND rail of the breadboard. There are three pins available for
ground on the H-bridge, as you can see in Figure 8-7, and you can use any of
these.

Next you’ll connect the motor. The motor has two wires: red and black. The
orientation of the wires doesn’t actually matter, but for consistency connect
the red wire to the pin labeled A01 and the black wire to pin A02.

The remaining pins on the left side are those for controlling the second motor

and another GND pin, so leave them for now. The pins on the top right of the
H-bridge breakout board are for the signal wire connections for Motor A. The
topmost pin, labeled PWMA, controls the motor’s speed. Connect this to pin
11 on the Arduino. (Remember that pins 3, 5, 6, 9, 10, and 11 all have PWM
capability and can be used with the analogWrite() function.)

The next two pins, labeled AIN2 and AIN1, are used to control the direction
and drive of Motor A, which you can do by setting these pins to different
combinations of HIGH and LOW. Table 8-1 shows the combinations.
Connect AIN2 to Arduino pin 12 and AIN1 to Arduino pin 11.

TABLE 8-1: H-bridge motor controller functions

AIN1 AIN2 FUNCTION

HIGH LOW Clockwise

LOW HIGH Counterclockwise

HIGH HIGH Electronic brake (see note)

LOW LOW Stop/coast

NOTE

Setting both pins HIGH will employ electronic braking. The two wires of the
motor are essentially shorted together, causing the motor’s spinning to stop
abruptly. By contrast, setting both to LOW would just stop actively spinning
the motors, meaning the wheels would coast to a stop rather than stopping
deliberately.

Lastly you’ll need to disable the STBY pin. As mentioned earlier, this H-

bridge IC has a standby pin that allows you to put the chip into a low-power
sleep mode, which is useful for applications where power consumption is a
concern. For this project, you don’t need this feature, so you’ll disable it. This
chip is designed with STBY as an active low input. This means that when this
pin is LOW, it goes into standby mode. To disable standby, you’ll connect
this pin directly to 5 V on the power rail.

PROGRAM THE DRAWBOT

Let’s start the sketch with a little test. This simple example will spin the
motor clockwise slowly for 1 second, change directions and spin
counterclockwise quickly for 1 second, and then stop for 1 second before
starting again. Open the Arduino IDE, and copy the code in Listing 8-1 into
your window. When you’re done, click Upload and watch what happens!

LISTING 8-1: H-bridge motor controller example of speed and direction
control

➊ const byte AIN1 = 13;
 const byte AIN2 = 12;
 const byte PWMA = 11;

 void setup()
 {
 pinMode(AIN1, OUTPUT);
 pinMode(AIN2, OUTPUT);
 pinMode(PWMA, OUTPUT);
 }

 void loop()
 {
 //set direction to clockwise
➋ digitalWrite(AIN1, HIGH);
 digitalWrite(AIN2, LOW);
➌ analogWrite(PWMA, 50);
 delay(1000);

 //set direction to counterclockwise
➍ digitalWrite(AIN1, LOW);
 digitalWrite(AIN2, HIGH);
 analogWrite(PWMA, 255);
 delay(1000);

 //brake
➎ digitalWrite(AIN1, HIGH);
 digitalWrite(AIN2, HIGH);
 delay(1000);
 }

The sketch starts with a new data type: const byte ➊. The keyword const is
used to declare a constant, which is like a variable but with a value that can’t
be changed again later in the code. Thus, constants are useful for declaring
things that will stay the same throughout the code, like pin numbers or
configurations. In this case, these constants define the pin numbers that
control the H-bridge. Since the pin numbers are numbers between 0 and 13,
you can define these constants as the data type byte.

NOTE

Most of the time it doesn’t matter too much whether you use a constant or a
variable, but constants use less memory on the Arduino, so it’s good practice
to use them when you can, and you may see them used in other people’s
examples online. Also, while it’s not a hard-and-fast rule, constant names are
typically in all capital letters.

Next, you set the pins as outputs, and then set the direction you want the
motor to spin using two digitalWrite() functions ➋ on pins AIN1 and AIN2.
The first loop block sets AIN1 to HIGH and AIN2 to LOW, which spins the
motor clockwise. To set the speed, you use an analogWrite() function ➌ on
the PWMA pin. You may recall from Project 5 that you can use
analogWrite() to set an analog pin to a PWM value from 0 to 255; the value
given here, 50, is relatively slow. The motor will spin for 1 second because of
delay(1000), and the next loop block changes directions with two more
digitalWrite() functions ➍. Here the sketch simply swaps which pin is HIGH
and which is LOW, sets the speed to 255 with analogWrite(), and adds

another delay(1000) to set it to spin for 1 second.

The last part of the sketch sets both AIN1 and AIN2 to HIGH ➎, with
another delay(1000). This applies an electronic brake and stops the motor for
1 second before the loop begins again and repeats the pattern.

Using this code as an example, you can now control both the speed and
direction of a motor with just three lines of code! But we can make this even
simpler. Let’s clean up the code by using custom functions.

Create a Custom Function

At the moment, every time you want to control the motor you’re using three
lines of code: two to control the direction and one to set the speed. In this
section you’ll make a custom function that will take just one number to
determine both the direction and the speed of the spin. This number can be
anything between -255 and 255 and will spin the motor clockwise if the
number is positive and counterclockwise if it’s negative. Add the code in
Listing 8-2 to the very end of your sketch.

LISTING 8-2: Custom function to set the motor speed of Motor A

 void ➊setMotorA(➋int motorSpeed)
 {
➌ if (motorSpeed > 0)
 {
 digitalWrite(AIN1, HIGH);
 digitalWrite(AIN2, LOW);
 }
➍ else if (motorSpeed < 0)
 {
 digitalWrite(AIN1, LOW);
 digitalWrite(AIN2, HIGH);
 }
➎ else
 {
 digitalWrite(AIN1, HIGH);

 digitalWrite(AIN2, HIGH);
 }
➏ analogWrite(PWMA, abs(motorSpeed));
 }

Name the function setMotorA() ➊. This function uses a number as a single
argument named motorSpeed ➋ to set the motor’s speed. First, a simple if()
statement determines whether the number is positive or negative by checking
whether motorSpeed is greater or less than zero. If motorSpeed is positive ➌,
the if() statement sets the direction pins so that the motor spins clockwise. If
it’s negative ➍, an else if() statement sets the direction pins to spin the motor
counterclockwise. If it’s neither positive nor negative (that is, if it’s 0), a final
else statement ➎ sets both direction pins HIGH to apply the brake and stop
the motor.

The line at ➏ uses the abs() mathematical function to find the absolute value
of motorSpeed. The analogWrite() function sets the speed of the motor, but it
works only with values from 0 to 255. The abs() function makes sure that the
positive part, or absolute magnitude, of motorSpeed is used to set the speed.

Clean Up the Code

Now, let’s clean up the loop() with this new function. You can see in Listing
8-3 that the loop() code is much shorter and easier to read. Make these
changes to the loop() in your sketch and upload it to your board. It should
behave the same way as before. Now, if you want to set the motor to a
different speed or direction, you can do it with just a single line of code!

LISTING 8-3: Simplified version of the loop() using the custom function
setMotorA()

void loop()
{
 //set direction to clockwise
 setMotorA(100);
 delay(1000);

 //set direction to counterclockwise
 setMotorA(-255);
 delay(1000);

 //stop
 setMotorA(0);
 delay(1000);
}

This code sets a setMotorA() value and a delay to make each change in speed
and direction. Now you have the beginnings of your Drawbot! Next, you’ll
wire the second motor.

WIRE THE SECOND MOTOR

The DrawBot needs a second motor so it can zip around on two wheels.
Figure 8-10 shows how the second motor will be wired. Plug Motor B in on
the left side of the breakout board just below the connections for the first
motor, with the red wire connected to B02 and the black wire connected to
B01. Next, add the signal control lines to the H-bridge breakout board, just
below the STBY pin on the right side. Connect the PWMB pin on the H-
bridge to Arduino pin 10 for speed control, and connect the BIN1 and BIN2
pins to Arduino pins 8 and 9, respectively, for direction control.

FIGURE 8-10: Wiring diagram for the motor driver and two motors

Now, you’ll need to add code to control the second motor, as shown in
Listing 8-4.

LISTING 8-4: Adding constants and pinMode() functions for Motor B

 const byte AIN1 = 13;
 const byte AIN2 = 12;
 const byte PWMA = 11;

➊ const byte BIN1 = 8;
 const byte BIN2 = 9;
 const byte PWMB = 10;

 void setup()
 {
 pinMode(AIN1, OUTPUT);
 pinMode(AIN2, OUTPUT);
 pinMode(PWMA, OUTPUT);

➋ pinMode(BIN1, OUTPUT);
 pinMode(BIN2, OUTPUT);

 pinMode(PWMB, OUTPUT);
 }

This code adds the three additional constants ➊ for the signal control pins for
Motor B, and sets each of these pins as OUTPUT ➋ in the setup().

Next, you’ll again write a custom function to control Motor B. This code is
so similar to the setMotorA() function that you can save yourself some typing
by highlighting the code for setMotorA(), copying it (CTRL-C), pasting it
(CTRL-V) below the setMotorA() function, and changing the As to Bs. This is
a technique that programmers use a lot, and it can save you a lot of time. You
just need to make sure you’re careful to change all the As to Bs in this second
custom function (Listing 8-5), or the code won’t work.

LISTING 8-5: Custom function for Motor B

void setMotorB(int motorSpeed)
{
 if (motorSpeed > 0)
 {
 digitalWrite(BIN1, HIGH);
 digitalWrite(BIN2, LOW);
 }
 else if (motorSpeed < 0)
 {
 digitalWrite(BIN1, LOW);
 digitalWrite(BIN2, HIGH);
 }
 else
 {
 digitalWrite(BIN1, HIGH);
 digitalWrite(BIN2, HIGH);
 }
 analogWrite(PWMB, abs(motorSpeed));
}

The sketch will now need motorSpeed values for both setMotorA() and
setMotorB(). Let’s add those to test the motors out together.

DRIVE BOTH MOTORS

To make your Drawbot drive forward, you’ll need the right motor to spin
clockwise and the left motor to spin counterclockwise. This may seem
counterintuitive, but take a look at a robot base from the side. Figure 8-11
shows a robot frame from both sides with arrows indicating the forward
direction.

FIGURE 8-11: Side views of the robot from the right and left sides. To
move forward, the right wheel must spin clockwise and the left wheel must
spin counterclockwise.

On the right side of the robot, the wheel needs to spin clockwise for the robot
to move forward, but on the left side of the robot, the wheel needs to spin
counterclockwise. Pay attention to the direction in which each axle is
spinning. If you need to, attach a piece of masking tape to the spinning end of
the motor so that you can see the axle’s direction.

Now, to make the robot go backward, you just reverse those directions. After
adding the custom function code for setMotorB() to your sketch, adjust your
loop() to look like Listing 8-6, and then upload this code and watch your
motors spin!

LISTING 8-6: New loop() code to test both motors

void loop()
{
 //drive forward medium speed for one second
 setMotorA(100);
 setMotorB(-100);

 delay(1000)

 //drive backward quickly for one second
 setMotorA(-255);
 setMotorB(255);
 delay(1000);

 //stop for one second
 setMotorA(0);
 setMotorB(0);
 delay(1000);
}

You should see that Motor A (right side) is spinning clockwise and Motor B
(left side) is spinning counterclockwise, and then after 1 second they flip. If
you find that the motors are spinning in the same direction, swap the red and
black wire connections on one of the motors.

With just a few lines of code, you can make your Drawbot move forward,
turn right, turn left, move backward, and jiggle around!

Now it’s time to build a frame or a chassis for your Drawbot. Because the
code you wrote is all in the loop() part of the sketch, your motors will
continue to spin, stop, spin, and stop. To stop the motors from spinning while
you’re building the chassis for your Drawbot, temporarily disconnect the
USB cable from your computer.

BUILD THE DRAWBOT CHASSIS

If you’re using the SIK with the breadboard holder and Arduino baseplate,
you’ll need to make the chassis of the Drawbot at least as large as the
baseplate itself. The baseplate measures 6 inches by 4.25 inches. Use a piece
of cardboard or thin plywood to make your chassis. For our design, we made
the chassis a rectangular 6 × 8-inch cutout, as shown in Figure 8-12. You can
download a PDF of this template from
https://www.nostarch.com/arduinoinventor/.

https://www.nostarch.com/arduinoinventor/

FIGURE 8-12: Drawbot chassis, bottom view (not full size)

Using tape or a hot glue gun, attach the motors to the underside of the
chassis, oriented as shown in Figure 8-13, with the motor hub near the back
and the longer end of the motor body toward the front. (Hot glue is a great
semipermanent method for attaching things because you can simply scrape it
away with a craft knife and remove the part if you want to reuse it later.) You
may need to temporarily disconnect the motors from your breadboard circuit
while you’re attaching them to the chassis, so just remember to reconnect

them to the circuit after you’ve glued them down. Refer back to Figure 8-10
if you need help rewiring it.

FIGURE 8-13: Attaching the motors to the chassis with hot glue

We have a hole in our base template that’s designed for a pen or marker. A
Drawbot needs to be able to draw, after all! To give the pen more stability,
we glued two smaller pieces of cardboard together to create a taller pen
holder. Glue these pieces down right on top of the hole, as shown in Figure 8-
14.

FIGURE 8-14: Gluing the pen holder onto the chassis

Finally, attach the wheels to the motors. You’ll notice that the motor axles
have two flat edges (Figure 8-15). Make sure you line these up with the flat
edges on the axle holes of the wheels. The fit may be a little tight. Hold on to
the entire motor while pushing the wheel on so that you don’t accidentally rip
the motor off your chassis.

FIGURE 8-15: Profile of motor axle. Line up the flat edges with the flats of
the opening on the wheel.

The Drawbot will move around using the two motor wheels as power and
steering and a skid caster at the other end for balance. This method is called
differential steering. This particular Drawbot is designed as a front-wheel-
drive system, using a ping-pong ball as a skid caster in the back. As the
Drawbot moves around, it will skid the ping-pong ball over the surface. Glue
the ping-pong ball into place as shown in Figure 8-16, trying to center it as
much as possible for the best balance.

NOTE

If you want to make your own wheels, use the shape and dimensions in
Figure 8-15 for the axle holes.

FIGURE 8-16: Attaching a ping-pong ball as a skid caster

Now, set the breadboard holder, the Arduino, and a battery pack on top of the
chassis, as shown in Figure 8-17. Use a little bit of tape or dabs of glue to

make sure they don’t move around.

FIGURE 8-17: The breadboard holder, the Arduino, and a battery pack on
the cardboard chassis

Test and Troubleshoot

Reconnect the USB cable to your Arduino board or plug in your battery pack
and watch what happens. You might need to hold on to the cable so that it
doesn’t get tangled up. The robot should move forward slowly for 1 second,
reverse direction quickly for 1 second, and then stop for 1 second. Because
all of your code is in the loop(), the Drawbot will repeat this motion over and
over again until you disconnect it from power. While you’re working on
tweaking your code, you may want to put the Drawbot’s back end up on a
few books to keep the wheels from touching the table.

Now, if your robot doesn’t behave like you expect it to, you’ll need to do a
little troubleshooting to figure out what’s going on. First, identify the
problem. There are two common problems that we’ve seen with this bot:
moving in the wrong direction and turning in circles. If it moves backward

first instead of forward, switch the red and black wires for both motors going
to the H-bridge. If your robot moves in circles instead of moving forward or
backward, try flipping the motor wires on either Motor A or Motor B—don’t
flip both of them, or you’ll get the same problem again. You should now
have a Drawbot that moves forward and then backward, stops, and repeats
this motion.

Before moving on, test how far the Drawbot moves in 1 second and make a
note of this. You’ll add a marker pen for it to start drawing lines, and you
may need to adjust the speeds and the times so that the Drawbot is easier to
control. Slower speeds and shorter times might be best if you’re working on a
small table.

Turn and Make Patterns: A Robot Square Dance

Now that you’ve mastered moving your robot forward and backward, see
what fun patterns you can make with your new creation. Before you put a
marker onto your Drawbot, try turning corners.

To turn the robot to the right, both motors need to spin counterclockwise, and
to turn the robot left, they need to spin clockwise. See if you can get your
Drawbot to do a little square dance! To draw a square, the basic steps are as
follows:

• Move forward.

• Turn 90 degrees.

• Move forward.

• Turn 90 degrees.

• Move forward.

• Turn 90 degrees.

• Move forward.

• Turn 90 degrees.

Figure 8-18 illustrates the steps needed. You’ll notice that you repeat the
same steps four times. You already know you can use a loop() for repeated
actions, but loops repeat forever, and you want your Drawbot to stop after
four turns. Luckily there’s a programming technique that’s perfect for
repeating a part of the code a set number of times: a for() loop.

FIGURE 8-18: Steps to a simple square dance

A for() loop starts with the command for, followed by a set of parentheses.
Inside the parentheses there are three sections. See Listing 8-7.

LISTING 8-7: The for() loop

for(➊int count = 0; ➋count < 4; ➌count++)
 {
 ➍ //insert code here that you want to repeat
 }

The first part ➊ is the declaration and initialization of a counter variable that
keeps track of repetitions of the loop. You declare this variable as an integer,
name it count, and initialize it to 0. You can name this variable anything you
want, so long as you use the same variable name in the next two parts. The
next part is the condition statement ➋, which controls whether the for() loop
continues to repeat or stops. Here, you continue repeating as long as the
condition statement count < 4 is true. Since count was initialized at 0, this
condition is true on the first pass, and the loop will repeat. The third part is
the increment statement ➌, which tells the for() loop what to do with the

counter variable after each repetition. Here, count++ is a shorthand for count
= count + 1. This increments the counter variable by 1 for each repetition.
The final part ➍ is the code that you want to repeat or loop through, like any
code you place inside curly brackets.

So in all, the for() loop’s arguments are saying that the loop should continue
to run until it’s run four times, at which point the count will be incremented
to 4, the condition statement will be false, and the loop will exit. The for()
loop is a really handy way to clean up code and repeat instructions a
particular number of times.

Now, use this new skill to write your square dance code. Replace the loop()
in your sketch with the loop() in Listing 8-8. Everything else will stay the
same.

LISTING 8-8: Square dance code

 void loop()
 {
➊ for(int count = 0; count < 4; count++)
 {
 //drive forward
 ➋ setMotorA(100);
 setMotorB(-100);
 ➌ delay(500);

 //turn right
 ➍ setMotorA(-100);
 setMotorB(-100);
 delay(250);
 }
➎ delay(1000);
 }

SHORTHAND FOR QUICKLY MANIPULATING VARIABLES

Often you may want to increment, decrement, or just modify the value of a
variable in code. The most common use is to increment the value of a

variable by one for each repetition of a loop, which you can do with the code
variableName = variableName + 1. But there are also a few shorthand
methods to modify values of variables, shown in the following table.

SHORTHAND
CODE LONGHAND CODE DESCRIPTION

variableName++; variableName = variableName +
1; Increment by 1

variableName += 2; variableName = variableName +
2; Increment by 2

variableName += n; variableName = variableName +
n; Increment by n

variableName--; variableName = variableName - 1; Decrement by 1

variableName -= 2; variableName = variableName - 2; Decrement by 2

variableName -= n; variableName + variableName - n; Decrement by n

variableName *= n; variableName = variableName *
n; Multiply by n

variableName /= n; variableName = variableName / n; Divide by n

To draw a square, the sketch uses the for() loop ➊ to repeat the steps four
times. The robot first drives forward ➋ for just half a second ➌. You want to
make sure that it doesn’t go too far and draw all over your floors. Next, to
turn the robot, the sketch sets both motors to spin counterclockwise ➍. To
complete each square, you add a short, 1-second delay ➎. Notice that the
delay is after the curly bracket for the for() loop. The Drawbot will repeat the
steps—move forward and turn four times—and then wait for 1 second before
the whole loop() repeats. This will give you a chance to manually move the
Drawbot or reposition it if you need to. The values in this code worked well
in our office, but you may need to fine-tune and play around with the speed
settings and timing for your own Drawbot. Tweak your sketch until you get
your Drawbot moving in a square-like pattern. Don’t worry if it’s not perfect
—just keep testing out the speeds of the corner turns. This is part of the art
you’ll be creating!

We’ve included the full sketch for the square-dancing Drawbot in Listing 8-
9.

LISTING 8-9: Complete Drawbot square dance code

const byte AIN1 = 13;
const byte AIN2 = 12;
const byte PWMA = 11;

const byte BIN1 = 8;
const byte BIN2 = 9;
const byte PWMB = 10;

void setup()
{
 pinMode(AIN1, OUTPUT);
 pinMode(AIN2, OUTPUT);
 pinMode(PWMA, OUTPUT);

 pinMode(BIN1, OUTPUT);
 pinMode(BIN2, OUTPUT);
 pinMode(PWMB, OUTPUT);

}

void loop()
{
 for(int count = 0; count < 4; count++)
 {
 //drive forward
 setMotorA(100);
 setMotorB(-100);
 delay(500);

 //turn right
 setMotorA(-100);
 setMotorB(-100);
 delay(250);
 }
 delay(1000);
}

void setMotorA(int motorSpeed)
{
 if (motorSpeed > 0)
 {
 digitalWrite(AIN1, HIGH);
 digitalWrite(AIN2, LOW);
 }
 else if (motorSpeed < 0)
 {
 digitalWrite(AIN1, LOW);
 digitalWrite(AIN2, HIGH);
 }
 else
 {
 digitalWrite(AIN1, LOW);
 digitalWrite(AIN2, LOW);
 }
 analogWrite(PWMA, abs(motorSpeed));

}

void setMotorB(int motorSpeed)
{
 if (motorSpeed > 0)
 {
 digitalWrite(BIN1, HIGH);
 digitalWrite(BIN2, LOW);
 }
 else if (motorSpeed < 0)
 {
 digitalWrite(BIN1, LOW);
 digitalWrite(BIN2, HIGH);
 }
 else
 {
 digitalWrite(BIN1, LOW);
 digitalWrite(BIN2, LOW);
 }
 analogWrite(PWMB, abs(motorSpeed));
}

As we mentioned earlier, the chassis template includes a notch on the front
end to place a marker. We suggest using either a washable or dry-erase
marker. Find a large piece of poster paper or dry-erase board that you can lay
on the floor. Be really careful not to draw all over your floor! It might get you
in trouble. (Trust us, we’ve made this mistake before, and we definitely regret
it.)

Place your Drawbot on the drawing surface. Use a piece of masking tape to
secure the marker in place, positioning it so that it makes good contact with
the drawing surface. Move the Drawbot around manually on the drawing
surface to test the marker placement. Now, plug the USB cable in to your
computer and watch what happens. Be quick to grab the Drawbot if it looks
like it’s going to run off your drawing surface and onto the floor.

To mix things up, change marker colors or modify your code to draw

different size squares. See if you can make your Drawbot draw spirals and
stars! Figure 8-19 shows some of the fun patterns our Drawbot made in our
office.

FIGURE 8-19: Drawbot in action—make sure you use a large piece of paper
to keep it from drawing all over the floor!

If you want to add some style to your Drawbot, try digging through your craft
supplies or finding some spare cardboard and see what you can come up
with. We placed an old pretzel jar container on our Drawbot at the office. It’s
now called Pretzel Bot, and it drives around and gives away free pretzels
(Figure 8-20).

FIGURE 8-20: Pretzel Bot! The Arduino and breadboard are hidden inside
the box.

GOING FURTHER

The Drawbot is an introduction to basic robotics. The simplest robots are
really just a controller and two motors, and that’s what you have here. We’ll
give you a few ideas to take it to the next level.

Hack

Preprogrammed motion is fun, but every time you want to change up the
pattern, you have to reupload the sketch. But with some changes to the code,
you can use the Serial Monitor to control your Drawbot while it’s still going.

So far, you’ve used the Serial Monitor only to read data the Arduino sends
back to the computer as the project is working, such as sensor data, but the
Serial Monitor can also send data to the Arduino. Open the Serial Monitor
window, and you’ll see a small text box at the top with a button labeled Send,
as shown in Figure 8-21. This box allows you to send data to the Arduino so
you can control it from the Serial Monitor.

FIGURE 8-21: Serial Monitor window

The P8_DrawbotSerial.ino sketch (downloadable from
https://www.nostarch.com/arduinoinventor/) uses the Serial Monitor to send
just three numbers to control Motor A, Motor B, and the driving time.

Take a look at the code. This new sketch declares three variables to hold the
speed of Motor A, the speed of Motor B, and the delay time, which are the
three numbers you send. You initialize communication with the Arduino with
Serial.begin(9600); to send and receive data using the Serial Monitor. The
Arduino reads the data you put into the Serial Monitor and assigns any
integers to the three speedA, speedB, and delayTime variables, which are
then used for the familiar setMotorA(), setMotorB(), and delay() functions.
See the comments in the code for a more complete explanation.

Upload the sketch to your Drawbot, open the Serial Monitor, enter 100 -100
500, and press ENTER or click Send (see Figure 8-22). The Drawbot should
move forward for half a second and then stop. Now you can fine-tune your
Drawbot routines without having to reupload the code each time! The code
will run once and doesn’t repeat unless you give it additional commands.
What happens when you enter six numbers, such as 100 -100 500 -100 -100
250? See if you can choreograph a dance routine that is represented by a
sequence of numbers.

FIGURE 8-22: Choreographing a robo-dance

https://www.nostarch.com/arduinoinventor/

Modify

What other shapes can you program your Drawbot to create? Use what you
learned with for() loops and see if you can hack your code to make it draw a
triangle or star. You’ll have to do some experimenting to get the timing and
speeds just right. What happens when you move just one wheel at a time?

Bonus

There’s a bonus script (at https://www.nostarch.com/arduinoinventor/) that
will let you control the turtle with even simpler commands, like fd 10 and bk
10 to move forward or backward 10 spaces. Download P8_BonusTurtle.ino
and load it into your IDE. Then open your Serial Monitor and enter a few of
the following commands: fd 10 to move forward 10 spaces, bk 10 to move
backward 10 spaces, rt 90 to turn right 90 degrees, and lt 90 to turn left 90
degrees. See if you can instruct your new turtle to do a square dance with
these instructions!

https://www.nostarch.com/arduinoinventor/

9 Drag Race Timer
In Project 4, you built a reaction timer to measure how fast you can hit a
button. In this project, you’ll build on the techniques you learned there to
make a race timer for a Hot Wheels-inspired race track (see Figure 9-1).
We’ll show you how to display the finish time on a small, portable LCD
screen so that you can detach your project from your computer. We’ll also
show you how to hack this project to add a second track and indicator lamps
(LEDs) to show which car has won. Are you ready?

FIGURE 9-1: The completed Drag Race Timer

MATERIALS TO GATHER

Many of the parts used in this project will be familiar to you already (see
Figures 9-2 and 9-3). We’ll introduce only one new part: the 16 × 2 character
LCD that you’ll use to display your race time directly, rather than displaying

it in the Serial Monitor on your computer screen.

NOTE

In “Going Further” on page 273, we’ll show you how to modify your Drag
Race Timer so you can race two cars and display the winning time. The
standard SparkFun Inventor’s Kit includes one photoresistor (SEN-09088),
but you’ll need two for this final hack. Thankfully, the photoresistor is a
pretty inexpensive part, so you could either buy another one or partner with a
friend who has an Inventor’s Kit to build the two-player version.

Electronic Parts

• One SparkFun RedBoard (DEV-13975), Arduino Uno (DEV-11021), or any
other Arduino-compatible board

• One USB Mini-B cable (CAB-11301 or your board’s USB cable)

• One solderless breadboard (PRT-12002)

• One 10 kΩ resistor, or two if you want to build the two-player version
(COM-08374, or COM-11508 for a pack of 20)

• One photoresistor (SEN-09088), or two* if you want to build the two-player
version

• One push button (COM-10302)

• One 10 kΩ potentiometer (COM-09806)

• One 16 × 2 character LCD (LCD-00255)

• One submicro size servo motor (ROB-09065)

• Male-to-male jumper wires (PRT-11026)

• Male-to-female jumper wires (PRT-09140*)

NOTE

The parts marked with an asterisk (*) do not come with the standard
SparkFun Inventor’s Kit but are available in the separate add-on kit.

FIGURE 9-2: Components for the Drag Race Timer

Other Materials and Tools

• Craft knife

• Metal ruler

• Needle-nose pliers

• Wire cutters

• Masking tape

• Glue (hot glue gun or craft glue)

• Cardboard (about 8.5 × 11 inches), a small cardboard box, or thick
cardstock

• Bamboo skewer

• Enclosure template (see Figure 9-15 on page 266)

• Hot Wheels or other small toy cars to race (not shown)

• (Optional) Toy car race track (not shown)

FIGURE 9-3: Recommended tools and materials

In previous projects, we’ve used the Serial Monitor to display information
sent from the Arduino on your computer. In this project, we’ll show you how
to add an LCD directly to your project, a skill well worth learning. The LCD
requires a lot of wires, but don’t worry— we’ll take it one step at a time.
After you’ve mastered the use of this part, you can go back and add it to
some of your past projects to make them fully portable!

NEW COMPONENT: THE 16 × 2 CHARACTER LCD

LCD is short for liquid crystal display. Invented over 40 years ago, liquid
crystal technology is used in digital watches, alarm clocks, projectors,
televisions, computer monitors, and more.

The LCD you’ll use in this project is a simple monochromatic display,
meaning it displays only one color. Beneath the screen of the display is a
layer of liquid crystal. This is a unique chemical that, when a small electric
current is applied to it, changes from transparent to opaque. Combined with a
backlight or a reflective mirror, liquid crystal is used to build very simple
displays. Light comes through or is blocked depending on which areas of the
liquid crystal electricity is applied to—which means you can make shapes if
you can control the current.

The 16 × 2 character LCD displays up to 32 characters of information, each
of which is broken down into a 5 × 8 pixel matrix. Each individual pixel can
be made either opaque or transparent depending on the applied electric
current, controlled by the Arduino. The letter A, for example, will display on
the LCD screen when the yellow pixels in Figure 9-4 are made opaque.

FIGURE 9-4: The uppercase letter A represented on a 5 × 8 pixel matrix

There are 40 individual pixels in a single character, each controlled by the
Arduino, meaning there are 1,280 different control lines! Thankfully, the
LCD used in this project has a special parallel interface LCD driver IC by
Hitachi called the HD44780. This chip allows you to display almost any
character on the screen using just six control lines from the Arduino. Figure

9-5 shows the pins on an LCD.

FIGURE 9-5: A simple 16 × 2 character LCD

NOTE

The LCD can use up to eight pins for data (d0–d7), but the way we are going
to use the LCD, it only uses four. These are labeled d4–d7.

The LCD has a total of 16 pins, but this project uses only pins 1–6 and 11–
16. The pins are numbered 1 through 16 from left to right (with the pins at the
top of the screen). Table 9-1 describes each of the pins on the LCD. In some
datasheets you might see a line over a label, as with the label on
pin 5. This line indicates that the feature is an active low, which means the
pin is activated at low voltage. So, in this case, when you want to write to the
LCD, pin 5 needs to be set to LOW. We’ll discuss this more in “Connect the
Data and Control Wiring” on page 255.

TABLE 9-1: Pin descriptions for 16 × 2 character LCD

PIN DESCRIPTION

1 Ground (GND)

2 VDD power for the LCD (5 V)

3 Contrast adjust (0–5 V)

4 Register select (RS)

5

6 Enable

7–10 Data lines d0–d3 (not used)

11–14 Data lines d4–d7 (data transferred in 4 bits at a time)

15 Backlight power (5 V)

16 Backlight ground (GND)

Rather than having to control each of the 40 pixels for each character
separately, the HD44780 driver chip interprets data sent over by the Arduino

using four data lines and two control lines and converts this into the character
to display. To further simplify the interface, the Arduino community has
written an LCD library for writing code to the LCD. We’ll look at that in the
code.

DRAG RACE TIMER OPERATION

Before we start wiring the electronics, let’s discuss how the sketch will
function. We designed this race timer so that when we push a button the
servo moves up, opening the starting gate that allows the car to roll down the
track. At the same time, the Arduino records the starting time and waits to see
when the car reaches the photoresistor at the bottom of the track, which uses
the same light-sensor circuit used in the Night-Light in Project 5. You’ll
embed the light sensor in the center of the track so that when the car passes
over it, it will create a shadow that the Arduino can detect. When the Arduino
detects the shadow, it will record the stopping time and calculate the total
time as the stopping time minus the starting time. If this seems similar to the
Reaction Timer from Project 4, that’s because it is!

BUILD THE LCD CIRCUIT

You’ll start by building the LCD circuit. The LCD has 16 pins in total, but
you’ll use just 12 of them. Figure 9-6 shows the schematic for the LCD
wiring.

FIGURE 9-6: Schematic diagram of LCD wiring

With 16 pins, the LCD will take up 16 rows on the breadboard, so you’ll have
to be careful about positioning with this project. You’ll mount the LCD in the
first 16 rows on the right side of the breadboard. Be sure to connect the
power and ground from the Arduino to the power and ground rails on the left
side of the breadboard.

Note that the pins on the LCD are not labeled. As we walk you through
wiring it up, we’ll refer to the pins on the LCD in order, starting with pin 1 at
the bottom.

Power the LCD

The LCD has two separate power supplies for the backlight and for the
control logic. You’ll need to wire these separately.

Connect pin 1 of the LCD to GND and pin 2 of the LCD to 5 V using the
power rails on the breadboard. This provides power for the LCD’s control
circuitry and the HD44780 LCD driver chip. Next, connect pin 15 on the
LCD to 5 V and pin 16 on the LCD to GND, again using the power rails.
These two connections power the LCD’s built-in backlight (see Figure 9-7).

FIGURE 9-7: Connect the power for the LCD and the backlight.

Control the Contrast

You can adjust the contrast on the LCD screen. To do so, you control the
voltage on pin 3 of the LCD using a simple voltage divider circuit with a
potentiometer, similar to what you did for the Balance Beam in Project 6.
Recall that a potentiometer is the same thing as a variable resistor: it has three
pins, and as you turn the knob the resistance between the center pin and either
of the end pins changes. If you connect the top and bottom pins of the
potentiometer to 5 V and GND, you have a variable voltage divider where the

voltage on the center pin will vary between 5 V and GND depending on how
far you turn the knob (see Figure 9-8).

FIGURE 9-8: Potentiometer schematic connected up as a variable voltage
divider

Add the potentiometer to the breadboard just below the LCD. Connect the
outside pins of the potentiometer to 5 V and GND, and connect the center pin
to pin 3 on the LCD for the contrast control.

Now all you need to do is add the data and control wiring for the LCD.

Connect the Data and Control Wiring

You need seven more wires to connect to the LCD, including four data lines
and three control lines. Pin 5 on the LCD is the read/write functionality that
allows the Arduino to read from and write data to the display. You’re only
going to use this read/write connection to send data to the LCD, or write to
the device, so you can connect this to ground, known as “tying the pin low.”
If you look back at Table 9-1, you’ll notice that the label has a
line over Write. As we mentioned earlier, this notation is often used in
datasheets and documentation to indicate that a low signal will activate this
feature. A low input is equivalent to ground, so add a wire to connect pin 5 of
the LCD to GND, as shown in Figure 9-9.

FIGURE 9-9: Connect pin 5 of the LCD to GND for the control.

The final six wires will connect the LCD to the Arduino. Pins 11–14 on the
LCD are the four data lines the Arduino will use to send information to the
LCD. Connect these to the Arduino pins 10, 11, 12, and 13, as shown in
Figure 9-10. The wires should go straight across from the Arduino board to
the LCD without crossing.

The last two connections are Enable at pin 6 and Register Select at pin 4. The
Enable pin is used to signal the data transfer to the LCD, and the Register
Select pin determines whether the data represents a character to display or an
instruction, like clearing the screen or moving the cursor; this gives you
greater control over what’s displayed on the screen. Connect pin 9 on the
Arduino to pin 6 on the LCD, and pin 8 on the Arduino to pin 4 on the LCD,
as shown in Figure 9-10.

FIGURE 9-10: Final wiring of the LCD circuit

Table 9-2 shows the LCD screen connections to help you make sure you have
everything connected correctly.

TABLE 9-2: LCD pin connections

LCD PIN CONNECTION

16 GND

15 5 V

14 Arduino pin 13

13 Arduino pin 12

12 Arduino pin 11

11 Arduino pin 10

10 N/A

9 N/A

8 N/A

7 N/A

6 Arduino pin 9

5 GND

4 Arduino pin 8

3 Middle pin of potentiometer

2 5 V

1 GND

Test the LCD

Before you wire up more of the circuit, test it to make sure it’s working as
expected so far. Connect your Arduino to your computer.

As soon as you apply power, the backlight should turn on. Try turning the
potentiometer knob. Even with nothing displayed on the LCD, you should see
the contrast of the screen change as you twist, from all dark at its lowest to 32
brightly lit rectangles at its highest.

If you don’t see this, double-check the wiring. Make sure that all of the
power connections to the LCD match Table 9-2.

Once you have the LCD working, copy the code from Listing 9-1 into
Arduino and upload it to your device. This simple example should display the
text SparkFun Arduino on the first line and a running counter on the second
line.

LISTING 9-1: Test code to display text and a running millis() counter to the
LCD

➊ #include<LiquidCrystal.h>
➋ LiquidCrystal lcd(8, 9, 10, 11, 12, 13);

 void setup()
 {
➌ lcd.begin(16, 2); //initializes interface to LCD
➍ lcd.clear();
➎ lcd.print("SparkFun Arduino");
 }

 void loop()
 {
➏ lcd.setCursor(0, 1); //move cursor to the 2nd line
 //(col 0, row 1)
➐ lcd.print(millis()/1000); //print the number of
 //seconds elapsed
 }

Let’s take a look at what’s going on in this example. First, it includes the
LiquidCrystal.h library ➊ created by the Arduino community to simplify the
six different control and data lines. This will make it easier for you to send
instructions to the LCD.

Next, this code creates an object named lcd that uses the LiquidCrystal
library ➋. Notice that this time when you create the object, you pass it a set
of parameters that correspond with the LCD pins: the Register Select, Enable,
and four data pins. This is where you configure which pin controls each
function on the LCD. In some documentation, you may see this command as
LiquidCrystal lcd(RS, Enable, d4, d5, d6, d7).

You may be wondering why we don’t use four of the LCD pins. This LCD is
able to transfer data on either four or eight data lines. According to the
datasheet on the LCD, when you use four data lines, you use the top four pins
on the LCD—the pins labeled d4, d5, d6, and d7. While it takes the Arduino
twice as long to transfer data to the LCD this way, this helps to keep the
circuit as simple as possible, and remember, the Arduino operates with a 16
MHz clock. That’s really fast!

The LiquidCrystal library has around 20 different commands that simplify
control of this LCD. In this example, we’ll show you a few basic commands
that allow you to configure the screen size, clear the screen, display
information, and move the cursor.

The setup() part of the sketch has a few instructions that will run just once
when the Arduino starts up. The first of these is lcd.begin(16, 2); ➌, which
sets up the size of the LCD as a 16 × 2 character LCD, allowing the library to
correctly wrap text and move from one line to the next.

The next instruction, lcd.clear(); ➍, allows you to clear the screen before
providing new text to display. It also resets the position of the cursor to the
first character on the first line of the screen. Without this, the LCD would
retain the last thing displayed.

Then, the command lcd.print("SparkFun Arduino"); ➎ displays the text
SparkFun Arduino on the LCD. Because the lcd.clear() instruction just
cleared the screen, this text will appear on the first line of the display. This

string of text is exactly 16 characters long and should fill the entire first line
of the LCD. This command is similar to Serial.print(), but with lcd.print()
you don’t need to be connected to a computer or have the Serial Monitor
open to see text and information from your device.

The loop() refreshes the screen with new information each time it repeats.
First it moves the cursor to the second line of the LCD using lcd.setCursor(0,
1); ➏ so it doesn’t overwrite the SparkFun Arduino text on the first line. The
two numbers used in the setCursor() method indicate the position of the
character (0) and the row (1). As is common in a lot of programming
environments, Arduino counts starting with an index of 0, not 1.

NOTE

The LiquidCrystal library only works with character LCD displays. Graphic
LCD screens are also available, but they use a different library called
OpenGLCD, which allows you to display graphics such as lines, rectangles,
and circles as well as text.

Finally, the sketch prints a counter ➐ using another lcd.print() instruction.
This counter uses the millis() function, which reports the number of
milliseconds since the Arduino was powered on. Dividing this value by 1,000
shows a counter in seconds. We will use a similar technique for the race
timer.

Now, can you figure out how to change the text to display your name on the
first line? How about changing the time display to show the time elapsed in
minutes instead of seconds? Play around with the code example until you’re
comfortable with displaying data to the LCD. With just six GPIO pins from
your Arduino, you can add an LCD readout to any project!

This example demonstrates the most commonly used instructions in the
Arduino LiquidCrystal library, but if you want to check out the other
commands that you can use, see
https://www.arduino.cc/en/Reference/LiquidCrystal/.

Now that you have the LCD circuit working, it’s time to add the button,
servo, and light-sensor circuit.

https://www.arduino.cc/en/Reference/LiquidCrystal/

ADD THE REST OF THE ELECTRONICS

The Drag Race Timer will use a few parts that you’ve already put together in
previous projects: a push button to start the race, a servo to control the
starting gate for the car, and a photo resistor to detect when the car reaches
the end of the track. Figure 9-11 shows schematic diagrams of these three
additional components.

FIGURE 9-11: Schematic diagrams for additional components in the Drag
Race Timer

Place a push button on the breadboard so that two legs are on either side of
the center divide, and connect two of the legs on one side to pin 5 on the
Arduino and GND. The parts will fill up most of the breadboard, so pay close
attention to the rows on the breadboard and how the components are
connected. To save space, this project uses the push button without the
external pull-up resistor used in Project 4 with the Reaction Timer. Instead,
we’ll enable a pull-up resistor in the code.

Next, connect the servo motor that will open the starting gate. Using three
male-to-male jumper wires, connect the signal wire (either yellow or white)

to pin 4 on the Arduino, the red wire to the 5 V rail, and the black wire to the
GND rail.

Finally, add the light-sensor circuit with a voltage divider circuit. Connect
one end of a photoresistor to the 5 V power rail and the other end to the GND
power rail, via a 10 kΩ pull-down resistor placed directly in the power rail.
Connect the row that has both the photoresistor and the 10 kΩ pull-up resistor
to pin A0 on the Arduino. This circuit should look similar to the circuit you
used in the Night-Light in Project 5.

There are a lot of components in this circuit, so take your time and double-
check your wiring against the diagram in Figure 9-12.

FIGURE 9-12: Complete electronics for the Drag Race Timer, including a
starting button and gate

PROGRAM THE DRAG RACE TIMER

Now let’s put it all together. Start a new sketch, and enter the code from
Listing 9-2 or download it from https://www.nostarch.com/arduinoinventor/.
This example will bring together several concepts and ideas we’ve used
separately in past projects.

LISTING 9-2: Drag Race Timer sketch

➊ #include<LiquidCrystal.h>
 #include<Servo.h>

https://www.nostarch.com/arduinoinventor/

 LiquidCrystal lcd(8, 9, 10, 11, 12, 13);
➋ Servo startingGate;

➌ const byte buttonPin = 5;
 const byte servoPin = 4;
 const byte finishSensor1Pin = A0;
 const int darkThreshold = 500;

➍ int finishSensor1;
 boolean finishFlag = false;
 long startTime;
 long stopTime;
 float raceTime;

 void setup()
 {
➎ pinMode(buttonPin, INPUT_PULLUP);

 startingGate.attach(servoPin, 1000, 2000);
 startingGate.write(0);

➏ lcd.begin(16, 2);
 lcd.clear();
 lcd.print("Drag Race Timer");
 lcd.setCursor(0, 1);
 lcd.print("Push to start!");

➐ while (digitalRead(buttonPin) == HIGH)
 {
 }

 lcd.clear();
 lcd.print("Go!");

 startingGate.write(180);
 startTime = millis();
 }

 void loop()
 {
➑ finishSensor1 = analogRead(finishSensor1Pin);
➒ if ((finishFlag == false) && (finishSensor1 < darkThreshold))
 {
 finishFlag = true;
 stopTime = millis();
 raceTime = stopTime - startTime;
 lcd.clear();
 lcd.print("Finish Time:");
 lcd.setCursor(0, 1);
➐ lcd.print(raceTime / 1000, 3);
 }
 }

Let’s take a look at how all this works. First, the sketch includes two libraries
using the #include directive ➊, LiquidCrystal.h and Servo.h. Next, it
initializes a LiquidCrystal object named lcd, similar to Listing 9-1, and a
Servo object named startingGate ➋.

Then, the sketch declares a set of constants for the pin connections used for
the button, servo, and photoresistor circuits ➌. This means that, as you make
changes and modifications, if you need to move a wire to a different pin on
the Arduino, you’ll only have to change a single number in the code. The last
constant, a threshold value named darkThreshold, is used to set the light level
to detect when the car is blocking the light sensor. Here it’s set to 500,
roughly in the middle of the range of 0–1023, but you may need to adjust this
value to suit the environment of your own room.

Next, the sketch declares a few variables ➍. The finishSensor1 variable is
used to store the raw value of the photoresistor sensor. The next variable,
finishFlag, is a state variable, which is used to keep track of what state the
sketch is in. The finishFlag variable is initialized to false and is used to
indicate when the race is over (like the flag waved at the finish line to mark
the winner of a Formula One race). We’ll set it later in the code based on the
input value from the sensor. The next three variables are used to calculate the

race time using the built-in millis() timer in Arduino.

Now, the setup() part of the code sets up the button pin to use an internal
pull-up resistor that’s built into the Arduino by declaring the pin mode as an
INPUT_PULLUP ➎. This trick removes the need for the external pull-up
resistor used in Project 4.

Next, the sketch initializes the servo motor and sets its default position to 0.
This will be the position of the starting gate when it’s down.

The sketch then displays a little information to the LCD ➏ to let the user
know how to start the race. These few lines of code set up the LCD, clear the
screen, and display two lines of text. Be careful that your text is limited to 16
characters per line; any more than 16, and your characters will run off the
screen to the right. The code then waits for a button press using the blocking
while() loop technique ➐ used in the Reaction Timer; this blocks the sketch
from proceeding until the button is pressed. When the button is pressed,
digitalRead(buttonPin) will read LOW and the code will move the servo to
the up position and set the startTime variable.

In the loop(), the sketch reads the light sensor and stores its current reading to
the variable finishSensor1 ➑. The sensor will be embedded at the end of the
ramp. The car will roll over it as it crosses the finish line, covering the sensor
and blocking most of the light. Similar to the Night-Light sketch in Project 5,
the sketch will compare the value of the sensor to the darkThreshold value.

NOTE

Your sensor needs to be in a decently lit area so that the contrast between the
sensor being lit and being shaded is great enough to cause that drop in
voltage. Be aware that overhead lights can create a false detection if your
body casts a shadow over the sensor. If you want to make sure that the sensor
works well, get a small desk lamp and set it over the sensor.

Remember that in the time it takes the car to pass the sensor, the loop() may
repeat several times. Because we only want to look for the first moment the
car crosses the finish line, the sketch uses a compound if() statement ➒ to
capture the moment when the finishFlag variable is false and the finish

sensor is blocked (that is, its value is less than darkThreshold). The &&
indicates a logical AND (see “Compound Logic Operators” on page 264).
Pay careful attention to the number of parentheses used in the if() statement
—they indicate order of operation and how the logic is used.

Now, inside the if() statement, the finishFlag state variable switches to true.
Because the finishFlag state variable is now set to true, the compound if()
statement will only catch the first moment the car crosses the sensor.

The sketch then records the stopping time and calculates the elapsed race
time. Finally, the sketch prints the race time to the LCD.

The raceTime variable is declared as a float (floating-point variable) so it can
store numbers with decimals. By default, the lcd.print() method will display
two decimal places of precision for a floating-point value, but you can add a
second parameter to the lcd.print() method to specify more or less. At ➓, the
sketch calculates the number of seconds elapsed by dividing the millisecond
count by 1,000. The extra 3 in the instruction lcd.print(raceTime / 1000, 3);
tells Arduino to display three values past the decimal point, so the time will
be accurate to the millisecond. Don’t forget the last two curly brackets in the
code. Double-check to make sure that your code matches Listing 9-2, and
upload the sketch to your device.

COMPOUND LOGIC OPERATORS

In Chapter 4, we introduced simple logical comparison operators to compare
two values. Recall that logic comparisons or expressions can only be either
true or false. In programming, there are times when you need to compare
multiple conditions together; for example, when you need to run some code
only when a variable is false AND a sensor value is less than the threshold:
((finishFlag == false) && (finishSensor1 < darkThreshold)). Here, notice that
the logic comparisons are grouped together in parentheses on either side of
the compound AND (&&).

A combination of two or more logic comparisons is known as a compound
logic expression. Expressions are evaluated (or read) from left to right. To
keep everything together and observe the correct order of operations, it’s a
good idea to use parentheses to separate out the individual expressions. The

two main operators used to combine logic expressions are AND and OR,
which are described in the following table.

SYMBOL COMPOUND
OPERATOR DESCRIPTION

(expression A) &&
(expression B) AND Both expression A and

expression B must be true.

(expression A) ||
(expression B) OR Either expression A or

expression B must be true.

A QUICK TEST

If you have everything wired up correctly and the code uploaded
successfully, you’ll hear the servo motor move to the 0 degree position and
see a message displayed on the LCD, as shown in Figure 9-13. If the text is
garbled or otherwise incorrect, double-check the wiring of the LCD, push
button, and light sensor.

FIGURE 9-13: LCD display text at the start of the race

Push the button and see what happens. The servo motor should move, and the
display should change to the message “Go!” Now, cover the photoresistor
with your finger. The LCD should display the time elapsed since you pressed

the button and covered the photo-resistor (Figure 9-14).

With the electronics all working properly, it’s time to build the starting gate
and track. If the sensor is not behaving as expected, try changing the
darkThreshold value. If it’s too sensitive or triggering immediately, reduce
the value of darkThreshold. If it’s not reacting when you cover up the sensor,
try increasing the value. After you’ve made these changes, reupload your
code and test it again.

FIGURE 9-14: LCD display with time elapsed

BUILD THE DRAG RACE TRACK

The Drag Race Track includes a starting tower with a rotating gate that
controls the release of the car onto the track. For the track, you can either use
a section of a toy car race track or build your own from cardstock. The
template for the tower is shown in Figure 9-15. You can download a PDF of
this template from https://www.nostarch.com/arduinoinventor/.

FIGURE 9-15: Template of cardboard cutout pieces for starting gate (not
full size)

https://www.nostarch.com/arduinoinventor/

Build the Starting Tower

Carefully cut the template out from a sheet of cardboard (see Figure 9-16).
The template has an opening for mounting the servo on one side and a hole
on the other to mount the bamboo skewer axle for the starting gate. The other
pieces are the support beams and the starting gate.

FIGURE 9-16: Trace the template and carefully cut out the pieces using a
sharp craft knife.

With the pieces cut out, first mount the servo in the opening, labeled in
Figure 9-15. Insert the servo from the outside of the support beam so that the
servo horn faces in toward the car. You can use the small screws included
with the servo, or a small amount of glue, to secure the servo in place as
shown in Figure 9-17. Don’t attach the servo horn just yet. You’ll attach that
to the starting gate in the next step.

FIGURE 9-17: Securing the servo using hot glue

Now, glue the two support beams in place. The lower support beam will
insert into the slots cut into each of the side pieces. The top support beam
should fit right into the notch on the top of each side piece. Use a small dab
of glue to secure each of these pieces in place. When you’re done, you should
have a starting support tower like the one in Figure 9-18.

FIGURE 9-18: Adding the support beams

Assemble the Starting Gate

To build the starting gate, you’ll need a piece of cardboard that is 2.5 × 1
inches and a short length of bamboo skewer or thin coffee stirring rod. This
will serve as an axle for the starting gate. To start, add a small bead of glue to
the edge of the starting gate piece, and glue the servo horn on so that the hub
hangs just off the edge, as shown in Figure 9-19.

FIGURE 9-19: Gluing the servo horn onto the edge of the starting gate

Cut down the bamboo skewer to 3.5 inches. Place a line of glue along the
edge, and line the axle up with the hub of the servo horn, as shown in Figure
9-20.

FIGURE 9-20: Gluing the axle to the starting gate

Plug in your Arduino and push the reset button to reset the position of the
servo. Remember that the code will start off with the servo in the 0 degree
position; this will be the down position, where the starting gate is holding the
car in place. To place the starting gate into the support tower, first insert the
axle into the hole on the side piece opposite of the servo, as shown in Figure
9-21. Keep in mind that when the gate opens, it will rotate clockwise.

FIGURE 9-21: Inserting the axle into the side piece for the starting gate

The finished starting tower with the gate is shown in Figure 9-22.

FIGURE 9-22: Completed starting tower

Now you need a track. You can use a standard Hot Wheels track, which will
fit on the lower support, or build your own track. If you want to use a Hot
Wheels track, skip ahead to “Add the Photoresistor” on page 270.

Build Your Own Track

To build your own track, you’ll need at least one sheet of cardstock, cut down
to 3.5 × 11 inches. You can make several lengths of track and tape them
together for a longer track, but for our example, we’ll just use a single track.

You’ll fold two side rails on the track. On each side, measure and mark a line
that is a quarter inch from the edge. Now, fold along the lines so that you
have a quarter-inch lip on each side of your track. (It’s often helpful to use a
metal ruler or the edge of a table to make a nice straight fold in cardstock.)
The lip will keep your car from flying off the track and also adds a small
amount of structural integrity. Your track should look similar to the one
pictured in Figure 9-23.

Now, using a small handheld hole punch, make a hole about a half inch from

the end of your track for your photoresistor. If you don’t have a hole punch, a
craft knife or sharp pencil will also work. Just be careful when cutting
through the paper, and always use a cutting mat when using a knife. The hole
needs to be just large enough for the head of the photoresistor to fit inside.

FIGURE 9-23: Completed track with two sides folded up

Add the Photoresistor

Whether you’re using a homemade track or a standard toy track, the next step
is to add the photoresistor at the bottom of the ramp. The photoresistor will
be your finish-line sensor. (There is a small hole at the end of a standard Hot
Wheels track, slightly smaller than the diameter of the photoresistor sensor.
Thankfully, the plastic track is flexible enough that you can simply press the
head of the photo-resistor through this hole.)

Remove the photoresistor from the breadboard and bend the legs at a right
angle along the head so that it looks like Figure 9-24.

FIGURE 9-24: Bend the head of the photoresistor at a right angle.

Insert the head of the photoresistor through the hole in your track. Make sure
that the photoresistor does not stick out too much, or your car will catch on it;
the car should be able to roll over the sensor without interference. With the
legs bent at right angles, you should be able to tape them down securely to
the bottom side of the track, as shown in Figure 9-25.

FIGURE 9-25: Securing the photo resistor to the race track

Reconnect the photoresistor to your breadboard using a pair of male-to-
female jumper wires. If you extended the track too far and can’t reach the
breadboard, add more male-to-female jumpers to extend your wires as
needed.

FEEL THE NEED FOR SPEED? CALCULATING AVERAGE SPEED

With this project you can accurately measure how long it takes the car to roll
down the ramp and cross the finish line, but you don’t know how fast the car
is moving—or do you?

Well, you have the total time it takes for the car to reach the bottom of the
track, and you know the length of the track. With these two pieces of
information, you can estimate how fast the car is moving. We describe this as
an estimate because it’s really an average speed, as opposed to the exact
speed of your car when it meets the sensor at the bottom of the ramp. If you
watch as the car rolls down, you’ll see that it starts at the top of the ramp
unmoving, then moves slowly, and then continues to speed up as it goes
down the track.

Average speed is defined as distance traveled per unit of time. So, to find the
average speed, you need to measure the length of the track and divide this
value by the time elapsed.

Our track measures about 8.5 inches from the starting gate to the finish-line
sensor, and in our last test we had a time of 0.581 seconds. If we divide these
two numbers, we get an average speed of 14.6 inches per second.

Remember that this is the average speed of the car. For our simple setup with
a straight ramp, this is roughly how fast the car is moving at the middle of the
ramp, and since it wasn’t moving at the top of the ramp, this means it was
moving at twice this speed at the bottom of the ramp. How fast is your car
moving?

Test and Troubleshoot

Finally, rest the end of your race track without the photoresistor on the
starting tower so that the ramp extends past the tower by about the length of
your toy car (see Figure 9-26). This will be the starting position.

FIGURE 9-26: Finished Drag Race Timer with car ready to launch

If you haven’t already done so, plug the Arduino back into your computer or
into a power source. Push the reset button to make sure that the sketch starts
over, and find your favorite Matchbox or Hot Wheels car and set it behind the
starting gate. Push the starting button and watch your car go!

How long did it take to reach the bottom? On our track, our toy cars took just
over 0.5 seconds. Try a few different cars, or invite some friends over to see
whose car is the fastest. If you tape a few pennies to your car, does it go
faster? Experiment and see how different things affect the drag race time of
your car.

GOING FURTHER

In this project, we introduced you to using the LCD to display information
directly from your Arduino sketch. Here are a few ideas of how you can take
what you’ve done in this project further.

Hack

Racing against yourself is only so much fun. Let’s look at how to add a

second track and have two cars race against each other. (See Figure 9-27.)
For this hack, you’ll need an extra photoresistor, which isn’t included in the
standard SparkFun Inventor’s Kit. Find a friend who also has a kit, buy one
separately, or find one in the additional parts kit for this book.

First you need to create a separate finish-line sensor circuit. We were able to
sneak in one more photoresistor and a pull-down resistor circuit near the
bottom of the breadboard, as shown in Figure 9-28. Connect the second
photoresistor circuit to pin 2 on the Arduino through a 10 kΩ pull-down
resistor, and connect the other leg to the 5 V power rail.

Place the photoresistor in the second track, and add male-to-female jumper
wires to connect this to your circuit on the breadboard. Set your second track
next to the first one on the starting tower. Now, it’s time to upload some new
code that will use both sensors. You only need to add a few extra lines to
allow for the two cars to race. Download the P9_TwoCarDragRaceTimer.ino
file from https://www.nostarch.com/arduinoinventor/ and open it.

Let’s take a look at the additions to this code. First, the code adds a new
constant and variable for the second photoresistor finishline sensor,
finishSensor2Pin and finishSensor2.

Then, it checks which sensor was crossed first using a compound if()
statement. If car #1 crosses first, finishSensor1 will be 0 and finishSensor2
will still be 1. Inside this if() statement, instructions display the winning
information to the LCD and set the state variable, finishFlag, to true.

The else-if() statement checks whether car #2 crosses the finish line first; in
this case, finishSensor2 will be 0 and finishSensor1 will still be 1. In the
unlikely event that both cars do actually cross the line at the same time, this
code does nothing. See if you can figure out how to add a draw feature in the
event of a tie.

The code is full of comments to help explain more. Now, upload the code to
your board and race! Whose car is fastest?

FIGURE 9-27: Drag Race Timer with two race tracks

https://www.nostarch.com/arduinoinventor/

FIGURE 9-28: Adding a second photo-resistor for racing two cars at the
same time

Modify

Now that you’ve seen how to use the LCD circuit, try going back and adding
an LCD to one of the projects you’ve already built. In any of the projects
where you used the Serial Monitor to display information, like the Reaction
Timer from Project 4 or the Tiny Desktop Greenhouse in Project 7, you can
replace the Serial Monitor with the LCD.

You’ll need to check the wiring and the pin configuration used; you’ll need
six GPIO pins from your Arduino to control the LCD. If you want to see an
example of the Reaction Timer project that uses the LCD, take a look at the
tutorial we created on our InventorSpace at

https://invent.sparkfun.com/cwists/preview/1145-sik-lcd-reaction-timer/.

https://invent.sparkfun.com/cwists/preview/1145-sik-lcd-reaction-timer/

10 Tiny Electric Piano
In this project, you’ll use a special touch sensor and a piezo buzzer to create
an Arduino piano (Figure 10-1). Regardless of whether you have any musical
talent, this will be a fun project!

FIGURE 10-1: A completed Tiny Electric Piano

MATERIALS TO GATHER

There are only a couple new parts in this project. One is the soft
potentiometer (SoftPot), which will act as your keyboard, and the other is the
piezo buzzer, which will provide the sound. The supplies you’ll need are
shown in Figures 10-2 and 10-3. Grab your materials, and let’s get started.

Electronic Parts

• One SparkFun RedBoard (DEV-13975), Arduino Uno (DEV-11021), or any
other Arduino-compatible board

• One USB Mini-B cable (CAB-11301 or your board’s USB cable)

• One solderless breadboard (PRT-12002)

• One 10 kΩ resistor (COM-08374, or COM-11508 for a pack of 20)

• One 50 mm SoftPot membrane potentiometer (SEN-08680)

• One piezo buzzer (COM-07950)

• Male-to-male jumper wires (PRT-11026)

NOTE

All of the parts used in this project are standard in the SparkFun Inventor’s
Kit.

FIGURE 10-2: Components for the Tiny Electric Piano

Other Materials and Tools

• Pencil

• Craft knife

• Metal ruler

• (Optional) Soldering iron

• Masking tape

• Cardboard or cardstock (about 4 × 5 inches) or a small cardboard box

FIGURE 10-3: Additional supplies

NEW COMPONENTS

As we mentioned, this project will introduce just two new parts. The first is a

SoftPot touch sensor: a special kind of potentiometer that is similar to the one
used in Project 6 but reacts to pressure. The second new part is a piezo
buzzer. Let’s take a look at these two parts in more detail.

The SoftPot Membrane Potentiometer

In Project 6, we introduced a simple potentiometer with a knob that you
could turn to control the Balance Beam. The SoftPot, shown in Figure 10-4,
works similarly but reacts to pressure instead of knob rotation.

FIGURE 10-4: A 50 mm SoftPot

The SoftPot is a thin and flexible sensor that can detect where along its length
pressure is applied. When you press down, the resistance between the middle
pin and the closest end pin varies between 0 Ω and 10 kΩ, depending on how
much pressure is detected. The SoftPot sensor has a thin membrane that
separates the center pin connection from the outer ones. This sensor is very
accurate and has a nearly infinite resolution. In industrial applications, the
SoftPot is often used to identify the position of sliding parts, robot arms, and
other components that make precision movements.

In this project, you’re going to use this sensor as your piano keyboard. You’ll
divide the length of the strip into eight sections or “keys” that you can use to
play various notes. The SoftPot is effectively the same as a knob
potentiometer used in earlier projects. In schematics and circuit diagrams,
you may recognize the symbol as pictured in Figure 10-5.

FIGURE 10-5: The schematic diagram for the SoftPot is identical to that of
the regular potentiometer.

The Piezo Buzzer

The piezo buzzer (Figure 10-6) is similar to a speaker and produces an
audible click when you apply a voltage to the two leads; these clicks happen
very fast, several hundreds or even thousands of times per second, and their
frequency creates a tone. Inside a typical piezo buzzer is a special crystal
called a piezo element that deforms when voltage is applied. The crystal is
connected to a round metal disc, and when the crystal deforms, the disc
vibrates the air inside a small cylinder, producing the clicking sound.

FIGURE 10-6: Piezo buzzer

NOTE

The buzzer that’s included in the SparkFun Inventor’s Kit actually uses a
small magnetic coil instead of a piezo element, but it works the same. We still
refer to it as a piezo buzzer.

You’ve already seen how you can blink an LED at various rates with the
Arduino. Now, if you “blink” the buzzer at a rate of hundreds of times per
second, we can convert these clicks into tones! There are several different
electrical symbols used to represent buzzers, speakers, and similar elements.
The symbol we’ll use in this chapter is shown in Figure 10-7.

FIGURE 10-7: Electrical symbol for a piezo buzzer

BUILD THE CIRCUIT

This circuit uses only two electronic elements: the buzzer and the SoftPot,
shown in Figures 10-8 and 10-9. When inserting the buzzer into the
breadboard, you may notice that the legs are slightly closer together than the
holes of the board. Just gently bend the legs apart so that the pins line up with
the holes and insert the buzzer. The legs should be three holes apart.

The SoftPot has three legs like the potentiometer you used in Project 6. But
unlike a regular potentiometer, the SoftPot requires a pull-down resistor to
ensure that, when there is no input or pressure on the sensor, the SoftPot
defaults to a nominal state of 0. This will prevent the buzzer from making
noise when you aren’t pressing on the sensor.

FIGURE 10-8: Schematic diagram of the Tiny Electric Piano circuit

FIGURE 10-9: Prototype of the Tiny Electric Piano circuit on the
breadboard

Assemble the circuit as shown in the diagram. The circuit is fairly simple.
First, connect 5 V and GND to the power and ground rails on the left side of
the breadboard. Next, add the buzzer roughly 10 rows down from the top of
the breadboard. Connect one leg of the buzzer to pin 9 of the Arduino and the
other leg of the buzzer to the ground rail. Then, insert the SoftPot near the
bottom of the breadboard. Connect the top pin of the SoftPot to the 5 V
power rail, the lower pin to the ground rail, and the middle pin to the analog
input pin A0 on the Arduino. Remember that the SoftPot requires a pull-
down resistor between the wiper pin (middle pin) and the ground rail. Finally,
add a 10 kΩ resistor between the middle pin and the ground rail.

Once you have it built, it’s time to try a couple of code examples.

PROGRAM THE TINY ELECTRIC PIANO

First, you’ll test the build by having the buzzer make noises and recognizable
tones, and then you’ll map those noises and tones to the SoftPot. Once you
know how to get your code making sounds, we’ll show you how to add
functionality so that you can play up to eight distinct notes, like a small
piano.

You’ve already seen that the Arduino can generate really fast pulses and react
to split-second button presses. With your circuit wired up, you’ll use these
capabilities to make some fun sounds and test the frequency response of the
buzzer.

Test the Buzzer

Arduino has a few commands that make playing notes really simple. There
are two functions that control making sounds with Arduino: tone(), which
tells the buzzer to play a frequency you specify, and noTone(), which tells the
buzzer to stop the sound so you can control the length of the note. Here’s
how you use these two functions.

//creates a tone of frequency on pin for a duration in ms
tone(pin, frequency, duration);

//stops the playing of a tone on the given pin
noTone(pin);

The tone() function needs to be called with three parameters: the pin number
the buzzer is connected to, a frequency you want to play, and the duration to
play the note. When called, tone() creates a square wave at the frequency you
provided on the defined pin for a specific duration. This square wave triggers
the vibration of the disc inside the buzzer connected to this pin, creating a
sound at that frequency. Once started, tone() continues for the duration
specified or until you call either another tone() command with a different
frequency or the noTone() command to stop the Arduino from playing.

Copy the code from Listing 10-1 into the Arduino IDE or download the
sketch from https://www.nostarch.com/arduinoinventor/. In this example,
you’ll use the Serial Monitor to choose a frequency, and the buzzer will play
that tone for half a second.

LISTING 10-1: Serial tone test code

 //Serial Tone Test Example
 //Upload this example and then open the Serial Monitor

https://www.nostarch.com/arduinoinventor/

 int freq;
 void setup()
 {
➊ pinMode(9, OUTPUT);
 Serial.begin(9600);
 Serial.println("Type in a frequency to play.");
 }

 void loop()
 {
➋ if(Serial.available() > 0) //wait for a serial
 //input string
 {
➌ freq = Serial.parseInt(); //parse out integer value
 Serial.print("Playing note: "); //user feedback
 Serial.println(freq);
➍ tone(9, freq, 500); //play the note for 500 ms
➎ delay(500); //delay for the note duration
 }
 else
 {
 noTone(9);
 }
 }

Let’s take a look at how this all works. In the setup(), the sketch sets the
pinMode ➊ for the GPIO pin on the buzzer, initializes the serial
communication on the Arduino, and prints a short message instructing the
player on what to do.

Next, inside the loop(), the if(Serial.available() > 0) statement ➋ checks for
data sent over serial communication like so: Serial.available() returns the
number of bytes received from the Serial Monitor, and the if() statement
compares that value to zero; if the number of bytes is greater than zero, it
means data was received, and the script reads the data ➌. The
Serial.parseInt() function converts the data into an integer, which is then
stored in the variable freq.

The code plays the frequency stored in freq for 500 ms using the tone()
function ➍ and then has a short delay() ➎. The delay() ensures that the note
plays for the full 500 ms before starting another note. The tone() command is
a nonblocking function: it executes and then continues to the next instruction
without waiting.

After uploading this sketch to your device, open the Serial Monitor (CTRL-
SHIFT-M or Tools ▸ Serial Monitor). Then, click the line-ending-character
drop-down list (Figure 10-10), and select No line ending. When you send
data between digital devices, an invisible end-of-line (EOL) character is
sometimes used to indicate the end of a message. The two most commonly
used EOL characters are the new line (NL) and carriage return (CR). While
the character may appear to be invisible, to the Arduino this character still
reads in as a value. Selecting this option makes sure that it doesn’t send any
extra characters.

Now, in the box at the very top, you can type any number and press ENTER,
and the buzzer will play that note for half a second (500 ms). The range of
human hearing is about 20 Hz to 20,000 Hz, so play around with some
different frequencies, but keep them within that range.

FIGURE 10-10: Open the Serial Monitor, and change this option to No line
ending.

The serial communication on the Arduino has a buffer 64 bytes long. A
buffer is like a waiting line for the data as it goes into the device, and in this
case it allows you to send several notes at a time using the Serial Monitor.
For example, you can play the song “Twinkle, Twinkle, Little Star” by typing
in the following numbers, separated by commas without spaces. The last
comma is important, too. The Serial.parseInt() command looks for numeric
characters that are separated by non-numeric characters like commas. The
Arduino needs to see that last token (the final comma) to parse out the final
note.

262,262,392,392,440,440,392,392,349,349,330,330,294,294,262,262,

Make sure to omit the spaces here. Each character is equal to 1 byte of data,
and if you try to send more than the maximum 64 bytes at a time, the last few
pieces of data will get cut off.

Lastly, the buzzer is optimized at 2,047 Hz. You may notice that when you
try this frequency the buzzer is very, very loud and can be annoying, so be
warned: people around you may not appreciate the high-pitched tones that
come out of this buzzer at 2,047 Hz!

Create Specific Notes

If you want to try something more traditional, you can correlate actual
musical notes to frequencies. Many instruments use a reference point of
middle C, which has a frequency of about 262 Hz. Table 10-1 shows a short
table of frequencies for an octave of the C major scale.

TABLE 10-1: Notes and frequencies of the C major scale

NOTE APPROXIMATE FREQUENCY

C 262

D 294

E 330

F 349

G 392

A 440

B 494

C 524

Experiment and see if you can play a song. To start you off, “Twinkle,

Twinkle, Little Star” begins with the notes CC, GG, AA, GG, FF, EE, DD,
CC. You may notice that the sounds the Arduino makes aren’t the most
melodic. This is because the Arduino can only turn the pin either HIGH (on)
or LOW (off). This creates a square wave, which has a tinny pitch. There are
some tricks you can do using capacitors to create a noise filter to soften this
sound, but that’s a topic for another book!

Generate Sound with the SoftPot

Making music with frequencies is fun, but typing them over and over gets
really tedious. Instead, you can use the SoftPot as a sensor whose values will
correspond to frequencies for the buzzer.

The SoftPot is wired up with a simple voltage divider so that a pressure on
the length of the strip will be translated into a voltage from 0 to 5 V.
Remember that the Arduino can translate an analog voltage from 0 to 5 V to a
value of 0 to 1023 using the analogRead() function. Using the simple sketch
in Listing 10-2, you can send frequencies to the buzzer by pressing the
SoftPot. When the SoftPot is not pressed, the value defaults to 0 because of
the pull-down resistor, so no sound is produced.

Start a new Arduino sketch, copy the code example from Listing 10-2, and
upload it to your device.

LISTING 10-2: Noisemaker example code

 //Noisemaker Example
 //upload this example, open the Serial Monitor,
 //and then squeeze the SoftPot
➊ int sensorValue;
 void setup()
 {
 pinMode(9, OUTPUT);
 Serial.begin(9600);
 }

 void loop()

 {
➋ sensorValue = analogRead(A0);
➌ if (sensorValue > 0) //if there's a press on sensor,
 //play note
 {
➍ Serial.print("Raw sensor reading: ");
 Serial.println(sensorValue);
➎ tone(9, sensorValue, ➏50);
 delay(➐50);
 }
➑ else
 {
 noTone(9);
 }
 }

Let’s take a look at what’s going on in this sketch. You again start by
declaring a variable to store the raw sensor reading ➊. In the loop, the
analogRead() function reads the voltage on pin A0 ➋ and assigns this value
to the variable sensorValue. This value will be 0 V when no pressure is
applied. You use an if() statement ➌ to check if the input value is greater
than 0, and if it is, the sketch prints the raw sensor value ➍ and uses the
tone() command ➎ to play the value stored in sensorValue. If the sketch is
getting stuck playing a note, try changing the 0 in the if() statement to a
larger number like 10 or 20 ➌. This is a technique called setting a deadband
range. Some sensors don’t always go back to a zero value, so this deadband
sets a range of values that the program can still consider to be zero. Each
sensor may be slightly different.

Notice that in this example we changed the duration the tone() is played ➏
and the delay() ➐ to 50 ms. This will allow you to create faster changes in
notes. Otherwise, you would only be able to play notes that were half a
second long! Finally, you want to make sure that the Arduino only plays a
tone when the SoftPot is pressed. To do this, you use the else() statement to
detect when the SoftPot is not being pressed ➑ and the noTone() command
to turn the buzzer off.

Now, instead of using a frequency sent from the Serial Monitor, the Arduino
uses the raw sensor value from the SoftPot. To play around, simply squeeze
the SoftPot between your thumb and index finger, applying pressure at
different points along the sensor. As you slide your fingers up and down the
SoftPot, you can generate tones from 1 Hz to 1,023 Hz. What do you hear?
Does it sound like aliens are landing? Pretty cool—now you have your very
own special effects generator! Can you play anything that resembles a song?
If not, take a look at the next example.

Play a Song

Now that you have a feel for how the Arduino can make sounds, it’s time to
map the sensor readings of the SoftPot to real notes so you can make actual
music. You’ll break the sensor up into eight distinct sections (or keys) and
map these to an index that you can use to play notes.

Copy the sketch in Listing 10-3 into the Arduino IDE, and upload it to your
device.

LISTING 10-3: Tiny Electric Piano sketch

 //Tiny Electric Piano Example Code
➊ int frequencies[] = {262, 294, 330, 349, 392, 440, 494, 524};
 int sensorValue;
➋ byte note;

 void setup()
 {
 pinMode(9, OUTPUT);
 Serial.begin(9600);
 }

 void loop()
 {
 sensorValue = analogRead(A0);
 if (sensorValue > 0) //if it's a note, play it!
 {

 //map the key pressed to a note
 ➌ note = map(sensorValue, 0, 1023, 0, 8);
 ➍ note = constrain(note, 0, 7);
 Serial.print(sensorValue);
 Serial.print("\t");
 Serial.println(➎frequencies[note]);
 tone(9, ➏frequencies[note], 50);
 delay(50);
 }
 else
 {
 noTone(9);
 }
 }

Let’s look at the code. First, you declare a data structure referred to as an
array. An array is a kind of variable that represents a list of values rather than
just a single value. Arrays can be of any standard data type, including bytes,
ints, longs, and floats, and you declare the data type before the array name.

Declaring an array is similar to declaring a variable except that the array
name is followed by two square brackets, []. When you initialize an array,
you define the list inside two curly brackets, { }, and use commas to separate
each value:

dataType arrayName[] = {val0, val1, val2, val3, val4... };

Listing 10-3 declares an integer (int) array named frequencies[] that stores a
list of eight values for the frequencies of the musical notes ➊. You can
access the values in the array using the index number of the value, placed
between square brackets. The first value is referenced as frequencies[0], the
second is referenced as frequencies[1], and so on. Notice, as usual, that the
index starts at 0 rather than 1, as shown in Figure 10-11.

FIGURE 10-11: The frequencies[] array elements

The sketch then declares an index variable named note ➋. The array has only
eight values, so you can declare this variable as a byte since it uses less
memory space than an integer. Next, the sketch uses the map() function ➌ to
translate the raw sensorValue reading in the range 0–1,023 to a 0–8 scale.

The map() function is a great tool for converting from one range of values to
another. You pass it the input value, the range of the input, and the desired
range, and it will scale your input value to the desired range, like so:

map(inValue, inMin, inMax, outMin, outMax);

The sketch assigns this scaled value to the variable note. This will be the
index to reference the array. But while the map() function scales the 0–1,023
range to a range of 0–8, the frequencies[] array actually has only eight values
and is indexed from 0 to 7.

We do this because map() rounds down when it scales from one range to
another range, so to get eight equally spaced values, we actually need to give
it nine values. Value 8 is produced only when the input is equal to 1,023.
Because value 8 (the ninth value) is not a valid index for the array, we correct
this using another command, constrain() ➍. This function constrains the
value to a range of 0 to 7. Any value that is below 0 is constrained to a
minimum value of 0, and any value greater than 7 is constrained to a
maximum value of 7. The constrain() function is often used in conjunction
with map() to scale and limit a value.

The constrain() function is used like so:

constrain(value, minValue, maxValue);

Finally, the sketch prints the frequency of the current note being triggered to
the Serial Monitor ➎ and uses the tone() function ➏ to play the note.

To test it out, press or squeeze the SoftPot. As you move your finger up and
down the length of the sensor, you’ll hear the different notes. See what songs
you can play.

Now, let’s turn this prototype into a finished piano!

BUILD THE PIANO

To convert the prototype into a more functional piano, you just need to apply
it to a flat surface and mark out the eight keys.

Unfortunately, the pins on this sensor are not long enough or thick enough to
simply insert into the male-to-female jumper wires, so if you want to remove
it from the breadboard, we suggest that you solder three male-to-male jumper
wires from the Inventor’s Kit to the ends of the SoftPot, as shown in Figure
10-12. Alternatively, you can use male-to-female jumpers, but you’ll need to
crimp the ends using a set of needle-nose pliers. If you do this, insert the
sensor pins into a set of male-to-female jumper wires and crush the plastic
casing around the sensor pins. Make sure that the wires are in contact with
the pins of the sensor.

FIGURE 10-12: Soldering wires to the SoftPot

The SoftPot has adhesive backing designed to be placed flat on a hard
surface, so with the wires attached, apply the sensor to any portable hard
surface (Figure 10-13), like a small piece of cardboard or even the
breadboard holder itself.

FIGURE 10-13: Options for mounting the SoftPot

The SoftPot sensor is 50 mm long (approximately 2 inches). You need to
divide the length of the sensor into eight keys, which means each key should
be roughly a quarter inch wide. Using a piece of masking tape or a sheet of
paper, mark off eight quarter-inch keys, as shown in Figure 10-14.

FIGURE 10-14: Marking off the keys

Next, position the masking tape or paper on top of the SoftPot to give you a
guide for playing the notes. The completed keyboard should look like Figure
10-15. If you like, you can label the keys with the notes matching the
frequencies in your code to help you play from sheet music.

FIGURE 10-15: The finished Tiny Electric Piano keyboard

GOING FURTHER

In this project, we introduced you to the piezo buzzer and SoftPot. Now that
you know how to make some fun sounds, here are a few ideas for taking this
project further.

Hack

Play around with the code and see what other fun tones you can create. If you
want to play a song in a different key or using a different scale, for example,
you could change the frequencies in the array. Table 10-2 shows frequencies
you can use to change the key of your piano. C major and G major are the
two most common scales used in music. Find some sheet music online or just
mess around. Can you play “Twinkle, Twinkle, Little Star” on your new
SoftPot piano?

TABLE 10-2: Selected approximate frequencies for notes across three
octaves

NOTE APPROX.
FREQ. NOTE APPROX.

FREQ. NOTE APPROX.
FREQ.

C3 131 C4 262 C5 524

C♯
3/D♭

3 139 C♯
4/D♭

4 277 C♯
5/D♭

5 554

D3 147 D4 294 D5 587

D♯
3/E♭

3 156 D♯
4/E♭

4 311 D♯
5/E♭

5 622

E3 165 E4 330 E5 659

F3 175 F4 349 F5 698

F♯
3/G♭

3 185 F♯
4/G♭

4 370 F♯
5/G♭

5 740

G3 196 G4 392 G5 784

G♯
3/A♭

3 208 G♯
4/A♭

4 415 G♯
5/A♭

5 831

A3 220 A4 440 A5 880

A♯
3/B♭

3 233 A♯
4/B♭

4 466 A♯
5/B♭

5 932

B3 247 B4 494 B5 988

Modify

To make things more interesting, add a distortion pedal to this piano project.
This button will switch up octaves to give you 16 notes for the price of 8.
Connect a button to pin 2 on your Arduino as shown in Figure 10-16.

The sketch needs just few extra lines of code for the pedal, which will cycle a
multiplier variable each time the button is pressed. This is known as a state
machine, because each time the button is pressed, the state of a variable is
changed. The code for this modification is in the book’s resources at
https://www.nostarch.com/arduinoinventor/ in the file
P10_TinyPiano_v2.ino.

FIGURE 10-16: Adding a button to pin 2 for octave control

https://www.nostarch.com/arduinoinventor/

The new code lines declare a state variable, octaveMultiplier, and then add a
pinMode() command to set up pin 2 as an INPUT. When the button is
pressed, the state variable, octaveMultiplier, is incremented, altering the
frequency so that the note goes up.

Try it out. When you press the button, the notes should all go up by an
octave. You now can play up to 16 notes with this simple Arduino
instrument!

Bonus Project: Binary Trumpet

The SoftPot is a nice touch, but as a bonus we’ve built an Arduino instrument
that uses actual buttons as keys instead of the SoftPot. This last project is
called the Binary Trumpet. It uses three buttons to specify which note to play
and the fourth button to play the note, like blowing on a trumpet. With three
buttons, you can specify up to eight different combinations using the
keypresses shown in Table 10-3.

TABLE 10-3: Binary trumpet button sequences

BUTTON 1 BUTTON 2 BUTTON 3 NOTE TO PLAY

Up Up Up C (262 Hz)

Up Up Down D (294 Hz)

Up Down Up E (330 Hz)

Up Down Down F (349 Hz)

Down Up Up G (392 Hz)

Down Up Down A (440 Hz)

Down Down Up B (494 Hz)

Down Down Down C (524 Hz)

You may recognize this pattern as a binary sequence. It counts in the order
000, 001, 010, 011, 100, 101, 110, and 111.

To make room for the four buttons on the breadboard, move the buzzer up a
little and then add those buttons, as shown in Figure 10-17.

FIGURE 10-17: Binary Trumpet wiring diagram

The complete code for this modification is in the book’s resources at
https://www.nostarch.com/arduinoinventor/ in the file
P10_TinyBinaryTrumpet.ino. Playing notes using the Binary Trumpet will
take a bit of getting used to, but the sequence of presses in Table 10-3 should
help you as you pick it up.

As it turns out, with four buttons, you can actually play up to 16 different
notes. Can you figure out how to modify the example to do this? Take a look
at the book’s resources to see how.

Whether you use the Tiny Electric Piano or the Binary Trumpet, we hope this
helps you on your way to a future career in making music. Now go forth and
find an audience to show off your newest skills!

https://www.nostarch.com/arduinoinventor/

Appendix

More Electronics Know-How

This appendix provides a how-to on using a multimeter and soldering, as well
as a handy reference for reading the color bands on resistors.

MEASURING ELECTRICITY WITH A
MULTIMETER

A multimeter is an indispensable tool used to diagnose and troubleshoot
circuits. As its name states, it is a meter capable of measuring multiple things
related to electricity—namely, current, continuity, resistance, and voltage.
Let’s take a look at how to use a multimeter. We will be using the SparkFun
VC830L (TOL-12966; shown in Figure A-1) throughout the tutorial, but
these methods should apply to most multimeters.

Parts of a Multimeter

A multimeter has three main parts, labeled in Figure A-1.

FIGURE A-1: A typical multimeter

The display can usually show four digits and a negative sign. The selection
knob allows the user to set the multimeter to read different things such as
milliamps (mA) of current, voltage (V), and resistance (Ω). The numbers
along the outside of the selection knob indicate the maximum value or range
for any given setting.

On some multimeters, the display doesn’t show the units. In these cases, it is
assumed that the values displayed have the same units as the setting, so if you
have the range set to 200 Ω, the number displayed will be in Ω. If you have
the range set to 2 kΩ, 20 kΩ, or 200 kΩ, then the value displayed will be in
units of kΩ.

Most multimeters come with two probes, which are plugged into two of the
three ports on the front of the unit. The three ports are labeled COM, mAVΩ,

and 10A. COM stands for common and should almost always be connected to
ground, negative, or the – of a circuit. The mAVΩ port allows the
measurement of current (up to 200 mA), voltage (V), and resistance (Ω). The
10A port is the special connection used for measuring currents greater than
200 mA.

Most probes have a banana-type connector on the end that plugs into the
multimeter, allowing for different types of probes to be used. For most
measurements, connect the red probe into the mAVΩ port and the black
probe into the COM port.

Measuring Continuity

Measuring continuity is possibly the single most important function for
troubleshooting and debugging circuits. This feature allows us to test for
conductivity and to trace where electrical connections have been made or not
made. Set the multimeter to the continuity setting, marked with a diode
symbol with propagation waves around it (like sound coming from a
speaker), though this may vary among multimeters.

Touch the two probe ends together and you should hear a ringing tone—this
is why checking for continuity is sometimes called “ringing out” a circuit.
You can use this method to test which holes on a solderless breadboard are
connected and which ones aren’t. The probe tips are usually too big to insert
directly into a breadboard, but you can stick two wires in the same row on a
breadboard and touch the ends of the probes to each wire. You should hear
the tone indicating that these two wires are connected through the row. You
can also use this method to trace out a circuit. Because you often can’t see
where all of the wires go, this is a quick way to test whether two points are
connected electrically. When you’re checking for continuity, it doesn’t matter
which side of the probe you connect, because you’re just checking that one
side is connected electrically to the other.

Measuring Resistance

The continuity setting simply rings a tone when the resistance is low, but to
get an actual value for the resistance, you need to use a resistance setting.
Turn the knob to one of the resistance settings marked by the omega symbol
(Ω), which represents ohms, the unit for measuring resistance. Make sure that
the resistor or the element you’re measuring is not powered or connected to
your circuit. A resistor, like many electrical elements, has two ends. To
measure its resistance, simply touch the ends of the probes to the ends of the
resistor. As with continuity, it doesn’t matter which side you connect to red
and which side you connect to black.

There are several possible resistance range settings available. These settings
represent the maximum value you can measure. If you want to measure a
small resistor to a high degree of accuracy, you would set the multimeter low
—to 200 Ω, for example.

If you try to measure a resistance greater than the range, the multimeter will
simply display [1.], with no zeros displayed. If the resistance is greater than
your chosen range, try moving the range up a notch and measuring it again.

Give it a try! If you measure the resistance of the 330 Ω resistor (orange-
orange-brown), what values do you record for each setting? All resistors have
a tolerance band; most are typically 5 percent. What is the percentage error
for your measurement? Is it within the tolerance?

Test the resistance of the photoresistor. Hold your hand or something else
opaque above the photoresistor, and measure the resistance for various
heights.

Measuring Voltage

Voltage is a measurement of electrical potential between two points,
sometimes also called the potential difference. Similar to the resistance

settings, the various settings for measuring voltage specify the maximum
value.

You’ll notice that there are two range symbols, one with two straight lines
and one with a squiggly line. The two straight lines indicate direct current
(DC) measurements, which are most commonly used in electronics. The
squiggly line represents alternating current (AC), the type of electricity found
in the walls of your house. Be sure that you have the knob turned to the right
setting—you probably want DC. The 20 V setting is the best choice for the
projects in this book, since all voltages are limited to 5 V on the Arduino.

Now, try to measure the voltage on an Arduino board. Plug your Arduino
board into your computer using the USB cable for power. To measure
voltage, connect the black probe to GND (ground). Now, use the red probe to
test the voltage at various points or pins (with respect to GND). What does
the 5 V pin show? How about the 3.3 V pin?

Measuring Current

Current is the rate of movement of charges in a circuit and is measured in
amperes (amps). In order to capture the rate of moving charges and thus
measure current, you need to break the circuit and connect the meter in-line at
the place where you want to measure current. Adjust the knob to the
appropriate current range that you expect to measure. If you’re measuring
anything that might be above 200 mA, switch the selection knob to 10A and
move the red probe into the port marked 10A on the body of the multimeter.
If you’re not sure, this is the safest range to start with, to avoid damage to
your meter.

To measure the current going through a simple LED and resistor circuit, for
example, you could splice into the circuit between the LED and the resistor
(see Figure A-2). The current path must go through the meter. Because this is
a series circuit, you could measure the current anywhere along this path:
before the LED, after the LED, or after the resistor.

FIGURE A-2: Splicing a multimeter into a circuit to measure current

When measuring current, be very careful not to exceed the limits of your
multimeter—you should be able to find the range of current your multimeter
can handle from its user manual. If you go beyond the current limits, you run
the risk of also blowing a fuse on the multimeter. (Don’t worry if you blow
the fuse—a replacement is pretty inexpensive. In order to swap in the new
fuse, you’ll probably need to open the back of the multimeter with a
screwdriver.) The standard mAVΩ port can usually handle up to 200 mA.

HOW TO SOLDER

Soldering is one of the most basic skills used in prototyping electronics
projects. It involves melting a special metal, solder, between two components
to hold them together more permanently (see Figure A-3).

FIGURE A-3: Soldering

Solder, shown in Figure A-4, is a metal alloy with a relatively low melting
temperature. Modern solder melts at a temperature of around 180 degrees
Celsius or 356 degrees Fahrenheit, about the temperature you need to bake
cookies. Most solder used for electronics has a core of flux, a cleaning fluid.
As the solder melts, the flux helps to clean the surfaces being soldered and
helps the solder flow.

FIGURE A-4: A roll of solder

To perform soldering, you use a soldering iron. Most soldering irons are
about the size of a medium carrot and have two main parts: the handle and
the hot end (see Figure A-5).

FIGURE A-5: A typical soldering iron

There are many styles and types of soldering irons. Lower-cost irons can be
about $10 and usually have a fixed temperature setting, but we suggest
getting an iron with some type of temperature adjustment knob. The optimal
temperature for an iron is about 650 degrees Fahrenheit. If it’s too hot, the tip
will oxidize and get dirty quickly. If it’s not hot enough, it won’t melt the
solder. An adjustable iron will help you control this, so it’s worth spending a
little extra.

Be very careful when using a soldering iron: when you turn it on, the hot end
will very quickly get hot enough to melt metal. That’s really hot! Always
hold a soldering iron from the handle—you should never hold it from the hot
end even when it’s off.

You should also protect the table surface you’re working on with a piece of
cardboard, a cutting mat, or scrap piece of wood. And, before you start
soldering, you should always wear eye protection. Little bits of solder and
flux do sometimes sputter off. It’s best to keep your precious eyes safe!

Heating the Iron

To use a soldering iron, first plug in your iron and let it heat up. Depending
on the type of iron you have, this may take anywhere between 30 seconds and
a couple of minutes. While the iron is heating up, make sure it’s resting on a
stand so that the hot end is not touching your table or work surface.

When the iron is hot, the solder should melt easily, so test this by touching a
piece of solder with the side of the iron’s tip. This is the hottest part of the
iron, known as the sweet spot (shown in Figure A-6), and it is the part you
should use to apply heat to components. If the solder melts immediately, your
iron is hot enough to solder.

FIGURE A-6: The side of the tip is much hotter than the very end of the tip.

Perfecting Your Soldering Technique

Contrary to what you might assume, when soldering you don’t actually touch
the iron directly to the solder to melt it. The trick is to hold the iron to the
components you’re intending to solder for around 2 to 3 seconds. Then you
apply solder directly to the heated joint, and the solder will melt. Solder will
always flow toward the heat and settle in the hottest part of the component. If
you feed the solder directly onto the iron, it may glob up on the iron and not
go onto the parts you want to solder. If this happens, simply clean the iron
and try again. Hold the iron the same way you would hold a pencil, with your
dominant hand, holding it from the handle. With your other hand, hold a
length of solder. Be careful not to hold the solder too close to the end you’re
melting, as the heat may travel up the length of solder to your fingertips.

Touch the sweet spot of the iron to the parts that you intend to solder. Be sure
that the sweet spot of the iron is touching both parts that need to be soldered
so that they heat up equally, as shown in Figure A-3. Count for three full
seconds: one one-thousand, two one-thousand, three one-thousand.

Next, while holding the iron to the components, feed the end of the solder

into the joint. Remember, the solder will flow toward the heat.

After you have fed enough solder so that the joint is filled, remove the solder,
but hold the iron in place for one more second. This will allow the solder to
flow and settle. Remove the iron from the joint, and place it back onto its
stand.

A good solder joint should be smooth and somewhat shiny. If you’re
soldering onto a PCB, the joint often resembles a small volcano or chocolate
candy kiss. Soldering takes practice, so if your solder joint doesn’t look clean
and smooth, try reheating the joint to get the solder to flow and settle again,
or add a bit more solder. Figure A-7 illustrates some common mistakes and
possible solutions for soldering.

FIGURE A-7: Common soldering mistakes and solutions

Cleaning the Iron

Keeping the tip of the iron clean is one of the secrets to getting a good solder
joint. We recommend cleaning it before each use by heating it up and using a
brass scrubber or wet sponge to wipe off any excess solder and oxidation that
may have built up.

If the tip is dirty and you can’t wipe off the excess buildup, you can use Tip
Tinner and Cleaner (TOL-13246); this is a mixture of a mild acid and solder.
To clean with this, heat the iron, place the tip of the hot iron into the tip
tinner, and let the tip tinner eat away at the oxidation and buildup for about
10 to 15 seconds at a time. Then, wipe the tip off on the sponge. Repeat this
process if necessary. The tip of the iron should be shiny.

Soldering Tips

Figure A-8 shows a few additional hints and suggestions for using the
soldering iron.

FIGURE A-8: Soldering hints and suggestions

NOTE

Some types of solder contain lead. We highly recommend washing your
hands after doing any soldering regardless of the type of solder you use.

Using a soldering iron is a skill that should be in any maker’s arsenal. When
you’re ready to make your prototype projects more permanent and durable,
soldering will ensure that the wires and connections between components
don’t get disconnected.

ADDITIONAL SOLDERING TOOLS

Here are a few additional tools we’d recommend you use to help you make
the perfect solder joint each time. These tools help hold your parts, clean up
your solder joints, and remove extra solder.

Third Hand

A third hand is basically a clamp to hold down the pieces you’re soldering
and will be one of your best helpers for soldering. There are many versions of
third hands, but most are simply a couple alligator clips on a heavy stand that
will hold your parts while you’re using your hands to hold the solder and the
iron. Many of the basic ones even come with a magnifying glass and a small
soldering iron stand, too, as shown in Figure A-9.

FIGURE A-9: Third hand soldering stand

Flux Pen

One of the tricks to getting a good solder joint is to make sure everything is
clean, which you can do with flux, a slightly acidic cleaning fluid often made
from tree rosin. A flux pen (see Figure A-10) works a lot like a paint marker;
you simply press the tip of the marker down on the solder joint you’re
working on until a small puddle of liquid comes out onto your board. Apply
the soldering iron directly to the joint and insert the solder and, using flux,
the solder will melt a lot faster and bond better to your components.

FIGURE A-10: A water-soluble flux pen

Flux does wonders for soldering, but it is somewhat corrosive, so make sure
you minimize contact with your skin and wash your hands immediately after
use.

Solder Wick

You’ll sometimes find when soldering that you’ve added too much solder or
gotten solder in places that you didn’t intend. There are two tools to keep
around on your bench that help remove unwanted solder. The first is solder
wick, a finely braided copper mesh that resembles a ribbon, as shown in
Figure A-11.

To use solder wick, place the wick over the solder joint you wish to remove,
apply the heated soldering iron to the top of the wick to heat the wick and the
solder joint below, and as the solder melts, it will wick away from your
components into the copper mesh. Voilà!

FIGURE A-11: A close-up view of solder wick

Be sure to hold the iron on the wick as you remove both the wick and the iron
from your board. If you pull the iron away too soon, the wick will be soldered
onto your board. If this happens, simply reheat the joint to remove the wick.

Solder Vacuum

The second tool that can remove unwanted solder is called a solder vacuum
or solder sucker. This nifty tool creates a vacuum using a plunger (similar to
a syringe) and releases with the press of a button.

To use a solder sucker, first push down on the plunger to preload the tool.
Next, heat up the solder joint you wish to remove until it is completely
melted and liquid. Place the tip of the solder vacuum against the solder (while
still holding the iron to keep it melted), and finally push the release button to

suck away the unwanted solder.

If it doesn’t work, try again. It sometimes helps to add a bit more solder to
the area you wish to remove solder from.

RESISTORS AND BANDS

Resistors come in a wide range of values, but how can you tell what the value
is by looking at the tiny component? There are no numbers or text!

Resistors use a color band system to show their values. Figure A-12 shows
how the banding system works.

Most resistors have four or five colored bands. The last band on the resistor
specifies the tolerance, or the degree of variance, allowed by the
manufacturer. Most of the time, your resistors will have a gold tolerance
band, for 5 percent. This means the manufacturer allows 5 percent error on
the value of that resistor. For example, the resistance of a 10 kΩ resistor with
a 5 percent tolerance can fluctuate up to 500 Ω and still be considered a 10
kΩ resistor.

When you’re reading from left to right with the tolerance band (usually gold
or silver) toward the right, the remaining bands specify the resistance value.
On a four-band resistor, the first two bands specify the base number, and the
third band is the multiplier. On a five-band resistor, the first three bands
specify the base number, and the fourth band is the multiplier.

For example, the first three bands on a 10 kΩ resistor are brown, black, and
orange. Following the chart in Figure A-12, brown equals 1, and black equals
0, so brown-black means the base number is 10. The third band is orange,
which specifies a multiplier of 103, for a total of 10,000. Finally, the fourth
band specifies the tolerance, which in this example is 5 percent (gold).

FIGURE A-12: Resistor color cheat sheet

In case you need to look up resistor color bands later, you may want to dog-
ear this page for reference. It’s okay—we won’t tell the librarian.

Afterword
We hope you’ve enjoyed building the projects in this book. It was a lot of fun
for us to come up with different project ideas that incorporated cardboard,
paper, ping-pong balls, and other common materials, as well as the basic
electronics. But the projects in this book are just a start. We hope they inspire
you and help unleash your inner inventor! We encourage you to combine and
mash up components and concepts from each of these chapters to create your
own Franken-duino project! If you have comments or ideas that you’d like to
share with us, please send us a note at
ArduinoInventorsGuide@sparkfun.com.

Best of luck, and happy building!

ADDITIONAL RESOURCES

The community behind Arduino is vast. The Arduino IDE is downloaded
nearly 600,000 times per month. While Google can find just about anything
on the internet, here are a few other resources that we use regularly and
recommend.

Arduino Learning Community
https://www.arduino.cc/en/Guide/HomePage

Arduino Language Reference
https://www.arduino.cc/en/Reference/HomePage

SparkFun Education Tutorials https://learn.sparkfun.com/

Adafruit Learn Arduino Community
https://learn.adafruit.com/category/learn-arduino

ACKNOWLEDGMENTS

mailto:ArduinoInventorsGuide@sparkfun.com
https://www.arduino.cc/en/Guide/HomePage
https://www.arduino.cc/en/Reference/HomePage
https://learn.sparkfun.com/
https://learn.adafruit.com/category/learn-arduino

We are grateful for the tremendous support we’ve received from the Arduino
community, everyone at SparkFun, and our amazing editors at No Starch
Press. The ideas and projects that we’ve assembled in this book are attributed
to all of these people and the many whiteboard brainstorming sessions,
emails, and side conversations that we’ve had over the past few years. We
also want to thank our families—Zondra, Bear, Bridge, Mariela, Mia, and
Maeva—for the support that they have provided during the testing,
prototyping, and writing process. Thank you!

About the Sparkfun Series

The SparkFun series is a collaboration between No Starch Press and
SparkFun Electronics, an online retailer that sells bits and pieces to make
your own electronics projects possible. Each title in the series is written by an
experienced maker on the SparkFun staff and edited by the folks at No Starch
Press. The result? The book you’re reading now.

The Sparkfun Guide to Processing

The SparkFun Guide to Processing shows you how to craft digital artwork
that interacts with the world around you. With the Processing programming
language and a little imagination, you’ll scale detailed pixel art to epic
proportions, record and sample audio to create your own soundboard, and
create visualizations that reflect changes in sound, light, temperature, and
time.

Resources

Visit https://www.nostarch.com/arduinoinventor/ for project templates and
sketches, updates, errata, and other information.

More no-nonsense books from NO STARCH PRESS

https://www.nostarch.com/arduinoinventor/

THE SPARKFUN GUIDE TO PROCESSING

Create Interactive Art with Code

by DEREK RUNBERG
AUGUST 2015, 312 PP., $29.95
ISBN 978-1-59327-612-6
full color

ELECTRONICS FOR KIDS

Play with Simple Circuits and Experiment with Electricity!

by ØYVIND NYDAL DAHL
JULY 2016, 328 PP., $24.95
ISBN 978-1-59327-725-3
full color

ARDUINO PLAYGROUND

Geeky Projects for the Experienced Maker

by WARREN ANDREWS
MARCH 2017, 344 PP., $29.95
ISBN 978-1-59327-744-4

ARDUINO PROJECT HANDBOOK

25 Practical Projects to Get You Started

by MARK GEDDES
JUNE 2016, 272 PP., $24.95
ISBN 978-1-59327-690-4
full color

THE MAKER’S GUIDE TO THE ZOMBIE APOCALYPSE

Defend Your Base with Simple Circuits, Arduino, and Raspberry Pi

by SIMON MONK
OCTOBER 2015, 296 PP., $24.95
ISBN 978-1-59327-667-6

ARDUINO WORKSHOP

A Hands-On Introduction with 65 Projects

by JOHN BOXALL
MAY 2013, 392 PP., $29.95
ISBN 978-1-59327-448-1

1.800.420.7240 or 1.415.863.9900 | sales@nostarch.com |

mailto:sales@nostarch.com

www.nostarch.com

http://www.nostarch.com

Get Started with DIY Electronics
REQUIRES

ARDUINO UNO or SPARKFUN REDBOARD

The Arduino microcontroller makes it easy to learn about electronics, but it
can be hard to know where to start. The 10 projects in this book will teach
you to build, code, and invent with the super-smart Arduino and a handful of
parts.

First, you’ll master the basics with a primer that explains how a circuit works,
how to read a wiring schematic, and how to build and test projects with a
solderless breadboard. Then you’ll learn how to make your hardware move,
buzz, flash, and interact with the world using motors, LEDs, sensors, and
more as you build these 10 projects:

• The classic first Arduino project: blinking an LED

• A miniature traffic light

• An LED screen that displays animated patterns and shapes

• A fast-paced button-smashing game to test your reflexes

• A light-sensitive, color-changing night-light

• A challenging ball-balancing game

• A temperature-sensing mini greenhouse with an automated fan and vent

• A motorized robot that you can control

• A racing timer for toy cars

• A tiny electric piano that you can actually play!

With each project, you’ll learn real coding skills so you can tell your
inventions what to do, like how to store temperature readings with variables,
start a timer or spin a motor with functions, and make decisions using loops.
You’ll even find tips and tricks to put your own twist on each gadget and take
things further.

About Sparkfun Electronics

SparkFun Electronics is an online retail store that sells electronic parts for
DIY projects. It offers classes for the public as well as resources, tutorials,
and professional development for educators through its Department of
Education.

THE FINEST IN GEEK ENTERTAINMENT™

www.nostarch.com

“I LIE FLAT.”
This book uses a durable binding that won’t snap shut.

http://www.nostarch.com

	Introduction
	What is this Book About?
	Why Arduino?
	How is this Book Different from Others?
	Materials
	Required Tools
	Required Computer
	What’s in this Book?
	Online Resources
	Spread the Word: Sharing Your Work
	Electronics Primer
	Electricity, Conductivity, and Basic Terms
	What Is Electricity?
	Types of Electricity
	What Is a Circuit?
	Ohm’s Law
	Visualizing Electricity as Water in a Pipe
	Schematics, Circuit Blueprints, and Wiring Diagrams
	Prototyping Circuits
	Discrete Components vs. Breakout Boards
	Analog vs. Digital
	What Is A Microcontroller?
	Project 1: Getting Started with Arduino
	Materials to Gather
	About the Arduino
	An Accessible Hardware Platform
	About the SparkFun RedBoard
	Installing the Arduino IDE and Drivers
	Installing on Windows
	Installing on OS X
	Installing on Linux
	A Brief IDE Tour
	Changing the Default Preferences
	Test Drive: Plugging in the Arduino for the First Time
	Choosing Your Board in the IDE
	Selecting the Communication Port
	An Arduino “Hello, World!”
	Basic Arduino Troubleshooting
	Anatomy of an Arduino Sketch
	Key Sketch Elements

